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DUAL VARIATIONAL PRINCIPLES FOR AN ELLIPTIC PARTIAL
DIFFERENTIAL EQUATION

JIRL VACEK

(Received August 14, 1974)

Introduction

In this paper we formulate the dual variational principles for the equation

N A N

-y ¢ <a,-jLu>+au =f
ij=10x; 0x;

in the domain Q < E,.

We prove that the variational principles make it possible to obtain a posteriori
error estimates and we show how to construct convergent approximations to the
exact solutions of variational problems. In the last section some numerical results
are presented.

1. Formulation of the problem

Let Ey be the N-dimensional Euclidean space, 2 < Ey an open Lipschitz region
with the boundary I' and let

r=r,or,ur,vr,

where I, I'y, I', are mutually disjoint sets open in I' and mes,_, 'y = 0; by mesy
we denote the N-dimensional measure.
Let Q@ be divided into mutually disjoint open Lipschitz subregions Q,, s =
=1,2,...,m,ie.,let
Q=Q°UT,

where
m

Q°=UQ

s=1



and

is such that mesy I'; = Oand mesy_, ' n I'; = 0.
Let us introduce the following real functions:

1) a;(x), a(x) are bounded piecewise continuous functions in Q with jumps
on I'; and such that for x € Q° they satisfy

(1) ay(x) = a;(x), i,j=1,...N,
(2) aij(x) = (’[é|2 , ¢>0, forall ¢(€Ey,
3 a(x) 2 ay > 0.

2) a(x) is a bounded piecewise continuous function on I', with jumps on I', N I
such that for xel', — T;

(4) ax) =g > 0.
(5) 3) felX(Q), uoe W-A(Q), gelIXI).

We use the following notation: I*(Q), L*(I') are the spaces of square integrable
functions in Q, I'. The usual norms in these spaces are denoted by || |,

lo.r-
W*2(Q) is the Sobolev space of functions with generalized derivatives up to the
k-th order belonging to I*(2). The norm in this space is denoted by || ;.

We use the convention that a repeated subscript indicates the summation over
the range of the space E.

The letter ¢ with a possible subscript will denote a positive constant and u,; will
be used instead of du/dx;.

If we define the differential operator A by the relation
(6) Au = au — (a;;u,;),;

then (2) says that A4 is uniformly elliptic in Q.
We define in W' <(Q) x W' *(Q) a bilinear form

(7) A(v, u) =j (a;0.5u,; + avu) dx
o

The boundedness of a;; and a in Q implies that A(v, u) is a continuous bilinear
form in W'3(Q) x W'*(Q).

For functions belonging to W'?(Q) the boundary values can be well defined,
as is seen from the following theorem:
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Theorem 1. Let Q be a bounded Lipschitz region with the boundary I'. Then
there exists a uniquely defined linear mapping

T: Wi(Q) - I(I)

which is continuous and such that Tu = u| for u € £(Q)

Definition. T is called the operator of traces, Tu is called the trace on I' of the
function u € W'3(Q).

Here (5(5) is the set of functions which are infinitely differentiable in Q and u|,-
denotes the restriction of u to I'. For the proof of the theorem see [7].

The boundary values of functions belonging to W''*(Q) will be understood in the
sense of traces and we shall often write u instead of Tu for the values on the boundary.
We define on I*(I',) x I*(I',) the bilinear form

(8) a(o, 1) = '[ o

From the boundedness of « on I', and from the continuity of T it follows that a(v, u)
is continuous in W'*(Q) x W'*(Q).

Now we can define in W'?(Q) x W"?(Q) the bilinear form
©) (0 ) = A(e, ) + a(o. ).
This form is continuous and thus there exists ¢ > 0 such that
(10) u,ve WHA(Q) = (v, w)) = cfuls ] -
Definition. Let V be the closure of the set
(11) ¥ = {ve8(Q):suppvn T, =0}

in W'?(Q) and let G be a linear functional defined in V by

(12) szjvfdx +I vg dI'
(2] ryuly
A function u € W'*(Q) satisfying
(13a) u—ugeV
(13b) veV=((v,u)) = Guv

is called a weak solution or simply a solution of the problem (13) with the stable
boundary condition u.



If we suppose that the functions a;;, a, o, f, g, u,, the boundary I' and the solu-
tion u are sufficiently smooth, we can apply Green’s theorem obtaining the classical
interpretation of our problem: u is the solution of the problem

(14) —(au,) +au=f in Q,
a;u,n; +ou=g on I,,
a;u,;n; =g on I,
u =u, on I,,
u and a;;u,;n; are continuous on I'; ,

where n = (ny, ..., ny) is the unit outward normal.

