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P Ř E D M L U V A 

V každém ročníku naší matematické olympiády bývá za-
řazeno několik úloh z teorie čísel, a také v mezinárodních 
matematických olympiádách najdeme příklady na dělitelnost 
přirozených čísel. Tato část středoškolské matematiky je cel-
kem jednoduchá a velmi zajímavá a může tedy dobře sloužit 
k výcviku v přesném matematickém usuzování. To jsou zhruba 
důvody, proč jsme v této knižnici připravili jako druhý svazek 
brožurku s názvem „Co víme o přirozených číslech". 

Přáli bychom si, aby se mladí čtenáři naučili samostatné 
řešitjednoduché matematické úlohy a problémy — a z tohoto 
hlediska je právě veden výklad na stránkách našeho sešitu. 
Převážná většina základních pojmů, které se zde vyskytují, 
je našim studentům dobře známá ze školy, takže jistě v mno-
hých případech stačí jen letmá připomínka. Nebudeme si tu 
vykládat samoúčelnou teorii, nýbrž všechny vlastnosti přiro-
zených čišel budeme studovat tak, že spolu se čtenářem roz-
řešíme řadu příkladů. Každý z pěti paragrafů, které v knížce 
budete číst, je pak zakončen několika úlohami. V nich najdete 
jak cvičeni k numerickému počítání, tak i úlohy s jednoduchým 
matematickým vtipem, a můžete si zde tedy ověřit svou schop-
nost samostatného uvažování. V závěru knížky jsme sice 
uvedli výsledky některých úloh, návody nebo stručná řešení, 
používejte jich však ve svém vlastním zájmu až pro srovnání 
se svým výsledkem nebo řešením. 

Teorie čísel má velmi starou historii a také v současné době 
je horlivě pěstována na celém světě. Domníval jsem se, že čte-
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náře tohoto pojednáni budou zajímat rovněž historické po-
známky z doby starší i nedávné, a zařadil jsem do knížky také 
několik zcela nových údajů, k nimž došlo současné bádáni 
o prvočíslech. 

V závěru spisku najdete několik odkazů na další literaturu 
z elementární teorie číselné, s kterou by se mohl seznámit čtenář 
po prostudování našeho sešitu. 

Děkuji srdečné Dr. Karlu Čulíkovi, Vladimíru Doležalovi, 
doc. Janu Vyšínovi a Rudolfu Zelinkovi, kteří obětavě četli 
rukopis této brožurky a řadou připomínek přispěli k jeho 
zlepšení. 

J.S. 
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1. 

Z O P A K U J M E S I 
Z Á K L A D N Í P O J M Y 

V této knížce budeme předpokládat, že čtenář umí počítat 
s přirozenými čísly 

1, 2, 3, 4, 5, 6, . . 
Základy této znalosti si každý z nás přináší už z předškolní-
ho věku: Takřka souběžně s tím, jak si dítě osvojuje mateř-
ský jazyk, seznamuje se i s významem malých přirozených 
čísel. Počítání s přirozenými čísly nás učí ovšem až národní 
škola. Přirozená čísla sčítáme, odčítáme, násobíme a dělíme 
a později se seznámíme i s umocňováním a odmocňováním. 
Všechny tyto početní výkony se řídí určitými pravidly i 
tak např. pro sčítání platí zákon komutativní a + b = b + a 
a zákon asociativní (a + b) + c = a + (b + c) apod. Bu-
deme zde předpokládat, že jsou čtenáři ze školy známy 
i všechny tyto aritmetické zákony. 

V této knížce si budeme všímat dělitelnosti přirozených 
čísel; je však účelné rozšířit obor všech přirozených čísel 
ještě o číslo 0. Čísla 0, 1, 2, 3, 4, 5, 6 , . . . se stručně nazývají 
celá nezáporná čísla. 

Ve škole i v praxi zapisujeme čísla obvykle v tzv. desít-
kové (dekadické) soustavě, přičemž používáme deseti číslic 
(cifer) 0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 . V této knížce budeme mluvit 
vesměs jen o číslech vyjádřených v desítkové soustavě 
a nebude tedy nutné, abychom v jednotlivých případech 
zvlášť zdůrazňovali, že se jedná o soustavu de; lbovou. 

V řadě školských i olympijských úloh je třeba dobře znát 
různé vlastnosti čísel vyplývající z vyjádření v desítkové 
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soustavě. Zopakujme si proto tuto školskou partii na pří-
kladech 1 a 2. 

Přiklad 1. Dvojcifemé číslo má ciferný součet rovný 
číslu 9. Jestliže vzájemně vyměníme obě číslice, dostaneme 
nové číslo, které je o 45 větší než číslo původní. Určete 
původní číslo. 

Řešení. Jestliže hledané dvojciferné číslo má první číslici 
x a druhou y, potom toto číslo má ciferný součet x + y = 9. 
Ze školy víme, že hledané číslo je možno vyjádřit ve tvaru 
10* + y. Vyměníme-li vzájemně obě číslice, dostaneme 
nové číslo, které má první číslici y a druhou x', toto nové 
číslo je možno tedy psát ve tvaru lOy + x. Podle podmínek 
uvedených v textu příkladu je číslo lOy + x o 45 větší než 
číslo 10* + y, což můžeme vyjádřit rovnicí • lOy + x = 
= IOjc —|— jy —1— 45. Tuto rovnici už snadno upravíme na 
tvar 9y — 9x = 45 čiliy — x = 5. 

Zatím jsme tedy našli soustavu dvou lineárních rovnic 
o dvou neznámých 

x+y = 9, 
y — x = 5. 

Sečtením dostanenje 2y = 14 čili y = 7, odečtením vy-
chází 2x = 4 čili x = 2. 

Odpověd. Hledané dvojciferné číslo je číslo 27.*) 
Další příklad, kterým se zde budeme zabývat, je zají-

mavý tím, že vede k sestavení jedné lineární rovnice o dvou 
neznámých. To vypadá na první pohled jako nedostatečně 
určená úloha, neboť ze školy víme, že rovnice tohoto druhu 
má nekonečně mnoho řešení. Náš příklad je však zvláštním 

*) Přenecháváme čtenáři, aby se zkouškou přesvědčil, že čislo 27 sku-
tečné vyhovuje podmínkám popsaným v příkladě 1. 
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případem takovéto rovníce a touto zvláštností je právě 
zajímavý. 

Příklad 2. Trojciferné číslo je zakončeno číslicí 4. 
Přesuneme-li tuto číslici na první místo (a ostatní dvě čís-
lice ponecháme beze změny), dostaneme číslo, které je 
o 81 menší než číslo původní. Určete původní číslo. 

Řešení. První číslici hledaného čísla označme x a druhou 
číslici y. Hledané číslo má tedy tvar 100* + lOy + 4. 
Přesuneme-li číslici 4 na první místo, vznikne nové číslo 
400 + lOx + y, které je o 81 menši než číslo původní. 
Tuto okolnost můžeme nyní vyjádřit rovnicí 

400 + 10* + y = 100* + lOy + 4 — 81. 
Sestavili jsme tedy jednu lineární rovnici o dvou nezná-

mých a v našem příkladě nejsou již pro hledané číslo jpo-
psány žádné další podmínky, kterých bychom při řešení 
mohli využít. To však nevadí, neboť naše rovnice se snad-
nou úpravou převede na tvar 90x + 9y = 477. Dělíme-li 
obě strany této rovnice devíti, vychází 10* + y = 53. 
Na levé straně této rovnice máme vlastně vyjádřeno dvoj-
ciferné číslo, jehož první číslice je * a druhá y, na druhé 
straně této rovnice je pak napsáno dvojciferné číslo 53. 
Z této úvahy vyplývá, že platí * = 5, y = 3. 

OdpovSd. Našli jsme číslo 534.*) 

Ú l o h y 

1. Které n-ciferné číslo (» ^ 2) má první číslici x, dru-
hou čísliciy a ostatní číslice rovné nule? 

*) Zkoušku zde opět přenecháváme čtenáři. 
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2. Které dvojciferné číslo se po vzájemné výměně obou 
číslic zvětší o 37 ? 

3. Je-li číslo zakončeno číslicí 5, pak jeho druhá mocnina 
je zakončena dvojčíslím 25. Dokažte! 

4. Čtyřciferné číslo je zakončeno číslicí 2. Přesuneme-li 
tuto číslici na první místo (a ostatní tři číslice ponecháme 
beze změny), dostaneme číslo, které je o 234 větší než 
číslo původní. Určete původní číslo. 



1. 

