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VOLUME AND AREA RENORMALIZATIONS FOR
CONFORMALLY COMPACT EINSTEIN METRICS

C. ROBIN GRAHAM

1. INTRODUCTION

It has long been known that there are very close connections between the geome-
try of hyperbolic space H**! of n + 1 dimensions and the conformal geometry of the
n-sphere S™, viewed as the sphere at infinity of H**'. In recent years it has been re-
alized that it is fruitful to consider generalizations of some of these connections when
H**! is replaced by a “conformally compact” Einstein manifold X of negative scalar
curvature, and S™ is replaced by a compact conformal manifold M, the “conformal
infinity” of X. Quite recently there has been a great deal of interest in the physics
community in a correspondence (the so-called Anti-de Sitter/Conformal Field Theory
(AdS/CFT) correspondence) proposed by Maldacena [16] between string theory and
supergravity on such X and supersymmetric conformal field theories on M. In this
article we describe some new purely geometric invariants of conformally compact Ein-
stein manifolds and of their minimal submanifolds which have been discovered via this
correspondence.

The relevant notion of conformal infinity is that introduced by Penrose. A Rie-
mannian metric g, on the interior X™t! of a compact manifold with boundary X is
said to be conformally compact if § = r2g, extends continuously (or with some degree
of smoothness) as a metric to X, where r is a defining function for M = 90X, i..
r>0o0n X and r = 0, dr # 0 on M. The restriction of § to TM rescales upon
changing 7, so defines invariantly a conformal class of metrics on M, the conformal
infinity of g,. We are concerned with conformally compact metrics g, which satisfy
the Einstein condition Ric(gy) = —ng4. At least near the hyperbolic metric, these
can be parametrized by their conformal infinities: in [8] it is shown that each confor-
mal structure on S™ sufficiently near the standard one is the conformal infinity of a
unique (up to diffeomorphism) conformally compact Einstein metric on the ball near
the hyperbolic metric.

The volume Vol(X) of any conformally compact manifold X is infinite. An appropri-
ate renormalization of Vol(X) for X Einstein gives rise to the new volume invariants.
In the physics setting, Vol(X) arises from a concrete procedure outlined by Witten
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(22] and independently by Gubser, Klebanov, and Polyakov [10], following the sug-
gestion of Maldacena, for calculating observables in a conformal field theory on M
via supergravity and string theory on X. Under various limits and approximations,
the partition function of a conformal field theory on M is given in terms of the grav-
itational action on X, which for an Einstein metric ¢, is proportional to the volume
Vol(X).

The volume renormalization was carried out by Henningson and Skenderis in [12].
As shown in [7] and (8], each representative metric on M for the conformal infinity
determines a special defining function r in a neighborhood of M. As ¢ — 0, the
function Vol({r > €}) has an asymptotic expansion in negative powers of ¢, and a
loge term if n is even. The coefficients of the negative powers of ¢ depend on the
representative conformal metric used to determine r. However, it turns out that if n
is odd, then the constant term in the expansion is independent of this choice, so is
a global invariant of the metric g,. If n is even, the constant term is not invariant,
giving rise to a so-called conformal anomaly. However, in this case the coefficient of
the loge term is invariant, and in fact is given by the integral of a local curvature
expression over M. The loge coefficient is therefore actually a conformal invariant of
M, independent of which (X, g.) might have been chosen with conformal infinity M.

Various of the conformal field theories to which the AdS/CFT correspondence ap-
plies contain observables associated to submanifolds N of M. According to the cor-
respondence, in a suitable approximation the expectation value of such an observable
can be calculated in terms of the area A(Y) in the g, metric of minimal submanifolds
Y of X with 8Y = N. Existence theory for such minimal submanifolds is discussed
for hyperbolic X in [1], [2]. As in the volume case, necessarily A(Y') = oo, so one is
led to consideration of renormalizing the area of a minimal submanifold. This renor-
malization was discussed in hyperbolic space for dim N = 1,2 in (3] and in general in
[9]. If r is the special defining function associated to a conformal representative on
M as above, then Area(Y N {r > €}) has an expansion in negative powers of ¢, and
again a loge term if k = dim(NV) is even. The invariance properties of the coefficients
are similar to those above. If k is odd, then the constant term in the expansion is
independent of the choice of conformal representative on M, so is a global invariant
of the minimal submanifold Y. If k is even, there is a conformal anomaly for the
constant term, but the loge coefficient is a conformal invariant of the submanifold N
of M. One can calculate explicitly the loge coefficient for £ = 2; it turns out to be
a version on a general conformal manifold of the Willmore functional of a surface in
conformally flat space. Even in the conformally flat case, this relationship between
the Willmore functional of a surface and the renormalization of the area of a minimal
extension seems to be of some interest. The Willmore functional is called the “rigid
string action” in the physics literature ([3], [18]).

