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ÚVODNÍ SLOVO

Tato monografie vznikala během roku 2012 na Katedře didaktiky matema-
tiky Matematicko-fyzikální fakulty Univerzity Karlovy v Praze. Obsahově vy-
chází ze semináře Archimédés, který ve svých prostorách uspořádala 24. listo-
padu 2011 Katedra filozofie Filozofické fakulty Západočeské univerzity v Plzni
ve spolupráci s Katedrou didaktiky matematiky MFF UK. Na semináři byl
důraz kladen zejména na vybrané matematické spisy a na recepci Archimédova
díla. Příspěvky, jež zde byly předneseny, byly dále rozšiřovány a postupem času
uspořádány do podoby monografie.

Archimédovské téma je dodnes podnětné a inspirativní. Archimédovo dílo
totiž zasáhlo do matematiky, fyziky, techniky, architektury i fortifikace. Navíc je
v současné době velmi aktuální, neboť koncem roku 2011 byly publikovány vý-
sledky více než desetiletého mezinárodního projektu zaměřeného na konzervaci
a nové čtení znovu nalezeného kodexu, který obsahuje některé Archimédovy
spisy považované donedávna za ztracené.

První část knihy je věnována životu a dílu Archiméda ze Syrákús. Jeho
životní osudy jsou vykresleny pomocí překladů antických děl, v nichž se nám
o Archimédovi dochovala poměrně četná svědectví. Dále zde můžeme nalézt
přehled řady uměleckých děl, která byla jeho osudy inspirována. Celou knihou
prostupuje důraz na recepci Archimédova díla. Speciálně je tomuto tématu
věnována druhá kapitola, kde je podrobně a přehledně pojednáno o tom, jakým
způsobem se nám Archimédovy spisy dochovaly, a to jak v původním jazyce,
tak v překladech. Speciální pozornost je věnována překladům do češtiny, jejichž
historie je velmi zajímavá.

Druhá část knihy se skládá z kapitol věnovaných rozboru vybraných Archi-
médových matematických spisů. Mnohé z nich mají pohnutou historii, některé
byly objeveny teprve před sto lety, část se nám dochovala pouze fragmentárně.
Nejtypičtějším znakem Archimédova díla je mistrovské využití exhaustivní

metody umožňující vypočítat obsahy a objemy i poměrně složitých geomet-
rických útvarů. Bezpochyby nejznámější je Měření kruhu obsahující relativně
přesné vymezení poměru obvodu kruhu k jeho průměru, který je dnes označo-
ván symbolem π. Zde se také poprvé nachází důkaz skutečnosti, že v našich
dnešních vzorcích pro obsah a obvod kruhu figuruje tatáž konstanta π.
V Pískovém počtu Archimédés vytvořil systém zápisu tak obrovských čísel,

že zdaleka překračují počet pískových zrn, která by vyplnila celý antický vesmír.
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Archimédova Metoda je práce s velmi pohnutou historií. Je totiž docho-
vána v jediném rukopisu, v silně poškozeném kodexu nazývaném Archimédův
palimpsest, který byl objeven a publikován až začátkem dvacátého století. Ne-
dlouho po svém nalezení se však opět ztratil a objevil se až roku 1998 v dražbě.
Dostal se do rukou neznámého majitele, který financoval jeho záchranu i od-
borné studium. To vyvrcholilo v roce 2011, kdy byl vydán přepis téměř celého
kodexu společně s průvodní monografií. Metoda obsahuje vzácný pohled do
„Archimédovy dílny	. Archimédés zde ukazuje, jak přicházel na některé své
objevy a na konkrétních příkladech demonstruje svou unikátní metodu určo-
vání obsahů a objemů různých geometrických útvarů s využitím rovnováhy na
páce.
Z díla Pappa Alexandrijského se dozvídáme, že se Archimédés rovněž

zabýval polopravidelnými tělesy. Ta později upadla v zapomnění. Je zajímavé
připomenout, jak byla v období renesance znovu postupně objevována. Neméně
zajímavé je pozorovat, kde všude se v běžném životě s polopravidelnými tělesy
setkáváme.
Archimédés také popsal v antice oblíbenou hru nazývanou stomachion. Její

matematický rozbor se dochoval pouze ve dvou malých zlomcích: arabském
a řeckém. Řecký text je součástí Archimédova palimpsestu, proto je v této knize
zařazen překlad celého zlomku vycházející z nového, podstatně doplněného
čtení, které bylo publikováno až koncem roku 2011.
Druhou část knihy uzavírá Úloha o dobytku inspirovaná homérskou temati-

kou. Její znění se dochovalo ve formě básně. Zadání vypadá na první pohled
poměrně jednoduše, nicméně úplné řešení bylo možno získat až s využitím vý-
početní techniky. Celkový počet kusů Héliova stáda je totiž vyjádřen číslem,
které má více než 200 000 číslic.

Na závěr knihy je připojen dodatek, který předkládá zajímavé a jednoduché
řešení otázky, jak asi Archimédés získával přesné odhady odmocnin, které
potřeboval při svých výpočtech, například při výpočtu čísla π.

Celému Archimédovu matematickému dílu by bylo třeba věnovat monografii
většího rozsahu. V této útlé knížce bylo možno pojednat jen o některých
jeho spisech. Výběr se řídil tím, co je z celého souboru dochovaných textů
reprezentativní, zvláštní a specifické. Měřítkem byla také případná využitelnost
pro obohacení výuky matematiky či fyziky na středních školách, zejména ve
volitelných seminářích. Pro usnadnění případného dalšího studia je připojen
soupis literatury, který obsahuje nejen odkazy na vydání, překlady, knihy
a odborné články citované přímo v jednotlivých kapitolách, ale také další
prameny, které považujeme za zajímavé a inspirativní.
Jednotlivé kapitoly jsou pojaty jako samostatné celky zachovávající svou oso-

bitost. Tvoří tak soubor několika menších obrázků – pohledů do Archimédova
života a díla – z něhož, jak doufáme, si čtenář vytvoří dostatečně komplexní
přehled o Archimédovi a o jeho matematických úvahách.

Zdeněk Halas
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A JEHO DÍLO
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ARCHIMÉDÉS – ŽIVOT A DÍLO

Jindřich Bečvář

Archiméda ze Syrákús můžeme považovat za největšího vědce starověku.
Jeho spisy mají – i v dnešním slova smyslu – charakter původních vědeckých
prací. Jsou zcela věcné, oproštěné od veškerých spekulativních či mytologických
prvků. Patří k vrcholům antické vědy.

O Archimédově životě mnoho spolehlivých informací nemáme. Narodil se
v Syrákúsách asi roku 287 př. Kr., prožil v nich skoro celý život a zemřel při
jejich dobytí Římany roku 212 př. Kr.1 Jeho otcem byl patrně Feidiás, astronom
působící na dvoře syrákúského vládce Hieróna II. (asi 306–215).2 S ním byl snad
Archimédés v nějakém nepříliš blízkém příbuzenském vztahu, přitom však byl
mužem nízkého původu (humilis homunculus). Uvádí se, že byl spřátelen jak
s Hierónem II., tak s jeho synem Gelónem (asi 270–216).

Archimédés studoval nějakou dobu v Alexandrii, kde byl ve styku s gene-
rací Eukleidových žáků (Konón ze Samu,3 Dositheus z Pelusie,4 Eratosthenés
z Kyrény (275–195)5). Není dokonce vyloučeno, že Alexandrii navštívil více-
krát. Osvojil si tam Eukleidův exaktní přístup k budování matematické teorie,
k přesnému formulování a dokazování poznatků. Jeho pobyt v Alexandrii se
však na jeho jazyku neprojevil; Archimédés nepoužíval obecnou řečtinu koiné,
stále psal dialektem, který byl užíván v Syrákúsách. S matematiky alexandrij-
ské školy byl v kontaktu, posílal jim své práce.

První Archimédův životopis, který se bohužel nedochoval, sepsal Héraklei-
dés6, jeho současník a patrně přítel. O něco později psal o Archimédovi historik
Polybios (asi 200 až 120) ve spise Historiai, z jehož informací o Archimédovi
pak vycházel Plútarchos (asi 46 až 126) i Titus Livius (59 př. Kr. až 17 po Kr.).

Řecký historik Diodóros Sicilský (1. stol. př. Kr.) publikoval některé infor-
mace o Archimédovi v práci Bibliothéké historiké, Plútarchos, jeden z nejplod-
nějších řeckých autorů doby římské, psal poměrně podrobně o Archimédovi
v kapitole Pelopidás a Marcellus svých Životopisů slavných Řeků a Římanů.
Další informace o Archimédovi a jeho díle přinesli Pappos (konec 3. stol.), je-
den z posledních významných matematiků antiky, Proklos (asi 410 až 484),
novoplatónský filozof, vzdělanec a komentátor, ve 12. století pak Ióannés Tze-
tzés, řecký gramatik a komentátor.

1 Rok jeho narození se odvozuje z informace byzantského autora Ióannese Tzetzése (asi
1110 až 1180), který uvedl, že se Archimédés dožil 75 let.

2 Hierón byl roku 275 vojskem provolán stratégem (vojevůdcem s velkým politickým
vlivem), zmocnil se vlády a roku 265 se stal králem.

3 Archimédés se o jeho smrti zmiňuje v úvodu své práce O kvadratuře paraboly.
4 Archimédés mu věnoval své práce O kouli a válci, O kónoidech a sféroidech, O kvadratuře

paraboly a O spirálách.
5 Archimédés se na něho obrací v úvodu své práce nazývané O metodě.
6 Také nazývaný Hérakleios; dochovaná podoba jména není jednotná.
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Archiméda můžeme směle i v dnešním slova smyslu označit za matematika,
fyzika a technika.

Jako matematik intenzivně rozvíjel zejména infinitesimální postupy. Výrazně
rozpracoval a v řadě situací geniálně využil Eudoxovu exhaustivní metodu.7

Vymyslel řadu originálních postupů, s jejichž pomocí počítal obsahy rovinných
útvarů ohraničených křivkami a objemy těles omezených různými plochami.
Tyto myšlenky rozpracoval zejména v pracích Měření kruhu, O kvadratuře pa-
raboly, O spirálách, O kouli a válci, O kónoidech a sféroidech. V jeho postupech
nalézáme hluboké myšlenky, které úzce souvisejí s moderní teorií integrace.
Těmito idejemi inspiroval matematiky 17. století, kteří připravovali nástup
infinitesimálního počtu. Byli to zejména Johannes Kepler (1571–1630), Paul
Guldin (1577–1643), Grégoire de Saint Vincento (1584–1667), René Descar-
tes (1596–1650), Bonaventura Cavalieri (1598–1647), Pierre de Fermat (1601–
1665), JohnWallis (1616–1703), Isaac Barrow (1630–1677), Christian Huyghens
(1629–1695) a posléze Isaac Newton (1643–1727) a Gottfried Wilhelm Leibniz
(1646–1716). Zatímco Archimédés musel pro každou situaci nápaditě vymýšlet,
jakým způsobem použít exhaustivní metodu, Newton a Leibniz přišli s metodou
obecnou.

Jako fyzik se Archimédés zabýval problematikou jednoduchých strojů,
zejména rovnoramenné i nerovnoramenné páky, kladky, kladkostroje a šroubu.
Podal přesný matematický výklad rovnováhy založený na principu páky,
exaktně zpracoval problematiku těžiště rovinných obrazců, věnoval se hydrosta-
tice, jeho jméno dnes nese známý zákon o vztlakové síle. Myšlenku rovnováhy
na páce a rovněž pojem těžiště využíval i při ryze matematických úvahách.
Tato témata rozvíjel hlavně v pracích O rovnováze neboli těžištích rovinných
obrazců I., II., O metodě a O plovoucích tělesech I., II.

Jako technik rozpracoval ideje jednoduchých strojů až do bezprostředního
technického provedení. Známý Archimédův šroub byl jistě používán již dříve,
Archimédés se s ním patrně v nějaké podobě seznámil v Egyptě a technicky
jej zdokonalil. Jeho vynálezy – válečné stroje a obranné mechanismy – došly
svého využití při obraně Syrákús proti římskému vojsku.

Na Archimédovy plodné myšlenky navazovala po mnoha staletích novověká
matematika a fyzika.

1 Heuréka

Archimédés byl vždy plně zaujat problémy, které právě řešil. Vše ostatní
nebylo důležité, ať již to byla strava či hygiena. Stručně a výstižně to popisuje
Plútarchos v životopise římského vojevůdce Marcella8:

7 Eudoxos z Knidu (asi 405 až 355) byl vynikající matematik, astronom, lékař a zákono-
dárce. S jeho jménem je spojena kromě exhaustivní metody i tzv. teorie proporcí a teorie
homocentrických sfér.

8 Plútarchovo hodnocení je ovlivněno jeho filosofickými názory, zejména dualismem duše
a těla, Plútarchovým vlastním pojetím démonologie, v níž intelekt jakoby nepatří člověku,
ale je démonem.
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Proto také jsou věrohodné anekdoty, které se o Archimédovi vypravují, že
jej vždy očarovala jakási vlastní vnitřní Siréna, takže zapomněl na jídlo a za-
nedbával péči o tělo, často ho násilím přivedli ke koupeli a natřeli, v popelu
krbu kreslil geometrické obrazce, podobně když byl po koupeli natřen olejem,
prstem kreslil po svém těle křivky jsa úplně omámen pocitem štěstí a posedlý
matematickou vášní. Ačkoli objevil mnoho krásných věcí, prosil prý své přátele
a příbuzné, aby mu po smrti postavili na hrob válec, do něhož je vepsána koule
a číselný údaj, o kolik je opsané těleso větší než vepsané. ([Pl1], str. 526)

Výkřik heuréka9 je spojován buď s Archimédovým zákonem, nebo s historkou
o tzv. „koruně krále Hieróna	.10 Ve skutečnosti se jednalo o zlatý vavřínový
věnec (stefanos), který byl určen bohům jako dar.

Římský architekt a stavitel Marcus Vitruvius Pollio (1. stol. př. Kr.) napsal
ve svém díle Deset knih o architektuře (De architectura libri decem)11 slova,
která na jedné straně ukazují Archimédův zápal pro vědecké bádání, na druhé
straně však jeho roztržitost:

Ačkoliv Archimédových objevů bylo mnoho a podivuhodných, zdá se, že nej-
větším důmyslem a bystrostí ze všech se vyznačuje ten, který uvedu. Když se
totiž Hierón v Syrákúsách povznesl ke královské moci, rozhodl se, že za štěstí,
které měl při svém počínání, obětuje v nějaké svatyni zlatý věnec, který zaslíbil
nesmrtelným bohům. Dal jej udělat na zakázku a zlato na něj výrobci přesně
odvážil. Za nějaký čas předložil výrobce králi vkusně provedené dílo svých rukou
k jeho úplné spokojenosti, přičemž se zdálo, že dodržel přesně váhu věnce.

Když přišlo později ovšem udání, že zlata bylo ubráno a že do zpracováva-
ného věnce bylo přimíšeno stejné množství stříbra, požádal Hierón, rozmrzelý
nad tím, že byl takhle podveden, a že nemohl přijít na to, jak by se mohla zpro-
nevěra prokázat, Archiméda, aby se pro něho ujal prozkoumání této záležitosti.
Archimédés, který toho měl plnou hlavu, přišel náhodou do lázní a při vstupo-
vání do vany si všiml, že z ní vytéká takové množství vody ven, jak se do ní
ponořovalo jeho tělo. Když mu to poskytlo vysvětlení dané otázky, nemeškal,
nýbrž vyskočil samou radostí z vany, pospíchal nahý domů a všem lidem zvěs-
toval jasným hlasem, že objevil, po čem pátral. Vykřikoval totiž v běhu a stále
řecky heuréka, heuréka (našel jsem to, našel jsem to).

Vycházeje potom z tohoto objevu, dal prý udělat dva kusy stejné váhy, jako
měl věnec, a to jeden ze zlata, druhý ze stříbra.

Na tomto místě chybí v českém překladu dvě věty. Uvedeme je z anglického
překladu:12

9 Archimédovo heuréka je používáno jako stručný a výstižný výraz, který symbolizuje
náhlou intuici: „Našel jsem to, přišel jsem na to!�.

10 Nahého Archiméda osvíceného nápadem znázornil na fresce ve Florencii (Galleria degli
Uffizi, Stanzino delle Matematiche) Giulio Parigi (1571–1635) roku 1599 nebo 1600.

11 Devátá kniha, odst. 9–12.
12 Vitruvius: The Ten books on architecture, translated by Morris Hicky Morgan, Harvard

University Press, Cambridge, Mass., 1914; 9. kniha, 11. odstavec. Český překlad by zněl: Když
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After making them, he filled a large vessel with water to the very brim, and
dropped the mass of silver into it. As much water ran out as was equal in bulk
to that of the silver sunk in the vessel.

Potom zas kus vyňal a úbytek vody dolil, odměřiv jej sextariem, takže právě
tak jako dříve byla nádoba rovná až po okraj. Tímto postupem zjistil, jak váha
stříbra odpovídá určitému objemu vody.

Vyzkoumav to, vnořil podobně do nádoby kus zlatý a po jeho vynětí dolil týmž
způsobem míru a zjistil z menšího počtu sextariů, oč má kus zlata při téže váze
menší objem než kus stříbra. Načež znovu naplnil nádobu a vnořil do téže vody
samotný věnec a shledal, že při věnci vyteklo více vody než při kusu zlata téže
váhy. Výpočtem z toho, oč bylo při věnci více vody než při kusu zlata, prokázal
ve zlatě příměs stříbra a očividnou výrobcovu zpronevěru. ([Vi], str. 293–295)

2 Využití jednoduchých strojů

Jak již bylo řečeno, Archimédés nebyl jen teoretik. Dobře si uvědomoval
dosah a sílu teoretických poznatků a uměl je velmi dobře prakticky využít.
Jeho slavný výrok13

Dos moi pú stó kai kinó tén gén.

Dej mi, kde bych stanul, a pohnu Zemí.14

můžeme chápat nejen jako reklamní slogan propagující páku, ale i jako oslavu
jednoduchých strojů vůbec.15

Archimédés si však v duchu tehdejších názorů vzdělanců více cenil svých
teoretických výsledků, jejich praktická využití považoval jen za jednoduché
„důsledky	 teorie, za činnost druhořadou, z hlediska teorie méně významnou.
Technické aplikace poznatků geometrie a mechaniky byly řeckými mysliteli pře-
zírány a zařazovány zejména do stavitelství, vojenství apod. O tom, jak dobře
uměl Archimédés užít jednoduché stroje a jaký byl jeho vztah k jejich technic-
kému využití, psal již Plútarchos:

Archimédés však z toho nepovažoval nic za předmět vážného zájmu, nýbrž
většina těchto věcí vznikla jako výsledek vedlejší činnosti s matematickými hříč-
kami, přičemž nejprve král Hierón ze ctižádosti přemluvil Archiméda, aby aspoň
část své vědy přenesl z oblasti abstraktních poznatků do hmotného světa a svou
vědu spojil s praktickými potřebami a tak s ní názorně seznámil i ostatní.

byly hotové, naplnil velkou nádobu k samému okraji vodou, do níž spustil stříbrný kus. Jaká
byla velikost stříbrného kusu ponořeného do nádoby, tolik vyteklo vody.

13 Uvádíme jej v podobě, v jaké se dochovala v Pappově Sbírce (VIII,11), viz [Pap],
str. 1060. Dvě mírně odlišné verze jsou uvedeny v rozsáhlé básni Chiliades (II,130 a III,62),
kterou složil byzantský učenec Ióannés Tzetzés (1110–1180).

14 Méně přesně se překládá takto: Dejte mi pevný bod a pohnu Zemí.
15 Na řadě obrázků a karikatur je znázorněn Archimédés, který pákou zvedá zeměkouli.

Uveďme například obálku 2. ročníku časopisu Mechanic’s Magazine z roku 1824. Freska
s motivem zeměkoule a páky je i v galerii Uffizi ve Florencii (Stanzino delle Matematiche),
autorem je Giulio Parigi.
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. . . byla mechanika oddělena od geometrie a také po dlouhý čas byla přezírána
i filosofií a pokládána za odvětví válečné techniky.

Přesto však Archimédés, který byl příbuzný a přítel krále Hieróna, napsal mu
v dopise, že danou silou je možné zvednout každé dané břímě, a v mladicky od-
vážné víře v sílu svého důkazu prý prohlásil, že kdyby měl jinou Zemi, přemístil
by se na ni a odtud by hnul naší Zemí. Hierón se tomu podivil a žádal Archi-
méda, aby problém prakticky uskutečnil a ukázal mu, jak veliké těleso může být
uvedeno v pohyb malou silou. Archimédés dal na královský nákladní trojstěžník,
který jen s velkou námahou množství rukou vytáhlo na břeh, naložit velký po-
čet mužstva a obvyklý náklad, sám seděl opodál a bez námahy a lehce uváděl
rukou v pohyb konec kladkostroje, takže loď běžela lehce a bez nárazu jako po
moři. Užaslý král zajisté pochopil význam vědy a přiměl Archiméda k tomu, aby
sestrojil stroje vhodné pro každý způsob obléhání, a to pro obranu i pro útok.
([Pl1], str. 523–524)

Plútarchos se pak ještě jednou vrátil k Archimédovu postoji k praktickému
využití teoretických poznatků.

Archimédés při svém velikém nadání, hloubce ducha a bohatství teoretického
vědění neměl v úmyslu písemně zaznamenat to, co mu přineslo jméno a slávu
nejen lidského, nýbrž i božského důmyslu, protože praktické využití mechaniky
a vůbec veškerého umění a vědy považoval za nízké vykonávání řemesla. Jeho
vlastní ctižádost jej pudila jedině tam, kde krása a dokonalost je nesmíšená,
v oblast čisté vědy, která nepřipouští srovnání s ostatním světem hmoty a při
vědeckém podání je k němu v protikladu; neboť u tohoto se projevuje velikost
a vnější krása, u oné přesnost a mimořádná síla. Vždyť nikde v oblasti geometrie
není možno obtížnější a důležitější poučky vyjádřit v jednodušších a čistších
prvcích, než to udělal Archimédés. ([Pl1], str. 525–526)

3 Obrana Syrákús

Král Hierón II. byl za punských válek spojencem Říma proti Kartágu.16 Po
jeho smrti však jeho vnuk Hierónymos (230–214), nový syrákúský vládce, vy-
stoupil proti Římanům a snažil se o spojení s Kartágem, jehož vojsko tehdy vedl
proslulý Hannibal (247–183), a s Egyptem. Roku 214 byl Hierónymos zavraž-
děn. Syrákúsy však již oblehlo římské válečné loďstvo, před hradbami rozložil
své legie významný římský politik a vojevůdce Marcus Claudius Marcellus (asi
268 až 208).17 Syrákúsané vedeni vojevůdcem Hippokratem plně využili při
obraně města Archimédovy obranné mechanismy. Plútarchos líčí boj o Syrákú-
sy takto:

Když Římané zaútočili ze dvou stran, zavládlo v Syrákúsách zděšení a úz-
kostné ticho, protože se každý ve svém strachu domníval, že proti tak hrozné

16 První punská válka proběhla v letech 264 až 241, druhá v letech 218 až 201, třetí
v letech 149 až 146. Po první punské válce se Sicílie stala římskou provincií.

17 Roku 222 se stal poprvé římským konsulem, spolu s Gnaeem Corneliem Scipionem
Calvou (zemřel 211) bojoval proti předalpským Galům, roku 208 padl v boji proti Hannibalovi
u Venusie v Apulii.
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síle není možný odpor. Nyní spustil Archimédés svoje stroje. Na pozemní vojsko
létaly střely různého druhu a obrovské kamenné bloky, které dopadaly s hlukem
a neuvěřitelnou rychlostí, rozdrtily svou vahou všechny, kteří se nekryli, a půso-
bily zmatek v řadách vojska. Současně se z hradeb proti lodím vysoko vysunuly
berany a silou obrovského tlaku shora je potápěly do hlubin nebo železnými cha-
padly či kleštěmi podobnými zobanům jeřábů uchopily loď, zvedly ji přídí do
výše, takže stála na zádi, a ponořily ji, jinou loď lany a háky z vnitřku přita-
hovali k břehu a točili jí do kruhu, až narazila na skaliska pod hradbami, takže
posádka lodi byla většinou zničena a zahynula. Často se stávalo, že některá
loď byla úplně vyzdvižena z moře, točila se jako ve víru a vznášejíc se ve výši
skýtala hrůznou podívanou; nakonec námořníci z lodi vypadli nebo byli vymrš-
těni a prázdná loď narazila na hradby, anebo když chapadlo povolilo, spadla do
moře.

Strojové zařízení, s kterým Marcellus postupoval k městu, se pro podobu
s hudebním nástrojem nazývalo sambuka. Bylo ještě ve značné vzdálenosti od
hradeb, když přiletěl balvan deset talentů těžký, po něm druhý a třetí; některé
z nich dopadly s hrozným hřmotem a silným vlnobitím na strojové zařízení,
rozbily jeho podstavec, uvolnily a roztrhly spojení lodí, takže bezradný Marcellus
vydal rozkaz, aby lodi co nejrychleji odpluly a pozemní vojsko aby ustoupilo.

Na válečné poradě bylo rozhodnuto ještě v noci, bude-li to možné, přiblížit
se až k hradbám; neboť jak se domnívali, vlivem veliké síly strojů, kterých uží-
val Archimédés, byla dráha střel vysoká a dlouhá, zatímco v blízkosti hradeb
byly stroje pro krátkou vzdálenost neúčinné. Avšak Archimédés, jak se ukázalo,
už dávno upravil své stroje pro pohyby a střely s krátkou drahou letu, vhodné
pro každou vzdálenost, a protože po celé délce hradeb byly souvisle ve velikém
počtu neveliké střílny, stály v nich malé metací stroje přizpůsobené pro krátké
vzdálenosti a nepřátelům neviditelné.

Římané se přibližovali v domnění, že nejsou pozorováni, ale znova se ocitli
v dešti šípů a jiných střel, kameny jim padaly přímo na hlavu, z hradeb se
sypaly šípy, takže byli nuceni ustoupit zpět. Když se jejich jednotky rozvinuly
do větší vzdálenosti, i tam je dostihovaly a zasahovaly střely, jak se vzdalovali,
a způsobovaly jim značné ztráty. Současně docházelo k častým srážkám lodí.
Římané však nebyli nijak schopni oplatit nepřátelům jejich údery, protože vět-
šina strojů, které Archimédés sestrojil, byla skryta za hradbami a Římané se
podobali bojovníkům, kteří bojují s bohy, ježto z neviditelných prostorů se na
ně valily nesčíslné pohromy.

Marcellovi se přesto podařilo ustoupit. Svým technikům a zbrojířům řekl iro-
nicky: „Nedovedeme umlčet tohoto matematického Briarea? Vždyť ten klidně
sedí na moři a v žertu nám na posměch vyzdvihuje naše lodi a množstvím střel,
které na nás vrhá současně, překonává mýtické storuké obry.�

Ve skutečnosti byli zajisté všichni ostatní Syrákúsané tělem Archimédovy
obrany, zatímco on sám byl jedinou duší, která vše uvádí v pohyb a všemu
dává směr; ostatní zbraně odpočívaly, kdežto město používalo tehdy jen jeho
zbraní, a to k obraně i k útoku.

HM 54 - Archimedes - text.indd   14HM 54 - Archimedes - text.indd   14 14.1.2013   15:36:2614.1.2013   15:36:26



15

Nakonec Marcellus pozoroval, že Římané jsou tak přestrašeni, že kdykoli
viděli, že se přes hradby vysunuje nějaký provaz nebo kus dřeva, začali křičet,
že Archimédés zas na ně zaměřuje nějaký stroj, obraceli se a prchali. Rozhodl
se proto zdržet se boje a zastavit útok a úspěch obléhání ponechal času. ([Pl1],
str. 524–525)

Někdy se dokonce uvádí, že Syrákúsané podle Archimédova návodu zapalo-
vali dřevěné římské galéry pomocí vyleštěných kovových štítů, kterými odráželi
sluneční paprsky na zvolenou loď. Tato informace však asi není pravdivá. Ve
2. století se sice známý řecký lékař a logik Galénos z Pergamonu (129–199)
zmiňuje o zapalování římských lodí u Syrákús, ale nikoli o odrážení slunečních
paprsků. Teprve ve 12. století to uvádějí I. Tzetzés a I. Zónarás.18 Pochybnosti,
zda je to vůbec možné, rozptýlil roku 1973 řecký badatel Ióannés Sakkás ex-
perimentem, kdy s pomocí padesáti vyleštěných kovových štítů zapálil dřevěný
model lodi vzdálený čtyřicet metrů.

Plútarchovo líčení obrany Syrákús a účinků Archimédových strojů je zcela
jistě zveličené. Obležení Syrákús sice trvalo zhruba dva roky, boje však jistě
neprobíhaly soustavně. Marcellus postupně dobýval a obsazoval Sicílii, je prav-
děpodobné, že by byl přivítal kapitulaci města bez boje. Není vyloučeno, že
úmyslně posílal do Říma zveličené zprávy o potížích, s nimiž se u Syrákús po-
týká, aby zdůvodnil svoji malou aktivitu při dobývání města. A ty se pak mohly
stát základem pozdějších textů, které byly o dobývání Syrákús a jejich statečné
obraně sepsány.

4 Archimédova smrt

Po dlouhém obléhání se Římanům nakonec podařilo obránce města přelstít
a do města proniknout. Bylo to roku 212 př. Kr. Plútarchos líčí Marcellovo
dobytí Syrákús takto:

. . . vyčíhav si vhodnou chvíli, kdy Syrákúsané slavili slavnosti k poctě Ar-
temidině a oddávali se pití vína a veselí, nepozorovaně obsadil nejen věž, ale
ještě před rozedněním dokola po hradbách rozestavil vojáky a prolomil budovu
Hexapýl. Syrákúsané to zpozorovali a tu se teprve probudili. ([Pl1], str. 526–527)

Při dobytí města přišel Archimédés o život. Jeho smrt se připomíná po staletí
a tisíciletí zhruba ve stejné podobě. Plútarchos ji líčí takto:19

Archimédés byl právě zabrán úvahou nad nějakým obrazcem, k jehož vyřešení
soustředil mysl i oči tak, že ani včas nezpozoroval, že Římané podnikli útok a že
města je dobyto. Když před ním náhle stanul římský voják a kázal mu, aby ho
následoval k Marcellovi, Archimédés odepřel, dokud nevyřeší problém a nedovede
důkaz do konce. Tu se voják rozhněval, vytáhl meč a probodl ho.

18 Zapálení římské lodi pomocí zrcadla znázornil na fresce v galerii Uffizi (Stanzino delle
Matematiche) Giulio Parigi. V monumentálním italském filmu režiséra Giovanniho Pastronea
(1882–1959) nazvaném Cabiria (1914) je necelých pět minut věnováno Archimédovi a jeho
zápalným zrcadlům; hrál ho Enrico Gemelli (1841–1926).

19 Tuto událost popisuje též Titus Livius v 25. knize (kap. 31) svých dějin Ab urbe condita.
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Jiní však vypravují, že římský voják se již před něho postavil s obnaženým
mečem s úmyslem jej probodnout; Archimédés, který ho spatřil, prý ho úpěnlivě
prosil, aby jen chvilku počkal, aby hledané řešení nebyl nucen nechat nedokon-
čené a nezdůvodněné, avšak voják prý na to nedbal a probodl ho.

Podle třetí zprávy Archimédés nesl Marcellovi matematické přístroje jako
sluneční hodiny, koule a kvadranty, jimiž se měří velikost slunečního kotouče
vzhledem k tomu, jak se nám jeví. Vojáci, kteří ho potkali, se domnívali, že ve
skřínce nese zlato, a zabili ho. ([Pl1], str. 527–528)

Traduje se, že Archimédés odbyl římského vojáka slovy:

Noli tangere (turbare) circulos meos! 20

Nedotýkej se mých kruhů!, resp. Neruš mé kruhy!

Mohlo by se zdát, že je tato historka vymyšlená. Není však vyloučeno, že
není daleko od pravdy. Dříve se uvádělo, že při vykopávkách v Herculaneu byla
odkryta nevelká římská mozaika (51 × 43 cm, Städtische Galerie Liebieghaus,
Frankfurt am Main), která představuje smrt Archiméda ve shodě s výše uve-
deným textem. Připomeňme, že Pompeje, Herculaneum a Stabie byly zničeny
roku 79 při obrovském výbuchu Vesuvu. Mozaika by tedy musela být vytvořena
mezi roky 212 př. Kr. a 79 po Kr. Dnes je však spíše považována za falzifikát
z 18. století, možná dokonce již ze 16. století.

5 Archimédův hrob

Marcus Tullius Cicero (106–43), slavný římský politik, státník, filozof, spi-
sovatel a řečník, se stal roku 75 př. Kr. na Sicílii kvéstorem (místodržícím)
a nalezl v Syrákúsách Archimédův hrob. V Tuskulských hovorech (Tusculanae
disputationes) sepsaných v letech 45 a 44 uvádí, že byl místními obyvateli zcela
zapomenut.21

Když jsem byl kvéstorem, objevil jsem jeho hrob kolem dokola zarostlý a za-
krytý trnitým křovím. Syrákúsané o něm nevěděli, dokonce tvrdili, že vůbec ne-
existuje. Pamatoval jsem si totiž několik veršíků, které měly být, jak jsem slyšel,
napsány na jeho náhrobku, a z nich bylo jasné, že nahoře na jeho náhrobku je
koule a válec.

Když jsem si vše důkladně prohlédl – u Agrigentské brány je totiž velké množ-
ství náhrobků –, zpozoroval jsem sloupek, který jen trochu vyčníval nad křoví,
a na něm byla podoba koule a válce. Hned jsem řekl Syrákúsanům (přední ob-
čané ze Syrákús byli totiž se mnou), že si myslím, že to je to, co hledám. Poslali
tam pak mnoho lidí se srpy a ti to místo vyčistili a vyklidili.

Když bylo místo přístupné, přiblížili jsme se k přední straně podstavce. Bylo
vidět nápis, konce veršů skoro až do poloviny byly však zničeny. A tak nej-
vznešenější obec Velkého Řecka, kdysi i nejučenější, by nebyla znala hrob svého

20 Řecky: Apostéthi, ó anthrópe, tú diagrammatos mú!
21 5. kniha, odst. 23,64–66.
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nejbystřejšího občana, kdyby se to nebyla dozvěděla od člověka z Arpina.22 ([Ci],
strana 231)

Dnes je v Syrákúsách v rámci turistického ruchu označována jedna z hrobek
jako Archimédova. S Archimédem však nemá nic společného.

6 Inspirace Archimédem

Nejznámější podoba, která je s Archimédovým jménem spjata, je odvozena
z busty pocházející ze 3. století př. Kr., která je v Národním archeologickém
museu v Neapoli. V poslední době se však má za to, že se jedná o bustu Archi-
dama III., spartského krále ze 3. století př. Kr.

Archimédova osobnost, využití jeho technických vynálezů při obraně Syrá-
kús, jeho smrt či objevení jeho hrobu, to vše inspirovalo po celá staletí řadu
umělců. Připomeňme jen některá díla:

• Dřevoryt Josta Ammana (1539–1591) je v knize Titi Livii Romanae
historiae principis (1568, Wingandus Gallus, Frankfurt).

• Velmi známá rytina Archiméda plánujícího obranu Syrákús je v knize
francouzského historika André Theveta (1516–1590) nazvané Les vrais
pourtraits et vies des hommes illustres, která vyšla v Paříži roku 1584.

• Italský malíř Domenico Fetti (1589–1624) je autorem obrazu Ar-
chimédés (1620, 98 × 73, 5 cm), který se nachází v Drážďanech
(Gemäldegalerie alte Meister).

• Španělský malíř a rytec José (Jusepe) de Ribera (lo Spagnoletto, 1591–
1652) je autorem obrazu Archimédés z roku 1630 (125× 81 cm, Museo
del Prado, Madrid).

• Italský malíř Pier Francesco Mola (1612–1666) ztvárnil Archimédovu
smrt roku 1660 (122× 135 cm, soukromá sbírka).

• Italský malíř Giovanni Battista Langetti (1635–1676) je autorem ob-
razu, na němž je Archimédés s alegorickými postavami Válka a Mír
(117× 235 cm, soukromá sbírka).

