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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

Stable Banach spaces 

S. Guerre 

A separable Banach space E i s c a l l e d s t a b l e I f f o r eve­

ry bounded sequences (x ) and (y ) i n E and every u l t r a -

f i l t e r s % and y on IN , we have: 

l i n l i « \ x n + y B J - l im l i n || x n + y B || . 
n o o n 

Thie notion was f i r s t Introduced by T.L. Kriv ine and B, Maurey 

( [ 5 ] ) to extend a result of D, Aldous ( [ * ] ) • These theorems 

are the following: 

Theorem 1 , ( [ l ] ) 

Every subspace of L contains an l p - s p a c e , l < p < + c o 

Theorea 2, ([-5j) 

Every stable Banach space contains an l p - s p a c e , 

l < p < + c o 

Examples, 

(1) Hi lbert spaces, l p - and Lp-spaces ( l < p < + c o ) O r l i c z 

spaces 1 ^ and L^ ( 0 having the s 2 - c o n d i t i o n ) , 

Lorentz epaces L p '" are stable ( [ f i ] ) , 

(2) c , the Tsireleon spaces T and T ' , the Dams space D 

are not s t a b l e . 

Property 1 . l[s\) 

I f E i s s t a b l e , then every subspace of E and the spa­

ces 1 P (E) and L P ( E ) with l < p < + c o are s t a b l e 

Open problem 

I f E l e stable and r e f l e x i v e , are E' and every quo­

t ient space of E etable ? 

Theorem 3, ( [ 4 ] ) 

Every stable Banach space i s weakly s e q u e n t i a l l y comple­

te 

Corollary 
If E is stable then E is reflexive if and only if E 



<oЭ 

does not contain 1 

Sketch of the proof of theorem 3 

We have to define some notions: v ^ 

(T i s a type on E if, { 3 t B n ) C E . » 3 ^ . u l j r a W t e r on IN 
such t h a t : V x G E , <T(x) « l i s || x+a n |j „ 

n 
% 

•t 

The type 7.6" i s defined by: 
V x € E , Aff(x) - |A|6-(2) - l i n || x* * a n I i 

A n 
26 

The type GV V i s defined by: 
V x G E , < 5 * T ( x ) • l i n l i n || x*an+b || 

n a 
U T 

if r(x) - lim I x+bn J 
a 

I f (x n ) is a bounded sequence in E and 11? an u l t r a f i l t e r 
on IN , we define the spreading-model associated to (x ) 
and % by the completion of E * R* ' under the semi-norm: 

k ' k 

l x + E , ^ i ^ l - H - . . . l i«|x+2__ *ixn,l 
i - 1 n l "k i - 1 1 

% % 

(See [2j or [_3j for more d e t a i l s ) . 

~f ( x
n ) n a s n o Cauchy subsequences, then th is is a norm. 

Xn L2j i t i s proved that every sequence (x ) has a "good 
subsequence" (x_) which means: 

V t > o , V k € IN , V ( o ( 1 . . . . . C 7 ( k ) G « k . 3 ^ € I N 
such tha t : 

\ ? < n 1 . . . < n k = > V x 6 E , 
k k 

|x • X > i e i l -H x + Z^ixnj|^ £ 

i-1 i-1 1 ' 

(x_) will be called a good sequence if it has the property 

of the subsequence (xR) above - (en) will be called the 

fundamental sequence of the spreading model 
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Relations between types and spreading models in stable Banach 

spaces 

If <T is a type on E defined by (x
n
) and % 9 the sprea­

ding nodel associated to (x
R
) and It, is given by: 

k k 

I
 x
 * JL «i

e
i I ••

 liB
 •••

 l i B
H
 x
 * YL Vn

4
 1 

1.1 "1 £k i-1 * 

- (̂ /-T* ...*06kG)(x) . 

On the other hand, i f ( e n ) is the fundamental sequence of a 
spreading model associated to (x R ) and % , then the type 
GT is given by: 6"(x) • | x+e± | - l i n || x+xn || 

n 

It 
Property 2 . 

I f E is stable then every fundamental sequence (e R ) 
i s symmetric 

n n 
(i.e.: | x • YL * i e (T(i) I " I x * YL * i e i I wnere ^ 

1-1 1-1 

Is a permutation of IN ). 
We now give the proof of the theorem 3 

Suppose (xR) is a "good sequence", weakly Cauchy and 
not convergent in E . Let (en) be the fundamental sequence 
of the spreading model associated to (x ) • It is easy to see 
that (e ) is of "type lj ", symmetric end basic« eo it is 
equivalent to the unit vector basis of 1 . Let yR -
* x2n+l~ x2n * T n e n (yn) converges weakly to 0 and the 
fundamental eequence (fn) of the spreading model associated 
to (yn) is defined by fR - *2n+l~

 e2n 8 n d 8 0 l s a l e o equl-
valent to the unit vector basis of 1 . 

Let <T be the type defined by (yR) £i.e.: C(x) -

- lim |x + y n I
B | x + f ] J 3 and K be the closure under the 

n 

polntwiss topology of { T, T - c\ , (T* ... * (A^ (T , 
(<*! <X k)€IR

l , N). T(0) - l } . 

We can show that if T GK , then the spreading model as­
sociated with V is equivalent to 1 . We know from [5J • 

that K contains an IP-type T 



6? 

[ i . e . : ^iro*...^^kro(x) - ( I ^ P * ... •l"kl
P>1/?0(x)]. 

So we must have p»l . It is easy to see, by a diagonal argu­
ment that C Q 18 defined by a sequence of convex blocks 
(1ln) on (yn) . The sequence (7tn) converges weakly to 0 
[because (yn) does] and by [5] contains a sequence equiva­
lent to the unit vector basis of 1 . 

This ie a contradiction and proves the theorem 3. We give 
some more results on stable Banach spaces. The proof of the 
theorem 4 is very close to the proof of theorem 3# 

Theorem 4. ([4J ) 
Every spreading model of a stable Banach space E ie 
stable. 
If a spreading model of a stable Banach space E conta­
ins an l^-space (l<p<+co) , then E itself contains 

i p . 
No spreading model of a stable Banach space E contains 
co • 

Open problem 

Find an "isomorphic" characterization of stable Banach 
spaces. 
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