D Ě L E N Í S E Z B Y T K E M 
A D Ě L E N Í B E Z E Z B Y T K U 

Ve středoškolské aritmetice můžeme sledovat dva směry: 
můžeme buď více zdůrazňovat numerické počítání, nebo 
se více přiklonit k teorii. Než přikročíme k numerickým 
příkladům na dělení dvou přirozených čísel, připomeňme 
si přesný matematický význam tohoto početního výkonu. 

Jsou-Ú dána libovolná dvě přirozená čísla a, b, potom 
vždycky je možno najít dvě celá nezáporná čísla k, r tak, 
že platí 

a = bk + r , 0 á r < b . (1) 
Dvojice čísel k, r je čísly a, b určena jednoznačně. Úlozr, 
ve které se má k dané dvojici přirozených čišel a, b najít 
dvojice celých nezáporných čísel k, r splňujících vztahy (1), 
se říká dělení; číslo a je dělenec, číslo b je dělitel. Všimněme 
si nyní podrobněji čísla r. Je-li r > 0, mluvíme o dělení 
se zbytkem. V tomto případě se číslo k nazývá částečný 
podíl a čislo r je zbytek. Jestliže je r = 0, mluvíme o dělení 
beze zbytku; číslo k se pak nazývá podíl. 

Příklad 3. Vypočtěte částečný podíl a zbytek, je-li 
dělenec a = 100, dělitel b = 27. 

Řešení. Pro a — 100, b = 27 snadno nalezneme, že je 
k = 3, r = 19. Platí totiž 100 = 27.3 + 19, přičemž 
0 < 19 < 27. Numerický výpočet jsme ze školy zvyklí 
vyjadřovat např. Ýe tvaru 100 : 27 | 3 , 

19 
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z něhož je též patrno, jak vyšel částečný podíl a jak zbytek. 
Dále si všimněme podrobněji dělení beze zbytku. Jestliže 

platí a = b.k, pak říkáme, že číslo b dělí číslo a nebo že 
číslo b je dělitelem*) čísla a nebo že číslo a je dělitelné 
číslem b nebo konečně též, že číslo a je násobkem čísla b. 
Pro stručnost vyjadřování je účelné rozšířit dělitelnost i na 
číslo nula: podle této rozšířené definice platí, že každé 
přirozené číslo dělí číslo 0. 

Přiklad 4. Které z čísel 1352 a 1757 je dělitelné sedmi? 

Řešení. Číslo 1352 není dělitelné sedmi; platí totiž 
1352 = 7.193 + 1. Číslo 1757 je sedmi dělitelné, neboť 
1757 = 7.251. 

Vyjádření čísla pomocí částečného podílu a zbytku 
můžeme někdy s výhodou užít pro zkrácení numerického 
výpočtu, jak si to ukážeme v dalším příkladě. 

Příklad 5. Ukažte, že číslo 2100 + 10 je dělitelné 
třinácti. j 

Řešení. Nejprve budeme upravovat mocninu 2100. Platí 
2ioo = (2*)26 = 1626 = (13.1 + 3)25. Další umocňování zde 
nemusíme až do konce provádět. Podle binomické věty**) 
je totiž (13 + 3)25 = (") .13 2 8 + ( 2 j ) . 1324.3 + 1323. 
• 32 + . . . +(U)-13 1 -3 2 4 + (?0-326. 

*) Prosím čtenáře, aby si uvědomil, že samotné slovo „dělitel" má 
v našich úvahách dva odlišné významy. Záleží ovšem vždy na 
spojeni, v jakém toto slovo užijeme. To ostatně není celkem nic 
divného, vždyť i slova „děleni" zde užíváme rovněž ve dvou růz-
ných významech. 

**) Připomeňme si definici kombinačního čísla. Platí 

( n \ = w . ( w - l ) .(n-2).. .(n-k+1) 
W 1 . 2 . 3 . . . k 
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Posledního členu na pravé straně si na okamžik nevší-
mejme. Vidíme, že ze všech zbývajících členů na straně 
pravé je možno vytknout číslo 13, platí tedy (13 + 3)26 = 
= 13a + 32S, kde a je vhodné přirozené číslo*). , 

Dále si všimněme mocniny 32s* která se vyskytuje ve vý-
sledku dosud nalezeném. Platí 326 = = (33)8.3 = 
= 278.3 = (13.2 + 1)8.3. Opět budeme používat bino-
mické poučky a užijeme obdobného obratu jako při úpravě 
mocniny 1625. Výraz (13.2 + l)8 můžeme vyjádřit ve tvaru 
136 + l8 , kde 6 je vhodné přirozené číslo (jehož výpočtem 
se zde opět nemusíme zabývat). Dostali jsme tedy, že 326 = 
(13b + 1).3 = 13.36 + 3. Vrátíme-li se k původně dané-
mu číslu 2100 + 10 a použijeme-li všech dílčích výsledků, 
máme 
2ioo + io = 13a + (13.36 + 3) + 10 = 13(a + 36 + 1) . 

Odpověd. Číslo 2100 + 10 je skutečně dělitelné třináctý 

Často se vyskytuje úloha, ve které se má dokázat, že 
daný mnohočlen f(n) je pro všechna přirozená čísla n dě-
litelný některým pevně daným přirozeným číslem. Tuto 
problematiku si ukážeme na příkladech 6 a 7. 

Příklad 6. Je-li n libovolné přirozené číslo, pak číslo 
n3 — n je dělitelné šesti. Dokažte. 

Řešení. Dokážeme nejprve, že číslo n3 — n je dělitelné 
třemi. Dvojčlen n3 — « upravujeme postupně takto 

n3 — n = n.(n2-1) = n.(n - l).(n + 1) = 
= (n — 1 ) . « . ( « + 1) . 

Rozložili jsme tedy výraz n3 — n v součin tří činitelů; 

*) Nebudeme se zde zabývat přesným výpočtem čísla a, neboť to je 
pro naše účely zbytečné. 
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tito činitelé jsou tři po sobě jdoucí celá nezáporná čísla 
n — 1, n, n + 1. Probíráme-li po řadě všechna celá nezá-
porná čísla, je známo, že každé třetí z nich je dělitelné 
třemi. Protože čísla n — 1, «, n + 1 tvoří trojici po sobě 
jdoucích celých nezáporných čísel, musí být jedno z nich 
dělitelné třemi a proto také jejich součin n3 — n je dělitelný 
třemi. 

Dále dokážeme, že číslo n3 — n je dělitelné dvěma. Pro-
bíráme-li po řadě všechna celá nezáporná čísla, střídá se 
vždy číslo sudé s číslem lichým.*) Z toho plyne, že alespoň 
jedno z čísel n — 1, n, n + 1 je sudé, a tedy také součin 
těchto čísel je sudý. 

Protože pro libovolné číslo n je rozdíl n3 n dělitelný 
jednak třemi, jednak dvěma, je tento rozdíl (jak jistě víte 
ze školy) nutně dělitelný šesti. To je právě tvrzení, které 
jsme měli dokázat. 

Jiné řešeni. Čtenář, který zná princip matematické in-
dukce,**) může naši úlohu řešit takto: 

N Pro n = 1 platí n3 — n = l 3 - 1 = 0; číslo 0 je dě-
litelné šesti, takže tvrzení v tomto případě platí. 

Předpokládejme, že tvrzení, které máme dokázat, platí 
pro některé přirozené číslo n, a budeme je dokazovat pro 
přirozené číslo n + 1. Jestliže ve výrazu n3 — n místo n 
píšeme n + 1, dostáváme (n + l)3 — (n + 1). Upravu-
jeme tento výsledek takto: 

(n + l)3 - (n + 1) = n3 + 3n2 + 3n + 1 - n - 1 = 
= (ra3 - n) + (3n2 + 3n) = (w3 - n) + 3n.(n + 1) . 
Výraz 3n.(n + 1) je dělitelný třemi, snadno však na-

*) Ze školy víme, že číslo sudé je to, které je dělitelné dvěma, a číslo 
liché to, které není dělitelné dvěma. 
**) Poučení o matematické indukci najdete např. v knížce I. S. So-
minského „Metoda matematické indukce" (1. sv. Populárních před-
nášek o matematice, SNTL). 
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hlédneme, že je dělitelný také dvěma. Je dělitelný tedy 
šesti. Výraz n3 — n je dělitelný šesti, neboť to je předpo-
klad, ze kterého jsme vyšli. Je tedy také součet těchto 
dvou výrazů dělitelný šesti. Tento součet je však (jak víme) 
roven (n + l)3 — (« + 1). Z předpokladu, že naše tvrzení 
platí pro některé přirozené číslo n, plyne, že toto tvrzení 
platí též pro přirozené číslo n + 1. Důkaz matematickou 
indukcí je tím podán. 

