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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

T -critical hypergraphs

Zsolt Tuza

The vertex set and edge set of the hypergraph ’)( are
denoted by V and [ respectively. /We suppose that
£ = '{El gecey Em'\s ./ K is r-wniform if ‘Ei\ =r
for every i . The set T is a trangversal of 0‘( ir
T intersects every E,. The transversal nmumber T is
the minimal size of a transversal of’(}{, .

The hypergraph is called T =critical if the
deletion of any edge makes the transversal mumber de-
crease. It means that for every edge EiG.C one can
find a Ti with size T-1l that intersects every edge

different from E;. That is, we have a system of pairs

i
of sets E; and T; such that E;Nn TJ=¢ iff i=j. For
such systems Bollobds [2] proved
-1
" E;| + |T34
= 124l < 1 /v
. \Bs |
=4 1

/However, he proved this inequality in another non-
symmetric form and he used the term of saturated graphs.
Therefore his result remained almost unknown and was

re-discovered by Katona and Tarjéan, cf. [5] ./
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Though /1/ implies immediately that an r-uniform

T =critical hypergraph can have at most (r+!‘F '1)
edges, this bound was thought to be unknown up to
1971 when Jaeger and Payan gave another proof on it
/ef. [1, p.k24]/. later L,Lovasz found a generaliza-
tion on geometrical hypergraphs.

Erdds and Gallail [3:’ began studying T-~critical
graphs. They proved that the size of the vertex set
of a T-critical graph i3 at most 27T . Comnsidering
3-uniform hypergraphs, a deep method of Szemerédi and
Petruska [6] shows |V| < 8 T2 . In the general r-uni-
form case /1/ would imply lvlécr‘cr . However, the
right order of magnitude is "cr-l.

Theorem For r-uniform ‘c-critiéal hypergraphs

M <ot o (T3

Here we cketch the proof /further details can be found

in [4] /.

If "y is a collection of T-element transversals

T , we can examine T;= min ( \E:'L\ : EjCE; and Ej in-

tersects every TE€‘ ) )

we say J is good if Ty 2 7=1 for every i. Obvi-

ously, the set of all transversals of i is good,

Consider a minimal good collection i.e. the
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deletion of any T makes some ’Ci decrease. In this

situation for every T 36’3— we can find an E:’ with

size r-2 such that Tdn EL:ﬂ iff j=k. Therefore /1/
: ' +r=2

implies |UTJ|$ ‘C(’Cr_z « Since the set 'r°=\{ri

intersects every edge of R in at most r-1 points,
the set A = V\T, is a strong stable set Ji.e. it
‘meets every edge in at most one point/, Define [ /x/=
={Ei\{x}: xGEiGE} and |"‘/A/=x éJAr‘/x/ . The

following statement is proved in Eh] .

Lemnma If A is a strong stable set in a T-—critical
hypergraph then |al< |[/a/[-|\T/x/|+1.
Corollary ‘Al g‘r'/A/‘ .

Since V=AUT, and |T < t(‘\‘;_:;-z , we have to show
lA\s‘cr'l. Ingtead, we will show “"/A/ls <1 oy
giving a structure on To’ Better to say, we give some
sequences X; jee.ey X, 4 OR To such that every edge
E:I. conta_-t.n; at least one of them,

In the beginning consider the elements of a fixed
Te‘To as sequences of length ome. Suppose that the /at
most/ <k sequences of length Xk have been construct-
ed. /ker-2./ We define at most T k+l-element sequences
for each of them as follows:

Let EiD{xl yeeey I} o Since Ty > r-1 ,
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N
there exists a TJE_) disjoint from '{xl gecey xk} .
Adding any of the ‘T points of TJ to the set as =k+1 0
we obtain T sequences of length k+l. /If there is no
edge containing x; ;..., X then we delete this sequence,/
Obviously, h’" /8/| is not greater than the number of
sequences of length r-l that is at most T % .
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