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FIFTH WINTER SCHOOL (1977) -

AREMARKONAPAPERBYKARELPRIKRY
by '
B. GRZEGOREK

-

Our note is a re.mark- on a paper [2] by Prikry. In the
present note, an ordinal is oonsideréd to be the set of the
smaller ordinals. Cardinals are the initial ordinals. Moreover,.
we shall adopt the couvention that E and ? denote ordinals,
and that % and A denote infinite cardinals. If § 1s a
set then ‘9 (S) denotes the family of all subsets of S. If
A 1s a f1eld of subsets of S, then by J[f) we denote tne
family of all Aeﬁ; suoh that for every X C A we have ;
X eﬂ « A family of sets R is said to be M - compiete .
if for each family "}' {A §<7\}C'R , where A<M ,
UF e :R as well. Let J be an ideal in ?(S) A family
R cP(s) satisties (3.C.C.)(T) 1ff each family FeR
such that F N GeY  for all F,G€F , F #6G has
power £ M . We always assume 2)6’3 .12 T ={ﬁ}, then
instead of (2.C.C.)(J) we simply write 9¢ .C.C. The almost
disjoint tra!:mversa‘.ls‘hypothesis for W 1s denoted by
TH( w1). Let us recall that TH( w1) follows from G3dels
axiom of oonstructability (for more information see [2]).

"By modifiocations of Prikry’s proofs and definitions in [2]
we generalize theorems of [2].1:0 the following form. .

Theorem 1+ Assume TH((,);) La\t M ve a family of W, -
- complate fields of subsets of W, such that |/M.l<w1
and for every ,)%6/% the family J‘L— I{ﬁ) satisfles
w,.c.c. ana UTWR)- w,.
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Then for every 'Xf U{D’(ﬁ) :,ﬁEJ%} there exists a dis-
jolnt family { Xg few, FCPX) suoh tnat x§¢ﬂ:
for evary J% eM " and every ‘ge Wy
_Theorem 2. Let % and A be regular cardinals such that
A )}g)w{u aﬁd let ‘/% be a2 countable family of 3I¢-complete
fields of subsets of S such that for every J €M the fa-
nily J~J(A)satiseies I.C.C. . Supposejéﬂfjfﬁ\:ﬁéﬂ}
is a - oomplete ideal in ’P(s) such that for every J%C-,/PL
and svery. X € P(s) -J(A)  the family P (x) - xnT(A)
does not satisfy (A.C.C.)(J). Théb for éve‘ry X € S there
exioto a fontly {xg :feA} CP@ owon mar
(1) x N X, €F  for every ¥ ¢, g,rfe/\_ , and
(11) for every eA s 6very .}‘t‘/ﬂ and every Ae.}% we
have, 1f Xg -4 eJ(A) , then x - 2eT(A).
Theorem 3. Let A be a regular cardinal and let «/{ be a
finite fa.miiy 6£ fields of subsets of S such that for every\-.b

1

AeM  the family .}%'I(-/H satisfies QWg:CC. + Suppose |
Y ﬂ{j’(ﬁ).‘.ﬂ&/ﬂ} is an 1deal in F'(S) such that for
every A€M ana every X € ?(S) - 3’(‘)%) the .family.
?(X) -X nJ’[ﬁ) does not satisfy’ (A.C.C.)(J). Then for
every X C S there exists a family -{x? fe 7\} C ‘?(X)
satisfying the conditions (1) and (i1) of Theorem 2.

/

In [2:( Prikry has proved’theorems 1 and 2 1n thé,case :
if d% consists only .6)1 - complete fields on .which it is
possidble tovdefi‘ne oomplete probabilities which vanishe on
all finite sets. Theorem 1 of this note generalizes Theorem 1
of [2], and Theorem 2 ot this note generalizes Theorem 2 '
of EZ]. Our generalizétion of Theorem 2 of EZJ mé.y be. n.lo-;
tiyééed_ by the faot that it gives a oomnion genax;alization and
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strenghtening of knmown theorems for measures (see Sierpifiski
[4] anda Prixry [2] ), for outer measures (see Popruzenko [1] ),
and for the‘category of Baire (see Sierpifiski [3] ).

An extended form of this note willbgubmltted'tor publication

elsewhere.
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