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A NOTE ON n-ARY POISSON BRACKETS
PETER W. MICHOR AND IZU VAISMAN

ABSTRACT. A class of n-ary Poisson structures of constant rank is indicated. Then,
one proves that the ternary Poisson brackets are exactly those which are defined by
a decomposable 3-vector field. The key point is the proof of a lemma which tells that
an n-vector (n > 3) is decomposable iff all its contractions with up to n — 2 covectors
are decomposable.

In the last years, several authors have studied generalizations of Lie algebras to
various types of n-ary algebras, e.g., [5, 12, 9, 11, 15]. In the same time, and intended
to physical applications, the new types of algebraic structures were considered in the
case of the algebra C*°(M) of functions on a C* manifold M, under the assumption
that the operation is a derivation of each entry separately. In this way one got the
Nambu-Poisson brackets, e.g., [12, 6, 1, 4, 7], and the generalized Poisson brackets
(2, 3], etc. In this note, we write down the characteristic conditions of the n-ary
generalized Poisson structures in a new form, and give an example of an n-ary structure
of constant rank 2n, for any n even or odd. Then, we prove that the ternary Poisson
brackets are exactly the brackets defined by the decomposable 3-vector fields. The key
point in the proof of this result is a lemma (that seems to appear also in [16]), which
tells that an n-vector P is decomposable iff i()...i(ax) P is decomposable, for any
choice of covectors vy, ..., ok, where k is fixed, and such that 1 <k <n - 2.

Our framework is the C* category. If M is an m-dimensional manifold, an n-ary
Poisson bracket or structure (called generalized Poisson structure in [2, 3]), with the
Potsson n-vector or tensor P, is a bracket of the form

(1) {f1,s fu} = P(dfr, dfn)  (fr, s fa € C%(M)),
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where P € I' A* TM is an n-vector (i.e., a completely skew-symmetric contravariant
tensor) field, and the following generalized Jacobi identity of order n [11] is satisfied

(2) Z (SigTIU){{fgl, B fan}r f6n+n ] fﬂzn—x} =0,
0€Sm-1
Son-1 being the symmetric group.
For n = 2 the bracket is a usual Poisson bracket e.g., [14]. In this note, we always
assume n > 3.

Proposition 1. The n-vector field P € I' A® TM defines an n-ary Poisson bracket
iff either n is even and the Schouten-Nijenhuis bracket [P, P] = 0, or n is odd and P
satisfies the conditions

(A) ((()P) A (i(B)P) =0 Va,f€T*M,
(D) i(i(dap“)P) A (Lajomu P) =0,

where (z*) are local coordinates on M, and L denotes Lie derivative.

Proof. The left hand side of (2) contains only first and second order derivatives, and
is skew symmetric in the arguments f;. Hence, to ensure (2) it is enough to ask it to
hold for the case of the local functions f; = z%, (i = 1,...,2n — 1), and for the case of
the functions f; = z¥z?, fi = 2%, (i = 2,...,2n — 1), at £ = 0. In the first case the
result is

= d
3 Pu[al.“a"_l Pan...agn_|] — 0
®) s - ,

and in the second case the result is
(4) Pu[a;...a..Pa,.H..Aaz,._,]w + PW[ﬂn-‘-ﬂnPﬂn+1---ﬂ2n—1]v — 0’

where square brackets denote index alternation. Now, (4) is equivalent to (A) if n is
odd, and it is an identity if n is even. Then, (3) is equivalent to (D), and the use of
the coordinate expression of the Schouten-Nijenhuis bracket (e.g., [14]) shows that, for
n even, (D) is equivalent to [P, P] = 0. Q.e.d.

We call (A) and (D) the algebraic and the differential condition, respectively. The
coordinate expressions (3), (4), and their equivalence with [P, P] = 0 in the n-even
case, were also established in [2, 3]. In the n-odd case, the differential condition (D)
has no independent invariant meaning, and it must be associated with the algebraic
condition (A).

It is also important to notice that, since (A,D) always hold at the zeroes of P, P
defines an n-ary Poisson bracket iff it does so on the subset U C M where P # 0.

