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SVAZEK 21 (1976) A P L I K A C E M A T E M A T I K Y ČÍSLO 1 

DUAL VARIATIONAL PRINCIPLES FOR AN ELLIPTIC PARTIAL 
DIFFERENTIAL EQUATION 

JlRI VACEK 

(Received August 14, 1974) 

Introduction 

In this paper we formulate the dual variational principles for the equation 

N a / a \ 
v-, 0 I ou \ 

~ I T~\av7~) + au = f 
i,j=ldXi\ OX j J 

in the domain Q a EN. 
We prove that the variational principles make it possible to obtain a posteriori 

error estimates and we show how to construct convergent approximations to the 
exact solutions of variational problems. In the last section some numerical results 
are presented. 

1. Formulation of the problem 

Let EN be the N-dimensional Euclidean space, Q c E^ an open Lipschitz region 
with the boundary F and let 

F = ru u rv u rh u F0 

where Fu, rv, Th are mutually disjoint sets open in F and mes n_! F0 = 0; by mesjy 
we denote the Ar-dimensional measure. 

Let Q be divided into mutually disjoint open Lipschitz subregions Qs, s —-
= 1, 2, ..., m, i.e., let 

Q = Q° u rt 

where 

Q° = U Qs 
s = l 



and 

Г, = U (ß , n ß,) 
Г , S = 1 

rФs 

is such that mes^ Ff = 0 and m e s ^ ! F n Ff = 0. 

Let us introduce the following real functions: 

1) atj(x), a(x) are bounded piecewise continuous functions in Q with jumps 
on Ff and such that for x e Q° they satisfy 

(1) a 0 (x) = a}{x) , i, j = 1, ..., N , 

(2) au(x) U> = c\£\2 , o O , for all £ e FjV , 

(3) a(x) ^ a0 > 0 . 

2) a(x) is a bounded piecewise continuous function on Tv with jumps on Fv n rt 

such that for x e Tv — Ff 

(4) a(x) = a0 > 0 . 

(5) 3) fGL2(£>), u0eWl>2(Q)9 g e L2(F). 

We use the following notation: L2(£2), L2(F) are the spaces of square integrable 
functions in Q, F. The usual norms in these spaces are denoted by || ||0, || ||0 r. 

Wk,2(Q) is the Sobolev space of functions with generalized derivatives up to the 
k-th order belonging to l}(Q). The norm in this space is denoted by || ||fc. 

We use the convention that a repeated subscript indicates the summation over 
the range of the space EN. 

The letter c with a possible subscript will denote a positive constant and u9i will 
be used instead of dujdx^ 

If we define the differential operator A by the relation 

(6) Au = au - (aijU,j)H 

then (2) says that A is uniformly elliptic in Q. 

We define in Wl,*(Q) x Wi,2(Q) a bilinear form 

(7) A(v, u) = (aijV,jU,j 4- avw) dx 

The boundedness of au and a in Q implies that A(v, u) is a continuous bilinear 
form in W1,2(Q) x W1,2(Q). 

For functions belonging to Wi,2(Q) the boundary values can be well defined, 
as is seen from the following theorem: 



Theorem 1. Let Q be a bounded Lipschitz region with the boundary F. Then 

there exists a uniquely defined linear mapping 

T:W1,2(Q)~*L2(r) 

which is continuous and such that Tu = u\rfor u e S(Q) 

Definition. T is called the operator of traces, Tu is called the trace on F of the 

function ue WU2(Q). 

Here S(Q) is the set of functions which are infinitely differentiable in Q and u\r 

denotes the restriction of u to F. For the proof of the theorem see [7]. 

The boundary values of functions belonging to W1,2(Q) will be understood in the 

sense of traces and we shall often write u instead of Tu for the values on the boundary. 

We define on L2(TV) x L2(TV) the bilinear form 

= avw dF. (8) a(v, u) = I 
Jгv 

From the boundedness of a on Tv and from the continuity of Tit follows that a(v, u) 

is continuous in WU2(Q) x WU2(Q). 

Now we can define in W12(Q) x Wly2(Q) the bilinear form 

(9) ((v, w)) = A(v, u) + a(v, u) . 

This form is continuous and thus there exists c > 0 such that 

(10) UtVeW'^^^u^^cWuHvl. 

Definition. Let V be the closure of the set 

(U) Y = {v e S(Q) : supp v n Tu = 0} 

in W1,2(]Q) and let G be a linear functional defined in Vby 

(12) Gv - j vfdx + J vgdT 
JQ J r u uE h 

A function u e W1,2(Q) satisfying 

(13a) u — u0 e V 

(13b) veV=^((v, u)) = Gv 

is called a weak solution or simply a solution of the problem (13) with the stable 

boundary condition u0. 



