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ON BOUNDARY VALUE PROBLEM OF NEUMANN TYPE FOR HYPERCOMPLEX 

FUNCTION WITH VALUES IN A CLIFFORD ALGEBRA 

Xu Zhenyuan 

1. Introduction 

Let R , be the universal algebra constructed by means of an orthonormal o, n l , 
basis {e2,e3, ,e 1 of R ' " and e =ei be the identity of R n . In the 

L *• d ' ' nJ § - •> o,n-l 
universal Clifford algebra R _, the multiplicative identity 

e.e .+e .e.=-26. . i,i=2,3, ,n, 

- 9 n 9 
holds. Let 3=e!— + £ e. ~ be a generalized Cauchy-Riemann operator 

dxi j=2 J oXj 

and ft be an open set of R . Then an R , -valued C (ft)-function f(x)= 

£ f.(x)e. is called left monogenic function if 9f=0 in ft , here e.= 

e =e e .... e are bases of R - and A={a2 »a3 » ,aH}£ {2,3,»-»,n} 
a2a3---ah a2 a3 ah o,n-l z n 
with 2<a2<••••< ah=

n* 

Up to now a great number of the function theory for left monogenic func­

tion has been investigated [1][2][6]. For the use of Clifford algebra in 

several branches of Mathematics and Physics we refer to [2]. Recently 

several boundary value problem for monogenic functions have been studied 

(see [ 8][ 9][10][111). In this paper we study a boundary value problem 

of Neumann type for hypercomplex function with values in a Clifford 

algebra which is a solution of a nonhomogeneous equation 3w=f in the 

This paper is in final form and no version of it will be sub­

mitted for publication elsewhere. 
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unit ball of R . To this end we firstly construct a Neumann's function 

for Laplacian over the unit ball in R (n^3). Then, making use of this 

Neumann's function, we solve the above boundary value problem. 

Acknowledgment This paper was written during the author's stay at Gent, 

which was supported by State University of Gent scholarship. She wishes to 

express her thanks to Prof.Dr.Delanghe for his support. 

2. Neumann's function 

In this section we construct an explicit representation formula for Neumann's 

function for Laplacian over the unit ball in R (n.̂ 3) by means of the 

fundamental solution for Laplacian and Gegenbauer polynomials. Then, 

making use of this Neumann's function, the solution of the Neumann 

problem for the Poisson equation is represented. 

In the sequel, K denotes a unit ball in R , K ={x| x=(xi,X2, ,x n) G R , 

|x|< 1}. We seek for a real function N(x,y) which satisfies 

A x N(x,y)= 6(x-y)+c,
 x G K n (2.1) 

-y^N(x,y)=0, xG3Kn (2.2) 
X 

n 32 8 hereby A denotes the Laplacian A = E -5-7- , -5— denotes the outer normal 
x x Q x", o n 

i"-*l i x. 
derivative to the boundary 8K of K , c is a suitable constant to be 

^determined, while y is fixed in the domain K . In fact this problem is 

not solvable for any real constant c. 

Now we try to look for a solution of problem (2.1)(2.2) in the following 

form 

N(X'Y)= U,n(2-n)|x-y|n-2 + u)n(2-n) |y |»-2 |x-yH ̂  2 + 8(*.y) . (2-3) 

whereby w stands for the area of the unit ball in R ,u)n=2Tr '/T(n/2), 

,1 ,, .. is the fundamental solution for Laplacian, namely 
U) (2-n) |x-y | *-2 

A ( I -j- )=<5(x-y); y* is the symmetric point of y to the unit 
x a) (2-n) |x-y| n~z 

n • ' 
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sphere 3K , y*= ~r . I t i s c l e a r t h a t , for yGK , the funct ion 
n .. jy|2 n 

0)(2-n) ly ln-2lx-y* |n-2 i s harmonic in Kn with r e s p e c t t o x. 

