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Abstract. We investigate all the possible finite order entire solutions of the Fermat-type
differential-difference functional equation (Af(z))? + R2(2)(Bf™) (z + ¢) + Cf™ (2))? =
Q(z), where m,n € N, A, B,C € C\ {0} and R(z), Q(z) are nonzero polynomials. The
results significantly improve some earlier findings, especially the results due to A.Banerjee
and T.Biswas (2021). We also show that the equation does not have any non-entire mero-
morphic solution. We provide some examples to support the results.
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1. INTRODUCTION, DEFINITIONS AND RESULTS

Let .#(C) (or &(C)) denote the set of all meromorphic (or entire, respectively)
functions on C. We denote by .#1(C), .# <> (C) and .#;°°(C) (or & (C), £<>(C),
&5°°(C)) the set of all transcendental meromorphic functions, finite order meromor-
phic functions and finite order transcendental meromorphic functions (or transcen-
dental entire functions, finite order entire functions and finite order transcendental
entire functions, respectively) on C. The Nevanlinna value distribution theory of
meromorphic functions has been extensively applied to resolve growth, value dis-
tribution (see [7], [9], [27]), and solvability of meromorphic solutions of linear and
nonlinear differential equations (see [8], [11], [24], [26]). Let f be a non-constant
meromorphic function in the complex plane. We assume that the reader is famil-
iar with the standard notations and results such as the proximity function m(r, f),
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counting function N(r, f), characteristic function T'(r, f), the first and second main
theorems, lemma on the logarithmic derivatives etc. of the Nevanlinna theory (see [7],
[9], [27]). Recall that a meromorphic function « is said to be a small function
of f, if T(r,a) = S(r, f), where S(r, f) is used to denote any quantity that satisfies
S(r, f) = o(T(r, f)) as r — o0, possibly outside of a set of r of finite logarithmic
measure. We denote by .#(f) the set of all small functions of f. We denote the
order of f € .#(C) by o(f) such that

o(f) = limsup 710g+ T f)

. where log™ (z) = max{logz,0}.
msup g (x) {logz,0}

Next we recall Hadamard’s factorization theorem.

Let f(z) be a meromorphic function with o(f) < co. Let Py(z) and P (z) be the
canonical products formed with the zeros and poles of f(z) in C\ {0}, respectively.
Let ¢y 2™ with ¢, # 0 be the first non-vanishing term in the Laurent series of f(z)
near 0. Then there exists a polynomial Q(z) with deg(Q) < o(f) such that f(z) =
2Me®@(2) Py(2)/ P (2).

The next definition is necessary for understanding this paper.

Definition A. Given a meromorphic function f(z), f(z+c) is called a shift of f
and A.(f) = f(z+¢) — f(2) is called a difference operator of f, where c € C\ {0}.

A difference polynomial (or a differential-difference polynomial) in f is a finite sum
of the difference products of f and its shifts (or of the products of f, the derivatives
of f and of their shifts, respectively) with all the coefficients of these monomials
being the small functions of f.

We now consider the Fermat-type functional equation
(1.1) f"(z)+¢"(2) =1, wheren e N.

We summarize the classical results for solutions of the equation (1.1) on C in the
following propositions.

Proposition A.

(i) The functional equation (1.1) with n = 2 has the non-constant entire solutions
f(z) = cos(n(z)) and g(z) = sin(n(z)), where n(z) is any entire function. No
other solutions exist (see [6], [4]).

(ii) For m > 3, there are no non-constant entire solutions of (1.1) on C (see [5], [6],
and [20]).
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Proposition B.

(i) The functional equation (1.1) with n = 2 has the non-constant meromorphic
solutions f = 2w/(1+ w?) and g = (1 — w?)/(1 + w?), where w is an arbitrary
meromorphic function on C (see [6]).

(ii) The functional equation (1.1) with n = 3 has the non-constant meromorphic
solutions f = (1+ =g/ (h)/2p(h)), g = (L — L=p/())/(2p(h), where p(2)
denotes the Weierstrass elliptic p-function with periods w1 and wy which is
defined as

1 1 1
P(z;w1,wa) = — + { - },
2 M,V;u;r:ﬂ;éo (2 + pewr + VWQ)Q (pen + vws)?

even and satisfying, after appropriately choosen wi and wa, (p')? = 49> — 1

(see [1], [5])-
(iii) For n > 4, there are no non-constant meromorphic solutions of (1.1) on C
(see [5], [6])-

In 1970, Yang (see [23]) investigated the solutions of the functional equation
(1.2) a(2)f™(z) +b(2)g™(2) =1, where a(z) € Z(f),b(z) € #(g) and m,n € N,
and obtained the following result.

Theorem A. Letm,n € N satisfy 1/m~+1/n < 1. Then there are no non-constant
entire functions f(z) and g(z) satisfying (1.2).

Let L(f) = Y brf®™ be a linear differential polynomial in f, where n € N, a,
k=0

bo, b1, ..., b1 are polynomials and b, € C\ {0}. In 2004, Yang and Li (see [26])
obtained that the solution of the Fermat-type equation

(1.3) (L) =a,

must have the form f(z) = 3(P(2)ef) + Q(2)e #()), where P, Q and R are
polynomials with PQ = a.

Some meromorphic solutions of the functional equation (1.2) are found in [21], [28].
The study of finding the solutions of the functional equation (1.2) has taken on a
new dimension with the replacement of ¢g(z) by the finite order difference function
f(z+ ¢). The results due to Liu (see [12]) is the gateway in this direction. For the
entire solution, Liu (see [12]) obtained the following results.
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Theorem B ([12]). Let f be a non-constant finite order entire solution of the
nonlinear difference equation

(1.4) F2(2) + f2(z + o) = ?(2),

then f(z) = % (hi(2) + ha(2)), where hq(z + ¢) = ihi(2) and ha(z + ¢) = —iha(2),
h1(2)h2(2) = a®(z), where a(z) is a non-vanishing small function of f(z) with pe-
riod c.

Theorem C ([12]). There is no non-constant finite order entire solution of the
nonlinear difference equation

F2(2) + (Acf)? = a?,

where a is a nonzero constant.

In 2012, Liu et al. (see [14]) obtained some results in this direction. For a result
in [14], they considered the functional difference equation

(1.5) ")+ fM(z+c)=1

and proved that if n > m, then there are no non-constant polynomial solutions
of (1.5). Clearly from Theorem A, if n > m > 1 or n = m > 2, then there is no non-
constant entire solution of (1.5). Moreover, if n > m, then there is no transcendental
entire solution of finite order (see [18], Theorem 1.4). Some related results can also
be found in [25]. When m = n = 1, it is clear that f(z) is a periodic function
with period 2¢. Thus, the general entire solution is f(z) = % + e™#/¢h(2), where
h(z) is any periodic entire function with period ¢. Hence h(z) can be written as
h(z) = g(e*™#/¢), where g(z) is an entire function in C \ {0}. If h(2) is a polynomial

2niz/c

ine or e~27#/¢ then there are many solutions with o(f) = 1.

Remark A. Clearly the case m = n = 2 can be treated when the functions with
finite order in (1.5) have some special relationship, i.e., when m = n = 2, the prob-
lem is still open. This was the starting point of a new era for studying the solutions,

mainly the entire solutions of the functional equation like (1.5). As a result, succes-
sively several results have been found (see [3], [10], [12]-[14], [19], [21], [22], [26], [28]).

In 2013, Liu and Yang (see [16]) considered the Fermat-type equation

(1.6) F2(2) + P2(2)(Ac(f))? = Q(2),

where P(z) (#0), Q(z) (# 0) are polynomials, and obtained the following result.
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Theorem D ([16]). There is no transcendental entire solution with finite order
of (1.6).