If we suppose that the functions a(j, a, a, f, g, u0, the boundary F and the solu­
tion u are sufficiently smooth, we can apply Green's theorem obtaining the classical 
interpretation of our problem: u is the solution of the problem 

(14) -(aijU,j),i + au = f in Q, 

dijUtjiii + ecu = g on Tv, 

aijUijUi = g on Th, 

u = u0 on ru, 

u and UijU^iii are continuous on Ff, 

where n = (ni, ..., nN) is the unit outward normal. 

2. Existence of the weak solution 

In this section we shall prove that the problem (13) has a unique solution. We recall 
here some well-known facts about the V-ellipticity from [7]. 

Definition. The bilinear form ((v, u)) is called V-elliptic if there exists c > 0 such 

that 

(15) veV=>((v,v))^c||v||2. 

Theorem 2. The boundary value problem with a V-elliptic associated bilinear 
form ((v, u)) has a unique solution u. 

It holds 

(16) H i L-c( | | / | | o+ ||«o||, + |M|o.r). 

To prove the existence and uniqueness of the solution of (13), it is now sufficient 
to prove the V-ellipticity of the form (9). If we use (2), (3), (4) it is easy to see that 

(17) veW1>2(Q)=>((v,v)) = 

= (aijV,iV,j + av2) dx + av2 dF ^ min (c, a0) ||v||2 = cx|[^||f 
J n J rv 

where ct = min (c, a0) > 0. This means that the form (9) is W1'2(tQ)-elliptic and 
thus V-elliptic for each V c WU2(Q). 

By (l), the form ((v, u)) is symmetric and by (17) ((v, v)) g 0 and ((v, v)) = 0 
if and only if v = 0. Thus ((v, u)) is a scalar product in W1,2(Q) and in accordance 
with (10), (17) there exist positive constants cu c2 such that 

(18) cjpfli S((v,v)Y'2Sc2\\v\\l 

which means that the norms ((v, v))1/2 and \\v\\i are equivalent. 



3. Primary variational principle 

In [14] the following theorem is proved: 

Theorem 3. Let the form ((v, u)) be V-elliptic, ((v, u)) = ((u, v)) and ((v, v)) ^ 0. 
Then u is a solution of the associated boundary value problem if and only if u 
minimizes the functional 

(19) Se(u) = i((u, u)) - Gu 

in the class u0 + V. 

In the preceding section we have proved that the assumptions of this theorem 
are satisfied. Thus the solution of the problem (13) is equivalent to the solution of the 
corresponding variational problem. The variational principle formulated in Theorem 
3 will be called the primary variational principle. 

4. Dual variational principle 

In this section we shall formulate the dual variational principle. We want to find 
a functional Sf(X) and a class of admissible functions £such that the equality 

min S£(\i) = max Sf(X) 
ueuo + V AeL 

is satisfied. 

Let us define the space 

(20) W = [L2(fi)f+1 xL2(rv). 

We denote by 
N+1 

\W\\c = S IIPi||o + ||<PN + 2||o,r 
i= I 

the norm of the Cartesian product. In this norm H is complete as the Cartesian 
product of complete spaces. 

Next, we define a mapping $ : Wi,2(Q) -> H by the following relations: 

(21) <f>,u = -auu9j, i = l , . . . , N , 

<PN+lu = —au , 

<PN+?u = —a . Tu . 



Let Hl9 H2, Lbe the following subsets of the space H: 

(22) H, = {cpeH :(3veV)cp = <Pv} , 

(23) H2 = \cp e H : (Vv e V) | (cptvH + cpN+lv) dx + | cpN+2v dF = 0 1 , 

(24) L = \cp e H : (Vv e V) f (<p,v„ + ^ + 1 v ) dx + | p N + 2i; dF = - G v l . 

For <//, <p" G H we can define 

(25) (<? ' ,<?%= [ar/cp'icp] + - 9 N + I K + I ) d * + - <PN+2<7>N+2 d ^> 

JrA « / Jrva 
where aT.1 are elements of the inverse matrix to the matrix atj. (l), (2) implies that 
the inverse matrix exists and that the functions afj1 are bounded, piecewise continu­
ous and in Q° they satisfy 

a7j
1(x) = aji

l(x)9 i,j = l , . . . ,N , 

aTjX{x) £i€j = c\£\2 , c > 0 , for each £ e EN . 

Hence we can deduce that the bilinear form (cp'9 cp")H is symmetric and there exist 
positive constants cl9 c2 such that 

(26) C i | | < p | | c ^ ( ^ < p ) H / 2 ^ c 2 | | < ^ | | c . 

Thus (cp\ cp")H is a scalar product in H and the norms ||<p||c, \<P\H — O/9* <p)H/2 a r e 

equivalent. H with the scalar product (cp\ cp")H is a Hilbert space and in the sequel H 
will be understood in this sense. 

A simple argument shows that 

(27) u', u" e Wl2(Q) => (<Pu'9 $u")H = ((u'9 u")) . 

Hl9 H2 are linear manifolds in H. We shall prove that Hx is a closed subspace 
of H. 