By (2.1)(2.2), for yGK , the function g(x,y) should satisfies 

A g(x,y)=c, xGK (2.4) 
X n 

8 9 ( l 1 

^
8 (x>y)— "5n̂

 C
0)

n
(2-n)ix-yi n-2

 +
 a>

n
(2-nj|yi n-2.x-y*i n-2 '• 

X
G 9 K (2.5) 

n
 v

 ' 

Now we suppose that the function g(x,y) has the following form 

g(x,y)=h(x,y)+ a|
x
|

2
, (2.6) 

so that the function h(x,y) satisfies, for yGK , 

A
x
h(x,y)=0, xGK

n
 (2.7) 

dhx

 h
(x,y)=- -ggK ^ ( 2 - n ) ix-yin-2 + con(2-n) . y in-2 .x-y*in-2 

+ a|
x
|

2
). x^9K (2.8) 

' n
 v ' 

Thus the constants c and a are related with 

c=2na. (2-9) 

It is well known that the Neumann problem (2.7)(2.8) is solvable if and 

only if the constant a satisfies 

r ______ 1 1 
( -__ t , v ґ n Гi in-2 +

 / n vi in-2i . i n - 2 + a | x | 2 ) ) d s = 0 , 
дv x w n ( 2 - n ) | x - y | 0 ) n ( 2 - n ) | y | |x-y*| ' ' x 

n 

where ds stands for the areal element of sK . 
x ° n 

Since we have , > f 

r o y^ K

n 

1 

( )ds = 

Эn Ü) (2-n)|x-y|n-2 x 
Әк

 x n
 ' ' 

n 

i *
n d
 r Ә 

1
 v

e9K 

V
 1 . У^KП 

í 5ïï7П2dV2шn 
әк_ x 

"n 
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so the Neumann problem (2.7)(2.8) is solvable if and only if 

a = - i • <2-10> 
Thus the problem (2.1)(2.2) is solvable if and only if 

c= - ----- . (2.11) 

Now we look for the solutions of the problem (2.7)(2.8), where a is 

defined by (2.10). Suppose that there exists a solution for the problem 

(2.7)(2.8) in the following form 

h(x,y) = J o a k ( y ) | x r C k

I T ( c o s 9), (2.12) 

n-2 

whereby C 2 (t) are Gegenbauer polynomials, 0 denotes the angle between 

the radial directions ox and oy, a,(y) are functions of y to be determined. 

It is clear that the series (2.12) is harmonic in Q if it is uniformly 

convergent in Q .By the boundary condition (2.8) now we determine 

functions a (y). Notice that, for |x|>|y|, we have 

and 

k 

n-2 
— r = L\ C 

|x-y| 
Ч n = J o C к ~ ( c o s )ІУІk|xl"(П+k~2) 

• - - — — - = Z C n 2 2 ( c o s 6 ) | x | k | y | k . 
|y|

n 2
|x-y*|

n
-

2
 k,0

 k 

On the one side, by (2.8) and (2.10) we have 

3iT
 h

U - - a)n(2-n) < ^ - ( n + k ^ C ^ c o s e ^ y l
1 

x n k*0 
oo n-2 

+ Z k C 2 (cos )|y|
k
) - 2a 

k*i 

n-2 ^ (-4:) cv 2 ( c o s )|y|k. 
k-i m k 

And on the other s i d e , by (2.12) we have 

a i r h l a K = £ k a k ( y ) C k ¥ ( c o s 6 ) . 
x n k«i 

Therefore we have 

Ч<I> - --TГ^Г Ы • k - 1 . 2 . -k con 
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n-2 
Notice C 2 (cos 0)=1, so we have 

h ( x
'

y )
=il i ^ T C

k
^ ( — e ) | x | k | y | k

+ a o ( y ) . (2 .13) 

It is easy to see that the series (2.13) is uniformly convergent in K 

with respect to x while yGK . Now we can get the following proposition. 