2. Existence of the weak solution

In this section we shall prove that the problem (13) has a unique solution. We recall
here some well-known facts about the V-ellipticity from [7].

Definition. The bilinear form ((v, u)) is called V-elliptic if there exists ¢ > 0 such
that

(15) ve V= (o 0) 2 ol
Theorem 2. The boundary value problem with a V-elliptic associated bilinear

form ((v, u)) has a unique solution u.
It holds

(16) | lulls = ellrllo + luolls + lgllo.r)-

To prove the existence and uniqueness of the solution of (13), it is now sufficient
to prove the V-ellipticity of the form (9). If we use (2), (3), (4) it is easy to see that

17) ve WH3(Q) = ((v,0)) =
- L(a,.,.v,,.u,j +av?)dx + J o dr = min e, a0) [l = e ol

where ¢; = min(c, a,) > 0. This means that the form (9) is W' ?(Q)-elliptic and
thus V-elliptic for each V = W"*(Q).

By (1), the form ((v, u)) is symmetric and by (17) ((v,v)) 2 0 and ((v,v)) = 0
if and only if v = 0. Thus ((v, u)) is a scalar product in W' *(Q) and in accordance
with (10), (17) there exist positive constants c,, ¢, such that

(18) erfolls £ (v, 0)'72 = o]

which means that the norms ((v, v))"/? and ||v|; are equivalent.
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3. Primary variational principle
In [14] the following theorem is proved:

Theorem 3. Let the form ((v, u)) be V-elliptic, ((v, u)) = ((u, v)) and ((v, v)) = 0.
Then u is a solution of the associated boundary value problem if and only if u
minimizes the functional

(19) L(u) = H(u, u)) — Gu

in the class ug + V.

In the preceding section we have proved that the assumptions of this theorem
are satisfied. Thus the solution of the problem (13) is equivalent to the solution of the
corresponding variational problem. The variational principle formulated in Theorem
3 will be called the primary variational principle.

4. Dual variational principle

In this section we shall formulate the dual variational principle. We want to find
a functional %(2) and a class of admissible functions Lsuch that the equality

min #(u) = max S(%)
el

ueug+V
is satisfied.

Let us define the space
(20) H = [XQ)"*" x I*(I,).
We denote by

lolle =%, Lodo + foxsalor

the norm of the Cartesian product. In this norm H is complete as the Cartesian
product of complete spaces.

Next, we define a mapping ® : W'*(Q) — H by the following relations:

(21) ou = —au,;, i=1,..,N,
Pyyqu = —au,
Dyiu=—a.Tu.



Let H,, H,, Lbe the following subsets of the space H:

(22) H ={peH:(veV)p = dv},

(23) H,= {(peH ‘(e V)L(W,i + gyau) dx + '[

r,

Pyvdl = 0} >

(24) L= {(p eH:(WeV) L(q)iu,i + e 10) dx + '[

Iy

Py dl = —Gv} .

For ¢', 9" € H we can define

(25) (00" = f

- ’ " 1 ’ ”n 1 ’ "
<aij1(pi(pj + - (PN+1(PN+1) dx +J - On2PN+2 4L,
Q a r,%

where a;;' are elements of the inverse matrix to the matrix a;;. (1), (2) implies that
the inverse matrix exists and that the functions a,-“j1 are bounded, piecewise continu-
ous and in Q° they satisfy

aj'(x) = ap'(x), ij=1,...N,
aj;'(x) &&=z clé)*, ¢>0, foreach EeEy.

Hence we can deduce that the bilinear form (¢’, ")y is symmetric and there exist
positive constants ¢, ¢, such that

(26) cifolc £ (@ @)if* £ cs]o|c.
1/2

Thus (¢', ¢")y is a scalar product in H and the norms ||@|c, |¢|ux = (¢, ¢)i/* are
equivalent. H with the scalar product (¢’, ¢")y is a Hilbert space and in the sequel H
will be understood in this sense.

A simple argument shows that
(27) u',u" e WI'Z(Q) = (Pu’, u")y = (W', u")).

H,, H, are linear manifolds in H. We shall prove that H, is a closed subspace
of H.