Let {V*}}r=:i ^ #i> <P(fc) -*• <P- By t r i e definition of Hl9 to any k there exists vfc e V 
such that <p(fc) = <Pvk. {cp(k)} is a Cauchy sequence and thus, by (18) and (27), {vk} is 
a Cauchy sequence and v = lim vk exists. As Vis a closed subspace of W1,2(Q), we 

fc—> 00 

have v G V and if we denote cp' = <Pv, it holds <p' e Hj and, by (18), (27), cpik) -> <D'. 
By the uniqueness of the limit we have cp' = <D, thus cp E H1 and we have proved 
that H! is a closed subspace of H. 

Let us state here the well-known lemma about the orthogonal complement. 
For the proof see e.g. [11], Theorem 4.82.-A. 

10 



Lemma 1. Let H be a Hilbert space and let M be its closed subspace. Then H 

is the direct summ of M and its orthogonal complement M1, 

H = M 0 M 1 . 

As a corollary of this lemma we can prove 

Theorem 4. 
HI = H2 , H = H! © H2 . 

Proof. It is sufficient to prove the first assertion. The other assertion is then 

an immediate consequence of the first one, closedness of Ht and of the preceding 

lemma. 

Let <p' e Hx. Then there exists v e Vsuch that cp = <Pv and thus 

V<PN + 2 dF (<p\ <?")H = ~ (ai/aikv,kcp) + v<pN+1) dx -
J Q 

= ~ (<P'iva + <PN+iv)dx - cpN + 2vdr . 
JQ J rv 

If (p" e H2, then (cp', <p")H = 0 by the definition of H2 and thus H2 <= Hf. 

Conversely, if (</>', <p")H = 0 for any #>' e H1? then for any v e Vit is 

(<P"v9i + K + 1 v ) dx + J cp'N+2v dF = 0 
J# JT„ 

and H{ c H2. Thus H| = H2 which was to be proved. 

Theorem 5. Let u° be a solution of (13). Then 

<p° - <p0eHt , cpe L=> <p - cp° eH2, 

where <p° = 4>u°, <p0 = ^ u 0 . 

Proof. By the definition of the solution, it holds 

1° u° = u0 + v°, v°eV, 

2° vєV- (a^jU0,^^ + яvu°)dx 
Jß 

avu° dF = Gv • 

From 1° it follows that cp° - cp0 = <1>v° e H*. 

By 2° we have 

VGV--
JSÌ 

+ <pN+ív)dx - ^ + 2 v d F = Gv . 

11 



Now, if cp e L, then 

veV=> [(cp°i - (Pi)v,i + (cp°N+1 - tpN+1)v] dx + (cpN+2 - cpN + 2)vdr = 0 . 
J Q J rv 

and thus <D — cp° e H2. 

Let us define in H the functional 

(28) «r(cp) = -\(cp, cp)H + (cp, cp0)H 

where <p0 = $u0 , and let us investigate its properties. 

Theorem 6. The problem 

(29) er(cp) = max , cp e L 

has the unique solution cp° = <Pu°, where u° is the solution Of (13). 

Proof. An easy calculation yields 

y(<p) = ~i[(<P - <Po> <P - <PO)H - (<Po> <PO)H~\ = ~i\\<P ™ <PO\\H + i\Wo\\l , 

H<P°)= - i l k 0 - <?o||H + i |WIH \ 
thus 

(30) ^(<p°) - er{<?) = \\\q> - p 0 | |* - ||<p° - »p 0 | | a . 

Let cp E L. Then, by Theorems 4 and 5, it holds cp — cp° A. cp° — cp0 and thus 

\\<P ~ <PO\\H = Ik - <P°I|H + lk° ~ <PO\\H = lk° - <PO\\H • 

It follows that 3~((p) ~ ^~(<P°) and the equality holds if and only if cp = <p°. 

Let us now investigate the relation between the functional j£?(u) and ^(cp). 

Let u e WU2(Q), cp = <Pu. Then, by (27), 

(<P> <P)H = ((«- ")) • 

By subtracting jT((p) from J?(u) we get 

j£?(u) — *T((p) = ((u — u0, u)) — Gu . 

If u = u° where u° is the solution of (13), then u° — u0 e Vand ((u° — u0, u
0)) = 

= G(u° — u0) and thus 

(31) 3T(cp°) = jSf(tt°) + Gu0 . 

12 



Theorem 6 together with the relation (31) represents the dual variational principle, 

but this form is rather unpractical. Firstly, the construction of the trial vectors cp e L 

would be very complicated and secondly, the calculation of Gu0 in (31) requires 

the knowledge of the values of the function u0 in the whole region Q, while in most 

cases only the values on Fu are given as a boundary condition. We shall try to find 

another form of the dual variational principle to avoid these drawbacks. In order 

to succeed, we have to reduce the class of admissible functions. 

For later use, let us state here Green's theorem. For the proof see [7]. 

