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Abstract

We present a completely new hp-anisotropic mesh adaptation technique for the
numerical solution of partial differential equations with the aid of a discontinuous
piecewise polynomial approximation. This approach generates general anisotropic
triangular grids and the corresponding degrees of polynomial approximation based on
the minimization of the interpolation error. We develop the theoretical background
of this approach and present a numerical example demonstrating the efficiency of this
anisotropic strategy in comparison with an isotropic one.

1. Introduction

Adaptive methods exhibit an efficient tool for the numerical solution of partial
differential equations (PDEs). Our aim is to develop an adaptive technique which is
able to generate general hp-anisotropic grids which can be employed in the framework
of discontinuous Galerkin method based on a discontinuous piecewise polynomial
approximation. The shape of an anisotropic element is extended in one dominant
direction.

The hp-adaptive method allows the adaptation in the element size h as well as
in the polynomial degree p. Several strategies of hp-adaptation have been proposed
over the years, see, e.g., [14] or [11] for a survey. Based on many theoretical works,
e.g., monographs [15] or papers [1, 5, 17] we expect that an error converges at an
exponential rate in the number of degrees of freedom. However, most of hp-adaptive
methods deal with h-isotropic refinement when the element marked for h-refinement
is split (isotropically) into several (usually four in 2D) daughter elements. Some
exception is, e.g., [13] where quadrilateral elements can be split onto two daughter
elements by a line in a either vertical or horizontal direction.

Our goal is to generate anisotropic grids similarly to those ones developed, e.g.,
in [4, 6, 9, 12, 16], for the first order finite volume and finite element methods.
In these works, the Hessian matrices (matrices of second order derivatives) are em-
ployed for the definition of a Riemann metric. Then the highly anisotropic triangular
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Figure 1: An anisotropic element K characterized by hK , h
⊥
K and φK (left), and

an anisotropic element K characterized by r1K , r
2
K and φK with the corresponding

ellipse (right).

grids, which are quasi-uniform in this metric, are constructed. However, the Hes-
sian matrices correspond to the interpolation error for a piecewise linear approxima-
tion. In [2, 3], the Riemann metric (defining the anisotropic mesh) is developed for
a high degree of polynomial approximation. This approach is based on a particular
definition of the magnitude, orientation, and anisotropic ratio for the higher order
derivative of a function u to characterize its anisotropic behaviour. Being inspired
by these papers, we develop here a new strategy which is able to generate anisotropic
triangular grids and the corresponding degree of polynomial approximation for each
element of the mesh. This approach is based on the approximation of the interpola-
tion error in the L∞-norm by the leading terms of the Taylor expansion. The aim is
to keep the interpolation error under a given tolerance and to minimize the number
of degree of freedom.

2. An anisotropic element

In this section, we describe an anisotropy of triangles in a plane domain. Let
K ⊂ R

2 be an acute isosceles triangle, see Figure 1, left. By hK we denote its size
in the direction of its axis, h⊥

K denotes its size in the direction perpendicular of its
axis and φK ∈ [0, π) denotes the angle between its axis and the axis x1, see Figure 1,
left. The triple (hK , h

⊥
K , φK) defines the anisotropy of element K.

We can define the anisotropy in an alternative way. Let λ1
K > 0, λ2

K > 0, and
φK ∈ [0, π). We define the matrix MK by

MK := RT(φK)

(

λ1
K 0
0 λ2

K

)

R(φK) =

(

aK bK
bK cK

)

, (1)

where R(φK) is the the rotation matrix

R(φK) :=

(

cos φK − sinφK

sinφK cos φK

)

(2)
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and RT(φK) is its transpose matrix. Obviously, MK is a symmetric positive definite
matrix having eigenvalues λ1

K , λ
2
K . The equation

xTMKx = aKx
2
1 + 2bKx1x2 + cKx

2
2 ≤ 1, x = (x1, x2) ∈ R

2, (3)

defines an ellipse ǫK with the centre at origin, the semi-axes lengths

r1K = 1/
√

λ1
K , r2K = 1/

√

λ2
K (4)

and the angle between the axis x1 and the major axis of ǫK is φK , see Figure 1, right.
Let K denotes an acute isosceles triangle which is inscribed into ellipse ǫK and

which has the maximal possible area, see Figure 1, right. We say that K is gener-
ated by Mk. Hence, the anisotropy of this triangle K can be defined by the triple
(λ1

K , λ
2
K , φK) or the triple (r1K , r

2
K , φK). With the aid of techniques [7], we can de-

rive direct relations between triples (hK , h
⊥
K , φK) and (λ1

K , λ
2
K , φK) (or (r

1
K , r

2
K , φK)).

Namely, hK = 3
2
r2K and h⊥

K = 2
√
3r1K .