In 2015, Liu and Dong (see [15]) considered the Fermat-type equation
(1.7) C2f2(2) + (Af(z + ) + Bf(2))* = 1
and obtained the following result.

Theorem E ([15]). Let A,B € C. Then there are f € &5 satisfying the
nonlinear difference equation (1.7) with A?> = B? + C2.

Also, Liu and Dong in [15] discussed that the necessary condition of existence of
[ € &5 satisfying the Fermat-type equation f?(z)+ (Af) (z4-¢)+Bf™ ()2 =1
is: m,n € N are odd and m + n is even.

In 2021, Banerjee and Biswas (see [2]) considered the nonlinear delay-differential
functional equations

(1.8) F2(2)+ R*(2)(Ac(fP)? = Q(2)
and
(1.9) F2(2) + R2(2)(Af ™ (2 + ¢) + Bf ™M (2))? =1,

where m,n € N, A, B € C\ {0}, R(z),Q(z) are nonzero polynomials, and obtained
the following results.

Theorem F. Those f € &5 satisfying the functional equation (1.8) must have
the form f(z) = 1(Q1(2)e™ " + Q2(2)e **?), where a(# 0),b € C such that
Q1(2)Q2(z) = Q(2), with Q1(2) and Q2(z) being nonzero polynomials. Moreover,
one of the following conclusions holds:

(I) if e # 1, then k must be odd, Q(z) and R(z) reduces to constants satisfying
2iRa" + 1 =0;
(IT) ife® =1, then deg(R(z)) = 1, none of Q1(z), Q2(z) are constants with R(z) =

Q(2)/P@i(2)) = Qal=)/ (-1 P(Qa(2))), where Pla) = i3 (})a"" x
(@B (2 +¢) — 2D (2)). =0

Theorem G. If f € &7 satisfles the functional equation (1.9), then R(z) =
R € C\ {0} and f must have the form f(z) = 3(e***? 4 ¢~**~") with the following
possibilities:

(I) when m,n are even, then a™ " # +B/A, R* = (a®™A? — a®B?)~! and

e’ = (=a"B £ /(a"B)? - (amA)?)/(a™A) ¢ {£1,~((@™A)/(a"B))*'};
(II) when m,n are odd, then e* = £1,a™ " # +B/A and R = —i(a"B+a™A)™};

267



(III) when m is even, n is odd, then e®® = +i, ¢~ ™ # +iB/A and R = —i(a"B +
iamA)~L;

(IV) when m is odd, n is even, then a™~" # +iB/A, R* = —(a®*"B%?+a*™A?)~! and
e’ = (=a"B £ \/(a"B)? + (amA)?)/(a™A) & {*1,(a™A)/(a"B),~(a"B)/
(a™A)}.

Motivated by the above results, especially [2], [12], [16], in this paper we consider
the delay-differential functional equation

(1.10) (Af(2))* + R2(2)(Bf "™ (2 + ¢) + Cf M (2)* = Q(2)

to investigate all the possible meromorphic and finite order entire solutions, where
m,n €N, A, B,C € C\ {0} and R(z), Q(z) are nonzero polynomials.

2. MAIN RESULTS ON ENTIRE SOLUTIONS
When m = n in (1.10), we obtain the following results.

Theorem 2.1. Let f € &7 satisfy (1.10) with B = £C. Then f(z) is of the
form

- Ql(z)eaz+b+Q2(z)e—az—b
(21) i) = - ,
where a (# 0),b € C and Q1(2)Q2(z) = Q(z) with Q1(z) and Q2(z) being nonzero
polynomials. Moreover, the solutions exist for any of the following possibilities:
(I) if m is odd and deg(R(z)) > 0, then deg(R(z)) = 1, both Q1(z), Q2(z) are

non-constant polynomials and e*¢ = —C'/B. Also
R(z) = AQl(?) ‘
HBY T, (T)am QY (2 4+ ¢) — QY (2))
—AQQ (Z)

B Yo (M) (—a)m={QY) (2 + ¢) — QY (2)}
(IT) if m is odd and deg(R(z)) = 0, then e*“ = C/B, A —iRa™(Be* + C) = 0 and
Q17 QQ e C.

Theorem 2.2. Let f € &7 satisfy (1.10) with B # £C. Then f(z) is of the
form (2.1). Moreover, the solutions exist for any of the following possibilities:
(I) if m is even, then deg(R(z)) =0, e*® = (—C ++/C? — B?)/B, R = A/(+ia™ x
VC? — B?) and Q1,Q> € C;
(IT) if m is odd and deg(R(z)) = 0, then A — 2iCRa™ # 0, e*© = +1, R = A/
(ia™(C £ B)) and Q1,Q2 € C.
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When m # n in (1.10), we obtain the following results.

Theorem 2.3. Let f € &7 satisfy (1.10) with B = £C. Then f(z) is of the
form (2.1). Moreover, the solutions exist for any of the following possibilities:
(I) if m, n are both even and o™~ ™ # +1, then deg(R(z)) = 0, e*® = (—Ca™ £
BV = @) /(Ba™), R = (FiA)/(BVa® = @) and Q1,Qs € C;
(IT) if m,n are both odd and also
(II;) if a™~™ # %1 and deg(R(z)) = 0, then A — 2iCRa™ # 0, e*° = %1,
R = (—iA)/(£Ba™ + Ca™) and Q1,Q2 € C;
(II) if @™ ™ = +£1 and deg(R(z)) > 0, then deg(R(z)) = 1, e* = +1
and both Q1(z), Q2(z) are non-constant polynomials. Also when

€% = +1, then
R(z) = —14Q1(2) |
LB, (1)amiQP (= +0) + O g ()am Q1 (2)
1AQ(2)

T 1B S0 (M) (~a)m1QY (2 + ¢) + C X (M) (~a)=iQY (2)

and if B=C (or B = —C), then a™ ™ = F1 (or a™ " = %1, respec-
tively);

(IIg) if ™™™ = £1 and deg(R(z)) = 0, then A — 2iCRa™ = 0, e = +1,
R = (—iA)/(£Ba™ 4 Ca™) and Q1,Q2 € C;

(III) if m is even and n is odd and also

(ITI;) if @™~ ™ # 4+i and deg(R(z)) = 0, then A — 2iICRa™ # 0, e = +i,
R = (—iA)/(£iBa™ + Ca™) and Q1,Q2 € C;

(IlIp) ifa™ ™™ = +i and deg(R(z)) > 0, then deg(R(z)) = 1, e** = +i and both
Q1(z), Q2(z) are non-constant polynomials. Also when e = +i, then

z) = —14Q1(2) |
B (7)am Q) (= + €) + € Ty (7)am Q7 (2)
_ 14Qs(2)
B YT, (T)(—a)m QY (2 + ) + C Yy (1) (—a) 1Y (2)

and if B =C (or B = —C), then a™ " = 4i (or a™ ™ = i, respec-
tively);
(IlIg) if @™~ ™ = =i and deg(R(z)) = 0, then A — 2iICRa™ = 0, e = £,
R = —iA/(£iBa™ + Ca™) and Q1,Q2 € C;
(IV) if m is odd, n is even and a™ ™ # +i, then deg(R(z)) = 0, e*® = (=Ca™ +
BVa?" + a?m)/(Ba™), R = FiA/(BVa®* + a®™) and Q1,Q; € C.
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Theorem 2.4. Let f € &7 satisfy (1.10) with B # £C. Then f(z) is of the
form (2.1). Moreover, the solutions exist for any of the following possibilities:
(I) if m,n are both even and a™ " # +C/B, then deg(R(z)) = 0, e*“ = (—Ca" +
VC2a2" — B2a?™)/(Ba™), R = FiA/(v/C?a® — B%a?™) and Q1,Q; € C;
(IT) if m, n are both odd and also
(I1;) if a™~ ™ # +C/B and deg(R(z)) = 0, then A — 2iCRa™ # 0, e = +1,
R =—-iA/(£Ba™ + Ca™) and Q1,Q2 € C;
(IIg) if @™ ™ = £C/B and deg(R(z)) > 0, then deg(R(2)) = 1, e*® = £1
and both Q1(z), Q2(z) are non-constant polynomials. Also when