Příklad 7. je obdobný tomu, který jsme právě rozřešili, 
avšak při jeho řešení budeme potřebovat složitějších mate-
matických obratů. 

Příklad 7. Je-li n libovolné přirozené číslo, pak číslo 
n5 — n je dělitelné pěti. Dokažte. 

Řešení. Rozdíl n5 — n upravujme takto: n5 — n = 
= n.(n*~ 1) = n.(n2 — l).(n2 + 1 ) = «.(«- l).(n+ 1). 
.(n2 + 1)- Nepodařilo se nám zde rozložit uvažované číslo 
v součin pěti po sobě jdoucích celých čísel (pak bychom 
totiž tvrzeni snadno dokázali obdobným postupem, jak to 
bylo provedeno v předcházejícím příkladě). Pomůžeme si 
však tímto obratem: 

Uvažme, jak se Uší součin (n — \).n.(n + l)'.(w + 2). 
.(« + 3) od našeho součinu (n — 1 ).n.(n+ 1).(«2 + 1). 
Jejich rozdíl je 

(n - 1).«.(» + l).[(n + 2).(« + 3) - (n2 + 1)] = 
= ( n - l ) . n . ( » + 1 ) . [ n 2 + 5 n + 6 — n 2 — 1] = 

= (» - 1).«.(» + 1).(5« + 5) = 5.(« - \).n.(n + l)2. 

Je vidět, že tento rozdil je dělitelný pěti. Součin 
(n — 1 ).n.(n+ l) .(n + 2).(n + 3) je však zřejmě děli-
telný pěti, neboť je to součin pěti po sobě jdoucích celých 
nezáporných čísel. Z úvahy o rozdílu proto vyplývá, že také 
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náš součin (n — 1).«.(« + l).(n* + 1) je dělitelný pěti. 
Tím je důkaz proveden. 

Přenecháváme čtenáři, aby i v tomto příkladě podal jiné 
řešení, při kterém se používá principu matematické indukce. 

Poznamenejme, že přiklady 6 a 7 jsou vlastně speciálním 
tvarem jedné slavné číselněteoretické věty, která se nazývá 
malá věta Fermatova.*) Francouzský právník a matematik 
Pierre de Fermat (1601—1665) si dobyl předního místa 
v matematice svými pracemi z teorie čísel a patří mezi první 
pěstitele analytické geometrie. 

V dalším příkladě budeme opět používat matematické 
indukce. 

Přiklad 8. Je-li n libovolné přirozené číslo, pak číslo 
62n — 8 je dělitelné sedmi. Dokažte. 

Řešení. Důkaz podáme matematickou indukcí. 
Pro n = 1 dostáváme 
62» - 8 = 62 - 8 = 36 - 8 = 28, 

takže v tomto případě vychází číslo dělitelné sedmi. 
Předpokládejme nyní, že naše tvrzení platí pro jisté 

přirozené číslo n a dokážeme, že platí také pro přirozené 
číslo n + 1. Jestliže ve výrazu 62n — 8 místo n píšeme 
n + 1, dostáváme výraz 62 ( " + 1 ' — 8. Upravme 

62 ( n + i ) _ g = 62» + 2 — 8 = 6 2 " . 6 2 — 8 = 

- 62 n .36 - 8 = (62- - 8) + 35.62". 
Podle předpokladu je číslo 68" — 8 dělitelné sedmi; je 

vidět, že také číslo 35. 6 t o je sedmi dělitelné, takže i součet 
(6a" - 8) + 35.62" 

je dělitelný sedmi. To však znamená, že jsme provedli 
i druhý indukční krok a důkaz tvrzení je tím podán. 

*) Tato věta zni: Je-li p libcroohU prvočíslo a n libovolní přirozené Hslo, 
pak nP — n je dilitelné Oslem p. 
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Ú l o h y 

5. Ve škole jste se učili znaky dělitelnosti dvěma, třemi, 
čtyřmi, pěti, osmi, devíti, desíti a jedenácti. Zopakujte si 
tyto poučky. 

6. Určete nejmenší přirozené číslo dělitelné jedenácti, 
které je zapsáno číslicemi vesměs různými. 

7. Určete všechna přirozená čísla, jimiž je dělitelné 
číslo 60. 

8. Vyhledejte nejmenší přirozené číslo; které je dělitelné 
každým z čísel 2, 3, 4, 5, 6, 7, 8,9, 10. 

9. Každé celé nezáporné číslo je možno vyjádřit v- právě 
jednom ze tvarů 5k, 5k + 15 5k + 2, 5k + 3, 5k + 4, kde 
k je vhodné celé nezáporné číslo. Dokažte. 

10. Ukažte, že číslo 1724 + 35313 je dělitelné sedmnácti. 
11. Jsou-li a, b libovolná dvě přirozená čísla, pak číslo 

a3 + b3 je dělitelné číslem a + b; dokažte. 
12. Pátá mocnina libovolného přirozeného čísla je za-

končena stejnou číslicí jako číslo, které se umocňovalo. 
Zdůvodněte, proč je tomu tak. 

13. Je-li n libovolné přirozené číslo, pak číslo w7 — n 
je dělitelné sedmi. Dokažte. 

14. Číslo a„ = 2.36" ~ 4 + 5 je dělitelné jedenácti pro 
každé přirozené číslo n. Dokažte. 
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1. 

P R V O Č Í S L A 
A Č Í S L A S L O Ž E N Á 

Číslo 1 je dělitelné jediným přirozeným číslem, totiž 
právě číslem 1. Zvolíira-li libovolné přirozené číslo n > 1, 
pak vždycky existují alespoň dvě přirozená čísla, která 
děli číslo n. Jsou to čísla l a « , kterým říkáme samozřejmí 
dělitelé čísla n. Přirozené číslo p > 1, které kromě samo-
zřejmých dělitelů není už dělitelné žádným jiným přiroze-
ným číslem, se nazývá prvočíslo. Přirozené číslo s > 1, 
které není prvočíslo, se nazývá složené. Ze školy jistě znáte 
příklady prvočísel 

2, 3, 5, 7, 11, 13, 17, 19, 23,29, 31, 37,. . . 
i příklady čísel složených 

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22,. . . 
Studium prvočísel patří mezi nejstarší a také nejobtíž-

nější otázky, jimiž se matematikové zabývají. Vždyť už 
starořecká matematika znala důkaz tvrzení, že prvočísel je 
nekonečně mnoho. Tato matematická poučka je totiž ob-
sažena a dokázána ve známém díle starořeckého matema-
tika Euklida, který žil v Alexandrii kolem roku 300 před 
n. 1. Euklidův spis „ Z á k l a d y " obsahoval 13 knih a pra-
covali na něm vedle Euklida už někteří jeho předchůdci 
(např. Eudoxos, Theaitetos aj.)*) 
*) Snad vás bude zajímat tato malá historka, kterou dějepisec pozna-
menal o setkání Euklida s faraónem Ptolemaiem I. Farao prý požádal 
jednou Euklida, aby mu vyložil jednoduchým způsobem základy geo-
metrie. Euklides odpověděl: „Není pro krále soukromé cesty ke geo-
metrii". Na vysvětíenou uvedme, že králové mívali ke svým komnatám 
v palácích soukromé schodiště, jehož nesměl nikdo jiný používat. 
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Hledání nepříliš velkých prvočísel se někdy provádí me-
todou, která se nazývá Eratosthenovo síto.*) Chceme-li 
určit všechna prvočísla, která jsou menší nebo nejvýše 
rovna danému přirozenému číslu a (většímu než 1), postu-
pujeme takto: 

Vypíšeme nejprve po řadě všechna přirozená čísla od 
čísla 1 do čísla a. Číslo 1, které nepočítáme ani mezi prvo-
čísla ani mezi čísla složená, ponecháme stranou, a další 
číslo, tj. číslo 2, podtrhneme. Nyní budeme v napsané po-
sloupnosti vyškrtávat každé druhé přirozené číslo tak 
dlouho, dokud všechna napsaná čísla nevyčerpáme. V dal-
ším kroku se vrátíme opět na začátek napsané posloup-
nosti a vyhledáme to první číslo, které není ani podtrhnuto 
ani vyškrtnuto; je to zřejmě číslo 3, a toto číslo tedy pod-
trhneme. Dále budeme vyškrtávat každé třetí číslo v napsa-
né posloupnosti (pokud ovšem toto číslo už nevypadlo při 
předcházejícím vyškrtávání). Znovu se vrátíme na začátek 
posloupnosti, podtrhneme číslo 5 a začnepie vyškrtávat 
každé páté (dosud nevyškrtnuté) přirozené číslo. Tyto 
kroky opakujeme tak dlouho, dokud je to vůbec možné, 
tj. dokud nejsou všechna napsaná čísla buď podtržena 
nebo vyškrtnuta. Dá se snadno ukázat, že tímto postupem 
najdeme všechna prvočísla, která jsou á a. Pro a = 19 
vypadá konečný zápis takto (tučně = vyškrtnuto): 

1, 2, 3, 4, 5, 6, 7, 8, 9,10, U , 12, 13,14,15,16, 17,18, 19. 

