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EICHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980)

A KRIIIN - MILMAN SET WITHOUT THE INTCCRAL REPRESENTATIO:

PROPERTY Ty

by

Ktesomysl Blizzard

We construct a separable Banach space E and a bounded,
closed, absolutely convex subset B such that B 1is the
closed convex.hull of its exireme points but such that

not every point in B 1is representshle as the bharycenter of:
a prcbability measure on the extreme points of B.

Let X be a separable Banach space not having the
Radon-Nikodym property and such that its unit ball U is
the closed convex hull of its extreme points E(U). The
space of converging sequences ¢ for example is such a
space: (Note in passing that ghe unit kall of ¢ has count-
ably many extreme points and that eéery point in the unit-
ball of x is the barycenter of probability measure on the
extreme points).

Let A be the Cantor set and let E = I(C(A), X)
be the space of integral opcraters from C(A) to X, i.e.
the linear operators T : C(a) » X such that
Izl; = sup ti£1 Iz xAi" : A, disjoint clopen sets in C} < .
Let B = {T : ﬂT"I $1) and equip E with the topology
v of rointwise converacnce on C(a), i.e. Ta » T if
for eack £ € C(A), ||Tq(£) - T(£)] - o.

There are cbvious extreme points in B, namelv (he

8, ® X tea, x € B(U). Tt is also obvious that thcese

X
are the only extreme points of B , hence we write
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E(B) = “t

the closed convex hull of E(B),
By the Hahn-Banach theorem this is equivalent to say that the

®ex, t€ A, X € E(U)). We shall show that B is

polars of E(B) and B coincide. Let
121 fi ] xI be an element of E', that belongs to the polar
of E(B). Evidently this means just that for t € A,

; Higl fi(fTLxIﬂxi € 1 and this latter condition implies that
121 fi ® xI "belongs to the polar of B, as is readily seen

" from the definition of B. Hence T(E(B)) =-B.

We shall now show that there are points in B not
representable as barvcenter of probability measures on the
extremals. Let T be an integral overator in B that is
not nuclear and suppose there is a probability u on E(B)

such that for each f € C(A) and x € x

* ' * : .
(", T (0> = . GFos e duls, e x).
Note that E(B) is homeomorphic "to E(U) x A. As E(U) 1is

always a coanalytic set (if X is ¢, E(U) is even a count-
able discrete set), there exists a desintegraticn of p, i.e.
there are vrobability measures By ON EU and a probability mea-

‘'sure v on A such that n= [pt dv(t), i.e. we get for f € c(a)

and x" € x*

%%, T (f)> I[é 5", (5, © x)(f))d,. (x)1 dv(t).

. ' "o ' t

If(t) [é < ,x> dp (x)] dv(e).
For t @ o write F(t) = é X dft(X) € U (the integral
U .
taken in the weak sense) to get a Radon-Nikodym derivative of
i.c. for £ €c(R)
. T () = J’ £(£) . F(t) dv(t).

Tn’

This means just that '1‘o is nuclear, which 19 a contranicticn.

q.e.q.
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Remark: We have contructed our examnle in a locally convex
space E which is not even a Fréchet space, but it is not

difficult to make the example live in a Banach space. Let

{fn);=1 be any total secuence in C(A), tending to zero in

norm, and define the norm "'“E in E to be

It = sup (T £l : nen}.

It is easily verified that [.|; is indeed a norm and defi-

nes on*- B the topology T. .Letting E be the completion

of (E,[.lg) we have imbedded our example into a separable

Banach space.
An inspection of the above argqument shows, that we

may imbed our examble.into the space" co(x) or even Lz(x).