Before going on, we need some general facts about n-vectors P € A"L, where
L is an m-dimensional (e.g., real) linear space. First, P defines a linear mapping
#p : A""1L* — L given by
(5) tp(\) =i(A)P, A€ AL,

We will say that rank § = dimim§p is the rank of P. (This definition is equivalent
with the one used in older books on exterior algebra e.g., [10], which refered to L*



ANOTE ON n-ARY POISSON BRACKETS 167

rather than L, and where the vectors of im }p were seen as the right hand side of the
equations of the adjoint system of P.)

If rank P = dim L, we say that P is non degenerate (regular in [10]). On the other
hand, if rank P = n, P is decomposable i.e., there are vectors W, € L (a = 1,...,n)
such that P = W; A ... A W,. We recall the existence of classical decomposability
conditions known as the Plicker conditions e.g. [8], which we will write down later,
in the proof of Lemma 3.

The skew symmetry of P implies imflp = Ann(A(P)), where A(P) := {a €
L* /i(a)P = 0}, hence, rank P = m — dim A(P). Notice also that P € A™(im{ip).
Indeed, if L = im }p ® K, we have an expression

P= Z QuASy, Qu€ /\u(imﬁP)y S, € A"K,
ut+v=n
and, since K* may be identified with A(P), the previous expression reduces to P = Q.
On the other hand, if P € A"U, where U is a subspace of L, im}p C U. Therefore,
im fp is the minimal subspace S of L such that P € A"S.

The n-vector P will be called irreducible if there is no decomposition im f{p = S;® S,
where dim S; = n, and where P = P, + P, with 0 # P, € A"S}, 0 # P, € A"S,. If
such a decomposition exists, P is reducible, and, because VA € A*!L*, i(\)P =
i(A\)P, + i(A)P,, we have S; = imfp,, S, = im{p,. From these definitions, it follows
that any n-vector P may be (non uniquely) written under the form

s—1

(6) P=Y Vit A . AVingn + P,
i=0

where V, (a =1, ..., sn) are independent vectors and P’ € A"U, where U is a comple-
ment of span {V,} in L, is irreducible with rank P' = rank P — sn.

An n-vector P, which satisfies condition (A) Va, § € L*, must be irreducible since
otherwise, and with the notation above, we have (i(a)P) A (i(3)P) # 0 if i(a)P; # 0,
()P, =0, ()P, =0, i(B)P, # 0. Of course, if rank P < 2n — 2, P is irreducible
and (A) is an identity.

Now, we come back to the manifold M. Then, if P € ' A» TM, rank P is a lower
semicontinuous function on M. The following Proposition gives an interesting class
of Poisson, but not Nambu-Poisson, generally, n-vectors, for an arbitrary even or odd
order n. A first example of an n-ary Poisson structure of an even order n was given
in [2], and it was a linear structure on the dual of a simple Lie algebra. We know
of no previous examples of n-ary Poisson structures which are not Nambu-Poisson
structures.

Proposition 2. Assume that P € I A® TM, and that ¥z € M there is an open
neighbourhood U, such that P/y, can be written as
1

) P= el Y (signo)Vo, A e AV AWy Al AW,
: fgesSn

where S, is the permutation group, (V;,W;) (i,j = 1,...,n) are independent vector
fields on Uy, and h is a fixed integer such that 0 < 2h < n — 3. Then P is a Poisson
n-vector of constant rank, equal to 2n if h # 0, and ton if h = 0.
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Proof. The condition on h was chosen such that the left hand sides of (A) and (D), as
well as [P, P], consist of sums of wedge products where at least one of the vectors W;
must be wedge multiplied by itself. If h =0, P = W)y A...AW, i.e., P is decomposable
and of rank n. If h # 0, by using a basis of vectors that starts with (V;, W;) and its
dual cobasis in order to obtain generators of im fp, we see that imf#p = span{V;, W;}
hence, rank P = 2n. (The particular case of an even order, decomposable n-vector P
was noticed in [3].) Q.e.d.