Je patrné, že v případě, je-li číslo a je dosti veliké, je 
metoda Eratosthenova síta velmi pracná. Ostatně studium 
velkých prvočísel patří mezi nejobtížnější otázky jak po 
stránce teoretické, tak i po stránce praktické. Práci si mů-
žeme mnohdy usnadnit tím, že nahlédneme do některých 
*) Tato metoda je nazvána podle řeckého matematika Eratosthena 
z Kyrene (III. stol. př. n. 1.). 
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matematických tabulek, které obsahují též tabulku prvo-
čísel. Tak např. ve školních matematických tabulkách je 
tabulka všech prvočísel menších než číslo 1000, zatímco 
Valouchovy P ě t i m í s t n é t a b u l k y l o g a r i t m i c k é uvá-
dějí všechna prvočísla ž 5 309. Některé cizojazyčné tabulky 
dávají možnost seznámit se s prvočísly ještě většími. Tak 
např. / . G. Popov vydal r. 1952 v Moskvě knížku s názvem 
MaTeMaTHqecKHe Ta6jiHU.br, kde jsou uvedena všechna 
prvočísla menší než 10 000.*) 

Všechny uvedené tabulky mohou dobře sloužit ke škol-
ským účelům, ale pro účely vědecké je někdy potřebí jít 
ještě dále. V poslední době bylo při sestavování tabulky 
prvočísel užito nejmodernějších technických metod. Tak 
švédští matematikové vypočetli roku 1957 na elektronko-
vém počítači BESK, že číslo 23217 — 1 je prvočíslo. Tento 
číselný obr, který má 969 číslic, je největším prvočíslem, 
které dnes známe. Pokud se týče soustavné tabulky všech 
prvočísel, tu nejdále sahá tabulka, kterou r. 1959 připravili 
C. L. Baker a F. J. Gruenberger. Tabulka těchto autorů 
je obsažena na mikrofilmu a je v ní systematicky vypsáno 
šest miliónů prvočísel. Poslední (šestimilionté) prvočíslo, 
které je zde uvedeno, je číslo p6 ooo ooo = 104 395 301. 

Nemáme-li po ruce tabulky prvočísel, musíme často vý-
počtem rozhodovat o tom, zda dané přirozené číslo je prvo-
číslo nebo číslo složené. V příkladě 9 si připomeneme jednu 
pomocnou metodu, která je při takových výpočtech velmi 
užitečná. 

Přiklad 9. Je-li číslo m složené, pak je vždy možno najít 
prvočíslo/» g |/W, které dělí číslo m. 

Řešení. Každé složené číslo m můžeme vyjádřit ve tvaru 
*) Posledně jmenované tabulky jsou zajímavé také tím, že v nich na-
jdeme rozklad v prvoiinitele pro každé přirozené číslo g 4850. 
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m = xy, kde x > 1, y > 1, x S y. Kdyby bylo y > \ím, 
bylo by též x > J / m a z těchto dvou nerovností by ply-
nulo xy > (]/m)2 = m tedy xy > m. To však je spor 
s předpokladem xy = m, takže o čísle y platí y < ]/m. 
Je-li y prvočíslo, jsme s hledáním hotovi. Je-li y číslo slo-
žené, pak je možno (jak víme ze školy) najít prvočíslo p, 
které dělí y, přitom je p <y a tedy i p < \m. Číslo p 
je tedy tím prvočíslem, jehož existenci jsme měli v dané 
úloze prokázat. 

V dalších dvou příkladech si ukážeme, jak se prakticky 
využije poznatku, se kterým jsme se seznámili v příkladě 9. 

Příklad 10. Rozhodněte, zda číslo 827 je prvočíslo nebo 
číslo složené. # 

Řešení. Přesvědčíme se, že číslo 827 je prvočíslo. K tomu 
je třeba zjistit, že toto číslo není dělitelné žádným prvo-
číslem menším než 827. Při tomto zkoumání stačí však 
přezkoušet jen ta prvočísla, která jsou menší než 827, 
jak plyne z předcházejícího příkladu. Platí |'827 = 28,7, 
takže budeme zde zkoušet jen dělitelnost prvočísly 2, 3, 5, 
7, 11, 13, 17, 19 a 23. 

Prvočísly 2, 3, 5 a 11 není naše číslo dělitelné, jak plyne 
ze znaků dělitelnosti probíraných na střední škole. Zbý-
vají nám prvočísla 7, 13, 17, 19 a 23, u nichž musíme děli-
telnost prověřit tím, že provedeme příslušné dělení. Tak 
dělení 827 : 7 vychází se zbytkem 1, dělení 827 : 13 dává 
zbytek 8 a také zbývající tři případy ukazují, že číslo 827 
není dělitelné prvočísly 17, 19, 23. 

Odpověd. Číslo 827 je prvočíslo. 

P ř i k l a d l i . Určete nejmenší čtyřciferné číslo, které je 
prvočíslem. 
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Řešení. Nejmenší čtyřciferné číslo vůbec je číslo 1000; 
je to zřejmě číslo složené. V dalších úvahách si pochopitelně 
nemusíme všímat čísel sudých. Číslo 1001 je dělitelné je-
denácti, takže je složené. Dále platí 1003 = 17.59, číslo 
1005 je dělitelné pěti a 1007 = 19.53. Ve všech těchto pří-
padech šlo tedy o čísla složená. Snadno se přesvědčíme, 
že číslo 1009 je prvočíslo. Přitom budeme postupovat ob-
dobným způsobem, s kterým jsme se seznámili při řešení 
přikladu 10. 

Odpověd. Nejmenší čtyřciferné prvočíslo je číslo 1009. 
Ze školy jistě víte, že každé složené číslo je možno napsat 

jako součin několika prvočísel, a to až na pořadí činitelů 
jediným způsobem. Prvočísla, jejichž součinem je dané 
složené číslo, jsou tzv. prvočinitelé. Vyjádříme-li dané slo-
žené číslo jako součin mocnin prvočinitelů, říkáme, že jsme 
provedli jeho rozklad v prvočinitele. 

Při řešení některých úloh je třeba nejprve provést roz-
klad složeného čísla v prvočinitele, jak uvidíme v dalším 
příkladě. 

Přiklad 12. Určete nejmenší přirozené číslo, kterým je 
třeba znásobit číslo 1224, abychom dostali druhou mocninu 
přirozeného čísla. 

Řešení. Nejprve rozložíme číslo 1224 v prvočinitele; 
platí 1224 = 23 .32 .17. Prvočísla 2 a 17 jsou zde umocněna 
lichým exponentem, proto musíme číslo 1224 znásobit 
alespoň součinem 2.17, abychom dostali druhou mocninu 
přirozeného čísla. Tato mocnina je pak rovna 24 .32 .172 = 
= (22.3.17)2 = 2042. 

Odpověd. Nejmenší přirozené číslo, kterým musíme 
násobit, je číslo 34. 

Prvočísla jsou v posloupnosti přirozených čísel rozložena 
velmi nepravidelně. V některých intervalech pozorujeme, 
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že je tu nakupeno velmi mnoho prvočísel, jinde můžeme 
opět najít velikou skupinu vytvořenou výhradně z čísel 
složených. O této otázce nás trochu poučí další příklad. 

Přiklad 13. Ukažte, že je možno najít tisíc po sobě 
jdoucích přirozených čísel, jež jsou vesměs složená. 

Řešení. Příkladem takové skupiny tisíce po sobě jdoucích 
složených čísel je skupina*) 
1001! + 2, 1001! + 3, 1001! + 4, 1001! + 5 , . . . , 
1 0 0 1 ! + 1 0 0 0 , 1 0 0 1 ! + 1001 . 

Číslo 1001! + 2 je zřejmě dělitelné dvěma, číslo 1001! + 
+ 3 třemi a konečně číslo 1001! + 1001 je dělitelné číslem 
1001 í všechna tato čísla jsou tedy složená. 