€% = 41, then
R(z) = —14Q1(2) |
BT, (M)am=iQY (2 4 ¢) + Oy (1) an=1 Q) (2)
1AQ2(2)

TEBY (M) (—a)m QY (2 4 0) + C X, () (—a) Q) (2)

and a™™" = ¥C/B;

(II3) if o™~ ™ = £C/B and deg(R(z)) = 0, then A — 2iCRa™ = 0, e = +£1,
R =—-iA/(£Ba™ + Ca™) and Q1,Q2 € C;

(IIT) if m is even and n is odd and also

(ITI) if ™ ™ # +4iC/B and deg(R(z)) = 0, then A — 2iCRa™ # 0 and
e = +i, R = —iA/(£iBa™ + Ca™) and Q1,Q2 € C;

(Ilp) if a™ ™ = +iC/B and deg(R(z)) > 0, then deg(R(z)) = 1, e* = =+i
and both Q1(z), Q2(z) are non-constant polynomials. Also when

e = &i, then
z) = ._iAQl(Z) .
B Y (T)am QY (2 + ¢) + C Yy (1)an QY (2)

B, () am QY (e o)+ C S ()~ QP (2)

and o™~ " = +iC/B;
(IlI3) if ™™™ = +iC/B and deg(R(z)) = 0, then A — 2iCRa™ = 0, *¢ = +i,
R = —iA/(£iBa™ + Ca™) and Q1,Q2 € C;
(IV) ifm isodd, n is even and a™ " # +iC/ B, then deg(R(z)) = 0, e = (—Ca™ £

VC2a2" + B2a¢?™)/(Ba™), R = FiA/vVC?%a?" + B2a?™ and Q1, Q2 € C.

Remark 2.1. In particular, A=B=1,C =—-1and m =n =% € Nin (1.10).
Then (1.10) becomes (1.8). Also if we replace A, B, C by 1, A, B, respectively, and
Q(z) = 1, then (1.10) becomes (1.9). Clearly then the conclusions of Theorem 2.1
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arise as the conclusions of Theorem F and the conclusions (I), (IIy), (IIIy), (IV) of
Theorem 2.4 arise as the conclusions of Theorem G. In this sense, Theorems 2.1, 2.4
are improvements of Theorem F and Theorem G.

Clearly, Theorems 2.1 and 2.2 improve Theorem F whereas Theorems 2.3 and 2.4
significantly improve Theorem G.

Remark 2.2. The key tools in the proof of the main results are (i) the
Hadamard’s factorization theorem and (ii) the core part of value distribution theory,
namely the lemma given in the Lemma section.

The following examples related to Theorem 2.1 are reasonable.

Example 2.1. We consider the entire function f(z) = %(26324_7 + ze73577).
Clearly it satisfies (V3f(2))? 4+ 1agn 232%(7f(z + ¢) — Tf'(2))?

A=V3,B=7,C=-7,a=3,c= 2ni and R(z) = —‘l/ffzn Lin (1.10).

Example 2.2. We consider the entire function f(z) = %(Z + 3)(e%* 8 +
e 5278). Clearly it satisfies (\/gf(z))Q—i—%n_2(2+3)2(3f’(z+c)+3 "(2))? = (2+3)%

Note that A =+/5, B=C =3,a =5, c=niand R(z) = — 3\[ n (2 +3) in (1.10).

Example 2.3. We consider the entire function f(z) = m(5e(2i2/3)+5 +
VTe212/375)  Clearly it satisfies (iv2f(2))? — 195 (4f"(z +¢) + 4f'(2))? = 5/7 with

:i\/ﬁ,B:C:ZL,a:%i,c:SnandR:—ﬁiin(l.lo).

Example 2.4. Clearly f(z) = ﬁ(i’)ehJrl +/Te~7~1) satisfies

(=f(2))* —@M f'(z+c) = V2f'(2)* =5V7

alsowith A=n, B=v2,C=—-v2,a="7 c=mniand R= #ni in (1.10).

V2

The following example related to Theorem 2.2 is reasonable.

Example 2.5. We consider the entire function f(z) = & (v/5e®*+? + 7e=27b).
Clearly it satisfies (5f(2))% — Z2a~*(V2f"(z + ¢) + 2\/_f”( ))? = 7v/5. Note that

A=mx, B=+2 C =22, e \/§—2andR—7€ in (1.10).

The following example related to Theorem 2.3 is reasonable.

Example 2.6. We consider the entire function f(z) = 2\1/5(116‘”% + Te—2270),

Clearly it satisfies (V5 (2))? — 2a=*(1 —a*) ' (3™ (2 + ¢) + 3f(2))? = Tn. Note
that A = /5, B = C = 3, ¢* = (=1 ++1—-a%)/a? a* # 1 and R = —iV/5/
(3a%v/1 — a%) in (1.10).
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The following examples related to Theorem 2.4 are reasonable.

Example 2.7. We consider the entire function f(z) = 1(v/2e%**? 4 5e=*=t) /.
Clearly it satisfies (nf(2))? — 5a~*(25a* — 9)~1(3f" (2 +¢) + 57(2))? = 5v/2. Note
that A =, B = 3, C = 5, e% = %(—5a2+\/m% a’® # i% and R =
—ina=2/v/25a* — 9 in (1.10).

Example 2.8. We consider the entire function f(z) = 15(2e%**? 4 ne=2#7?),
Clearly it satisfies (6f(2))2 — 36a=*(7f" (2 +¢) +3f"(2))?/(9 + 49a%) = 2rn. Note
that A = 6, B =7, C = 3, e® = (=3 —/9+49a?)/(7a), a # +if and R =
6ia—2/v/9 + 4942 in (1.10).

3. LEMMA SECTION
We apply the following lemma in the proof of the main results of this paper.

Lemma 3.1 ([27], Corollary on page 77). Suppose f;(z) (j =1,2,...,n+1) and g
(k=1,2,...,n) (n > 1) are entire functions satisfying the following conditions:
n
(i) '21 fi(2)e%3) = foia(2).
Jj=

(if) The order of f;(z) is less than the order of e for1<j<n+1,1<k<n
and, furthermore, the order of f;(z) is less than the order of e9r(2)=9r(2) for
n>2and1<j<n+1,1<h<k<n.

Then fj(z)=0for1 <j<n+1.

