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ON BOUNDARY VALUE PROBLEM OF NEUMANN TYPE FOR HYPERCOMPLEX
FUNCTION WITH VALUES IN A CLIFFORD ALGEBRA

Xu Zhenyuan

1. Introduction

Let R
0,n-

basis {e;,e3 y==-,e,} of R

1 be the universal algebra constructed by means of an orthonormal

°:n-1 .hnd ey=e1 be the identity of R, In the

n-1°
universal Clifford algebra Ro n-1 the multiplicative identity
’

eiej+ejei=—2(Sij i,j=2,3,ww-,n,

n
holds. Let §¥e1%§-+ T ej %; be a generalized Cauchy-Riemann operator
e .
j=2 3

and Q be an open set of R". Then an Ro -valued Cl(n)-function f(x)=

n-1
E fA(x)eA is called left monogenic function if 3f=0 in  , here e,=

e =e e ... e are bases of R and A={q; ,03, v+ ,0,}E {2,3,~-,n}
Q203°0h 02 O3 Oh 0,1’1—1 '_{ 2 U3 ’ h} 9 )y y

with 2§u2(--..< ahgn'

Up to now a great number of the function theory for left monogenic func-
tion has been investigated [1][2][6]. For the use of Clifford algebra in
several branches of Mathematics and Physics we refer to [2]. Recently
several boundary value problem for mdnogenic functions have been studied
(see [8][9][10][11]1). In this paper we study a boundary value problem

of Neumann type for hypercomplex function with values in a Clifford

algebra which is a solution of a nonhomogeneous equation jw=f in the

This paper is in final form and no version of it will be sub-

mitted for publication elsewhere.
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unit ball of R". To this end we firstly construct a Neumann's function
for Laplacian over the unit ball in Rn(n=3). Then, making use of this

Neumann's function, we solve the above boundary value problem.
Acknowledgment This paper was written during the author's stay at Gent,
which was supported by State University of Gent scholarship. She wishes to

express her thanks to Prof.Dr.Delanghe for his support.

2. Neumann's function

In this section we construct an explicit representation formula for Neumann's
function for Laplacian over the unit ball in R (n23) by means of the
fundamental solution for Laplacian and Gegenbauer polynomials. Then,

making use of this Neumann's function, the solution of the Neumann

problem for the Poisson equation is represented.

In the sequel, Kn denotes a unit ball in Rn, Kn={x| x=(X1,X2,° =X ) € Rn,

|x|< 1}. We seek for a real function N(x,y) which satisfies

A, N(x,y)= 8(x-y)+c, x€K, (2.1)
9 -
anf(x,y)-o, xeaKn (2.2)
. i L
hereby Ax denotes the Laplacian Ax=iE£§;§ , sji;denotes the outer normal

derivative to the boundary BKn of Kn, c is a suitable constant to be
Adetermined, while y is fixed in the domain Kn. In fact this problem is

not solvable for any real constant c.

Now we try to look for a solution of problem (2.1)(2.2) in the following

form

L +g(x,y),  (2.3)

= 1
N(X,Y)— .wn(z_n) Irﬂ’ | 2 + u)n(z_n) Iy ln—2 !x_y’q 2

/2/ I'(n/2),

is the fundamental solution for Laplacian, namely

whereby u%]stands for the area of the unit ball in Rn,uon=2ﬂ'n

1
W (2-n) f-y |2

1 )=&x-y); y* is the symmetric point of y to the unit
A (“’n T ] V)i y
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here X_, y*= L
sphere X , { iz

uﬁﬁz-ﬂ)lY[;:2lX-Y*[h‘2 is harmonic in Kn with respect to x.