Let ei, i = 1, 2, 3 denote the edges of the triangle K inscribed into ǫK and having
the maximal area. The edges ei, i = 1, 2, 3 are considered as vectors from R

2 given
by their endpoints. In [6] we proved that

‖ei‖MK
=

√
3, i = 1, 2, 3, (5)

where ‖ei‖MK
:=
(

e
T
i MKei

)1/2
is the size of ei in the Riemann metric generated

by MK , compare with Definition 3.1 bellow. Hence, K is the equilateral triangle in
the metric generated by MK .

3. hp-anisotropic meshes

Let the computational domain Ω ⊂ R
2 be bounded with a polygonal bound-

ary ∂Ω. Let Th (h > 0) be a partition of the closure Ω of the domain Ω into a finite
number of closed trianglesK with mutually disjoint interiors. We call Th = {K}K∈Th

a triangulation of Ω and assume that Th is conforming.
Moreover, to each K ∈ Th, we assign a positive integer pK (=local polynomial

degree of polynomial approximation onK). Then we define the set p :={pK ;K∈Th}
and the pair

Thp := {Th,p} (6)

is called the hp-mesh.
For the given hp-mesh Thp, we construct the space of piecewise polynomial dis-

continuous functions by

Shp = {v ∈ L2(Ω); v|K ∈ P pK(K) ∀K ∈ Th}, (7)

where P pK(K) is the space of polynomials or degree ≤ pK onK ∈ Th. The dimension
of Shp can be expressed (for two-dimensional domain) by

Nhp :=
∑

K∈Th

(pK + 1)(pK + 2)/2. (8)

We call this quantity the size of the hp-mesh Thp.
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Finally, by Fh we denote the set of edges of Th. Here the edges e ∈ Fh are
considered as vectors from R

2 given by its endpoints. The orientation of the edges
is arbitrary.

Similarly as in [4, 6, 9, 12, 16], we define the anisotropic triangular grid as a quasi-
uniform grid in a Riemann metric.

Definition 3.1. Let M : Ω → R
2×2 be a continuous mapping such that for each

x ∈ Ω, the matrix M(x) is symmetric and positive definite. Moreover, let v0, v1 ∈ R
2

such that v0 ∈ Ω and v0 + v1 ∈ Ω. The mapping v : [0, 1] → R
2, v(t) = v0 + tv1,

t ∈ [0, 1] defines a straight edge in Ω. Furthermore, we set

‖v‖M :=

∫ 1

0

(

v
′(t)TM(v0 + tv1)v

′(t)
)1/2

dt =

∫ 1

0

(

v
T
1M(v0 + tv1)v1

)1/2
dt. (9)

We call M the Riemann metric on Ω and ‖v‖M defines the size of edge v in the
Riemann metric M.

Remark 3.2. Let us note that if M is constant along v then (9) reduces to ‖v‖M =
(vT

1Mv1)
1/2. Moreover, if M(x) = I ∀x ∈ v (I= the identity matrix) then the size

of v in the Riemann metric M is equal to its length in the Euclidean metric.

In virtue of (5), we define a triangulation corresponding to the metric M.

Definition 3.3. Let ω > 0 be a given constant. Let M be the Riemann metric
defined on Ω, Th be a triangulation of Ω and Fh the corresponding set of edges. We
say that the triangulation Th is generated by metric M if

‖e‖M = ω ∀e ∈ Fh. (10)

Remark 3.4. For the given metric M, there does not exist (except special cases) any
triangulation generated by M in virtue of Definition 3.3. However, we can construct
a triangulation which satisfies (10) approximately by the least square technique,
see [6, 9]. Therefore, we replace (10) by ‖e‖M ≈ ω ∀e ∈ Fh in the sense of the
least square method. Moreover, let us note that for practical reasons, it is sufficient
to evaluate the metric M only in a finite number of nodes x ∈ Ω.

Finally, let P : Ω → [0,∞) be a given function. We define

pK := int

[

1

|K|

∫

K

P(x) dx

]

, K ∈ Th, (11)

where int[a] := ⌊a+1/2⌋ denotes the integer part of the number a+1/2, a ≥ 0. We
call P the polynomial degree distribution function.

We conclude that for the given Riemann metric M and for the given polynomial
degree distribution function P, there exists a hp-mesh Thp = {Th,p}, where Th is
given by Definition 3.3 in the sense of Remark 3.4 and p by (11). Our aim is to
define the metric M and the polynomial degree distribution function P such that
the corresponding hp-mesh is optimal in the sense specified later.
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4. Interpolation error

For simplicity, we deal with the space of functions V := C∞(Ω). Let x̄ =
(x1, x2) ∈ Ω be arbitrary but fixed. Let p > 0 be an integer, we define the inter-
polation operator Πhp : V → P p(Ω̄) such that

∂k

∂xl
1∂x

k−l
2

Πhpu(x̄) =
∂k

∂xl
1∂x

k−l
2

u(x̄)
∀l = 0, . . . , k ,
∀k = 0, . . . , p .