• Italský barokní malíř benátské školy Sebastiano Ricci (1659–1734) se
rovněž inspiroval smrtí Archiméda (42, 5 × 60, 5 cm, Hannover State
Museum).

• Italský malíř Giuseppe Nogari (1699–1766) je autorem obrazu Archi-
médés (44× 55 cm), který je v Moskvě (Puškinovo muzeum).

• Litografie představující Archiméda se objevila v knize Phillipa Daniela
Lipperta (1702–1785) Dactyliotheca.

• Italský rytec Giovanni Battista Leonetti (18. stol.) je autorem rytiny
Meditující Archimédés.

• Anonymní rytina představující smrt Archiméda je v knize Giovanni
Maria Mazzucchelli (1707–1765): Notizie istoriche e critiche intorno
alla vita, alle invenzioni, ed agli scritti di Archimede Siracusano.

22 Cicero se narodil na statku nedaleko Arpina – píše proto o sobě jako o člověku z Arpina.
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• Rakouský barokní malíř Martin Knoller (1725–1804) zobrazil okamžik,
kdy Cicero objevuje Archimédův hrob. Jeho obraz (23, 5 × 30 cm) je
z roku 1775 (soukromá sbírka, Mannheim).

• Francouzský malíř Hubert Robert (1733–1808) ztvárnil Ciceronův ob-
jev Archimédova hrobu (v průvodci Voyage pittoresque ou description
des royaumes de Naples et de Sicile vydaném v Paříži mezi roky 1781
a 1786).

• Francouzský malíř Pierre Henri de Valenciennes (1750–1819), který
roku 1787 zobrazil Cicerona, jak objevuje Archimédův hrob (119 ×
162 cm, Toulouse Musée des Augustins).

• Rytina na titulní stránce Archimédových spisů, které editoval Joseph
Torelli roku 1792. Stala se inspirací pro pozdější rytiny a pro stříbr-
nou medaili vydanou roku 1826 společností New England Society for
Promotion of Manufacturers and Mechanic Arts (průměr 63, 6 mm);
rytcem medaile byl Christian Gobrecht (1785–1844).

• Benjamin West (1738–1820) ztvárnil Ciceronův objev Archimédova
hrobu. Jeho obraz (124, 5× 180, 5 cm) je z roku 1797 (Yale University
Art Gallery, New Haven, Connecticut, USA).

• Francouzský malíř a spisovatel Charles Paul Landon (1760–1826) zho-
tovil rytinu představující poprsí Archiméda (5, 7× 9, 2 cm). Je v knize
Galerie historique des hommes les plus célèbres de tous les siècles et de
toutes nations (13 svazků, Paris, 1805–1809).

• Anglický rytec George Cooke (1781–1834) ztvárnil Archiméda v knize
The historic gallery of portraits and paintings (1. svazek, London, 1807).

• Sicilský malíř Giuseppe Patania (1780–1852) je autorem obrazu Archi-
médés, který se nalézá v Palermu (Biblioteca Comunale).

• Rytina na titulním listu německého překladu Ciceronových Tuskulských
rozhovorů z roku 1806 (přeložil Xaver Weinzierl) představuje nalezení
Archimédova hrobu.

• Německý malíř Carl Rottmann (1797–1850) je autorem obrazu Archi-
médův syrákúský hrob.

• Francouzský malíř Eugène Delacroix (1798–1863) zpodobnil smrt Ar-
chiméda na fresce v jedné z kupolí knihovny Palais Bourbon v Paříži.

• Francouzský malíř Honoré Daumier (1808–1879) je autorem obrazu Ar-
chimédova smrt z období 1848 až 1850 (Szépművészeti Museum of Fine
Arts, Budapest).

• Italský malíř Niccolò Barabino (1832–1891) je autorem obrazu Archi-
médés, který se nachází v Terstu (Civico Museo Revoltella). Podle něj
zhotovil M. Weber rytinu, která se objevila v knize E. Cobham Brewer:
Character sketches of romance. Fiction and dramma (1. svazek, New
York, 1892, str. 60–61).

• Francouzský umělec Edouard Vimont (1846–1930) je autorem obrazu
představujícího Archimédovu smrt. Pochází ze dvacátých let 20. století,
je v knize Johna Lorda (1810–1894) Beacon lights of history.

• Gustave Courtois (1853–1923) ztvárnil Archimédovu smrt na obraze,
který motivoval následnou rytinu.
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• Anglický portrétista Henry Wyatt (1794–1840) je autorem obrazu Ar-
chiméda, který byl poprvé vystaven roku 1832 (76 × 63 cm). Nyní je
v Londýně (Tate Britain Museum).

• Sicilský sochař Luciano Campisi (1859–1933) vyhotovil Archimédovu
bustu, která je dnes v Syrákúsách (Latomia dei Cappuccini).

• Sicilský sochař Giuseppe Villa vyhotovil Archimédovu sochu (asi 1870),
která je v Syrákúsách (Liceo Scientifico „Corbino	).

• Rytina představující Archimédovu poslední hodinu je v knize Charlotte
Mary Yonge: A Pictorial History of the World’s Great Nations from the
Earliest Dates to the Present Time (1. svazek, 1882).

• Maďarský malíř István Farkas (1887–1944) je autorem tempery (1930,
80 × 99 cm), která je protestem proti vraždě Archiméda a varováním
proti hrozbám 20. století (Národní galerie, Budapest).

• Německý sochař Gerhard Thiele (nar. 1928) je autorem sochy Archi-
méda z roku 1972 (Treptower Park, Archenhold-Sternwarte, Berlín).

Některé z výše uvedených děl se objevily jako ilustrace v knihách, na jejich
obálkách, ale i na poštovních známkách (Španělsko 1963, Francie 1963, Nica-
ragua 1971, DDR 1973, Itálie 1983, Řecko 1983, Paraguay 1984, San Marino
1982, Rusko 1993, Malawi 2008, Guinea-Bissau 2008, Mali 2011, Rumunsko,
Gabon, . . .).

Archimédés je stále velmi populární postavou, do jisté míry i magickou osob-
ností, jeho podobizny se objevily i na obalech čokolád, na balíčcích doutníků
apod.23 Některé události Archimédova života (objev Archimédova zákona, Heu-
réka) jsou popularizovány i formou více či méně podařených karikatur a komixů.

Archimédovo jméno nese velký kráter na Měsíci.24 Archimédova fiktivní po-
doba je i na Fieldsově medaili, kterou od roku 1950 pravidelně uděluje Meziná-
rodní matematická unie (International Mathematical Union) na Mezinárodních
kongresech matematiků (International Congress of Mathematicians) matema-
tikům mladším 40 let, kteří výrazně přispěli k rozvoji oboru.25

Roku 1938 inspiroval Archimédův osud i Karla Čapka (1890–1938). V apo-
kryfu Smrt Archimedova líčí, jak k Archimédovi dorazil římský setník Lucius
a přemlouval ho ke spolupráci s Římany.

23 Štítek na krabici s doutníky z let 1895–1915 je barevnou litografií (10, 4 × 11, 7 cm).
Jedna ze stovky tabákových karet vkládaných do balíčků cigaret (6, 0× 8, 8 cm, vydána roku
1938 společností Cigarette Oriental de Belgique) znázorňovala Archiméda; na její zadní straně
byl jeho stručný životopis ve francouzštině a holandštině. Roku 1965 vydala firma Jacques
Superchocholat of Belgium jednu z 240 karet s podobiznou Archiméda (5, 0× 6, 8 cm); karty
byly vkládány do balíčků čokolády.

24 Nedaleko tohoto kráteru dopadla 14. září 1959 sovětská sonda Luna 2 a 30. července
1971 v této oblasti přistálo americké Apollo 15. Blízké krátery Aristillus a Autolycus jsou
pojmenované po řeckých astronomech 3. století př. Kr., dále Montes Archimede a Rimae
Archimedes.

25 John Charles Fields (1863–1932) byl kanadský matematik, který dal podnět ke vzniku
tohoto významného ocenění.
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„Poslyš, Archimede, nechtěl bys pracovat s námi? Nemáš ponětí, jaké
ohromné možnosti by se ti otevřely v Římě. Stavěl bys ty nejsilnější válečné
stroje na světě –�

„Musíš odpustit, Lucie; jsem starý člověk, a ještě bych chtěl vypracovat jednu
nebo dvě ze svých myšlenek. – Jak vidíš, zrovna si tady něco rýsuju.�

„Archimede, neláká tě dobývat s námi vlády nad světem? – Proč mlčíš?�

„Promiň,� brumlal Archimedes nad svou destičkou. „Co jsi řekl?�

„Že člověk jako ty by mohl dobývat světovlády.�

„Hm, světovláda,� děl Archimedes zahloubaně. „Nesmíš se zlobit, ale já tady
mám něco důležitějšího. Víš, něco trvalého. Něco, co tu opravdu zůstane.�

„Co to je?�

„Pozor, nesmaž mi mé kruhy! To je způsob, jak se dá vypočítat plocha kru-
hové výseče.�

Později byla vydána zpráva, že učený Archimedes přišel o život náhodou.

7 Archimédovo dílo

Z Archimédova díla se dochovalo třináct spisů. Deset z nich badatelé seřadili
do následujícího soupisu podle pravděpodobné doby jejich vzniku. V závěru
připojili tři další, které se serióznímu zařazení vymykají.

• O rovnováze neboli těžištích rovinných obrazců, kniha I. (Epipedón
isorropión é kentra barón epipedón α′)

• O kvadratuře paraboly (Tetragónismos parabolés)
• O rovnováze neboli těžištích rovinných obrazců, kniha II. (Epipedón
isorropión é kentra barón epipedón β′)

• Archimédův dopis Eratosthenovi o mechanických větách; Metoda (Ar-
chimédús peri tón méchanikón theórématón pros Eratosthenén; Efodos)

• O kouli a válci, kniha I., II. (Peri sfairás kai kylindrú α′, β′)

• O spirálách (Peri helikón)
• O kónoidech a sféroidech (Peri kónoeideón kai sfairoeideón)
• O plovoucích tělesech, kniha I., II. (Peri tón hydati efistamenón é peri
tón ochúmenón; De iis, quae in humido vehuntur I, II )

• Měření kruhu (Kyklú metrésis)
• Počítání písku (Psammítés)
• Kratochvíle (Stomachion)
• Poučky (Liber assumptorum)
• Problém dobytka (Probléma boeikon)

Podle dochovaných zpráv je Archimédés autorem ještě několika dalších děl,
která se bohužel nedochovala. Sám Archimédés se na několika místech svých

HM 54 - Archimedes - text.indd   20HM 54 - Archimedes - text.indd   20 14.1.2013   15:36:2614.1.2013   15:36:26



21

prací stručně zmiňuje o dřívějších spisech, jmenuje například tituly Základy
mechaniky a Rovnováha, které byly sepsány dříve než jeho dvě knihy O rov-
nováze. V Počítání písku se odkazuje na svoji starší práci Principy (Archai)
věnovanou Zeuxippovi.

Pappos zmiňuje Archimédovy výsledky o vlastnostech polopravidelných
mnohostěnů, uvádí názvy jeho dalších spisů – O váhách (Peri zygón) a O tě-
žišti (Kentrobarika). Theón z Alexandrie ve 4. století a Olympiodóros (6. stol.)
připomínají Archimédův optický spis Katoptrika (Peri katoptrikón).

Ke třem Archimédovým spisům se nám dochovaly komentáře Eutokia
z Askalónu (asi 480–540): O kouli a válci I., II., Měření kruhu, O rovnováze.

Další informace nacházíme v dílech arabských matematiků, kteří se s Ar-
chimédovým dílem seznámili dříve než středověká Evropa; připomínají Archi-
médovy práce o doteku kružnic, o vlastnostech trojúhelníků, o rovnoběžkách,
o základech geometrie, definicích apod. Např. Thábit ibn Qurra (asi 830 až
901) zmiňuje Archimédův spis o konstrukci pravidelného sedmiúhelníka.26

Archimédés prý též napsal spisy o konstrukci sféry (planetária) pod názvem
O stavbě nebeské sféry (Peri sfairopoiás) a o vodních hodinách. Připomeňme
v této souvislosti ještě jeden krátký úryvek z Ciceronových Tuskulských hovorů:

Vždyť když Archimédés uzavřel do koule pohyby Měsíce, Slunce a pěti pla-
net, dokázal totéž, co v Tímaiovi onen Platónův božský stvořitel světa, že totiž
u něho jediné otočení řídilo pohyby naprosto odlišné svou menší nebo větší rych-
lostí. Jestliže se toto nemůže v našem světě dít bez božstva, ani Archimédés by
nemohl v oné kouli tytéž pohyby znázornit bez božského nadání. ([Ci], str. 57)

Kromě klasických textů (řeckých a latinských, např. [Hei]) máme dnes k dis-
posici Archimédovy spisy v řadě překladů. Nejznámější je patrně volný anglický
překlad [Hea]; nejnovějším velmi doslovným anglickým překladem je nedávné
vydání [Ne], zahrnující zatím pouze spis O kouli a válci s Eutokiovým ko-
mentářem. V němčině je již klasický překlad Heathovy verze pořízený Fritzem
Kliemem (1887 až asi 1943) – viz [Hea], dále překlady [Czw1]–[Czw6] Arthura
Gottlieba Czwaliny (1884–1963) a např. [Rud]. Ve francouzštině existují vy-
dání [Ee] a [Mu], v ruštině kvalitní souborné vydání [Ve] a překlad [Rud].

Archimédovy myšlenky jsou podrobně vyloženy jednak v některých soubor-
ných vydáních překladů jeho děl (např. [Hea]), jednak v řadě knih, např. [Dij],
[Sch], [Cl1] a [Cl2]. V české verzi máme tyto Archimédovy spisy:

• Archimedovo měření kruhu [Va1],
• Archimeda Syrakusského Počet pískový [Va2],
• Archimedův výklad Eratosthenovi [Vr],
• Problém dobytka [St], [Ma].

Podrobněji o nich pojednává článek M. Bečvářové uvedený v této knize
a [BeM3].

26 Jeho pojednání vyšlo v německém překladu až roku 1927.
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RECEPCE ARCHIMÉDOVA DÍLA

V EVROPĚ A V ČESKÝCH ZEMÍCH

Martina Bečvářová

1 Archimédés

Archimédés (asi 287 až 212), řecký matematik, astronom, fyzik a inženýr,
se narodil v Syrákúsách na Sicílii jako syn astronoma a matematika Feidia. Na
Sicílii prožil většinu svého života. O jeho životě a rodině není mnoho známo,
ačkoli byl jedním z nejvýznamnějších a všestranně talentovaných učenců staro-
věku. Tvrdí se, že během svého života navázal osobní kontakt s vědci tehdejšího
největšího střediska vzdělanosti – Alexandrií, zejména s matematiky Konónem
ze Samu (asi 280 až 220) a Eratosthenem z Kyrény (asi 276 až 194). V roce 212
se aktivně účastnil obrany Syrákús před Římany, zkonstruoval přitom obranné
stroje, které svou údernou silou udivovaly tehdejší svět, v němž právě probíhala
jedna z etap punských válek. Při obraně Syrákús zahynul.1

1.1 Dochované Archimédovy spisy

Archimédés napsal řadu významných prací, na něž navázala až novověká ma-
tematika a fyzika. Většina z nich se zachovala v latinských, řeckých a arabských
přepisech, o jiných jeho spisech víme jen z komentářů a poznámek pozdějších
autorů. K Archimédovým neznámějším spisům patří: Měření kruhu (Kyklú
metrésis), Počítání písku (Psammítés), O kvadratuře paraboly (Tetragónismos
parabolés), O kouli a válci I a II (Peri sfairás kai kylindrú), O spirálách (Peri
helikón), O kónoidech a sféroidech (Peri kónoeideón kai sfairoeideón), Kra-
tochvíle (Stomachion), O rovnováze neboli těžištích rovinných obrazců I a II
(Epipedón isorropión é kentra barón epipedón), Archimédův dopis Eratosthe-
novi o mechanických větách; Metoda (Archimédús peri tón méchanikón theóré-
matón pros Eratosthenén; Efodos) – který je často označován pouze stručným
názvem Metoda, dále spis O plovoucích tělesech (Peri ochúmenón), Poučky
(Liber assumptorum) a Problém dobytka (Probléma boeikon).2

Archimédovy matematické myšlenky umožňující výpočty obsahů rovinných
útvarů, povrchů a objemů těles představují vrchol antické matematiky; v no-
vověku na ně volně navázala matematická analýza a analytická geometrie (stu-
dium vlastností křivek a ploch). Ve fyzikálních spisech prozkoumal umístění
těžiště různých ploch a těles, jejich rovnováhu, objasnil fyzikální podstatu a po-
užití „ jednoduchých strojů	 a objevil zákon o nadlehčování těles ponořených
do kapaliny, který dnes nese jeho jméno a je součástí všech kurzů fyziky.

1 Podrobná studie o Archimédově životě a díle je v článku J. Bečváře uveřejněném v této
publikaci.

2 Podrobnější informace o jednotlivých Archimédových dílech lze najít například v [BŠ]
a [Gow]. Viz též články uveřejněné v této publikaci.
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V odborných studiích a učebnicích věnujících se historii vědy bývá Archi-
médés oprávněně označován za jednoho z největších matematiků a fyziků sta-
rověku, který byl navíc schopen své výsledky úspěšně využít v praxi (využití
kladky, páky, kladkostroje, nakloněné roviny, šroubu, konstrukce mechanických
strojů apod.).3

1.2 Ztracené Archimédovy spisy

Z nejrůznějších historických zmínek, pozdějších poznámek překladatelů a je-
jich vysvětlujících či doplňujících komentářů se domníváme, že existovaly i jiné
Archimédovy studie, které se nedochovaly, resp. nebyly zatím objeveny. Na-
příklad sám Archimédés zmiňuje ve spisu Počítání písku svoji práci Principy
(Archai), kterou prý věnoval příteli Zeuxippovi. V práci O rovnováze se odvo-
lává na své dvě studie nazvané Základy mechaniky (Stoicheia tón méchanikón)
a Rovnováha (Isorropiai).

Pappos Alexandrijský (3. století našeho letopočtu), velký znalec klasické an-
tické matematické tradice, věhlasný komentátor a historik matematiky, zmiňuje
Archimédovy výsledky vztahující se ke zkoumání vlastností polopravidelných
těles.4 Uvádí ještě dva názvy Archimédových prací – O váhách (Peri zygón)
a O těžišti (Kentrobarika) – věnovaných základům statiky. Připomíná také
Archimédův spis O stavbě [nebeských] sfér (Peri sfairopoiiás), který měl obsa-
hovat popis konstrukce planetária. Theón z Alexandrie (4. století našeho leto-
počtu), překladatel, komentátor a všestranný znalec řecké matematiky, Olym-
piodóros z Alexandrie (6. století našeho letopočtu), filozof, komentátor a uči-
tel, a mnozí další uvádějí Archimédův spis o optice nazvaný Katoptrika (Peri
katoptrikón). Arabští autoři zmiňují také Archimédův spis O konstrukci vod-
ních hodin pojednávající o konstrukci hodinového stroje poháněného vodou.

Arabští překladatelé, komentátoři a matematici prý znali ještě další Ar-
chimédovy práce pojednávající o dotyku kružnic, vlastnostech trojúhelníků,
rovnoběžkách, základech rovinné geometrie a stavbě matematické teorie (de-
finice, postuláty, axiomy, věty, důkazy). Například slavný překladatel řeckých
vědeckých spisů Thábit ibn Qurra (836–901) odkazoval na Archimédovu práci
O konstrukci pravidelného sedmiúhelníku.

3 O Archimédovi a jeho spisech viz J. L. Heiberg: Archimedis Opera Omnia cum Com-
mentariis Eutocii I.–III., Leipzig, Teubner, 1910, 1913 a 1915; T. L. Heath: The Works of
Archimedes, edited in modern notation with introductory chapters, Cambridge University
Press, 1897 (německy, Berlin, 1914, reprint: Dover Publications, Inc., 2002); P. ver Eecke:
Les Oeuvres Completes d’Archimede, Paris, Bruxelles, 1921; Ch. Mugler (ed.): Archimede,
Texte et traduction, I.–IV., Paris, 1970–1972; P. Midolo: Archimede e il suo tempo, Siracusa,
Prem. Tipografia del „Tamburo�, 1912; F. Kagan: Archimedes, Orbis, Praha, 1953 (překlad
z ruštiny); E. J. Dijksterhuis: Archimedes, Copenhagen, Ejnar Munksgaard, 1956 (reprint:
Princeton, NJ, 1987); I. Schneider: Archimedes. Ingenieur, Naturwisenschaftler und Mathe-
matiker , Darmstadt, Wiss. Buchgesellschaft, 1979.

4 Podrobná studie o pravidelných a polopravidelných tělesech je v článku V. Moravcové
uveřejněném v této publikaci.
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Je nutno připomenout, že není úplně jasné, zda výše uvedené práce opravdu
existovaly, nebo zda se pozdější tvůrci zaštiťovali věhlasem a autoritou klasiků.

2 Archimédovo dílo v průběhu staletí

V následujících odstavcích se pokusíme stručně zmapovat a naznačit složi-
tou a velmi komplikovanou cestu Archimédova díla Evropou v průběhu více než
dvaceti století. Připomeneme jen stěžejní okamžiky z pestré historie. Nazna-
číme, jaký vliv měly Archimédovy práce na rozvoj exaktního myšlení a vědecké
práce.

2.1 Starověká antická tradice

V starověku neexistovalo souborné „vydání	 Archimédova díla. Řada jeho
prací kolovala v různě kvalitních, více či méně přesných opisech, opisech opisů,
předávala se v ústní tradici apod. V průběhu nejrůznějších válek, vpádů bar-
barů, drancování a ničení měst, vzniku a zániků států, v důsledku přírodních
katastrof a nejrůznějších událostí se mnoho rukopisů ztratilo nebo bylo úmyslně
či neúmyslně nenávratně zničeno.

Víme však, že Archimédovo dílo bylo od svého vzniku studováno, komento-
váno, opisováno a přepisováno. Dokonce jeho značná část byla přeložena z pů-
vodní dórské řečtiny do klasické attické řečtiny, tj. do tehdejšího jazyka vědy
a krásného písemnictví. Zdaleka ne všechny Archimédovy spisy přitahovaly ta-
kovou pozornost, jakou by si zasloužily. Příčina byla poměrně jednoduchá. Větší
zájem byl o spisy Měření kruhu a O kouli a válci , které patřily k nenáročným
a tudíž docela dobře srozumitelným pracím. Zbylé práce byly sice přepisovány,
ale studovány byly jen ojediněle, neboť pouze velmi málo učenců bylo schopno
porozumět jejich principům.

2.2 Byzantský svět

Roku 476 formálně zanikla tzv. Západořímská říše, která skomírala již téměř
jedno století. Řecké písemnictví a vědecká tradice se udržely v tzv. Východořím-
ské říši, neboli Byzantské říši, a na krátký čas i v severním Egyptě. Pro udržení,
obnovení a rozšíření matematických znalostí a jejich aplikací bylo důležitým ob-
dobí 6. století, zejména vláda císaře Justiniána I., na základě jehož rozhodnutí
byl v Konstantinopoli budován chrám sv. Sofie, zvelebeno celé město a rozší-
řeno jeho masivní opevnění. Velkolepá výstavba potřebovala nejenom obyčejné
pracovní síly, ale také kvalitní odborníky. Na výstavbě se podílel architekt An-
themios Trallský a matematik Isidóros Mílétský (kolem 520), který kolem sebe
soustředil mladé studenty a vytvořil novou „školu	, v níž byly studovány, opi-
sovány a komentovány řecké spisy obsahující výsledky, jichž řecká věda dosáhla
od 5. století př. n. l. Právě této škole vděčíme za díla starověkých klasiků, která
dnes známe.

Byzantské písemnictví má velkou zásluhu na zachování řeckých textů – ko-
dexů Archimédových prací. Neopomenutelnou roli v procesu uchování Archimé-
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dových výsledků sehrál Lev Matematik (nazývaný pro svoji moudrost a vzdě-
lanost Filosof), který v 9. století působil v Soluni a Konstantinopoli. Nařídil
shromáždit všechny dochované Archimédovy práce, prostudovat jejich jednot-
livé verze, vybrat nejlepší, opsat je a vytvořit jednotný kodex, který byl později
nazván Kodex A.

Snad na přelomu 9. a 10. století byl také v Konstantinopoli sestaven druhý
soubor Archimédových prací zaměřený na problematiku rovnováhy a základů
mechaniky, který byl později nazván Kodex B .

V 10. století byl opět v Konstantinopoli sestaven z několika nových zdrojů
třetí Archimédovský soubor tzv. Kodex C , který byl však objeven až na konci
19. století a způsobil obrovské překvapení archimédovských badatelů.5

2.3 Arabský svět

První arabští vědci se zajímali o antickou vědu. Jako ceněná válečná kořist
byly přiváženy řecké rukopisy a již na přelomu 9. a 10. století byly překládány
do arabštiny. Například Thábit ibn Qurra přeložil Archimédův spis Měření
kruhu.6

2.4 Latinská Evropa – arabský vliv

Latinská Evropa se s Archimédovým dílem seznamovala poměrně pomalu
a pozvolna, nejprve prostřednictvím překladů z arabských zdrojů. Na konci
10. století začalo staré antické vědění uchovávané a přetvářené muslimskou
kulturou postupně pronikat do Evropy. Slibný rozvoj kulturních kontaktů však
byl přerušen válkou na Pyrenejském poloostrově. V roce 1085 dobyli španělští
křesťané Toledo a Araby vyhnali; na obsazené území přicházeli učenci ze zá-
padní i jižní Evropy. Díky zásahům osvícených biskupů bylo knižní bohatství
z části uchráněno. O záchranu rukopisů se později zasloužil biskup Raymond I.
(biskupem 1126–1131/56), který se stal ochráncem překladatelských a kompi-
látorských škol, jež vznikaly ve dvanáctém století v Toledu, Barceloně, Seville,
Segovii, Pamploně, Marseille a Toulouse. V těchto centrech byla vytvářena
vědecká a filozofická literatura psaná latinsky, překládalo se z arabštiny pro-
střednictvím hebrejštiny nebo kastilštiny. Na rozšiřování překladů, kompilací
i komentářů se podílely nejrůznější národnosti: moriskové (pokřtění Arabové),
mazarabové (islámští Španělé), Španělé, Angličané, Italové atd. Španělsko ne-
bylo jedinou oblastí, kde se arabská kultura mísila s křesťanskou. Obdobný
proces probíhal v jižní Francii, Portugalsku a především na Sicílii, které byly
starými oblastmi přirozeného styku kultur.

5 O objevu Kodexu C pojednává [NN] a [Pal]. Viz též tento článek.
6 O roli arabských překladatelů viz M. Abattouy: The History of Arabic Science, Max-

Planck-Institut für Wissenschaftgeschichte, preprint no. 53, Berlin, 1996, E. S. Kennedy: Stu-
dies in the Islamic Exact Science, Beirut, 1983, R. Lorch: Greek-Arabic-Latin: the Transmis-
sion of Mathematical Texts in the Middle Ages, preprint no. 82, Max-Planck-Institut für
Wissenschaftgeschichte, Berlin, 1997.
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Teprve ve 12. století se arabské rukopisy obsahující Archimédovy práce do-
staly do Evropy a první učenci se pokusili o jejich překlad a studium. Spis
Měření kruhu přeložil Gerhard z Cremony (1114–1187), jeden z nejznámějších
a nejslavnějších toledských překladatelů.7 Nezávislý, avšak méně kvalitní pře-
klad téhož spisu, který obsahoval mnoho chyb a nepřesností, udělal ve stejném
období opět v Toledu Platón z Tivoli (kolem 1150), známý a ceněný překladatel
vědecké literatury.

2.5 Latinská Evropa – vliv řeckých kodexů

V evropské tradici studia Archimédova díla sehrály důležitou roli Kodexy A
a B , které se neznámou cestou dostaly na Sicílii snad již za vlády Normanů.8

Bez všech pochybností je prokázáno, že v roce 1266 byly oba kodexy uchová-
vány v rodové knihovně Manfréda Sicilského (1231–1266), posledního sicilského
krále z rodu Štaufů, který padl v bitvě u Beneventa. Rozsáhlou, proslulou a ne-
smírně cennou knihovnu získala jako válečnou kořist papežská kurie, která ji
nechala převést do Říma. Postupem času se kodexy za nejasných okolností
rozešly a nakonec úplně ztratily.

2.6 Kodex A

Z římské papežské knihovny se Kodex A9 na dlouhou dobu ztratil. Pravdě-
podobně se dostal do soukromých rukou, putoval po různých šlechtických či
církevních knihovnách. Teprve před koncem 15. století se opět vynořil. V roce
1491 jej studoval Giorgio Valla (1430–1499), slavný italský humanista, znalec
antické literatury a úspěšný překladatel z řečtiny. Řecky psaný kodex pečlivě
opsal, prostudoval a připravil do tisku. Před dokončením závěrečných prací

7 Gerhard z Cremony (též Gherardo či Gherardus Cremonensis) se narodil v Cremoně
v Lombardii. Prý se dozvěděl, že v Toledu mají arabsky psaný Ptolemaiův Almagest , který
nebyl v Itálii dostupný. Proto odešel do Toleda, kde byl uchvácen hojností neznámé litera-
tury. Naučil se arabsky a po celý zbytek života se věnoval překládání. Připojil se k toledské
překladatelské škole podporované především biskupem Raymondem I. a jeho nástupci. V To-
ledu se překládaly staré rukopisy z arabštiny do kastilštiny a z kastilštiny do latiny. Gherard
se stal pravděpodobně nejplodnějším členem této školy, překládal práce z astronomie, lékař-
ství, filozofie, optiky, alchymie a matematiky. Podle pozdějších informací přeložil sedmdesát
až devadesát arabských spisů, u některých překladů však jeho autorství nelze jednoznačně
prokázat. Mnoho prací asi přeložil sám, mnohé vznikaly pod jeho vedením či na základě jeho
inspirativního působení.

8 Sicílie byla starou oblastí přirozeného styku kultur a civilizací. Původně řecká kolonie,
později součást římského impéria a východořímské říše se v roce 878 stala na padesát let
arabským panstvím. V desátém století byla znovu ovládnuta Řeky, roku 1091 je vystřídali
jihoitalští Normané. Od devátého století zde kromě latinsko-italsky mluvícího obyvatelstva
žili Řekové i Arabové. Sicilané užívali jako hovorové jazyky latinu, řečtinu a arabštinu; proto
se z nich stávali překladatelé, diplomaté a cestovatelé. Putovali do Konstantinopole a Bag-
dádu a získávali arabské a staré řecké rukopisy, které byly za vlády Fridricha II. (1194–1250)
a jeho syna Manfreda (1231–1266) překládány do latiny. Východní učenci zde četli Ptolemai-
ovy a Eukleidovy práce, kopie rukopisů se odtud šířily do celé Evropy.

9 Obsah Kodexu A: O kouli a válci , Měření kruhu, O kónoidech a sféroidech, O spi-
rálách, O rovnováze, Počítání písku, O kvadratuře paraboly a Komentáře Eutokia z Askalónu
(6. století).
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však zemřel, a tak se jeho sen vydat kodex tiskem neuskutečnil. Naštěstí jeho
práce neupadla v zapomnění. Naopak sehrála důležitou roli při studiu Archi-
médova díla, neboť z ní byly opsány kopie10 a z nich byly pořizovány překlady
dílčích spisů do latiny.

Roku 1450 Jakub z Cremony (zemř. kolem 1452), vzdělaný kněz ze San
Cassiana, na příkaz samotného papeže Mikuláše V.11 přeložil část Kodexu A
z řečtiny do latiny. Z jeho rukopisu byla pořízena řada opisů, které se rozšířily
mezi elitu středověké Evropy. Získali je například Mikuláš Kusánský (1401–
1464) a Johannes Regiomontanus (1436–1476), který nebyl s překladem úplně
spokojen a začal chystat do tisku revidovaný a bohatě komentovaný překlad.12

2.7 Kodex B

Pravděpodobně méně známý, ale zcela jistě méně rozšířený Kodex B prodě-
lal podobně složitou cestu jako Kodex A. O osudu Kodexu B je dnes známo jen
málo. V roce 1269 byl dominikán Willem van Moerbecke (1215–1286), žák Al-
berta Velikého (1207–1280), proslulý překladatel z řečtiny a arabštiny a vlivný
člen papežského dvora ve Viterbu, požádán papežskou kurií, aby přeložil vět-
šinu pojednání obsažených v Kodexu A a dále prostudoval a přeložil ty části
Kodexu B , které nebyly obsaženy v Kodexu A.13 O dalších peripetiích Kodexu
B není nic známo. Jeho stopy zcela zmizely počátkem 14. století, nedochovaly
se žádné jeho opisy, přepisy či komentáře.

3 Knihtisk a Archimédovo dílo

3.1 První tisky ve druhé polovině 15. století a první polovině
16. století

Ve druhé polovině 15. století byl objeven knihtisk, v západní a jižní Evropě
byly postupně zakládány tiskařské dílny, které umožnily rychlejší šíření „módní
literatury	 a také antických spisů, nárůst knižní produkce a rozkvět vzdělanosti.

Roku 1503 Luca Gaurico (1476–1558), dnes téměř zapomenutý renesanční
neapolský matematik, vydal ve věhlasné tiskárně v Benátkách latinské překlady

10 Opisy Vallovy práce jsou dnes považovány za vzácné kulturní památky (např. Kodex
Marcianus v Benátkách, Kodex Laurentianus ve Florencii , Kodex Parisiensis ve Fontanai-
bleau).

11 Mikuláš V. (1397–1455), vlastním jménem Tommaso Parentucelli, vykonával pontifikát
od roku 1447 až do své smrti. V roce 1448 oficiálně založil Vatikánskou knihovnu. Pod jeho
vlivem papežská kancelář začala psát všechna breve a veškeré dokumenty humanistickou
polokurzívou, což mělo velký vliv na rozšíření tohoto typu písma v Evropě.

12 Regiomontanova práce nikdy tiskem nevyšla, její rukopis je uchováván v Norimberku.
13 Nedokonalý Moerbeckeův překlad je uchováván v Papežské apoštolské knihovně ve

Vatikánu. Poznamenejme, že v něm chybí překlad spisu Počítání písku, který byl obsažen
v Kodexu A. Obsahuje však latinský překlad spisu O plovoucích tělesech, jenž byl zahrnut
do Kodexu B . Původní řecký text Archimédovy práce O plovoucích tělesech byl dlouho ne-
zvěstný. Jeho autorství bylo zpochybňováno a za autora byl považován W. van Moerbecke.
Řecká verze spisu byla objevena až na počátku 20. století, kdy byla také doceněna a rehabi-
litována překladatelská činnost W. van Moerbeckeho.
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Měření kruhu a O kvadratuře paraboly , které patřily mezi oblíbené a často stu-
dované Archimédovy spisy. Poznamenejme, že se jednalo o první archimédovský
tisk, který je dnes bibliofilskou vzácností. Vyvolal novou vlnu zájmu o Archi-
méda, jeho život a dílo.

Roku 1543 Niccolo Tartaglia (1500–1557), slavný italský renesanční mate-
matik, využil Gauricův tisk, přepracoval jej a v Benátkách vydal vylepšené
překlady Měření kruhu a O kvadratuře paraboly . Roku 1565 vyšel opět v Be-
nátkách zásluhou Tartagliovy práce samostatný tisk Moerbeckeova latinského
překladu spisu O plovoucích tělesech.14

První „souborné	 vydání všech známých Archimédových spisů (řecké texty,
latinské překlady a Eutokiovy komentáře) je spojeno s rozsáhlou a mnoha-
letou prací Thomase Venatoria (1488–1551), německého matematika, teologa
a reformátora. Roku 1544 v Basileji vydal řecké texty odpovídající textům ob-
saženým v Kodexu A a latinský překlad Archimédových prací, který vytvořil
Jakub z Cremony, k jehož opravám použil již dříve zmíněný Regiomontanův
překlad.