Proposition 2.1 Let K be the unit ball in R
n
(n>3). Then the function 

N
n
(x,y) 

N (x,y)= 
( 2 - n ) Ш n | x - y | n - 2 ( 2 - n ) Ш n | y | n ^ | x - y * | n - 2 

- Ä : ( M V | y | 2 ) - - í г - c w ^(cos ) -ЦixL k 

2(л)n v ' ' ' y ' ' ü)n , ч k 

2 k = 1 

n2+n+2 
o)n(Д-n2) 

(2.14) 

has the following properties: 

i ) A xN n(x,y)= 6(x-y) - - ^ , x e ^ , yEK n 

" > 3 T N n ( x ' y ) = 0 ' x G 9 K n ' ^ K n 
x 

i i i ) N n (x,y )=N n (y ,x ) , 

i v ) £ Nn(x,y) dx = 0, yGKn 

n 

whereby y* is the symmetric point of y to the unit sphere, y*= —^— , dx 

| y | 2 , 
is the volume element of K . The function N (x,y) is called the Neumann s 

n nv fJ/ 

function for Laplacian over the unit ball in R (n^3). 

Indeed from above inference the properties (i)(ii)(iii) follow immediately. 

Now we put, for yGK , 

f,(y)=[ - dx, 
1 \ (2-n)u)n|x-y|n-2 

fn(y)=f dx, 
2 * n (2-n)o)n|y|n-2|x-y*|

n^ 

n 

Notice that the function f,(y) satisfies the Poisson equation Af-^y)--!, 
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f-.(0)= 2r2-n) anc* ^l^y
^
 i s on

^y
 a
 function of |y| . Then we can easily 

get 

f i ( y ) = ^(fcnT + 2n-- |y l 2 ' y e V ( 2 - 1 5 ) 

Notice also that f-i(y) is continuous in the whole space R , so f
1
(y)= 

— r2_. n ) » f°
r
 | y I =1 - Moreover, f-,(y) is harmonic in R \K and vanishes 

at infinity. So we can also get 

f,(y)= — .
 y

eR
n
\lT. (2.15') 

1
 n(2-n)|y|

n
-
2 N n 

Therefore we have 

f 2 ( y ) = T T ^ i *_<**> 
|y|

n
"
2 x

 n(2-n)|y|
n
-
2
|y*| 

1 
yЄK (2.16) ~ n(2-n) ' 

We also have 

- l K ^
(
l

X
!

2 +
l

y
|

2 ) d x
 = --2(nT2T-2n-|

y
|

2
-
 ( 2

-
1 7 ) 

n 

Next we calculate fo(y) for y£K . Since the series h«(y) 

h^y) = - TT ^ c / r W e) 1*1 Mk 

5 0)n , _ k K 

i s harmonic in K with respec t to y wh i le xEK , moreover, 

ai- h3 ( y ) lye9 K ' - - k j V r U o s 9)|x|>< 
y J n k = l 

= - - - - ( — i ) . 
Wn ( l - 2 | x | c o s 9 + | x | 2 ) n " 2 / 2 

Then we have 

^ f 3 ( y ) l y e 9 K n = " "S_T JKn
 ( ( i_ 2 | x | c o s e + | x | 2 )n-2 / 2 " U dX 

= - ( 2 - n ) f j ( l ) + - — - 0 , -

and fo(y) i s harmonic in K . Therefore we get 
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f 3 (y ) = f 3 ( o ) = 0 , yGKn (2 .18) 

From (2.15)-(2.18) the property (iv) follows immediately. Thus this 

proposition has been proved. 

In addition, it is easy to see that the Neumann's function having the 

properties (i)-(iv) is unique. By above Neumann's function we can get the 

following proposition in a classical way. 

Proposition 2.2 Let K be the unit ball in R (n^3) . Let f(x) be a conti­

nuous and differentiable function in K . Then the Neumann problem for 

Poisson equation 

A u(x) = f(x) , x€EKn (2.19) 

-|- u(x) = 0 , xG3K (2.20) 

on n 

is solvable in the classical sense if and only if f(x) satisfies 

JK f(x) dx = 0 (2.21) 
n 

and the solution may be represented in the following formula 

u(x)-f N (x,y) f(y) dy + c , (2.22) 
,K n 

n 

whereby the function N (x,y) is the Neumann's function described in the 

proposition 2.1 and c is an arbitrary real constant. 

