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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980) 

A KREIN - MILKAN SET WITHOUT THE INTECRAL REPRESENTATION 

PROPERTY ' y 

by 

Krcsomvsl Blizzard 

We construct a separable Banach space E and a bounded, 

closed, absolutely convex subset B such that E is the 

closed convex hull of its extreme points but such that 

not every point in B is representable as the barycenter of" 

a probability measure on the extreme points of B. 

Let X be a separable Banach space not havinq the 

Radon-Nikodym property and such that its unit ball U is 

the closed convex hull of its extreme points E(U). The 

space of converging sequences c for example is such a 

space. (Note in passing that the unit ball of c has count-

ably many extreme points and that every point in the unit-

ball of x is the barycenter of probability measure on the 

extreme points). 

Let A be the Cantor set and let E = I(C(A), X) 

be the space of integral operators from C(A) to X, i.e. 

the linear operators T : C(A) «• X such that 

||T|L = cup {'.£- ||T X A II - A. disjoint clopen sets in C) < 

Let B = {T : ||T|L S 1 } anc* equip E with the topology 

r of rcointv/ise convergence on C(A), i.e. T -* T if 

for each f € C(A), llT^f) - T(f) || - 0. 

There arc obvious extreme points in 3J, namely the 

ft.ex, tg A , x e E(U). It is also obvious that these 

are the only extreme points of B , hence we wrjte 
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E(B) =- (6t o x, t G A, x 6 E(U)}. We shall show that B is 

the closed convex hull of E(B), 

By the Hahn-Banach theorem this is equivalent to say that the 

polars of E(B) and B coincide. Let 

i=1 fi e xi b e a n e l e m e n t o f E'i that belongs to the polar 

of E(B). Evidently this means just that for t 6 A, 

Hi§1 f± (t)'.x* |}x* £ 1 and this latter condition implies that 

i-M fi ° xi t > e l o n 9 s t o the polar of Bf- as is readily seen 

from the definition of' B. Hence f(E(B)) =• B. 

We shall now show that there are points in B not 

representable as barycenter of probability measures on the 

extremals. Let T Q be an integral ODerator in B that is 

not nuclear and suppose there is a probability JA on E(B) 

such that for each f 6 C(A) and x* € X* 

<x*, T Q(f)> = J (**, «fc • x> d F(6 t . x) . 
E(B) 

Note that E(B) is homeomorphic to E(U) x A. As E(U) is 

al.ways a coanalytic set (if X is c, E(U) is even a count­

able discrete set), there exists a desintegraticn of p, i.e. 

there are crobability measures p . on Ey and a probability mea­

sure v on A such that p. = Jpt dv(t), i.e. we get for f € C(A) 

and x £ X 

^-*, To(f£> = J [ | < x \ (6t • x)(f)^dHt(x)] dv(t)," 

. « Jf(t) .L| ^**' x^ dKt<x)l dv(t). 

For t c A writhe P(t) = £ x dufc(x) 6 U (the integral 

taken in the weak sense) to get a Radon-Nikodym derivative of 

T Q, i.e. for f ^ c(-M 

TQ(f) -= J f(t) . F(t) dv(t). 
A 

This means just that T is nuclear, which is a contradiction. 

cj.e..fl. 
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Remark; We have contructed our example in a locally convex 

space E which is not even a Frechet space, but it is not 

difficult to make the example live in a Banach space. Let 

{f ) - be any total sequence in C(A), tending to zero in 

norm, and define the norm ||.|L in E to be 

l|T||E = sup {|lT fn|| : n 6 W > . 

It is easily verified that ||.|L is indeed a norm and defi­

nes on - B the topology r. .Letting E be the completion 

of (EfU-IL) w e n a v e imbedded our example into a separable 

Banach space. 

An inspection of the above argument shows, that we 

2 
may imbed our example into the space c (X) or even I (X). 


