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RENDICONTI DELCIRCOLO MATEMATICO DI PALERMO 
Scrie II, Suppl. 63 (2000) pp. 165-172 

A NOTE ON n-ARY POISSON BRACKETS 

PETER W. MICHOR AND IZU VAISMAN 

ABSTRACT. A class of n-ary Poisson structures of constant rank is indicated. Then, 
one proves that the ternary Poisson brackets are exactly those which are defined by 
a decomposable 3-vector field. The key point is the proof of a lemma which tells that 
an n-vector (n > 3) is decomposable iff all its contractions with up to n - 2 covectors 
are decomposable. 

In the last years, several authors have studied generalizations of Lie algebras to 
various types of n-ary algebras, e.g., [5, 12, 9, 11, 15]. In the same time, and intended 
to physical applications, the new types of algebraic structures were considered in the 
case of the algebra C°°(M) of functions on a C7°° manifold M, under the assumption 
that the operation is a derivation of each entry separately In this way one got the 
Nambu-Poisson brackets, e.g., [12, 6, 1, 4, 7], and the generalized Poisson brackets 
[2, 3], etc. In this note, we write down the characteristic conditions of the n-ary 
generalized Poisson structures in a new form, and give an example of an n-ary structure 
of constant rank 2n, for any n even or odd. Then, we prove that the ternary Poisson 
brackets are exactly the brackets defined by the decomposable 3-vector fields. The key 
point in the proof of this result is a lemma (that seems to appear also in [16]), which 
tells that an n-vector P is decomposable iff i(a\)...i(ak)P is decomposable, for any 
choice of covectors ai, ...,ajb where k is fixed, and such that 1 < k < n - 2. 

Our framework is the C°° category. If M is an m-dimensional manifold, an n-ary 
Poisson bracket or structure (called generalized Poisson structure in [2, 3]), with the 
Poisson n-vector or tensor P, is a bracket of the form 

(i) {/i,.»,/»} = P(dfu...,dfn) (fu...,fnecr»{M)), 
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where P € F An TM is an n-vector (i.e., a completely skew-symmetric contravariant 
tensor) field, and the following generalized Jacobi identity of order n [11] is satisfied 

(2) £ (^nor){{/.1,...,/aJ,/an+1,...,/(72n_1}-0, 
aeS2n-i 

S2n-i being the symmetric group. 
For n = 2 the bracket is a usual Poisson bracket e.g., [14]. In this note, we always 

assume n > 3. 

Proposition 1. The n-vector Geld P G T An TM defines an n-ary Poisson bracket 
iff either n is even and the Schouten-Nijenhuis bracket [P,P] = 0, or n is odd and P 
satisfies the conditions 

(A) (i(a)P) A (i(P)P) = 0 Vaje TM, 

m 

(D) £( i(dz")P)A(L a / a i UP) = 0, 
U=\ 

where (xu) are local coordinates on M, and L denotes Lie derivative. 

Proof. The left hand side of (2) contains only first and second order derivatives, and 
is skew symmetric in the arguments f{. Hence, to ensure (2) it is enough to ask it to 
hold for the case of the local functions fa = x°', (i = 1,..., 2n - 1), and for the case of 
the functions /i = xuxv, fi = xa\ (i = 2, ...,2n - 1), at x = 0. In the first case the 
result is 

n o 
(3) V ^ pu[a\...an-i _^_pan...a2n-i] = Q 

^ dru ' 
u=l u x 

and in the second case the result is 
t ^ \ pv[a2...anpan+i...a2n-i]w , pw[a2...anpan+i...a2n-i]v _ n 

where square brackets denote index alternation. Now, (4) is equivalent to (A) if n is 
odd, and it is an identity if n is even. Then, (3) is equivalent to (D), and the use of 
the coordinate expression of the Schouten-Nijenhuis bracket (e.g., [14]) shows that, for 
n even, (D) is equivalent to [P, P] = 0. Q.e.d. 

We call (A) and (D) the algebraic and the differential condition, respectively. The 
coordinate expressions (3), (4), and their equivalence with [P^P] — 0 in the n-even 
case, were also established in [2, 3]. In the n-odd case, the differential condition (D) 
has no independent invariant meaning, and it must be associated with the algebraic 
condition (A). 

It is also important to notice that, since (A,D) always hold at the zeroes of P, P 
defines an n-ary Poisson bracket iff it does so on the subset U C M where P ^ 0. 