3.2 Tisky ve druhé polovině 16. století

Ve druhé polovině 16. století se vlivem rozkvětu výuky přírodních věd na
předních evropských univerzitách zvýšil zájem o studium „klasiků	. Objevily se
nové latinské bohatě komentované překlady Archimédových prací. Roku 1558
Federigo Commandino z Urbina (1509–1575), italský renesanční filozof, lékař,
znalec řecké literatury a propagátor matematiky, vydal v Benátkách kvalitní
latinské překlady Archimédových spisů Měření kruhu, O spirálách, O kvadra-
tuře paraboly , O kónoidech a sféroidech a Počítání písku. V roce 1565 připojil
ještě komentované vydání latinské verze spisu O plovoucích tělesech.

V roce 1570 Francesco Maurolico (1494–1575), italský mnich ze Sicílie, znalec
klasických jazyků a vynikající překladatel, vydal v Palermu latinský překlad
Archimédových prací nazvaný Armirandi Archimedis Syracusani Monumenta
omnia mathematica, který se stal „kánonem	 pro všechny tisky 17. a 18. století.

3.3 Archimédovo dílo v Evropě 17. a 18. století

V průběhu 17. a 18. století opakovaně vycházely tiskem veškeré dostupné
a známé Archimédovy spisy, a to buď jako řecké texty doplněné latinskými pře-
klady (tzv. zrcadlová vydání), nebo čistě latinské překlady. Souborná vydání
byla obvykle doplněna matematickými, historickými i metodickými komentáři.
V kontinentální Evropě se stalo oblíbeným řecko-latinské vydání Davida Ri-
valta a Flurantia, které vyšlo roku 1615 v Paříži. V Londýně byl roku 1675
vytištěn latinský spis Archimedis Opera vypracovaný slavným anglickým ma-
tematikem Isaacem Barrowem (1630–1677). Díky četným podrobným komen-
tářům a vysvětlivkám pro učitele i čtenáře se rychle rozšířil v celé Evropě.

14 Tento tisk měl vliv i na vývoj fyziky, studoval jej např. Galileo Galilei (1564–1642).
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Ve druhé polovině 17. století se objevily první překlady Archimédova díla
do národních jazyků, které odstartovaly hlubší zájem o další studium archimé-
dovské tematiky (např. němčina – 1670 Norimberk, 1798 Tübingen, francouz-
ština – 1807 Paříž). Současně se vynořily nové překladatelské a komentátorské
problémy; souvisely s nedostatkem kvalitních řeckých pramenů, neočekávanými
objevy dříve nedostupných arabských rukopisů, prvními odbornými pokusy vy-
jasnit okolnosti vzniku a šíření Archimédových myšlenek a snahami korigovat
„renesanční	 kopie a rukopisy. Evropa konce 18. století byla hnaná touhou vy-
hledat originální řecké zdroje, které by umožnily plně rekonstruovat, upřesnit,
doplnit či přepracovat již existující překlady Archimédových prací.

4 Nové objevy Archimédových prací

V následujících odstavcích připomeneme všechny „moderní	 objevy zapome-
nutých Archimédových prací, přiblížíme jejich historii a ukážeme, jakou sehrály
roli v recepci Archimédova díla.

4.1 Objev úlohy „Problém dobytka�

Roku 1773 Gotthold Ephraim Lessing (1729–1781), německý básník, estetik,
kritik, překladatel a znalec klasické literatury, uspořádával ve Wolfenbüttelu
knihovnu vévody Augusta a připravoval její katalog. Objevil starý řecký ko-
dex obsahující Archimédovu matematickou úlohu adresovanou Eratosthenovi
a dnes označovanou jako Problém dobytka, která byla napsána 22 distichy podle
dávného homérského motivu.15 G. E. Lessing ji uveřejnil v učebnici literatury
nazvané Zur Geschichte der Literatur aus den Schatyen der Herz. Bibliothek zu
Wolfenbüttel .16 Delší dobu byly vedeny spory o pravost kodexu a původnost
úlohy. Na počátku 19. století byl v národní knihovně v Paříži (Bibliotheque
Nationale Paris) nalezen starý řecký rukopis Codex Paris Graece 2448 , v němž
byla zapsána tatáž úloha (viz saec. XIV, fol. 57).17

4.2 Objev ztraceného Archimédova spisu „O metodě�

Popišme nyní zajímavou historii a překvapivý objev středověkého rukopisu
obsahujícího mimo jiné Archimédovu práci O metodě .18 Původní rukopis ob-
sahující opisy Archimédových děl byl sepsán pravděpodobně ve druhé polovině
10. století19 v Konstantinopoli, kde byla od devátého století zásluhou Lva Ma-
tematika20 studována matematika, opisovány práce klasiků a postupně dopl-
ňovány významné práce, které v konstantinopolské knihovně chyběly. Byly tak

15 Podrobný rozbor úlohy Problém dobytka je otištěn ve studii T. Bártlové uveřejněné
v této publikaci.

16 Zweiter Beitrag, Braunschweig, 1773.
17 V současné době je opět zpochybňována původnost úlohy; hovoří se o „pseudoarchi-

médově� úloze.
18 Historie objevu rukopisu je podrobně popsána v [Pal].
19 Podle všech dosavadních výzkumů se předpokládá, že rok 975 je rokem vzniku rukopisu.
20 Lev Matematik (asi 790 až 869) byl polyhistorem, výraznou osobností byzantské vědy

a zakladatelem palácové školy v Konstantinopoli. Více viz [BeM1].
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konzervovány výsledky antické vědy (Eukleidés, Archimédés, Apollónios, Dio-
fantos, Ptolemaios atd.). Vznik rukopisu spadá do období největšího rozkvětu
byzantské říše, která byla centrem politiky, křesťanství, obchodu i kultury ce-
lého východního Středomoří.

Roku 1899 objevil Papadopoulos-Kerameus, docent Petrohradské univer-
zity, při zpracovávání katalogu21 knihovny kláštera metochia Panagiou Tafou
v Istanbulu (dceřiný klášter jeruzalémského kláštera Božího hrobu)22 řecky psa-
nou modlitební knížku se zajímavým matematickým textem prosvítajícím pod
náboženským textem, tj. palimpsestový kodex.23 Rukopis katalogizovaný pod
číslem MS355 pečlivě prohlédl a odhalil nápis, že v 16. století patřil klášteru
Sv. Sávy ve Svaté zemi.24

Není zcela jasné, jak se kodex do kláštera sv. Sávy dostal, muselo to být
nejpozději v 16. století. V metochiu však musel být již roku 1840, neboť
v tomto roce klášter navštívil slavný biblista Lobegott Friedrich Konstantin
von Tischendorf,25 který roku 1846 popsal svoji cestu a svá studia na „Vý-
chodě	. Napsal, že v klášteře neviděl nic zajímavějšího než starou řecky psa-
nou modlitební knížku, palimpsest s prosvítajícím tajemným matematickým
textem.

L. F. K. von Tischendorf záhadnou cestou získal jeden list rukopisu, který
byl po jeho smrti roku 1879 zakoupen do sbírek Cambridge University Library
a katalogizován jako C.U.L. Ms. Add. 1879.23. Tischendorfův objev nevzbudil
žádnou pozornost. List z jeho pozůstalosti byl prostudován teprve roku 1968

21 Papadopoulos-Kerameus vydal pětisvazkový katalog knihovny pod názvem Hierosoly-
mitiké Bibliothéké étoi katalogos tón en tais bibliothékais tou hagiótatou apostolikou te kai
katholikou orthodoxou patriarchikou thronou tón Hierosolymón kai pásés Palaistinés apokei-
menón hellénikón kódikón, St. Petersburg, 1891–1915 (reprint: Brussels, 1963).

22 Jedná se o řecký patriarchální klášter, který se nacházel v Istanbulu. V něm byly ucho-
vávány cenné rukopisy patřící původně klášteru Božího hrobu v Jeruzalémě. Slovo metochion
označuje v ortodoxní církvi tzv. církevní ambasádu (vyslanectví); metochion je nezávislé na
okolních klášterech.

23 Palimpsest je pergamenový svitek nebo kodex, který byl mechanickou a chemickou
cestou zbaven původního textu a popsán novým textem. Mnohdy byly původní listy ještě
rozřezány, ořezány a svázány do kodexu zcela jiného formátu.

24 Klášter sv. Sávy byl založen roku 483 (podle některých zdrojů až roku 492) několik
kilometrů východně od Betléma. Byl vybudován jako obrovská pevnost v poušti. Od pr-
vopočátku patřil mezi intelektuální centra Svaté země. Až do konce 12. století měl skvěle
organizovanou písařskou dílnu, která produkovala skvostné rukopisy pro celou Svatou zemi.
Roku 1834 jeho knihovna uchovávala více než 1 000 starých rukopisů. Roku 1839 ji navštívili
reverend George Croly a David Roberts, člen královské londýnské malířské akademie, kteří se
pokusili zhotovit několik obrázků kláštera, navštívit klášterní knihovnu a sestavit její katalog.
Mniši jim však rozsáhlejší průzkum knihovny nepovolili.

25 Lobegott Friedrich Konstantin von Tischendorf (1815–1874) byl protestantský teolog,
který se věnoval novozákonní textové kritice. Německou vládou byl nejprve vyslán do Paříže,
aby studoval rukopisy ve francouzské Národní knihovně, později pracoval v čelných evrop-
ských knihovnách a cestoval po klášterech v Egyptě, Palestině, Sýrii a Malé Asii. Ze svých
cest přinesl mnoho cenných rukopisů, mimo jiné starozákonní pergamenový Codex Friderico-
Augustanus a nejstarší řecký rukopis Bible Codex sinaiticus. Byl jedním z největších znalců
klasických starozákonních a novozákonních textů.
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Nigelem Wilsonem, který zjistil, že se jedná o část nalezeného a později opě-
tovně ztraceného palimpsestu obsahujícího Archimédovy práce.

Roku 1899 Papadopoulos-Kerameus ještě netušil, jak zajímavý a pro vědu
cenný rukopis objevil. Opsal dva dobře čitelné řádky prosvítajícího matematic-
kého textu a zaslal je tehdejšímu největšímu znalci antických matematických
textů Johannu Ludwigovi Heibergovi (1854–1928). Ten roku 1906 navštívil kni-
hovnu kláštera metochion Panagiou Tafou, nalezl palimpsest, pořídil fotografie
všech jeho folií a pečlivě jej prostudoval. Podle typu písma a úpravy zjistil, že
starší text pochází z 10. století a obsahuje některé známé Archimédovy práce
(např. celý řecký text spisu O plovoucích tělesech) a světu neznámý text ztra-
ceného Archimédova spisu O metodě . Později se ukázalo, že v kodexu je též
zlomek Archimédovy matematické hříčky Kratochvíle (Stomachion).26 Kritický
rozbor studovaného rukopisu publikoval J. L. Heiberg již roku 1907.27

Není úplně jasné, co se s kodexem dělo během dalších devadesáti let. Ob-
jevil se 28. října 1998 na aukci slavné aukční síně Christie’s New York a byl
deklarován jako rukopis ze soukromé anonymní francouzské kolekce. Den po
oznámení aukčních podmínek se řecká vláda a řecký patriarcha pokusili aukční
prodej zastavit. Obrátili se na soud s tím, že se jedná o ukradené řecké kulturní
dědictví. Soud však konstatoval, že francouzská rodina prokazatelně vlastnila
rukopis od 60. let 20. století, ale že není možno prověřit její tvrzení, že rukopis
měla již ve 20. letech 20. století.28 Dražba byla nakonec povolena. Anonymní
americký sběratel zakoupil kodex za 2 miliony dolarů a slíbil, že jej poskytne
k vědeckému studiu. V lednu 1999 jej deponoval do muzea The Walters Art

26 Zmínky o existenci tohoto Archimédova hlavolamu (Loculus Archimedius), jeho popis
a vysvětlení nalézáme v antické literatuře například u římského básníka a politika Ausonia,
který o něm ve 4. století n. l. napsal báseň. Archimédés hlavolam nevymyslel; patrně však
popsal jeho konstrukci. Více viz [BŠ] a studie Z. Halase uveřejněná v této publikaci.

27 Informace o Heibergově objevu byly otištěny německy v časopise Bibliotheca Mathema-
tica (1906 a 1907), anglicky ve zprávách American Mathematical Society (1908) a v časopise
Monist (1909). Objev rukopisu byl kompletně zpracován až v novém souborném vydání Ar-
chimédova díla, viz J. L. Heiberg (ed.): Archimedis Opera omnia cum commentariis Eutocii ,
Leipzig, 1910, 1913, 1915 (reprint: 1972). Nejnověji viz též [NN], [Pal] a [NNWT].

28 Podle výsledků soudního procesu je pravděpodobné, že rukopis byl kolem roku 1922
z klášterní knihovny metochion Panagiou Tafou v Istanbulu odcizen.
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Museum v Baltimore. Rukopis zpřístupnil k nutné záchranné konzervaci, digi-
talizaci a rozsáhlému vědeckému studiu. V roce 1999 byl sestaven velký mezi-
národní tým špičkových specialistů a odborníků, který při své práci využíval
nejmodernější technologie.29

Ukázalo se, že modlitební knížka, v níž Archimédova práce přežila, od Hei-
bergových časů velmi utrpěla. Ztratily se tři listy, které J. L. Heiberg ještě 1906
roku prostudoval, fotografoval a komentoval; zůstaly nám tedy jen jejich staré
fotografie. Kniha sama byla poškozena plísní a vlhkostí, neboť byla špatně a ne-
odborně skladována. J. L. Heiberg ji viděl v podstatně lepším stavu, mohl ji
tedy studovat. Dnes jsou velké plochy textu stěží identifikovatelné i s použitím
nových metod. Další pohromou bylo zcela neobvyklé přimalování čtyř starých
obrázků, na nichž byli evangelisté. Podařilo se ukázat, že obrázky evangelistů
byly pořízeny po roce 1929 podle obrázků v rukopise Manuscripts Grecs de la
Bibliothéque Nationale, který je uložen v Národní knihovně v Paříži.

Nejnovějším studiem se podařilo zjistit, za jakých okolností palimpsest
vznikl. Z historie víme, že relativně příznivý vývoj byzantské říše byl poprvé
vážněji narušen roku 1203, kdy byla vyhlášena papežem Innocencem III.30

čtvrtá křížová výprava na obranu Svaté země, a podruhé následujícího roku,
kdy italská vojska účastnící se křížové výpravy Konstantinopol vydrancovala.31

Poválečné období nebylo nakloněno studiu a rozvoji matematiky, objevilo se
naopak brojení proti vědě. Tento čas byl obecně považován za dobu vzniku pa-
limpsestu, usuzovalo se tak z tvaru písma a typu ilustračních obrázků. V roce
2002 profesor John Lowden z Courtauld Institute použil ke studiu rukopisu ul-
trafialové světlo a rozluštil „tiráž	 na spodní části rubové strany prvního listu,
v níž se objevilo datum 13. duben 1229. Zdá se tedy, že toto datum ukazuje na
dobu zrodu modlitební knížky, která byla napsána na staré pergameny obsa-
hující text Archimédových prací. Jednotlivé listy byly očištěny od původního
textu, rozřezány, otočeny o 90 stupňů, oříznuty, nově popsány a sešity v jeden
kodex. Tak došlo k nenávratnému poškození některých částí původního textu.32

29 Výsledky práce byly postupně zveřejňovány v odborném tisku a na webové stránce
projektu [Pal]. Souhrnnou informaci lze nalézt v monografii Netz R., Noel W., Wilson N.,
Tchernetska N.: The Archimedes palimpsest I, II , Cambridge University Press, New York,
2011.

30 Innocenc III. (1160–1216) byl papežem v letech 1198 až 1216. Díky svému rozsáhlému
vzdělání, politické prozíravosti, obratnosti a taktu reorganizoval římskou kurii a upevnil její
postavení v Itálii. Za jeho vlády dosáhlo papežství jednoho ze svých vrcholů. Poznamenejme,
že roku 1204 uznal Přemysla Otakara I. (asi 1155–1230) za českého krále, přiznal našim
zemím výsadu království a Přemyslovcům dědičný královský titul.

31 V tomto čase Konstantinopol ovládali Benátčané, kteří dalšímu rozvoji svého velkého
námořního rivala příliš nepřáli. Benátčané následně založili kolonie v Egejském moři a na
Krétě, s podporou římského stolce vzniklo tzv. Latinské císařství, Nikajské císařství, Epirský
despotát, Trapezuntské císařství a další menší státní celky. S pomocí Janova, který byl od-
věkým námořním a obchodním konkurentem Benátek, se Konstantinopol roku 1261 zbavila
západního vlivu a Benátčany vyhnala.

32 O historii objevu Kodexu C viz [NN], [Pal] a M. Bečvářová: Archimédovy práce česky,
in J. Bečvář, M. Bečvářová: 29. mezinárodní konference Historie matematiky, Velké Meziříčí,
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Není vyloučené, že se ve starých klášterních knihovnách a archivech na Blíz-
kém Východě mohou nacházet další knihy, kodexy, svitky a dokumenty obsa-
hující ztracená díla antických i středověkých myslitelů. Příběh spisu O metodě
ukazuje, že různá překvapení jsou i v budoucnosti možná.

4.3 Objev hříčky „Stomachion�

Roku 1899 Heinrich Suter (1848–1922), německý orientalista a historik ma-
tematiky a astronomie, objevil v berlínské královské knihovně arabskou verzi
Archimédovy hříčky nazývané Stomachion; opsal ji, přeložil do němčiny, vy-
světlil a stručně komentoval.33

5 Zrod moderních kritických vydání a překladů

Na konci 19. a počátku 20. století se objevily pokusy pořídit nové kritické
vydání souborného Archimédova díla. Výrazný úspěch zaznamenal J. L. Hei-
berg, který po mnoha letech náročného studia, analýzy a komparací všech do-
stupných rukopisů a tisků vydal třísvazkovou práci Archimedis opera omnia
cum commentariis Eutocii. E codice Florentino recensuit, latine vertit notisque
illustravit J. L. Heiberg.34 Po objevech nových rukopisů obsahujících některé
Archimédovy ztracené práce J. L. Heiberg výše uvedenou monografii přepraco-
val a pod názvem Archimedis Opera Omnia cum Commentariis Eutocii I.–III.
publikoval nové souborné vydání Archimédova díla,35 které se stalo základem
moderních překladů do všech národních jazyků.

V roce 1897 Thomas Little Heath (1861–1940), anglický matematik, his-
torik matematiky a znalec antické matematiky, vydal volný anglický překlad
souborného Archimédova díla, který doplnil řadou komentářů a poznámek a na-
zval The Works of Archimedes, edited in modern notation with introductory
chapters.36 Roku 1912 Pasquale Midolo přeložil veškeré známé Archimédovy
práce do italštiny,37 roku 1921 Paul ver Eecke (1867–1959) uveřejnil první kom-
pletní francouzský překlad.38 Roku 1956 vyšla kniha prezentující Archimédovy
spisy a reflektující nejnovější archimédovské studie a objevy, jejímž autorem byl

22. 8. – 26. 8. 2008 , Katedra didaktiky matematiky MFF UK, Matfyzpress, Praha, 2008,
str. 93–102.

33 Heinrich Suter: Der Loculus Archimedius oder das Syntemachion des Archimedes.
Zum ersten mal nach zwei arabischen Manuskripte der Königlichen Bibliothek in Berlin
herausgegeben und übersetzt, Festschrift zum 70. Geburtst. M. Cantor’s, Abhandlungen zur
Geschichte der Mathematik 9(1899), str. 491–500. Matematická podstata Kratochvíle (Sto-
machionu) je popsána v [NN].

34 Volumen I.–III., Lipsiae, 1880–1881.
35 Teubner, Leipzig, 1910, 1913 a 1915.
36 University Press, Cambridge, 1897. Německý překlad Heathovy monografie vyšel v Ber-

líně roku 1914. Reprint anglické verze vyšel roku 2002 zásluhou nakladatelství Dover Publi-
cations, Inc.

37 P. Midolo: Archimede e il suo tempo, Prem. Tipografia del „Tamburo�, Siracusa, 1912.
38 P. ver Eecke: Les Oeuvres Completes d’Archimede, Paris, Bruxelles, 1921.
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slavný holandský matematik Eduard Jan Dijksterhuis (1892–1965).39 V sedm-
desátých letech moderní francouzský překlad respektující všechny překladatel-
ské zásady vytvořil Charles Mugler.40

6 České překlady klasických prací

Od šedesátých let 19. století, kdy se postupně rozšiřovala výuka matematiky
v českém jazyce na středních školách a začaly se objevovat české matematické
přednášky na pražské polytechnice, citelně chyběly české učební texty a po-
můcky. Proto se rozšířily snahy sepsat první české středoškolské i vysokoškol-
ské učebnice matematiky a prosadily se tendence směřující ke vzniku překladů
matematických děl klasiků i některých moderních monografií.41

První takovéto české překlady matematických děl vznikly v sedmdesátých
letech 19. století.42 Jejich autoři byli tehdy aktivními členy Jednoty českých
mathematiků, kteří teprve nedávno ukončili svá vysokoškolská studia a s mla-
dickým nadšením a energií se pustili do obtížné práce. V osmdesátých letech se
objevily další překlady,43 hlavní pozornost českých matematiků byla však v té
době zaměřena především na sepisování původních odborných prací, monografií
a českých učebnic. Další překlady nalezneme až na počátku 20. století.

Značná pozornost byla věnována překladu stěžejního matematického díla
všech dob – Eukleidovým Základům – tj. knize, která ovlivňovala vývoj mate-
matiky a její vyučování od třetího století př. n. l. více méně až do současnosti.44

39 E. J. Dijksterhuis: Archimedes, Ejnar Munksgaard, Copenhagen, 1956. Reprint práce
vyšel roku 1987 v nakladatelství Princeton, NJ.

40 Ch. Mugler (ed.): Archimede, Texte et traduction, I.–IV., Paris, 1970–1972.
41 Poznamenejme, že v této době se česká vědecká komunita pokusila i o překlad jednoho

Aristotelova logického spisu. Antonín Jaroslav Vrťátko přeložil roku 1860 Aristotelův spis
Kategorie, který vydal pod názvem Aristotela Katégorie. Podruhé tento spis přeložil v roce
1918 Pavel Vychodil. První ucelený český překlad logických Aristotelových spisů (Organon)
je spjat až se jménem Karla Berky, jehož překlady vycházely od roku 1958 až do roku
1978. Podrobněji o českých překladech matematických děl klasiků a moderních monografií
viz [BeM2], str. 263–279.

42 Například na počátku 70. let 19. století Emil Weyr přeložil dvě monografie italského
geometra Luigi Cremony Sulle trasformazioni geometriche delle figure piane (Cremonovy
geometrické transformace útvarů rovinných) a Introduzione ad una teoria geometrica delle
curve piane (Úvod do geometrické teorie křivek rovinných), Martin Pokorný přeložil slavnou
učebnici německého matematika Richarda Baltzera Die Elemente der Mathematik (Dra Ri-
charda Baltzera Základové matematiky. Díl Prvý. Prostá aritmetika) a Karel Zahradník pře-
ložil významnou práci italského matematika Giusta Bellavitise Saggio di applicazioni di un
nuovo metodo di geometria analitica (Calcolo delle equipollenze) (Methoda equipollencí čili
rovnic geometrických).

43 Například na počátku 80. let 19. století František Josef Studnička přeložil slavný článek
Bernarda Bolzana Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwey Werthen,
die ein entgegengesetzstes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichunge
liege (Ryze analytický důkaz poučky, že mezi dvěma hodnotami, jež poskytují opačně ozna-
čené výsledky, leží nejméně jeden realný kořen rovnice).

44 Cesta Eukleidových Základů světem od jejich vzniku až do současnosti, charakteristika
jejich obsahu i analýza jejich významu, stejně jako vznik a osudy českých překladů jsou
popsány v [BeM1], str. 7–111.
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Přeloženy byly také nepatrné zlomky z díla René Descarta (1596–1650), Blaise
Pascala (1623–1662) a Bernarda Bolzana (1781–1848).45

7 Překlady Archimédových prací

V následujícím textu se budeme věnovat čtyřem českým překladům Archi-
médových prací, z nichž dva jsou od svého vzniku v povědomí české matema-
tické obce, třetí však zůstal zcela na okraji zájmu a byl až do roku 2008 zcela
zapomenut, čtvrtý byl sice znám, ale nebyla mu věnována žádná pozornost.46

7.1 Český překlad spisu „Měření kruhu�

Dochovaná část Archimédova Měření kruhu je asi jen zlomkem jeho pů-
vodní práce; známe z ní pouze tři matematické věty. V první je vysloven dů-
ležitý vztah mezi obvodem a obsahem kruhu – obsah kruhu je roven obsahu
pravoúhlého trojúhelníka, jehož délky odvěsen jsou rovny poloměru a obvodu
kruhu. Důsledkem je skutečnost, že ve vzorci pro obsah i obvod kruhu figuruje
stejná konstanta, kterou dnes označujeme symbolem π (poměr obvodu a prů-
měru kruhu). Ve druhé větě je uveden přibližný odhad této konstanty, třetí věta
uvádí daleko přesnější odhad. Je pravděpodobné, že se jedná jen o jakýsi výtah
z původního Archimédova díla, v němž asi navíc došlo k chybnému zařazení
druhé věty, která je jen jednoduchým důsledkem věty třetí.47 Archimédův spis
Měření kruhu byl od svého vzniku často studován, přepisován a komentován.
Patřil k oblíbeným spisům, protože obsahoval matematicky jednoduchou, dobře
představitelnou a pochopitelnou látku.48

V roce 1903 vydal Miloslav Valouch49 český překlad Archimédova Měření
kruhu.50 Doplnil jej dvanáctistránkovým úvodem, v němž podal stručné infor-
mace o Archimédově životě a díle, o jeho významu a připojil seznam literatury.
Vyložil základní myšlenky některých metod výpočtu druhé odmocniny, aby ob-
jasnil, jaké výpočty a úvahy Archimédés prováděl. K překladu použil kritické

45 Více viz [BeM2], str. 263–279.
46 Viz M. Bečvářová: Archimédovy práce česky, in J. Bečvář, M. Bečvářová (ed.): 29. me-

zinárodní konference Historie matematiky, Velké Meziříčí, 22. 8. – 26. 8. 2008 , Katedra
didaktiky matematiky MFF UK, Matfyzpress, Praha, 2008, str. 93–102.

47 OArchimédově spiseMěření kruhu viz např. [BŠ], [Pic], [Kno1], [Kno4], [Sat]. Podrobný
matematický rozbor spisu Měření kruhu je uveden v článku J. Bečváře uveřejněném v této
knížce.

48 O historii tohoto spisu viz např. [BŠ].
49 Miloslav Valouch (1878–1952) působil po studiích na pražské univerzitě jako středoškol-

ský profesor matematiky a fyziky na středních školách v Olomouci, Rokycanech, Litomyšli
a Praze. Od roku 1918 až do svého penzionování v roce 1927 pracoval na Ministerstvu školství
a národní osvěty, kde se věnoval otázkám vyučování a reformy školství. Podílel se také na
přípravě nových gymnaziálních učebnic, které reagovaly na změny osnov tohoto typu střed-
ních škol. Po odchodu do penze aktivně pracoval v Jednotě československých matematiků
a fysiků (dlouhá léta byl jejím ředitelem). Sepsal mnoho článků, několik knížek a středoškol-
ských učebnic. Známý se stal díky logaritmickým tabulkám (první vydání 1904), které v jeho
úpravě vycházely několik desetiletí a dočkaly se více než 15 vydání.

50 Archimedovo měření kruhu, Výroční zpráva c. k. státního vyššího gymnasia v Litomyšli,
1903, 25 stran.
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vydání Archimédových prací, které v letech 1880 až 1881 vydal Johann Ludwig
Heiberg.51 Český čtenář tak získal jazykově věrný, pečlivě vypracovaný překlad
rozšířený o poznámky, výklady méně srozumitelných míst a komentáře. Pozna-
menejme pro zajímavost, že o existenci českého překladu Archimédova Měření
kruhu nenajdeme žádnou zmínku ani v Časopise pro pěstování mathematiky
a fysiky ani ve výročních zprávách Jednoty českých mathematiků či v zápisech
ze zasedání jejího výboru. M. Valouch byl tehdy mladým, řadovým učitelem,
aktivitu v Jednotě českých (československých) mathematiků a fysiků měl teprve
před sebou.

7.2 Český překlad spisu „Počet pískový�

Archimédés vyložil v tomto spise postup, kterým je možno slovně vyjádřit
obrovská přirozená čísla, a to pomocí číselné soustavy, jejímž základem je ok-
táda, tj. číslo 108. Současně ukázal, že počet pískových zrn, která by vyplnila
celou sféru stálic, je nesrovnatelně menší než čísla, která jeho soustava popi-
suje. Spis Počet pískový obsahuje též Archimédovy úvahy o uspořádání vesmíru
a odhady jeho velikosti. Pro historii vědy je cenná Archimédova informace o ná-
zorech jeho předchůdce Aristarcha ze Samu (asi 320 až 230 př. n. l.), jehož spis
obsahující hypotézy obhajující heliocentrický názor se nedochoval. Archimédův
Počet pískový se dochoval v kompletnější verzi52 než jeho Měření kruhu.

V roce 1906 uveřejnil M. Valouch komentovaný český překlad Archimédova
pojednání Počet pískový .53 I k tomuto překladu použil Heibergovo kritické
vydání Archimédových spisů. V Časopise pro pěstování mathematiky a fysiky
najdeme o existenci tohoto překladu jen malou zmínku, a to v přehledu mate-
matických článků, které byly uveřejněny ve školním roce 1905/06 ve výročních
zprávách českých středních škol.54

51 Viz J. L. Heiberg: Archimedis opera omnia cum commentariis Eutocii. E codice Flo-
rentino recensuit, latine vertit notisque illustravit J. L. Heiberg, Vol. I.–III., Lipsiae, 1880–
1881. Poznamenejme, že J. L. Heiberg byl slavný a světově uznávaný dánský klasický filolog
a největší odborník na klasickou řeckou matematiku. V letech 1896 až 1925 přednášel klasic-
kou řečtinu na kodaňské univerzitě. V letech 1880 až 1881 vydal výše zmíněné třísvazkové
dílo obsahující veškeré známé Archimédovy práce (druhé upravené a rozšířené vydání bylo
publikováno v letech 1910 až 1915). V letech 1883 až 1888 připravil nové kritické vydání
řeckého textu Eukleidových Základů a spolu s H. Mengem vydával v letech 1883 až 1916
Eukleidovo souborné dílo (Euclidis Opera Omnia), v letech 1891 až 1893 vydal dva svazky
Apollóniových prací, v letech 1898 až 1907 dva svazky Ptolemaiových prací, v letech 1912 až
1914 dva svazky Hérónových prací. K jeho dalším odborným zájmům patřilo řecké lékařství.
Přeložil, komentoval a vydal Hippokratovy spisy (5. stol. př. n. l.) a dílo lékaře Paula z Ai-
gíny (7. stol. n. l.). Proslavil se též jako autor prací o vývoji řecké matematiky. Jeho kritická
vydání řeckých klasiků se stala základem moderních překladů do národních jazyků.

52 O historii tohoto spisu viz např. [BŠ] a [Vat]. Podrobný matematický rozbor spisu
Počet pískový je uveden v článku J. Bečváře uveřejněném v této knížce.

53 Archimeda Syrakusského Počet pískový, Výroční zpráva c. k. státního vyššího gymnasia
v Litomyšli, 1905–1906, 13 stran. V roce 1993 Česká matice technická nechala Valouchův
překlad přetisknout. Nové neprodejné vydání určené pro členy České matice technické vytiskla
Střední průmyslová škola stavební v Praze 1.

54 Viz Hlídka programů českých škol středních, Časopis pro pěstování mathematiky a fy-
siky 36(1907), str. 294–296; Valouchův překlad je citován na straně 296. Nepatrná zmínka

HM 54 - Archimedes - text.indd   37HM 54 - Archimedes - text.indd   37 14.1.2013   15:36:2814.1.2013   15:36:28



38

7.3 Český překlad spisu „O metodě�

V roce 1909 publikoval František Vrána55 ve výroční zprávě českého gym-
názia v Prostějově překlad Archimédovy práce O metodě ,56 v níž se Archi-
médés zabýval výpočtem objemů úsečí paraboloidu, elipsoidu a hyperboloidu
a kterou sepsal ve formě dopisu, jehož adresátem byl Eratosthenés. K pře-
kladu použil řecký text s německým překladem, který J. L. Heiberg vydal roku

o tomto překladu je též v referativním časopise Jahrbuch über die Fortschritte der Mathe-
matik und Physik, viz 37(1906), str. 39.

55 František Vrána byl v letech 1902/03 až 1918/19 středoškolským profesorem mate-
matiky a fyziky na gymnáziu v Prostějově. Roku 1919/20 byl přeložen na českou reálku
v Praze VII. Týdně míval 17 až 24 hodin matematiky a fyziky, vedl fyzikální a matematický
kabinet a pravidelně býval třídním učitelem. Ve výročních zprávách prostějovského gymnázia
publikoval články: Paměti válečné (osobní) našeho ústavu, 10. výroční zpráva c. k. státního
gymnasia v Prostějově, 1915/16, str. 3–22, a 12. výroční zpráva c. k. státního gymnasia
v Prostějově, 1917/18, str. 3–17, †Jeho veličenstvo císař a král František Josef I , 11. výroční
zpráva c. k. státního gymnasia v Prostějově, 1916/17, str. 5–6, a Nastoupení nového moc-
náře na trůn Habsburský, 11. výroční zpráva c. k. státního gymnasia v Prostějově, 1916/17,
str. 7–12. Více viz 1. až 13. výroční zpráva c. k. státního gymnasia v Prostějově za školní
roky 1902/03, . . . , 1917/18, 13. a 14. výroční zpráva státního gymnasia v Prostějově za školní
roky 1918/19 a 1919/20. O jeho dalším pedagogickém a odborném působení není nic známo.
Aktivit české matematické komunity se neúčastnil.

56 Archimédův výklad Eratosthenovi o mechanických způsobech zkoumání. (Z řečtiny pře-
ložil Fr. Vrána), 3. výroční zpráva c. k. státního gymnasia v Prostějově za školní rok 1908/09,
tiskem knihtiskárny Václava Horáka v Prostějově, Prostějov, str. 2–18.
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1907.57 Český čtenář tak obdržel ve velmi krátké době jazykově věrný a pečlivě
provedený překlad nově objeveného Archimédova díla.58 Svůj překlad doplnil
stručným úvodem popisujícím historii objevu této ztracené Archimédovy práce
a charakteristikou Archimédovy matematické produkce.59

Je podivné a těžko vysvětlitelné, že o tomto překladu nalezneme jedinou
nepatrnou zmínku v Časopise pro pěstování mathematiky a fysiky , nenajdeme
však žádnou informaci ve výročních zprávách Jednoty českých mathematiků či
v zápisech ze zasedání jejího výboru. Je pravděpodobné, že Jednota byla tehdy
intenzívně soustředěna na vydávání nových učebnic pro základní a střední školy,
na úpravu osnov v duchu Marchetovy reformy, není vyloučeno, že zájem o pře-
klady klasiků se zcela vyčerpal vydáním Servítova překladu Eukleidových Zá-
kladů, a to právě v roce 1907.60

7.4 Zamyšlení nad osudem českých překladů

Oba čeští překladatelé Archimédových děl vyšli z Heibergova textu z roku
1907. Jejich české verze jsou jazykově věrné a srozumitelné, cenné jsou rovněž
připojené komentáře. Osud jejich překladů však byl odlišný.

Valouchovy překlady dvou Archimédových spisů byly od dvacátých let
20. století v české matematické komunitě v povědomí. Patrně byly známé
a uznávané i díky Valouchovým rozsáhlým organizačním aktivitám v Jednotě
československých matematiků a fysiků.61

57 J. L. Heiberg: Eine neue Archimedes-Handschrift, Hermes – Zeitschrift für klassische
Philologie 42(1907), str. 235–303 + 1 tabulka.

58 V roce 1908 vyšla Metoda rusky (překlad Heibergovy práce otištěný v časopise vědecké
společnosti v Oděse), 1910 anglicky (autor J. L. Heiberg) a roku 1913 holandsky (autor
J. A. Vollgraf).