Lemma 2. (Green's theorem.) Let Q be a Lipschitz region with the boundary F 

and let u, v e WU2(Q). Then 

(32) u9iv dx = uvnidF — uv,tdx, i = 1, ..., 
Q J r J Q 

N 

holds, n being the unit outward normal. 

Let us define 

(33) H = {X:X = (XU...,XN), X.eW'^Q), i = l , . . . , N } , 

(34) L = {X e H : - ^ w f = g on rh} . 

We can define in H the symmetric bilinear form 

(35) <Л', Л"> 
J Q 

It holds 

a^X^X] +~XÍ9ÍXjj)dx + 
a 

<A,A> £(,£11.1.15, 

(A' iПí)(AЯ)dГ. 
Г l 

- v 

thus <A, X) ^ 0, <A, /t> = 0 if and only if X = 0. Thus </l', A"> is a scalar product 

in IF We define a norm in II by 

| |A|U = < A , A > , / 2 

Using Theorem 1 we can prove that 

Further, 

í - M 2 d F ^ c í Z(TЛt.)
2dFgc||F||2£| 

J T „ a Jгv

 i = 1 i = 1 

Г Г a ÿ 1 ^ + - ( Л i , ŕ ) 2 ] d x ^ c £ | | Я í | | 2 

JßL a J í = 1 

; I I 2 

13 



and thus we have proved that there exist positive constants ct, c2 such that 

N N 

(зб) c. i |.г(|2 ѓ a л>ѓc2ү џ,\\î \42 

i - 1 i = 1 

Let us define in II the functional 

(37) 9>(X) = - i f Lr .U^. + !(/• - Ai?i)
2l dx -

- i f - ( g + ^ ) 2 d F - f A^UodT 
J T , a JTu 

and let us define the mapping A : Wi2(Q) -» [L2(-3)]": 

(38) Aju = —aijU,j, i = 1,.. . ,N . 

We can prove 

Theorem 7. Let a solution u° of (13) exist such that Au° e H. Then the problem 

(39) Sf(X) = max , A e L 

has a unique solution X° = Au° and it holds 

(40) ^(A°) = J^(w°) . 

Proof. Let us define in H the linear functional ^ by the relation 

(41) <§X = \ £Xi,idx- I ^Xpi&T- f A^Modf . 
Jfl« JTva J rw 

Then we can write 

(42) Se(X) = - i <A, A> + Stt - i f ~ - dx - i f -?- dF . 
Jn a Jrv a 

Let us prove first the following assertion: 

(43) XGL, X° = Au°=>(X°,X0 - xy = <$(X° - X). 

By the definition of u° and X° it holds 

(44) X°Ui = / - au° in .Q , 

A^nf = au° — a on Tv9 

X°ni = -g on F,,. 

14 



We have 

f ai/^W - A,) dx = f a^(-aiku°k) (A° - Xj) dx = 

= - J u°(A? - A,) dx 
Jfi 

and by the assumptions u°, A°, X{ e W1,2(.Q). So we can use Green's theorem con­
cluding 

f aJj'X^j ~ A,) dx = - f ii°(A? - A,) n, dF + f u°(A? - A,),, dx . 
J« JT J.Q 

Using (44) and the relation Xini = — g on Ffc, we have 

(45a) f-ay1 W " ^ ) <** = I (A, - A?) n;«0 dT + 
J« JT„ 

+ I OV-,- - au° + g) u° dF + f (/ - aw° - A,„) u° dx . 

Similarly, 

(45b) f i A?pl(^ - A,.,,) dx = f (AM + au° - / ) u° dx + 
J«« Jfl 

+ f -(f-Xitt-au°)dx, 

(45c) f - (A?n,) (A? - A,-) n, dF = f (au° - A,n, - g) u° dF + 
JT ,a Jrv 

+ f -?(A,n, + g - ocu°)dF. 
JT.fl 

Summing up (45a), (45b), (45c) we get 

<A°, A0 - A> = f ^ (/ - au° - A,- ,) dx - f £(ati° - g - A,nf) dF -
}na JT , a 

- f (A?-Af)n;u0dF, 
JTu 

but this means exactly ^(A° — A) and (43) is proved. 

15 



Now, it holds 

^(A°) - &(x) = - i<A 0 , ^°> + K*» ^ + ^ ° - *) = 

= K A ° - A, A° - A> - a 0 , A0 ~ A> + ^(A° - ^ 

and from (43) we have 

(46) ^(A°) - ^(A) = i<A° - A, A0 - A> . 

Thus S?(X°) - S?(A) ^ 0 for any A e Land the equality holds if and only if A = A0. 

By the assumption of the theorem A0 = Au° e ft and by the third equality in (44) 
X^nt = —g on rh, thus X° e L and the existence and uniqueness of the solution 
of (39) is proved. 

We have to prove the equality (40). 

For A G H let us define a vector 

(47a) cp = (<?!,..., ( ^ + 2), 

where 

(47b) <p, = A , , i = l, . . . ,N , 

<£>jV+l = Ai9i — f , 

9/v + 2 = ~(g + A ^ ) on r „ . 