. It is clear that, for yEEKn, the function

By (2.1)(2.2), for y(EKn, the function g(x,y) should satisfies
Ax g(x,y)=c, X€E Kn (2.4)

9 3 1 1
gﬁ;g (X,y)=— ‘a?l—x (wn(Z—n) |X—Y| n-2 + “’n(Z—n5|Y| n-—2|x—y*| n-2 )v

xeaKn (2.5)

Now we suppose that the function g(x,y) has the following form

g(x,y)=h(x,y)+ a|x|?, (2.6)

so that the function h(x,y) satisfies, for yEEKn,

Axh(x,y)=0, xEKn ) (2.7)
1 1
?%; h(x,y)=- 3%;{ wn(Z—n)lx—yln-z + wn(Z-n)|y|n-2|x—y*|n-2
+alx|?). x€3K_ (2.8)

Thus the constants c and @ are related with
c=2na. (2.9)

It is well known that the Neumann problem (2.7)(2.8) is solvable if and

only if the constant o satisfies

1 1

_L( + + 2

— = - ds_ =0,

_[aK ( anx wn(2—n)|x—yi" wn(z_n)ly'n 2|x—y*|n 2 (x[xl )) Sx
n

where dsx stands for the areal element of 3Kn.

Since we have 0 y§§
I 9 ( ! )dS = 1 yGBKn
— —_y|n- X
3K anx wn(2 n)lx y|n 2 2
" 1 ex
’ y n
3.and

9 2
I o | ¥ dsx= 2w,
oK X
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so the Neumann problem (2.7)(2.8) is solvable if and only if
o= -5 . (2.10)

Thus the problem (2.1)(2.2) is solvable if and only if

- __n
c= o (2.11)

Now we look for the solutions of the problem (2.7)(2.8), where a is
defined by (2.10). Suppose that there exists a solution for the problem
(2.7)(2.8) in the following form

® n-2
h(x,y) = kank(y)|x|“ck 2 (cos 8), (2.12)

n-2

whereby Ck 2 (t) are Gegenbauer polynomials, 6 denotes the angle between
the radial directions ox and oy, ak(y) are functions of y to be determined.
It is clear that the series (2.12) is harmonic in Q if it is uniformly
convergent in . By the boundary condition (2.8) now we determine

functions ak(y). Notice that, for |x|>|y|, we have

w n-2 —(nake
o 6T o ol a0
x-y
and
1 =T C B%—z_(cos o) x| |y|*
Iyln-le_y*ln-z k=0 k

On the one side, by (2.8) and (2.10) we have

2nly = —b e (% (k2207 (cos 0|y "
an oK wn(2-n) k y
X n n-2 k=0
+ LkC_ 2 (cos 8)|y|*) - 2a
k
k=1 ne2
= kgl(— - ) Ck 2 (cos 0)|y]|".

And on the other side, by (2.12) we have

© n-2
= k a (y) C "2 (cos 9).
ey K k

3 .
< hl
an BKn

Therefore we have

1
8, = - g vl k= 1,2,
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n-2
Notice C "2 (cos 0)=1, so we have

-1 n-2
h(x,y)= kZI o C, 2 (cos 6)|x|k|y|k+ao(y)7 (2.13)

It is easy to see that the series (2.13) is uniformly convergent in Kn

with respect to x while yEEKn. Now we can get the following proposition.

Proposition 2.1 Let Kn be the unit ball in R™(n23). Then the function
Nn(x,y) . .
Nn(x')')= n2 T n-2 n-2
(2—n)mn|x—y| (2—n)wn|y| | x=y*]|

2wn (|x|2+|Yl )- L 7 ¢ (cos 9) 1—J—JJLL

wnkl

__n +n+2

3 (2.14)
wn(l;—n )

has the following properties:

. n
i) Aan(x,Y)= §(x-y) - “on ’ XGKn, y €K

4y 2 3
ii) Brlx Nn(x,y) =0, xEBKn, yEKn

iii) Nn(x,y)=Nn(y,x).

iv) L( N (x,y) dx = 0, yEK,

whereby y* is the symmetric point of y to the unit sphere, y*= e , dx

2
lyl
is the volume element of Kn' The function Nn(x,y) is called the Neumann's

function for Laplacian over the unit ball in R%(n23).

Indeed from above inference the properties (i)(ii)(iii) follow immediately.