Let {p®}2, = H,, " — ¢. By the definition of H,, to any k there exists v, € V
such that ® = ®v, . {¢p™} is a Cauchy sequence and thus, by (18) and (27), {v,} is
a Cauchy sequence and v = lim v, exists. As V is a closed subspace of W!*(Q), we

k— o
have v e V and if we denote ¢’ = v, it holds ¢’ € H, and, by (18), (27}, ¢¥ — ¢'.
By the uniqueness of the limit we have ¢’ = ¢, thus ¢ € H, and we have proved
that H, is a closed subspace of H.

Let us state here the well-known lemma about the orthogonal complement.
For the proof see e.g. [11], Theorem 4.82.-A.
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Lemma 1. Let H be a Hilbert space and let M be its closed subspace. Then H
is the direct summ of M and its orthogonal complement M*,

H=Mo® M".

As a corollary of this lemma we can prove

Theorem 4.
Hf:Hz, H=H ®H,.

Proof. It is sufficient to prove the first assertion. The other assertion is then
an immediate consequence of the first one, closedness of H,; and of the preceding
lemma.

Let ¢’ € H,. Then there exists v € V such that ¢ = ®v and thus

((P’, (P”)H = - f (ai_jlaikvm(p; + U€91’\’1+1) dx "f vy 42 Al
Q

Iy
== j (@iv.: + @f1v) dx _f Py+20dl .
o r,

If " € H,, then (¢', ¢"); = 0 by the definition of H, and thus H, = H7.
Conversely, if (¢, ¢"); = 0 for any ¢’ € H,, then for any v € Vit is

f(@i’v,i + @y q0) dx +j @Y ,wdl =0
(9]

r,

and H} = H,. Thus Hy = H, which was to be proved.
Theorem 5. Let u® be a solution of (13). Then
¢° —poeH,, peL=¢ — ¢°cH,,
where ¢° = ®u°, o = du,.

Proof. By the definition of the solution, it holds

1° u® =uy +0°, eV,
2° ve V=>J. (a;u’,v,; + avu®) dx +f au’ dl = Gv .
e r,

From 1° it follows that ° — ¢, = ®° € H,.
By 2° we have

veV= _f ((P?U,i + (Pg+10)dx —f Pr+s0dl = GV
Q ry,
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Now, if ¢ € L, then
vE V=>‘[ [((P? - ‘Pi) v,; + ((Pg+1 - (PN+1)U] dx +j ((Pl(\)l+2 - (PN+2)UdF =0.
Q T,

and thus ¢ — @° e H,.

Let us define in H the functional
(28) T(9) = =3, 9)u + (9, 9o)u
where ¢, = Pu,, and let us investigate its properties.
Theorem 6. The problem
(29) T (p) = max, ¢@elL
has the unique solution ¢° = ®u®, where u® is the solution of (13).

Proof. An easy calculation yields

T(¢) = =3¢ = 00, @ — o) — (Por P)] = — 3|0 — 0ol 7 + 1] 00lii »
T(0°) = —0° — ol + £ @0l >
thus
(30) T(@°) = 7(9) = Hlle — volir — [#° — voli]-

Let ¢ € L. Then, by Theorems 4 and 5, it holds ¢ — ¢° 1 ¢° — ¢, and thus
lo = @ollie = o — @l + llo° = w0l = [0° = 0ol -
It follows that 7 (¢) < 7 (¢°) and the equality holds if and only if ¢ = ¢°.

Let us now investigate the relation between the functionals #(u) and 7 (o).
Let u e W"2(Q), ¢ = ®u. Then, by (27),

(@, @)u = ((u> w)).
By subtracting 7 (¢) from £(u) we get
L) — T(¢) = ((u — up,u)) — Gu.

If u = u® where u° is the solution of (13), then u® — ug e V and ((u° — u,, u°)) =
= G(u® — u,) and thus

(31) T (¢°) = £2(u°) + Gu, .
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Theorem 6 together with the relation (31) represents the dual variational principle,
but this form is rather unpractical. Firstly, the construction of the trial vectors ¢ € L
would be very complicated and secondly, the calculation of Gu, in (31) requires
the knowledge of the values of the function u, in the whole region Q, while in most
cases only the values on I', are given as a boundary condition. We shall try to find
another form of the dual variational principle to avoid these drawbacks. In order
to succeed, we have to reduce the class of admissible functions.

For later use, let us state here Green’s theorem. For the proof see [7].

Lemma 2. (Green’s theorem.) Let Q be a Lipschitz region with the boundary I’
and let u, v e W"*(Q). Then

(32) J.u,,-udxzj.uvnidl" -—fuu,idx, i=1,..,N
o r Q

holds, n being the unit outward normal.