Before going on, we need some general facts about n-vectors P € AnL, where 
L is an m-dimensional (e.g., real) linear space. First, P defines a linear mapping 
j)p : An~xL* -* L given by 

(5) %P(\)=i(\)P, \eAn~lL*. 

We will say that rank Jp = dimimfa is the rank of P. (This definition is equivalent 
with the one used in older books on exterior algebra e.g., [10], which refered to L* 
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rather than L, and where the vectors of im$P were seen as the right hand side of the 
equations of the adjoint system of P.) 

If rankP = dimL, we say that P is non degenerate (regular in [10]). On the other 
hand, if rank P = n, P is decomposable i.e., there are vectors Wa G L (a = 1, ...,n) 
such that P = W\ A ... A JVn. We recall the existence of classical decomposability 
conditions known as the Pliicker conditions e.g. [8], which we will write down later, 
in the proof of Lemma 3. 

The skew symmetry of P implies im$P = Ann(A(P)), where A(P) := {a G 
L* Ii(a)P = 0}, hence, rankP = m - dimA(P). Notice also that P G An(imjtp). 
Indeed, if L = im (Jp © if, we have an expression 

-P= £ QuASv, Q u 6 A u ( i m f p ) , S , 6 A ^ 
u-t-v:=n 

and, since K* may be identified with A(P), the previous expression reduces to P = Qn. 
On the other hand, if P G AnU, where U is a subspace of L, irajjp C U. Therefore, 
im j(p is the minimal subspace S of L such that P G AnS. 

The n-vector P will be called irreducible if there is no decomposition im ftp = Si ©S2 

where dim Si = n, and where P = Px + P2 with 0 ^ Px G AnSb 0 ^ P2 G AnS2. If 
such a decomposition exists, P is reducible, and, because VA G An_1L*, i(A)P = 
i(\)P\ + i(X)P2, we have Si = im$Pl, S2 = imjtp2. From these definitions, it follows 
that any n-vector P may be (non uniquely) written under the form 

5 - 1 

(6) P = £V i n + lA. . .AV i n + n - rP ' , 

where Va (a = 1,..., sn) are independent vectors and P' G AnU, where U is a comple­
ment of span {Va} in L, is irreducible with rank P' = rankP — sn. 

An n-vector P, which satisfies condition (A) Va,/? G L*, must be irreducible since 
otherwise, and with the notation above, we have (i(a)P) A (i(P)P) ^ 0 if i(a)Px ^ 0, 
i(a)P2 = 0, i(/?)Pi = 0, i(0)P2 ^ 0. Of course, if rankP < 2n - 2, P is irreducible 
and (A) is an identity. 

Now, we come back to the manifold M. Then, if P G T An TM, rank P is a lower 
semicontinuous function on M. The following Proposition gives an interesting class 
of Poisson, but not Nambu-Poisson, generally, n-vectors, for an arbitrary even or odd 
order n. A first example of an n-ary Poisson structure of an even order n was given 
in [2], and it was a linear structure on the dual of a simple Lie algebra. We know 
of no previous examples of n-ary Poisson structures which are not Nambu-Poisson 
structures. 

Proposition 2. Assume that P G T An TM, and that Va: G M there is an open 
neighbourhood Ux such that P/ux can be written as 

(?) P = Mf ! Ml £ (riS™)^ A - A V'» A W°w A - A W*»> 
n.\n nj. aeSn 

where S„ is the permutation group, (V^Wj) (i,j - l,...,n) are independent vector 
fields on Ux, and h is a fixed integer such that 0 < 2/i < n - 3. Then P is a Poisson 
n-vector of constant rank, equal to 2n ifh ^ 0, and to nifh = 0. 
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Proof. The condition on h was chosen such that the left hand sides of (A) and (D), as 
well as [F, F], consist of sums of wedge products where at least one of the vectors Wj 
must be wedge multiplied by itself. If h = 0, F = W\ A... A Wn i.e., F is decomposable 
and of rank n. If h ^ 0, by using a basis of vectors that starts with (Vi, Wj) and its 
dual cobasis in order to obtain generators of im$P, we see that im$p = span{Vi,Wj} 
hence, rank P = 2n. (The particular case of an even order, decomposable n~vector F 
was noticed in [3].) Q.e.d. 