In §2. we review some of the basic properties of conformally compact Einstein met-
rics. In §3. we discuss the results of [12]: the derivation of the volume renormalization
and resulting invariants and anomalies and the explicit identification of the log e coef-
ficient and anomaly for n = 4,6. We also calculate the renormalized volume for H**+!
when n is odd; it turns out that its sign depends on the parity of (n+ 1)/2. In §4. we
review the area renormalization for minimal submanifolds, following [9].
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We remark that in order to justify the derivation of the asymptotic expansions in € of
the volume and area, we have to assume that the Einstein metric g, and the minimal
submanifold Y are sufficiently regular at infinity. Here sufficiently regular means that
they have asymptotic expansions to high enough order, in general involving log terms,
which formally solve the Einstein or minimal area equations. One expects that if the
conformal structure on M and the submanifold N are smooth, then any conformally
compact Einstein metric g4 and minimal submanifold Y will have such regularity,
assuming they take on the boundary data in a suitable sense. Some regularity results
for minimal submanifolds of hyperbolic space are given in [11], [14], [15], [20]. (An
error in [14] is corrected in [20].) A regularity theorem for Einstein metrics has been
obtained by Skinner [19].

2. CONFORMALLY COMPACT EINSTEIN METRICS

Let X be the interior of a compact manifold with boundary X of dimension n + 1
as in the introduction and let g, be a conformally compact metric on X. Let r be
a sufficiently smooth defining function for M = 89X defined near M and set § =
r2g,. As discussed in the introduction, the conformal class [g|ru] is an invariant of
g+, independent of any choices. The function |dr|Z = g¥r;r; extends to X and its
restriction to M is independent of the choice of r, so defines a second invariant of g,.
The metric g, on X is complete and its sectional curvature is asymptotically constant
at each boundary point-conformally transforming the curvature tensor shows that
(2.1) Riju = —(|d7“|§)(9ik9jt — gagje) +O(r™%),
where here the curvature tensor R and metric g both refer to g, and our conventions
are such that the above formula without the error term defines a curvature tensor
of constant curvature —(|dr|2). It follows that the value of the invariant |dr|Z at a
boundary point is the negative of the asymptotic sectional curvature of g, there.

We will assume that g, satisfies the normalized Einstein condition Ric(g4) = —ng,.
Contracting in (2.1) shows that in this case we have |dr|2 =1 on M.

In general, a choice of defining function r determines a representative metric glry =
(r?g4)|ram for the conformal structure on M. However, in the other direction, the
conformal representative and this relation only determine r mod O(r?). In the case
when |dr|§ = 1 on M, in particular when g, is Einstein, one can impose a second
condition to determine r uniquely in a neighborhood of M.

Lemma 2.1. A metric on M in the conformal infinity of g, determines a unique
defining function r in a neighborhood of M such that g|tas is the prescribed boundary
metric and such that |dr|? = 1.

Proof. Given any choice of defining function ro, let g, = r2g, and set r = roe®, so
g = €23, and dr = “(dry + rodw). Thus

|dr 2 = |dro + rodw|§° = |d7'0|§o + 2ro(Vg,ro) () + 73l dwl]?
so the condition |dr|2 = 1 is equivalent to
1- ldTQl%o

22 2(V5,70) () + roldll, = —-
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This is a non-characteristic first order PDE for w, so there is a solution near M with
w|p arbitrarily prescribed. ]

A defining function determines for some € > 0 an identification of M x [0,¢) with
a neighborhood of M in X: (p,\) € M x [0,€) corresponds to the point obtained by
following the integral curve of Vzr emanating from p for A units of time. For a defining
function of the type given in the lemma, with |dr|§ =1, the A-coordinate is just r, and
Vg is orthogonal to the slices M x {A}. Hence, identifying A with r, on M x [0,¢)
the metric g takes the form g = g, + dr? for a 1-parameter family g, of metrics on M,
and

(2.3) gs =72(g, +dr?).