Let us define

(33) H={:4=yy.0ly), LeW?Q), i=1..,N},

~—

(34) L={el:=in;=g on I,}.

We can define in H the symmetric bilinear form

! }-i,ij'j,j> dx +‘[ ! Aing) (An;) dr .
a r, %

(35) A"y = ,[ <a;jl;~;)~j +
2

It holds

o

Py z X |

thus (4, 4> = 0, {1, 4> = 0 if and only if A = 0. Thus (A, 1" is a scalar product
in H. We define a norm in H by

12 = <4, 50

Using Theorem 1 we can prove that

2
1

4i

N N
‘[ 1(Ain,.)2 dar < c'[ Y (TR Ar £ | T|* Y,
r, o r,i=1 i=1
Further,

j [u ¥ lwﬂ dx < ¥ Al:
0 a i=1
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and thus we have proved that there exist positive constants c,, ¢, such that

N N
(36) €y Zl"li"g Sy = Cz.Zl ”l,!lf .

Let us define in A the functional
(37) ) = —3 f [a,.;.uiaj +1(r- a,.,iy] dx
(2]

— %J l(g + Amn;)*dr ~J Anug dI
r,% ry

and let us define the mapping 4 : W"2(Q) - [IX(2)]":

(38) Ay = —a;u i=1,..,N.

”s
We can prove
Theorem 7. Let a solution u® of (13) exist such that Au® € H. Then the problem
(39) &(1) = max, Ael
has a unique solution A° = Au® and it holds
(40) F(A°) = L(u°).

Proof. Let us define in H the linear functional ¢ by the relation

(41) % =J' S g dx = J 9 pn,dr —‘[ Anggdl .
ed r,® Tu
Then we can write
2 2
(42) F(R)= =LA + 9r -3 L dx —%J‘ 9_dr.
o a r, %
Let us prove first the following assertion:
(43) AeL, 2°%=Au®=°%2° =2y =9(0° - }).
By the definition of u° and A° it holds
44 N, =f—au’in Q,
( ) i, f

Mn,=oau®—g on T,,

Mn; = —g on I.
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We have

I a;jll?(lg — 4;)dx ='[ a j(—auul) () — ;) dx =
o o

= - J ul(2) — 2;) dx
Q2

and by the assumptions u°, 17, 1, € W"2(Q). So we can use Green’s theorem con-

cluding

f ai;' () — ) dx = — J u®(A) — 2;)n;dI" + j u®(A) — 4;),;dx .
o r

Q2

Using (44) and the relation 4,n; = —g on I, we have
(45a) J‘ aj;' (2 — 4;)dx = '[ (4 = A7) njuo dI' +
o Iy

+J- (Zin; — au® + g)u®dr +f (f — au® — 2;,;) u® dx.
r. 2

Similarly,
45b 1/1?,%9-—1~ dx = | (A4;; + au® — f)u®dx +
B JsJ JsJ ,
ed 2
+ j i(f— A — au®)dx,
oda
(45¢) J }(A?n,-) (A} = Aj)n;dr =J (cu® — Ain; — g)u®dr +
r, % Iy

+J g—(iini + g —ou®)dr.
r,a
Summing up (45a), (45b), (45¢) we get

Q0,00 = 2> =J ! (f — au® — ;) dx —f I(au® — g — An)dl —
od o

r,
-~ f (4 = 2)nuodr,
r.
but this means exactly %(1° — 4) and (43) is proved.
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Now, it holds

F(0) = F(A) = =500 + 3 A + G0 — 2) =
=10 — A0 = Ay = (0,20 = i) + G(2° — J)

and from (43) we have
(46) PO — F(7) = 30 — 1,10 — 1.

Thus #(2°) — #(4) = 0 for any A € Land the equality holds if and only if 2 = 2°.

By the assumption of the theorem A° = Au® e H and by the third equality in (44)

Mn; = —g on I',, thus 2% e [L and the existence and uniqueness of the solution
of (39) is proved.

We have to prove the equality (40).

For 4 e H let us define a vector

(47a) P = ((pl""a (/’N+z),
where
(47b) (pl = ’11' ’ = 17 ~7N )

Onir =2 — f

Px+2 = —(9 + 4n) on T,.
Obviously ¢ € H. We shall prove that ¢ € Lfor any e Land
(48) T(¢) = F(2) + Guy .
Let v € V. Using Green’s theorem we obtain

J\ ((Pivsi + ‘/’N+1U) dx +J~
2

Iy

Pnio0dl = j‘ enpdl —

r

- j‘ (<p,-,,- — Qyyq)vdx +J\ Qyivdl = —Go
o : r,

and thus ¢ € L.