Obviously cp e H. We shall prove that 

(48) 

cp e Lfor any A e Land 

«T(<p) = Sf($) + Gw0 . 

Let v e V. Using Green's theorem we obtain 

(<PP>i + (PN + IV) dx + ęN + 2v
 d F 

- Jr v 

Ф i ^ d г 

(<PÍ,Í ~ (pN+1)vdx + <piV+2vdF = -G 

and thus cp eh. 

Rearranging the term (cp, q>0)H we conclude 

cii/cpiФjUodx = - 1 </).м0łřdx = - UoфiПidГ + <pмu0 dx , 
Jß Jя Jг Jß 

16 



thus 

(<P, <PQ)H = I (au1(Pi®juo + -(pN + i$N + iuo)dx + - <PN+ 2^ + 2^0 dr 
JQ

 a J - \ a 

dF - CPiniUQ d F — 
Tu 

= (<Pi,i - (PN+\)UO d x - <Piniuo 
JQ Jrh 

(<Pini + (PN + 2) uo dr = fu0 dx + gu0 dr ~ (piniuQ dF 
JT„ Jí2 JThUTt. JTu 

ęiПЏo dF 
Tu 

= Gu0 -

and substituting into (28) we get (48). 

Thus for X° etit holds 

(48') 2r(cp°) = £f(k°) + Gu0 , 

where q>° is defined by the relations (47) with X = 2°. 
If Au° GH, we can apply Green's theorem to (13) and by (14), (21), (47) we have 

<p° = $u°. In such a case (31) is valid and (31), (48') yields immediately (40) which 
completes the proof. 

The dual variational principle formulated in Theorem 7 can be used in practical 
calculations. If the boundary condition g is a piecewise polynomial function, then 
the construction of the functions belonging to £ is not difficult (we can use piecewice 
polynomial functions satisfying the boundary conditions). Also all the values ap­
pearing in the definition of &*(£) are known. However, if the assumption of Theorem 7 
is not satisfied, then the assertion need not be valid. We shall show in the next 
section that even in this case we can use the dual variational principle for a posteriori 
error estimates of the approximate solution. 

5. A posteriori error estimates 

We have already mentioned in a remark after Theorem 6 that the construction 
of vectors belonging to the set L would be difficult. Nonetheless, if we are able to find 
approximate solutions to both the problems S£(u) = min and ^~((p) = max, we can 
have an element to which the exact value of the error is known. The method used 
in the next theorem is known as the method of hypercircle. 

Theorem 8. Let u euQ + V be an approximate solution of the primary variational 
problem, let cp e Lbe an approximate solution of the dual variational problem (29) 
and let cp0 = <Pu°, where u° is a solution of (13). Then 

(49) ||i(<*% + <p)- <p% = i\\0u - cp\\H . 

17 



Proof. As u eu0 + V, there exists veV such that u = u0 + v. Further, there 
exists v° e Vsuch that u° = u0 + v°. It means that u — u° = v — v° e V 
and thus 

<Pu - cp° = <£(u - u°) = <2>v e Hi . 

It is cp e Land thus, by Theorem 5, cp — cp° e H2. By Theorem 4 Ht ± H2 and thus 
we have 

| | i ( * a + <p) - <p°U^ = I K * " " <P°) + i(<P - <P°)IH = 

= i\\<Pu - <p% + i ^ - 9 ° | | | = i\\(<Pu - q>°) -{cp- <p°)\\2
H = 

l\\&u - cp\\2
H. 

In the following we shall show how to use the variational principle from Theorem 7 
to a posteriori error estimates. Generally, we cannot assume that the assumption 
of Theorem 7 is satisfied. In such a case 1° e Lneed not hold and the problem Sf(X) = 
= max has no solution in L. 

Let us have Xe L. If we define cp by the relations (47), we have cp e L. By Theorem 6, 
the problem ST(cp) = max, cp e Lhas a solution cp° and (48), (31) yields 

ST(cp) = Sf(X) + Gu0 = ST(cp°) = jSf(u°) + Gu0 = S£(u) + Gu0 . 

So we have proved the following theorem: 

Theorem 9. Let Xe L,u eu0 + V and let u° he a solution of (13). Then 

(50) -9%l) = J^(u°) = JS?(ii) . 

Corollary. Under the assumptions of Theorem 9, 

(51) 0 = i((u - u°, u - u0)) = JS?(u) - Sf(X) . 

Proof. It is 0 = | ((u - u°, u - u0)) = S£(u) - J^(u°) and (50) implies 

0 = JS (̂u) - JSf(u°) = ^ ( u ) - S?(X) . 

The inequality (51) represents an a posteriori error estimate for the approximate 
solution of the primary variational problem. 