4. PROOF OF THE MAIN RESULTS ON ENTIRE SOLUTIONS

Proof of Theorem 2.1. Let f € &5 satisfy (1.10). Then (1.10) can be
expressed as

(4.1) (Af(2) +iR(2)(Bf ™ (z +¢) + Cf™(2)))
X (Af(2) =1R(2)(Bf ™ (z 4 ¢) + Cf™(2))) = Q(2).
Clearly, Af(z) £iR(2)(BfU™ (2 + ¢) + Cf™)(z)) € &5 for f € £~ and has

finitely many zeros in view of (4.1). So by the Hadamard factorization theorem, we
have

Af(2) +iR()(BF™ (2 + ¢) + Of ™ (2)) = Qu(2)e”™)

and

Af(2) —iR(2)(Bf™ (2 + ¢) + Cf™(2)) = Qa(z)e P,
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where Q1(z), Q2(z) are nonzero polynomials such that Q1(2)Q2(z) = Q(z) and P(z)
is a non-constant polynomial. Thus, we have

~ Q1(2)ef® + Qa(z)e @
(4.2) f(z) = 5

and

Q1(2)e”®) — @a(2)e” "
2iR(z) '
Differentiating on both sides of the first equation in (4.2), we deduce that

p1(2)eP’?) 4 py(z)e=F()
2A ’

Bf"™(z+c¢)+Cfm(z) =

(4.3) F(z) =

where

(44)  pi(z) = Q) ((P'(2)™ + My (P'(2), P"(2),..., PT™(2)))
+ Q1 (2)Mam -1 (P'(2), P"(2),..., PV (2))
bt QM (P + Q)
(45)  p2(2) = Qa()((=1)™(P'(2))™ + Ni,m(P'(2), P"(2), ..., P("(2)))
+ (=171 Q5(2)Nom—1(P'(2), P"(2), ..., PV (2))
b QDN () + (),
and M; —j41 (or Njm,—jy1, respectively) are differential polynomials of P’(z) of

degree m — 1 for j = 1,2 and of degree m — j + 1 for j = 3,4,...,m. From (4.2)
and (4.3), we have

(46) (Bp1(2+ C)eAcP(Z) + Cp1(Z) _ %Ez(j))e])(ﬁ

A
(Bt A2

R(z)
Clearly, T(r,e?"(#)) = S(r,eP(*)). Hence by Lemma 3.1, we get from (4.6) that
AQ1(z
(4.7) Bpa(z + €)e P + Oy () - % =Y
and
AQQ (Z)

=0.

B —ACP(Z)
p2(z + c)e + Cpa(z) + )

We claim that deg(P(z)) = 1. If not, let deg(P(z)) > 2 = deg(A.P(z)) > 1. By
Lemma 3.1, we have p1(z +¢) =0 and pa(z 4+ ¢) = 0. So from (4.3), we see that f is
a polynomial, which is not possible. Hence, deg(P(z)) =1 = P(z) = az + b, where
a(#0),b € C. From (4.2), we get

_ Ql(z)eaerb_’_Qz(z)efasz
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Also from (4.7), we deduce that

(4.8)

AQl(Z)

B ac _
p1(z+c)e®+Cpi(z) R(z)

=0 and Bpa(z+c)e”*+Cpa(z)+

where py(z) = é( ) m_jQ(j) (2), p2(2) = ‘72::0 (Tj'.l)(—a)m_ngj)(z). Combining two
equations in (4.8), we deduce that
(4.9) B R*(2)(p1(2 + 0)pa(z + ¢) — p1(2)pa(2))

= A%Q(2) —iACR(2)(p1(2)Q2(2) — p2(2)Q1(2))

= B2R(2)((~1)"a®"(Q(= + ¢) - Q(2))
e ()@ + QG+ 0) - QuAIRE)
#1mem (7) @4e + el + )~ Q)

<‘“< ><Mu+@—dmuw?%w)
= A%Q —1ACR(z ( - (2)
Q

()Uﬂ@( 2(2) — (—a)™ Qu(2)Q4(2)
o+ QM ()R (2) — QM ().

Now, we investigate the following cases.

Case 1. Let m € N be even. If deg(R(z)) > 0, then by considering the degrees
of R(z), Q1(z) and Q2(z) from (4.9), we see that 2deg(R(z)) + deg(Q(z)) — 1 =
deg(R(z)) + deg(Q(z)) — 1 = deg(R(z)) = 0, which is a contradiction.

Now if deg(R(z)) = 0 and m € N is even, then by considering the degrees of Q1 (z)
and Q2(z) from (4.9), again we see that deg(Q(z)) — 1 = deg(Q(z)), which is absurd.
Therefore, the solution of (1.10) does not exist in this case.

Case 2. Now let m € N be odd. If deg(R(z)) = 0 and A — 2iCRa™ # 0,
then by considering the degrees of Q1(z) and Q2(z) from (4.9), again we see that
deg(Q(z)) — 1 = deg(Q(2)), which is absurd. Hence, deg(R(z)) = 0 with odd m € N
and A — 2iCRa™ = 0 are possible. From (4.8), we have

(4.10) iR <am(Be“CQ1(z +¢)+CQ1(2)) +a™ ! <71n) (Be™Q(z +¢) + CQ(2))
+o 4 (B Q™ (2 4 ¢) + CQ™ (z))) = AQ: (2)
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and
(4.11)

iR (= (Be e Qale + )+ 0Qa(o) + (] (Be Qs + o)+ CQ4(2)

+o+ (Be Q™ (2 4 ¢) + CQL™ (;;))) = —AQs(2).

Comparing the highest power of z on both sides of (4.10) and (4.11), we get

. . _ C _ C

iRa™(Be*+C)=A and iRa™(Be *“+(C)=A=¢e"= B and e” % = B
respectively. We now have the following cases to consider.

Sub-case 2.1. If B = C, then €% =1, i.e., ac = 2lni (I € Z\ {0}). We claim that
deg(Q1(z)) = 0. If not, let deg(Q1(2)) > 1 and let Q1(z) = iajzj, where a; € C
with ag, #0and ¢ > 1 (0<j < q1). J=0

Comparing the coefficient of 291~ on both sides of (4.10), we get m = —Ini,
which leads to a contradiction with m € N, m odd. Similarly from (4.11) we get
deg(Q2(2)) = 0.

Sub-case 2.2. If B = —C, then e = —1, i.e., ac = (2l + 1)ni (I € Z). Similarly as
in Case 1, we get deg(Q1(z)) = 0 and deg(Q2(z)) = 0.

Case 3. Let m € N be odd. If deg(R(z)) > 0, then by considering the degrees
of R(z), Q1(z) and Q2(z) from (4.9), we see that 2deg(R(z)) + deg(Q(z)) — 1 =
deg(R(z)) + deg(Q(z)) = deg(R(z)) = 1. Let R(z) = R1z + R, where R; (# 0),
Ry € C. Clearly from (4.9), we get that Q(z) is a non-constant polynomial. Now
the following cases arise.

Sub-case 8.1. When m € N is odd, deg(R(z)) = 1, Qi(z) = @1 € C\ {0}
q2 .
and Q2(2) = > bjz?/, where b; € C with by, # 0 (0 < j < ¢2). From (4.8),
=0
we get ia™(Be* 4+ C)R1z 4+ ia™(Be® + C)Ry — A = 0 = Be* 4+ C = 0 and
ia™(Be® + C)Ry — A=0= A =0, a contradiction arises.
Sub-case 3.2. When m € N is odd, deg(R(z)) = 1, Q2(z) = Q2 € C\ {0}
q1 i
and Q1(z) = a;z?, where a; € C with ag, # 0 (0 < j < ¢1). From (4.8), we
3=0
get —ia™(Be % + C)R1z — ia™(Be *“ + C)Ry + A =0 = Be * + (C = 0 and
—ia™(Be=* 4+ C)Ry + A = 0= A =0, a contradiction arises.
Sub-case 3.3. When m € N is odd, deg(R(z)) = 1, and let Q1(z) = > a;27,
q2 =0
Q2(2) = D" bizk, where aj, b, € C with ag, #0, by, #0 (0< 5 < q1, 0 < k < o).
k=0

=1
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From (4.8) we get
(4.12) i(R1z+ R2) <am(Be“CQ1(z +¢)+CQi(2))

s (”f) (Be®Q)(z + ¢) + CQ\(2))

(B Q™ (ot )+ CQ;”)(z))) = AQ(2).