Rearranging the term (¢, ¢o)y we conclude

J ai_jl(/’i(piuo dx = _-[ Piuy ;dx = —j ugpn; dl' + 4[ @ iUg dx
o oS r I
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thus

1 1
((p, (po)" = j (ai_j’(pi<15juo + ;(PN+1¢N+1u0) dx +J = Qn+2Pyiatigdl =
2

r,%

= f ((pi,i - (pN+1) ug dx "J Qinug dI — J‘ Qinug dll —
Q I'n Tu
—j (pin; + Qu4a)Uodl =J' fug dx +J‘ guo dI’ —J‘ Qe dl =
r, 2 ryur, I'y

= Gu, —J omnuydl
Tu

and substituting into (28) we get (48).
Thus for A° € Lit holds

(48) T(¢°) = Z(3°) + Gu,,

where ¢° is defined by the relations (47) with 2 = 2°.

If Au® € H, we can apply Green’s theorem to (13) and by (14),(21), (47) we have
¢° = @u®. In such a case (31) is valid and (31), (48’) yields immediately (40) which
completes the proof.

The dual variational principle formulated in Theorem 7 can be used in practical
calculations. If the boundary condition g is a piecewise polynomial function, then
the construction of the functions belonging to Lis not difficult (we can use piecewice
polynomial functions satisfying the boundary conditions). Also all the values ap-
pearing in the definition of #(4) are known. However, if the assumption of Theorem 7
is not satisfied, then the assertion need not be valid. We shall show in the next
section that even in this case we can use the dual variational principle for a posteriori
error estimates of the approximate solution.

5. A posteriori error estimates

We have already mentioned in a remark after Theorem 6 that the construction
of vectors belonging to the set Lwould be difficult. Nonetheless, if we are able to find
approximate solutions to both the problems #(u) = min and 7 (¢) = max, we can
have an element to which the exact value of the error is known. The method used
in the next theorem is known as the method of hypercircle.

Theorem 8. Let u e u, + V be an approximate solution of the primary variational
problem, let ¢ € L be an approximate solution of the dual variational problem (29)
and let 9° = ®u®, where u® is a solution of (13). Then

(49) [4(eu + ¢) = 0°llu = 4] Pu = ofu-
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Proof. As ueuy, + V, there exists ve V such that u = u, + v. Further, there
exists v° € Vsuch that u® = uy + v°. It means thatu — u® = v — %€V
and thus
du — ¢° = d(u — u°) = Pve H, .

It is ¢ € L and thus, by Theorem 5, ¢ — ¢° € H,. By Theorem 4 H, L H, and thus
we have

[4(@u + ¢) = ¢ = [4(Pu = ¢°) + 30 = @°)[ =
= ¥ @u = ¢ + o = 0"l = H(Pu = ¢°) = (o = ") =
= 4 eu — ol

In the following we shall show how to use the variational principle from Theorem 7
to a posteriori error estimates. Generally, we cannot assume that the assumption
of Theorem 7 is satisfied. In such a case 2° € Lneed not hold and the problem (1) =
= max has no solution in L. '

Let us have A € L. If we define ¢ by the relations (47), we have ¢ € L. By Theorem 6,
the problem 7 (¢) = max, ¢ € Lhas a solution ¢° and (48), (31) yields

T (@) = F(A) + Guy = T(¢°) = L(u°) + Guy < ZL(u) + Gu, .

So we have proved the following theorem:

Theorem 9. Let A€ L,u € uy + Vand let u® be a solution of (13). Then
(50) F(2) £ L) £ L(u).

Corollary. Under the assumptions of Theorem 9,
(51) 0<4((u—uu—u’))< Zu)—501).

Proof. Itis0 < ¥((u — u° u — u°)) = L(u) — £ (u°) and (50) implies

0= 2(u)— LU’ < Zu)— L(4).

The inequality (51) represents an a posteriori error estimate for the approximate
solution of the primary variational problem.
If a solution u® of (11) exists such that Au® € H, we have by (39, (40)

F(2) £ max F(2) = #(2°) = L(u°) = min L(u)
JeL ueug+V
which implies

Theorem 10. Let u e uy + V, 2 € L. Let a solution u® of (13) exist such that Au® e
€ H. Then

(52) F(2) £ F(2°) £ ZL(u).
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Corollary. Under the assumption of Theorem 10,
(53) 0<3A—2%2=2% < L) - F(4).
Proof. By (46)

WA =202 =2 = (0% — #(4)
and by (52)

0 < P(%) — 7(2) £ L(u) — F(2).