If a solution u° of (11) exists such that Au° e H, we have by (39, (40) 

Sf(X) = max Sf(X) = S?(X°) = if(u°) = min S£(u) 
XeL ueuo + V 

which implies 

Theorem 10. Let u e u0 + V, X e L. Let a solution u° Of (13) exist such that Au° e 
e H. Then 

(52) S?(X) = Sf(X°) = JS?(M) . 



Corollary. Under the assumption of Theorem 10, 

(53) 0 S i<A - A0, A - A°> ^ JSP(M) - ^(A) . 

Proof. By (46) 

and by (52) 

KЛ - A°, Л - Я°> = ^(1°) - ^(A) 

0 ^ ^(Я°) - ,^(Я) ^ Җu) - íŕ(X). 

The inequality (53) represents an a posteriori error estimate for the approximate 
solution of the dual variational proble. Moreover, if we are able to calculate cp e L 
for A e L by (47), we can use the estimate (49). 

6. Approximate solutions of variational problems 

In this section we shall show how to construct convergent approximations to the 
solutions of variational problems formulated in Sections 3 and 4. We have to solve 
the following problems: 

(54) S£(u) = min , u e u0 + V, 

(55) Sf(X) = max , X e L. 

We shall look for the approximate solutions in the finite dimensional subspaces. 
Our basic assumption will be the following one: 

Let h, 0 < h < 1, be a parameter. For an integer r > 1 let Sh be any finite dimen­
sional subspace of W1,2(Q) which satisfies the condition 

(*) For each u e Wr,2(Q) there exists u e Sh and a constant c independent of h and u 
such that 

(56) ||u - u\\t S ch r " 1 | |u | | r . 

In the case of a polygonal domain Q possible examples of such subspaces are e.g. 
the spaces of Lagrange or Hermite interpolation polynomials on a given triangulation. 
For these and other examples see e.g. [3], [10], [14]. 

Definition. Let 

Vh = VnSh, Lh = Ln [Sj] N . 

The solutions of the problems 

(54a) S£(u) = min , u e u0 + Vh, 

(55a) Sf()) - max , A e Lh 



are called the Ritz-Galerkin approximate solutions of the original problems (54), 

(55). 
Following [3], [10] we can prove 

Theorem 11. Let u° be an exact solution, let uh be a Ritz-Galerkin solution 
of the problem (54). Let u0 e Sh. Then 

(56) limflu0 - u^W, = 0 . 
/t-»0 

If u° e Wr>2(Q), r > 1, then 

(57) y-u°hischr^\\u%. 
The convergence of the Ritz-Galerkin solution of the dual problem to its exact 

solution will be proved here under the assumption Th = 0. 

Theorem 12. Let Th = 0, Let X° e L be an exact solution of (55), let A£ e Lh 

be a Ritz-Galerkin solution of (55). Then 

(58) limflA0 - X°h\\H = 0 . 

IfA°e[Wr>2(Q)Y,r > 1, then 

(59) II^ -A^U.^-^IIA 0 N 

1 
І = I 

Һ _ Гc'ПN Proof. Under the assumption Th = 0 we have L= H, Lh = [ShY and thus 
A0 eH,X°he [ShY- Because S(Q) is dense in Wl>2(Q), then for any i = 1,..., N and 
for any ex > 0 there exists Xt e S(Q) such that 

By (36) we have 

(60) AA0 - 1\H _ c £ ||A? - Affi _ cN^ . 
N 

l 
i = l 

For any r > 1 it is I e [ W ^ O ) ] " and thus, by (*), there exists Xh e [Sh
rY = Lh such 

that 

(6i) HI - I*IU = c £ ii^ - zh,i\u _ ^ i ^ - 1 z i* l\\Г ' 

t = l ' 

Inequalities (60), (61) imply the following assertion: 

For any s > 0 there exist 

1° A e [S(Q)Y such that 

| U ° - % _ i e . 
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2° ho and Ih e L* such that 

h < h0 => ||1 - I,|U ^ i- • 

Summarizing 1°, 2° we get: For any £ > 0 there exist h0 and Ih e L* such that 

(62) h < h0 -> |A° - 1„|| ^ £ . 

By (46), (55a) we have 

ill*0 - 4?|» = ^ ° ) - ^W?) = ^(*°) - max ,<?{X) < 
XeLr

h 

<y{X°)-#>{Ih) = i\\l°-Ih\\tt, 
thus 

(63) ||A° - Xl\\n < \\X° - lh\\n 

and combining (62), (63) we immediately obtain (58). 
If X° e [W'2(Q)]N, then, by (*), there exists Ih e Lh

r such that 

\\2.° - MM Zch'-1 Zltil,. 
i = 1 

Using (63) we get (59) which completes the proof. 

7. Numerical results 

As a numerical example, we solve the following problem: 

— AM + u = — 2x(x — 1) + x(x — 1) y(y — 1) — 2y(y — 1) 

inQ = <0, 1> x <0, 1> 

u = 0 on r. 