(12)

Therefore, Πhpu is the polynomial function of degree p on Ω which has the same value
and the same values of all partial derivatives up to order p at x̄ as the function u.

Using the Taylor expansion at x̄ = (x̄1, x̄2), we have

u(x) =

p+1
∑

k=0

1

k!

(

k
∑

l=0

(

k

l

)

∂ku(x̄)

∂xl
1∂x

k−l
2

(x1 − x̄1)
l(x2 − x̄2)

k−l

)

+O(|x− x̄|p+2), (13)

where (k
l
) = k!

l !(k−l)!
. From (12) and (13) we obtain

u(x)− Πhpu(x) = Ep
I (x) +O(|x− x̄|p+2), (14)

where

Ep
I (x) :=

1

(p+ 1)!

p+1
∑

l=0

[(

p+ 1

l

)

∂p+1u(x̄)

∂xl
1∂x

p+1−l
2

(x1 − x̄1)
l(x2 − x̄2)

p+1−l

]

(15)

is the interpolation error function of degree p = 0, 1, . . . .
At this point, we consider the following task: Let u ∈ V , x̄ ∈ Ω, ω > 0 and p > 0

be given, we seek a triangle K ′ with barycentre at x̄ such that

(C1) Ep
I (x) ≤ ω for all x ∈ K ′,

(C2) the area (two-dimensional Lebesgue measure) of K ′ is maximal.

The condition (C2) follows from the observation that a mesh having the maximal
possible triangles has a small number of degree of freedom.

Let B1 := {ξ; ξ = (ξ1, ξ2) ∈ R
2, ξ21 + ξ22 = 1} denote the unit sphere (in the

Euclidean metric) in R
2. We define the kth-(scaled) directional derivative of u ∈ V

in x ∈ Ω and in the direction ξ by

dku(x; ξ) :=
1

k!

k
∑

l=0

(

k

l

)

∂ku(x)

∂xl
1∂x

k−l
2

ξl1 ξ
k−l
2 , x ∈ Ω, ξ = (ξ1, ξ2) ∈ B1. (16)

Therefore, from (15) and (16), we have

Ep
I (x) = dp+1u

(

x̄;
x− x̄

|x− x̄|

)

|x− x̄|p+1, p = 0, 1, . . . , x ∈ Ω. (17)
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Figure 2: The curve F p, the domain Gp and the ellipse Hp for p = 3, 4, 5, 6, x̄ = (0, 0)
and the function u given by (20).

Let u ∈ V , x̄ ∈ Ω, ω > 0 and p > 0 be given. We define the sets

F p :=
{

x ∈ R
2; x = x̄+ ξ

∣

∣dp+1u(x̄; ξ)
∣

∣ , ξ ∈ B1

}

, (18)

Gp :=

{

x ∈ R
2; x = x̄+ tξ

(

ω

|dp+1u(x̄; ξ)|

)
1

p+1

, t ∈ [0; 1], ξ ∈ B1

}

, (19)

where p = 1, 2, . . . . If x ∈ F p then the directional derivative dp+1u(x̄, ·) in the
direction (x − x̄)/|x − x̄| is equal to |x − x̄|. Moreover, in virtue of (17) and (19),
Gp is the set such that Ep

I (x) ≤ ω ∀x ∈ Gp. The set F p is one-dimensional continuous
curve in R

2 whereas Gp is two dimensional sub-domain of R2 (it may be unbounded
if dp+1u(x̄; ξ) = 0 for some ξ). Figure 2 shows the curve F p and the domain Gp for
p = 3, 4, 5, 6, x̄ = (0, 0) and the function

u(x1, x2) = 10x10
1 + 2x10

1 x6
2 + x9

1x2 + 2x8
1x

3
2 − x7

1x
5
2 + 8x4

1x
6
2 + 2x10

2 . (20)

From (19) we find that if K is a triangle with the barycentre x̄ such that K ⊂ Gp

for some p then Ep
I (x) ≤ ω for all x ∈ K. In order to minimize the number of degree

of freedom of Shp, the aim is to have triangle K such that K ⊂ Gp and K has the
maximal possible area.