We explicitly identify a special defining function r and normal form (2.3) for the
hyperbolic metric gy = 4(1 — |z|?)~2%(dz%)? on the unit ball in R**!. Notice that
in general the condition |dr|2 = 1 can be rewritten as |d(log%)|2, = 1, which is the
eikonal equation for log} in the metric g4. The distance function d(z) = (hyperbolic
distance from z to 0) satisfies the eikonal equation and also d(z) — oo as |z| — 1, so
we take log 1 = d(z), i.e. r = e™4®). Now it is a basic fact of hyperbolic geometry that
d(z) = log :ji{, soT = i;—{;l is a special defining function for H**! as in Lemma 2.1.
Then § = r2g, = 4(1+|z|)~4S(dz*)?, so the associated representative for the conformal
structure is go = ;(usual metric on S"). Writing £(dz*)? in polar coordinates and

expressing everything in terms of r gives g, = 72 ((1 — r%)2gy + (dr)?), and thercfore
(2.4) 9 =(1-1%)g.

We now impose the Einstein condition on a metric of the form (2.3). One can
decompose the tensor Ric(g;) + ngy into components with respect to the product
structure M x (0,€). A straightforward calculation shows that the vanishing of the
component with both indices in M is given by

r .
(25) 7+ (1= n)gi; — 8ggys — 79" gl + 59" kgl — 2rRicii(g,) = 0,

where g;; denotes the tensor g, on M, ' denotes 0,, and Ric;;(g,) denotes the Ricci
tensor of g, with r fixed. As indicated in the introduction, we assume that g, is suf-
ficiently regular that its asymptotics may be calculated from (2.5) (and the equations
for the other components of Ric(gy) + ng4). Differentiating (2.5) v — 1 times with
respect to r and setting 7 = 0 gives

(2.6) (v — n)8 9i; — g*(0Y gra)gi; = (terms involving 8¥g;; with p < v).

Beginning with the initial condition that g, is a given representative metric at r = 0,
we may use (2.6) inductively to solve for the expansion of g,. So long as v < n, 8¥g|,=0
is uniquely determined at each step, and since the left-hand side of (2.5) respects parity
in r, we have 8Yg|,=p = 0 for v odd. However this breaks down for v = n. In that
case, if n is odd, it follows from parity considerations that the right-hand side of (2.6)
vanishes at 7 = 0, so g¥'0"gi; = 0 but the trace-free part of 9"gy may be chosen
arbitrarily. If n is even, then the right-hand side of (2.6) might have non-vanishing
trace-free part, forcing the inclusion of a r*logr term in the expansion for g, with a
trace-free coefficient. The trace of the 7" coefficient is determined but not its trace-free



VOLUME AND AREA RENORMALIZATIONS FOR CONFORMALLY COMPACT,... 35

part. It can be shown that the remaining components of Ric(g,.) +ng4 give no further
information to this order.
Summarizing, we see that for n odd, the expansion of g, is of the form

(2.7) 9 = g + ¢@r2 4 (even powers) + g(" Dyl 4 gMpn

where the g\ are tensors on M, and g™ is trace-free with respect to a metric in the
conformal class on M. For j even and 0 < j < n—1, the tensor g@) is locally formally
determined by the conformal representative, but g™ is formally undetermined, subject
to the trace-free condition. For n even the analogous expansion is

(2.8) gr = g + g2 4 (even powers) + hr*logr + g™r™ + ...

where now the gU) are locally determined for j even and 0 < j < n — 2, h is locally
determined and trace-free, the trace of g( is locally determined, but the trace-free
part of g™ is formally undetermined.

Of course, the determined coefficients in these expansions may be calculated by
carrying out the indicated differentiations above and keeping track of the lower order
terms at each stage. For example, for n = 2 one finds that h = 0 and

i 1
29) g = -5k,
while for n > 3 one has gg) = —P;;, where
R
2.1 - )P, =Ry — ————gii,

and R;; and R denote the Ricci tensor and scalar curvature of the chosen representative
9i; of the conformal infinity.

In order to establish conformal invariance of the renormalized volume invariants, we
will later need to use the following Lemma.

Lemma 2.2. Let r and 7 be special defining functions as in Lemma 2.1 associated to
two different conformal representatives. Then

(2.11) 7 =re*

for a function w on M x [0,€) whose expansion at r = 0 consists only of even powers
of r up through and including the r"*! term.

Proof. We have 7 = e“r where w is determined by (2.2), which in this case becomes
(2.12) 2w, + r(w? + |de|§r) =0.