The inequality (53) represents an a posteriori error estimate for the approximate
solution of the dual variational proble. Moreover, if we are able to calculate ¢ € L
for 2 € L by (47), we can use the estimate (49).

6. Approximate solutions of variational problems

In this section we shall show how to construct convergent approximations to the

solutions of variational problems formulated in Sections 3 and 4. We have to solve
the following problems:

(54) P(u) = min, ueuy+ V,
(55) (1) = max, lel.

We shall look for the approximate solutions in the finite dimensional subspaces.
Our basic assumption will be the following one:

Let h, 0 < h < 1, be a parameter. For an integer r > 1 let S” be any finite dimen-
sional subspace of W"Z(Q) which satisfies the condition

*Y For each u e WH*(Q) there exists ii € S* and a constant ¢ independent of h and u
. r p
such that

(56) fu —al, < ch ™" ul,.

In the case of a polygonal domain Q possible examples of such subspaces are e.g.
the spaces of Lagrange or Hermite interpolation polynomials on a given triangulation.
For these and other examples see e.g. [3], [10], [14].

Definition. Let
Vi=VaS,, Li=Ln[SI]N.
The solutions of the problems
(54a) P(u) =min, ueu, + V),

(55a) &(2) = max, Lell
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are called the Ritz-Galerkin approximate solutions of the original problems (54),

(55).

Following [3], [10] we can prove

Theorem 11. Let u® be an exact solution, let up be a Ritz-Galerkin solution
of the problem (54). Let uy € St. Then

(56) lim [u® — up, = 0.
h=0
If u® e Wr3(Q), r > 1, then
(57) [ =il < eh™Hul, .

The convergence of the Ritz-Galerkin solution of the dual problem to its exact
solution will be proved here under the assumption I', = 0.

Theorem 12. Let I', = 0, Let 2°€ L be an exact solution of (55), let 1 e L!
be a Ritz-Galerkin solution of (55). Then

(58) tim 2 — A5 = 0.
h—0
If 2°e[WrA(Q)]Y, r > 1, then
N
(59) 147 = &la = et X 221,
i=1

Proof. Under the assumption I', = 0 we have L= A, L! = [S']¥ and thus
A% e H, Jy e[SI]M. Because &(2) is dense in W'*(Q), then for any i = 1,..., N and
forany ¢, > 0 there exists 1; € (&) such that

"/1? - zi“l S g
By (36) we have

(60) [2° = 7|4 < cinag’ — L1 £ cNe, .

Forany r > litis e [W"2(Q)]" and thus, by (*), there exists 4, € [S;]" = L} such
that

N N
(61) 17— s < C_Zl 17 = Zills = CJI"I,; 17 -

Inequalities (60), (61) imply the following assertion:
For any ¢ > 0 there exist
1° Z1e[6(Q)]" such that
o~ A5 b
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2° ho and J, € L* such that

h<hy=|1—-T)a<3e.
Summarizing 1°, 2° we get: For any ¢ > 0 there exist s, and 1, € L" such that
(62) h<ho=|2° =7 <e.
By (46), (55a) we have
120 = Bl = 2(°) = () = S(2°) - :ﬂ,af F() =

F(°) = () = 32 = Ala

I\

thus
(63) 12° = ARla = |2° = Zlla

and combining (62), (63) we immediately obtain (58).
If 2° € [W"2(Q)]", then, by (*), there exists 4, € L! such that

N
14 = Al = e E (221 -
i=1

Using (63) we get (59) which completes the proof.

7. Numerical results

As a numerical example, we solve the following problem:
—Au+u==2x(x—1)+x(x=1)yy—1)=2p(y - 1)

inQ =<0,1> x <0, 1>
u=0 on I.

It is easy to find that the function
u(x, y) = x(x = 1) y(y — 1)
with the derivatives
uy(x,y) =2x = 1) y(y = 1),
uy(x,y) = 2y — ) x(x — 1)

is a solution of this problem.