5. Definition of the metric

In the following, with the aid of the results from Section 4, we define the Riemann
metric M and the polynomial degree distribution function P introduced in Section 3.
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Let x̄ ∈ Ω, u ∈ V and p ≥ 1. Let ξmax
p ∈ B1 be the direction which maximizes

|dpu(x̄; ξ)| and ξ⊥p the direction orthogonal, i.e,

ξmax
p := argmax

ξ∈B1

|dpu(x̄; ξ)|, ξ⊥p ∈ B1, ξmax
p · ξ⊥p = 0. (21)

Then we define quantities

hmax
p :=

(

ω
∣

∣dp+1u(x̄; ξmax
p )

∣

∣

)1/(p+1)

, hmin
p :=

(

ω
∣

∣dp+1u(x̄; ξ⊥p )
∣

∣

)1/(p+1)

. (22)

Let us note that hmax
p ≤ hmin

p . Moreover, let φp ∈ [0, 2π) be such that ξmax
p =

(cosφp, sinφp) ∈ B1. Hence, the triple

{hmin
p , hmax

p , φp} (23)

defines the ellipse Hp which touches Gp at the nearest point to x̄, see Figure 2.
Moreover, we have observed experimentally that Hp is almost included in Gp.

Therefore, in virtue of (1), (4) and Definition 3.1, we define the metric M at x̄
by M(x̄) := Mp, where

Mp := RT(φp)

(

1/(hmax
p )2 0
0 1/(hmin

p )2

)

R(φp), K ∈ Th, p ≥ 1, (24)

and R(φp) is given by (2).
Finally, we have to define the polynomial degree distribution function P(x) at

x̄ ∈ Ω. For each integer p ≥ 1 we have matrix M(x̄) := Mp. We seek some criterion
choosing giving the optimal degree of polynomial approximation p. The aim is to
minimize Nhp (=size of the hp-mesh). The area of the element K generated by Mp

is proportional to the area of the ellipse defined by relation ξTMpξ = 1, ξ ∈ B1,
namely |K| = (2

√
3/2)hmax

p hmin
p . If |K| is an average volume of triangles from Th

then we need approximately ⌊|Ω|/|K|⌋ triangles. If p is the degree of polynomial
approximation, the total number of freedom for one element is (p+ 1)(p+ 2)/2 and
the value Nhp can be estimated (up to a constant)

Nhp ≈ (p+ 1)(p+ 2)

2

|Ω|
|K| . (25)

Then we deduce that in order to minimize Nhp, we need to choose the degree of
polynomial approximation p such that

P(x̄) = arg min
p=1,2,...

(p+ 1)(p+ 2)

hmax
p hmin

p

. (26)
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Figure 3: Comparison of the isotropic and the anisotropic hp-adaptation, the de-
pendence of the error in the X-norm with respect to the degree of freedom Nhp, the
total view (left) and the detail (right).

6. Numerical implementation

In Sections 2–5, we developed the method which defines the metric M(x) and
the polynomial degree distribution function P(x) for x ∈ Ω. Hence, in virtue of the
conclusion of Section 3, we have defined the hp-mesh for a given function u ∈ Vh.

The aim is to employ this strategy for the numerical solution of partial differ-
ential equations. Since the exact solution u is unknown, the natural approach is to
apply the previous hp-anisotropic mesh adaptation method to some smoothing of the
approximate solution uhp ∈ Shp. We obtain iteratively better and better hp-grids
and the corresponding approximate solutions. Moreover, for practical computation,
it is not necessary to evaluate M(x) and P(x) for all x ∈ Ω. It is enough to compute
M(xK) and P(xK) for all elements K of the given mesh (xK is the barycentre of K),
similarly as in [6, 9].

We demonstrate the potential of the proposed hp-anisotropic mesh adaptation
method by a comparison with the isotropic hp-adaptation method presented in [8].
We consider the scalar linear convection-diffusion equation (similarly as in [10])

−ε△u− ∂u

∂x1
− ∂u

∂x2
= g in Ω := (0, 1)2, (27)

where ε > 0 is a constant diffusion coefficient. We prescribe a Dirichlet boundary
condition on ∂Ω and the source term g such that the exact solution has the form
u(x1, x2) =

(

c1 + c2(1− x1) + e−x1/ε
) (

c1 + c2(1− x2) + e−x2/ε
)

with c1 = −e−1/ε,
c2 = −1 − c1. The solution contains two boundary layers along x1 = 0 and x2 = 0,
whose width is proportional to ε. Here we consider ε = 10−3.

We solve (27) with the aid of discontinuous Galerkin method with an interior
penalty. Figure 3 shows the convergence of the computational error in the norm
‖ · ‖2X := ‖ · ‖2L2(Ω) + ε| · |2H1(Ω) with respect to the number of degree of freedom.
We observe that the hp-anisotropic mesh adaptation is more efficient. Moreover, the
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Figure 4: Example (E1): the final hp-meshes obtained be the isotropic (top) and
the anisotropic (bottom) hp-adaptation, the total view (left), the detail around the
corner (centre) and the detail of the boundary layer (right).

proposed technique is able to reduce the number of degree of freedom and to keep the
level of the computational error during the optimization of the hp-mesh. Figure 4
shows the final grids obtained by the isotropic and the anisotropic technique.
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