The Taylor expansion of w is determined inductively by differentiating this equation
at 7 = 0. Clearly w, = 0 at 7 = 0. Consider the determination of 8¥*'w resulting
from differentiating (2.12) an even number k times and setting 7 = 0. The term w?
gets differentiated k& — 1 times, so one of the two factors ends up differentiated an odd
number of times, so by induction vanishes at r = 0. Now |dyw|?, = g¥wiw;, so the
k — 1 differentiations must be split between the three factors, so one of the factors
must receive an odd number of differentiations. When an odd number of derivatives
hits a w;, the result again vanishes by induction. But by (2.7) and (2.8), so long as
k —1 < n, the odd derivatives of g, vanish at r = 0. O
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3. VOLUME RENORMALIZATION

Let g, be a conformally compact Einstein metric on X. As discussed above, a
representative metric g on M for the conformal infinity of g, determines a spccial
defining function r for M and an identification of a neighborhood of M in X with
M x [0,¢). In this identification, g, takes the form (2.3), where gy = g is the chosen
representative metric. Therefore the volume element dv,, is given by

—n-1 [ detg, 12
(3.1) dvg, =1 1<—d—g—t—g—) dvgdr .

From (2.7) and (2.8) and the properties stated there for the coefficients in those ex-
pansions, it follows that

(3.2) detg, ) * =14 vPr? 4+ (even powers) 4 v™r" +
' detg T
where the ... indicates terms vanishing to higher order. All indicated v are locally
determined functions on M and v = 0 if n is odd.
Consider now the asymptotics of Volg, ({r > €}) as e = 0. Pick a small number rg
and express Vol({r > ¢}) =C + f{Kr(m} dv,, . Integrating (3.1) using (3.2) we obtain
for n odd

Vol({r > €}) = coe™ + e "*2 + (0odd powers) + c,_ e}

(33) +V +0(1)

and for n even
Vol({r > €}) = coe™ + 267+ + (even powers) + ¢, 262

4
(3.4) +Llogl +V +0(1).

The coeflicients ¢; and L are integrals over M of local curvature expressions of the
metric g. For example, cg = 1Voly(M). Also,

(3.5) L=/ v(™ du, .
M

The renormalized volume is the constant term V in the expansion for Vol({r > ¢}),
which a-priori depends on the choice g of representative conformal metric on M.

Theorem 3.1. If n is odd, then V is independent of the choice of g.
If n is even, then L is independent of the choice of g.

Proof. The special defining functions r and 7 associated to representative metrics g
and g are related as in Lemma 2.2. We can solve (2.11) for r to give r = 7b(z,7),
where the expansion of b also has only even powers of 7 up through the 7#"*! term. It is
important to note that in this relation, the x still refers to the identification associated
with 7.

Set é(z,€) = eb(z,€). Then 7 > € is equivalent to r > &(z, €), so

Vol({r > €}) = Vol({7 > ¢}) = /M / “du,,
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(3.6) =// Z v (z)r " drdy, + o(1),

€ ogj<n
jeven

where we have used (3.1), (3.2). For n odd this is

©)]
Z _"""/ Y (:1: b(z, €)™ — 1) dv, + o(1).
0<j<n—1 —n+ ]
jeven

Since b(z, €) is even through terms of order n+1 in ¢, it follows that this expression has
no constant term as € — 0. Similarly, when n is even, the 7! term in (3.6) contributes
log b(z, €), so there is no log 1 term as € — 0. O

According to Theorem 3.1, for n odd the renormalized volume V' is an absolute
invariant of the conformally compact Einstein metric g,. But this is not so if n is
even. Suppose g and § = €T g are two metrics in the conformal infinity of g, where
T € C®(M). The difference V, — Vj is the constant term in the expansion of (3.6).
By the local determination of the v¥) and of the expansion of b(z, €), we see that this
anomaly takes the form ‘

Vi-Vo= /M'Pg(r)dvy »

where P, is a polynomial nonlinear differential operator whose coefficients are poly-
nomial expressions in g, its inverse, and its derivatives. Moreover, it is easy to see
that the linear part in Y of P,(T) is just v™7Y. Since this linear part measures the
infinitesimal change under conformal rescalings, V; — V; is determined by knowledge
of v for general g. In summary, for n even, the fundamental object is the function
v(™W—its integral over M is by (3.5) the conformal invariant L, and multiplication by
it gives the infinitesimal anomaly, which determines the full anomaly.