Poznamenejme, že z naší úvahy nijak nevyplývá, že 
v posloupnosti všech přirozených čísel existuje mezi prvo-
čísly mezera obsahující právě 1000 čísel složených. V před-
cházející úvaze jsme totiž nezkoumali, zda číslo 1001! + 1 
je složené nebo není, a na první pohled je patrno, že číslo 
1001! + 1002 je složené (je totiž sudé). 

Závěrem tohoto paragrafu si všimněme jedné aritme-
tické posloupnosti, v níž po sobě následuje pět prvočísel. 

Přiklad 14. Pět prvočísel tvoří pět po sobě jdoucích 
členů aritmetické posloupnosti s diferencí d = 6. Určete 
tato prvočísla. 

Řešení. Nejprve ukážeme toto: Je-li a libovolné celé 
nezáporné číslo, pak alespoň jedno z čísel 

a, a + 6, a + 12, a + 18, a + 24 (1) 

*) Připomeňme, že zápis n I (čti n faktoriál) znamená součin všech 
přiložených čísel počínaje číslem 1 a konče číslem n; je tedy např. 41 = 
= 1 . 2 . 3 . 4 = 24. 
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je dělitelné pěti. Podle cvičení 9 je možno vyjádřit číslo a 
v právě jednom ze tvarů 5k, 5k + 1 , 5k + 2, 5k + 3, 
5k + 4. Je-li a — 5k, pak první z čísel v řádku (1) je děli-
telné pěti. Je-li a = 5k + 1, pak a + 24 = 5k + 25 = 
= 5(k + 5), takže poslední z čísel v (1) je pěti dělitelné. 
Obdobně pro a = 5k + 2 vychází a -f 18 = 5(& + 4), pro 
a = 5k + 3 je a + 12 = 5(k + 3) a konečně pro a = 
= 5£ + 4 máme a + 6 = 5{k + 2). 

Ukázali jsme tedy, že v řádku (1) je jedno z čísel dělitelné 
pěti. Podle podmínek uvedených v textu příkladu chceme, 
aby všechna čísla v řádku (1) byla prvočísla. Z toho vyplývá, 
že číslo, pro něž jsme před chvílí prokázali dělitelnost pěti, 
je rovno právě číslu 5. Vzhledem k tomu, že d = 6, stojí 
číslo 5 nutně na prvním místě mezi uvažovanými prvočísly, 
takže a = 5, a + 6 = 1 1 , a+ 12 = 17, a+ 18 = 23, 
a + 24 = 29. 

Zkouška ukazuje, že všech pět nalezených čísel jsou 
prvočísla. 

Odpověd. Úloze vyhovuje jediná pětice prvočísel, totiž 
5, 11, 17, 23, 29.*) 

Ú l o h y 

15. Pomocí Eratosthenova síta určete všechna prvočísla 
menší než číslo 100. 

16. Rozhodněte zda číslo 2437 je prvočíslo nebo číslo 
složené. Obdobnou otázku zodpovězte též pro číslo 2771. 

17. Rozložte v prvočinitele a) 3248; b) 2418; c) 3819. 

*) Čtenář se snadno přesvědčí, že šestý člen uvažované aritmeucké 
posloupností již není prvočíslo. 
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18. Vyhledejte největší prvočíslo, jímž je dělitelné číslo 
4812. 

19. Určete nejmenší přirozené číslo, kterým je třeba 
znásobit číslo 600, abychom dostali třetí mocninu přiroze-
ného čísla. 

20. Rozhodněte, zda číslo 10! + 1 je prvočíslo nebo 
číslo složené. 

21. Určete největší trojciferné prvočíslo. 
22. Prvočíselnými dvojčaty nazýváme takovou dvojici 

prvočísel (p , q), o nichž platí q = p + 2. Vyhledejte vše-
chna prvočíselná dvojčata menší než 100. 

23. V posloupnosti přirozených čísel není možno najít 
mezeru mezi prvočísly obsahující právě tisíc čísel složených. 
Dokažte. 

24. Pět prvočísel tvoří pět po sobě jdoucích členů aritme-
tické posloupnosti s diferencí d = 12. Určete tato prvo-
čísla. 

25. Je možno najít pět prvočísel, která tvoří pět po sobě 
jdoucích členů aritmetické posloupnosti s diferencí d = 8? 

26. Každé prvočíslo větší než 3 je možno vyjádřit buď 
ve tvaru 6& + 1 nebo ve tvaru 6k + 5, kde k je vhodné celé 
nezáporné číslo. Dokažte. 

27. a) Rozhodněte, zda každé přirozené číslo větší než 3, 
které je tvaru 6k + 1, je prvočíslem, b) Obdobnou otázku 
zodpovězte též pro tvar 6k + 5. 

28. Určete nejmenší složené číslo, které není možno vy-
jádřit jako součet dvou prvočísel. 
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4. 

NEJVĚTŠÍ SPOLEČNÝ DĚLITEL 
ANEJMENSÍ SPOLEČNÝ 
NÁSOBEK 
• 

Společným dělitelem přirozených čísel ax, a2, a3,..., at, 
nazýváme to přirozené číslo d, kterým je každé z čísel alt 
a2,..., ak dělitelné. Je-li dána skupina přirozených čísel 
<Zij a 3 , . . . at , je vždy možno vyhledat největší z jejich 
společných dělitelů. Toto číslo se nazývá největší společný 
dělitel čísel aí} a2, a3,..., a*, a označuje se D (a19 a2, a3,..., 
ak). 

Největší společný dělitel dvou daných přirozených čísel 
se hledá buď rozkladem v prvočinitele nebo metodou po-
stupného dělení, zvanou též Euklidův algoritmus. Oba způ-
soby si ukážeme v příkladech. 

Příklad 15. Určete D (165, 198). 

Řešení. V příkladě jsou dána malá čísla, která snadno 
rozložíme v prvočinitele. K určení D (165, 198) užijeme 
tedy metpdy první. 

Obě daná čísla rozložíme v prvočinitele. Platí 165 = 
= 3.5.11, 198 = 2.32 .11. Ze získaných prvočinitelů vy-
bereme všechny společné prvočinitele a každého z nich 
vezmeme s nejmenším mocnitelem, jaký se vyskytuje v na-
lezených rozkladech; výsledná čísla znásobíme. Vychází 
tedy D (165, 198) = 3.11 = 33. 
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Přiklad 16. Určete D (9694, 4181). 

Řešení. Zde je rozklad v prvočinitele dosti obtížný, proto 
použijeme metody postupného dělení. Nejprve dělíme větší 
číslo číslem menším, potom menší číslo dělíme prvním 
zbytkem, dále první zbytek dělíme druhým zbytkem a po-
dobně pokračujeme tak dlouho, až dostaneme podíl beze 
zbytku. První dělitel, při kterém vyjde dělení beze zbytku, 
je hledaný největší společný dělitel. 

Pro výpočet D (9694, 4181) dostáváme postupně 
9694 = 4 1 8 1 . 2 + 1332, 
4181 = 1332.3 + 185, 
1332 = 185.7 + 37, 
185 = 37.5. 

Je tedy D (9694, 4181) = 37. 
Poznamenejme ještě, že metoda postupného dělení je 

pro vyhledání největšího společného dělitele zvlášť vhodná, 
chceme-li při výpočtu použít běžných kancelářských počí-
tacích strojů. Na těchto strojích se totiž dělení provádí 
velmi snadno a celý postup — i při dosti velkých číslech — 
provedeme tak ve velmi krátké době. 

Platí-li D-(a15 a2, a3,..., ak) = 1 říkáme, že čísla au 
a2, a3,...,ak jsou nesoudělná. I tento pojem si pocvičíme na 
dvou příkladech. 

Příklad 17. Kolika způsoby je možno vyjádřit číslo 60 
jako součin dvou nesoudělných přirozených čísel? 

Řešení. Dělitelé čísla 60 jsou po řadě čísla 1, 2, 3, 4, 5, 
6, 10, 12, 15, 20, 30, 60. Platí 
60 = 1.60, 60 = 2.30, 60 = 3.20, 60 = 4.15, 
60 = 5.12, 60 = 6.10, 6 0 = 10.6, 6 0 = 12.5, 
6 0 = 15.4, 60 = 20.3, 60 = 30.2, 60 = 60.1. 

Je patrné, že rozklady 60 = 2.30, 60 = 6.10, 60 = 
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= 10.6, 60 = 30.2 nevyhovují podmínkám naší úlohy. 
Odpověd. Nehledíme-li k pořadí činitelů, je možno číslo 

60 vyjádřit čtyřmi způsoby jako součin dvou nesoudělných 
přirozených čísel. Kdybychom ovšem k pořaHí činitelů při-
hlíželi, měla by tato úloha celkem osm řešení. 