We will say that a tensor P of form (7) with h # 0 is a semi-decomposable n-vector.
An n-ary Poisson structure (bracket) defined by a (semi-) decomposable n-vector field
will be called a (semi-)decomposable n-ary Poisson structure (bracket).

Lemma 3. Let L be an m-dimensional vector space, and P € A"L. Then P is
decomposable iff for any fixed number k such that 1 < k < n — 2, and any set of k
covectors oy, € L* (u =1,...,k), the (n — k)-vector i(a;)...t(ax) P is decomposable.

Appearently, this lemma is included in formula (4), page 116 of [16]. Our proof is
different.

Proof. It is enough to prove the result for £ = 1, and, on the other hand, the proof
and the result do not hold for £ > n — 2.

As already recalled, decomposability of P is characterized by the Pliicker conditions.
These may be written in one of the following equivalent forms [8]: i) VV € im{p,
VAP =0,1) VA € A" 'L*, (i(\)P) AP = 0. (The first form of the conditions
is rather obvious, and the second is equivalent since i(A)P are exactly the vectors of
imip.)

From

i(@)[(i(w)i(e)P) A P] = ~[i(u) (i() P)| A (i(@) P (a € L*, p€ A"2LY),
we see that if P satisfies condition %), i.e., if P is decomposable, so are all i(«)P,
a€ L.

Now, assume that all i(a)P are decomposable, and take €! € L* such that i(e')P #
0. Then, Je, € kere! C L (a=2,...,n) such that

(8) ()P =exA..Ne,.

Let us also take e; € L such that €!(e;) = 1, and denote by L, the n-dimensional
subspace span{ej,...,e,} of L, and by L, an arbitrary complement of span{es, ..., e, }
in kere!. Then L = L, ® Ly, and we have an expression

n—-1
(9) P=peiA..Ne,+ Y P/ AP'+Py,

i=1
where p € R, P! € A"'Ly, P! € A'L,y, P! € A"L,. Moreover, (8) implies p = 1 and
(10) ()P =0 (i=1,..,n—1).

(If some P! = 0 we will also assume P = 0.) ' .
Let € € L* be covectors which vanish on L, and are such that € (e;) = 0} (4,7 =
1,...,n). According to our hypothesis, the (n — 1)-vectors
n—-1
()P = (=1)* et A Aég A Nen + Y (i(e*)P) AP

i=1
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(e = 2,...,n), where the hat denotes the absence of the factor, must also be decom-
posable. In view of (10), for
A= AL AEAN AN LAS (b#a),

we have i(A)i(e®) P = +e,, where b = 2,...,n, and the sign depends on whether a < b
or b < a, and the Pliicker condition i3) yields

(11) ep A (i(e® Zeb/\ VAP =0.

This implies e, A (i(e*)P{) = 0, 1 = 1,...,n — 1, and the (n — i — 1)-vector i(e®)P;
belongs to the ideal generated by e; A .. /\ €y A ... A en. Therefore, i(e®) P/ = 0, except
for i = 1, and, using again (10),

()Pl =kea A.. AégA...Ae, (k€ R).
Accordingly,
Pl =(-1)*"'kea A .. Aeg A .. Ny, Py =0, ..., P._, =0,
and we deduce
(12) P=eA..Aea A((=1)"tey + (-1)*7'P) + Py

In other words, P is reducible. But, then, if we take & = 8+7 € L*, where 3 vanishes
on the second term of (12) but not on the first, and + vanishes on the first term but
not on the second, we see that i(a)P is not decomposable unless P,/ = 0. Hence, our
P must be decomposable. Q.e.d.

The decomposable n-vectors P # 0 are important because they define the n-planes,
via imf{p. Ya € L*, one has ‘

(13) im fie)p C (kera) N (im fp),

while, if i(a)P # 0, the subspaces in the right hand side of (13) are transversal in L,
and the intersection has the dimension rank P—1. Hence, if rank (i(a)P) = rank P—1
one has

(14) im flia)p = (ker @) N (imp),
In particular, this is always true if P is decomposable.