We will say that a tensor F of form (7) with h ^ 0 is a semi-decomposable n-vector. 
An n-ary Poisson structure (bracket) defined by a (semi-) decomposable n-vector field 
will be called a (semi-)decomposable n-ary Poisson structure (bracket). 

Lemma 3. Let L i>e an m-dimensional vector space, and P G AnL. Tnen F is 
decomposable iff for any fixed number k such that 1 < k < n — 2, and any set of k 
covectors au G L* (u = 1,..., k), the (n - k)-vector i(a\)...i(ak)P is decomposable. 

Appearently, this lemma is included in formula (4), page 116 of [16]. Our proof is 
different. 
Proof. It is enough to prove the result for k = 1, and, on the other hand, the proof 
and the result do not hold for k > n — 2. 

As already recalled, decomposability of F is characterized by the Pliicker conditions. 
These may be written in one of the following equivalent forms [8]: i) W G im$P, 
V A F = 0, ii) VA G An-1L*, (i(X)P) A F = 0. (The first form of the conditions 
is rather obvious, and the second is equivalent since i(X)P are exactly the vectors of 
im$P.) 

From 

i(a)[(t(/i)i(<*)P) A F] = ~[i(p)(i(a)P)} A (i(a)P (a eL*,pe An~2L*), 

we see that if F satisfies condition ii), i.e., if F is decomposable, so are all i(a)P, 
aeL*. 

Now, assume that all i(a)P are decomposable, and take e1 G L* such that i(e1)P 7-
0. Then, 3ea G ker e1 C L (a = 2,..., n) such that 

(8) i(e1)F = e2A...Aen. 

Let us also take e\ G L such that el(e\) = 1, and denote by L\ the n-dimensional 
subspace span{e\,..., en} of L, and by L2 an arbitrary complement of span{e2,..., en} 
in kere1. Then L = L\ 0 L2, and we have an expression 

(9) P = pe1A...Aen + " y ; ^ ' A ^ " + Pf:', 
1=1 

where p G R, P[ G An_iLi, P" G AiL2, Pn £ AnL2. Moreover, (8) implies p = 1 and 

(10) i(c1)/? = 0 ( * = l , . . . l n - l ) . 

(If some P" = 0 we will also assume P[ = 0.) 
Let el G L* be covectors which vanish on L2, and are such that el(ej) — 8l- (i,j = 

l,...,n). According to our hypothesis, the (n - l)-vectors 

i(ea)P = ( -1Y - I
e i A ... A e0 A ... A en + £ ( i ( e 0 ) ^ ) A P» 
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(a = 2, ...,n), where the hat denotes the absence of the factor, must also be decom­
posable. In view of (10), for 

A = e1 A ... A ea A ... A eb A ... A en (67- a), 

we have i(X)i(ea)P = ±eb, where 6 = 2, ...,n, and the sign depends on whether a < b 
or b < a, and the Pliicker condition ii) yields 

(11) e6 A (i(ea)P) = £ eb A (.(e»)J*) A P? = 0. 
2 = 1 

This implies eb A (i(ea)P() = 0, i = l,...,n - 1, and the (n - i - l)-vector i(ea)Pf
{ 

belongs to the ideal generated by e2 A ... A ea A ... A en. Therefore, i(ea)P[ = 0, except 
for i = 1, and, using again (10), 

i(ea)P[ = «e2 A ... A ea A ... A en (/c G R). 

Accordingly, 

P{ = ( - l ) a - ^ e 2 A ... A ea A ... A en, P^ = 0, ..., P ^ = 0, 

and we deduce 

(12) P = e2 A ... A en A ( ( - l ) " " ^ + (-l)a~lP[') + K-

In other words, P is reducible. But, then, if we take a = /3 + 7 £ L*, where /? vanishes 
on the second term of (12) but not on the first, and 7 vanishes on the first term but 
not on the second, we see that i(a)P is not decomposable unless P£ = 0. Hence, our 
P must be decomposable. Q.e.d. 

The decomposable n-vectors P7-O are important because they define the n-planes, 
via irajip. Va G L*, one has 

(13) im Ji(Q)P C (ker a) n (im jjF), 

while, if i(a)P ^ 0, the subspaces in the right hand side of (13) are transversal in L, 
and the intersection has the dimension rank P—1. Hence, if rank (i(a)P) = rank P—1 
one has 

(14) im jJi(Q)p = (ker a) n {im UP), 

In particular, this is always true if P is decomposable. 
Notice that, because of (6), if P is reducible, 3a G L* such that i(a)P 7-: 0 and 

rank(i(a)P) < rank P - n < rankP - 1. Therefore, if (14) holds Va G L* with 
i(a)P 7̂  0 hence, rank (i(a)P) = rankP - 1, P is irreducible. 