It is straightforward to carry out the calculations indicated above to identify v(™
and P, in low dimensions. For n = 2 one obtains

W= 2R, Py(T) = —3(RT + T,

so L = —mx(M), where x(M) denotes the Euler characteristic of M.
For n = 4 one obtains

(4) = ‘[( t)2 1]P”]
Py(Y) = WY + TijT'TJ - P,-jT"I" - E('I‘.-'I”")2 + ijTiTi .

The Gauss-Bonnet Theorem for n = 4 reads

a2xx(M) = [ (WP~ 8PP+ 8(P

M

where

Wikt = Riju — (Picgjt + Pjgic — Pugie — Pjkgat)
is the Weyl conformal curvature tensor. Therefore

L= (M) - & f W do
=X 64 g
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For n = 6 one obtains
1 ; ) o )
v® = 2 [=PYBy + 3P PuP" — 2P, PP — (P)Y,
where
Bij = Pyx* — Pu* — P Wiiji.

Again there is an explicit realization of L = [, v(®du, as a linear combination of the
Euler characteristic and the integral of a local conformal invariant. Define

Cijx = Pijx — Pixj

and set -
Vijktm = Wijkim + 9imCint — 9imCiti + gkmClij — 9imChij
and
Uijki = Cikri — PMWhjnt -
Then

I =|V|* - 16W;;uU7* + 16|C?
is a conformal invariant in general dimension n > 3; it is the norm-squared of the

first covariant derivative of the curvature tensor of the ambient metric of [7]. One can
calculate that for n = 6,

3 1
L= ——G—x(M) +m/MJdvg,

J = =31 + TW W, WHPT - 4W, Wrkawi 1
For H**!, using (2.4) it is possible to calculate the invariants V for n odd and L for
n even. From (2.4) one obtains

(detgr)l/z =(1- ,,,2)n

det go

where

so recalling that 4go is the usual metric on S”, it follows from (3.1) that
1
(3.7) Vol({r > ¢}) = 2-"Area(S") / Pl = 12)hdr

For n odd, write
1 1 1
/ TN 1 = r?)dr = —E/ (1 =7rH)"d(r ™)
€ €

1 1

=—€"1-€)" ~ 2/ AR (I L/

n €

The boundary term has no constant term in ¢, so upon applying the same procedure

inductively it follows that [ ' =7=1(1 — r2)"dr has constant term

(=2 nm-1)... () 1 e
a(n—2)...1 /0(1—r) dr.
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Collecting the constants, one finds

s

L)

V=(-1)"%

For n = 2m even, expand (1 — r2)" using the binomial theorem; it follows that the
log ! coefficient in the expansion of f: r Y1 —r?)"dr is (-1)™ ( :L ) Substituting
into (3.7) and simplifying gives

2™
— (_1\m
L=(-1) purd

A more familiar setting for conformal anomalies is in the study of functional deter-
minants of conformally invariant differential operators. The invariance properties of
V are reminiscent of those for the functional determinant of the conformal Laplacian,
which is conformally invariant in odd dimensions but which has an anomaly in even
dimensions ([17]). We remark that the AdS/CFT correspondence predicts that the
volume anomaly for n = 4 is a particular linear combination of functional determinant
anomalies on scalars, spinors, and 1-forms; this prediction was confirmed in [12]. The
properties of the invariant L are, on the other hand, similar to those for the constant
term in the expansion of the integrated heat kernel for the conformal Laplacian, which
vanishes in odd dimensions but in even dimensions is a conformal invariant obtained
by integrating a local expression in curvature ([4], [17]).

4. AREA RENORMALIZATION

Let (X™*! g,) be a conformally compact Einstein manifold with conformal infinity
(M, [g]) as above. In this section we describe the renormalization of the area of minimal
submanifolds Y C X of dimension k41, 0 < k < n — 1, which extend regularly to X.
Set N =Y N M. We assume that N is a smooth submanifold of M. We will outline
the arguments and refer to [9] for details.

