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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

"C -critical hypergraphs 

Zsolt Tuza 

The vertex set and edge set of the hypergraph V\- are 

denoted by V and £ respectively, /tfe suppose that 

€ s •£ E x ,..., E ^ ./ ̂  is r-uniform if \E±\ = r 

for every i . The set T is a transversal of 7̂ - if 

T intersects every E.. The transversal number T i» 

the minimal size of a transversal of tyi « 

The hypergraph is called X -critical if the 

deletion of any edge makes the transversal number de­

crease. Xt means that for every edge E,£ C one can 

find a T. with size X-l that intersects every edge 

different from E.. That is, we have a system of pairs 

of sets E. and T. such that E.OT..-^ iff i=j. Tor 

such systems Bollobas C^l proved 

-1 

^ i /v 
/"Pil + tTi(V 

/However, he proved this inequality in another non-

symmetric form and he used the term of saturated graphs. 

Therefore his result remained almost unknown and was 

re-discovered by Katona and Tarjan, cf. [̂ 53 •/ 
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Though /l/ implies immediately that an r-uniform 

X -critical hypergraph can have at most ( T+S'"" ) 

edges9 this bound vas thought to be unknovn up to 

1971 vhen Jaeger and Payan gave another proof on it 

/cf. £lf p.h2lQ/0 Later L.Lovasz found a generaliza­

tion on geometrical hyper graphs. 

Erdos and Gal la i £3! began studying T -critical 

graphs. They proved that the size of the vertex set 

of a X " ° r i * i c a l Sraph is at most 2"t • Considering 

3-uniform hyper graphs, a deep method of Szemere'di and 

Fetruska f"6] shows \v\ ^ 8 X . I n the general r-uni-

form case /l/ vould imply |v|^c T1" • Hovever, the 

r—1 right order of magnitude is x • 

Theorem For r-unif orm ~£~cTitl6a3. hypergraphs 

W ST*"1* *(\g*) 

Here ve eke ten the proof /further details can be found 

in IkJ /. 

If *3~ *-s a collection of X-e--emer-t transversals 

T , ve can examine X^-5 nd-» ( \EJ\ S E J C E J and E' in­

tersects every T € 0 ~ ) 

ve say T is good if X j ^ r-1 for every i. Obvi­

ously, the set of all transversals of S\ is good. 

Consider a minimal good collection i.e. the 
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deletion of any T makes some X.. decrease# In this 

situation for every T . t T we can find an E' with 

size r-2 such that T-O EjL=0 *** 3=^" therefore /l/ 

implies l U T j j ^ V(^T^>~2\ • Since the set To=\jTA 

intersects every edge of il in at most r-1 points. 

the set A = V \ T is a strong stable set /i.e. it 

meets every edge in at most one point/. Define |/x/= 

s - ^ N f x ' i : ^GBxe€} and P/A/= U T A / . She 
x € A 

following statement is proved in (T*0 • 

Lemma If A is a strong stable set in a X-critical 

hypergraph then | A I < |P/A/|- \V/X/\+1' 

Corollary | A | - £ | P / V | . 

Since V=AVT Q and \T O('^ ^y^jT) f v e h a v e t o s h o v 

JA^x**" 1. Instead, we will show | T/Vl S X ^ 1 **? 

giving a structure on T # Better to say, we give some 

sequences x- ,..., -*.-i o n ^ such that every edge 

E. contains at least one of them. 

In the beginning consider the elements of a fixed 

T £ T as sequences of length one. Suppose that the /at 

most/ X sequences of length k have been construct­

ed* /k<£r-2#/ Ve define at most X k-fl—element sequences 

for each of them as follows: 

Let E^Z> { x^ ,..., x^} # Since T^ > r-1 , 
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there exists a T .£ 3 disjoint from \ X T »•••» ^ J • 

Adding any of the T points of T. to the set as x. - , 

ve obtain T sequences of length lc+1. /If there is no 

edge containing x_ $•••$ X. then we delete this sequence./ 

Obviously, j p /A/ ( is not greater than the number of 

sequences of length r-1 that is at most ^cr" 
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