Příklad 18. Kolika způsoby je možno vyjádřit číslo 60 
jako součet dvou nesoudělných přirozených čísel ? 

Řešení. Máme vyjádřit číslo 60 ve tvaru 60 = x + y, 
kde x, y jsou nesoudělná čísla. Z tohoto vyjádření vyplývá, 
že také čísla 60 a x jsou nesoudělná. Kdyby totiž nesoudělná 
nebyla, dělil by jejich největší společný dělitel také číslo y, 
takže by ani čísla x, y nebyla nesoudělná. 

Vyhledáme tedy nejprve všechna přirozená čísla x, která 
jsou menší než 60 a nesoudělná s číslem 60. Jsou to tato 
čísla: 
1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59. 

Docházíme tak k těmto součtům 

60 = 1 + 59, 60 = 7 + 53, 60 = 11 + 49, 
60 = 13 + 47, 60 = 17 + 43, 60 = 19 + 41, 
60 = 23 + 37, 60 = 29 + 31, 60 = 31 + 29, 
60 = 37 + 23, 60 = 41 + 19, 60 = 43 + 17, 
60 = 47 + 13, 60 = 49 + 11, 60 = 53 + 7, 

60 = 59 + 1. 
Odpověd. Nehledíme-li k pořadí sčítanců, je možno číslo 

60 vyjádřit osmi způsoby jako součet dvou nesoudělných 
přirozených čísel. Přihlédneme-li ovšem k pořadí sčítanců, 
má tato úloha celkem 16 řešení. 

Pojem největšího společného dělitele se často vyskytuje 
při numerickém počítání. Ukažme si jeden příklad, kdy se 
největšího společného dělitele využívá k tomu, aby se na-
vrhl co nejvhodnější ozubený převod v určitém stroji. 
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Příklad 19. Na obr. 1 vidíme ozubený převod složený 
ze dvou kol: menší kolo má 10 zubů, kolo větší má 20 zubů. 
Srovnejme tento obrázek s obr. 2, který znázorňuje rovněž 
ozubený převod složený ze dvou kol. Kolo menší má zde 12 
zubů, kolo větší 25 zubů. Který přerod se méně opotře-
buje při nahodilé vadě zubu ? 

Řešení. Abychom na danou otázku odpověděli, uvažujme 
takto: U první dvojice kol bude vždy týž zub většího kola 
(na obr. 1 jsme jej označili tečkou) zapadat do téže mezery 
kola menšího; nastane to totiž po každé druhé plné otáčce 
menšího kola, neboť D (10, 20) = 10. Bude-li tedy náho-
dou zub, který jsme v obr. 1 označili tečkou, nějak zá-
vadný, bude se i druhé, menší kolo, v určitém místě velmi 
rychle opotřebovávat. 

V případě druhém je situace zcela jiná. Zub, který jsme 
na větším kole označili tečkou, zapadne znovu do téže 
mezery menšího kola teprve tehdy, až menší kolo vykoná 
25 plných otáček, čísla 12 a 25 jsou totiž nesoudělná — 
platí D (12, 25) = 1. Nahodilá vada zubu se tak rovnoměr-
něji rozdělí při svém působení na všechny mezery menšího 
kola a soukolí se bude méně opotřebovávat. Tím jsme tedy 
našli odpověď na otázku, který z obou převodů je výhod-
nější. 

Obr. 1. 

Obr. 'i. 
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Společným násobkem přirozených čísel a1} a2, a* 
nazýváme to přirozené číslo n, které je dělitelné každým 
z čísel flls a2, <23,..., a*. K dané skupině přirozených čísel 
a15 a2, a 3 , . . . , ak je vždy možno najít nejmenší z jejich spo-
lečných násobků. Číslo, které takto nalezneme, se nazývá 
nejmenší společný násobek čísel a1} av a3,..., ak z označuje 
se n(<Zi, a2, a3,... ,ak). 

Nejmenší společný násobek dvou přirozených čísel hle-
dáme buď rozkladem v prvočinitele nebo pomocí jistého 
vztahu mezi nejmenším společným násobkem a největším 
společným dělitelem. Probereme si to opět na příkladech. 

Příklad 20. Určete n(440, 660). 

Řešení. Čísla 440 a 660 snadno rozložíme v prvočinitele; 
platí 440 = 23 .5.11, 660 = 22 .3 .5.11. Abychom určili 
n(440,660) vezmeme získané prvočinitele s největšími moc-
niteli, jaké se u nich v rozkladech vyskytují, a tato čísla 
znásobíme. Dostáváme tak n(440, 660) = 2 3 .3 .5 .11 = 
= 1320. 

Příklad 21. Určete n (9694, 4181). 

Řešení. Určováním D (9694, 4181) jsme se už zabývali 
v příkladě 16. Konstatovali jsme tam, že rozklad v prvo-
činitele by byl pro daná čísla dosti pracný. Pro výpočet 
n (9694, 4181) použijeme zde této poučky: 

Součin nejmenšího společného násobku a nejvčtšího spo-
lečného dělitele dvou daných přirozených čísel je roven sou-
činu těchto přirozených čísel. 

Pro náš případ to znamená, že platí 
n(9694, 4181).D (9694,4181) = 9694.4181. 
Z příkladu 16 víme, že. D (9694,4181) = 37, takže 

n(9694,4Í81).37 = 9694.4181 
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a dále 
9694.4181 

n(9694,4181) = ^ . 

Pro numerický výpočet je zbytečné provádět násobení 
v čitateli, platí totiž 4181 : 37 = 113, takže 

n(9694,4181) = 9694.113 = 1 095 422. 
Odpověd. n(9694, 4181) = 1 095 422. 
Věnujme nyní pozornost příkladům, ve kterých se vy-

skytuje jak pojem největšího společného dělitele, tak pojem 
nejmenšího společného násobku. 

Příklad 22. Určete dvě čísla, jejichž největší společný 
dělitel je 2 a nejmenší společný násobek je 12. 

Řešeni. Označme hledaná čísla písmena x,y; označení čísel 
můžeme volit tak, že x S y. Protože největší společný děli-
tel čísel x, y je roven číslu 2, můžeme čísla x, y vyjádřit 
ve tvaru x = 2xx, y = 2yv kde xu yr jsou vhodná čísla 
navzájem nesoudělná. Nejmenší společný násobek čísel 
2xu 2yx je zřejmě roven číslu 2x1y1, takže má platit 2x1y1 = 
= 12 čili xxy r = 6. Protože čísla *15 yx mají být nesoudělná 
a protože má zároveň platit xx á yi , vyplývá ze vztahu 
x tyx = 6 buď řešení x t = 1, y i = 6 nebo řešení x± = 2, 
yx = 3. Vrátíme-li se nyní k číslům x, y, dostáváme buď 
dvojici * = 2, y = 12 nebo dvojici x = 4, y = 6. Zkouš-
kou se snadno přesvědčíme, že obě tyto dvojice vyhovují 
naší úloze. 

Odpověd. Nehledíme-li na pořadí hledaných čísel, vy-
hovují dané úloze právě dvě dvojice x = 2, y = 12 nebo 
x = 4, y = 6. 

Příklad 23. Určete dvě čísla, jejichž největší společný 
dělitel je 7 a nejmenší společný násobek je 22. 
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Řešení. Snadno nahlédneme, že není možno najít žádnou 
dvojici čísel, která by vyhovovala uvažovaným podmín-
kám. Nejmenši společný násobek musí být totiž vždycky 
násobkem největšího společného dělitele, to však není 
splněno v textu naší úlohy (číslo 7 nedělí číslo 22). 

Příklad 24. Určete dvě čísla, jejichž nejmenši společný 
násobek je o 7 větší než jejich největší společný dělitel. 

Řešení. Označme opět hledaná čísla písmeny x, y, při 
čemž volíme označení tak, aby platilo x ^ y. Podle textu 
naší úlohy má platit 

n ( x , y ) - D ( x , y ) = 7. (1) 
Protože D(jc, y) dělí číslo n(*, y), dostáváme z tohoto 

vztahu, že D (x, y) dělí také číslo 7. Máme tedy dvě mož-
nosti: buďD(x,y) = 1 nebo D(x,y) = 7. Probereme každý 
z těchto případů zvlášť. 