3. Boundary value problem of Neumann type 

,(i) H' ;(Ro,n-l> of Ro.n-l- Fi-i-g i 6 {1. 
the subalgebra - ^ ' ( R ^ . p of R ^ ^ ., 

We first introduce the subalgebra 

2' 'n> and considering for i>2 0 - 0,n-l' - o,n-l is 

generated by the basis elements e2,eo, 'ei_i' t n e n ** ^ 0 n-P
 i s 

isomorphic to the Clifford algebra R Q ±_2 for R0,1~ • For i=l,2, we put 

H(i)<Ro,n-l>=R-

Now define for i€{l,2, ,n} fixed the set I i by 
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{ i+1, ,n } , if ie{ 1,2, ,n-l } 

1 (p if i=n. 

And let us introduce the projective operator X of R _, onto its 

subspace H ^ ^ R , ) eT . Then we have for each a= E aAeA GR , that 
o,n-l' I. . A A o,n-l 

x ( i ) a= c
E ac ec 

where C runs over all ordered subset of the form C=DuI. with Dc{2, , 

i-1 }, while for i=l 

X ( 1 )( a>= a2 ne2 n' 
Notice in particular that for i=n 

X(n)(R ,) = H ( n )(R ,)e, = H(n)(R , ) , 
o,n-l' o,n-l7 1 v o-n-l" 

i.e. X (R _,) is the Clifford subalgebra of R _, generated by the 

basis elements en, ,e ,, where 
2 n-1 

R . , = X(n)(R ,) €) X(n)(R ,) e . (3.1) 
o,n-l o,n-ly v o,n-ly n v y 

Now consider the main involution a -*-a and the conjugation a ->-a on R _, , 

i.e. if a= Z aAeA, then A A A A 

a = ^ aAeA' a = aAeA ' 

whereby for each eA=e e , J A a2 a 
n 

eA=(-l) eA and eA=(-l) e e , 
A v y A A- ' a a2 

n 
#A denoting the cardinality of A. Then for each deX^n'(R _,) 

d e = e d . n n 

We obtain by means of (3.1) that an arbitrary a € R _, may be written as 

a = b + c e n = b + e n c , b.cG X ( n ) ( R 0 f n _ _ ) . 

Putting c= Y ( n ) ( a ) , we so have for a l l a e R _, that 
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a = X ( n ) ( a ) + e n Y ( n ) ( a ) . (3 .2 ) 

(2) 
Notice that for n=2, we obtain that, since Xv y(R ,) is isomorphic to 

0,1 

R, any aGR , admits the decomposition 

a = b + e 2 c , b , cGR (3 .3) 

2 
whereby e2 = -1. The relation (3.3) makes us remind of the well known 

result that R , is isomorphic (as a real algebra) to C. But at the same 

time it illustrates how the decomposition obtained in (3.2) of an arbi­

trary element a in R _, is a generalization of the classical represen­

tation of a complex number a in the form a=x+iy, x,yGR. 

Now let in a classical way R (i £2) be identified with subspace of R 

given by these elements x=(x, , ,x )GR for which x. ,= =x =0. Then 

by means of the isomorphism between Rn and Re, $ R°' n" , 

/ \ n 

x=(x-, ,x ), ẑ  ;= Z x.e., 

I n " x J J 
j*l 

we may identify R with Re, ® R ' .An arbitrary element of R (i^2) 

may therefore be written as z =x,e,+x2e2+ +x.e.. Notice that for 

i=2, ,n, 

(i)|2=7i)2(i)=z(i)7i)=|x2> 
1 x i x x x x j 

Now we also consider the generalized Cauchy-Riemann operator 8 . and its 

conjugate operator 3, in R , i=2, ,n, i.e. 