59 Podrobný matematický rozbor spisu O methodě je uveden v článku Z. Halase uveřej-
něném v této knížce.

60 Stručnou zmínku o existenci Vránova překladu nalezneme v referativním časopise Jahr-
buch über die Fortschritte der Mathematik und Physik (viz 40(1908), str. 6 – referát K. Petra
obsahující jen překlad názvu práce a výroční zprávy střední školy, rok vydání a počet stran),
krátkou informaci uvádí také článek Q. Vettera: Několik poznámek in margine Archimedových
spisů, zvláště „Metody�, Časopis pro pěstování mathematiky a fysiky 49(1920), str. 224–244
(o Vránově překladu je na straně 224). V této studii je také jediný podrobný česky psaný
rozbor Archimédovy metody, jehož vznik byl pravděpodobně inspirován uveřejněním latinsko-
řecké přepracované Heibergovy edice Archimedis Opera Omnia cum Commentariis Eutocii
I.–III., Leipzig, Teubner, 1910, 1913 a 1915; vydáním německého překladu Heathovy mo-
nografie The Works of Archimedes, edited in modern notation with introductory chapters,
Cambridge University Press, 1897 (německy, Berlin, 1914), a Arendtova německy psaného
článku Zu Archimedes (Bibliotheca Mathematica 14(1914), 3. série, str. 289–311).

61 Viz např. F. Veselý: K desátému výročí úmrtí Miloslava Valoucha, Pokroky matema-
tiky, fyziky a astronomie 7(1962), str. 127–134; o překladech na straně 129: Bylo to Měření
kruhu (1903) a Počet pískový (1906), které vyšly tiskem ve výročních zprávách gymnasia
v Litomyšli. Jsou to jediné překlady Archimedových spisů do češtiny.
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Vránův překlad byl až do vydání monografie [BeM2] zcela zapomenut. Je
pravděpodobné, že tomu bylo i proto, že František Vrána s Jednotou nespo-
lupracoval, nebyl ani jejím členem,62 o propagaci svého překladu se asi příliš
nestaral. Nutno však poctivě přiznat, že na počátku 20. století šlo asi jen ob-
tížně sledovat výroční zprávy všech českých středních škol a předávat čtenářům
Časopisu přehled o článcích s matematicko-fyzikálním obsahem.63

Není vyloučeno, že existují i další české překlady menších klasických mate-
matických děl. Mohly by být otištěny ve výročních zprávách českých středních
škol z druhé poloviny 19. století a první třetiny 20. století. Pokud však nebyla
zveřejněna jejich recenze nebo alespoň informace o jejich vydání, upadly rychle
v zapomnění.

7.5 Český překlad úlohy „Problém dobytka�

Archimédovu úlohu nazývanou Problém dobytka předložil českému čtenáři
roku 1898 František Josef Studnička (1836–1903),64 profesor matematiky na
České univerzitě v Praze, který v naučně-populárním časopisu Živa uveřej-
nil studii nazvanou Archimedes,65 v níž stručně popsal Archimédovy životní
osudy a dílo, charakterizoval jeho nejdůležitější spisy a připojil překlad a po-
drobnější rozbor úlohy o dobytku. Poznamenejme, že F. J. Studnička reagoval
na nové výsledky archimédovských studií, které v osmdesátých letech uveřejnili
B. Krumbiegel a A. Amthor,66 a také na studii o historii antické matematiky,
která vyšla v Německu roku 1890.67

Je bezesporu zajímavé, že v roce 2001 Karel Mačák v monografii nazvané
Tři středověké sbírky matematických úloh68 uveřejnil nový překlad úlohy o do-
bytku. O tři roky později Jindřich Bečvář a Ivan Štoll v půvabné knížce Archi-
medes. Největší vědec starověku (viz [BŠ]) uvedli Mačákův překlad a opatřili
jej bohatým matematickým komentářem a rozborem.69

62 V knize Dějepis Jednoty českých mathematiků k padesátému výročí jejího založení,
kterou sepsal V. Posejpal a vydala Jednota českých mathematiků v roce 1912, není uvedeno
Vránovo jméno ani mezi zakládajícími a činnými členy ani mezi přispívajícími členy.

63 Poznamenejme, že Jednota českých mathematiků na počátku 20. století prostřednic-
tvím výzev otištěných v Časopise pro pěstování mathematiky a fysiky opakovaně žádala své
členy o informace o matematických a fyzikálních článcích vycházejících ve výročních zprávách
středních škol.

64 O životě a díle Františka Josefa Studničky viz M. Němcová: František Josef Studnička
(1836–1903), edice Dějiny matematiky, svazek č. 10, Prometheus, Praha, 1998.

65 F. J. Studnička: Archimedes, Živa 8(1898), str. 133–135, 178–180.
66 B. Krumbiegel, A. Amthor: Das Problema bovinum des Archimedes, Zeitschrift für

Mathematik und Physik 25(1880), str. 121–136, 153–171.
67 Die arithmetischen Epigramme der griechischen Anthologie, Anfang III, in Arithme-

tik und die Schrift über Polygonalzahlen des Diophantus von Alexandria übersetzt und mit
Anmerkungen begleitet von G. Wertheim, Teubner, Leipzig, 1890. Problém dobytka je na
stranách 343 až 344.

68 K. Mačák: Tři středověké sbírky matematických úloh, edice Dějiny matematiky, svazek
č. 15, Prometheus, Praha, 2001. Překlad a rozbor úlohy o dobytku je uveden na stranách 59
až 60.

69 Komentovaný překlad a podrobný rozbor úlohy je uveden na stranách 68 až 70.
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8 Závěr

Vývoj zájmu matematiků a historiků matematiky o Archimédovy práce, jeho
metody a rukopisy obsahující jeho práce naznačuje databáze referativního časo-
pisu Jahrbuch über die Fortschritte der Mathematik und Physik ,70 v němž bylo
od roku 1868 do roku 1941 referováno o 103 monografiích, studiích, odborných
i popularizačních článcích. Vynořily se v několika vlnách po vydání Heiber-
govy nebo Heathovy monografie, po uveřejnění série článků o objevu nových či
ztracených rukopisů obsahujících Archimédovy práce nebo po vydání katalogů
starých klasických knihoven, v nichž byly uloženy zapomenuté rukopisné práce.

V současné době archimédovské téma opět zažívá zvýšený zájem matema-
tiků i historiků vyvolaný dražbou Archimédova palimpsestu v roce 1998 a jeho
následným odborným studiem.71

70 Referativní časopis je dostupný na adrese http://www.emis.ams.org/projects/JFM/.
71 Viz http://www.math.nyu.edu/∼crorres/Archimedes/Books/ArchimedesBooks.html,

kde je možno vyhledat stručné informace o 21 archimédovských monografiích vydaných na
celém světě od roku 1962, z nichž 9 vyšlo po roce 1998.
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ARCHIMÉDOVY VYBRANÉ

MATEMATICKÉ SPISY
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MĚŘENÍ KRUHU

Jindřich Bečvář

Archimédův spis Měření kruhu1 stojí na dvou důležitých výsledcích. Prv-
ním je exhaustivní metoda, s jejíž pomocí Archimédés dokázal vztah mezi ob-
vodem a obsahem kruhu. Druhým je velice přesné vymezení hodnoty čísla

√
3,

které Archimédés využil při výpočtu horního i dolního odhadu obvodu kruhu,
tj. vlastně konstanty označované dnes písmenem π. Zdůrazněme, že tento vý-
počet by nebyl možný bez jeho velké teoretické i počtářské erudice.

1 Exhaustivní metoda

Autorem exhaustivní metody je podle několika svědectví Eudoxos z Knidu
(asi 408 až 355), matematik a astronom, tvůrce tzv. teorie proporcí a teorie
homocentrických sfér. V Eukleidových Základech je princip exhaustivní me-
tody vyjádřen v první větě 10. knihy. Miloslav Valouch ji roku 1903 v českém
překladu Archimédova Měření kruhu vyslovil takto:

Odejmeme-li nějaké veličině polovici aneb více než polovici a tuto operaci
v postačitelném počtu opakujeme, dojdeme posléze veličiny, jež jest menší než
kterákoli veličina téhož druhu. ([Va1], str. 14)

M. Valouch ještě neměl k dispozici český překlad Eukleidových Základů [Eukl]
Františka Servíta (1848–1923), který vyšel roku 1907.2 Servítův překlad první
věty 10. knihy Základů je asi srozumitelnější a přesnější:

Jsou-li dány dvě veličiny nestejné, když od větší odečteme část větší než
polovina a od zbytku opět větší než polovina a tak stále budeme činiti, zbude
nějaká veličina, jež bude menší než daná veličina menší. ([Eukl], str. 160)3

V moderní řeči a symbolice můžeme první větu 10. knihy Základů zformu-
lovat takto:

Máme-li veličiny S a ε, přičemž je ε < S, a odebíráme-li od veličiny S
postupně veličiny a, b, c, . . . , přičemž

a >
S

2
, b >

S − a

2
, c >

S − a− b

2
, . . . ,

1 V české verzi [Va1], v anglické a německé verzi [Hea], v ruské verzi [Ve], dále viz např.
[Hei] a [Ee].

2 Servítův překlad vycházel nejprve po částech ve výročních zprávách českého státního
gymnázia na Královských Vinohradech, 10. kniha byla publikována na pokračování v letech
1905, 1906 a 1907. Viz [BeM1].

3 Zhruba o dvě desetiletí je starší český překlad Josefa Smolíka (1832–1915): Jsou-li dány
dvě veličiny sobě nikoli rovné, a odejme-li se od větší z nich více nežli její polovice, od
zbytku pak opět více nežli jeho polovice a tak podobně dále, zbude konečně veličina menší
oné dané druhé veličiny. ([Be1], str. 167) Smolíkův překlad, který zůstal v rukopisu, nemohl
M. Valouch znát. Objeven byl až roku 2002. Viz [BeM1].
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potom je po potřebném počtu kroků

S − a− b− c− · · · − k < ε,

resp. v našem smyslu
a+ b+ c+ · · · −→ S.

Odejmeme-li tedy od obsahu SK kruhu K obsah vepsaného čtverce, ode-
jmeme více než polovinu obsahu kruhu K. Vepíšeme-li do čtyř vzniklých kruho-
vých úsečí přirozeným způsobem rovnoramenné trojúhelníky, odejmeme opět
více než polovinu obsahu těchto úsečí atd. Od čtverce tak dojdeme k pravi-
delnému osmiúhelníku, obdobným způsobem k šestnáctiúhelníku atd. Pokud
tento postup dostatečně dlouho opakujeme, přiblížíme se obsahem pravidel-
ného 2k-úhelníku zdola jakkoli blízko k obsahu kruhu K. Úplně stejně bychom
postupovali, pokud bychom vyšli od vepsaného pravidelného šestiúhelníku.

Obdobným způsobem dojdeme od opsaného čtverce k opsanému osmiúhel-
níku atd., až se obsahem pravidelného 2k-úhelníku přiblížíme shora jakkoli
blízko k obsahu kruhu K.4

2 Přesný odhad čísla
√
3

Ve svém pojednání o měření kruhu využil Archimédés následující velmi
přesný odhad čísla

√
3:

265
153

<
√
3 <

1 351
780

,

číslo
√
3 tedy leží v intervalu délky

1 351
780

− 265
153
=

1
39 780

.

Odborníci se dosud liší v názorech, jak Archimédés, nebo někdo před ním, k tak
přesnému odhadu dospěl. V článku Výpočty odmocnin ve starověku uvedeném
v této knize je předložena rekonstrukce výpočtu tohoto odhadu. Současně je po-
ukázáno na skutečnost, že vymezení čísla

√
3 ve dvou krocích je daleko přesnější

než obdobné vymezení čísla
√
2. Výpočet odhadu čísla

√
2 stejnou metodou, ale

ve třech krocích, je již numericky náročnější, stále však ještě zvládnutelný. Zís-
kaný výsledek se však pro další numerické výpočty (prováděné bez výpočetní
techniky) nehodí.

Archimédés vyšel od šestiúhelníků (vepsaného a opsaného) a po čtyřech děle-
ních středových úhlů dospěl k 96-úhelníkům (vepsanému a opsanému). Číslo

√
3

potřeboval k výpočtu obvodu výchozího opsaného šestiúhelníku.

Pokud by vyšel od čtverců, došel by po čtyřech děleních středových úhlů
jen k 64-úhelníkům (vepsanému a opsanému), jejichž obvody aproximují obvod

4 I zde užijeme exhaustivní metodu. Od rozdílu obsahu opsaného čtverce a kruhu odečteme
„vnějšek� opsaného osmiúhelníka, dále „vnějšek� opsaného šestnáctiúhelníku atd.
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kruhu podstatně hůře než obvody 96-úhelníků. Navíc by musel mít přesnější
vymezení čísla

√
2, které je zapotřebí pro výpočet obvodu výchozího vepsaného

čtverce.

3 Měření kruhu

Archimédův spis Měření kruhu obsahuje pouze tři matematické věty. Do-
mníváme se, patrně oprávněně, že se dochovalo jen torzo původního díla, snad
nějaký stručný výpis, který byl dále přepisován a šířen.5

V následujícím textu uvedeme tyto tři věty ve Valouchově českém překladu
a připojíme jejich Heathovu anglickou verzi. Dokážeme je v duchu Archimédova
Měření kruhu současným jazykem a symbolikou a připojíme stručný komentář.
Výraznější odlišnosti od Archimédova postupu patřičně zdůrazníme.

Věta 1. Každý kruh rovná se pravoúhlému trojúhelníku, je-li poloměr roven
jednomu rameni pravého úhlu, obvod pak podstavě.6 ([Va1], str. 13)

Dnes bychom tvrzení této Archimédovy věty zformulovali takto:

Obsah kruhu je roven obsahu pravoúhlého trojúhelníku, jehož odvěsnami jsou
poloměr a obvod tohoto kruhu.

A vyjádřili bychom je vzorcem S = 1
2 · r · o.

Archimédés dokázal tvrzení Věty 1 exhaustivní metodou. Jeho důkaz nyní uve-
deme.

Důkaz: Uvažujme kruh K o poloměru r a obvodu o a pravoúhlý trojúhel-
ník T , jehož odvěsny mají délky r a o.

Předpokládejme nejprve, že je obsah SK kruhu K větší než obsah ST troj-
úhelníku T . Potom existuje pravidelný n-úhelníkN , který je do kruhuK vepsán
a má větší obsah než trojúhelník T :

SK > SN > ST .

Obsah n-úhelníku N je však roven součtu obsahů n rovnoramenných trojúhel-
níků, jejichž výšky jsou menší než r a součet délek všech jejich základen je
menší než o. Proto je SN < ST , a to je spor.

Předpokládejme nyní, že je obsah SK kruhu K menší než obsah ST troj-
úhelníku T . Potom existuje pravidelný n-úhelník N , který je kruhu K opsán
a má menší obsah než trojúhelník T :

SK < SN < ST .

5 Podrobněji o Archimédových dílech viz článek M. Bečvářové uveřejněný v této publikaci.
6 V anglické verzi: The area of any circle is equal to a right-angled triangle in which one

of the sides about the right angle is equal to the radius, and the other to the circumference,
of the circle. ([Hea], str. 91)
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Obsah n-úhelníku N je však roven součtu obsahů n rovnoramenných trojúhel-
níků, jejichž výšky jsou rovny r a součet délek všech jejich základen je větší
než o. Proto je SN > ST , a to je spor. �

Archimédés tak exaktně ukázal, patrně jako první matematik vůbec, jaký
je vztah obvodu a obsahu kruhu. Připomeňme, že číslo π7 je definováno jako
poměr obvodu a průměru kruhu, tj.

π =
o

2r
;

odtud vyplývá vzorec pro výpočet obvodu kruhu:

o = 2πr.

Známý vzorec pro výpočet obsahu kruhu je tedy důsledkem Archimédovy
Věty 1.

S =
1
2
· r · o = 1

2
· r · 2πr = πr2.

Konstanta π, kterou jsme definovali pomocí obvodu a průměru kruhu, figuruje
tedy i ve vzorci pro obsah kruhu.

Věta 2. Kruh jest ke čtverci průměru v poměru jako 11 ke 14.8 ([Va1],
str. 15)

Dnes bychom tvrzení druhé Archimédovy věty zformulovali takto:

Obsah kruhu je přibližně roven jedenácti čtrnáctinám obsahu čtverce jehož
stranou je průměr kruhu.

Věta 2 využívá výsledek následující Věty 3, která říká, že obvod kruhu o po-
loměru r je přibližně roven 227 · 2r. Snad byla Věta 2 původně zařazena jako
důsledek Věty 3 a při nějakém přepisu Archimédova díla, případně při pořízení
výpisu, bylo pořadí těchto vět obráceno.

Důkaz. Podle Věty 1 a následující Věty 3 je obsah SK kruhu K přibližně
roven obsahu pravoúhlého trojúhelníku s odvěsnami délek r a 227 · 2r. Nyní je

S =
1
2
· r · 22

7
· 2r = 11

14
· (2r)2. �

Věta 3. Obvod každého kruhu rovná se trojnásobnému průměru a ještě pře-
sahuje o něco méně než sedminu průměru, ale o více než deset jedenasedm-
desátin.9 ([Va1], str. 15)

7 V antice tato konstanta neměla samostatné označení, vždy se pracovalo se slovním
vyjádřením poměru obvodu kruhu k průměru. Označení pomocí malého řeckého písmene π
(zkratka řeckého slova perimetros – obvod) použil poprvé velšský matematik William Jones
(1675–1749) v roce 1706. Definitivně se však π v matematice usadilo díky tomu, že je začal
používat Leonhard Euler (1707–1783).

8 V anglické verzi: The area of a circle is to the square on its diameter as 11 to 14. ([Hea],
str. 93)

9 V anglické verzi: The ratio of the circumference of any circle to its diameter is less
than 3 17 but greater than 3

10
71 . ([Hea], str. 93)
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Dnes bychom tvrzení Věty 3 zformulovali takto:

Pro obvod o kruhu, který má poloměr r, platí

3
10
71

· 2r < o < 3
1
7
· 2r.

V důkazu této věty Archimédés vypočítal horní a dolní odhad obvodu o kruhu
přesněji:

6 336
2 017 14

· 2r < o <
14 688
4 673 12

· 2r.

Horní mez potom zaokrouhlil nahoru a dolní dolů:

3
10
71

· 2r <
6 336
2 017 14

· 2r < o <
14 688
4 673 12

· 2r < 3
1
7
· 2r.

Převedeme-li tyto zlomky na desetinná čísla, bude přesnost Archimédových
výsledků zjevnější:

3, 140 845 ...·2r < 3, 140 909 ...·2r < o < 3, 142 826 ...·2r < 3, 142 857 ...·2r.
Archimédův výsledek můžeme interpretovat jako odhad čísla π = 3, 141 592 ...,
který je přesný na dvě desetinná čísla:

3, 140 909 ... < π < 3, 142 826 ...

Archimédés nejprve vypočetl obvod vepsaného pravidelného šestiúhelníku
a obvod opsaného pravidelného šestiúhelníku, rozpůlením středových úhlů zís-
kal pravidelné dvanáctiúhelníky, vypočetl jejich obvody, a tak postupoval až
k 96-úhelníkům. Obvod kruhu pak odhadl shora obvodem opsaného pravidel-
ného 96-úhelníku a zdola obvodem vepsaného pravidelného 96-úhelníku.

Předchozí dva Archimédovy důkazy jsme modifikovali jen nepodstatně –
pouze jsme je převedli do současné řeči a symboliky. Třetí důkaz však přepra-
cujeme podstatně výrazněji, využijeme totiž algebraickou symboliku, kterou
Archimédés k disposici neměl.

Důkaz. Uvažujme pro jednoduchost jednotkovou kružnici, které byl opsán
pravidelný n-úhelník a rozpůlením jeho „středových	 úhlů vznikl pravidelný
2n-úhelník.

Obr. 1
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Na obr. 1 je |ST | = 1, BT je polovina strany opsaného n-úhelníku a AT je
polovina strany opsaného 2n-úhelníku (tedy |�TSA| = |�ASB|), jejich délky
označme tn a t2n, tj. |BT | = tn a |AT | = t2n. Nechť je přímka BR rovnoběžná
s přímkou AS. Je tedy |�ASB| = |�SBR| = |�SRB|, a proto SB = SR.
Trojúhelník �ATS je podobný trojúhelníku �BTR (věta uuu), proto je

AT

TS
=

BT

TR
=

BT

TS + SR
=

BT

TS + SB

a po dosazení je

t2n =
tn

1 +
√
1 + t2n

. (1)

Nyní je třeba si uvědomit, že t6 = 1√
3
. Podle vztahu (1) vypočteme t12, potom

t24, potom t48 a nakonec t96. Vypočetli jsme tedy obvod opsaného 96-úhelníku:
96 · 2t96 = 192 · t96.

Uvažujme opět jednotkovou kružnici, do níž byl vepsán pravidelný n-úhelník
a rozpůlením jeho „středových	 úhlů vznikl pravidelný 2n-úhelník.

Obr. 2

Na obr. 2 je |SA| = 1, AB je strana vepsaného n-úhelníku, AC a BC
strany vepsaného 2n-úhelníku. Jejich délky označme sn a s2n, tj. |AB| = sn
a |AC| = |BC| = s2n. Pomocí elementárních geometrických poznatků zjistíme,
že trojúhelníky�ADC a�EAC jsou podobné (věta uuu) a rovněž trojúhelníky
�CDB a �CBE jsou podobné (věta uuu).10 Z těchto podobností vyplývají
vztahy

AD

CD
=

EA

CA
,

BD

CD
=

EB

CB
=

EB

CA
.

Odtud
AD +BD

CD
=

EA+ EB

CA
=

AB

CA
,

10 Úhly �ADC, �CDB, �BAC, �CAB jsou obvodové úhly ke stejně dlouhému oblouku,
mají tedy stejnou velikost.
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po dosazení je
2 +

√
4− s2n√

4− s22n
=

sn
s2n

a po malé úpravě
s2n =

sn√
2 +

√
4− s2n

. (2)

Nyní je třeba si uvědomit, že s6 = 1; podle předchozího vztahu (2) tedy vy-
počteme s12, potom s24, potom s48 a nakonec s96. Vypočetli jsme tedy obvod
vepsaného 96-úhelníku: 96 · s96.
Pro obvod o kruhu tedy platí: 96 · s96 < o < 192 · t96. �

Podle výše uvedených vzorců (1) a (2) lze výpočet přibližné hodnoty obvodu
kruhu (resp. čísla π) provést i na malé kalkulačce. Pro n = 6, 12, 24, 48, 96
dostáváme:

n = 6 3, 000 < π < 3, 464

n = 12 3, 106 < π < 3, 215

n = 24 3, 133 < π < 3, 160

n = 48 3, 139 < π < 3, 146

n = 96 3, 141 < π < 3, 143

Odhadli jsme tedy číslo π s přesností na dvě desetinná místa.

Archimédés však počítal s konkrétními čísly a postupoval po jednotlivých
krocích. Od obvodu opsaného (vepsaného) šestiúhelníku přešel k obvodu opsa-
ného (vepsaného) dvanáctiúhelníku, a tak postupoval až k 96-úhelníkům. V kaž-
dém kroku navíc pečlivě zvažoval, zda počítá dolní nebo horní odhad, a podle
toho (v závislosti na tom, zda přičítal, odčítal, násobil či dělil) volil dolní nebo
horní odhad čísla, s nímž právě pracoval.

4 Poznámky

Poznámky historické. Podle Héróna Alexandrijského (1. století po Kr.) do-
spěl Archimédés dokonce k odhadu11

211 875
67 441

.
= 3, 141 634 ... < π <

197 888
62 351

.
= 3, 173 ...

Hodnoty jsou však zřejmě porušeny, dolní odhad je ve skutečnosti odhadem
horním a horní odhad je příliš velký. Malou úpravou jeho čitatele lze získat
chybějící dolní odhad, a tím i velmi přesný odhad čísla π:

195 881
62 351

.
= 3, 141 585 ... < π <

211 875
67 441

.
= 3, 141 634 ...

11 Odhad se nachází v první knize Hérónova spisu Metrika, odstavec 26.
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Ještě přesnější odhad lze získat úpravou Hérónových odhadů, kterou navrhl
francouzský historik matematiky Paul Tannery (1843–1904):

211 872
67 441

.
= 3, 141 590 ... < π <

195 882
62 351

.
= 3, 141 601 ...

Zdá se, že původní jednoduchý Archimédův odhad čísla π byl používán
i při praktických výpočtech. Většinou se jednalo přímo o hodnotu 317 . V šesté
knize astronomického pojednání Almagest , které sepsal v polovině 2. století
po Kr. alexandrijský astronom, geograf a matematik Klaudios Ptolemaios, se
používá při výpočtech týkajících se zatmění Slunce a Měsíce velmi přesná hod-
nota π, která je zaokrouhlena tak, aby byla snadno použitelná při výpočtech
v šedesátkové soustavě:

π
.
= 3 +

8
60
+
30
602

.
= 3, 141 666 ...

Sám Ptolemaios o ní píše, že leží nejblíže mezi 3 17 a 3
10
71 .

Archimédův výpočet poměru obvodu a průměru kruhu inspiroval řadu ma-
tematiků. Byl to například Leonardo Pisánský12 (Fibonacci, asi 1170 až 1250),
který Archimédův výpočet zopakoval ve svém díle De practica geometrie z roku
1223. Dospěl k vymezení hodnoty čísla π nerovnostmi

1440
458 49

< π <
1440
458 15

a k přibližné hodnotě
864
275

.
= 3, 141 818 ...

Citujme příslušnou pasáž:

. . . erit proportio circulj ad suum dyametrum, sicut 1 440 ad 13458, cum sint
in medio inter 49458 et

1
5458. Sed proportio de 1 440 ad

1
3458 est sicut triplum

unius numerorum ad triplum alterius, hoc est sicut 4 320 ad 1 375; quorum
proportio in minimis numeris est sicut 864 ad 275: sed proportio de 864 ad
275, minus 111 , est sicut

1
73 ad 1 . . . ([LP], str. 91.)

13

Z mnoha více či méně úspěšných pokusů o výpočet čísla π připomeňme
ještě dva. Perský matematik a astronom al-Kāsh̄ı (14. až 15. stol.), který pů-
sobil v Samarkandu, vypočetl roku 1429 hodnotu čísla π na 16 desetinných
míst a holandský matematik Ludolf van Ceulen (1540–1610) vypočítal v roce
1596 číslo π podle Archimédova vzoru na 20 desetinných míst (došel přitom
k 15 · 237-úhelníku) a roku 1603 na 32 desetinných míst. Při svých výpočtech
dospěl až k 262-úhelníku.14

12 O životě a díle Leonarda Pisánského viz např. [BeJ2].
13 . . . bude poměr kružnice ke svému průměru jako 1 440 k 458 13 , což je mezi 458

4
9 a 458

1
5 .

Ale poměr 1 440 k 458 13 je jako trojnásobek jednoho čísla k trojnásobku druhého, to je jako
4 320 k 1 375; jejich poměr v nejmenších číslech je jako 864 k 275: ale poměr [čísla] 864 k [číslu]
275 zmenšenému o 1

11 je jako 3
1
7 k 1 . . .

14 O historii a výpočtech čísla π viz například článek [VeJ]. Podrobněji viz [B], [BBB],
[EL], [Phi], [Sche].
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Poznámka metodická. Archimédův výpočet čísla π pomocí aproximace ob-
vodu kruhu obvody pravidelných n-úhelníků (opsaných i vepsaných) můžeme
(v modernizované podobě) využít i na střední škole v matematickém semináři,
resp. při zadání projektu. Zopakuje se přitom řada poznatků základní a střední
školy: Thalétova věta, Pýthagorova věta, obvodový úhel, podobné trojúhelníky,
rovnost vhodných dvojic úhlů, úprava algebraického výrazu, práce s odmocni-
nami atd. Archimédův postup může být proveden na počítači, podnětné může
být programování jednotlivých výpočtů. Lze rovněž modifikovat Archimédův
postup a začít s opsaným a vepsaným čtvercem; oba postupy a výsledky lze pak
porovnat. Je možno se dokonce vydat přesně po stopách Archiméda a počítat
v jeho duchu horní i spodní odhady.

HM 54 - Archimedes - text.indd   53HM 54 - Archimedes - text.indd   53 14.1.2013   15:36:3814.1.2013   15:36:38



HM 54 - Archimedes - text.indd   54HM 54 - Archimedes - text.indd   54 14.1.2013   15:36:3814.1.2013   15:36:38



55

PÍSKOVÝ POČET

Jindřich Bečvář

Ve spise Psammítés (Pískový počet)1 prezentoval Archimédés číselný systém
umožňující vyjádřit obrovská přirozená čísla a na poměrně absurdním příkladu
ukázal jeho možnosti. Zvolil sféru hvězd, největší prostor, který byl v tehdejší
době vůbec představitelný, a vypočetl horní odhad množství zrnek písku, které
tento prostor zaplní.

1 Zápis čísel ve starověkém Řecku

V klasické době začali Řekové zapisovat čísla pomocí písmen své alfabéty.
Užívali nepoziční desítkovou soustavu. Jednotky 1, 2, 3, . . . zapisovali písmeny

, . . . , desítky 10, 20, 30, . . . písmeny , . . . , stovky 100, 200, 300, . . .
písmeny , . . . Vzhledem k tomu, že bylo zapotřebí označit devět jednotek,
devět desítek a devět stovek, potřebovali celkem 27 písmen. Řecká alfabéta však
měla jen 24 písmen, proto bylo třeba použít i tři zastaralá písmena: digamma,
později stigma (pro 6), koppa (pro 90) a sampí (pro 900). Číslo zapsané po-
mocí písmen bylo v textu pro větší srozumitelnost později označováno čárkou
nebo pruhem. Například číslo 543 bylo zapisováno jako nebo . Pomocí
27 písmen bylo tedy možno vyjádřit všechna přirozená čísla menší než tisíc.

1 2 3 4 5 6 7 8 9

10 20 30 40 50 60 70 80 90

100 200 300 400 500 600 700 800 900

Později byl tento číselný systém rozšířen. Prvních devět písmen alfabéty využili
řečtí počtáři i pro označení tisíců; odlišovali je další přidanou čárkou (dole
před písmenem). Bylo tedy možno vyjádřit přirozená čísla od 1 až do 9 999.
Například čísla 1 234, 5 888, 7 475 byla zapisována takto:

.

Nesmíme si představovat, že Řekové v této symbolice prováděli nějaké pí-
semné výpočty, že např. užívali nějaké algoritmy pro násobení a dělení podobné
těm, které jsme se učili ve škole. Svoji číselnou symboliku využívali pouze k za-
pisování čísel, k zaznamenání výsledků, k nimž dospěli při výpočtech provádě-
ných na abaku, početní tabulce apod.

K označení deseti tisíc, případně také k označení obrovského množství, které
nelze spočítat, popsat, resp. jinak vyjádřit, užívali Řekové slovo mýrias, přejaté

1 V české verzi viz [Va2], v anglické a německé viz [Hea], v ruské [Ve], dále viz např. [Hei]
a [Ee].
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do češtiny jako myriada. Ještě dnes toto slovo najdeme v obdobném smyslu
užité například v próze i poezii.2

2 Archimédův číselný systém

Archimédés vyložil svůj číselný systém v práci Archai (Počátky), která se
však nedochovala. Podruhé jej popsal ve třetí části svého pojednání Psammítés.

Slovo myriada užil v přesném slova smyslu, a sice k označení deseti tisíc
(tj. 104). Toto číslo mu však připadalo ještě malé, proto začal uvažovat úsek
přirozených čísel obsahující myriadu myriad jednotek, tj. posloupnost od 1 do
108; nazýval je čísla prvního řádu:

1, . . . , 104︸ ︷︷ ︸
1. myriada

, 104+1, . . . , 2·104︸ ︷︷ ︸
2. myriada

, 2·104+1, . . . , 3·104︸ ︷︷ ︸
3. myriada

, . . . , . . . , 104·104=101·8︸ ︷︷ ︸
104-tá myriada

.

Poslední číslo, tj. 108, nazval jednotkou druhého řádu, na toto číslo navázal
další úsek posloupnosti přirozených čísel počínající číslem 108 + 1, tzv. čísla
druhého řádu:

101·8+ 1, . . . , 2·101·8︸ ︷︷ ︸
108 prvků

, 2·101·8+ 1, . . . , 3·101·8︸ ︷︷ ︸
108 prvků

, . . . , . . . , 108·101·8= 102·8︸ ︷︷ ︸
108 prvků

.

Číslo 102·8 nazval jednotkou třetího řádu a navázal na ně tzv. čísla třetího řádu:

102·8+ 1, . . . , 2·102·8︸ ︷︷ ︸
102·8 prvků

, 2·102·8+ 1, . . . , 3·102·8︸ ︷︷ ︸
102·8 prvků

, . . . , . . . , 108·102·8= 103·8︸ ︷︷ ︸
102·8 prvků

.

Dále uvažoval čísla čtvrtého řádu (končí číslem 104·8), čísla pátého řádu (končí
číslem 105·8) atd., došel až k číslům řádu myriady myriad (108-tá čísla):

10(10
8−1)·8+ 1, . . . , 2·10(108−1)·8︸ ︷︷ ︸

10(108−1)·8 prvků

, . . . , . . . , 108·10(108−1)·8= 10108·8︸ ︷︷ ︸
10(108−1)·8 prvků

.

Úsek přirozených čísel od čísla 1 do čísla 1010
8·8 nazval první periodou.

Uvědomme si, že poslední čísla jednotlivých úseků tvořených čísly prvního
řádu, druhého řádu, . . . a 108-tého řádu tvoří geometrickou posloupnost s kvo-
cientem 108. Čísel druhého řádu je více než čísel prvního řádu, čísel třetího
řádu je více než čísel druhého řádu atd.

2 Viz např. Příruční slovník jazyka českého. Díl II. K-M, Státní nakladatelství, Praha,
1937–1938:
Na nebi byly myriady hvězd. Rudolf Medek
S večerem se vyrojí myriady drobných mušek. Karel Čapek
Luka pestřila se myriadou květů. Emil Vachek
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Na první periodu navázal Archimédés druhou periodu, která začíná číslem
1010

8·8 + 1. Její první čísla končí číslem 108 · 10108·8, druhá čísla končí číslem
102·8 · 10108·8, třetí čísla číslem 103·8 · 10108·8 atd. Druhá perioda končí číslem

1010
8·8 · 10108·8 =

(
1010

8·8)2.

Následuje třetí perioda, která končí číslem

1010
8·8 ·

(
1010

8·8)2 =
(
1010

8·8)3

atd. Takových period uvažoval Archimédés myriadu myriad. Poslední, 108-tá
perioda, končí číslem

(
1010

8·8)108 =
(
10800 000 000

)100 000 000
= 1080 000 000 000 000 000 ,

tj. číslem 10 . . . 000, které má 80 tisíc bilionů nul.

Uvědomme si ještě, že čísla, kterými končí jednotlivé periody, tvoří geomet-
rickou posloupnost s kvocientem 1010

8·8. Čísel druhé periody je více než čísel
první periody, čísel třetí periody je více než čísel druhé periody atd.

3 Počítání písku

Jak již bylo řečeno, ve spisu Psammítés vypočítal Archimédés horní odhad
množství písku, které by zaplnilo celý vesmír (řecky kosmos), tj. celou sféru
Slunce při geocentrickém systému3 (resp. sféru Země při heliocentrickém sys-
tému), a množství písku, které by zaplnilo sféru hvězd. Snažil se ukázat obrovské
možnosti svého číselného systému a zpochybnit představu o „nespočitatelnosti	
jakéhokoli množství. V úvodu první části svého spisu oslovil krále Gelóna:

Někteří se domnívají, králi Gelone, že počet písku jest nesčíslný; a to, tvrdím,
nejen toho, jenž jest v okolí Syrakus a v ostatní Sicilii, ale i na všeliké zemi ať
obydlené ať neobydlené. Někteří však nemyslí, že jest neomezený, ale že přece
nebyl tak veliký udán, jenž by převyšoval jeho množství. Zřejmo, že kdož takto
soudí, kdyby si mysleli z písku tak velikou spoustu nakupenu, jak veliká jednak
jest spousta země, a pak kdyby v ní byla vyplněna i všechna moře i dutiny
zemské do stejné výše s nejvyššími horami, ti by soudili tím spíše, že asi nikdo
by nevyřkl čísla převyšujícího jeho množství. Pokusím se ti dokázati důkazy
geometrickými, jež budeš moci sledovati, že mezi čísly námi jmenovanými .. .
převyšují některá nejen počet písku v množství rovném zemi tak vyplněné, jak
jsme řekli, ale i v množství rovném vesmíru (kosmu). ([Va2], str. 3)

Chtěl-li Archimédés vypočítat počet zrnek písku, kterými lze vyplnit vesmír,
musel vědět

– jak je velký vesmír,

– jak je velké (resp. malé) zrnko písku.