Now, as a particular case of Lemma 3 we get 

Lemma 4. Let L be an m-dimensional linear space, and P G A3L. Then, ifP satisfies 
condition (A), Va,/? G L*, P is decomposable. 

Proof. For any a G L*, the bivector Q = i(a)P is decomposable, since condition 
(A) implies Q A Q = 0, and in the case of a bivector this is equivalent with the 
Pliicker decomposability condition ii) above. Indeed, if Q is decomposable, obviously 
Q A Q = 0. Conversely, Q A Q = 0 implies 

t(a)(Q A Q) = 2z(a)Q A Q = 0, Va G L\ 

Therefore, the result follows from Lemma 3. • 
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From Proposition 2 and Lemma 4 we get 

Theorem 5. A 3-vector Geld P de&nes a ternary Poisson bracket on the manifold M 
iff, around every point x 6 M, P is decomposable. 

In particular, there is no differential condition to be imposed on a Poisson trivector, 
since condition (D) is a consequence of decomposability. 

Let us also notice 

Corollary 6. A ternary Poisson bracket is a Nambu-Poisson bracket iff the distribu­
tion imttp is involutive. 

This follows from the well known fact that, where non zero, a Nambu-Poisson bracket 
is a Jacobian determinant e.g., [1, 6], 

We finish by a few more related remarks. 
First, it is known that all the Nambu-Poisson tensors are decomposable. This follows 

from the fact that they must satisfy the algebraic condition [12] 
n 

(Nl) Sr^1pbi...bk_xubk+i...bnpva2-.an-\bk , pbi...bk-ivbk+i...bnpua2.an-ibki _ Q 

k=l 

In [1] there is an algebraic proof of the fact that (Nl) implies decomposability. Lemma 
3 above allows for a very short proof of the same result. Namely, (Nl) is equivalent to 

(N2) i(a)P A i(*)t(/?)P + i(0)P A i($)i(a)P = 0, 

Va,/3 € T*M and V$ € An~2T*M, and (N2) is the polarization of the, once more 
equivalent, condition 

(N3) i(a)P A i($)i(a)P = 0 Va e T*M, V$ <E An~2T*M. 

By the Pliicker relations this means that i(a)P is decomposable for all a £ T*M, 
which by Lemma 3 is equivalent to P being decomposable. 

The above proof clarifies the relation between the Pliicker and the Nambu decom­
posability conditions. 

Second, an n-ary Poisson structure P of constant rank defines a tensorial G-structure 
on the manifold M, and it is natural to ask what are the integrability conditions of 
this structure. Following are two examples of integrable structures, written by means 
of the corresponding systems of local coordinates: 

/ i - x ~ 1 \—w • x d d d d 

(15) p _ — —-- y (signa)-—A...A-—A- A ... A , 
x } h\(n - h)\ 4_?n

 dyai dyah dxah+1 dx<Tn 

8-1 Q Q 

(16) p = E dx2iu+i A - A ax2(iu+uy-

In (16), we have an integrable Poisson n-vector where n = 2u is even, and the n-vector 
is reducible and does not satisfy condition (A). We may say that P of (16) is the 
generalization of a symplectic structure since the latter can be defined by the same 
formula for n — 2. 
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The last remark is that, if a tensor field P defines a (semi-) decomposable n-ary 
Poisson structure on a manifold M, there is an interesting Grassmann subalgebra on 
M, namely, EM = TflM where 

(17) E«M := {U G r Aq TM / Va G TM, (i(a)P) A (z(a)U) = 0}. 

On EM, a differential operator S : YflM -» W+n~lM may be defined by 

m 

(18) <5U = £((t(dx")P) A (Ld/dx»U) + (i(dx«)U) A (Ld/dxuP)), 
U~l 

where (xu) are local coordinates on M. The fact that S is well defined follows by 
the same argument as in the proof of Proposition 2, while using the polarization of 
condition (17) with respect to a. 

In particular, P G EnM and SP = 0, and for V/ € C°°(M), / G E°M and 5f == 
i(df)P. Generally, we do not have S2 = 0, and only the twisted cohomology kerS/(imSD 
kerS) [13] can be considered. 
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