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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

Multipliers on complex Banach spaces

Ehrhard Behrends

Let X be a complex Banach space. By Ey we denote the
set of extreme functionals on X , i.e. the extreme points
of the unit ball of X'

Definition: An operator T : X — X is called a multiplier,

if every p € Ey is an eigenvector for T' , i.e. if there

is a function aT H Ex — € such that po T = aT(p)p

for p € Ey - Mult (X) means the collection of all multi-
pliers on X . For T,S € Mult(X) we say that S 1is an
adjoint for T (and we write S = T* in this case) if

ag = 3; (complex conjugate).

In our talk we discuss conditions on T and/or X
such that T* exists (in general, T will not have an
adjoint; consider for example X := the disk algebra
and T : £ gf with nonconstant g). Among other facts
we show that T € Mult(X) has an adjoint T* if any one
of the following conditions is satisfied:

(1) X 1is finite-dimensional

(2) X 41is smooth

(3) X can be embedded as a self - adjoint subspace of
a CK-space

(4) o(T) 4is contained in the closure of the unbounded
component of @ ~ ¢ (T)

(5) X is an L‘-predual space, and E; (weak*-closure)
is contained in the convex pull of Ex ; this is
satisfied, for example, if X 1is an abstract
G-space
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(6) X is an L‘-predual space, and the unit ball of X

(7)

has an extreme point
X can be represented as a space
X={flf €CK, f(ky) = [ £, ay for i=1,...,n},

where K is a compact Hausdorff space, k1""'kn
are distinct elements of K , Hqseeasu, are (signed)
measures on K such that |l uiﬂ <1,
Iuil({k1,...,kn]) = o for i=1,...,n .

Problems:
1. Is it true that T* exists whenever X is reflexive

(or strictly convex) and T € Mult(X) ?

2. Has every T € Mult(X) an adjoint if X 4is an L1-

predual space ?

Basic facts concerning multipliers as well as a development

of the theory of M-structure where multipliers and their

adjoints are of interest can be found in the Lecture Notes
volume of the author ("M-Structure and the Banach-Stone
theorem"; Lecture Notes in Mathematics 736, Springer-Ver-
lag 1979)