First one must study the asymptotics of Y near M. Locally near a point of N,
coordinates (z“,u"') for M may be chosen, where 1 < a < kand1 <o <n-k,
so that N = {u = 0} and so that 8« L d,. on N with respect to a metric in the
conformal infinity of g,. Choose a representative metric g for the conformal infinity
and recall that this choice determines by Lemma 2.1 a defining function r for M
and an identification of a neighborhood of M in X with M x [0, ¢). This identification
determines an extension of the z® and u® into X, and together with r these form a local
coordinate system on X. We consider submanifolds Y which in such coordinates may
be written as a graph {u = u(z,r)}. One can calculate the minimal surface equation
for Y explicitly as a system of differential equations for the unknowns u® (z, 7). These
equations together with the boundary condition u(z,0) = 0 are used to study the
asymptotics of u(z,r) at 7 = 0. One finds (see [9]) that for k odd

(4.1) u=u®r? + (even powers) + uFHDrk+l o k42pk2 4
and for k even

(4.2) u = uPr? + (even powers) + u®r¥ + wrkt2logr 4 ub+rk+2 4
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where the u0) and w are functions of z, all of which are locally determined except for
u*+2) and the ... indicates terms vanishing to higher order. Observe in particular that
the minimal submanifold Y is determined to order k+2 by N = Y, that the expansion
of u is even in 7 to order k + 2, and that the irregularity in the expansion occurs at
order k + 2. The consequence 0,u = 0 at 7 = 0 has the geometric interpretation that
Y intersects M orthogonally, a fact very familiar from the geometry of geodesics in
hyperbolic space. For the case k = 0 of geodesics it turns out that necessarily w = 0,
and the local indeterminancy in this case of u(? is a reflection of the familiar fact that
at the boundary a geodesic may have any asymptotic curvature measured with respect
to the smooth metric g.

Next one calculates the metric induced on Y by the conformally compact Einstein
metric g,. The area form day of Y takes the form

(4.3) day =r7F1 [1 + a@r? 4 (even powers) + a®)rf 4 . ] daydr,

where the ... indicates terms vanishing to higher order and day denotes the area
form on N with respect to the chosen conformal representative g on the boundary. All
indicated a¥) are locally determined functions on N and a®) = 0 if k is odd. A key
observation in establishing (4.3) is that since the induced metric depends only on u
and its first coordinate derivatives, the local indeterminacy and irregularities at order
k+2in u and those at order n in the metric g, given by (2.7), (2.8) do not enter into
the asymptotics of the area form to the indicated order. The evenness of r*+!day then
follows from that of g, and of u.

Now we can consider the asymptotics of Areay, (Y N{r > €}) as € = 0. Pick a small
number rq and express Area(Y N{r > ¢}) =C + fYﬁ{e(r(rO} day. By (4.3) we obtain
for k odd

Area(Y N {r > €}) = boe* + bye ¥+? + (even powers) + by_ ¢!

+ A+ 0(1)
and for k even
(4.4) Arca(Y N {r > €}) = bpe™* + bye 2 + (even powers) + by_oe2
' +Klogt+ A+o(1).

Observe that
(4.5) Kzfa(k) day .
N

The analogue of Theorem 3.1 is the following, which is proved by a similar argument.

Theorem 4.1. If k is odd, then A is independent of the choice of g.
If k is even, then K is independent of the choice of g.

Therefore, for k odd, a minimal submanifold of X has a well-defined invariant renor-
malized area A. For k even, the log% coefficient K is a conformal invariant of the sub-
manifold N of M given according to (4.5) by the integral of an expression determined
locally by the geometry of N C M with respect to the metric g.

Analogously to the volume case, there is a conformal anomaly for A when k is
even. If § = €?Tg is a conformally related metric, then the local determination of the



VOLUME AND AREA RENORMALIZATIONS FOR CONFORMALLY COMPACT,,... 41

coefficients a¥”) in (4.3) and of the defining function 7 as in Lemma 2.1 implies that

Ag - Ag = [v QN(T)daN

for a differential expression Qy determined locally by the geometry of N C M. One
interesting difference from the volume anomaly is that the linearization of Qn(Y) need
not be just a® T-it can in general involve derivatives of T as well. However it is clear
from rescaling in (4.4) that Qn(Y) = a®)Y for T constant.