Now we put, for yEKn,

1
£,(y)=
1 L(n (2-n)uwn] x_yln-Z

1
()=
2 I‘n (2- n)wnlyl"'zlx ol e

f3(Y)=IK (- kZICk 2 (cos 8) i—l~Lll ) dx.
. n

dx,

dx,

w

Notice that the function fl(y) satisfies the Poisson equation Afl(y)=1,
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f1(0)= —5?%:57 and fl(y) is only a function of |y|. Then we can easily
get

fl(y)=—2(2—rIT = |y|? yEK . (2.15)

Notice also that fl(y) is continuous in the whole space R", so fl(y)=

1 for |y[=1. Moreover, fl(y) is harmonic in Rn\\K; and vanishes

n(2-n) °*
at infinity. So we can also get
fl(y)= _l—n-z— N yERn\g . (2.15')
n(2-n)|y|

Therefore we have

1 1
£,(y)= ——— £,4%) = v —
| n(2-n) |y |77 y*|
1
= htz=n) .yGKn (2.16)
We also have
1 _ 2
- Kn 7, = - —5(5157 |y| (2.17)
Next we calculate f3(y) for y<EK . Since the series h3(y)
h3(y) .___L EC 2 (Cos e).l_.l_l.y_l_
wn
k=1
is harmonic in Kn with respect to y while x€EKn, moreover,
3 I S k
an h3(y)ly<53K = o X Ck 2 (cos 8)|x|
Y n k=1
I Y 1 -
Wn (1-2]x|cos 9+|x|2)“'%/§
Then we have
9 1 1
=— f (Y)l = - — ( -1) dx
any 3 yEBKn wn .[Kn (1-2|x|cos e+|x|2)n-2/2

(2-n)£; (1) + % =0,-

and f3(y) is harmonic in K . Therefore we get
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f3(y) = f3(o) =0, yGEKn (2.18)

From (2.15)-(2.18) the property (iv) follows immediately. Thus this

proposition has been proved.
In addition, it is easy to see that the Neumann's function having the
properties (i)-(iv) is unique. By above Neumann's function we can get the

following proposition in a classical way.

Proposition 2.2 Let Krl be the unit ball in R%(nz3). Let f(x) be a conti-

nuous and differentiable function in ig. Then the Neumann problem for

Poisson equation

A u(x) f(x) , xGKn (2.19)

‘%H uwx) =0 x €3K_ (2.20)

is solvable in the classical sense if and only if f(x) satisfies
IK £(x) dx = 0 (2.21)
n

and the solution may be represented in the following formula

u(x>=jK N (x,y) £(y) dy + ¢, (2.22)
n

whereby the function Nn(x,y) is the Neumann's function described in the

proposition 2.1 and c is an arbitrary real constant.

3. Boundary value problem of Neumann type

. . (i) . .
We first introduce the subalgebra H (Ro,n—l) of Ro n-l* Fixing i € {1,

2,++=,n} and considering for i>2 the subalgebra H(l)(Ro,n—l) of Ro,n-l is

generated by the basis elements €y,€q,mn e 1> then H(l)(Ro,n—l) is

0,i-2

isomorphic to the Clifford algebra RO 122 for R . For i=1,2, we put

D@ =R,

Now define for i€{1,2,-~~,n} fixed the set I, by
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{i+L"mun}, ifie{l,L"mun_l}
L= ) if i=n.
And let us introduce the projective operator X(i) of Ro n-1 onto its
(1) _
subspace H (Ro,n—l) eIi. Then we have for each a= i aAeAERO,n_1 that
X(i)a= X acec
C

where C runs over all ordered subset of the form C=DuIi with Dc{2,-,

i-1}, while for i=1

Notice in particular that for i=n

x(n)(Ro,n—l) = H(n)(Ro,n—l)el = H(n)(Ro,n—l)’

i.e. X(n)(Ro,n—l) is the clifford subalgebra of Rb,n—l generated by the

basis elements e e , where

grae

RO',n—l = X(n)(Ro,n—l) (3] X(n)(RO,n—l) e- (3.1)

Now consider the main involution a +a and the conjugation a +a on R0 n-1’
,N—

i.e. if a=I a,e then

A AN’
a= i aAéA, a= E aAEA y
whereby for each S T %1h s
é\A=(—1)#A e, and EA;(—I)#A & ey s

h

#A denoting the cardinality of A. Then for each dEEX(n)(R0 n—l)

We obtain by means of (3.1) that an arbitrary aGERo n—1 may be written as
s

a=b+ce =b+e c s b,cex(n)(Ro,n_l).