Je-li D(*, y) = 1, jsou čísla x, y nesoudělná. Pro nej-
menši společný násobek pak máme vztah n(x, y) = xy, 
takže rovnice (1) přejde na tvar xy — 1 = 7 čili xy = 8. 
Vzhledem k předpokladům x á y, D(*, y) = 1 vyplývá 
odtud snadno, že x = 1, y = 8. 

Je-li D(x, y) = 7, pak čísla x, y můžeme vyjádřit ve 
tvaru x = 7x1} y = 7yl5 kde xly yx jsou nesoudělná čísla 
splňující nerovnost xr s yY. Pro n(*, y) dostáváme pak 
postupně n(x, y) = n(7x15 7yt) = 7n(jcx, yx) = 7xly1. Vrá-
tíme-li se opět k rovnici (1), máme 7xxyx — 7 = 7 čili 
7xiyi = 14 čili xxyx = 2. Vzhledem k předpokladům o čís-
lech x1} j>! dostáváme zde jediný výsledek totiž = 1, 
y1 = 2, což pro čísla x,y znamená, že x = 7,y = 14. 

Zkouškou se můžeme přesvědčit, že obě dvojice, ke kte-
rým jsme dospěli, vyhovují dané úloze. Platí totiž n (1,8) = 
= 8, D(l , 8) = 1, takže rovnice (1) je skutečně splněna; 
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dále je n(7, 14) = 14, D(7, 14) = 7, takže opět platí rov-
nice (1). 

Ú l o h y 

29. Vypočtěte a) D(396, 444); b) D(3293, 3827); 
c) D(3797, 4129); d) D(396, 444, 616); e) D(910, 1012, 
1020, 1291). 

30. Vypočtěte a) n(43, 258); b) n (1000, 1283); c> 
n (12, 15, 18); d) n (10, 15, 20, 25). 

31. Jak se změní největší společný dělitel dvou přiroze-
ných čísel, jestliže každé z čísel znásobíme dvěma. 

32. Jak se změní nejmenší společný násobek dvou přiro-
zených čísel, jestliže každé z čísel znásobíme třemi. 

33. Jsou-li dána libovolná dvě přirozená čísla a, b ta-
ková, že b dělí a, pak vždy je možno najít aspoň jednu dvo-
jici přirozených čísel x, y takovou, že n (x, y) = a, 
D (x, y) = b. Dokažte. 

34. Kolika způsoby je možno vyjádřit číslo 21 jako součet 
tří prvočísel ? 
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5. 

N E U R Č I T É R O V N I C E 
• 

Neurčitou (diofantskou) rovnicí nazýváme jednu rovnici 
o několika neznámých x,y, z,..., jestliže se za tyto nezná-
mé připouštějí výhradně jen čísla celá. Někdy se na neurčité 
rovnice klade omezení ještě větší a tento směr budeme sle-
dovat i v naší knížce. Protože zde studujeme různé vlast-
nosti přirozených čísel a nuly, budeme i při neurčitých 
rovnicích připouštět jako řešení jen čísla celá nezáporná. 

Název „diofantská rovnice" připomíná nám jméno řec-
kého matematika Diofanta, který žil v Alexandrii ve III . sto-
letí n. 1. Diofantos napsal knihu s názvem „Aritmetika", 
ve které se takřka už moderním způsobem zabýval různými 
aritmetickými a algebraickými problémy. Teorie neurči-
tých (diofantských) rovnic je dnes velmi obsáhlá, takže ji 
zde nemůžeme vykládat v plné šíři. Vybrali jsme proto jen 
různé zajímavosti do několika příkladů. 

Příklad 25. Dopis máme oznámkovat známkami v cel-
kové ceně 1,60 Kčs. Kolika způsoby to můžeme provést, 
jestliže smíme použít jen známek čtyřicetihaléřových a še-
desátihaléřových ?*) 

Řešení. Označme * počet známek čtyřicetihaléřových, 
y počet známek šedesátihaléřových, jichž použijeme při 
*) Prosíme čtenáře, aby si uvčdomil, že v příkladě 25 neklademe poža-
davek, aby se při každém známkováni skutečně využilo obou druhů 
známek. 

3? 



jednom oznámkováni. Podle podmínek naši úlohy má platit 
40* + 60y = 160 čili po malé úpravě 

2 * + 3y = 8 . (1 ) 

Je pochopitelné, že při řešení rovnice (1) budeme za 
čísla x, y připouštět jen přirozená čísla a nulu. Setkáváme 
se zde tedy s prvním příkladem neurčité rovnice; je to — 
jak vidíme — neurčitá rovnice 1. stupně o dvou neznámých 
x, y. Jak budeme tuto rovnici řešit ? Popíšeme jednu me-
todu, která zde snadno povede k cíli. Abychom nemuseli 
zbytečně probírat příliš mnoho případů, povšimněme si, 
že v rovnici (1) jsou čísla 2x a 8 sudá, takže i číslo 3y musí 
být sudé. To znamená, že samo číslo y musí být sudé. Nyní 
systematicky prozkoumáme všechna sudá čísla y = 0, 2, 

Dosadíme-li y = 0 do rovnice (1), vychází 2x = 8 čili 
x = 4. Dvojice x = 4 ,y = 0 vyhovuje tedy rovnici (1). 

Dosadíme-li y = 2, vychází 2x = 8 — 6 čili x = 1. 
Také dvojice x = 1, y = 2 vyhovuje. 

Konečně dosadíme-li do rovnice (1) za y číslo 4 nebo 
číslo ještě větší, dostáváme na levé straně rovnice (1) číslo 
větší nebo rovné dvanácti; v tomto případě nemůžeme 
najít žádné vyhovující číslo x. 

Odpověd. Známkování můžeme provést dvěma způsoby; 
Použijeme buď 4 známky čtyřicetihaléřové nebo nalepíme 
1 známku čtyřicetihaléřovou a 2 známky šedesátihaléřové. 

Řešeni přikladu 25 si můžeme dobře přiblížit, jestliže 
použijeme grafického znázornění. Rovnici (1), kterou jsme 
se prve zabývali, uvedme nejprve na tvar. 

y = - j * + - ( 2 ) 

Pohleďme nyní na rovnici (2) ze stanoviska teorie funkcí. 
Ve škole jste se učili, že grafem funkce (2) je přímka p, 
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kterou vidíte znázorněnou na obr. 3. Body. jejichž obě 
souřadnice jsou celá nezáporná čísla, jsou na obr. 3 vy-
značeny nápadnými tečkami Jak vidíte, prochází přímka 

p dvěma tečkami, které odpovídají bodům [4, 0] a [1, 2]. 
Je tedy i z tohoto grafického znázornění patrno, že úloha 
má právě dvě řešení — totiž ta, ke kterým jsme dospěli 
prve výpočtem. 

Příklad 26. Když se skupina cvičenců postavila do 
osmistupů, nedostával se v poslední řadě jeden cvičenec; 
když se táž skupina postavila do devítistupů, chyběli 
v poslední řadě cvičenci dva. Určete, kolik bylo cvičenců, 
víte-li, že jich bylo méně než sto. 

Řešení. Označme x počet osmistupů a y počet devíti-
stupů. Podle podmínek úlohy je počet cvičenců možno 
vyjádřit jednak číslem 8* — 1, jednak číslem 9y — 2, 
takže platí 

Obr. S. 
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Sx - 1 = 9y — 2. (1) 

Budeme se nyní zabývat řešením neurčité rovnice (1). 
Seznámíme se zde s jiným matematickým obratem, než 
jakého jsme použili v příkladě 25. 

Rovnici (1) uvedeme na tvar 8x = 9y — 1 a dále 

9y — 1 v — 1 x = čili x = y -f- ——Q—. Protože číslo x má být o o 
v — 1 

přirozené, je třeba, aby také číslo — b y l o přirozené. 
o 

Položme pro stručnost ^ * = u; odtud plyne y= 8u -f 
o 

+ 1 a dále x = y + u = 9u+ l. 

Co jsme zatím při vyšetřování rovnice (1) nalezli? Vy-
hovuje-li nějaká dvojice přirozených čísel x, y rovnici (1), 
pak je možno čísla x, y vyjádřit ve tvaru 

* = 9m + 1, y = 8 w + 1, (2) 

kde u je nějaké přirozené číslo. Všimněme si však ještě 
toho, že čísla.*, y jsou ještě omezena podmínkou, že počet 
cvičenců je menší než 100. Vyjádříme-li počet cvičenců 
např. tvarem 8* — 1, máme nerovnost 8* — 1 < 100. Do-
sadíme-li sem podle (2), vychází 

8(9« + 1) - 1 < 100 

a po další malé úpravě je 72u < 107. Této nerovnosti vy-
hovuje jediné přirozené číslo u, totiž u = L Zbývá ještě 
vypočíst příslušná čísla x, y podle rovnic (2); vychází x = 
= 10, y = 9. Počet cvičenců je pak 8* — 1 = 9y — 2 = 
= 79. 
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Odpovéd. Ve skupinč bylo 79 cvičenců.*) 

V dalším příkladě se seznámíme s neurčitou rovnicí 1. 
stupně o třech neznámých. 