3 Archimédés uvádí, že termínem . . . vesmír (kosmos) nazývá většina hvězdářů kouli,
jejíž střed jest střed zemský, poloměr pak roven přímce mezi středem slunce a středem země.
([Va2], str. 3)
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Archimédés se řídil duchem Eukleidových Základů. Nejprve proto zformuloval
předpoklady, z nichž pak při výpočtech velikosti vesmíru vycházel:

1. Obvod Země je nejvýše 3 · 106 stadií.4

2. Průměr Slunce je větší než průměr Země a ten je větší než průměr
Měsíce.

3. Průměr Slunce je nejvýše roven třicetinásobku průměru Měsíce.5

4. Průměr Slunce je větší než strana tisíciúhelníka vepsaného do největšího
kruhu vesmíru, tj. do ekliptiky.6

Ve druhé části spisu Psammítés Archimédés vypočetl horní odhad „velikosti	
vesmíru. Jeho výsledek zformulujeme v následující větě.

Věta 1. Průměr vesmíru je nejvýše 1010 stadií.

Důkaz: Podle prvního předpokladu je obvod Země nejvýše 3 · 106. Obvod
je přitom více než třikrát větší než průměr. Průměr Země je tedy nejvýše 106

stadií.

Průměr Slunce je podle druhého a třetího předpokladu nejvýše roven třiceti
průměrům Země, tj. nejvýše 30 · 106 stadií.
Obvod vesmíru je podle čtvrtého předpokladu nejvýše roven tisícinásobku

průměru Slunce, tj. 3 · 1010 stadií. Průměr vesmíru je nejvýše roven třetině
svého obvodu, je tedy nejvýše 1010 stadií. �

Archimédés musel ještě stanovit velikost zrnka písku. Jako pomocný objekt
mu posloužilo zrnko máku. Předpokládal toto:

– Do zrnka máku se vejde nejvýše myriada, tj. 104 zrnek písku.

– Průměr zrnka máku je menší než jedna čtyřicetina palce.

4 Archimédés současně poznamenal, že někteří (mínil patrně Eratosthena (asi 275 až 195),
jehož měření Země mu jistě bylo známo) udávají 3 · 105 stadií, ale on předpokládá desetkrát
víc. Připomeňme. že stadion (pl. stadia) byla délková míra definovaná jako vzdálenost konců
závodiště (stadionu). V jednotlivých regionech byla užívána různě dlouhá stadia (zhruba
157 až 193 metrů), nejužívanější bylo olympijské stadion (asi 192, 3 m). Eratosthenés od-
hadl poměrně exaktním způsobem obvod Země na 250 000 stadií. O jeho měření Země podal
svědectví Kleomédés (1. až 2. stol.) ve spise De motu circulari corporum coelestium (O kru-
hovém pohybu nebeských těles) a později např. Martianus Minneus Felix Capella (1. pol.
5. stol.) v knize De nuptiis Philologiae et Mercurii (Svatba Filologie s Merkurem). Viz např.
[Gold], [BeJ4].

5 Archimédés připomněl, že Eudoxos (asi 408 až 355) tvrdil, že devítinásobku, Feidiás dva-
náctinásobku a Aristarchos (asi 310 až 230) osmnácti až dvacetinásobku. Archimédés patrně
znal Aristarchův spis Peri megethón kai apostématón héliú kai selénés (O velikosti a vzdá-
lenosti Slunce a Měsíce), v němž Aristarchos své výpočty odhadů velikostí a vzdáleností
Slunce a Měsíce prezentoval. Viz [Hea2], [Hea4], [Hel].

6 Archimédés poznamenal, že Aristarchos uvedl, že je roven sedmisetdvacetině obvodu
ekliptiky. Oprávněnost tohoto předpokladu Archimédés podrobně zdůvodnil geometrickými
úvahami a zkušenostmi z praktických měření úhlové velikosti Slunce. Viz [Va2], str. 5–8.
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Zdůvodnění, které podal, je velmi půvabné. Je z něj cítit, jak se snažil do-
spět k co největšímu počtu zrnek písku. Proto zmenšil velikost zrnka máku
a současně zvětšil počet zrnek písku v zrnku máku. Archimédův písek má tedy
charakter zcela nepatrného prášku.

Kdyby bylo sebráno množství písku ne větší zrnka máku, nebyl by počet jeho
větší než myriada, a průměr zrnka makového nebyl by větší čtyřicetiny palce.
Předpokládám pak toto, vyzkoumav to tímto způsobem: Položena byla na hladké
pravítko zrnka maková v přímce po jednom, takže se navzájem dotýkala, a za-
ujalo 25 zrnek místo větší než délka palce. Bera tudíž průměr zrnka makového
menší, předpokládám, že jest čtyřicetina palce a ne menší, chtěje tímto co nej-
přesněji dokázati své tvrzení. . . . ([Va2], str. 9)

Ve třetí části spisu Psammítés, jak již bylo výše uvedeno, prezentoval Ar-
chimédés svůj číselný systém. Ve čtvrté nejprve vypočetl množství zrnek písku,
která vyplní vesmír. Jeho výsledek zformulujeme v následující větě.

Věta 2. Vesmír by zaplnilo 1051 zrnek písku.

Důkaz: Podle Věty 1 je průměr vesmíru nejvýše roven 1010 stadií.

Připomeňme nejprve, že řecká míra stadion obsahuje 600 stop, jedna stopa
je 16 palců. Stadion je tedy 600 · 16 = 9 600 palců, tj. téměř 104 palců.
Protože je průměr zrnka máku menší než čtyřicetina palce, obsahuje koule

o průměru palce nejvýše 64 tisíc zrnek máku, tedy nejvýše 109 zrnek písku:

403 · 104 = 640 000 000 < 109.

Archimédovo zdůvodnění tohoto výpočtu je srozumitelné:

Ježto totiž se předpokládá, že průměr zrnka makového není menší než čty-
řicetina palce, zjevno, že koule průměru palce není větší než koule, která by
pojala šest myriad a čtyři tisíce zrnek makových, neboť jest rovna kouli prů-
měru čtyřicetiny palce násobené řečeným číslem. Jest totiž dokázáno, že koule
jsou navzájem v trojnásobném poměru svých průměrů. ([Va2], str. 11)

Následuje posloupnost jednoduchých výpočtů. Zvětšíme-li velikost průměru
stokrát (102×), zvětší se objem milionkrát (106×):
Koule o průměru 100 palců obsahuje 1015 zrnek písku.

Koule o průměru stadia (tj. 104 palců) obsahuje 1021 zrnek písku.

Koule o průměru 100 stadií obsahuje 1027 zrnek písku.

Koule o průměru 104 stadií obsahuje 1033 zrnek písku.

Koule o průměru 106 stadií obsahuje 1039 zrnek písku.

Koule o průměru 108 stadií obsahuje 1045 zrnek písku.

Koule o průměru 1010 stadií obsahuje 1051 zrnek písku. �
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Množství písku, které by zaplnilo vesmír, je tedy nejvýše rovno číslu

1051 = 1000 · 106·8,

tj. tisíci jednotek sedmého řádu první periody.

Archimédés dále vypočetl množství písku, které by zaplnilo celou sféru
hvězd. Při stanovení její velikosti vyšel z tzv. Aristarchova předpokladu. O Aris-
tarchově heliocentrickém názoru na uspořádání světa se zmínil v krátké pasáži
na počátku první části spisu Psammítés:

Aristarchos Samský však vydal knihy jakési s názvem Hypothesy7, v nichž
vychází z jeho předpokladů, že vesmír jest mnohokrát větší, než jak výše bylo ře-
čeno.8 Předpokládá totiž, že stálice a slunce zůstávají nehybné, země pak obíhá
po obvodě kruhu kolem slunce, jež stojí uprostřed dráhy, že dále koule stálic roz-
ložená kolem téhož středu jako slunce jest takové velikosti, že kruh, v němž, jak
předpokládá, země obíhá, jest ku vzdálenosti stálic v tomtéž poměru, v jakém
jest střed koule k povrchu. Totoť, jak patrno, jest nemožno. Neboť, ježto střed
koule nemá žádné velikosti, jest se domnívati o něm, že není v žádném poměru
k povrchu koule. Jest však přijmouti, že Aristarchos myslil takto: jakmile před-
pokládáme, že země jest jakoby středem vesmíru, tu v tom poměru, v jakém jest
země k tomu, co nazýváme vesmírem, jest koule v níž jest kruh, v němž, jak
předpokládá, země obíhá, ke kouli stálic. Neboť důkazy fénoménů přizpůsobuje
k tomuto předpokladu, a obzvláště zdá se, že velikost koule, v níž dává zemi se
pohybovati, pokládá za stejnou s tím, co nazývá vesmírem. ([Va2], str. 3–4)

Aristarchův předpoklad je možno stručně zformulovat takto:

5. Poměr průměrů Země a vesmíru je roven poměru průměrů vesmíru
a sféry stálic.9

Nyní je již možno vypočítat velikost sféry hvězd.

Věta 3. Průměr sféry stálic je nejvýše 1014 stadií.

Důkaz: Průměr Země je podle předchozího 106 stadií (důsledek prvního před-
pokladu), průměr vesmíru je podle věty 1 nejvýše 1010 stadií.

Podle Aristarchova předpokladu má být poměr 106 : 1010 roven poměru
čísla 1010 k průměru sféry stálic. Průměr sféry stálic je tedy nejvýše roven
104-násobku průměru vesmíru, tj. 1014 stadií. �

7 Přesněji: vydal spis obsahující jisté hypotézy, . . .
8 Tato zmínka v Archimédově spisu Psammítés je důležitou informací o Aristarchově

heliocentrickém systému.
9 Aristarchův předpoklad, který výrazně „zvětšil� sféru stálic, je významný. Pokud by

Země obíhala kolem Slunce v „malé� sféře stálic, musely by se zdánlivé vzdálenosti hvězd na
obloze během roku měnit. Archimédés přijal Aristarchův předpoklad, neboť chtěl dospět k co
největšímu počtu pískových zrn. Z jeho textu však vůbec není jasné, zda zastával geocentrický
nebo heliocentrický názor.
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Věta 4. Sféru stálic by zaplnilo nejvýše 1063 zrnek písku.

Důkaz: Již jsme viděli, že platí následující tvrzení:

Koule o průměru 1010 stadií obsahuje 1051 zrnek písku.

Odtud vyplývá:

Koule o průměru 1014 stadií obsahuje 1063 zrnek písku. �

Archimédés tedy ukázal, že počet pískových zrn zaplňujících sféru hvězd je
menší než

1063 = 103 · 104 · 107·8,
tj. menší než tisíc myriad jednotek osmého řádu první periody.

Po „spočítání	 zrnek písku vyplňujících sféru hvězd získal Archimédés číslo,
které je v jeho číselném systému „na počátku	 první periody, a sice na jejím
osmém řádku. Poznamenejme, že se dnes číslem 1080 odhaduje počet částic
v pozorovatelné části vesmíru.

V závěru spisu Psammítés se Archimédés znovu obrátil na krále Gelóna:

Domnívám se, králi Gelone, že toto davu mathematiky neznalému bude se
zdáti neuvěřitelným, znalcům však, kteří jak o vzdálenostech tak o velikostech
země a slunce a měsíce a celého vesmíru uvažovali, bude uvěřitelným pro tento
důkaz. Protož jsem myslil, že také tobě jest vhod toto poznati. ([Va2], str. 13)

O problematice odhadů a výpočtů velikosti vesmíru viz například [Hea],
[Hea2], [Hea3], [Hea4], [Hel], [Gold], [BeJ4].
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METODA

Zdeněk Halas

Archimédův dopis Eratosthenovi o mechanických větách neboli Metoda1 po-
jednává o využití těžiště a zákona rovnováhy na páce k výpočtům objemů těles
ohraničených různými plochami. Dává nám přitom nahlédnout, jakým způso-
bem Archimédés objevoval nové výsledky, k nimž pak hledal přesné důkazy
pomocí tzv. exhaustivní metody2. Tento spis se zachoval v jediném exempláři
– v Archimédově palimpsestu.3

1 Archimédův palimpsest

Palimpsest je rukopis psaný na pergamenu, který byl použit opakovaně. Ko-
dex, jehož text už nebyl považován za potřebný, se rozvázal na jednotlivé listy,
z nichž byl text seškrábán či smyt a napsal se na ně text nový. Toto očiš-
tění zpravidla nebylo dokonalé, takže původní text slabě prosvítal, nerušil však
čtení textu nového. Vzhledem k vysoké ceně pergamenu byla tato praxe po-
měrně běžná. Kodex s Archimédovými4 spisy, jenž byl vytvořen někdy kolem
poloviny 10. století, podstoupil tuto proceduru5 v roce 1229 nebo nedlouho
předtím6, kdy na vzniklé listy opsal kněz Ióannés Myronás liturgickou knihu
(Euchologion).

Počátkem 19. století pak byl kodex z Jeruzaléma převezen do knihovny Řec-
kého patriarchátu. V jednom z dílů jejího katalogu, který vyšel roku 1899,
byl zaznamenán i palimpsestový kodex, z něhož bylo v tomto katalogu opsáno
několik málo řádků prosvítajícího textu. Na tento záznam upozornil německý
klasický filolog Hermann Schöne dánského klasického filologa a historika an-
tické matematiky Johana Ludviga Heiberga (1854–1928), který byl editorem

1 Tento spis má dva nadpisy spojené do jednoho, odděleny jsou středníkem. První nadpis
je vlastně stručným popiskem celého spisu, druhý může být původním nadpisem.

2 Archimédés byl mistrem v aplikaci exhaustivní metody. Ukázku jejího užití lze nalézt
v kapitole Měření kruhu.

3 Archimédovu palimpsestu a speciálně spisu Metoda bude věnována speciální monogra-
fie, která bude obsahovat úplný text Metody, překlad do češtiny, podrobný matematický
komentář a historii vzniku, objevu a zpracování palimpsestového kodexu. Přehledné shrnutí
jeho pohnuté historie lze také nalézt v první části této knihy v kapitole M. Bečvářové.

4 Archimédův kodex, jak jej máme dochován dnes, obsahuje 175 pergamenových listů
a sedm listů papírových, které dohromady pocházejí ze sedmi původních kodexů. Ty ob-
sahovaly nejen spisy Archimédovy, ale také promluvy rétora a politika protimakedonského
zaměření Hypereida (4. stol. př. Kr.), komentář k Aristotelovým Kategoriím, Ménaion (druh
liturgických knih), sbírku hagiografických textů a dva texty (označované jako Y a Z), které
dosud nebyly identifikovány. Z Archimédových spisů palimpsest obsahuje O rovnováze ro-
vinných útvarů, O spirálách, Měření kruhu, O kouli a válci, O plovoucích tělesech, Metoda
a Stomachion.

5 Původní listy s Archimédovým textem byly navíc přeloženy, takže vznikl nový kodex
polovičního formátu.

6 Soudí se tak podle rozluštěné poznámky na prvním foliu: „kněz Ióannés Myronás do-
končil svou práci 13. dubna 1229� (den před Velikonoční nedělí).
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souborného kritického vydání Archimédových spisů. J. L. Heiberg v těchto řád-
cích ihned poznal Archimédův matematický text. V létě roku 1906 se vypravil
přímo do Konstantinopole, kde kodex prostudoval. Nechal také pořídit kvalitní
fotografie, s jejichž pomocí dokončil většinu práce na přepisu. Při této práci
objevil dva zcela nové, dosud ztracené spisy: Metodu a Stomachion. Hned ná-
sledujícího roku publikoval přepis textu Metody v časopise Hermes (viz [Hei1]).
Právě tento text se stal základem překladů do němčiny a angličtiny [Hea]. Mi-
mořádně zajímavá je skutečnost, že ihned v roce 1909 vydal ve výroční zprávě
c. k. státního gymnasia v Prostějově český překlad [Vr] tohoto řeckého textu
gymnaziální profesor František Vrána.

Roku 1908 se J. L. Heiberg vypravil do Konstantinopole znovu, aby ově-
řil přímo v rukopisu některá nejasná místa a pokračoval ve zkoumání kodexu.
V letech 1910 až 1915 pak vydal druhé, doplněné a přepracované vydání Ar-
chimédova díla [Hei]. Oba nově objevené spisy, Metoda a Stomachion, zařadil
do druhého dílu, který vyšel roku 1913.

Ve 20. letech byl kodex převezen do Athén a v tomto období se patrně
ztratil. Objevil se až po druhé světové válce v soukromé sbírce jedné pařížské
rodiny. Po několika neúspěšných pokusech o prodej kodexu předním světovým
knihovnám se palimpsest objevil v aukční síni Christies v New Yorku, kde byl
vydražen 29. října 1998 za dva miliony dolarů.

Majitel si přál zůstat v anonymitě, poskytl však svůj kodex na deset let
k vědeckému studiu. Stav kodexu se za posledních sto let pronikavě zhoršil: byl
zasažen plísní, tenké stránky byly místy téměř nečitelné, zčernalé, obsahovaly
mnoho drobných děr. Navíc na čtyřech stranách7 přibyly celostránkové ilustrace
evangelistů. Záchrany kodexu se ujalo muzeum umění Walters v Baltimore na
východním pobřeží Spojených států.

2 Čtení kodexu

Čtení takto poškozeného kodexu bylo velmi náročné. Předně bylo potřeba
jej zbavit vazby, kterou byl opatřen až v posledních letech. Odstranění vazby
probíhalo od 3. dubna 2000 do 4. listopadu 2004. Jednotlivé listy pak byly
pečlivě očištěny a každý zvlášť byl zasazen do speciálního plastového obalu.
Navíc bylo potřeba zařadit jednotlivé fragmenty na příslušná místa.

V roce 2004 mohla konečně začít digitalizace celého kodexu.8 Jelikož je ko-
dex pouhým okem velmi špatně čitelný, bylo potřeba zvolit vhodnou metodu,
která by zvýraznila Archimédův text. Jedním z prvních pokusů bylo pořizování
fotografií speciálním monochromatickým fotoaparátem RIT. Monochromatické
světlo přitom zajišťovaly LED diody. Každé folio bylo fotografováno čtyřicet-
krát. Tyto fotografie se poté různě kombinovaly, přičemž vhodnými kombina-

7 Všechna čtyři zasažená folia obsahují Archimédův text.
8 Pro zajímavost uveďme, že celý kodex je naskenován v Google books, kde je také nejstarší

knihou. Stránky jsou však prakticky nečitelné. Výstup digitalizace kodexu je dostupný na
stránkách http://archimedespalimpsest.net, kde je každý list k dispozici v mnoha podobách
ve vysokém rozlišení.
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cemi bylo možno zdůraznit špatně čitelný text tak, že na mnoha místech velmi
výrazně vystupoval. Přesto však nebylo možné přečíst všechny pasáže.

Jiná metoda, která měla umožnit přečíst Archimédův text tam, kde byl
pouhým okem naprosto nerozlišitelný, nebyla založena na optice, ale na rentge-
novém záření. Chemickou analýzou se totiž zjistilo, že inkoust, kterým je kodex
napsán, obsahuje prvek železo (Fe2O3). Pomocí přístroje EDAX Eagle a přísluš-
ného software na zpracování získaných dat byla získána mapa rozložení železa.
Tímto způsobem sice bylo možno přečíst naprostou většinu dosud nečitelného
textu, nicméně zpracování poloviny jediného řádku trvalo asi 15 hodin.

Postup založený na rentgenovém záření byl tedy mimořádně úspěšný,
nicméně neúnosně časově náročný. Proto se v roce 2006 přikročilo k práci na
větším zařízení – Stanfordském elektron-pozitronovém urychlovači (SPEAR),
což vedlo ke značnému urychlení, takže bylo možno přečíst ty části textu, které
byly významné a jinými postupy zcela nečitelné. Jednalo se o část závěrečné
věty ze spisu O plovoucích tělesech, první stránku kodexu (na níž se našlo
datum dohotovení opisu) a některé geometrické náčrtky.

Začátek Metody v pravých a nepravých barvách.

3 Metoda v antice

O existenci Archimédovy Metody se vědělo ze svědectví antických a byzant-
ských autorů. Poměrně dobře známá byla byzantská encyklopedie Súda, kde se
u hesla Theodosios (2. pol. 2. stol. př. Kr.) píše:

Theodosios, filosof. Napsal Sfériky ve třech svitcích, . . . , komentář k Archi-
médově Metodě (Efodion), . . .
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Několik svědectví se nám také dochovalo ve spisu Metrika slavného mecha-
nika a aplikovaného matematika Héróna Alexandrijského (1. stol.), například:

Archimédés v Metodě dokázal, že každý útvar ohraničený úsečkou a řezem
pravoúhlého kužele, tj. parabolou, je 1 a 13 trojúhelníka, který s ní má společnou
základnu a stejnou výšku. (I,32,58-61)

Máme určit velikost části válce oddělené řezem vedeným středem jedné pod-
stavy. A buď průměr této podstavy AB 7 jednotek, výška tohoto útvaru 20
jednotek. Archimédés dokázal v Metodě, že takovýto [útvar vzniklý] odříznu-
tím je šestinou rovnoběžnostěnu, který má čtyřúhelníkovou podstavu opsanou
podstavě válce a výšku stejnou, jako řez . . .

Tentýž Archimédés v téže knize dokazuje, že pokud procházejí krychlí dva
válce, jejichž podstavy se dotýkají hran krychle, tak bude průnik těchto válců
dvěma třetinami krychle. (II,14,1–15,5)

Nebylo však známo, co přesně tento spis obsahuje, ani jakým postupem byly
dosažené výsledky odvozovány.

4 Obsah spisu Metoda

Archimédés píše, že už dříve poslal Eratosthenovi některé z vět k důkazu.
Ohlašuje také dvě věty zcela nové, které jsou překvapivé tím, že dávají do sou-
vislosti objemy mnohostěnů a těles ohraničených plochami, jež nejsou rovinami.
Poměry těchto objemů jsou přitom vyjádřeny pomocí malých celých čísel. Do
té doby totiž Archimédés porovnával koule, elipsoidy či paraboloidy s válcem
nebo kuželem.

První věta dává do souvislosti objem úseče válce vepsaného do kvádru se
čtvercovou podstavou. Objem této úseče je pak šestinou objemu celého hra-
nolu. Druhá věta se týká tělesa, které vznikne průnikem dvou válců vepsaných
do téže krychle; objem tohoto tělesa je roven dvěma třetinám objemu celé
krychle. Toto těleso i příslušné válce, jejichž průnikem vzniká, jsou znázorněny
na následujícím obrázku.
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Dále Archimédés píše, že Eratosthenovi objasní metodu, pomocí níž objevil
některé vztahy. Když jsou totiž tyto vztahy známé, tak se pak snáze doka-
zují. Odvození pomocí své metody Archimédés nepovažuje za důkaz, neboť na
závěr spisu prý uvede ke všem větám důkazy geometrické. Spis se nám však
nezachoval celý, ale jen část: od úvodního dopisu obsahujícího znění obou ohlá-
šených vět a některá základní tvrzení bez důkazu, přes ukázky své metody na
konkrétních příkladech, až po odvození objemu prvního tělesa (úseče válce)
mechanickou metodou i geometricky. Odvození vztahu pro objem druhého tě-
lesa (průnik dvou válců) se nám vůbec nedochovalo, podobně jako geometrické
důkazy jednotlivých vět.

Z úvodního dopisu se také dozvídáme, že Archimédés očekával, že součas-
níci či následující generace naleznou pomocí jeho metody další poznatky. Také
zde nacházíme významné svědectví o vztahu pro objem jehlanu či kužele, jež
jsou třetinou objemu příslušného hranolu, resp. válce. Jako první prý tento
fakt uvedl Démokritos, ale bez vysvětlení.9 První, kdo publikoval důkaz tohoto
tvrzení, byl prý Eudoxos.

Z jednoduchých tvrzení z mechaniky uvádí Archimédés bez důkazu zejména
následující:

(1) Pokud leží těžiště několika těles v jedné přímce; pak také těžiště celku
leží na téže přímce.

(2) Těžiště úsečky – její střed.
(3) Těžiště trojúhelníka – průsečík spojnic vrcholů úhlů a středů protileh-
lých stran.

(4) Těžiště rovnoběžníka – průsečík úhlopříček.
(5) Těžiště kruhu – jeho střed.
(6) Těžiště válce – střed osy.
(7) Těžiště hranolu – střed osy.10

(8) Těžiště kužele – bod, který dělí osu v poměru 3 : 1.

Pak už přicházejí věty o obsahu, objemech a těžištích různých geometrických
útvarů, a to pravděpodobně v pořadí, v němž je postupně Archimédés pomocí
své metody objevoval. Uvádíme jejich schematický přehled.

(1) parabolická úseč = 1 13 vepsaného trojúhelníka
(2) koule je čtyřikrát větší než kužel výšky r, válec = 3

2 vepsané koule
(3) 32 rotačního elipsoidu = opsaný válec
(4) úseč rotačního paraboloidu je = 3

2 příslušného kužele
(5) těžiště rotačního paraboloidu je ve 23 osy
(6) těžiště polokoule dělí osu v poměru 5 : 3
(7) kulová úseč : vepsaný kužel = (r + 2r − v) : (2r − v)
(8) objem úseče elipsoidu

9 Patrně se jednalo o odvození vycházející z atomismu.
10 Ve Vránově překladu chybí, podobně také chybí v [Hei1]. Ve Vránově překladu je díky

předloze, jež je teprve publikací předběžnou, několik vynechávek, na něž je nedostatečně
upozorněno. Obecně ke konci textu narůstá jeho fragmentárnost.
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(9) těžiště kulové úseče leží na ose rozdělené v poměru
část osy při vrcholu : část při podstavě = (v+4(2r−v)) : (v+2(2r−v))

(10) těžiště elipsoidu
(11) úsek rotačního hyperboloidu : vepsaný kužel = (v + 3a) : (v + 2a)
(12) objem úseče válce z 1. oznámené věty:

úseč válce = 1
6 opsaného hranolu

(13) objem úseče válce, odvození pomocí řezů
(14) objem úseče válce, pomocná křivka parabola v podstavě
(15) objem úseče válce, geometrický důkaz; závěr je nenávratně ztracen

5 Metoda – rotační paraboloid

Ukažme si, v čem spočívá Archimédova metoda. Nejnázornějším tělesem11

je úseč rotačního paraboloidu. Její objem je roven 32 vepsaného kužele. Řez
vedoucí osou a vrcholem kužele i paraboloidu je uveden na obrázku.

Z vlastností paraboly plyne, že

AD

AS
=

DB2

SX2
.

Tuto rovnost můžeme přepsat ve tvaru

AD · (kruh SX v paraboloidu) = AS · (kruh SM ve válci),

což můžeme interpretovat jako vztah rovnováhy na páce

r1 ·m1 = r2 ·m2.

Jelikož jsme brali libovolný řez, tak předchozí vztah platí pro každý řez (tedy
„pro všechny řezy	, které vlastně tvoří celý válec, resp. celou úseč paraboloidu).
Takže paraboloid umístěný v Q (jelikož AD = AQ) vyváží válec setrvávající na
místě (tj. umístěný ve svém těžišti K). Odtud již dostáváme poměrně elegantně
formulovaný výsledek:

paraboloid =
AK

AD
· válec = 1

2
válce =

3
2
kuželu.

11 Jelikož se připravuje vydání úplného překladu ArchimédovyMetody včetně podrobného
matematického komentáře, uvádíme pouze jeden ilustrační příklad.
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POLOPRAVIDELNÁ TĚLESA

Vlasta Moravcová

Archimédovými polopravidelnými tělesy nazýváme třináct těles, která patří
mezi polopravidelné mnohostěny.

Polopravidelným mnohostěnem rozumíme konvexní mnohostěn, jehož stě-
nami jsou shodné pravidelné mnohoúhelníky dvou nebo tří typů, přičemž v kaž-
dém vrcholu se setkává ve stejném pořadí stejný počet stěn téhož typu.

Obr. 1: Pětiboký hranol a antihranol jako polopravidelná tělesa.

Kromě Archimédových těles patří mezi polopravidelné mnohostěny také spe-
ciální hranoly1 a antihranoly2 (obr. 1), kterých je nekonečně mnoho. Občas se
k polopravidelným mnohostěnům řadí také tzv. Aškinuzeho těleso3 (obr. 2).

Obr. 2: Aškinuzeho/Millerovo/Johnsonovo těleso.

1 Pravidelné kolmé n-boké hranoly s výškou rovnou délce podstavné hrany. Povrch tedy
tvoří dvě podstavy (pravidelné n-úhelníky) a n bočních stěn (čtverců).

2 Horní podstavu pravidelného kolmého n-bokého hranolu pootočíme o úhel π
n
okolo osy

hranolu, doplníme n bočních hran tak, aby po stranách vznikly trojúhelníky, a upravíme
výšku tak, aby tyto trojúhelníky byly rovnostranné.

3 Toto těleso, které je uváděno pod různými názvy podle svých objevitelů (též Millerovo
nebo Johnsonovo) bylo popsáno až v polovině 20. století. Jedná se o těleso, které vznikne
malou úpravou jednoho z Archimédových těles (pootočením několika stěn vůči ostatním).
Aškinuzeho těleso sice splňuje definici polopravidelného mnohostěnu (a proto bývá někdy
označováno jako čtrnácté Archimédovo těleso), avšak nemá takové symetrické vlastnosti jako
zbývajících třináct mnohostěnů. Více viz [Cro], str. 91.

HM 54 - Archimedes - text.indd   69HM 54 - Archimedes - text.indd   69 14.1.2013   15:36:4114.1.2013   15:36:41



70

Archimédova tělesa nazýváme podle řeckého matematika Archiméda ze Sy-
rákús, jelikož právě jemu je připisován jejich objev. Archimédovo pojednání
o polopravidelných tělesech se bohužel nedochovalo, avšak zmínku o jeho exis-
tenci nalézáme v díle Pappa Alexandrijského (3. století n. l.), který v 5. knize
Synagógé [Sbírka] píše [Pap]:4

I když si můžeme představit mnohá tělesa s rozličnými povrchy, tak se do-
mníváme, že spíše jsou hodna zmínky ta, která jsou pravidelně uspořádána.
Není to pouze těch pět těles, která nacházíme u božského Platóna, tj. čtyřstěn,
šestistěn, osmistěn, dvanáctistěn a pátý dvacetistěn, ale také třináct těles obje-
vených Archimédem, která jsou ohraničena pravidelnými, avšak ne podobnými
mnohoúhelníky . . .

Pappův text pokračuje výčtem jednotlivých těles s popisem, které stěny tvoří
povrch těchto těles.

Obr. 3: Pappova zmínka o existenci Archimédových těles v kritickém
vydání Pappova díla pořízeného F. Hultschem (viz [Pap]).

1 Přehled Archimédových mnohostěnů

V tabulce na následující straně je souhrnný přehled třinácti Archimédových
mnohostěnů (obr. 4, 5, 6) a jejich základních vlastností. Současné nejběžněji
používané anglické názvy vycházejí z latinských názvů Johanna Keplera (viz
obr. 20). V tabulce je u každého tělesa uveden anglický název. Názvy se do češ-
tiny zpravidla nepřekládají, častěji se pro jednotlivá tělesa používá symbolické
označení Pk, kde hodnota k odpovídá pořadí, ve kterém uvedl tělesa Pappos
Alexandrijský.

Dále je v tabulce uveden počet vrcholů v, počet hran h a počet stěn s všech
těles. Jednotlivé členy pq součtů ve sloupci „Druhy stěn	 označují, že se na
povrchu daného tělesa vyskytuje p pravidelných q-úhelníků. Například zápis
43 + 46 znamená, že povrch tělesa tvoří 4 rovnostranné trojúhelníky a čtyři

4 Citace ze starých děl z uvedených zdrojů přeložila a v zájmu srozumitelnosti přizpůsobila
současné češtině autorka článku.
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pravidelné šestiúhelníky. Počet čísel v závorce ve sloupci „Typ vrcholu	 od-
povídá počtu stěn, které se stýkají v jednom vrcholu, a hodnoty těchto čísel
udávají, kolikaúhelníkové tyto stěny jsou a v jakém pořadí obklopují každý
vrchol. Například zápis (3, 4, 3, 4) znamená, že se v každém vrcholu potká-
vají rovnostranný trojúhelník, čtverec, další rovnostranný trojúhelník a další
čtverec v tomto pořadí.

Další vlastnosti těchto těles (poloměry opsaných kulových ploch, kartézské
souřadnice vrcholů apod.) lze najít na mnoha webových stránkách.5

Px Název v h s Druhy stěn Typ vrcholu

P1
Truncated
tetrahedron

12 18 8 43 + 46 (3, 6, 6)

P2 Cuboctahedron 12 24 14 83 + 64 (3, 4, 3, 4)

P3
Truncated
octahedron

24 36 14 64 + 86 (4, 6, 6)

P4
Truncated
hexahedron

24 36 14 83 + 68 (3, 8, 8)

P5
Rhombicub-
octahedron

24 48 26 83 + 184 (3, 4, 4, 4)

P6
Truncated
cuboctahedron

48 72 26 124 + 86 + 68 (4, 6, 8)

P7
Icosidodeca-
hedron

30 60 32 203 + 125 (3, 5, 3, 5)

P8
Truncated
icosahedron

60 90 32 125 + 206 (5, 6, 6)

P9
Truncated
dodecahedron

60 90 32 203 + 1210 (3, 10, 10)

P10
Snub
hexahedron

24 60 38 323 + 64 (3, 3, 3, 3, 4)

P11
Rhombicosi-
dodecahedron

60 120 62 203 + 304 + 125 (3, 4, 5, 4)

P12
Truncated ico-
sidodecahedron

120 180 62 304 + 206 + 1210 (4, 6, 10)

P13
Snub
dodecahedron

60 150 92 803 + 125 (3, 3, 3, 3, 5)

5 Například na stránce http://en.wikipedia.org/wiki/Semiregular polyhedron nebo na
http://mathworld.wolfram.com/ArchimedeanSolid.html.
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Obr. 4: a) Těleso P1, b) síť tělesa P1, c) těleso P2, d) síť tělesa P2,
e) těleso P3, f) síť tělesa P3, g) těleso P4, h) síť tělesa P4,

i) těleso P5, jeho úpravou získáme těleso na obr. 2, j) síť tělesa P5.
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Obr. 5: a) Těleso P6, b) síť tělesa P6, c) těleso P7, d) síť tělesa P7,
e) těleso P8, f) síť tělesa P8, g) těleso P9, h) síť tělesa P9.
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Obr. 6: a) Těleso P10, b) síť tělesa P10, c) těleso P11, d) síť tělesa P11,
e) těleso P12, f) síť tělesa P12, g) těleso P13, h) síť tělesa P13.
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2 Odvození Archimédových těles z pravidelných mnohostěnů

Všechna Archimédova tělesa lze odvodit z pravidelných (též platónských)
mnohostěnů (obr. 7) ořezáním vrcholů nebo hran vhodnými rovinami. Pravi-
delných těles je právě pět: pravidelný čtyřstěn (tetraedr), pravidelný šestistěn
neboli krychle (hexaedr), pravidelný osmistěn (oktaedr), pravidelný dvanácti-
stěn (dodekaedr) a pravidelný dvacetistěn (ikosaedr). Těmito tělesy se zabývali
již ve 4. století př. n. l. Theaitétos a Platón. Také je jim věnována 13. kniha
Eukleidových Základů.

Obr. 7: Tetraedr, hexaedr, oktaedr, dodekaedr, ikosaedr.