Comparing the coefficient of highest power of z on both sides of (4.12), we get
iRja™(Be® + C) =0 = Be*™ +(C =0 = e = —C/B. When e = 1, then
from (4.12) we get
_ AQ1(2)

iBY T, (M)ami QY (2 + o) — QY (2))
_ —AQ2(2)

iBYJL (1) (=)™ 9(Q5 (= + ) - Q5 ()

If e%¢ = —1, then from (4.12), we get

R(z)

BT <m)am_;?§<1f§2 +¢) - Q7(2)
=0\ 1 1
_ AQ2(2)
iBY, (1) (=)@ (= +¢) — Q5 ()
This completes the proof. O

Proof of Theorem 2.2. Proceeding similarly to the proof of Theorem 2.1, we
get the required conclusions. For this reason, we omit the details. ([

Proof of Theorem 2.3. Let f € &+ satisfy (1.10). By similar arguments as
in the proof of Theorem 2.1, we have

Q1(2)eP®) + Qa(2)eP(2)
24

(4.13) £z =
and
Ql(z)eP(z) — QQ(Z)G_P(Z)

2iR(z) ’
where Q1(z), Q2(z) are nonzero polynomials such that Q1(2)Q2(z) = Q(z) and P(z)
is a non-constant polynomial. Differentiating on the both sides of first equation
in (4.13), we deduce that

(4.14)
P(z) —P(z) P(z) —P(z)
oy _ 21207 4 paz)e o @1(2e"D) 4 aa(z)e
1) . and [ () — 7

Bf™(z+¢)+Cf"(z) =
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where p1(z) and pa(z) are given in (4.4) and (4.5), respectively, and
(415)  @1(2) = Qu=)((P'(2))" + Myu(P'(2), P"(2),.... PM(2)))
+ Q/I(Z)MQ no1(P'(2), P"(2),...,P""D(2))
QT M (P(2) + Q1 (2)

and

(416)  a2(2) = Qa(2)((=1)"(P'(2))" + Niwu(P'(2), P"(2),..., P (2)))
+(—1)”_1Q'2( )Nop-1(P'(2), P"(2),..., P11 (2))
S+ QT ENL(P(2) + Q57(2),
where M; ,,_j11 (or Nj,—;t1) are differential polynomials of P’(z) of degree p — 1

for j = 1,2 and of degree p — j+ 1 for j = 3,4,...,p and p € {m,n}. From (4.13)
and (4.14), we have

(4.17) (Bpl(z +¢)etPE) L Cg(2) - Aigé;))ep(z)

A
+ (sz(z +e)e 2P 4 Cgo(2) + 7igig)>e_mz) =0.

Clearly, T(r,e?P(*)) = S(r,eP(*)). Hence by Lemma 3.1, we get from (4.17) that

(4.18) Bpi(z + ¢)e®<PE) 4 Oqy(2) — ?Ql(z) =0

and

=0.

Bpa(z + c)e_Acp(z) + Cqa2(2) +

We claim that deg(P(z)) = 1. If not, let deg(P(z)) > 2 = deg(A.P(z)) > 1. By
Lemma 3.1, we have p1(z + ¢) = 0 and p2(z + ¢) = 0. So from (4.14), we see that
f is a polynomial, which is not possible. Hence, deg(P(z)) = 1 = P(z) = az + b,
where a(# 0),b € C. From (4.13), we get

Q1(2)e™**P + Qq(z)e” "

f(2) = =
Also from (4.18), we deduce that
(4.19)
ac _ AQl(z) — —ac AQQ(Z) —
Bpi(z+c¢)e*+Cqi(z) RG) 0 and Bpa(z+c)e  *“+Cqa(z)+ RG) 0,

where pi(z) = i( )am1QP(2), paz) = 3 (M)~ QY (), ai(z) =

n n 7=0
> (?)a”‘jQy)( ) and go2(2) = Z( )(—a)"~ JQQJ)(Z). Combining the two equa-
Jj=0 7=0
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tions in (4.19), we deduce that

(4.20) R*(2)(B®p1(z + c)pa(z + ) — C*q1(2)a(2))
= A°Q(2) —IACR(2)(q1(2)Q2(2) — 42(2)Q1(2))

:>B2R2(Z)Z< ) m— jQ(]) Z+C (T) m jQ(])(Z+C)

j=0 J
—02R2<z>§nj(])w@“> Y (1))

0

j=0 3=0 J
= A%Q(z) — iACR(z zn: (7) "QY(2)
Jj=
+iACR(z f:( ) )19 (2)

j=0

= B’R%(z )((( D™a*™Q(z 4 ¢) — (—1)"a*"Q(z))

(
< ml?ml(T>Q1z+cQ2z+c)
Jor

e (o)
+ ((—1)ma2m—1 (T) Q\ (2 + )Q2(z + ©)
- e (D) + )

— A2Q() — 1ACR(2) ((a” C(CaMQ()
(1)@ @6 - (o a)ee)
QP (2)Qa(2) — @1 (2)Q <z>>).

Now we consider the following cases.

Case 1. Let m,n € N be both even. Then the following cases arise.

Sub-case 1.1. Let a®™ —a®" = 0= a™ " = +1 for a € C\ {0}. If deg(R(z)) > 0,
then by considering the degrees of R(z), @Q1(z) and Q2(z) from (4.20), we see that
2deg(R(z)) + deg(Q(z)) — 1 = deg(R(2)) + deg(Q(z)) — 1 = deg(R(z)) = 0, which
is a contradiction. If deg(R(z)) = 0, then by considering the degrees of Q1(z) and
Q2(z) from (4.20), we see that deg(Q(z)) — 1 = deg(Q(z)), which is absurd. So, in
this case, the solution of (1.10) does not exist.
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Sub-case 1.2. Let a>™ — a® # 0 = a™ " # %1 for a € C\ {0}. We claim that
deg(R(z)) = 0. If not, let deg(R(z)) > 0, then by considering the degrees of R(z),
Q1(z) and Q2(2) from (4.20), we see that 2deg(R(z)) + deg(Q(z)) = deg(R(z)) +
deg(Q(z)) — 1 = deg(R(z)) = —1, which is absurd. Hence, deg(R(z)) = 0 for
a™ " # £1. From (4.19), we get

(4.21) (Ba™e*Q1(z + ¢) + Ca™Q1(2))

+ (B (T) a™ e Q) (2 +¢) + C’(?) a”_lQi(z)) +...= EQl(Z)’
(4.22) (Ba™e™*Qy(= + ¢) + Ca"Qa(2))

+ (-B(’f) a" e CQl (2 + ¢) — c(’f) alelz(Z)> +...= —%Qz(z)

Comparing the coefficient of highest power of z on both sides of (4.21) and (4.22),
we get Ba™e® 4+ Ca™ = A/(iR) and Ba™e % + Ca"” = —A/(iR) = e* =
(—Ca™ + BVa?" —a?m)/(Ba™) = R = FiA/(Bva? — a?™), respectively. Now
the following cases arise.