In order to find the approximate solution we used the finite element method. We
triangulated the domain Q. Let us denote by D, the division formed in the following
way: joining the centres of the opposite sides, we split the square {0, 1> x <0, 1)
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into four equal squares and we split each of them into four equal triangles by its
diagonals. The division D,, k > 1, is obtained from D,_, by splitting each element
of D, _, into two equal right-angled triangles. If we denote by N, the number of ele-
ments and by h, the length of the longest side of the division D,, then we have

N,y=16, N,=2N,_, for k>1,
hy =05, h, =2h,_, for k>1.

Now, S" will be the sf)ace of functions which are linear on each triangle of the divi-
sion with the maximal side length /. Relation (*) holds for this space with r = 2.

Using the algorithms described in [12] we solved the problem numerically with the
use of a computer. The solution of both primary and dual variational problems leads
to the solution of a system of n linear algebraic equations with a symmetric band
matrix with the band width m. The number of operations needed for a solution
of such a problem by Gaussian elimination is roughly 4nm? To reduce our
probiem, we can use its symmetry and solve it only in one eighth of Q. The values
n, m, 1nm? are listed in Table 1.

Table. 1. Dimensions of matrices associated with the problem

J 5 prim. problem dual problem
k I hy, l Ny n i m ‘ p = tnm? n ‘ m l p = tnm?

| ‘ ‘ ‘ |
1 ‘ 5 2] 2| 1 30 2 | 6
2 | 252 4|3 | 2 6 6 ‘ 4 ‘ 48
3 25 8 6 2 12 10 | 6 180
4 592 16 | 10 | 4 80 20 | 9| 810
5 125 ‘ 32 1 20 |6 360 36 14 3528
6 . 06252 64 | 36 ‘ 8 1152 72 ‘ 17 ‘ 10 404

| \ y I

The approximate solutions corresponding to the division D, will be denoted
(k) (k)
u'™, 20,

The assumptions of Theorems 9, 10 are satisfied. Using the a posteriori error

estimates given in the corollaries to these theorems we can estimate the reduction
of the error when refining the division. We define

L 2®) - )
T\t — k)
The reduction of the error given by the a priori estimates of Theorems 11, 12 is

o _ )2

hk—l

O =
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Table 2. A posteriori error estimates and the reduction of the error

|
k ’ 2™y — 2@ | S — S0Py | L@P) — 9’(1("))} 43
1 ‘ 1002201 008548 | -010749 ‘ -
2 | 001519 1004961 006580 | 1-6336
3 000562 1002276 002838 | 2:3185
4 | 000406 1001179 001585 | 1-7903
5 | 000140 1000576 000716 | 22126
6 | 000099 1000291 000390 | 1-8219
! \

From Table 2 we can see that the reduction of the error achieved in our calculation
is in accordance with the a priori estimates.
In our problem
Ar=—uy,, =12

and the dual variational principle is thus a method for obtaining the approximate
value of the derivatives of the solution. These values can be calculated also from the
solution of the primary problem. If we use linear polynomials in the finite element
method, the derivatives are constant in each element and we calculate the value
of the derivative at a given point as the average of the values of the derivatives
in all triangles meeting at this point.

As an example, let us calculate the values of the derivatives at the vertices of the
division D;. We only need to find the values of u,, in the set

M, = {(-125, -125), (:375, *125), (-25, -25), (-375, 375)}
and the values of u,, in the set
M, = {(-25,0), (-5, -0), (:375, -125), (-5, -25)} .

All the other values are then known from the boundary condition and froim the
symmetry of the problem.
As a measure of inaccuracy we use the following quantities:

or = max max |u'P(x, y) — u,(x, y)| .
i=1,2 (x,9)eM;

6= (X T [ ) - o))

i=1 (x,y)eM;

In technical and physical applications we are often interested mainly in the values
of derivatives on the boundary. In that case we can measure the error by the quantity

17, = max ([u(-25, -0) — u,,(-25, -0)|,
[uB(:-5, -0) — u,,(-5, -0)]) .
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The values of ¢, 04, T, found from the results obtained by both primary and dual
methods are listed in Tables 3,3a.

If we want to compare both methods, we need to estimate the number of operations
needed for the computation of derivatives from the solution of the primary problem.

Table 3. Errors in the calculation of derivatives

k a.;cp) a}{d) a',(“’)/o-,((d) Q’(‘p) g'gd) Ql(‘p)/gl((d)

2 -10881 04731 2-2999 0934 0297 3-1448

3 07136 02160 3:3037 0552 0117 4-7179

4 05474 -00512 10-6914 -0407 -0033 12-3333

5 -03385 -00511 6-6243 0268 -0026 10-3077
!