Putting c= Y(n)(a), we so have for all a€R . that

n-
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a=xMe) 4 e (™ (). (3.2)

Notice that for n=2, we obtain that, since X(z)(R0 1) is isomorphic to
’

R, any aeERo 1 admits the decomposition
a=b+ ey C, b,c€R (3.3)

whereby e22= -1. The relation (3.3) makes us remind of the well known

result that RO 1 is isomorphic (as a real algebra) to C. But at the same
’

time it illustrates how the decomposition obtained in (3.2) of an arbi-

trary element a in R is a generalization of the classical represen-

o,n-1
tation of a complex number a in the form a=x+iy, x,y €R.

Now let in a classical way Ri (i 22) be identified with subspace of R"

given by these elements x=(x1,uuu,xn)€ERn for which Xg 1= =x_=0. Then
by means of the isomorphism between R" and Re, ® Ro,n—l’
n
x=(x1,......,xn), z)(‘l’l)= .Z 1xjej’
Jl

0,i-1

we may identify R' with Re1 @® R . An arbitrary element of Ri(i;2)

. i .
may therefore be written as z T=X e Xge X e, . Notice that for

. e . P Nrarel i
|z(1)|2 - D, 0, (1) 5, 2
x x  Tx X 0]
j=l
Now we also consider the generalized Cauchy-Riemann operator '§i and its

conjugate operator 3, in Rl, i=2,«,n, i.e.
1

i i
= 9 ) 3
d.=Le,s—=e, =—+L e 7T —
iyl axj 1 X} oo k 3x,
and i
= 9 9
9. =0=e, —-% € =— .
. i-loex o, kaxy

Let Kﬁi) and aKﬁi) be the unic ball and unit sphere in R respectively,

i.e. .
. 1 n
K§1)= {x=(x1'x2,""",xn): hX X.2< 1 and z ij = 0}
and 321 7 Jritt
. i n
aK(1)= {x=(x1,x2, ------ ,xn): I x.2=1 and z x,2=0 }.
n jz1 3J jeitl
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Now we consider the following integral operator Ti which are also called

the Pompieu-operator and may be defined on the space of R0 _l—valued

,1

functions g

L), (1) .

X y i

(1) _, () Ii 8(Zy Yy eeedyy o (3.4)
y .

N
gl) x i=2,3, e, n-1,

(1) 1
(T8)(z, )= - —— |

i

whereby w; is the area of 3K£i), and g is of the class qu(0<a<1) in Kgi).
By [4] it is well known that
3i(Tig)=g . (3.5)

Now let us formulate the following basic lemma.

Lemma 3.1 The nonhomogeneous generalized Cauchy-Riemann equation

T wef, in x(™ (3.6)
n n

is equivalent to the following equations

R 2 (™, - x(Wg, in k(M (3.7)
n
—5%;—X(n)w+ 3, Y = v, in k(™ (3.8)

whereby (X™w)(x)=X{™ (w(x)) and (Y™w)(x)=Y™ (w(x)).
Proof As 5;:i(enY(n)w)=en an_l(Y(n)w), we have

2y xMse YW

v iy ey
=(§;jl X(n)w— 5%;~Y(n)w)+en(5%; X(n)w+ an_lY(n)w)
=X(n)f+enY(")f .

Thus this lemma is proved.