The invariant K and the anomaly for the lowest dimensional cases k& = 0,2 are
calculated in [9]. For k =0, Y is a union of geodesics in X and N consists of finitely
many points. Of course a point has no geometry and the conclusions are rather trivial;
one finds that K is the number of boundary points, @ evaluates T at a boundary point,
and the anomaly is given by 43 — Ay = 37y T(p). To describe the k = 2 results
recall that the second fundamental form of N C M with respect to the metric g is
the symmetric form B;’l[, on TN with values in TN* defined by B(X,Y) = (VxY)*
for vectors X,Y € TN; here V denotes the Levi-Civita covariant derivative of g;; and
1 the component in TN+t. On N, the metric g;; decomposes into two pieces g,s and
gop- The mean curvature vector of N is HY = g“ﬁBg’ﬂ. The tensor P given by (2.10)
also decomposes into pieces with respect to the decomposition TM = TN & (TN)*; we
denote by Py its component with both indices in TN (not the corresponding tensor
for the induced metric gup). Then for k = 2 one finds

(4.6) K= “% / ([HP? + 49°° Pas)dan
N

and
1 1 ) .
QN(T) = -—-—é(lH'i‘2 + 4g°ﬂPaﬂ)T + Z(H7 T.yl - TiTz) .

The quantity defined by (4.6) is therefore a conformal invariant of a surface N in
a conformal manifold M. For conformally flat space this reduces to a multiple of the
Willmore functional (for which, see, e.g., [5]). Other generalizations of the Willmore
functional to curved conformal spaces are given in [6] and [21].

A different conformal anomaly associated to a surface in a conformal 6-manifold is
discussed in [13].

REFERENCES

[1] M. Anderson, Complete minimal varieties in hyperbolic space, Invent. Math. 69 (1982), 477-494.

[2] M. Anderson, Complete minimal hypersurfaces in hyperbolic n-manifolds, Comment. Math. Helv.
58 (1983), 264-290.

[3] D. Berenstein, R. Corrado, W. Fischler and J. Maldacena, Operator product expansion for Wilson
loops and surfaces in the large N limit, Phys. Rev. D 59 (1999), 105023, hep-th/9809188.

[4] T. Branson and B. @rsted, Conformal indices of Riemannian manifolds, Comp. Math. 60 (1986),
261-293.

[5] R. Bryant, Surfaces in conformal geometry, in The Mathematical Heritage of Hermann Weyl,
Proc. Symp. Pure Math. 48, Amer. Math. Soc. (1988), 227-240.

[6] B.-Y. Chen, Some conformal invariants of submanifolds and their applications, Bol. UM.L 10
(1974), 380-385.



42 C.R.GRAHAM

[7] C. Fefferman and C.R. Graham, Conformal invariants, in Elie Cartan et les Mathematiques
d’Aujourd’hui, Asterisque (1985), 95-116.

[8] C.R. Graham and J. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv.
Math. 87 (1991), 186-225.

[9] C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT cor-
respondence, Nucl. Phys. B 546 (1999), 52-64, hep-th/9901021.

[10] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string
theory, Phys. Lett. B 428 (1998), 105-114, hep-th/9802109.

[11] R. Hardt and F.-H. Lin, Regularity at infinity for area-minimizing hypersurfaces in hyperbolic
space, Invent. Math. 88 (1987), 217-224.

[12] M. Henningson and K. Skenderis, The holographic Weyl anomaly, J. High Ener. Phys. 07 (1998),
023, hep-th/9806087; Holography and the Weyl anomaly, hep-th/9812032.

[13] M. Henningson and K. Skenderis, Weyl anomaly for Wilson surfaces, hep-th/ 9905163.

[14] F.-H. Lin, On the Dirichlet problem for minimal graphs in hyperbolic space, Invent. Math. 96
(1989), 593-612.

[15] F.-H. Lin, Asymptotic behavior of ares-minimizing currents in hyperbolic space, Comm. Pure
Appl. Math. 42 (1989), 229-242.

[16] J. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor.
Math. Phys. 2 (1998), 231-252, hep-th/9711200.

[17) T. Parker and S. Rosenberg, Invariants of conformal Laplacians, J. Diff. Geom. 25 (1987),
199-222.

[18] A.M. Polyakov, Fine structure of strings, Nucl. Phys. B 268 (1986), 406-412.

[19] D. Skinner, PhD. thesis, in preparation.

[20] Y. Tonegawa, Ezistence and regularity of constant mean curvature hypersurfaces in hyperbolic
space, Math. Z. 221 (1996), 591-615.

[21] J. Weiner, On a problem of Chen, Willmore, et.al., Ind. Univ. Math. J. 27 (1978), 19-35.

[22] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998), 253-290,
hep-th/9802150.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WASHINGTON

Box 354350

SEATTLE, WA 98195-4350, U.S.A.
E-mail: ROBINQMATH.WASHINGTON.EDU