Notice that, because of (6), if P is reducible, 3o € L* such that i(a)P # 0 and
rank (i(a)P) < rank P — n < rank P — 1. Therefore, if (14) holds Ya € L* with
i(a)P # 0 hence, rank (i(a)P) = rank P — 1, P is irreducible.

Now, as a particular case of Lemma 3 we get

Lemma 4. Let L be an m-dimensional linear space, and P € A3L. Then, if P satisfies
condition (A), Yo, p € L*, P is decomposable.
Proof. For any o € L*, the bivector @ = i(a)P is decomposable, since condition
(A) implies @ A Q@ = 0, and in the case of a bivector this is equivalent with the
Pliicker decomposability condition i) above. Indeed, if @ is decomposable, obviously
QA Q =0. Conversely, Q@ A Q@ = 0 implies

()(QAQ) =2i(a)QAQ =0, VaclL"

Therefore, the result follows from Lemma 3. ' ]
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From Proposition 2 and Lemma 4 we get

Theorem 5. A 3-vector field P defines a ternary Poisson bracket on the manifold M
iff, around every point ¢ € M, P is decomposable.

In particular, there is no differential condition to be imposed on a Poisson trivector,
since condition (D) is a consequence of decomposability.
Let us also notice

Corollary 6. A ternary Poisson bracket is a Nambu-Poisson bracket iff the distribu-
tion im §p is involutive.

This follows from the well known fact that, where non zero, a Nambu-Poisson bracket
is a Jacobian determinant e.g., [1, 6].

We finish by a few more related remarks.

First, it is known that all the Nambu-Poisson tensors are decomposable. This follows
from the fact that they must satisfy the algebraic condition [12]

n
(Nl) Z[Pbl---bk-l"bk+1--~buP'U'12--~“n—lbk + Pbl...bk_lvbk+1..4b“'Puaz...an_|bk] =0.
k=1

In [1] there is an algebraic proof of the fact that (N1) implies decomposability. Lemma
3 above allows for a very short proof of the same result. Namely, (N1) is equivalent to

(N2) i(a)P A i(®)i(B)P +i(B)P A i(®)i(e)P =0,

Va,B € T*M and V® € A" 2T*M, and (N2) is the polarization of the, once more
equivalent, condition

(N3) i(@)P Ai(®)i(@)P =0 VaeT MV e A>T M.

By the Pliicker relations this means that i(a)P is decomposable for all @ € T*M,
which by Lemma 3 is equivalent to P being decomposable.

The above proof clarifies the relation between the Pliicker and the Nambu decom-
posability conditions.

Second, an n-ary Poisson structure P of constant rank defines a tensorial G-structure
on the manifold M, and it is natural to ask what are the integrability conditions of
this structure. Following are two examples of integrable structures, written by means
of the corresponding systems of local coordinates:

1 0 0 0 0
= — ] — AN ANT—A7T—A...
18 P= gy & G gm A e N g e
s—1 ] o
(16) P=3% Hr2intl A N Sy

i=0
In (16), we have an integrable Poisson n-vector where n = 2u is even, and the n-vector
is reducible and does not satisfy condition (A). We may say that P of (16) is the

generalization of a symplectic structure since the latter can be defined by the same
formula for n = 2.
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The last remark is that, if a tensor field P defines a (semi-) decomposable n-ary
Poisson structure on a manifold M, there is an interesting Grassmann subalgebra on
M, namely, M = ¥IM where

(17) SIM = {U e TANTM /VYa € T*M, (i(e)P) A (i()U) = 0}.

On XM, a differential operator § : ZIM — £9+"~1 M may be defined by
(18) oU = Z «(dz")P) A (LajoqxU) + (i(dz*)U) A (Lojaan P)),

where (z*) are local coordinates on M. The fact that & is well defined follows by
the same argument as in the proof of Proposition 2, while using the polarization of
condition (17) with respect to a.

In particular, P € £"M and 6P = 0, and for Vf € C®(M), f € £°M and 6f =
i(df) P. Generally, we do not have 62 = 0, and only the twisted cohomology kerd/(imén
kerd) [13] can be considered.
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