Theorem 3.2 Let f(x) be a continuous differentiable Ro n_l—valued function

in Kﬁn). Then the boundary value problem of Neumann type



BOUNDARY VALUE PROBLEM FOR HYPERCOMPLEX FUNCTION 223

3, w=f, x€ Kr(l“) (3.9)
X(“)(g—ar; w)=0, xEBKr(ln) (3.10)

is solvable if and only if f(x) satisfies the following integral-differen-

tial relation

[ (¢ an_l(x(“)f)+ Y(Mg) dx = 0. (3.11)
K *n
n

And the solution may be represented in the following form

w = X(n)w + enY(n)w,

()= ()gy, B (y(n)
= [ Ny (o, (VD)4 TN R CRES

n
Y(n)w= J’xn . (El X(n)w—x(")f) dxn

Tn—l((_ 9 X(n)W+ Y(n)f) | ) + h(z(n 1)), (3.13)
n .

where c is an arbitrary X(n)(R 1)--valued constant and n(z( )) is an

arbitrary X(n)(R n1)-Vvalued functlon satisfying 9 _ ( (n D)oo,

Proof If there exists a solution w(x) for the problem (3.9)(3.10) in the

classical sense, then w(x) should satisfies the following problem

3,(3, W= 3_f, xe k(™ (3.14)
(n) (n)
5% x'™wy=0 . xe oK} (3.15)

Then we have that X(n)w should satisfies the following problem

8 XM= p  xMa)e 3'3; a™g), xexl® (3.16)
2 M=o, x e k™, (3.17)

By proposition 2.2 then we get (3.11)(3.12). By lemma 3.1 and (3.7) we

have

Y(Mye on"( 7y XMux™e) ax 4 ™),
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where h(zin_l)) is an arbitrary X(n)(R0 n_1)-va1ued function depending

only on X Xo qe Substituting into (3.8), we get

5%; x(™)y, +_[Zn( b, XM - o ax™eax 4+ oMy

By (3.16) we have

o - T?:?x(n)w va_ gy 4 a_?(; ey,

hence we obtain

_0_ X(n)w

(n) (n-1)y _
X |x =0 ~ LAt lx =0 *t an—lh(zx ) = 0.
n n n

By (3.5) then we get
h(z{" = 1 (S XMy kD),
n n

whereby E(zin—l)) is an arbitrary X(n)(Ro,n_l)-valued function satisfying
the equation an_lﬁkzin_l))=0. Thus we get the formula (3.13).

Conversely if the function w(x) is defined by (3.12)(3.13), then we get
immediately that the functions X(n)w and Y(n)w satisfy (3.7). By (3.12)

we have that the function X(“)w satisfies (3.16), then we get
2 X(n)w+ an_lY(n)w

-2 x(“)w+,[;n 2,13 X Mux(Me) ax (- 5%1 K urMp) lxn=0

2
oA X(n)wfzn - ﬁgx(“)w E("’:(Y_(n)f)) dx_+(- ﬁxmemf) lx -0

y(Wg |
Hence the functions X(n)w and Y(n)w also satisfy (3.8). By lemma 3.1 the

function w defined by (3.12)(3.13) satisfies (3.9). Obviously (3.10)

yields. Thus this theorem has been proved.

Now we introduce the integral-differential operator Kn defined on the

space of continuous and differentiable R0 n_l—valued function f£(x)
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(& 5= D) e (KD1) ()
whereby

Wy (Mgy, 2 oy
(&{ f)(X)—IK(n}ﬂJX.y)( By (VD 50 (1 M)y dy,

n
X —
(xﬁz)f>(x)=Jon (5 &™) st (- O D] ).

Then we can get

Corollary 3.3 Under the assumptions of theorem 3.2 the solution of the
boundary value problem (3.9)(3.10) may be represented in the following
form

W= D) (et (2 )e

where ¢ is an arbitrary X(n)(Ro n_1)—va1ued constant and hn_l(zin—l)) is

an arbitrary X(“)(R -valued function satisfying -5£_1hn 1(z(n-1))=0_

0,n—1) X

Remark Making use of the result in [11], the solution of the problem
(3.9)(3.10) can be determined uniquely on condition that (X(n)w)(O). the
functions X(l)w on BKsl) (i=n-1,+--,2) and (X(I)W)(O) are also given.
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