Table 3a. Errors in the calculation of derivatives on the boundary

k (P 7@ 7P [¢(d)

2 ‘0934 -0187 4-9947

3 0552 -0099 5-5758

4 0407 -0033 12-3333

5 0268 -0026 10-3077
|

We must perform at least two operations to find the derivative in each triangle
and about 48 operations for the averaging at the points of M, U M,. If we are
interested only in the values on the boundary, we need about 24 operations. The
numbers of operations P, R® and P® (here and in all tables the upper index p
stays for primary and d for dual method) needed for the calculation of derivatives are
thus given by the following relations:

PP = p{P + 4N, + 48,
R = pP + 24,
P = b

These values are listed in Table 4.

If we compare the ratios of necessary operations from Table 4 with the ratios
of errors from Tables 3, 3a, we can see that in our case the dual method of calculating
the derivatives is more effective than the primary one.
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Table 4. Numbers of operations needed for the calculation of derivatives

! & ‘ P@ [ P ' R P"”/P‘” ‘ P(‘”/R(”) |
| | | | I
L2 48 | 70 | 30 6857 | 16

3 ’ 180 | 92 | 36 19565 | 50 i
C4 | si0 192 104 42188 77885 |
s | 3s28 | 532 384 66316 | 91875

1 | ‘ | » z

In Table 5, the values of derivatives calculated by the primary method with the
division D, (P® = 192) and by the dual method with the division D5 (P“ = 180)
are given. We can see that the dual method is much better for the calculation of deri-
vatives on the boundary. Thus all our results suggest that the dual method ought
to be preferred when we are interested mainly in the values of derivatives on the
boundary.

Table 5. Values of derivatives u,; calculated by primary method (division D)
and by dual method (division D3)

L D | e g -
i i
| | j | 4 | |
25 0 | 2 | 1552 | 1958 | 1875 | 0323 | -0083
5 0 20| 2093 2699 | 25 ; -0407 -0099
125 | -125 1| 0749 0731 | 0820 | 0071 -0089
375 | 125 t 1 0250 | -0236 | 0273 | -0023 -0037
‘ 2 | 1680 | -1640 | 1757 -0077 0117
25 |25 1| -1061 | -0994 | 0938 | 0067 -0056
5|25 2 1200 | 1300 | 125 | 0050 |  -0050
375375 1 1| 0561 | 0549 i 0586 | 0025 | 0037
i | ! | | : !

8. Conclusion

The problem (14) is a typical problem of a nuclear reactor theory, where it is
known as a one-group neutron diffusion equation. This paper gives a theoretical
background for its solution by the finite element method. The primary variational
principle allows us to obtain the neutron fluxes. It is well-known and used for calcula-
tions, see e.g. [5], [6], [8]. In [2], [10] the difficulties arising from the singularities
of the solution in the presence of corners and interfaces are investigated and some
ways of avoiding them are suggested. By the solution of the dual problem we can
obtain the neutron currents. A modification of this method is suggested in [9].
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The use of the dual variational principle to a posteriori estimates of errors is sug-
gested in [13]. Neither [9] nor [13] contain a general formulation of the dual varia-
tional principle with combined, nonhomogeneous boundary conditions. The con-
vergence of the approximate solutions of the dual problem is not proved.

From the theoretical point of view, the works [1], [4] deal with a similar problem,
but under the assumption of an infinitely differentiable boundary. This is not the
case in many practical applications. Nor the combinations of all three types of bound-
ary conditions are allowed, though they can appear simultaneously in some problems
of the nuclear reactor theory.

Numerical results presented in Section 7 suggest that the dual method can serve
a practical tool for approximate calculation of derivatives.
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Souhrn

DUALNI[ VARIACNI PRINCIPY PRO ELIPTICKOU PARCIALNI
DIFERENCIALN{ ROVNICI

JIRT VACEK

V &lanku jsou zformulovany dualni variacni principy pro cliptickou parcidlni
diferencialni rovnici druhého fadu s kombinovanymi okrajovymi podminkami.
Jsou odvozeny aposteriorni odhady chyb pfibliZzného feSeni a pro jistou tfidu tGloh
je dokazana konvergence pribliznych feseni dualni tlchy k jejimu pfesnému feseni.
V zavéru je uveden numericky ptiklad. Rozbor ptibliznych feSeni naznaduje, Ze zvlas-
té v ulohach, v kterych nés zajimaji pfedevsim hodnoty derivace podle konormaly
na hranici, maZze byt dualni metoda efektivnim prostfedkem ptiblizného FeSeni.
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