Každé Archimédovo těleso lze odvodit z některého pravidelného mnohostěnu
jedním (nebo více) z pěti následujících způsobů. Způsoby a) až d) jsou založené
pouze na myšlence odřezávání vrcholů nebo hran pravidelných těles. Způsob
e) je složitější, kombinuje myšlenku ořezávání původních těles s otáčením nově
vzniklých stěn. Archimédovy mnohostěny lze tedy tvořit:6

a) Odříznutím vrcholů pravidelného mnohostěnu rovinami, které zkrátí kaž-
dou hranu tak, aby z původních n-úhelníkových stěn zbyly pravidelné
2n-úhelníkové stěny (přičemž je jich stejný počet). Namísto každého vr-
cholu pravidelného mnohostěnu vznikne pravidelný m-úhelník.

Takto získáme těleso P1 z tetraedru (obr. 8),7 těleso P3 z oktaedru,
těleso P4 z hexaedru, těleso P8 z ikosaedru a těleso P9 z dodekaedru.

Obr. 8: Vznik tělesa P1 z tetraedru.

6 V popisech jednotlivých způsobů odvození Archimédových těles značí n počet vrcholů
jedné stěny pravidelného mnohostěnu a m počet hran sbíhajících se v jednom vrcholu pravi-
delného mnohostěnu z něhož vycházíme.

7 V obrázcích 8 až 12 jsou šedě obarveny ty stěny Archimédova tělesa, které leží ve stěnách
původního pravidelného mnohostěnu.
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b) Odříznutím vrcholů pravidelného mnohostěnu rovinami, které prochá-
zejí středy hran sbíhajících se v jednom vrcholu tohoto mnohostěnu.
Z původních n-úhelníkových stěn vzniknou menší pravidelné n-úhelníky.
Místo každého vrcholu pravidelného mnohostěnu vznikne opět pravidelný
m-úhelník.

Takto získáme těleso P2 z hexaedru nebo oktaedru (obr. 9) a těleso P7
z dodekaedru nebo ikosaedru. Pokud bychom tímto způsobem oddělili
vrcholy tetraedru, vznikl by oktaedr.8

Obr. 9: Vznik tělesa P2 z hexaedru nebo oktaedru.

c) Odříznutím hran pravidelného mnohostěnu rovinami rovnoběžnými s jeho
hranami tak, aby z původních n-úhelníkových stěn vznikly menší pravi-
delné n-úhelníky, místo každé hrany vznikl čtverec a místo původních
vrcholů vznikly pravidelné m-úhelníky.

Takto získáme těleso P5 z hexaedru nebo oktaedru (obr. 10) a tě-
leso P11 z dodekaedru nebo ikosaedru. Při stejném postupu aplikovaném
na tetraedr bychom získali již známé těleso P2, které lze zkonstruovat
snadněji postupem b).

Obr. 10: Vznik tělesa P5 z hexaedru nebo oktaedru.

8 Skutečnost, že jedním způsobem lze odvodit totéž těleso ze dvou různých pravidelných
mnohostěnů, souvisí s dualitou těchto mnohostěnů. Dva mnohostěny se nazývají duální,
pokud je lze do sebe navzájem vepsat tak, že vrcholy jednoho tělesa leží ve středech stěn
tělesa druhého. Hexaedr s oktaedrem a dodekaedr s ikosaedrem jsou dvojice duálních těles.
Tetraedr je duální sám se sebou.
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d) Odříznutím hran pravidelného mnohostěnu rovinami rovnoběžnými s tě-
mito hranami tak, aby z původních n-úhelníkových stěn vznikly menší
pravidelné n-úhelníkové stěny, a následným odříznutí vrcholů tak, aby
z menších n-úhelníkových stěn vznikly pravidelné 2n-úhelníky. Místo pů-
vodních hran doplníme čtverce, místo původních vrcholů vzniknou nové
2m-úhelníky.

Takto získáme těleso P6 z hexaedru nebo oktaedru (obr. 11) a tě-
leso P12 z dodekaedru nebo ikosaedru.

Obr. 11: Vznik tělesa P6 z hexaedru nebo oktaedru.

e) Zbývající tělesa – P10 a P13 – již nelze vytvořit tak snadno.

Vznik tělesa P10 si můžeme představit takto: Sestrojíme nejprve z he-
xaedru (resp. oktaedru) těleso P5 (obr. 12a). Čtverce, které vznikly na-
místo původních hran hexaedru, rozdělíme úhlopříčkou vždy na dva rov-
noramenné trojúhelníky (obr. 12b). Nyní máme těleso, jehož povrch tvoří
takový počet čtverců a trojúhelníků, který bychom potřebovali (avšak
dvojice některých trojúhelníků leží v jedné rovině a navíc se nejedná o rov-
nostranné trojúhelníky). Nyní necháme rotovat čtverce v jejich rovinách
okolo jejich středů, přičemž současně s nimi se budou ve svých rovinách
okolo svých středů otáčet i rovnostranné trojúhelníky, které již na po-
vrchu tělesa leží (obr. 12c), a to do takové polohy, kdy se delší hrany
v rovnoramenných trojúhelnících zkrátí tak, že tyto trojúhelníky přejdou
v trojúhelníky rovnostranné (obr. 12d). Celý postup lze provést dvěma
způsoby, získáme tak dvě formy mnohostěnu P10 – levou a pravou (tyto
dvě formy jsou v prostoru nepřímo shodné).9

Těleso P13 lze vytvořit z tělesa P11 obdobným způsobem, přičemž je
třeba nechat rotovat pětiúhelníkové stěny spolu s rovnostrannými troj-
úhelníky a přitom čtverce na povrchu tělesa P11 rozdělit opět úhlopříčkou
na dva trojúhelníky.

9 Tento postup je názornější při zhlédnutí animace – na internetu je k dispozici animace
v Cabri3D na http://gallery.cabri.com/en/snubCube.html.
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Obr. 12: Vznik tělesa P10 z hexaedru; v horním
řádku levá forma, v dolním pravá forma.

3 Znovuobjevování Archimédových těles

Kromě již zmíněného Pappova díla není známo, že by o Archimédových
mnohostěnech byla dochována nějaká jiná písemná zmínka evropského původu
starší než z 15. století.10 V renesanci se však v několika dílech matematiků
a výtvarníků postupně objevují popisy a nákresy některých ze třinácti Archi-
médových těles.

Prvními takovými pracemi jsou dva rukopisy Piera della Francesca11 Trat-
tato d’abaco [Pojednání o abaku] a Libellus de quinque corporibus regularibus
[Knížka o pěti pravidelných tělesech]. Obě práce vyšly pod jeho jménem tiskem
až ve 20. století,12 byly však sepsány někdy před rokem 1482.

V díle Trattato d’abaco se autor věnuje mimo jiné pravidelnému čtyřstěnu
a krychli (s odkazem na 13. knihu Eukleidových Základů) a jejich vepisování
do kulové plochy. Vzápětí formuluje následující dvě úlohy:13

10 V arabském světě byl ve 13. století vytvořen dodatek (tzv. XVI. kniha) k Eukleidovým
Základům, v němž jsou popsány konstrukce polopravidelných mnohostěnů. Toto dílo se však
dochovalo jen v jediném exempláři.

11 Piero della Francesca (?1416/7–1492) byl italský malíř, jeden z představitelů rané
renesance. Zabýval se matematikou a geometrií, studoval perspektivu.

12 Piero della Francesca, Trattato d’abaco: Dal Codice Ashburnhamiano 280 (359*.291*)
della Biblioteca Medicea Laurenziana di Firenze, ed. G. Nicco Fasola, Florence, 1942; Piero
della Francesca, Libellus de quinque corporibus regularibus, eds. M. Dalai Emiliani, C. Gray-
son, C. Maccagni et al., Florence, 1995.

13 Podle [Fie], str. 248.
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Je dána kulová plocha o průměru 6. Vepište do této kulové plochy těleso
o osmi stěnách – čtyřech trojúhelnících a čtyřech čtvercích – s navzájem shod-
nými hranami. Jaká bude délka hrany takového tělesa?

Je dána kulová plocha o průměru 6. Vepište do této kulové plochy těleso
o čtrnácti stěnách – šesti čtvercích a osmi trojúhelnících – s navzájem shodnými
hranami. Jaká bude délka hrany takového tělesa?

V prvním případě je hledaným tělesem Archimédův mnohostěn P1. Piero
della Francesca svou úlohu provází obrázkem (obr. 13a). V druhém případě se
jedná o těleso P2. Zadání této úlohy je rovněž doplněno obrázkem (obr. 13b)
a navíc vysvětlením, že toto těleso získáme ořezáním krychle rovinami prochá-
zejícími středy hran krychle.

Obr. 13: Konstrukce Piera della Francesca: a) těleso P1, b) těleso P2.

V díle Libellus de quinque corporibus regularibus Piero della Francesca po-
pisuje dokonce pět polopravidelných mnohostěnů – opět P1 a dále P3, P4, P8
a P9, tedy všechna tělesa, která lze vytvořit jednoduchým ořezáním vrcholů
pravidelných mnohostěnů, viz způsob a) na str. 75. U každého tělesa odvozuje,
v jakém poměru je třeba rozdělit hranu původního pravidelného mnohostěnu
na tři díly, aby z n-úhelníkových stěn vznikly pravidelné 2n-úhelníky. Zatímco
u mnohostěnů P1, P3 a P8 je odvození snadné (původní hranu dělíme na tři
shodné úsečky), u těles P4 a P9 autor uvádí dlouhé a podrobné výpočty, jak
vytvořit ze čtverce pravidelný osmiúhelník a z pravidelného pětiúhelníku pra-
videlný desetiúhelník.

Jen několik let po sepsání výše uvedených rukopisů vyšla tiskem práce
De divina proportione [O božském poměru] (Venice, 1509) od Luca Pacioliho.14

V tomto díle je popsáno šest Archimédových mnohostěnů, z nichž čtyři (P1,
P2, P3 a P8) znal Pacioli z rukopisů Piera della Francesca.15 Ilustrace vytvořil
Leonardo da Vinci (1452–1519).

14 Luca Pacioli (1445–?1514/7) byl italský františkánský mnich a matematik. Je znám
především jako autor knihy Summa de aritmetica, geometria, proportioni e proportionalità
(Venice, 1494), v níž shrnul matematické znalosti své doby.

15 Luca Pacioli byl žákem Piera della Francesca a je známo, že Pacioli ve svých dílech
použil mnoho myšlenek a textů svého učitele.
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Obr. 14: Ilustrace Leonarda da Vinciho v Pacioliho díle
De divina proportione: a) těleso P2, b) těleso P5, c) těleso P8.

Pacioli popisuje tělesa o něco podrobněji než Piero della Francesca, avšak
z dnešního pohledu poměrně kostrbatě. Například vzhled tělesa P2 vysvětluje
následovně:16

Toto těleso vzniklé ořezáním krychle má 24 hran určujících 48 rovinných
úhlů [vnitřní úhly stěn], z nichž 24 je pravých a zbylé jsou ostré. Těleso má
12 vrcholů a jeho povrch tvoří 14 stěn – 6 čtverců a 8 trojúhelníků, přičemž
každá strana čtverce je současně stranou trojúhelníku. Těleso vznikne ořezáním
krychle skrz středy hran, jak je vidět na obrázku [(obr. 14a)].

Dále Pacioli popisuje mnohostěny P5 a P7 jako tělesa odvozená stejným
způsobem (tj. půlením hran) dodekaedru a mnohostěnu P2. V tomto postupu
konstrukce tělesa P5 je však problém. Pokud ořežeme vrcholy mnohostěnu P2
rovinami procházejícími středy hran, získáme mnohostěn, který těleso P5 sice
připomíná, ale nejedná se přímo o ně. Ořezáním vrcholů tělesa P2 nevznik-
nou na povrchu čtverce, jak bychom si přáli, ale obdélníky. Z tohoto „nepra-
vého	 tělesa P5 lze to správné vytvořit poměrně snadno pomocí dvou prostoro-
vých transformací – „stlačením	 v horizontálním a vertikálním směru (obr. 15).
Otázkou je, zda si byl Pacioli tohoto omylu vědom, jelikož se o něm v textu
nezmiňuje, avšak da Vinciho ilustrace zobrazuje skutečně těleso P5 (obr. 14b).

Obr. 15: Vytvoření tělesa P5 z mnohostěnu, který popsal Pacioli.

Těleso, které Luca Pacioli ve skutečnosti popsal (tedy to, které získáme oře-
záním vrcholů mnohostěnu P2), zobrazil správně o necelých šedesát let později
Wentzel Jamnitzer17 ve svém díle Perspectiva corporum regularium [Perspek-

16 Podle [Fie], str. 254.
17 Wentzel Jamnitzer (1508–1585) byl německý zlatník a malíř. Zajímal se o geometrii,

zejména perspektivu a její užití v malířství.
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tiva pravidelných těles] (Nürnberg, 1568), v němž se nezabýval cíleně polo-
pravidelnými mnohostěny, ale mnohostěny, které lze nějak odvodit z jednoho
pravidelného tělesa například ořezáváním vrcholů nebo průnikem s dalším pra-
videlným tělesem (obr. 16).

Obr. 16: Ukázka dvou stránek z Jamnitzerovy Perspectiva
corporum regularium. Ořezaný mnohostěn P2 je vlevo dole.

Další významnou osobností zabývající se polopravidelnými mnohostěny byl
Albrecht Dürer.18 V prvním vydání svého rozsáhlého díla Underweysung der
Messung mit dem Zirckel und Richtscheyt in Linien, Ebenen und gantzen Cor-
poren [Pojednání o měření kružítkem a pravítkem na přímkách, v rovinách
a tělesech] (Nürnberg, 1525) představil sedm Archimédových těles, z nichž dvě
(P6, P10) nemohl znát z prací svých renesančních předchůdců. Těmi dalšími
jsou tělesa P1, P2, P3, P4 a P5.

Dürer však použil zcela novou metodu objevování těchto těles, a sice pro-
střednictvím jejich sítí. Vyšel od jednoho z pravidelných mnohoúhelníků a při-
kresloval k jeho stranám souměrně do všech stran další a další pravidelné mno-
hoúhelníky (obr. 17). Správnost svých sítí Dürer pravděpodobně testoval jejich
skládáním (jak napovídá jeho popis jednotlivých těles).

18 Albrecht Dürer (1471–1528) byl německý malíř, grafik a matematik. Vytvořil přes
tisíc uměleckých děl (kresby, malby, rytiny atd.). V oblasti matematiky se zabýval přede-
vším geometrií. Své poznatky shrnul v díle Underweysung der Messung mit dem Zirckel und
Richtscheyt in Linien, Ebenen und gantzen Corporen (Nürnberg, 1525), což byla první práce
tohoto druhu v němčině. Známá je též jeho práce Vier Bücher von menslicher Proportion
[Čtyři knihy o lidských proporcích] (Nürnberg, 1528).
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Obr. 17: Ukázky Dürerových sítí: a) síť tělesa P6,
b) síť tělesa P10, c) síť tělesa P2, d) síť tělesa P3.

Dürerův způsob popisu jednotlivých polopravidelných těles si ukážeme na
mnohostěnu P6 [Dür1]:

Toto těleso má 6 osmiúhelníkových, 8 šestiúhelníkových a 12 čtyřúhelníko-
vých stěn. Pokud je složíme, získáme 48 vrcholů a 72 hran.

Field ve svém článku [Fie], str. 269, považuje za pravděpodobné, že Dürer
touto metodou objevil i sítě dalších polopravidelných mnohostěnů. Vyhnul se
však konstrukci sítí těch těles, jejichž stěny tvoří pravidelné pětiúhelníky nebo
desetiúhelníky, jelikož prosazoval konstrukce pouze pomocí pravítka a kružítka
a konstrukce pravidelného pětiúhelníku či desetiúhelníku je za těchto podmínek
o něco pracnější, a proto by v případě sítí, kde je třeba takových mnohoúhel-
níků narýsovat více, mohla vést k nepřesnostem v rýsování. Ve druhém vydání
Dürerovy práce Underweysung der Messung . . . (Nürnberg, 1538) jsou však
vyobrazeny sítě dalších dvou Archimédových těles – P7 a P8 (obr. 18), na je-
jichž povrchu pravidelné pětiúhelníky jsou. Zřejmě se tedy Dürer konstrukci
více pravidelných pětiúhelníků v jednom obrázku nevyhýbal a zmíněná tělesa
jsou všechna, o nichž Dürer věděl.
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Obr. 18: Dürerovy sítě z druhého vydání díla Underweysung
der Messung . . . a) síť tělesa P7, b) síť tělesa P8.

Ve znovuobjevování Archimédových mnohostěnů nejdále19 z renesančních
umělců pokročil Daniele Barbaro,20 který v práci La Pratica della perspettiva
[Užití perspektivy] (Venice, 1568) znázornil a popsal jedenáct Archimédových
mnohostěnů, z nichž devět (P1 až P9) se objevilo již v dřívějších dílech a dvě
(P11 a P12) byla nová.

Barbaro byl více výtvarník než matematik. Jednotlivá polopravidelná tělesa
popsal jen velmi jednoduše. Striktně se držel metody ořezávání pravidelných
mnohostěnů. To je pravděpodobně důvodem, proč nepopsal také těleso P10,
které mohl znát z Dürerovy práce. Toto těleso totiž, jak bylo výše uvedeno,
nelze jednoduchým ořezáním pravidelného mnohostěnu vytvořit.

Při konstrukci těles P5 a P11 se Barbaro dopustil stejného omylu jako Pacioli.
Těleso P5 popsal jako mnohostěn, který získáme ořezáním vrcholů (rovinami
vedenými středy hran) tělesa P2, a těleso P11 popsal chybně jako mnohostěn,
který získáme obdobným ořezáním vrcholů tělesa P7.

19 Nejdále ve smyslu vyobrazení i slovního popisu těles. V článku [SFS] je popsáno 40 dře-
vorytin vytvořených pravděpodobně mezi lety 1538 až 1556 (tedy někdy po vydání Dürerova
Underweysung . . . , ale ještě před vydáním Barbarovy práce), na nichž jsou vyobrazeny
sítě všech pravidelných a Archimédových mnohostěnů (obr. 19). Není jasné, kdo je autorem
těchto rytin, ani zda byly připraveny jako ilustrace k nějakému textu. Nicméně kromě sítí
jako takových znázorňují i postupy, jak polopravidelné mnohostěny vznikají z mnohostěnů
pravidelných (sítě polopravidelných těles jsou vepsané do sítí těles pravidelných, takže je
vlastně v obrázcích naznačeno ořezávání pravidelných mnohostěnů). O těchto rytinách se
další autoři nezmiňují. Je-li však správně určeno období jejich vzniku, pak se pravděpodobně
jedná o nejstarší dochované vyobrazení sítí všech Archimédových mnohostěnů.

20 Daniele Barbaro (1514–1570) byl italský filosof a matematik. Je znám svým komento-
vaným překladem Vitruviova díla (Marcus Vitruvius Polio: De architectura, 1. století př. n. l.)
do italštiny.
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Kromě polopravidelných těles odvodil Barbaro metodou ořezávání vrcholů
i další mnohostěny, které mají vrcholy různých typů.

Obr. 19: Dřevorytina neznámého autora zobrazující
síť oktaedru s naznačením, jak vytvořit těleso P10.

Zdá se, že se výše uvedení autoři nesnažili podat kompletní seznam polopra-
videlných těles. Nezabývali se jejich definicí, někteří byli dokonce přesvědčeni,
že je jich nekonečně mnoho. Nikdo z nich neuvedl v souvislosti s těmito mno-
hostěny jméno Archiméda ze Syrákús nebo Pappa z Alexandrie.

Kompletní přehled polopravidelných těles spolu s jejich definicí podal až
Johannes Kepler21 v díle Harmonices Mundi [Harmonie světa] (Linz, 1619).
V úvodu kapitoly věnované těmto mnohostěnům uvádí, že se jedná o tělesa
Archimédova. Tuto informaci zřejmě převzal z Pappova díla, které dobře znal
a několikrát se na ně v Harmonices Mundi odvolává. Kromě Archimédových
mnohostěnů popsal jako polopravidelná tělesa též hranoly a antihranoly.

Kepler zkonstruoval všech třináct Archimédových těles tak, že zkoumal
všechna možná uspořádání pravidelných mnohoúhelníků okolo jednoho vrcho-
lu mnohostěnu. Všechna přípustná uspořádání stěn kolem vrcholu podrobně
diskutoval22 a pomocí těchto uspořádání také jednotlivá tělesa popisoval. Po-
dívejme se například na Keplerův komentář k mnohostěnu P5 [Kep], str. 62,
kniha II.:

Jeden trojúhelníkový a tři čtyřúhelníkové [úhly] jsou menší než čtyři pravé
[úhly]. Takže se spolu pojí osm trojúhelníků a osmnáct (tj. 12 a 6) čtverců
a vytvoří jeden Icosihexaedron [26-stěn], který nazývám Rhombicuboctaedricus
sectus neboli Rhombicuboctaedron.

21 Johannes Kepler (1571–1630) byl německý matematik, astrolog a astronom. V letech
(1600–1612) působil v Praze na dvoře císaře Rudolfa II. Je znám především zformulováním
tří (Keplerových) zákonů o pohybu nebeských těles.

22 Keplerův postup zkoumání přípustných typů vrcholů je popsán v [Cro].
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Každé z Archimédových těles je v Harmonices Mundi vyobrazeno, tyto ilu-
strace připravil Wilhelm Shickard (1592–1635). Jednotlivé mnohostěny jsou na
obrázku očíslovány, Keplerovo číslování však neodpovídá našemu značení Pk
(obr. 20).

Obr. 20: Ilustrace Archimédových mnohostěnů z Harmonices Mundi. Johannes
Kepler nazval tělesa následovně: (1) cubus truncus, (2) tetraedron truncum,
(3) dodecaedron truncum, (4) icosihedron truncum, (5) octaedron truncum,
(6) cuboctaedron truncum, (7) icosidodecaedron truncum, (8) cuboctaedron,
(9) icosidodecahedron, (10) rhombicuboctaedron, (11) rhombicosidodecaedron,

(12) cubus simus, (13) dodecaedron simum.

4 Archimédova tělesa okolo nás

S Archimédovými tělesy (přesněji s modely těchto těles) se setkáváme i v běž-
ném životě, zejména v architektuře.

Obr. 21: Model tělesa P2 v Praze Klánovicích (vlevo)
a v Praze v pasáži Archa (vpravo).
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V České republice lze najít některé z Archimédových mnohostěnů použité
jako dekorativní prvky. Jen v Praze jsou mi známé tři takové situace – plechový
model tělesa P2 o délce hrany asi 80 cm na konečné autobusu v městské části
Klánovice (obr. 21), skleněné dekorativní zakončení sloupku tímtéž tělesem
v pasáži Archa spojující ulice Na Poříčí a Na Florenci (obr. 21) a tři okrasné
skleníky s kopulí ve tvaru tělesa P8 ve stanici metra Lužiny (obr. 22).

Obr. 22: Těleso P8 ve stanici pražského metra Lužiny.

Podobných výjevů bychom jistě našli více. Existují však architekti, kteří
práci s (nejen polopravidelnými) mnohostěny dovedli mnohem dál než jen k je-
jich využití jako dekorativních prvků. Velké nadšení v použití mnohostěnů je
zřejmé v díle Alfreda Neumanna23 a jeho žáků Zvi Heckera a Eldara Sharona.

Obr. 23: Synagoga v izraelské poušti Negev
podle návrhu A.Neumanna a Z.Heckera.

23 Alfred Neumann (1900–1968) se narodil ve Vídni, část života strávil v Brně (zde stu-
doval na Německé technice), působil ve Vídni, Brně, Paříži a Praze. V roce 1945 byl trans-
portován do Terezína. Po válce se vrátil do Brna a roku 1949 emigroval do Izraele. Zde byl
roku 1952 jmenován profesorem architektury na Izraelském institutu techniky v Jeruzalémě.
V roce 1966 odešel do Kanady, kde žil až do své smrti. Se svými studenty Zvi Heckerem
a Eldarem Sharonem spolupracoval v Izraeli od roku 1959.
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Tito tři architekti pracovali společně na několika projektech založených na
vhodné kombinaci mnohostěnů. Jejich zájem se dotkl i Archimédových tě-
les. Některé z těchto projektů byly realizovány – např. projekt synagogy ve
vojenském prostoru v poušti Negev v Izraeli (obr. 23). Při stavbě byly pou-
žity díly ve tvarech Archimédových mnohostěnů P1, P2 a P3. Projekt je z let
1967–69 a podíleli se na něm A.Neumann a Z.Hecker. K zajímavým nereali-
zovaným projektům patří návrh synagogy (obr. 24) z roku 1966. Tato stavba
byla založena na vhodném poskládání mnohostěnů P1. Jedná se opět o projekt
A.Neumanna a Z.Heckera. O díle Alfreda Neumanna a jeho žáků podrobně
pojednává práce [Seg].

Obr. 24: Skica a model nerealizovaného projektu.

S Archimédovými tělesy se však setkáme také v jiných oborech. Populárním
mnohostěnem je P8, jehož tvar je základem při výrobě fotbalových míčů, které
vznikají sešitím povrchu tělesa – pravidelných pětiúhelníků a šestiúhelníků.
Kulatého tvaru je pak dosaženo nafouknutím míče (obr. 25a). Totéž těleso
je též dobře známé chemikům, stabilní molekula uhlíku fulleren C60 má totiž
svých 60 atomů uspořádaných právě ve vrcholech tělesa P8 (obr. 25b). V chemii
však najdeme i další tvary polopravidelných mnohostěnů, viz například článek
[Liu] zabývající se supramolekulami, jejichž tvar souvisí s mnohostěnem P3.

Obr. 25: a) Fotbalový míč, b) fulleren.
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STOMACHION

Zdeněk Halas

Archimédův spis Stomachion pojednává o stejnojmenné skládačce vyrobené
ze čtrnácti kousků slonoviny, jež vznikly rozdělením jednoho velkého čtverce.
Jednotlivé dílky mají různé tvary: jeden je pětiúhelník, dva jsou čtyřúhelníky
a ostatní jsou různé trojúhelníky. Z těchto kousků bylo možno sestavovat roz-
ličné obrazce ve tvaru zvířat, lidí či předmětů. Archimédés jí věnoval pojednání,
z něhož se nám dochovaly jen dva fragmenty: řecký (obsažen v Archimédově
palimpsestu) a arabský. Tyto zlomky jsou velmi krátké, a tak nám v jejich in-
terpretaci pomáhají zmínky, které se nám o skládačce stomachion dochovaly
u několika antických autorů.

1 Stomachion v antice

Nejpodrobnější popis hříčky stomachion nacházíme u římského básníka De-
cima Magna Ausonia1 (4. stol. po Kr.), který sestavil na žádost císaře Valen-
tiniana z veršů Vergiliových děl báseň Cento nuptialis (Svatební cento), v níž
popsal průběh svatby a její završení. Předchází jí úvodní dopis, v němž vysvět-
luje, co je cento2 a jak se sestavuje. Vyjmenovává přitom kombinace různých
meter, jejichž složením vznikne hexametr. Tato metra je tedy potřeba umně
skládat tak, aby se doplňovala a vznikl hexametr, takže bys mohl říci, že je to
jako hra, kterou Řekové nazývají stomachion3. Jsou to kostečky, celkem jich je
čtrnáct, a mají tvar geometrických útvarů. Některé jsou trojúhelníky se stejnými
stranami, jiné se stranami různých délek, některé souměrné, některé s pravými
úhly, některé s obecnými; nazývají se rovnoramennými a rovnostrannými troj-
úhelníky, také pravoúhlými a obecnými. Různým sestavováním těchto kousků
k sobě vzniknou podoby bezpočtu tvarů: obludný slon, zuřivý kanec, letící husa,
gladiátor4 ve zbroji, číhající lovec a štěkající pes – dokonce i věž a konvice

1 Ausonius se narodil kolem roku 310 v Burdigale (dnešní Bordeaux), kde se stal profeso-
rem gramatiky a rétoriky. Roku 364 jej povolal ke dvoru císař Valentinianus I., aby vychovával
jeho syna Gratiana, budoucího císaře. Následně zastával veřejné funkce včetně konzulátu. Po
Gratianově smrti se stáhl do ústraní, kde se věnoval literární tvorbě. Zemřel kolem roku
393/4. Jeho poezii charakterizuje technická a formální dokonalost, vysoká erudice vedená
snahou o to, aby se neztratilo nic z římské kultury, zájem o školské prostředí a jistá ideali-
zace projevující se v nevnímavosti ke skutečným problémům doby: vylidňování a chudnutí
venkova, bortícím se hranicím říše a náboženským nesvárům.

2 Jedná se o báseň složenou z veršů a jejich částí, které jsou převzaty z básní jiného autora.
Většinou se takto vzniklá báseň týká naprosto odlišného tématu.

3 V textu latinského vydání Ausonia je sice uvedeno slovo ostomachion, z kritického
aparátu však vyplývá, že nejlepší rukopisy obsahují slovo stomachion, na což upozorňuje
také J. L. Heiberg v [Hei]. Slovo ostomachion bylo pravděpodobně chybně spojeno s
(osteon, kost) a (machiá, boj, bitva), tedy boj kostí.

4 Tzv.murmillo (u Ausonia psánomirmillo), jedná se o druh těžce ozbrojeného gladiátora,
který měl štít chránící celé tělo, chrániče holení a meč. Na jeho přilbě byla nakreslena ryba.
Proti němu stál v boji retiarius (síťař) ozbrojený rybářskou sítí, trojzubou vidlicí a dýkou.
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a bezpočet jiných takových obrazců, jejichž různorodost závisí na dovednostech
hráče. Zatímco však je harmonické složení dovedného hráče úžasné, směska vy-
tvořená hráčem neobratným je směšná. Když jsem toto předem uvedl, tak uvidíš,
že já jsem jako ten druhý druh hráče.

A tak toto malé dílko, cento, je sestaveno stejně jako právě popsaná hra.
Dává do souladu různé významy, aby náhodně spojené kousky vypadaly tak,
jako by spolu zcela přirozeně souvisely a neprosvítala mezi nimi žádná trhlina,
aby to nevypadalo, že byly spojeny násilně, aby podivně nevyčnívaly a nebyly
nesouvisle rozloženy.5

Ausonius tedy přirovnává druh poezie, v níž se mísí různé druhy meter, ke
hře, kterou Řekové nazývali stomachion a která se hrála se čtrnácti kousky
slonoviny ve tvaru rovnoramenných, rovnostranných, pravoúhlých či obecných
trojúhelníků6. Udává přitom příklady obrazců, které lze z těchto kousků složit.

Druhým svědectvím je báseň, která nese „stomachion	 přímo ve svém ná-
zvu7. Jejím autorem je Magnus Felix Ennodius8 (473/4–521), který byl bisku-
pem v Pavii.

Stomachion ze slonoviny
(přel. Radomír Bužek)

Mužská srdce umdlévají rozrušená lehkou trýzní:
ženám je dovoleno hrát.

Rozprostírají hru, kterou poslal slon z marmarického kraje,
její rozložené dílky zakrátko dostávají tvar.
Mladé dívky se učí proradně žertovat o trestu:
vždyť ženám je vlastní ubližovat smíchem.

Na tisíc tvarů dokážou poskládat v těsném pouzdře;
veškerá slonovina, ženo, je schránkou tvého srdce.

Ve třetím a čtvrtém verši čteme svědectví o tom, jak se stomachion hrálo:
jednotlivé kousky slonoviny ve tvaru geometrických útvarů se rozložily, hráč si
je postupně bral a skládal z nich nový či požadovaný obrazec.

Zvláštně vyznívá předposlední verš. Zdá se, jako by se jednotlivé tvary sklá-
daly pouze ve čtvercovém pouzdře, v němž byly dílky umístěny. Není však jasné,
co by pak bylo cílem hry – snažili se hráči dílky poskládat vždy jen do čtverce?
Střídalo se při tom více hráčů? Tato interpretace by mohla podpořit hypotézu
o tom, že Archimédés ve svém spise Stomachion zkoumal, kolika způsoby lze

5 Přeloženo z vydání: Decimi Magni Ausonii Burdigalensis opuscula. Ed. R. Peiper, Teub-
ner, Leipzig, 1886.

6 Je zajímavé, že o čtyřúhelnících a pětiúhelníku není v citátu zmínka.
7 Báseň je přeložena z vydání [En], str. 602, kde je nadepsána De ostomachio eburneo.

Nejlepší rukopisy však mají v názvu „stomachio�.
8 Psal prozaické spisy, básně a epigramy, v nichž je hojně přítomen svět pohanské klasiky,

o němž hovoří se steskem, jaký u biskupa udivuje.

HM 54 - Archimedes - text.indd   90HM 54 - Archimedes - text.indd   90 14.1.2013   15:36:5514.1.2013   15:36:55



91

všech čtrnáct dílků sestavit do tvaru původního čtverce. U této hypotézy se
ještě zastavíme v komentáři k řeckému zlomku textu Stomachion. Co se však
týče hry samotné, na základě ostatních antických svědectví je pravděpodob-
nější, že se v tomto verši hovoří o tom, že dívky dokáží z dílků sestavit tvary
velmi mnoha různých věcí, přičemž skládání neprobíhá přímo v těsném pouz-
dře („rozprostírají hru	), ale v něm je jen uloženo čtrnáct dílků skrývajících
ohromný potenciál variability tisíce tvarů.9

Další zmínky o stomachion nacházíme u latinských gramatiků.10 Na začátku
třetí knihy pojednání Ars Grammatica, kterou sepsal ve čtyřech knihách Ma-
rius Victorinus11 (4. stol.), je zmíněna tzv. „archimédovská krabička	 (loculus
Archimedius) obsahující čtrnáct kousků ze slonoviny.

Autorem významného pojednání o metrice věnovaného Neronovi byl Caesius
Bassus (1. stol. po Kr.). Tento spis se sice nedochoval, ale na jeho základě sepsal
pojednání o metrice latinský gramatik Atilius Fortunatianus (4. stol.). Na jeho
konci je uvedena pobídka k praktickému procvičování probrané látky, v níž
nacházíme další informace o loculus Archimedius:

Došlo-li na procvičování, působí při zkoumání meter potěšení, když hbitě
poznáváme, odkud ta která pocházejí, jakým způsobem jsou složena a když mů-
žeme vymýšlet mnohá další.

Jestliže nám totiž byla v chlapeckých letech k posílení paměti velice prospěšná
ona archimédovská skládačka, která obsahuje čtrnáct kousků ze slonoviny, každý
s různými úhly, které jsou poskládány do čtverce, a díky našemu rozličnému
přeskládávání vytváří jednou přilbu, podruhé dýku, jindy sloup, loď či nesčetně
mnoho dalších tvarů — oč větší rozkoš a plnější užitek nám mohou přinášet
rozličná zpracování meter, držíme-li v rukou básně, když si pak u básníků po-
všimneme, že metra, jež unikají pozornosti nezkušených, byla tímto uměním
rytmizována a spojena se zpěvem?

Kromě seznamu předmětů, které lze z jednotlivých kousků slonoviny složit,
zde nacházíme významné svědectví o tom, že pro děti hra sloužila k procvi-
čení paměti. Při skládání stomachion se tedy pravděpodobně nejednalo pouze
o kreativní objevování nových tvarů, ale také o opětovné sestavení předložených
tvarů známých a osvědčených.

Název hry loculus Archimedius však neznamená, že by tuto hru vymyslel
sám Archimédés. Označení Archimedius může naznačovat, že Archimédés hru

9 Latinsky Angusta norunt res mille includere capsa. Latinské „includere� také znamená
„uzavřít�, „shrnout�.

10 Keil H.: Grammatici Latini VI. Teubner, Leipzig, 1874. Příslušná pasáž z Victorina
je uvedena na str. 100, z Fortunatiana je na str. 271 a 272 – odtud také překládáme níže
uvedenou pasáž.

11 Úspěšný řečník pocházející z Afriky; za jeho zásluhy ve školském působení a za kvality
plamenného řečníka mu byla na římském foru vztyčena socha. Věnoval se logice a novoplatón-
ské filosofii, po obrácení ke křesťanství sepsal tři knihy Proti Areiovi a komentáře k Pavlovým
epištolám.
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studoval z matematického hlediska. Může však také vyjadřovat její obtížnost,
jako je tomu zřejmě i v Úloze o dobytku, jejíž dochovaný řecký text nese nadpis
Probléma Archimédeion.