It is easy to find that the function 

u(x, y) = x(x - l)y(y - 1) 

with the derivatives 

u,i(x, y) = (2x ~ ! )y(y ~ *)> 

w^O** y) = (2y ~ 1) *(* ~ 1) 

is a solution of this problem. 

In order to find the approximate solution we used the finite element method. We 
triangulated the domain Q. Let us denote by D1 the division formed in the following 
way: joining the centres of the opposite sides, we split the square <0, 1> x <0, 1> 
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into four equal squares and we split each of them into four equal triangles by its 

diagonals. The division Dk, k > 1, is obtained from Dk_1 by splitting each element 

of Dk__ j into two equal right-angled triangles. If we denote by Nk the number of ele­

ments and by hk the length of the longest side of the division Dk, then we have 

Nx = 16, Nk = 2Nfc_! for k > 1 , 

h{ = 0.5 , hk = 2hfc_1 for k > 1 . 

Now, Sj! will be the space of functions which are linear on each triangle of the divi­

sion with the maximal side length h. Relation (*) holds for this space with r = 2. 

Using the algorithms described in [12] we solved the problem numerically with the 

use of a computer. The solution of both primary and dual variational problems leads 

to the solution of a system of n linear algebraic equations with a symmetric band 

matrix with the band width m. The number of operations needed for a solution 

of such a problem by Gaussian elimination is roughly \nm2. To reduce our 

problem, we can use its symmetry and solve it only in one eighth of Q. The values 

n, m, \nm2 are listed in Table 1. 

Table. 1. Dimensions of matrices associated with the problem 

k K N* 

prim problem dual рroblem 

k K N* n m 1 2 

p = jţnm 
n m p = ^nm 2 

1 •5 2 2 1 1 3 2 6 
2 •25 V2 4 3 2 6 6 4 48 
3 •25 8 6 2 12 10 6 180 
4 •125 V2 16 10 4 80 20 9 810 
5 •125 32 20 6 360 36 14 3 528 
6 0625 V2 64 36 8 1 152 72 17 10 404 

The approximate solutions corresponding to the division Dk will be denoted 
u{k\ ?}k). 

The assumptions of Theorems 9, 10 are satisfied. Using the a posteriori error 
estimates given in the corollaries to these theorems we can estimate the reduction 
of the error when refining the division. We define 

лk = 
&(ufk)) - s?{xw) 

The reduction of the error given by the a priori estimates of Theorems 11, 12 is 

In 

Һ-1 
= V2-
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Table 2. A posteriori error estimates and the reduction of the error 

k Җu{k)) - Jăf(й) ҖX) - ^Ц
( f c )

( Җu{k)) - ҖX{k)) 4 
_ 

1 

•002201 •008548 •010749 

2 •001519 •004961 •006580 1-6336 

3 •000562 •002276 •002838 2-3185 

4 000406 •001179 •001585 1-7903 

5 •000140 •000576 •000716 2-2126 

6 •000099 000291 000390 1-8219 

From Table 2 we can see that the reduction of the error achieved in our calculation 

is in accordance with the a priori estimates. 

In our problem 
Xi = — u,t, i = 1 , 2 

and the dual variational principle is thus a method for obtaining the approximate 
value of the derivatives of the solution. These values can be calculated also from the 
solution of the primary problem. If we use linear polynomials in the finite element 
method, the derivatives are constant in each element and we calculate the value 
of the derivative at a given point as the average of the values of the derivatives 
in all triangles meeting at this point. 

As an example, let us calculate the values of the derivatives at the vertices of the 
division D3. We only need to find the values of u,x in the set 

Mx = {(-125, -125), (-375, -125), (-25, -25), (-375, -375)} 

and the values of u,2 in the set 

M2 = {(-25, -0), (-5, -0), (-375, -125), (-5, -25)} . 

All the other values are then known from the boundary condition and from the 
symmetry of the problem. 

As a measure of inaccuracy we use the following quantities: 

Qk = max max \u{k)(x, y) — u,t(x, y)\ , 
£ = 1 , 2 (x,y)eMi 

** = V ( i E [uf(x,y)-uH(x,y)Y). 
i~ 1 (x,y)eM, 

In technical and physical applications we are often interested mainly in the values 
of derivatives on the boundary. In that case we can measure the error by the quantity 

Tk = max ( |M (^(-25, -0) - M,2(-25, -0)| , 

|ti(*2>(-5, -0) - I I , 2 ( .5 , -0)|). 
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The values of Qk9 ak9 ik found from the results obtained by both primary and dual 

methods are listed in Tables 3,3a. 

If we want to compare both methods, we need to estimate the number of operations 

needed for the computation of derivatives from the solution of the primary problem. 

