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ON EXTENSIONS OF MEASURES WHICH ARE MAXIMAL WITH RESPECT TO A CHAIN 

Grzegorz Plebanek 

Let (X,A,y) be a fixed probability measure space and let Z 

be a chain of subsets of X. We consider the problem of extending y 

to a measure v defined on the a-algebra a(A u Z), generated by 

A and Z. 

We say that v is a strongly Z-maximal extension of y if v(Z) = 

= y (Z) for Z e Z (compare with the notion of Z-maximality, [2], 

Definition 2.7). This concept was investigated by Lipecki in the con­

text of finitely additive set functions with values in an order com­

plete Abelian lattice group ([4], [5]). In^particular, he observed 

that a strongly Z-maximal extension is unique if it exists ([5], 

Proposition 1). 

The following theorem is a particular case of.Weber'a Satz 3 ([7]) 

THEOREM 1. If Z is well-ordered by inclusion then there exists 

a strongly Z-maximal extension of y. 

In general, the assumption of well-ordering cannot be replaced by 

linear ordering of Z ([4]). 

Let D(Z) denote the closure of the set {y (Z) : Z e Z} in the 

unit interval. Note that D(Z) is countable in case Z is well-

-ordered. In particular |D(Z)| = O, where |-| stands for the 

Lebesque measure on [0,1]. Moreover, y is continuous from above 

on Z i.e 

y*(nZ') = inf{y*(Z) : Z e Z'} 

for every countable Z' c Z. We will prove the following generaliza­

tion of Theorem 1 

This paper is in finel form and no version of it will be submitted 

for publication elsewhere. 
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THEOREM 2. Assume that |D (Z) | = O and y* is continuous from 

above on Z. Then there exists
7
a strongly Z-maximal extension of y. 

We will use the result stated below as Theorem 3. It was proved in 

[6] (Theoreme 27). This principle for extending a measure was applied 

by Ascherl and Lehn to obtain a generalization of the theorem of 

Bierlein ([1]) . 

THEOREM 3. Let G be a a-ideal of subsets of X such that 

y (G) = O for G e G. Then y can be extended to a measure on 

a(A u G) vanishing on every element of G. 

We also need the following simple lemma. 

LEMMA. Let {Y. : i < k} be a chain, and (A. : i < k} c A 

Then 

pJU(A. - Y.)) < I
 У
JA. - Y.) 

PROOF. We may assume that Y- => Y
2
 :>...=> Y , . 

. u

k

 ( VV " .\ (Ai-V u (Ak-V = {:\ W - V u ( A k-V 
i<k i<k i<k 

Hence y ( U (A.-Y,)) < y ( U (A.-Y.)) + y (A, -Y, ). We see that 
* i<k

 1 ' l
 * i<k

 x X
 * K K 

Lemma follows by induction. 

PROOF OF THEOREM 2. For every Z e Z choose a measurable cover 

of Z, say H(Z), such that y(H(Z)) = y*(Z). Let G = [H(Z)-Z : Z e Z 

We will prove that y (G) = O for each set of the form 

G = U(H(Z ) - Z ) 
n
 n n 

where Z e Z. Fix e > O. There exists a finite collection of closed 
n 

intervals {I. : i < k} such that 

D(Z) c u I. and I |l.| < e, 
i *• i

 1 

since D(Z) is a compact set of Lebesgue measure zero. 

L e t A, = U{H(Z ) : U*(Z ) e I , } , Y, = n { Z ^ : p*(Z ) e I , } . 
l n n i i n n i 
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Observe that y(A^ e Ii and y* (Yi) e Ii by the continuity of y* . 

Therefore y (A.-Y. ) < 11. I .. 

The sets Y. form a chain and G c U(A.-Y.). Using Lemma we have 

yjG) < yJu(A.-Y.)) < I PJA.-Y.) < J | I | < e 
i i i 

Hence y (G) = O and the rest follows from Theorem 3. 

The assumption of the continuity of y in Theorem 2 is evidently 

necessary but it is not sufficient in itself, as the following example 

shows. 

EXAMPLE. Let I = [0,1], X = {(x,y) e I 2 : y > x}, 

A = { ( A x l ) n X : A e B } where B is the a-field of Borel sets. 

Define y((A x I) n X) = |A| and consider the chain Z = {Z : t e I}, 

Z t = (I x [O,t]) n X. 

Then y (Z ) = t, so y is continuous on Z. 

Suppose that v is a maximal extension of y. Then v(W ) = O, 

where Wfc = ([O,t] x [t,1]) n X. 

Since X = U{W : t e Q}, v cannot be g-additive. 
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