2 Arabský zlomek

Popisům skládačky stomachion dobře odpovídá arabský text, který nalezl
švýcarský historik matematiky Heinrich Suter12 (1848–1922) ve dvou arabských
kodexech13 uložených v tehdejší královské knihovně v Berlíně. Tentýž arabský
text poté nalezl ještě v Bodleyově knihovně v Oxfordu14 a v Londýně15. Pro-
tože se text oxfordského a londýnského kodexu neodlišoval od textu kodexů
berlínských, zaměřil se H. Suter ve svém vydání16 arabského textu pouze na
oba kodexy berlínské. K arabskému textu připojil také německý překlad, který
ve svém novém vydání Archimédova díla [Hei] později přetiskl s malými úpra-
vami17 dánský klasický filolog a historik antické matematiky Johan Ludvig Hei-
berg (1854–1928). Následující text vychází z německého překladu Suterova.18

Ve jménu boha milosrdného a slitovného! Můj pane, propůjč mi zdar a způ-
sob, ať to pro mne není obtížné!19

Kniha Archimédova o rozdělení obrazce stomachion20 na čtrnáct obrazců,
které jsou k němu v [racionálním] poměru21.

Narýsujeme čtverec22, nechť je to ABGD, rozpůlíme BG v E, sestrojíme
EZ kolmo na BG, vedeme úhlopříčky AG, BZ a ZG, rozpůlíme rovněž BE

12 Většinu svého života působil jako gymnaziální profesor v Curychu. Věnoval se přede-
vším dějinám islámské matematiky a astronomie.

13 Oba berlínské kodexy popsal v článku Über zwei arabische mathematische Manuskripte
der Berliner Königl. Bibliothek. Biblioth. math. 1898, 73–78. Jednalo se o kodexy označené
Mf. 258 a Mq. 559.

14 Tento kodex je označen číslem 960.
15 Uložen v Library of the India Office.
16 Suter H.: Der Loculus Archimedius oder das Syntemachion des Archimedes. Zum

ersten mal nach zwei arabischen Manuskripte der Königlichen Bibliothek in Berlin heraus-
gegeben und übersetzt. Abhandlungen zur Geschichte der Mathematik 9(1899), str. 491–500.

17 Viz strany 420–424. Jedná se vesměs o interpunkci, členění do odstavců a nahrazení
zkratky „Dr.� pro trojúhelník (něm. Dreieck) symbolem �.

18 Pro přehlednost však z Heibergova vydání přejímáme členění do odstavců a označení
trojúhelníku pomocí symbolu�. Podobně také doplňujeme odkazy do Eukleidových Základů.
Slova přidaná pro usnadnění pochopení smyslu textu uvádíme v hranatých závorkách. Jelikož
se jedná o delší citát, neodlišujeme jej obvyklou kurzívou. Děkuji doc. Leo Bočkovi za pomoc
při práci s německým textem.

19 Jedná se o obvyklou úvodní formuli uváděnou ve spisech islámských autorů.
20 Suterovo vydání obsahuje přepis „sit.emâšion�, připouští se zde také čtení „sitomâšion�;

arabský text však není vokalizován, přesné čtení tedy nelze s jistotou určit. Řecké se
v arabštině obvykle přepisovalo jako „š�, např. arabské „Aršimı̂des� odpovídá řeckému
„Archimédés�.

21 Dnes bychom řekli, že podíl obsahů jednotlivých obrazců k obsahu celého čtverce je
racionální číslo.

22 V obou arabských kodexech je uveden „rovnoběžník�, nicméně celý následující text
hovoří o čtverci.
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v H a sestrojíme HT kolmo na BE; potom přiložíme pravítko k bodu H
a nasměrujeme jej k bodu A a vedeme HK, rozpůlíme AL v M a vedeme
BM , tak je obdélník AE23 rozdělen na sedm dílů. Potom rozpůlíme GD v N ,
stejně tak ZG v C, vedeme EC, přiložíme pravítko k bodům B a C a vedeme
CO, vedeme ještě CN , tak je také obdélník ZG rozdělen na sedm dílů, ale
jiným způsobem, než ten první, a tak je celý čtverec [rozdělen] na čtrnáct dílů.

Nyní dokážeme, že každý z těch čtrnácti dílů je k celému čtverci v racionál-
ním24 poměru.

Jelikož je ZG úhlopříčkou obdélníku ZG, tak je �DZG polovinou tohoto
obdélníku, tedy čtvrtinou čtverce; ale �GNC je čtvrtinou �DZG, protože
prodloužíme-li EC, tak prochází bodem D, a pak je také �GDC polovinou
�DZG a je roven oběma � GNC a DNC dohromady; je tedy �GNC = 1

16
čtverce. Jestliže nyní dále předpokládáme, že přímka OC směřuje k bodu B,
jak byla také skutečně narýsována, tak je přímka NC rovnoběžná se stranou
BG čtverce, resp. �OBG, máme tedy poměr [Eukl. VI,2]:

BG : NC = GO : NO ;

BG je však čtyřnásobkem NC, je tedy také GO čtyřnásobkem NO, proto
je nyní GN trojnásobkem NO a �GNC trojnásobkem ONC [Eukl. VI,1];
protože však, jak jsme ukázali, je �GNC = 1

16 čtverce, tak je �ONC = 1
48

čtverce. Protože je dále�GDZ = 1
4 čtverce, a proto GNC je jeho 116 a�NCO

je jeho 148 , tak zbývá pro čtyřúhelník DOCZ = 1
6 plochy čtverce. Podle předpo-

kladu25 prochází dále přímka NC bodem F , a CF by bylo rovnoběžné s GE,
takže máme poměr [Eukl. VI,4]: EG : CF = EQ : CQ = GQ : FQ; pro-
tože nyní26 EQ = 2CQ a GQ = 2FQ, tak je �EQG dvojnásobkem každého

23 V antické matematice se obdélníky a čtverce běžně označovaly pouze pomocí dvou
vrcholů představujících jejich úhlopříčku.

24 Pojem „racionální� je v arabském textu na tomto místě skutečně uveden. Na začátku
a v závěru textu však toto slovo chybí. Doplňujeme jej tam proto v hranatých závorkách.

25 Míněna je celá konstrukce stomachion.
26 Zde bychom na základě předchozího poměru očekávali: „Protože nyní EG = 2CF , je

také EQ = 2CQ a GQ = 2FQ, . . . �
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z obou � GCQ a EFQ [Eukl. VI,1]; je však zřejmé, že je �EGZ = 2�EFG
[Eukl. VI,1], neboť je ZE = 2FE; �EGZ je však = 1

4 čtverce, tedy �EFG

je jeho 18 , ten
27 je však trojnásobkem každého z obou � EFQ a GCQ, tedy

každý z těchto obou � = 1
24 čtverce AG a �EGQ je dvojnásobkem každého

z obou � EFQ a GCQ, je tedy = 1
12 čtverce. Protože je dále ZF = EF , tak je

�ZFG = �EFG [Eukl. VI,1]; jestliže nyní odebereme�GCQ = �EFQ, tak
zůstane čtyřúhelník FQCZ = �EGQ, je tedy také čtyřúhelník FQCZ = 1

12
čtverce AG.

Nyní máme čtyřúhelník ZG rozdělen na sedm dílů a přecházíme nyní k dělení
druhého čtyřúhelníku.

Protože jsou BZ a EC dvě rovnoběžné úhlopříčky [Eukl. VI,2] a ZF =
EF , tak je �ZLF = EFQ [Eukl. VI,19], a proto �ZLF = 1

24 čtverce AG.
Protože BH = HE, tak je �BEZ čtyřnásobkem �BHT , neboť každý z nich
je pravoúhlý;28 jelikož však �BEZ = 1

4 čtverce ABGD, tak je �BHT jeho
šestnáctinou. Podle našeho předpokladu29 prochází dále přímka HK bodem A,
máme tedy poměr [Eukl. VI,4]:

AB : HT = BK : KT ;

je však AB = 2HT , tedy také BK = 2KT , a proto BT = 3KT , je tedy
�BHT trojnásobkem �KHT [Eukl. VI,1]; protože však �BHT = 1

16 ce-
lého čtverce, tak je �KHT = jeho 1

48 . Kromě toho je �BKH dvojnásob-
kem �KHT [Eukl. VI,1], tedy = 1

24 čtverce. Jelikož je dále BL = 2ZL

a AL = 2LF ,30 tak je �ABL dvojnásobkem �ALZ a �ALZ dvojnásob-
kem �ZLF [Eukl. VI,1]; protože je však �ZLF = 1

24 celého čtverce, tak
je �ALZ = jeho 1

12 , tedy
31 �ABL = 1

6 ; je však �ABM = �BML

[Eukl. VI,1], tedy každý z obou těchto trojúhelníků = 1
12 čtverce. Zbývá

ještě pětiúhelník LFEHT = polovině šestiny [a] navíc polovině osminy celého
čtverce.32

Rozdělili jsme tedy také obdélník33 AE na sedm dílů, a tak je celý obrazec
ABGD rozdělen na čtrnáct dílů, které jsou k němu v [racionálním] poměru,
a to je [to], co jsme chtěli [dokázat].

Kniha Archimédova o obrazci stomachion byla dokončena v pondělí 6. rab̂ı‘ I.
106134.

27 Míněn je �EFG.
28 Zdůvodnění je zde neúplné; je třeba dodat, že EZ = 2HT .
29 Míněna je opět celá konstrukce stomachion.
30 Argumentace je chybná; přestože se jedná o správná tvrzení, nenavazují na uvedené

předpoklady. Navázat lze například takto: „a �ABL je podobný �FZL, tak je �ABL =
4�ZLF [Eukl. VI,4]�.

31 Míněna je šestina celého čtverce.
32 Obsah pětiúhelníku je tedy roven

( 1
12 +

1
16

)
obsahu celého čtverce.

33 Oba arabské kodexy však mají „čtverec�.
34 Tj. v březnu 1651.
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Co se týče názvu hry stomachion, H. Suter předkládá v článku [Sut2] hypo-
tézu, že se stomachion nazývá syntemachion ( ). Činí tak na základě
arabského sit.emâšion, což podle Sutera odpovídá řeckému syntemachion. Toto
řecké slovo pak odvozuje od temachion, což je zdrobnělina temachos ( ,
odřezek). Jednalo by se tedy o skládání kousků nějakého celku.

Kromě Suterovy hypotézy se nabízí ještě vysvětlení na základě latinského
stomachari (zlobit se). Název by pak naznačoval hněv, když se stále nedaří
složit něco pěkného. Podobně je zloba z neúspěchu obsažena v názvu známé
stolní hry Člověče, nezlob se.

Dochovaná podoba arabského textu Archimédova spisu Stomachion působí
uceleně: má úvod a závěr, který je obvyklý v islámských spisech, cíl uvedený na
začátku spisku je v následujícím textu splněn. Přesto nelze vyloučit, že byla do
arabštiny přeložena pouze malá část původního pojednání. Podstatně odlišný
obraz o podobě Archimédova spisu Stomachion totiž podává řecký fragment.

3 Řecký zlomek

Krátce po objevu arabského překladu Archimédova Stomachion byl objeven
řecky psaný kodex35, jenž je dnes znám pod označením Archimédův palimpsest.
Náročného studia smytého matematického textu se ujal dánský klasický filolog
a editor Archimédova díla J. L. Heiberg, který zde kromě mimořádně zajíma-
vého a do té doby zcela ztraceného spisuMetoda objevil na dvou listech zlomek
textu Archimédova Stomachion. Jeho přepis pak publikoval roku 1913 ve dru-
hém vydání Archimédova díla [Hei] společně s vlastním překladem do latiny
a Suterovým překladem arabské verze do němčiny.

Archimédův palimpsest je dodnes jediným zdrojem řeckého textu Stoma-
chion. Zachovalo se z něho velmi málo – pouze dva listy36. Navíc se jedná
o poslední listy kodexu, takže jsou velmi poškozené jak plísní, tak také me-
chanicky. Tyto listy jsou velmi tenké, obsahují mnoho menších děr a pouhým
okem jsou prakticky nečitelné. K největšímu poškození (zejména plísní) došlo
paradoxně v posledních sto letech. Ještě J. L. Heiberg mohl tyto listy poměrně
dobře přečíst pouze s pomocí lupy. Fotografie, které přitom pořídil, jsou dodnes
nejkvalitnějším záznamem jejich celkové podoby.

Proč se z textu Stomachion zachoval pouze začátek, lze snadno vysvětlit.
Tento spis byl pravděpodobně zařazen na konci i v původním kodexu. Písař,
který jeho listy použil k vytvoření kodexu nového, vyřadil poslední listy, neboť
byly nejvíce opotřebované. Do nového kodexu se tak dostala až folia, která byla
dále od konce; ze Stomachion tedy zbyl jediný list obsahující jeho začátek.

Přepis, který J. L. Heiberg pořídil z těchto dvou listů, obsahoval četné
mezery, neboť části textu nebylo možno pouze s pomocí lupy přečíst. Něko-

35 Jeho objev je popsán ve studii M. Bečvářové v této knize. O dalších osudech tohoto
kodexu se lze dočíst např. v [NN], [NNWT] a v této knize v kapitole Metoda.

36 Jedná se o folia 172 a 177, která vznikla z jediného folia 69 obsaženého v původním
kodexu s Archimédovými spisy.
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lik let po prostudování se kodex ztratil. Objevil se pak až na aukci v New
Yorku v roce 1998. Neznámý vlastník, který jej získal za dva miliony do-
larů, poskytl celý kodex na deset let ke konzervaci a studiu, jehož vý-
sledky vyústily v publikaci nového přepisu celého textu nejprve na inter-
netu (http://archimedespalimpsest.net) a ve vydání reprezentativní publikace
[NNWT] v prosinci roku 2011. Díky moderním technologiím se podařilo za-
celit téměř všechny mezery a opravit některá slova v původním přepisu Hei-
bergově.37 Náš český překlad Stomachion vychází právě z tohoto nejnovějšího
přepisu38 řeckého textu.39

Archimédovo Stomachion

Jelikož takzvané stomachion může být předmětem různorodých úvah ohledně
přemisťování obrazců, z nichž se skládá, uznal jsem za potřebné předně vylo-
žit, když jsem zkoumal velikost celého obrazce, [všechny obrazce,] na které je
rozdělen, čemu je každý z nich roven40 a podoben, potom pak také jaké úhly
[vzniknou,] budou-li brána jejich spojení, a výše [uvedené] je řečeno k poznání
toho, kdy z nich vznikající obrazce k sobě pasují, ať už jsou strany vznika-
jící v těchto obrazcích v [jedné] přímce, nebo i maličko schází, [ale] zraku je
to skryto; takovéto věci jsou totiž důvtipné; a chybí-li velmi málo, takže to je
skryto zraku, tak by pro to neměly být sestavené obrazce odmítnuty. Spíše je
z nich nemalé množství41 obrazců, ‖ protože [jeden obrazec] může být sám pře-
místěn na jiné místo rovného a podobného obrazce a zaujmout jiné postavení.
Když pak i dva obrazce jsou dohromady rovny a podobny jednomu obrazci,
nebo i dva obrazce jsou dohromady rovny a podobny dvěma [jiným] obrazcům
dohromady, více obrazců se tvoří kromě42 přemisťování. Předeslána je jistá
věta, která k tomuto směřuje.

Buď ZG obdélník43 a nechť je EZ rozpůlena44 [bodem] K a nechť jsou
z [bodů] G, E sestrojeny45 [úsečky] GK, BE.

37 Více se o zpracování Archimédova palimpsestu lze dočíst v článku o Metodě.
38 Viz [NNWT], druhý díl, str. 284–287.
39 Řecký matematický text je obecně velmi stručný, ve srovnání se současnou češtinou

je v něm mnoho slov vynecháno. Čtenář si je tehdy snadno domyslel z kontextu, předložek
a členů v různých pádech. Při překladu do češtiny tato slova většinou přidáváme v hranatých
závorkách, podobně jako další slova, bez nichž by text utrpěl na srozumitelnosti. Řecká
písmena označující jednotlivé body přepisujeme do latinky takto: – A, – B, – G, –
D, – E, – Z, – H, – Q, – X, – O, – C. Řecký text byl v původním kodexu
s Archimédovými spisy psán ve dvou sloupcích; přechod textu z prvního sloupce do druhého
označujeme svislou čarou |, přechod mezi stránkami dvojitou svislou čarou ‖.

40 Míněna je rovnost obsahů; „roven a podoben� je tedy standardní řecké spojení značící
shodnost rovinných útvarů.

41 Řecky (pléthos); toto nově přečtené slovo se používá jako jeden z argumentů
pro podporu hypotézy, která považuje Stomachion za spis věnovaný kombinatorice.

42 Řecky (ektos).
43 Z kontextu vyplývá, že se jedná o čtverec.
44 Řecky dedikasthó, dosl. rozsouzena.
45 Dosl. „spojeny�; tedy „bod G je spojen [s bodem K, čímž vznikne úsečka] GK a bod

E je spojen [s bodem B, čímž vznikne úsečka] BE�. Jedná se o celou krátkou větu konden-
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Je třeba dokázat, že GB je větší než BH.

Nechť jsou prodlouženy GK, BZ a nechť se protínají v D a nechť je sestro-
jena [úsečka] GH. Jelikož je EK rovna KZ, je také GE, tj. BZ, rovna ZD.
Takže je GZ větší než ZD; a úhel ZDG je tedy větší než [úhel] ZGD; [úhly]
HBD a BGZ jsou si však rovny, neboť je každý z nich polovinou pravého;
takže i [úhel] GZB je větší46; [úhel] GHB je tedy roven dvěma vnitřním a pro-
tilehlým47 [úhlům] HBD, HDB, [úhel GHB je větší]48 než [úhel] HGB; takže
je GB větší než BH.

Bude-li tedy GH rozdělena na poloviny v C, pak bude úhel GCB tupý;
vskutku, jelikož je GC rovna CH49 a CB je společná, tak jsou rovny dvě
[strany] dvěma50; a základna GB je větší než BH; a | [jeden] úhel je tedy větší
než [druhý] úhel, takže [úhel] GCB je tupý, přilehlý pak ostrý. [Úhel] GBH je
pak polovinou pravého, když se předpokládá rovnostranný rovnoběžník; [úhel]
BCH je pak ostrý. Zbylé poloviny [trojúhelníku] GBH jsou si rovny.51 A je
sestrojen a rozdělen trojčetný řez.52

Buď AB jiný obdélník s dvojnásobnou stranou, který má [stranu] GA dvoj-
násobnou oproti [straně] GB a úhlopříčku . . . 53

Nechť je GA54 rozdělena na poloviny v E a [bodem] E buď rovnoběžně s BG
vedena EZ; GZ, ZA jsou tedy čtverce. Nechť jsou vedeny úhlopříčky GD,

zovanou do jediného řeckého slovesa, u něhož stojí označení dvou bodů se členem. Volně lze
vyjádřit význam tohoto spojení takto: „nechť jsou spojeny body G a K, čímž vznikne úsečka
GK�. Překládáme jednotně: „nechť je sestrojena [úsečka] GK�.

46 Tj. „než úhel ZGD�.
47 Tato rovnost vychází z [Eukl. I,32]: úhel GHB je vnějším úhlem prodloužené strany

HD trojúhelníku HDB. Velikost tohoto úhlu je rovna součtu velikostí protilehlých vnitřních
úhlů, tj. HBD a HDB.

48 Text je zde velmi nejasný, doplněno dle kontextu.
49 V textu je zjevná písařská chyba: „GC rovna CB�.
50 Jedná se o rovnost délek dvou dvojic příslušných stran v trojúhelnících GCB, HCB;

tedy: GC = CH a CB je strana společná oběma těmto trojúhelníkům.
51 Patrně je míněna rovnost obsahů trojúhelníků GCB, HCB.
52 Patrně se jedná o úsečku GK, která je rozdělena na tři stejně dlouhé části: GC, CH

a HK.
53 Text je zde na dvou řádcích silně porušen, závěr věty na dalších dvou řádcích je proto

nejasný.
54 Za touto matematickou větou, z níž se nám však dochoval pouze začátek, který je navíc

porušen, byl patrně uveden příslušný náčrtek. Připojujeme jeho částečnou rekonstrukci.

HM 54 - Archimedes - text.indd   97HM 54 - Archimedes - text.indd   97 14.1.2013   15:36:5614.1.2013   15:36:56



98

BE, ED, a nechť jsou GH, ED rozděleny na poloviny v Q [a] C, a nechť jsou
sestrojeny [úsečky] BQ, CZ a [bodem] O [a bodem] K nechť jsou rovnoběžně
s BD vedeny KL [a] OX. Na základě předchozí věty bude v trojúhelníku BGQ
úhel při Q tupý, zbylý pak ostrý. Takže je zřejmé55, že je ostrý. ‖

4 Interpretace

Arabský překlad Archimédova spisu Stomachion je v dochované podobě uce-
lený, přesto však nelze vyloučit, že se jedná pouze o malou část původního
pojednání, jak naznačuje řecký fragment. Ten dává tušit, že Stomachion bylo
pojednání podstatně delší. Na úvod jsou totiž uvedena pomocná tvrzení, která
budou nejspíše tvořit jen malou část celého spisu. Taková stavba je pro Ar-
chimédovy práce typická: Archimédés na začátku uvádí několik jednoduchých
tvrzení, potom přejde k delší sérii vět, které vyústí v hlavní výsledky uvedené
v samém závěru. Ani úplnější přepis dochovaného řeckého textu tedy nepo-
skytuje dostatek informací k tomu, abychom mohli s jistotou interpretovat
Stomachion jako celek.

Přestože antická svědectví vypovídají o hře stomachion jako o souboru geo-
metrických útvarů ze slonoviny, z nichž bylo možno skládat tvary různých před-
mětů či zvířat, tak Reviel Netz předložil v článku [NAW] hypotézu, že v Archi-
médově spisu Stomachion mohlo jít o počet všech možností, jak poskládat dílky
stomachion do původního čtverce. Opřel se přitom zejména o větu z úvodu:

Spíše je z nich nemalé množství obrazců, ‖ protože [jeden obrazec] může být
sám přemístěn na jiné místo rovného a podobného obrazce a zaujmout jiné
postavení.

Obrazci by se však v tom případě musela rozumět jednotlivá uspořádání
všech čtrnácti dílků do původního čtverce. Pokud budeme zmíněné obrazce
chápat jako tvary různých zvířat či věcí, mohl by Archimédův text pojedná-
vat o různých vlastnostech (obsahy, velikosti úhlů, . . . ) jednotlivých dílků
skládačky stomachion, přičemž by se jednalo o různé možnosti složení přede-
psaných tvarů zvířat a věcí (tj. které lze za předepsané tvary uznat a které
nikoli) a o vysvětlení, zda při skládání vycházejí v konkrétních konstelacích
pravé a přímé úhly, nebo pouze úhly, jež se od nich liší jen nepatrně. Kterákoli
interpretace je však nejistá.

55 V textu je spojení „je zřejmé� uvedeno dvakrát, patrně se jedná o chybu opisovače
(dittografii).
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ARCHIMÉDOVA ÚLOHA O DOBYTKU

Tereza Bártlová

1 Objev úlohy

Píše se rok 1770 a knihovna v dolnosaském Wolfenbüttelu se těší slávě po ce-
lém Německu. Léta, po která v ní shromažďovali knihy brunšvičtí vévodové, v ní
skryly velmi cenné písemnosti. Však je kdysi opatroval sám Gottfried Wilhelm
Leibniz a nyní zde sedí na místě knihovníka německý novinář, kritik a teo-
log Gotthold Ephraim Lessing (1729–1781). A právě zde G. E. Lessing objevil
v jednom starém řeckém kodexu dosud neznámou úlohu zapsanou 22 řeckými
distichy. V roce 1773 pak tuto úlohu zveřejnil ve své knize [Les]. V 19. sto-
letí byla stejná úloha objevena také v jednom z kodexů Bibliothèque nationale
v Paříži.

2 Zadání úlohy

Dnes je tato úloha nazývána jako Úloha o dobytku, Kraví úloha, Úloha o Hé-
liových býcích, Probléma boeikon, Problema Archimedis, The Cattle Problem,
Die Rinder-Aufgabe a podobně. Dochovaný řecký text úlohy je psán ve verších.
Jeho český překlad, který je formulován v próze, zní takto:

Problém, který Archimédés vymyslel a v epigramech jej těm, kteří se v Ale-
xandrii zabývají podobnými otázkami, poslal v dopise Eratosthenovi Kyrén-
skému.

Řekni mi, příteli, přesný počet Héliova skotu. Pečlivě mi vypočítej, není-li ti
moudrost cizí, kolik ho bylo, když se jednou pásl na nivách ostrova Sicílie, roz-
dělen do čtyř stád. Každé stádo bylo jinak zbarveno; první bylo mléčně bílé, ale
druhé zářilo zcela tmavou černí. Třetí pak bylo hnědé, čtvrté strakaté; v každém
měli býci v počtu velikou převahu. A tito [býci] byli nyní v takovémto poměru:
bílí se rovnali v počtu hnědým vzatým dohromady s třetinou a polovinou čer-
ných, ó příteli. Dále množství černých bylo rovno čtvrtině a pětině strakatých
zvětšených o všechny hnědé. Nakonec musíš počet strakatých býků položit rovný,
příteli, šestině a sedmině bílých s přičteným ještě množstvím hnědých.

Jinak však tomu bylo s kravami: ty s bílou srstí byly rovny třetině a čtvrtině
černého skotu, krav i býků. Dále černé krávy byly rovny čtvrtině a pětině straka-
tého stáda, když byli počítáni jak býci, tak krávy. Právě tak byly strakaté krávy
pětinou a šestinou všeho [skotu] s hnědou srstí, když šel na pastvu. Nakonec
hnědé krávy byly šestinou a sedminou celého stáda s bílou srstí.

Můžeš-li mi říci přesně, můj příteli, kolik skotu tam bylo dohromady a také
kolik bylo krav každé barvy a dobře živených býků, pak tě věru právem nazývají
zdatným v počtech.

Ještě tě však nepočítají k mudrcům; nuže pojď tedy a řekni mi, jak se to má
dále:
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Když se spojil celkový počet černých a bílých býků, pak zde stáli uspořádáni
stejně do šířky jako do hloubky; širé sicilské nivy byly zcela zaplněny tím množ-
stvím býků. Když se však postavili dohromady hnědí a strakatí, pak byl vytvořen
trojúhelník, jeden stál na špičce a nechyběl žádný z hnědých a strakatých býků,
ani jeden jiné barvy se mezi nimi nenašel.

Když jsi to také vypátral a v duchu pochopil a uvedeš mi poměr, příteli, který
se nalézá v každém stádu, pak můžeš pyšně vykračovat jako vítěz, protože teď
tvá vědecká sláva jasně září.

Uvedené znění úlohy je citováno z knihy [BŠ], kde je uveden mírně upravený
překlad z knihy [Mač]. Navíc je znění úlohy doplněno ještě o překlad úvodu,
který v knize [Mač] chybí.

Úkolem Archimédovy úlohy je tedy vypočítat, kolik je bílých, černých, stra-
katých a hnědých býků a krav pasoucích se na Sicílii ve čtyřech stádech boha
Hélia.

3 Výpočet první části úlohy

Podmínky první části úlohy můžeme vyjádřit pomocí sedmi lineárních rovnic
o osmi neznámých:

X =
(1
2
+
1
3

)
· Y + T,

Y =
(1
4
+
1
5

)
· Z + T,

Z =
(1
6
+
1
7

)
·X + T,

x =
(1
3
+
1
4

)
· (Y + y),

y =
(1
4
+
1
5

)
· (Z + z),

z =
(1
5
+
1
6

)
· (T + t),

t =
(1
6
+
1
7

)
· (X + x),

kde X,Y, Z, T značí počet bílých, černých, strakatých a hnědých býků a analo-
gicky x, y, z, t je počet bílých, černých, strakatých a hnědých krav. Ve skuteč-
nosti jde o takzvanou diofantickou úlohu, neboť hledáme řešení úlohy v oboru
přirozených čísel. Výše uvedenou soustavu rovnic budeme řešit standardním
způsobem – nejprve provedeme eliminaci neznámých v prvních třech rovnicích

Z =
13
42

X + T =

=
13
42

( 5
6
Y + T

)
+ T =

=
13
42

[
5
6

( 9
20

Z + T
)
+ T

]
+ T .
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Odtud dostáváme
891Z = 1580T.

Protože jsou čísla 981 a 1 580 navzájem nesoudělná, rovnost nastává pro

Z = 1580 k a T = 891 k, k ∈ N.

Nyní již snadno vyjádříme hodnoty X a Y pomocí k:

X = 2226 k a Y = 1602 k, k ∈ N.

Dosadíme-li získané řešení do zbylých rovnic, vypočítáme tak hodnoty x, y, z, t:

t =
13
42
(X + x)

=
13
42

[
X +

7
12
(Y + y)

]

=
13
42

[
X +

7
12

(
Y +

9
20
(Z + z)

)]

=
13
42

[
X +

7
12

[
Y +

9
20

(
Z +

11
30
(T + t)

)]]

=
13
42

[
2 226 k +

7
12

[
1 602 k +

9
20

(
1 580 k +

11
30
(891 k + t)

)]]

=
5439 213
4 657

k,

a dále pak:

x =
7206 360
4 657

k, y =
4893 246
4 657

k, z =
3515 820
4 657

k, k ∈ N.

My však hledáme celočíselná řešení, proto nejmenší možné řešení zadané
úlohy odpovídá 4 657násobku námi získaného řešení:

X = 2226 · 4 657n = 10 366 482n x = 7206 360n

Y = 1602 · 4 657n = 7460 514n y = 4893 246n

Z = 1580 · 4 657n = 7358 060n z = 3515 820n

T = 891 · 4 657n = 4149 387n t = 5439 213n

kde opět n musí být nějaké přirozené číslo. Pomocí těchto výsledků můžeme
odpovědět na první část Archimédovy úlohy. Celkový počet býků je 29 334 443,
celkový počet krav činí 21 054 639, a tudíž celkový počet kusů dobytka Hélio-
vých stád na Sicílii je 50 389 082. Uvážíme-li, že rozloha Sicílie je něco přes
25 700 km2, má pro sebe jeden kus dobytka přibližně 510 m2.
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Všimněme si, že v zadání úlohy se hovoří o tom, že býků je vždy více než krav:
. . . v každém [stádu] měli býci v počtu velikou převahu. Což ovšem neodpovídá
našemu řešení, neboť jsme vypočítali, že počet hnědých býků je menší než počet
hnědých krav.

Poznamenejme také, že k úloze bylo později připojeno scholion1, které pub-
likoval zároveň s úlohou již G. E. Lessing. Toto scholion obsahuje řešení úlohy,
jež je 80násobkem námi vypočteného řešení. Celkový počet kusů dobytka pak
činí 4 031 126 560. Což vzhledem k rozloze Sicílie znamená, že by měl jeden kus
dobytka k dispozici jen o něco málo více než 6 m2. Z jakého důvodu je však ve
scholiu uvedeno větší řešení, které navíc nevyhovuje dodatečným podmínkám
z druhé části úlohy, není dosud známo.

4 Výpočet druhé části úlohy

Nezapomeňme, že v druhé části úlohy jsou uvedeny ještě další dvě podmínky.
Někteří badatelé je považují za původní, jiní se domnívají, že byly přidány
později. Podle doplňujících podmínek je možno bílé a černé býky seřadit do
čtverce, zatímco strakaté a hnědé býky je možno seřadit do trojúhelníku. Číslo
X + Y má být tedy takzvaným čtvercovým figurálním číslem a číslo Z + T
trojúhelníkovým figurálním číslem:

X + Y = u2, Z + T =
1
2
v (v + 1), kde u, v ∈ N.

Zaměřme se nejprve na výpočet čtvercového čísla:

X + Y = 2226 · 4 657n+ 1602 · 4 657n =
= 3828 · 4 657n = u2.

Chceme určit n ∈ N tak, aby součin 3 828 ·4 657n byl celočíselně odmocnitelný.
Využijeme k tomu prvočíselný rozklad:

X + Y = 3828 · 4 657n =
= 22 · 3 · 11 · 29 · 4 657n = u2.

Odtud vidíme, že číslo n musí být ve tvaru

n = 3 · 11 · 29 · 4 657 l2, kde l ∈ N.

Získaný výsledek využijeme k určení trojúhelníkového čísla:

Z + T = 1580 · 4 657n+ 891 · 4 657n =
= 2471 · 4 657n =
= 2471 · 4 6572 · 3 · 11 · 29 · l2 =

= 2364 747 · 4 6572 · l2 = 1
2
v (v + 1).

1Scholion je výkladová poznámka k textu. Scholia byla psána přímo na okraj textu nebo
jako samostatná díla.
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Dostáváme tak kvadratickou rovnici

v2 + v − 4 729 494 · 4 6572 l2 = 0,

pro jejíž kořeny platí známý vzorec

v1,2 =
1±

√
1 + 4 · 4 729 494 · 4 6572 l2

2
,

kde v musí být přirozené číslo. Abychom tuto podmínku splnili, musí být čitatel
tohoto zlomku sudé číslo, odmocnina diskriminantu

√
D tedy musí být číslo

přirozené a liché. Hledáme tedy p ∈ N takové, že

D = 1 + 4 · 4 729 494 · 4 6572 l2 = p2.

Výpočet diskriminantu však není vůbec triviální, neboť vede na řešení Pellovy
rovnice, které se zpravidla provádí pomocí řetězových zlomků. Pro přehlednost
označme m = 2 · 4 657 l, a tedy zřejmě m ∈ N, čímž přejde zmíněná Pellova
rovnice na tvar

p2 − 4 729 494m2 = 1,
kde p hledáme v oboru přirozených čísel.

Z výpočtu je vidět, že ačkoliv na první pohled působí zadání Archimédovy
úlohy jednoduše, její řešení je dosti obtížné. Jako první provedl odhad řešení,
které vyhovuje i dodatečným podmínkám, matematik A. Amthor (viz druhou
část článku [KrA] z roku 1880), který vypočetl, že celkový počet kusů dobytka
začíná číslicemi 7 766 a skládá se z 206 545 cifer. Platné jsou však pouze první
tři číslice.

Na jeho výpočet navázala skupina matematiků s názvem Hillsboro Mathe-
matical Club z Illinois, kteří spočítali prvních 31 číslic a posledních 12 číslic
z celkového počtu dobytka:

7 760 271 406 486 818 269 530 232 833 209 . . . 719 455 081 800.

Výsledek jejich čtyřleté práce publikoval A. H. Bell ve svém článku [Bel]. Správ-
ných je však pouze prvních 29 cifer, neboť místo podtržených číslic 09 má
být 13.

S nástupem počítačů přichází v roce 1965 první úplné řešení problému. První
výpočet pomocí počítače byl proveden matematiky z Univerzity ve Waterloo
a uveřejněn H. C. Williamsem, R. A. Germanem a C. R. Zarnkem v článku
[WGZ]. Autoři článku uvádějí, že výpočet trval 7 hodin a 49 minut a byl
vytištěn na 42 arších papíru. Pro představu si uvedeme prvních a posledních
padesát číslic:

7 760 271 406 486 818 269 530 232 833 213 886 664 232 322 405 923 3 . . .

. . . 05 994 630 144 292 500 354 883 118 973 723 406 626 719 455 081 800.
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V roce 1981 dokázal správnost výsledku Harry L. Nelson ve svém článku [Nel1],
ale také ve své zprávě [Nel2]. Díky dokonalejšímu přístroji bylo řešení úlohy
nalezeno už po 10 minutách.

Dnes můžeme k výpočtu řešení úlohy využít matematické programy2 po-
dobně, jako je využívá například matematik I. Vardi ve svém článku [Var].
V závěru této studie uvádíme kompletní zdrojový kód pro řešení Archimédovy
úlohy o dobytku zapsaný pomocí vestavěných funkcí programu Mathematica.
Spustíme-li tento kód v programu Mathematica (verze 8), dostaneme řešení Ar-
chimédovy úlohy i s jejími dodatečnými podmínkami za pouhou jednu sekundu.

5 Historické poznámky

Co se týče Archimédova autorství, ani v dnešní době nepanuje na původ
úlohy o dobytku jednotný názor. Od 18. století se jich objevilo hned několik.
Jeden z nich se opírá o fakt, že starověk připisoval úlohu právě Archimédovi,
z čehož se v souhlasu s nadpisem připojeným k úloze vyvozuje, že je Archimédés
skutečně jejím původcem.