Table 3. Errors in the calculation of derivatives 

k 4P) Лd) 
Gk 

GíP)Kd) ЛP) nk 
Лd) 
nk Í W 

2 •10881 •04731 2-2999 •0934 •0297 3-1448 
3 •07136 •02160 3-3037 •0552 •0117 4-7179 
4 •05474 •00512 10-6914 •0407 •0033 12-3333 
5 •03385 •00511 6-6243 •0268 •0026 10-3077 

Table 3a. Errors in the calculation of derivatives on the boundary 

k ÁP) Ad) w> 
2 •0934 •0187 4-9947 
3 •0552 •0099 5-5758 
4 •0407 •0033 12-3333 
5 •0268 •0026 10-3077 

We must perform at least two operations to find the derivative in each triangle 
and about 48 operations for the averaging at the points of M1 u M2. If we are 
interested only in the values on the boundary, we need about 24 operations. The 
numbers of operations P(p)

9 R(p) and P(d) (here and in all tables the upper index p 
stays for primary and d for dual method) needed for the calculation of derivatives are 
thus given by the following relations: 

P(p) = p[
p) + 4Nk + 48 , 

R<p)ssp(*> + 24 , 

P$=pld). 

These values are listed in Table 4. 

If we compare the ratios of necessary operations from Table 4 with the ratios 
of errors from Tables 3, 3a, we can see that in our case the dual method of calculating 
the derivatives is more effective than the primary one. 
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Table 4. Numbers of operations needed for the calculation of derivatives 

k p(đ) 
F(P) R(P) p(đ)ip(p) p(d)/R(p) 

2 48 70 30 •6857 1-6 
3 180 92 36 1-9565 5 0 
4 810 192 104 4-2188 7-7885 
5 3528 532 384 6-6316 9-1875 

In Table 5, the values of derivatives calculated by the primary method with the 
division D4 (P(p) = 192) and by the dual method with the division D3 (P(d) = 180) 
are given. We can see that the dual method is much better for the calculation of deri­
vatives on the boundary. Thus all our results suggest that the dual method ought 
to be preferred when we are interested mainly in the values of derivatives on the 
boundary. 

Table 5. Values of derivatives uH calculated by primary method (division D4( 
and by dual method (division D3) 

X У i 
prirn. 
u,\p) 

dual 

u<P 
exact 
u,\ex) 

\u,\ex) - u,\p)\ \u,\ex) - u,\d)\ 

•25 •0 2 •1552 •1958 •1875 •0323 •0083 
•5 •0 2 •2093 •2699 •25 •0407 •0099 
•125 •125 1 •0749 •0731 •0820 0071 •0089 
•375 •125 1 •0250 •0236 •0273 •0023 •0037 

2 •1680 •1640 •1757 •0077 •0117 
•25 •25 1 •1061 •0994 •0938 •0067 •0056 
•5 •25 2 •1200 •1300 •125 •0050 •0050 
•375 •375 1 •0561 •0549 •0586 •0025 •0037 

8. Conclusion 

The problem (14) is a typical problem of a nuclear reactor theory, where it is 

known as a one-group neutron diffusion equation. This paper gives a theoretical 

background for its solution by the finite element method. The primary variational 

principle allows us to obtain the neutron fluxes. It is well-known and used for calcula­

tions, see e.g. [5], [6], [8]. In [2], [10] the difficulties arising from the singularities 

of the solution in the presence of corners and interfaces are investigated and some 

ways of avoiding them are suggested. By the solution of the dual problem we can 

obtain the neutron currents. A modification of this method is suggested in [9]. 
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The use of the dual variational principle to a posteriori estimates of errors is sug­
gested in [13]. Neither [9] nor [13] contain a general formulation of the dual varia­
tional principle with combined, nonhomogeneous boundary conditions. The con­
vergence of the approximate solutions of the dual problem is not proved. 

From the theoretical point of view, the works [ l ] , [4] deal with a similar problem, 
but under the assumption of an infinitely differentiable boundary. This is not the 
case in many practical applications. Nor the combinations of all three types of bound­
ary conditions are allowed, though they can appear simultaneously in some problems 
of the nuclear reactor theory. 

Numerical results presented in Section 7 suggest that the dual method can serve 
a practical tool for approximate calculation of derivatives. 
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S o u h r n 

DUÁLNÍ VARIAČNÍ PRINCIPY PRO ELIPTICKOU PARCIÁLNÍ 
DIFERENCIÁLNÍ ROVNICI 

JIŘÍ VACEK 

V článku jsou zformulovány duální variační principy pro eliptickou parciální 
diferenciální rovnici druhého řádu s kombinovanými okrajovými podmínkami. 
Jsou odvozeny aposteriorní odhady chyb přibližného řešení a pro jistou třídu úloh 
je dokázána konvergence přibližných řešení duální úlohy k jejímu přesnému řešeni'. 
V závěru je uveden numerický příklad. Rozbor přibližných řešení naznačuje, že zvláš­
tě v úlohách, v kterých nás zajímají především hodnoty derivace podle konormály 
na hranici, může být duální metoda efektivním prostředkem přibližného řešení. 

Authoťs address: Ing. Jiří Vacek, odd. Vývoj a výpočty ZVJE Škoda Plzeň, 316 00 Plzeň. 
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