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5TH SINTER SCHOOL

EXTENSION OF FUNCTIONS ON BOOLKAN ALGEBRAS
BY
7. LIPECKI

Let A be a Boolean algebra with the operations of Jjoin, meet
and difference denoted by v, A and -, respectively. The natu-
ral ordering of A is denoted by < and its minimal element by O.

Given a subalgebra B of A and a function . on B with values
in [0, o0 ) or in an Abelian (topological) group G which has
some properties related to the structures of both the domain
and range spaces, we consider the problem of extending p to A
all the properties preserved. t

J. Suppose m: B—[0, oo). We are concerned with four sets
of conditions imposed on p.

(i) 1 is monotone (i.e. p(b) ¢ p(c) whenever b,c €B and
b ¢c), subadditive (i.e. p(bvbd,) ¢ (b, ) + p(b,) whenever
b,, b,eB) and m(0)=0 ().

(i1) m is additive (i.e. p(b,vd,) = p(b,) + p(b,) whenf
ever b,, b,cB and B,Ablz 0.

(iil) isAmonotone, subadditive and exhaustive (i.e.
(b, )—~0 whenever {b,}cB and b,Aab, =0 for all i# i').

(iv) w is monotone, exhaustive and m(bve) = u(be)

(= (b)) whehever b,ceB and p(c)=0.

(') Such a function is usually called a submeasure.
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As easily seen, (ii)=>(1) and (11)=>(i1i1)=>(iv) and none of
these implications can be reversed.

The case where . satisfies (i) is trivisl. Putting v(a)=
inf {(b): as<beB} for ac A, we get an extension satisfying
(1).

The answer is also positive in case m fulfils (ii) or (iii).
As for (1i), this is a classical result of Hahn-Banach type
(see, e.g., [#], p. 270). When dealing with (iii), the transfi-
nite argument must be ess_entially improved since the exhaustiv-
ity condition involves countably many elements of A, The im-
provement is suggested by the following observations:

1. For any p satisfying (i) the formula 4,(b,, b)) =
(b1, )v (bAb,)) for b,, b,eB defines a pseudometric on B.

2, If CcB is a d,-dense subalgebra of B and miC is exhaust-
ive, then so is su. ' '
(The details can be reconstructed from [3]. For a different
proof see [21.) |

As for (iv), the answer is positive under the additional as-
sumption that B has the following compactness type property in-
| vestigated by Seever [5]:

(1) suppose b,, c.€ B and S/‘ b, < i\:/‘ci for k=1, 2, «..
Then there exists xe B with __\:/‘bi £ X s 1\“‘/‘c‘ for k=1, 2, eee

This property, which is somewhat weaker than o -complete-
ness, corresponds to the fact that the representation space of
B is an F-space ([5], Theorem A). The author does not know whe-
ther the result fails for B without (I) (). Before sketching

(*) For an arbitrery B it can be shown that if m fulfils

(iv) with "exhaustive" weakened to " (0)=0", then it extends
.to A all its properties preserved.
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the proof we give a lemma which is a slight generalization of
a result due to Seever ([5], Lemma 3.3),

- Lemma. If B has the property (I), N is an ideal in B and
B/N satisfies the countable chain condition (CCC), then B/N is
complete.

Suppose . satisfies (iv) and B has the property (I). Put
N={beB: u(b)=0}. Then B/N satisfies CCC, so that, by the
Lemma and Sikorski's theorem ([61, 33.1), the quotient homo-
morphism B—-B/N extends to a homomorphism h: A—~B/N, Putting
v(a) = @(h(a)), where O : B/N—[0, oo ) is the quotient of
we get the desired extension (cf. also [21], Theorem 1).

II. Suppose G is an Abelian complete Hausdorff topological
group and g : B—G is additive and exhaustive., (These prop-
erties are defined in just the same way as in I.) Then . ex-
tends to A both properties preserved ([3], Theorem 3, and (2},
Corollary 3). This theorem can be proved using a similar idea
to that described when dealing with . satisfying (iii). In
fact, it is not hard to see that the group-valued case is
more general than (iii). Let us also note that the assumption
that G is complete cannot be dropped ({3], Example 4).

_ III. Suppose G is an Abelian group and p: B—G is addi-
tive. In this case the extension problem is open ix{general
(e.g. for G being the additive group of integers). The answer
is positive under each 61’ the following additional assump-
tions:

(a) (W#. Herer) G is injective (see [13, §21, for defini-
tion)..

(b) (C. Ryll-nardzewski) card A ¢ x,.

(c) B/N is ccmplete, where N={beB: p{c)=0 for all

b2ceB}l.
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As for (c), the assertion follows by an application of Si-
korski's theorem analogously to the case where m satisfies
(iv).
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