Sub-case 1.2.1. When e* = (—Ca" +B\/W)/( a™), we claim that

deg(Q1(z)) = 0. If not, let Q1(z) = Z a;jz’?, where a; € C with ¢ > 1 and
7=0
ag, # 0 (0 < j < ¢1). Comparing the coefficient of 2% and 2%~! on both sides

of (4.21), we get

(4.23) (@™ Be + Ca™) = -

S

and

(4.24) (@™ Be*(queay, +ag 1) +a"Cag, 1)

A
iRMu—1
= ac(—C + By/1 — a?m—2n) (=C+By1—a?""2)+Cn)=0

ac(—C + BV1 — a2m 2”) + Bmy/1 — a?m—2n
C Y

+ (mam_lBe“quaq1 + na"_qulaql) =

=>m-—n=

respectively. Since B = +C, from (4.24) we deduce that m — n = ac(-1 £
V1 — a?m=27)+m+/1 — a®™—27_ which is not possible with even m,n € N, a € C\ {0}
and a®>™~2" #£ 1. Hence, deg(Q1(z)) = 0. Similarly from (4.22), we can deduce that
deg(Qa(2)) = 0.

Sub-case 1.2.2. When e*¢ = (—Ca™ — Bva?" — a?>™)/(Ba™), then using similar
arguments as in Sub-case 1.2.1 we get deg(Q1(z)) = 0 and deg(Q2(z)) = 0.
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Case 2. When m,n € N are both odd. Then the following cases arise.

Sub-case 2.1. Let a®*™ —a®" #£ 0 = a™ " # £1 for a € C\ {0}. If deg(R(2)) > 0,
then by considering the degrees of R(z), @Q1(z) and Q2(z) from (4.20), we see that
2deg(R(z)) + deg(Q(z)) = deg(R(z)) + deg(Q(z)) = deg(R(z)) = 0, which is a
contradiction. If deg(R(z)) = 0 and A — 2iCRa"™ = 0, then by considering the
degrees of Q1(z) and Q2(z) from (4.20), we see that deg(Q(z)) = deg(Q(z)) — 1,
which is not possible. Hence, deg(R(z)) = 0 with A — 2iCRa™ # 0 is possible.
From (4.19), we get

(4.25) (Ba™e*Q1(z +¢)+ Ca™Q1(2))
+(B(7)am e @i o+ e e o)+ = @)
(4.26) (—Ba™e™*°Q2(z + ¢) — Ca"Q2(z))

+ (B (T) a™ teTQh(z +¢) + C<71L> alelz(Z)) +...= _A?;(z)

Comparing the coefficient of highest power of z on both sides of (4.25) and (4.26),
we get Ba™e* 4+ Ca™ = A/(iR) and Ba™e % 4+ Ca™ = A/(iR) = e** =+1= R =
—1A/(£Ba™ + Ca'™), respectively. Now the following cases arise.
Sub-case 2.1.1. When o™~ ™ # £1 and e = 1, we claim that deg(Q1(z)) = 0.
q1 .
If not, let Q1(2) = > a;27, where a; € C with ¢y > 1 and aq, # 0 (0 < j < ¢1).
i=0

j=
Comparing the coefficient of 2% and 2% ~! on both sides of (4.25), we get

A
™ B n=__
a + Ca n

and

(427) (a‘mB((hca’lh + a’thfl) + a’nca’lhfl)
+ (mam_qulaq1 + na”_qulaql) = anrl

C
= Bea™ + (Bma™ ' + Cna™ ') = 0= m = —2lni — Enanfm,

respectively. Since B = +£C, then from (4.27) we get m = —2lni F na™~ ™, which is
not possible with odd m,n € N, I € Z\ {0} and a™™™ # +1. So deg(Q1(z)) = 0.
Similarly from (4.26), we get deg(Q2(z)) = 0.

Sub-case 2.1.2. When o™~ " £ 41 and €% = —1, then using similar arguments as
in Sub-case 2.1.1, we get deg(Q1(z)) = 0 and deg(Q2(z)) = 0.

Sub-case 2.2. Let a®™ —a®" = 0= a™ " = +1 for a € C\ {0}. If deg(R(z)) > 0,
then by considering the degrees of R(z), @Q1(z) and Q2(z) from (4.20), we see that
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2deg(R(z)) +deg(Q(z)) — 1 = deg(R(2)) + deg(Q(z)) = deg(R(z)) = 1. Let R(z) =
R1z+ Ra, where Ri(# 0), Ry € C. From (4.20), it is clear that ()(z) is a non-consant
polynomial. Let Q1(z) = Q1 € C\ {0} and Q(z) = Q1Q2(z). Then from (4.19)
we get iRy (Ba™e + Ca™)z + iRz (Ba™e® + Ca™) — A =0 = Ba™e* + Ca™ =0
and iRz (Ba™e + Ca™) — A =0 = A = 0, which is not possible. Again if Q2(z) =
Q2 € C\ {0} and Q(z) = Q2Q1(2), then similarly we get a contradiction Hence both

g2
Q1(2), Q2(z) are non-constant polynomials. Let Q1(z) = Z ajz?, Qa(2) = Y b2¥,

k=0
where a;, by € Cwith ag, 0,04, #0(0<j<q1,0<k < QQ) From (4.19), we get

(4.28) i(Ry1z + Ry) ((Be“ale(z +¢) +Ca"Q1(2))

+ (Be“c m— 1<T>Qg(z+c) +Ca”_1(1>Q’1(z)) +> = AQ:(2).

Comparing the coefficient of 22! on both sides of (4.28), we get

Ca™

(4.29) iRy (Bea™ + Ca™) = 0= Be"a™ +Ca" =0 = e = B

Note that B = £C and ™™ = £1. From (4.29), we get ¢*° = £1 = Ba™ = FCa™.
Also from (4.19), we get
(4.30)

i(R1z + Ro) ( — (Be™*a™Qa(z + ¢) + Ca"Q2(2))
; (Be_“cam_l (’f) Qh(z + ) + cw-l(’f) Q’Q(Z)) . ) = —AQa(2).
If e*¢ = £1, then from (4.28) and (4.30) we get

—iAQ1( )
£BY.7 (Tam=i1QV (2 +¢) + C X7y (Mar QY (2)
_ i4Qs(2)
£BY o (M) (—a)m QY (2 + ¢) + C Yy (1) (—a)m=iQ5 ()

R(z) =

Also e“ = £+1 and B = C gives a™~" = F1. Similarly e*“ = £1 and B = —C gives
am " = =£1.

Sub-case 2.3. If a®™ — a®" =0 = a™ " = £1 for a € C\ {0} with deg(R(z)) =0
and A—2iC'Ra™ # 0, then by considering the degrees of Q1(z) and Q2(z) from (4.20),
we see that deg(Q(z)) — 1 = deg(Q(z)), which is absurd. Hence, deg(R(z)) = 0 with
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A — 2iCRa™ = 0 is possible. From (4.19), we get
(4.31) 1R<(Bame“CQ1(z +c¢)+ Ca"Q1(2))
m m—1_ac/ n n—1y/ —
+ (B L )a" e Qi(z+c)+C BE Qi(z) ) +... | = AQ1(2),
(4.32) iR((—Bame_“cQg(z +¢) — Ca"Q2(z))
m m—1_—acn)/ n m—1 )/ —
+<B<1>a e Q2(2+c)+0<1)a Q2(2)>+...):—AQ2(z).
Comparing the highest power of z on both sides of (4.31) and (4.32), we get
iR(Bae 4+ Ca™)=A and iR(Ba™e *+(Ca")=A= e =41,

respectively. Now we deduce that e = +£1 = R = —iA/(£Ba"™ + Ca™). Then the
following cases arise.
Sub-case 2.3.1. When ac = 2ini (I € Z\{0}),a™ " = 1l andiR(Ba™+Ca") = A,

q1 .
we claim that deg(Q1(z)) = 0. If not, let Q1(z) = ) a;27, where a; € C with aq, # 0
§=0

and q; > 1 (0 < j < ¢1). Comparing the coefficient of 2% and 27! on both sides
of (4.31), we get
iR(Ba™ +Ca™) = A

and
(4.33)
iR(Ba™(cqrag, + ag 1) + Ca™ag, -1 + Bma™ 'qraq, + Cna™ *qray,) = Aag, 1
= Bca™ + Bma™ ' 4+ Cna" " = 0.