V z l e j ^ = e l 3 x - + Z l ek3F; 
j - l j 1 k - 2 k 

and 
8 i = ^ i = e l dT " u

z
o
 ekdT • 

1 ks2 k 

Let K ( l ) and 3 K ( l ) be the unic b a l l and u n i t sphere in R1 r e s p e c t i v e l y , 
n n 

i . e . 

K ( i ) = {x=(x 1 f x 0 , ,x ) : I x , 2 < 1 and E x 2 = 0} 

and " ' 2 n - \ J 

3 K n
i ) - { x - ( x 1 , x 9 , , x n ) : Z x 2=1 and Z x 2=0 } . 

jsl J j.itl 
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Now we consider the following integral operator T. which are also called 

the Pompieu-operator and may be defined on the space of R ._,-valued 

functions g 

z ( i )-z ( i ) 

(T.g)(z(l))= - —--- f * ? : g(z(l))dyi dy. , (3.4) i&/v x co. J i (1) (1) a y 1 i 
1 f A \ z "~z 

K
n 1=2,3, ,n-l, 

whereby QJ . is the area of 3KV , and g is of the class C (0<a<l) in Kvl'. 

By [4] it is well known that 

9i(Tig)=g . (3.5) 

Now let us formulate the following basic lemma. 

Lemma 3.1 The nonhomogeneous generalized Cauchy-Riemann equation 

T w=f, in K ( n ) (3.6) 
n n 

is equivalent to the following equations 

— X
( n )w- 3- Y(n)w = X(n)f, in K ( n ) (3.7) n—l ox n n 

— 2 — X ( n ) w + 8 - Y(n)w = Y(n)f, in K ( n ) (3.8) 3x n-1 n n 

whereby (X(n)w)(x)=X(n)(w(x)) and (Y(n)w)(x)=Y(n)(w(x)). 

Proof As 9n7l
(enY(n)w)=en ^ n - l ( Y ( n ) w ) , we have 

n 

=(—, X(n)w- ^ - Y(n)w)+e (--- X ( n )w + 9 .Y(n)w) von-l 8x ' nv3x n-1 n n 

=X(n)f+e Y(n)f . n 

Thus this lemma is proved. 

Theorem 3.2 Let f(x) be a continuous differentiable R --valued function v 7 o,n-l 

in K^n . Then the boundary value problem of Neumann type 
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9"n"w=f.
 x G K

n
n ) ( 3

'
9 ) 

X
(n)
(r^-w)=0, xG3K

( n )
 (3.10) 

d n n 

is solvable if and only if f(x) satisfies the following integral-differen­

tial relation 

f r \ ( 9n i ( x ( n ) f
)

+ & - y ( n ) f
)
 dx
 = °- (3.1D 

J
K
(n) n-1 dxn 

n 

And the solution may be represented in the following form 

w = X
( n )

w + e Y
( n )

w , 
n ' 

x U ) w =
 f i >,

N
n

(x
'y

)(
 3

n
 i ( X

( n )
f ) + -*- (Y

( n )
f))(y) dy + c, (3.12) 

J
K
(n)

 n n - i
 9 y

n 

Y
( n )

w = f*
n (—. X

( n )
w - X

( n )
f ) dx 

J
 u

n-l
 y

 n 
0 

+ T
n-1

( (
" "IT

 X ( n ) w + Y ( n ) f )
 Ix =0

 ) +
 ^"x

1 1
"

1
^'

 ( 3
-

1 3 ) 

n n 

where c is an arbitrary X
W
( R

 n
 )-valued constant and h(z^

n
~ ') is an 

( \ o,n—l f x.. v 

arbitrary X
W
( R _

1
)-valued function satisfying 9 J T ^ ')=0. 

