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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

Stable Banach spaces

S, Guerre

A separable Banach space E 1is called stable if for eve-
ry bounded sequences (xn) and (Yn) in E and every ultra-
filters U and ¥ on W ., we have:

1:-: 1:.- Ix4vg | = I:n I:n | xgtyg I -
w v v ow

This notion was first introduced by T.L. Krivine and B, Maurey
([5]) to extend a result of D, Aldous ([1]). These theorems
are the following:

Theoren 1, ([1])

Every subspace of L

Theorem 2. ([5])

Every stable Banach space contains an 1P_gpace,
1S p<+®

Examples, .

(1) Hilbert spaces, 1P and LP-gpaces (1<p<+m) Orlicz
spaces 1P end P ( # having the s,-condition),
Lorentz epaces P are stable ([6:]) .

(2) o ¢ the Tsirelson spaces T and T‘, the Jams space J
are not steble,

Property 1. ([5])

If E 4is stable, then every subspace of E and the spa-
ces 1P(E) snd LP(E) with 1< p<+m are stable

Open problem
If E 4is stable and reflexive, are E’ and every quo=-
tient space of E stable ?

Theorem 3, ([4])

Every stable Banach space is weakly sequentially comple-
te

Corollary
If E 1is stable then E 4is reflexive if and only if E

1 contains an lp-space, 1< p<+0m



does not contain 1!
Sketch of the proof of theorem 3

We have to define some notions: R
G is a type on E 1f, (s, )CE_, JU . ultrafilter on I
such that: VxEE , G(x) = 1:- I x+a, | .

- (A
"The type AG 1s defined by:
VxEE , A6(x) = l)\lG(-’i‘-) =lin [x+ Aa |
n

w

The type G#* T 1is defined by:
VXEE , GnT(x) = lin liam | x+a +b_|
n [}

u v

1f T(x) = 1ia | x+b_ |
]
s

If (x,) 1s a bounded sequence in E and % an ultrafilter
on IN , we define the spreading-model associated to (xn)_
and UL by the completion of Ex R¢ ) under the semi-norm:

k ’ k
|x+z Nl | =11 L. ] x+ > Ag%n |
i=1 ny oy 11 1
U W

(See [2] or [3:' for more details).

If (x,) has no Cauchy subsequences, then this is a norm,
In [2] it is proved that every seqguence (xn) has a "good
subsequence* (x"') which means:

Ve>0, VKEIN, Vg, ..., )E RS, Jvenm
such that:
V<ng eee <n = Vx€E€E ,

k k
||x+2°(,1eil-"x+Zo<.1x"‘ ||S£
im1 11 i

(xn) will be called a good sequence if it has the property
of the subsequence (x;') above = (e,) will be called the

fundamental sequence of the spreading model




cé

Relations between types and spreading models in stable Banach

spaces
If ¢ 1s a type on E defined by (x;) end % , the spres-
ding model associated to (xn) and 2. 1s given by:

k k -
[x+ D7 e, | = 11a ... Um| x + D7 ayx, |
1=l ny Nk 1=1 1
/A L

= (041,6‘* ces X0L G )(x) .

On the other hand, if (e,) is the fundamental sequence of a
spreading model associated to (x_) and U , then the type
G 4s given by: G (x) =| xee, | = 11m || xex_ ||

n

w
Property 2,

If E is stable then every fundamental sequence (en)
is syametric

n n
(.0.:] x + Z %qe 6‘(1)' -|x+ Z N | where G
i=l i=1
is a permutation of IN ).
We now give the proof of the theorem 3
Suppose (xn) is a "good sequence™, weakly Cauchy and
not convergent in E . Let (e,) be the fundsmental sequence
of the spreading model associated to (xn) . It is easy to see
that (e;) 4s of “type 1; =, symmetric and basic, so it is
equivalent to the unit vector basis of 1!, Let Yn "
= Xpn.1~ X3, ¢ Then (Yn) converges weakly to O and the
fundemental eequence (f_ ) of the epreading model associated
to (y,) 3is defined by fn ™ 3.1~ @3, end so is also equi-
valent to the unit vector basis of 1° .,
Let G be the type defined by (v,) [1.3.: G(x) =
- I:nlx +Yol=|x+ f;]] and K be the closure under the

pointwise topolog}y of {’l', Ta &,0x .o, G,
(Kgueeesa JERMN), T(0) w1},

We can show that 1f T €K , then the spreading model as-
sociated with T 4s equivalent to 11 . We know from [5] .

that K contains an 1P.type 'C‘o
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[1.6.: 0(1 'l"o*...xo(k ’l?'o(x) = (|“1|p + oo *I“klp)ih’;%(x)].

So we must have p=1 , It is easy to see, by a diagonal argu-
ment that T, 1s defined by a sequence of convex blocks
(1Ln) on (y,) . The sequence (1Ln) converges weakly to O
[because (vg) doos] and by [i} contains a sequence equiva-
lent to the unit vector basis of 1%,

This is a8 contradiction and proves the theorem 3. We give
some more results on stable Banach spaces, The proof of the
theorem 4 is very close to the proof of theorem 3,

Theorem 4, ([4])

Every spreading model of a stable Banach space E is

stable,

If a spreading model of a stable Banach space E conta-

ins an 1P-gpace (1< p<+m) , then E itself contains

P,

No spreading model of a stable Banach space E contains

Open problem
Find an "isomorphic® characterization of stable Banach
spaces,
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