When a™ = @™ and B = £C, then from (4.33) we get m £ n = —2Ixi, which is not
possible, since m,n € N are both odd and [ € Z \ {0} is arbitrary.

When a™ = —a™ and B = £C, then from (4.33) we get m F n = —2Ini, which
is not possible, since m,n € N are both odd and [ € 7\ {0} is arbitrary. Hence
deg(Q1(z)) = 0. Similarly from (4.32), we also get deg(Q2(z)) = 0.

Sub-case 2.3.2. When ac=(21+1)ni(l€Z), a™ "=+1and iRx(—Ba™+Ca™) = A,
similarly as in Sub-case 2.3.1, we get deg(Q1(z)) = 0 and deg(Q2(z)) = 0.

Case 8. When m,n € N with m even and n odd, then the following cases arise.

Sub-case 3.1. Let a®™ + a® # 0 = a™ " # =i for a € C\ {0}. If deg(R(2)) > 0,
then by considering the degrees of R(z), @Q1(z) and Q2(z) from (4.20), we see that
2deg(R(z)) + deg(Q(z)) = deg(R(z)) + deg(Q(z)) = deg(R(z)) = 0, which is a
contradiction. If deg(R(z)) = 0 with A — 2iCRa™ = 0, then by considering the
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degrees of QQ1(z) and Q2(z) from (4.20), we see that deg(Q(z)) = deg(Q(z)) — 1,
which is not possible. Hence, deg(R(z)) = 0 with A — 2iCRa™ # 0 is possible.
From (4.19), we get

(4.34) (Ba™e*Q1(z+c¢) + Ca"Q1(z))

+ (B (T) a™ e Ql(z +¢) + C<71L) a"lQi(z)> +...= %Ql(z),
(4.35) (Ba™e™"Qs(z + ¢) — Ca"Qa(2))
+ (—B (Tln) a™ e Q) (2 + ¢) + c(’lb) ale’g(z)> .= ;—;QQ(z).

Comparing the coefficient of highest power of z on both sides of (4.34) and (4.35),
we get Ba™e? 4+ Ca™ = A/(iR) and Ba™e % — Ca™ = —A/(iR) = €% = +i =
R = —iA/(£iBa™ + Ca™), respectively. Now the following cases arise.

Sub-case 3.1.1. When e =i = ac = (4l + 1)ini (I € Z), A— 2iCRa" # 0 and

g1 .
R = —iA/(iBa™ + Ca™), we claim that deg(Q1(z)) = 0. If not, let Q1(2) = > a;#7,
§=0

where a; € C with ag, # 0 and ¢; > 1 (0 < j < ¢1). Comparing the coefficient of
2% and z9'~! on both sides of (4.34), we get

A
'B m n —
iBa™ + Ca =

and
(4.36)
iBa™(cqrag, +ag 1)+ Ca"ag, -1 +iBma™ *qra, + Cna™ *qra,, = Rla—1
: m : m—1 n—1 i c. n—m
= iBca™ +iBma + Cna :O:mz—(4l+1)§+§ma

Since B = +C, from (4.36) we deduce that m = —(4{ + 1)3xi + ina™~™, which is
not possible with both m,n € N odd, I € Z and ™™ # +i. Hence, deg(Q1(z)) = 0.
Similarly from (4.35), we get deg(Q2(z)) = 0.

Sub-case 3.1.2. Let e = —i = ac = (4l — 1)3ni (I € Z), a™ ™ # =+i and R =
iA/(iBa™ — Ca™). Using similar arguments as in Sub-case 3.1.1 we get deg(Q1(z)) =
0 and deg(Q2(z)) = 0.

Sub-case 3.2. Let a*™ +a?" =0 = o™ " = i for a € C\ {0} and deg(R(z)) > 0.
By considering the degrees of R(z), Q1(z) and Q2(z) from (4.20), we see that
2deg(R(z)) + deg(Q(z)) — 1 = deg(R(z)) + deg(Q(z)) = deg(R(z)) = 1. Let
R(z) = Riz + Ra, where Ry (# 0),Ry € C. Then from (4.20), we deduce that
Q(z) is a non-constant polynomial. If Q1(z) = Q1 € C\ {0} and Q(z) = Q1Q2(2),
then from (4.19) we get iRy (Ba™e* + Ca™)z + iRy(Ba™e* + Ca") — A = 0 =
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Ba™e 4 Ca™ = 0 and iRz (Ba™e 4+ Ca™) — A = 0 = A = 0, which is not possible.
Again, if Q2(z) = Q2 € C\ {0}, then similarly we get a contradiction. So both Q1(z),

q1 . g2
and @Q2(z) are non-constant polynomials. Let Q1(z) = Y a;27 and Q2(2) = > bxz¥,
i=0 k=0

where aj, b, € C with ag, # 0, by, #0 (0 < j < q1, 0 <k < g2). From (4.19), we get
(4.37) i(Riz + Ry) ((Be“amcgl(z +¢) + Ca"Q1(2))
# (B (Tt 0+ Q) + 00 ) = Aau(e)

Comparing the coefficient of z91*! on both sides of (4.37), we get

Ca™
Ba™’

(4.38) iRy (Be*“a™ + Ca"™)aq, = 0= Be*a™ + Ca" =0 =% = —

Note that B = £C and o™ " = #i. So from (4.38), we get e = £i =
iBa™ = FCa™. Similarly from (4.19), we get
(4.39)

i(Ryz + Ry) ((Be_“cang(z +¢) — Ca"Qa(2))
+ <—Beacam1 <71”) Qb(z + ¢) + Ca ! (’f) Q’Q(z)> ¥ .. ) = —AQa(2).

If ¢ = 4i, then from (4.37) and (4.39) we get

_ —14Q1(2)
HBYL (7)am1QY (2 +¢) + C Xy ()am @1 (2)
_ iAQs(2)
HBY T, (T)(—a)m QY (2 + ¢) + C Yy () (—a)—1QY (2)

R(z)

Also €% = 4+i and B = C gives "™ = #+i. Similarly e*® = +i and B = —C' gives
am " = i,

Sub-case 3.3. Let a*™ +a?" =0 = a™ " = +ifor a € C\ {0} with deg(R(z)) =0
and A — 2iCRa™ # 0. By considering the degrees of Q1(z) and Q2(z) from (4.20),
we see that deg(Q(z)) — 1 = deg(Q(z)), which is absurd. Hence, deg(R(z)) = 0 with
A —2iCRa™ = 0 is possible. From (4.19), we deduce that

(4.40) 1R<(Be““amQ1(z +¢) +Ca"Qi(z))
+ (Be“caml (T) Qi(z+4¢) + Cam? (?)Q’l(z)) +.. ) = AQ:(2),

284



(4.41) iR((Be_“Cang(z +c¢) — Ca"Q2(2))

+ (=Bemweam = (") Q4(z + ) + Car L (M QL(2) ) + ... ) = —AQa(2).
( (7) )+-)

Comparing the coefficient of highest power of z on both sides of (4.40) and (4.41),
we get iR(Ba™e® 4+ Ca™) = A, and iR(Ba™e % — Ca") = —A = % = +i =
iR(+iBa™ + Ca™) = A, respectively.