Proof If there exists a solution w(x) for the problem (3.9)(3.10) in the 

classical sense, then w(x) should satisfies the following problem 

8
n
(9^w)=9

n
f,

 x e K

n

n ) ( 3
'

1 4 ) 

r
3
- (X

(n)
w)=0 . xG3K

( n )
 (3.15) 

9n
 v
 n 

Then we have that X
vI1
'w should satisfies the following problem 

Д X
( n )

w =
Ә
 . ( ï ( n ) f ) + f (Y

(n)f), x Є K
( n ) 

n n-l
v
 Әx n 

(3.16) 

-£ (X(n)w)=0 , X G 8K(n). (3.17) 

By proposition 2.2 then we get (3.11)(3.12). By lemma 3.1 and (3.7) we 

have 

Y ( n )w=f n( Э ^ X
( n )
w-X

( n )
f) dx

n
 + h ^

1 1
-

1
) ) , 
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where h(z^ ') is an arbitrary X^n'(R _-)-valued function depending 

only on x., ,x _-. Substituting into (3.8), we get 

J L X
( n ) w + JXn( A_ . X

( n ) w - 9n _ ( X ( n ) f ) ) d x n + 9n 1 h ( z ( n - 1 ) ) = Y ( n ) f 
n 0 

By (3 .16) we have 

v / n ) - - - l £ * < n ) " * Vi<*<n>£> • ů- <ï<n)f>' Әx: z ü n - l v y э* 
n n 

hence we obtain 

T
2
- X

( n )
w I

 n
 - Y

( n )
f I

 n
 + 8

 1
h(z

( n
"

1 )
) = 0. 

3x 'x =0 >x =0 n-1
 v
 x

 J 

n n n 

By (3.5) then we get 

h(z
(n
-

1)
)= ____«- -£- X(n)w+Y(n)f) |x =0 )+h(z

("-1)), 
n n 

whereby h(z^ J) is an arbitrary X^ '(R -)-valued function satisfying 
* ~~ ( r\ —1". o,n—1 

the equation 3 _,h(z O=0. Thus we get the formula (3.13). 

Conversely if the function w(x) is defined by (3.12)(3.13), then we get 

immediately that the functions X(n)w and Y(n)w satisfy (3.7). By (3.12) 

we have that the function X^n'w satisfies (3.16), then we get 

J - *<">.* « _ . / • > . 
n 

= -j-- x(n)w+fXn 3 ( 8 l X
( n )w-X ( n )f) dx +(- --- X(n)w+Y(n)f) | _ 8x Jn n-lv n-1 n v 3x ' 'x =0 n u n n 

• IS- ̂ ' " f " <- ̂ <n)"+ 3^"<n)£» "V<- jH W«T ( , , )0|, =0 
n Q n n. n n 

= Y(n)f . 

Hence the functions X^ "w and Y^ 'w also satisfy (3.8). By lemma 3.1 the 

function w defined by (3.12)(3.13) satisfies (3.9). Obviously (3.10) 

yields. Thus this theorem has been proved. 

Now we introduce the integral-differential operator K defined on the 

space of continuous and differentiable R --valued function f(x) 
o, n—l 
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(Knf)(x)=(Kn
1)f)(x)+en(Kn

2>f)(x) 

whereby 

(Kn
1>f)(x)=| (n)Nn(x,y)( 9n_l(x(

n>f)+-A-(Y(
n>f))(y) dy, 

Kv Jn 
n 

(Kn
2>f)(x)=rn( 3n_1(Kn

1>f)-X(
n>f) dx+Tn_1((-^(Kn

1>f)+Y(
n>f)|x ). 

0 n n 

Then we can get 

Corollary 3.3 Under the assumptions of theorem 3.2 the solution of the 

boundary value problem (3.9)(3.10) may be represented in the following 

form 

w(x)=(Knf)(x)+c+hn_1(Z(
n-1>)en f 

where c is an arbitrary XvI1'(R )-valued constant and h 1(z
vll'~ ') is 

o,n-ly n-lv x 
an arbitrary XvI1'(R - )-valued function satisfying "9 -,h Az^n~ M=0. 

o,n-l v ° n-1 n-lv x 

Remark Making use of the result in [11] , the solution of the problem 

(3.9)(3.10) can be determined uniquely on condition that (Xv 'w)(0), the 

functions X w on 9KV ' (i=n-l, ,2) and (X w)(0) are also given. 
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