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ON EXTENSIONS OF MEASURES WHICH ARE MAXIMAL WITH RESPECT TO A CHAIN

Grzegorz Plebanek

Let (X,A,u) be a fixed probability measure space and let Z
be a chain of subsets of X. We consider the problem of‘éxtending u
to a measure v defined on the o-algebra o(A v Z), generated by
A and Z.
We say that v 1is a strongly Z-maximal extension of y if v (Z) =
3 u*(Z) for 2 ¢ Z (compare with the notion of Z-maximality, [2],
Definition 2.7). This concept was investigated by Lipecki in the con-
text of finitely additive set functions with valués in an order -com-
plete Abelian lattice group ([4], [5]1). In.particular, he observed
that a strongly Z-maximal extension is unique if it exists ([51,
Proposition 1).
The following theorem is a particular case of Weber’a Satz 3 ([71])

THEOREM 1. If Z 1is well-ordered by inclusion then there exists

a strongly Z-maximal extension of .

In general, the assumption of well-ordering cannot be replaced by
linear ordering of Z ([4]). ' )

Let D(Z) denote the closure of the set {u*(Z)_: Z € 1} 1in the
unit inteéval. Note that D(Z) is countable in case Z is well-
-ordered. In particular |D(Z)| = O, where || stands for the
Lebesque measure on [0,1]. Moreover, u* is continuous from above

on 7 i.e
p¥(NZ') = inf{u*(2Z) : Z € 2"}

for every countable Z' c Z. We will prove the following generaliza-

tion of Theorem 1

This péper is 'in finel form and no version of it will be submitted
for publication elsewhere.
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THEOREM 2. Assume that |D(Z)| = 0 and u* is continuous from
above on 7. Then there exists’a strongly Z-maximal extension of .

We will use the result stated below as Theorem 3. It was proved in
[6] (Théoréme 27). This principle for extending a measure was applied
by Ascherl and Lehn to obtain a generalization of the theorem of
Bierlein ([11]) .

THEOREM 3. Let G be a o-ideal of subsets of X such that
u*(G) =0 for G € G. Then y can be extended to a measure on

o(A v G) vanishing on everitelement of 6.
We also need the following simple lemma.

LEMMA. Let {Y, : i<k} beachain, and {A; : i<k} cA.
Then

u*(g(Ai - Y,)) < g w, (A - Y.

PROOF. We may assume that Y1 > Y2 > +e. D Yk

U (A,-Y.,) = U (A,-Y.,) v (A, -Y,) = (-U A,-Y.)-A ) u (A -Y ).
i<k i i i<k i 7i k "k jek 1 k Ak k
Hence 1y (U (Aifyi)) < u, (U (A;=Y)) + u (A=Y, ). We see that
i<k i<k

Lemma follows by induction.

PROOF OF THEOREM 2. For every Z ¢ 1 choose a measurable cover
of %, say H(Z), such that u(H(Z)) = u*(2). Let G = {H(2)-Z : Z e 1
We will prove that u*(G) = 0 for each set of the form

G

U(H(Zz ) - 2 )

n n n

where Zn e I. Fix € > O. There exists a finite collection of closed
intervals {Ii : i < k} such that

D(Z) < U I, and ] lIi' < €,
i i
since D(Z) is a compact set of Lebesgue measure zero.

* *
Let Ai = U{H(Zn) Y (Zn) € Ii}, Yi = ﬂ{Zn PR (Zn) € Ii} .
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Observe that u(Ai) € Ii and u*(Yi) € Ii by the continuity of u* .
Therefore u_ (A,-Y,) < |I.]| . ‘
* 1 Ti i

The sets Yi form a chain and G c U(Ai—Yi).
i

Using Lemma we have
u, (G < u*(g(Ai‘Yi)) < § u, (B-YL) < E ;| < e

Hence u*(G) = 0 and the rest follows from Theorem 3.

The assumption of the continuity of u* in Theorem 2 is evidently

necessary but it is not sufficient in itself, as the following example
shows.

EXAMPLE. Let I = [0,1], X = {(x,y) € 12 :y > x},
A={(AxI)nX=:A¢eB) where B is the o-field of Borel sets.

Define u((A x I) n X) = |A| and consider the chain 7 = {Zt t t e I},
Zt = (I x [0,t]) n X.

Then p*(Zt) = t, so u* is continuous on Z.

Suppose that v 1is a maximal extension of . Then v(wt) = 0,

where W, = (fo,t] x [t,1]1) n X.

Since X = U{Wt : t € Q}, v cannot be g-additive.
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