Sub-case 3.3.1. When e =i = ac = (4 + 1)37i(l € Z), a™ ™" = =i and

q1 .
iR(iBa™ + Ca™) = A, we claim that deg(Q1(z)) = 0. If not, let Q1(z) = Y a;27,
3=0

where a; € C (0 < j < ¢1) with aq, # 0 and ¢; > 1. Comparing the coefficient of 2z
and 29171 on both sides of (4.40), we get

iR(iBa™ 4+ Ca™) = A
and

(4.42) iR(iBa™(cqiaq, + agi—1) + Ca"ag 1
+iBma™ 'qraqg, + Cna™ 'qia,,) = Aag, 1

= iBca™ + iBma™ ' + Cna™ ! = 0.

Note that a™ = ia™ and B = +C. From (4.42), we get —m £ n = (41 + 1)1ri, which
is not possible, since | € Z, m,n € N with m even and n odd.

Also note that a™ = —ia" and B = £C. From (4.42), we get m+n = —(4l+1)1xi,
which is not possible, since | € Z, m,n € N with m even and n odd. Hence
deg(Q1(z)) = 0. Similarly from (4.41) we can deduce that deg(Q2(z)) = 0.

Sub-case 3.3.2. Let e = —i = ac = (4l — 1)3ni (I € Z), ™" = +i and
iR(—iBa™ + Ca™) = A. Using similar arguments as in Sub-case 3.3.1 we get
deg(Q1()) = 0 and deg(Qa(2)) = 0.

Case 4. When m,n € N with m odd and n even, then the following cases arise.

Sub-case 4.1. Let a®™ + a®" = 0 for a € C\ {0}. If deg(R(z)) > 0, then
by considering the degrees of R(z), Q1(z) and Q2(z) from (4.20), we see that
2deg(R(z)) + deg(Q(z)) — 1 = deg(R(z)) + deg(Q(z)) — 1 = deg(R(z)) = 0, which
is a contradiction. If deg(R(z)) = 0, then by considering the degrees of Q1(z)
and Q2(z) from (4.20), we see that deg(Q(z)) — 1 = deg(Q(z)), which is absurd. So,
in this case, the solution of (1.10) is not possible. If a®™ + a?" # 0 = a™ ™" # +i
for a € C\ {0}, then we claim that deg(R(z)) = 0. If not, let deg(R(z)) > 0,
then by considering the degrees of R(z), @Q1(z) and Q2(z) from (4.20), we see that
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2deg(R(z)) 4+ deg(Q(z)) = deg(R(z)) + deg(Q(z)) — 1 = deg(R(z)) = —1, which is
absurd. Hence deg(R(z)) = 0. From (4.19), we get that

(4.43) (Ba™e*Qu(z +¢) + Ca"Qu(2))
+ (B (rln) a™ 'e*Ql(z +c) + C<n) a"lQll(z)> +...= AQl(z) ,

(4.44) (Ba™e *“Q2(z + ¢) — Ca"Qa(2)) 1
+ (—B (m) a™ teTQh (2 4+ ¢) + (J(Tf) am_lQ'z(Z)) +... = AQQ(Z).

1

Comparing the coefficient of highest power of z on both sides of (4.43) and (4.44),
we get Ba™e + Ca™ = A/(iR) and —Ba™e % 4+ Ca™ = —A/(iR) = e* =
(—=Ca™ + BVa?" + a?™)/(Ba™) = R = FiA/(Bva®" + a?™), respectively. Now
the following cases arise.

Sub-case 4.1.1. When a™~™ # +i and e*¢ = (—Ca" + Bva?" + a?™)/(Ba™), we

g1 i
claim that deg(Q1(z)) = 0. If not, let Q1(z) = > a;z?, wherea; € C (0 < j < q1)
=0

with a4, # 0 and ¢; > 1. Comparing the coefficient of 2* and z%'~! on both sides
of (4.43), we get

A
Ba™e% Ca™
a’e’” + a—iR

and
(4.45)  Ba™e*(cqraq, + ag—1) + Ca"ag -1
+ Bmam_leacqlaq1 + C’na"‘lqlaq1 = anl—l
= Be“ca™ + Be®ma™ ' + Cna™ "t =0

ac(—C 4 Bv1+ a?™=27) + Bmy/1 + a?>m—2n
n= .

=m— =

Note that B = +C. Then from (4.45), we get m — n = ac(—1 £ /1 + a?m=2n) +
mv1+ a?m=2n which is a contradiction, since m,n € N with m odd and n even,
a € C\ {0} and a?™~2" £ —1. Hence, deg(Q1(z)) = 0. Similarly from (4.44), we get
deg(Q2(z)) = 0.

Sub-case 4.1.2. When a™ " # +i, e = (=Ca” — BVa?" + a?™)/(Ba™) and
m,n € N with m odd and n even, then using similar arguments as in Sub-case 4.1.1
we get deg(Q1(z)) = 0 and deg(Q2(z)) = 0. This completes the proof. O

Proof of Theorem 2.4. Proceeding similarly to the proof of Theorem 2.3, we
get the required conclusions. Therefore, we omit the details. (I
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5. THE RESULTS ON MEROMORPHIC SOLUTIONS

During the last decade, there have appeared great contributions for the finite order
entire solutions on Fermat-type delay functional equations. But, as far as we know,
there is only one contribution due to Liu and Yang (see [17]) on the meromorphic
solutions in this direction. Actually, the authors of [17] considered the difference

equations
(5.1) )+ e+ =1
and

(5.2) F2)+ f2(gz) =1

and obtained the results as follows.

Proposition E.

(i) The meromorphic solutions of (5.1) must satisfy f(z) = (h(z) +1/h(2)), where
h(z) is a meromorphic function satisfying one of the following two cases:
(a) h(z+c) = —ih(z);
(b) h(z+c)h(z) =1

(ii) The meromorphic solutions of (5.2) must satisfy f(z) = 4(h(z)+1/h(z)), where
h(z) is a meromorphic function satisfying one of the following two cases:
(a) h(gz) = —ih(z);
(b) h(gz)h(z) =1i.

The authors fortified the conditions obtained by exhibiting some examples. For
meromorphic solutions of (1.10), we get the following result.

Theorem 5.1. If f is a non-entire meromorphic function of any order satisfy-
ing (1.10), then the functional equation has no solution.

6. PROOF OF THE MAIN RESULT ON MEROMORPHIC SOLUTIONS

Proof of Theorem 5.1. From (1.10), we easily see that f(z) and (Bf(™ (z+¢)+
Cf™(z)) share oo CM. If f(z) = (Q1(2)h(2) + Q2(2)/h(z))/(2A) is a meromorphic
solution of (1.10), then Bf("™) (z4¢)+Cf™(2) = (Q1(2)h(2)—Q2(2)/h(2))/(2iR(2)),
where h(z) is a non-entire meromorphic function and Q(z) = Q1(2)Q2(z). Since f(z)
and (Bf™)(z + ¢) + Cf(™(z)) share co CM, R(z) reduces to a nonzero constant,
say R € C\ {0}. We now easily write the given equation (1.10) as

(6.1) BRf"™) (2 +c) = —(CRf™(2) Fiv/A2f2(2) — Q(2)).
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Since f(™)(z) contributes all the poles of the RHS of (6.1), f™)(z + ¢) and f™)(z)

sha,

re oo CM. Thus the poles of (Bf™(z + ¢) + Cf(™(z)) coincide with the poles

of f™(z 4+ ¢) or f(™(z). In view of (1.10), we conclude that f(z) and f")(z)

sha,

re oo CM. But this is possible only when f(z) is an entire function. Thus the

conclusion follows. O
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