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FOURTH WINTER SCHOOL (1976) 

SUPERHEFLEXIVE BANACH SPACES 

by 

V. ZIZLER 

A Banach space X mimics a Banach space T if for each 

finite dimensional subspace LcX and e ->• 0, there is a 

linear operator T: L—*X with |T| . | T-"1!^! + & 

Examples: 1) cQ(N) mimics any Banach space (this is 

easy to prove) 

2) A. Dvoretzky: Any Banach space mimics Hilbert space 

3) J. Lird enstrauss, H. Rosenthal: Any Banach space X 

mimics its bidual X * * - so called local ref lexivity of any 

Banach space -

A norm of a Banach space X is uniformly rotund if for each 

& > 0, inf (1 - | ̂  I )>0 
|Xt = iyJ=l 2 

|x-yl p e 

A s e t - ix - , , • • • f x 2n+l^ °^ a B a n a c n space X is an (n - & ) tree 

in X i f 
x j = 1/2 • ( x 2 j + x 2 j + l ^ , x 2 j - x 2 j + t , r e , d « l , 2 f . . . f n . 

A proof of the following theorem of 

was discussed: 

Theorem (R^C^ James, P. Enflo). The following properties 

of a Banach space X are equivalent: -

a) X mimics only reflexive Banach spaces (i.e. X is so caliec 

superreflexive ) 
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b) X admits an equivalent uniformly rotund norm 

c) X admits an equivalent uniformly Fre'chet smooth norm 

d) for each 6-^0, there is an integer n such that no 

(n - £) tree lies in the unit ball of X 

References: The works of R.C# James and P. Enflo - see 

e.g. the last edition of Bay's book on Nonned spaces. 