Začátek úlohy o dobytku z Lessingova vydání.

Většina historiků a filologů se však domnívá, že podoba, v jaké známe úlohu
dnes, od samotného Archiméda nepochází. Nepovažují totiž za příliš pravdě-
podobné, že by Archimédés úlohu sepsal přímo ve verších. Pokud je tedy jejím
autorem, tak ji nejspíše sepsal v próze a do veršované podoby byla přebásněna
později.

Nelze však vyloučit, že Archimédés úlohu nevytvořil, ale byla podle něj poz-
ději nazývána díky své náročnosti. Archimédovy spisy totiž získaly už ve sta-

2 Například Mathematica nebo Maple, zdarma je dostupná Maxima.
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rověku punc příslovečné obtížnosti.3 Velmi zajímavá zmínka o této úloze se
objevuje ve scholiu k Platónově dialogu Charmidés4, kde se píše o úloze „na-
zvané Archimédem úloha o dobytku.	 Ovšem ani tyto údaje nám definitivní
rozřešení problému autorství nedávají. Slovním spojením Archimédem nazvaná
může být označena jak úloha, kterou Archimédés vymyslel, tak úloha, kterou
pouze pojmenoval.

V 19. století se objevila hypotéza o sporu Archiméda ze Syrákús s Apolló-
niem z Pergé. Podle ní se prý Apollónios snažil dokázat svou matematickou
převahu tím, že sledoval Archimédovu práci a precizoval jeho výpočty. Určil
například mnohem přesnější odhad čísla π, než jaký je uveden v Archimédově
spise Měření kruhu. Archimédés na to reagoval tak, že vymyslel slovní úlohu,
která ve svém zadání obsahuje pouze malá čísla; při jejím řešení se však objeví
čísla nesrovnatelně větší, jež by podle Archiméda zvládl vypočítat zdatný po-
čtář. Na závěr k úloze připojil dovětek, se kterým si už poradí pouze mudrc.
Zde mohla být narážka právě na Apollónia a jeho snahu Archiméda překonat.
Hypotéza, kterou jsme zde popsali, se objevila například v hesle Archimedes
Paulyho encyklopedie (viz [Pau1]), které napsal F. O. Hultsch. Tuto hypotézu
však není možno nijak ověřit, a tak už o ní v novém vydání [Pau2] nenajdeme
ani zmínku.

W. Knorr v [Kno3] na str. 295 naopak uvažuje, že první část úlohy mohl
sepsat Eratosthenés z Kyrény, který ji poslal v dopise Archimédovi, neboť byl
zvědav, zda Archimédés úlohu vyřeší. Archimédovi se patrně idea úlohy velmi
líbila, a tak k ní připsal malý dovětek. Díky tomuto na první pohled nenápad-
nému dovětku se stalo řešení úlohy nepoměrně obtížnější.

Zatímco první část úlohy bez dodatečných podmínek není příliš náročná
a její vyřešení bylo zcela v Archimédových možnostech, dodatečné podmínky
činí úlohu značně obtížnou. Zejména řešení Pellovy rovnice je početně velmi ná-
ročné a prakticky jej bylo možno provést až s nástupem výpočetní techniky.5

Považujeme tedy za nereálné, že by Archimédés mohl úlohu zcela vyřešit i s do-
datečnými podmínkami. Otázkou zůstává, zda alespoň znal nějakou efektivní
cestu, která by vedla k jejímu řešení.

Na závěr se zastavme ještě u překladu Archimédovy úlohy. Údaj o seřazení
bílých a černých býků na začátku předposledního odstavce lze totiž interpre-
tovat dvojím způsobem: buď jako seřazení do čtverce (z čehož jsme v našem
řešení vycházeli), nebo jako seřazení do obdélníka. Varianta s řazením býků do
obdélníka je podstatně jednodušší než s řazením do čtverce. Nicméně ani další
část textu, která se týká seřazení hnědých a strakatých býků, není zcela jasná.

3 Marcus Tullius Cicero použil v dopisech Attikovi na dvou místech (Cic. Att. XII,4
a XIII,28) ustálené spojení probléma Archimédeion, resp. probléma Archimédú, ve významu
velmi obtížný úkol.

4 Jedná se o scholion k odstavci 165e; přesně tytéž věty se také nacházejí v byzantském
soupisu definic Definitiones 135,5,8 chybně připsaném Hérónovi

5 Pokud bychom psali rychlostí tři číslice za sekundu, trval by nám zápis čísla udávajícího
celkový počet dobytka více než devatenáct hodin. Je pochopitelné, že vyřešit takovou úlohu
pouze s pomocí tužky a papíru je prakticky nemožné.
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Existují varianty překladu, které pracují s trojúhelníkovým číslem zvětšeným
o 1, například [Wer]. Do podrobného rozboru jednotlivých variant překladů se
již pouštět nebudeme. Čtenáře se zájmem o jednotlivá řešení můžeme odkázat
na [KrA] nebo [Hea], kde jsou různá řešení naznačena.

Ať už zvolíme jakoukoli variantu překladu, stále dostáváme obrovský počet
kusů dobytka. I s dodatkem tedy úloha vyznívá poněkud absurdně, neboť tak
početné stádo je vůči rozloze ostrova Sicílie (i vůči velikosti celé zeměkoule)
neúměrně veliké. Jisté však je, že dodnes můžeme obdivovat jednoduchou for-
mulaci úlohy a zároveň překvapivou obtížnost jejího řešení.

6 Zdrojový kód programu pro řešení úlohy o dobytku v softwaru
Mathematica

(* zadání první části úlohy *)
Podminka1 =
Solve[{byciBILI == (1/3 + 1/2) byciCERNI + byciHNEDI &&
byciCERNI == (1/4 + 1/5) byciSTRAKATI + byciHNEDI &&
byciSTRAKATI == (1/6 + 1/7) byciBILI + byciHNEDI &&
kravyBILE == (1/3 + 1/4) (byciCERNI + kravyCERNE) &&
kravyCERNE == (1/4 + 1/5) (byciSTRAKATI + kravySTRAKATE) &&
kravySTRAKATE == (1/5 + 1/6) (byciHNEDI + kravyHNEDE) &&
kravyHNEDE == (1/6 + 1/7) (byciBILI + kravyBILE) &&
X > 0 && Y > 0 && Z > 0 && T > 0 &&
x > 0 && y > 0 && z > 0 && t > 0},
{byciBILI, byciCERNI, byciSTRAKATI, byciHNEDI,
kravyBILE, kravyCERNE, kravySTRAKATE, kravyHNEDE},
Integers];

(* výpis řešení první části úlohy *)
X = Podminka1[[1, 1, 2, 1, 1]]
Y = Podminka1[[1, 2, 2, 1, 1]]
Z = Podminka1[[1, 3, 2, 1, 1]]
T = Podminka1[[1, 4, 2, 1, 1]]
x = Podminka1[[1, 5, 2, 1, 1]]
y = Podminka1[[1, 6, 2, 1, 1]]
z = Podminka1[[1, 7, 2, 1, 1]]
t = Podminka1[[1, 8, 2, 1, 1]]

(* druhá část úlohy - dodatečné podmínky *)
(* podmínka pro čtvercové číslo *)

u = Sqrt[X + Y]
n = u[[2,1]]

(* podmínka pro trojúhelníkové číslo *)
castDISKRIMINANTU = Sqrt[4 2 n (Z + T)];
m = castDISKRIMINANTU[[1]]
const = castDISKRIMINANTU[[2,1]]
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(* určení délky periody *)
delkaperiody = Length[ContinuedFraction[Sqrt[const]][[2]]];

(* rozhodování, zda je perioda sudá či lichá *)
If[Mod[delkaperiody,2] == 0, , delkaperiody = 2 delkaperiody];

(* výpočet konvergentů *)
konvergenty = Convergents[Sqrt[const], delkaperiody];
p0 = pi = Numerator[konvergenty[[delkaperiody]]];
q0 = qi = Denominator[konvergenty[[delkaperiody]]];
matice1 = SparseArray[{{1,1} -> p0, {1,2} -> const*q0,

{2,1} -> q0, {2,2} -> p0}];
matice2 = SparseArray[{{1,1} -> p0, {2,1} -> q0}];

While[Mod[qi,m] > 0,
pi = matice2[[1,1]];
qi = matice2[[2,1]];
matice2 = matice1.matice2;]
IntegerLength[qi];
const2 = (qi/m)^2 * n;

(* výpis výsledku - celkového počtu dobytka p *)
p = (X + Y + Z + T + x + y + z + t) * const2;

(* počet číslic řešení p *)
IntegerLength[p]

(* prvních a posledních 50 číslic řešení p *)
Take[IntegerDigits[p], 50]
Take[IntegerDigits[p], -50]

(* výpis všech číslic celkového počtu dobytka *)
p

Výstup programu:

Out[1]= 10366482 Out[5]= 7206360
Out[2]= 7460514 Out[6]= 4893246
Out[3]= 7358060 Out[7]= 3515820
Out[4]= 4149387 Out[8]= 5439213

Out[10]= 2 Sqrt[4456749]
Out[11]= 4456749
Out[13]= 9314
Out[14]= 4729494

Out[26]= 206545
Out[27]= {7,7,6,0,2,7,1,4,0,6,4,8,6,8,1,8,2,6,9,5,\
3,0,2,3,2,8,3,3,2,1,3,8,8,6,6,6,4,2,3,2,3,2,2,4,0,5,9,2,3,3}
Out[28]= {0,5,9,9,4,6,3,0,1,4,4,2,9,2,5,0,0,3,5,4,\
8,8,3,1,1,8,9,7,3,7,2,3,4,0,6,6,2,6,7,1,9,4,5,5,0,8,1,8,0,0}
Out[29]= 7 760 271 406 486 818 269 530 232 833 213...
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III.

APENDIX
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VÝPOČTY ODMOCNIN VE STAROVĚKU

Jindřich Bečvář

V tomto článku se pokusíme dát odpověď na letitý problém: jak byla vy-
počítána racionální čísla, která jsou horním a dolním odhadem iracionálního
čísla

√
3, tj. jak Archimédés (nebo někdo před ním) dospěl k odhadu

265
153

<
√
3 <

1 351
780

,

který využil ve spisu Měření kruhu.1

Budeme postupovat zcela elementárním způsobem, nevyužijeme žádné
hlubší poznatky (např. řetězové zlomky). Budeme jen mírně modifikovat me-
todu, která byla pro výpočet odmocnin užívána již v Mezopotámii a ve staré
Indii.2 Hodnotu čísla

√
3 vymezíme v dalším kroku předloženou metodou ještě

daleko přesněji, srovnáme výpočty horních i dolních odhadů čísel
√
3 a

√
2

a ukážeme, jak asi byly tyto odmocniny počítány ve staré Indii a staré Mezo-
potámii. V závěru porovnáme získaná vymezení hodnoty čísla

√
3 s hodnotami

konvergentů příslušného řetězového zlomku.

Upozorněme ještě na důležitou skutečnost. Zatímco v Mezopotámii a v Indii
pracovali počtáři s přibližnými hodnotami čísel

√
2 a

√
3, Archimédés užíval

horní a dolní odhad čísla
√
3.

1 Teoretický základ

První způsob. Máme-li vypočítat druhou odmocninu přirozeného čísla A,
které není čtvercem, tj.

(a− 1)2 < A < a2 pro přirozené číslo a,

vyjádříme je ve tvaru

A = a2 − r, kde 1 ≤ r < a2 − (a− 1)2 = 2a− 1.

Potom je √
A = a− k, kde 0 < k < 1.

1 Měření kruhu v české verzi viz [Va1], v anglické a německé verzi viz [Hea], v ruské
viz [Ve], dále viz [Hei], [Ee].

2 Některé úvahy o Archimédově výpočtu čísla
√
3 se lze dočíst v anglické verzi Heathova

vydání Archimédových spisů [Hea] na str. xc–xcix, případně v německé verzi z roku 1914 na
str. 82–93. Thomas Little Heath (1861–1940) zde odkazuje na dvě práce Siegmunda Günthera
(1848–1923) – Die quadratischen Irrationalitäten der Alten und deren Entwickelungsmetho-
den [Gü1] z roku 1882 a Abriß der Geschichte der Mathematik und der Naturwissenschaften
im Altertum [Gü2] z roku 1894, které se touto problematikou podrobně zabývají a uvádějí
četné bibliografické prameny.
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Odtud

a2− r = A = (a− k)2 = a2− 2ak+ k2, tedy 2ak− k2 = r a k =
r

2a− k
.

Protože je 0 < k < 1, je
r

2a
< k <

r

2a− 1
a

2a2 − a− r

2a− 1 = a− r

2a− 1 <
√
A < a− r

2a
=
2a2 − r

2a
.

Číslo
√
A tedy leží v intervalu délky

r

2a− 1 −
r

2a
=

r

2a(2a− 1) .

Vzhledem k tomu, že číslo r je menší než 2a−1, leží číslo
√
A v intervalu délky

menší než 1
2a bez ohledu na to, kde je číslo A umístěno mezi čísly (a − 1)2

a a2. Přesnost odhadu čísla
√
A se tedy výrazně zvyšuje s rostoucím číslem A.3

Poznamenejme ještě, že pro výpočet odmocniny čísla A, které se od nejbližšího
většího čtverce liší jen o jedničku, tj. pro r = 1, leží číslo

√
A v intervalu

délky 1
2a(2a−1) . Uveďme pro zajímavost několik odhadů:

1
1
3
<

√
2 < 1

1
2
, 1

2
3
<

√
3 < 1

3
4
,

2
1
5
<

√
5 < 2

1
3
, 2

4
5
<

√
8 < 2

5
6
.

Druhý způsob. První způsob s úspěchem použijeme pro malé číslo A, které
je „blízké	 čtverci přirozeného čísla, který je větší než A. Je-li

a2 < A < (a+ 1)2 pro přirozené číslo a,

a je-li A naopak blízké čtverci a2, který je menší než A, postupujeme obdobně.
Vyjádříme

A = a2 + r, kde 1 ≤ r < (a+ 1)2 − a2 = 2a+ 1.

Potom je √
A = a+ k, kde 0 < k < 1.

Odtud

a2+r = A = (a+k)2 = a2+2ak+k2, tedy 2ak+k2 = r, a k =
r

2a+ k
.

3 Například pro odmocniny čísel ležících mezi 992 a 1002 je rozdíl horní a dolní meze výše
uvedeného odhadu menší než 0, 005.
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Protože je 0 < k < 1, je
r

2a+ 1
< k <

r

2a
a

2a2 + a+ r

2a+ 1
= a+

r

2a+ 1
<

√
A < a+

r

2a
=
2a2 + r

2a
.

Číslo
√
A je tedy v intervalu délky r

2a(2a+1) .

Snadno se ukáže, že dolní odhad je při prvním i druhém způsobu stejný,
malý rozdíl je v horním odhadu. Uveďme pro srovnání vymezení odmocnin
čtyř malých čísel.

1
1
3
<

√
2 < 1

1
2
, 1

2
3
<

√
3 < 2,

2
1
5
<

√
5 < 2

1
4
, 2

4
5
<

√
8 < 3.

Při prvním způsobu získáme přesnější vymezení čísel
√
3,

√
8, při druhém způ-

sobu lepší vymezení čísla
√
5. Vymezení čísla

√
2 je v obou případech stejné.

2 Vymezení hodnoty čísla
√
3

Archimédův odhad. Podle předchozího (první způsob) máme

1
2
3

<
√
3 < 1

3
4

(1. odhad),

odmocnina čísla 3 = 22 − 1 leží tedy v intervalu délky
7
4
− 5
3
=
1
12

.

Tato přesnost není postačující. Upřesníme nejprve dolní odhad. Hledejme
číslo x, pro které je

(5
3
+ x

)2
= 3, tj.

25
9
+
10
3
x+ x2 = 3, tj.

10
3
x+ x2 =

2
9
.

Zanedbáme-li x2, dostaneme přibližnou hodnotu x1 čísla x: vychází x1 = 1
15 .

Protože jsme zanedbali x2, je x1 > x.4 Vypočtenou hodnotu x1 nyní dosadíme
za jedno x v dvojmoci x2 a vypočítáme kořen x2 rovnice

10
3
x+

1
15

x =
2
9
; odtud x2 =

10
153

.

Protože jsme jednu hodnotu čísla x nahradili číslem x1 > x, je x2 < x. Vypo-
četli jsme tedy dolní odhad čísla

√
3:

5
3
+
10
153
=
265
153

.
= 1, 732 026 143 ...

4 Získali jsme tedy horní odhad 53 +
1
15 =

26
15 čísla

√
3, který označíme (1).
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Stejným způsobem upřesníme horní odhad. Budeme hledat číslo y, pro které
je (7

4
− y

)2
= 3, tj.

49
16

− 7
2
y + y2 = 3, tj.

1
16
+ y2 =

7
2
y.

Zanedbáme-li y2, dostaneme přibližnou hodnotu y1 čísla y: vychází y1 = 1
56 .

Protože jsme zanedbali y2, je y1 < y.5 Vypočtenou hodnotu y1 nyní dosadíme
za jedno y v dvojmoci y2 a vypočítáme kořen y2 rovnice

1
16
+
1
56

y =
7
2
y; odtud y2 =

14
780

.

Protože jsme jednu hodnotu čísla y nahradili číslem y1 < y, je y2 < y. Vypočetli
jsme tedy horní odhad čísla

√
3:

7
4
− 14
780
=
1 351
780

.
= 1, 732 051 282 ...

Poměrně elementárním způsobem jsme dospěli k Archimédovu odhadu

265
153

<
√
3

.
= 1, 732 050 807 ... <

1 351
780

(2. odhad).

Číslo
√
3 je tedy sevřeno v intervalu délky

1 351
780

− 265
153
=

1
39 780

.

Další krok. Archimédovo vymezení čísla
√
3 nyní stejnou metodou ještě

upřesníme. Hledejme číslo x, pro které je

(265
153
+ x

)2
= 3, tj.

2652

1532
+
2 · 265
153

x+ x2 = 3, tj.
2 · 265
153

x+ x2 =
2
1532

.

Zanedbáme-li x2, vyjde přibližná hodnota x1 = 1
153·265 .

6 Dosadíme-li ji za
jedno x do x2, vypočteme z rovnice

2 · 265
153

x+
1

153 · 265x =
2
1532

přibližnou hodnotu

x2 =
2 · 265

153 · 140 451 .

Číslo

265
153
+

2 · 265
153 · 140 451 =

265 · 140 453
153 · 140 451 =

37 220 045
21 489 003

.
= 1, 732 050 807 568 876 043 ...

5 Získali jsme tedy horní odhad 74 − 1
56 =

97
56 čísla

√
3, který označíme (2).

6 Získali jsme tedy horní odhad 265153 +
1

153·265 =
70 226
40 545 čísla

√
3, který označíme (3).
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je dolním odhadem čísla
√
3, který je velmi přesný (na 14 desetinných míst),

neboť √
3

.
= 1, 732 050 807 568 877 293 527 ...

Hledejme dále číslo y, pro které je

(1 351
780

− y
)2
= 3, tj.

1 3512

7802
− 2 · 1 351

780
y + y2 = 3.

Zanedbáme-li y2, vyjde přibližná hodnota y1 = 1
2·780·1 351 .

7 Dosadíme-li ji za
jedno y do y2, vypočteme z rovnice

1
7802

+
1

2 · 780 · 1 351y =
2 · 1 351
780

y

přibližnou hodnotu

y2 =
2 · 1 351

780 · 7 300 803 .

Číslo

1 351
780

− 2 · 1 351
780 · 7 300 803 =

1 351 · 7 300 801
780 · 7 300 803 =

9 863 382 151
5 694 626 340

.
=

.
= 1, 732 050 807 568 877 293 536 ...

je horním odhadem čísla
√
3, který je velice přesný (na 19 desetinných míst),

výrazně přesnější než výše uvedený dolní odhad. Je tedy

37 220 045
21 489 003

<
√
3 <

9 863 382 151
5 694 626 340

(3. odhad).

Tímto výpočtem jsme sice přesně vymezili číslo
√
3, se získanými odhady se

však klasickým způsobem (bez výpočetní techniky) již nedá rozumným způso-
bem dále počítat.

3 Vymezení hodnoty čísla
√
2

Obdoba Archimédova vymezení. Pro výpočet odmocniny čísla 2 = 12+1
dostaneme (prvním i druhým způsobem) nerovnosti

4
3
= 1 +

1
3

<
√
2 < 1 +

1
2
=
3
2
.

Dolní i horní odhad nyní upřesníme. Hledejme číslo x, pro něž

(4
3
+ x

)2
= 2, tj.

8
3
x+ x2 =

2
9
.

7 Získali jsme tedy další horní odhad 1 351780 − 1
780·2·1 351 =

3 650 401
2 107 560 čísla

√
3, který ozna-

číme (4).
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Zanedbáme-li x2, vyjde přibližná hodnota x1 = 1
12 . Dosadíme-li ji za jedno x

do x2, vypočteme z rovnice

8
3
x+

1
12

x =
2
9

přibližnou hodnotu x2 = 8
99 . Protože je x1 > x, je x2 < x, a proto je číslo

4
3
+
8
99
=
140
99

dolním odhadem čísla
√
2.

Hledejme dále číslo y, pro něž

(3
2
− y

)2
= 2, tj.

1
4
+ y2 = 3y.

Zanedbáme-li y2, vyjde přibližná hodnota y1 = 1
12 . Dosadíme-li ji za jedno y

do y2, vypočteme z rovnice
1
4
+
1
12

y = 3y

přibližnou hodnotu y2 = 3
35 . Protože je y1 < y, je y2 < y, a proto je číslo

3
2
− 3
35
=
99
70

horním odhadem čísla
√
2. Je tedy

140
99

<
√
2 <

99
70

,

číslo
√
2 leží uvnitř intervalu délky

99
70

− 140
99
=

1
6 930

.

Tento odhad je tedy výrazně horší než odpovídající výše uvedený 2. odhad
čísla

√
3.

Další krok. Provedeme ještě jeden krok a předchozí odhad stejným způso-
bem upřesníme. Hledejme číslo x, pro které je

(140
99
+ x

)2
= 2, tj.

1402

992
+
280
99

x+ x2 = 2.

Zanedbáme-li x2, vyjde přibližná hodnota x1 = 1
99·140 . Dosadíme-li ji za jedno x

do x2, vypočteme z rovnice

280
99

x+
1

99 · 140x =
2
9 801
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přibližnou hodnotu x2 = 280
99·39 201 . Číslo

140
99
+

280
99 · 39 201 =

140 · 39 203
99 · 39 201

.
= 1, 414 213 562 373 048 100 ...

je dolním odhadem čísla
√
2. Srovnejme jej se skutečnou hodnotou

√
2

.
= 1, 414 213 562 373 095 048 ...

Hledejme dále číslo y, pro které je

(99
70

− y
)2
= 2, tj.

992

702
− 99
35

y + y2 = 2.

Zanedbáme-li y2, vyjde přibližná hodnota y1 = 1
70·198 . Dosadíme-li ji za jedno y

do y2, vypočteme z rovnice

1
702
+

1
70 · 198y =

99
35

y

přibližnou hodnotu y2 = 198
70·39 203 . Číslo

99
70

− 198
70 · 39 203 =

99 · 39 201
70 · 39 203

.
= 1, 414 213 562 373 141 997 ...

je horním odhadem čísla
√
2.8 Tedy

140 · 39 203
99 · 39 201 <

√
2 <

99 · 39 201
70 · 39 203 .

4 Historie

Odmocniny ve staré Indii. Odmocniny čísel 2 a 3 byly ve staré Indii
vyjádřeny již v době před Archimédem ve spisu Śulbasūtra takto:

√
2 = 1 +

1
3
+
1
3 · 4 −

1
3 · 4 · 34 ,

√
3 = 1 +

2
3
+
1
3 · 5 −

1
3 · 5 · 52 .

Dospějeme k nim následujícím postupem.

Vyjdeme od dolního odhadu 43 čísla
√
2 a upřesníme jej.

(4
3
+ x

)2
= 2, po zanedbání čtverce x2 řešíme rovnici

8
3
x =

2
9
.

8 O výpočtu čísla
√
2 a o dalších souvislostech viz např. [BD1] a [BD2].
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Pro vypočtenou hodnotu x1 = 1
12 je x1 > x. Tuto hodnotu znovu upřesníme:

(4
3
+
1
12

− y
)2
= 2, po zanedbání čtverce y2 řešíme rovnici

34
12

y =
1
144

.

Pro vypočtenou hodnotu y1 = 1
12·34 je y1 < y. Získali jsme tedy přibližnou

hodnotu

1 +
1
3
+
1
3 · 4 −

1
3 · 4 · 34 =

577
408

.
= 1, 414 215 686 ...,

která je horním odhadem čísla
√
2

.
= 1, 414 213 562 ...

Vyjdeme od dolního odhadu 53 čísla
√
3 a upřesníme jej.

(5
3
+ x

)2
= 3, po zanedbání čtverce x2 řešíme rovnici

10
3
x =

2
9
.

Pro vypočtenou hodnotu x1 = 1
15 je x1 > x. Tuto hodnotu znovu upřesníme:

(5
3
+
1
15

−y
)2
= 3, po zanedbání čtverce y2 řešíme rovnici

52 · 15
225

y =
1
225

.

Pro vypočtenou hodnotu y1 = 1
15·52 je z1 < y. Získali jsme tedy přibližnou

hodnotu

1 +
2
3
+
1
3 · 5 −

1
3 · 5 · 52 =

1 351
780

.
= 1, 732 051 282 ...,

která je horním odhadem čísla
√
3

.
= 1, 732 050 807 ... Obě odmocniny jsou

vypočteny s přesností na 5 desetinných míst.

Indické vyjádření čísel
√
2 a

√
3 přesně koresponduje s naším výše uvedeným

výpočtem. Zdá se tedy velmi pravděpodobné, že k nim indičtí počtáři došli
právě takto. Není příliš podstatné, zda byly výpočty prováděny aritmeticky
nebo zda byly chápány a znázorňovány geometricky.9

Odmocniny v Mezopotámii. V Mezopotámii znali velmi přesně (na pět
desetinných míst) hodnotu čísla

√
2 již ve druhém tisíciletí př. Kr. Dokládá to

tabulka YBC7289 s obrázkem čtverce s vyznačenými úhlopříčkami, vepsanými
délkami strany a úhlopříčky a přibližnou hodnotou čísla

√
2, případně tabulka

YBC7243 se soupisem různých konstant.10 V šedesátkové soustavě byla
√
2

vyjádřena v tvaru

1 +
24
60
+
51
602
+
10
603

.
= 1, 414 212 963 ...

Babylonský výpočet přibližné hodnoty čísla
√
2 se nyní pokusíme (v šede-

sátkové soustavě) reprodukovat. Vyjdeme z dolního odhadu

4
3
=
80
60

<
√
2,

9 Pro další informace o výpočtu odmocnin ve staré Indii viz [Bü], [Dat], [Hen], [Plo], [Sar],
[Katz].

10 Viz např. [NgS], [FwR] a [Katz].
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upřesníme jej, tj. vypočteme neznámou x z rovnice

(80
60
+ x

)2
= 2, tj.

2 · 80
60

x+ x2 =
800
602

.

Zanedbáme x2, získaný kořen x1 tedy bude proto větší než hledaný kořen x.

x1 =
800
602

· 60
2 · 80 =

5
60

.

Jako druhou aproximaci proto vezmeme jen 84
60 = 1 +

24
60 ; tuto hodnotu

upřesníme stejným způsobem. Budeme řešit rovnici

(84
60
+ x

)2
= 2, tj.

2 · 84
60

x+ x2 =
144
602

.

Zanedbáme x2, získaný kořen x2 bude proto větší než hledané x:

x2 =
144
602

· 60
2 · 84 =

1
602

· 360
7

>
51
602
;

není třeba provádět exaktní dělení sedmi, což dělalo v šedesátkové soustavě
problémy, ale stačí pouze najít odhad.

Získanou hodnotu

1 +
24
60
+
51
602

znovu upřesníme. Budeme řešit rovnici

(84 · 60 + 51
602

+ x
)
= 2, tj.

2 · 5 091
602

x+ x2 =
1719
604

.

Zanedbáme opět x2, získaný kořen x3 bude větší než hledané x.

x3 =
1719
604

· 602

2 · 5 091 =
1
603

· 51 570
5 091

>
10
603
;

opět není třeba dělit, stačí porovnat čísla 51 570 a 5 091. Tak jsme došli k hod-
notě

1 +
24
60
+
51
602
+
10
603

,

která je uváděna na mezopotamských tabulkách.11

Poznamenejme, že se výpočtem odmocnin zabýval i Leonardo Pisánský (Fi-
bonacci, asi 1170 až 1250) ve svých knihách Liber abaci z roku 1202 (druhá
verze z roku 1228) a De practica geometrie z roku 1223. Jeho početní postupy
byly velmi nápadité. Viz např. [BeJ2], str. 278–283, resp. původní latinský
text [LP] a překlad [Sig].

11 Některé aspekty výpočtu čísla
√
2 viz [BD1] a [BD2].
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5 Archimédovy odhady odmocnin

Archimédés nahradil při výpočtu horního a dolního odhadu obvodu kruhu
ve spisu Měření kruhu hodnoty sedmi odmocnin poměrně velkých čísel jejich
vhodnými horními nebo dolními odhady.12

Výše uvedený (podle prvního či druhého způsobu) horní a dolní odhad od-
mocniny

√
A se pro další výpočet nehodí, neboť připojený zlomek má v čitateli

a zejména ve jmenovateli velká čísla. Přitom je lhostejné, zda vyjdeme (podle
výše uvedené teorie) od dolního nebo horního odhadu, které se (pro velká čísla)
liší jen nepatrně. Uvedenou hodnotu je třeba vhodným způsobem buď trochu
zmenšit nebo trochu zvětšit, a to tak, aby se při dalším výpočtu se zvolenými
zlomky dalo rozumně pracovat. Archimédés to provedl takto:

√
349 450 > 591

1
8
,

√
1 373 943

33
64

> 1 172
1
8
,

√
5 472 132

1
16

> 2 339
1
4
,

√
9 082 321 < 3 013

3
4
,

√
3 380 929 < 1 838

9
11

,
√
1 018 405 < 1 009

1
6
,

√
4 069 284

1
36

< 2 017
1
4
.

Vyjádříme nyní výše uvedená čísla A ve tvaru A = a2 + r, připojíme dolní
odhad jejich odmocnin a+ r

2a+1 a Archimédem upravenou hodnotu:

1. 349 450 = 5912 + 169 591
169
1 183

> 591
1
8

2. 1 018 405 = 1 0092 + 324 1 009
324
2 019

< 1 009
1
6

3. 1 373 943
33
64
= 1 1722 + 359

33
64

1 172
359
2 345

> 1 172
1
8

4. 3 380 929 = 1 8382 + 2685 1 838
2 685
3 677

< 1 838
9
11

5. 4 069 284
1
36
= 2 0172 + 995

1
36

2 017
995
4 035

< 2 017
1
4

6. 5 472 132
1
16
= 2 3392 + 1211

1
16

2 339
1 211
4 679

> 2 339
1
4

7. 9 082 321 = 3 0132 + 4152 3 013
4 152
6 027

< 3 013
3
4

12 O Archimédových odmocninách viz [Hea], str. lxxx–xcix.
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Některé Archimédovy odhady jsou zcela průhledné:

2. 6 · 324 = 1 944 < 2 019 < 2 268 = 7 · 324,

proto je zlomek zvětšen na
1
6

5. 4 · 995 = 3 980 < 4 035 < 4 975 = 5 · 995,

proto je zlomek zvětšen na
1
4

6. 3 · 1 211 = 3 633 < 4 679 < 4 844 = 4 · 1 211,

proto je zlomek zmenšen na
1
4

Ve dvou případech je výše uvedený princip mírně porušen, je volen „sousední	
kmenný zlomek (místo sedminy osmina):

1. 7 · 169 = 1 183 < 1 352 = 8 · 169,

přesto je zlomek zmenšen na
1
8

3. 6 · 359 = 2 154 < 2 345 < 2 513 = 7 · 359,

přesto je zlomek zmenšen na
1
8

V dalších dvou případech nebylo možno volit kmenné zlomky:

4. Je zjevné, že 2 685
3 677 < 9

12 < 9
11 ,

7. Je zjevné, že 4 152
6 027 < 3

4 .

6 Řetězové zlomky

Hodnotu čísla
√
3 lze vyjádřit pomocí řetězového zlomku

[1; 1, 2, 1, 2, 1, 2, . . . ] = 1 +
1

1 +
1

2 +
1

1 +
1

2 +
1
. . .

;

jeho hodnotou je limita posloupnosti dílčích zlomků (tzv. konvergentů)
ak
bk

,

k = 0, 1, 2, . . . , přičemž a0 = 1, b0 = 1, a1 = 2, b1 = 1 a pro každé k = 1, 2, . . . je

a2k = a2k−1 + a2k−2, a2k+1 = a2k + a2k−1,

b2k = b2k−1 + b2k−2, b2k+1 = b2k + b2k−1.
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V následující tabulce uvedeme čitatele ak a jmenovatele bk konvergentů ře-
tězového zlomku [1; 1, 2, 1, 2, 1, 2, . . . ] pro k = 0, 1, . . . , 36. Pro sudé hodnoty k
dostáváme dolní odhady a pro liché hodnoty k horní odhady čísla

√
3. Sou-

časně je v tabulce poznamenáno, pro které hodnoty k vycházejí konvergenty
odpovídající výše uvedeným horním a dolním odhadům čísla

√
3.

k ak bk poznámka
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 1 1 t = 0
1 2 1 t = 1
2 5 3 1. dolní odhad
3 7 4 1. horní odhad, t = 2
4 19 11
5 26 15 horní odhad (1)
6 71 41
7 97 56 horní odhad (2), t = 3
8 265 153 2. dolní odhad
9 362 209
10 982 571
11 1351 780 2. horní odhad
12 3 691 2 131
13 5 042 2 911
14 13 775 7 953
15 18 817 10 864 t = 4
16 51 409 29 681
17 70 226 40 545 horní odhad (3)
18 191 861 110 771
19 262 087 151 316
20 716 035 413 403
21 978 122 564 719
22 2 672 279 1 542 841
23 3 650 401 2 107 560 horní odhad (4)
24 9 973 081 5 757 961
25 13 623 482 7 865 521
26 37 220 045 21 489 003 3. dolní odhad
27 50 843 527 29 354 524
28 138 907 099 80 198 051
29 189 750 626 109 552 575
30 518 408 351 299 303 201
31 708 158 977 408 855 776 t = 5
32 1 934 726 305 1 117 014 753
33 2 642 885 282 1 525 870 529
34 7 220 496 869 4 168 755 811
35 9 863 382 151 5 694 626 340 3. horní odhad
36 17 083 879 020 9 863 382 151
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Hodnoty prvních tří dolních i horních odhadů čísla
√
3, které byly elemen-

tárním způsobem vypočteny, odpovídají v tabulce hodnotám uvedeným pro
k = 2, 3, 8, 11, 26, 35. Z tabulky je zřejmé, proč je 2. horní odhad čísla

√
3 přes-

nější než 2. dolní odhad a proč je 3. horní odhad výrazně přesnější než 3. dolní
odhad.

Poznamenejme ještě, že rychleji než řetězový zlomek konverguje k hod-
notě

√
3 posloupnost

H0 = 1, Ht+1 =
1
2

(
Ht +

3
Ht

)
=

H2t + 3
2Ht

, t = 0, 1, 2, . . .

Jejími prvními členy jsou čísla

1, 2,
7
4
,
97
56

,
18 817
10 864

,
708 158 977
408 855 776

, . . . ,

která odpovídají výše uvedeným hodnotám pro k = 0, 1, 3, 7, 15, 31, . . . Uve-
dená tabulka umožňuje srovnání rychlosti konvergence řetězového zlomku, po-
sloupnosti Ht a elementárních výpočtů.13

13 Obdobná problematika týkající se čísla
√
2 je předmětem článků [BD1] a [BD2]. O ře-

tězových zlomcích viz např. [Chi].
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ADDENDA
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