Příklad 27. Kolika způsoby je možno v naší měně 
rozměnit desetihaléř? 

Řešení. Při rozměňování můžeme používat mincí halé-
řových, tříhaléřových nebo pětihaléřových. Označme * po-
čet použitých haléřů, y počet tříhaléřů a z počet pětihaléřů. 
Potom zřejmě platí 

* + 3y + 5z = 10. (1) 
Při řešení rovnice (1) budeme ovšem za čísla x, y, z 

připouštět zase jen čísla přirozená nebo nulu. Jakým způ-
sobem budeme při řešení postupovat ? Není k tomu v pod-
statě potřeba žádných mimoškolských znalostí, musíme 
si dát jen pozor, abychom na žádnou trojici x, y, z neza-
pomněli. 

Číslo z nemůže být zřejmě větší než číslo 2, neboť pak 
by bylo 5z > 10. 

Pro z máme tedy tři možnosti: bud je z = 2 nebo z = 1 
nebo konečně z = 0. Probereme každý z těchto případů 
zvlášť. 

Pro z = 2 přechází rovnice (1) na tvar x.+ 3_y = 0, 
z čehož plyne x = 0 a současně y = 0. 

Pro 2 = 1 má rovnice (1) tvar 

x + 3y = 5. (2) 
V rovnici (2) nemůže být y > 1, neboť pak by bylo 

*) Přenecháváme čtenáři, aby si řeŽenl tohoto přikladu graficky znázor-
nil obdobným způsobem, jak jsme to provedli v příkladě 25. 
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3y > 5. Zbývá tedy buďy = 1 neboy = 0. V prvním pří-
padě nacházíme x = 2, v případě druhém x = 5. 

Znova se vraťme k rovnici (1) a dosaďme do ní z = 0, 
Dostáváme tak rovnici c 

x + 3y= 10. (3) 
Je vidět, že v rovnici (3) nemůže být y > 3, takže zbývá 

buď y = 3 nebo y = 2 nebo y = 1 nebo konečně y = 0. 
Těmto číslům odpovídají po řadě čísla x = 1, x = 4, 
jc = 7, * = 10. 

Výsledky, ke kterým jsme dospěli, můžeme shrnout do 
této tabulky. 

Počet 

haléřů třlhaléřů pětihaléřů 

0 0 2 
2 1 1 
5 0 1 
1 3 0 
4 2 0 
7 1 0 

10 0 0 

Při sestavování této tabulky jsme vlastně současně pro-
váděli zkoušku, zda nalezené výsledky vyhovují rovnici (1). 

Odpověd. Desetihaléř je možno rozměnit sedmi způsoby. 
Závěrem budeme řešit jednu neurčitou rovnici 2. stupně. 

Přiklad 28. Jedna odvěsna pravoúhlého trojúhelníka má 
velikost 5 cm. Vypočtěte velikost přepony a druhé odvěsny, 
víte-li, že velikost těchto stran (v centimetrech) je vy-
jádřena přirozenými čísly. 
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Řešení. Označme x velikost druhé odvěsny a y velikost 
přepony hledaného pravoúhlého trojúhelníka. Podle Pytha-
gorovy věty platí x2 + 52 = y2 čili y2 — x2 = 25. Na levé 
straně této rovnice můžeme rozložit dvojčlen v součin, 
takže dostáváme 

(y + x ) ( y - x ) = 25. (1) 
Abychom neurčitou rovnici (1) rozřešili, rozložme nej-

prve číslo 25 všemi možnými způsoby v součin dvou při-
rozených čísel. Platí 25 = 1.25, 25 = 5.5, 25 = 25.1. Na 
levé straně rovnice (1) máme rovněž dva činitele (první 
je číslo y + x, druhý y — x). Podle významu čísel x, y je 
zřejmě činitel y + x větší než činitel y — x. To nás vede 
k soustavě dvou lineárních rovnic o dvou neznámých, totiž 
k soustavě 

y + x = 25, 
y — x = l. 

Snadným výpočtem nahlédneme, že tato soustava má 
jediné řešení x = 12, y = 13. 

Odpověd. Úloze vyhovuje jediný pravoúhlý trojúhelník, 
jehož strany mají velikosti po řadě 5 cm, 12 cm, 13 cm. 

Pravoúhlé trojúhelníky, jejichž strany mají velikosti vy-
jádřené přirozenými čísly, se nazývají trojúhelníky pytha-
gorejské. Tento název je odvozen od jména starořeckého 
filosofa a matematika Pythagora (asi 570 až 500 před n. 1.). 
Pythagoras založil v VI. a V. století před n. 1. na ostrově 
Samu školu, které jsou přisuzovány velké zásluhy o rozvoj 
tehdejší matematiky. Pythagorovi žáci se zabývali zejména 
naukou o číslech a číselných posloupnostech, v geometrii 
pak studovali zvláště pravoúhlý trojúhelník. Nejznámějším 
příkladem pythagorejského trojúhelníka je pravoúhlý troj-
úhelník, jehož strany mají velikost po řadě 3, 4 a 5. Teorie 
čísel se zabývala později velmi zevrubně studiem pythago-
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rejských trojúhelníků a našla nutné a postačující podmínky 
k tomu, aby trojúhelník byl pythagorejský. Zájemce o tuto 
problematiku musíme však odkázat na odbornější literaturu 
z teorie čísel, jejíž přehled najdete v závěru této knížky. 

Ú l o h y 

35. Poštovní zásilku máme známkovat známkami v cel-
kové ceně 1,80 Kčs. Kolika způsoby to můžeme provést, 
smíme-li použít jen známek třicetíhaléřových, čtyřiceti-
haléřových a šedesátihaléřových ? 

36. Je dána rovnice 4x + 6y + 10z = 1511. Je možno 
najít tři přirozená čísla x, y, z, která této rovnici vyhovují ? 

37. Určete všechny dvojice přirozených čísel x, y, pro 
něž platí x2 — y2 = 15. 

38. Přepona pravoúhlého trojúhelníka má velikost 15 cm. 
Vypočtěte velikost jeho odvěsen, víte-li, že tyto velikosti 
(v centimetrech) jsou vyjádřeny přirozenými čísly. 
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V Ý S L E D K Y Ú L O H 

1. 1 0 " - 1 * + 10n-23>. 
2. Úloha nemá řešeni. 
3. Pro jednociferné číslo je tvrzení zřejmé, neboť 52 = 25. 

Je-li uvažované číslo víceoferné, pak je můžeme vyjádřit 
ve tvaru lOp + 5, kde p je vhodné přirozené číslo. Platí 
CIOp + 5)2 = 100ř2 + lOOp + 25 = 100(p2 + p) + 25. 
Číslo 100(p2 + p) je zřejmě zakončeno dvěma nulami, takže 
součet 100(/>2 + p) + 25 je zakončen dvojčíslím 25. 

4. 1962. 
6 132 
7. 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60. 
8. 2520. 
9. Je-li celé nezáporné číslo m dělitelné pěti, platí m = 

5k, kde k je celé nezáporné číslo. Není-li m dělitelné pěti, 
můžeme najít celé nezáporné k a přirozené číslo r tak, 
že m = 5k + r, 0 < r < 5. Odtud už plyne naše tvrzení. 

10. Platí 1724 = (17.10 + 2)4 = 17a + 16, kde a je 
jisté přirozené číslo. Podobně 35313 = (17.2 + l)313 = 
17b + 1, kde b je též přirozené. Celkem tedy máme 1724 + 
_l_ 35313 _ i7( a _j_ b takže uvažované číslo je sku-
tečně dělitelné sedmnácti. 

11. Tvrzení plyne ze vzorce 
a3 + b3 = (a + b) (a2 - ab + b2). 

12. Plyne z příkladu 7. 
13. Důkaz obdobný jako v příkladech 6 a 7. 
14. Důkaz se podá matematickou indukcí. Pro n = 1 
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máme = 11. Předpokládejme, že pro některé přirozené 
číslo n je a„ dělitelné jedenácti; upravujeme an+1 = 
= 2 .3 5 n + 1 + 5 = 2 . 3 5 n _ 4 . 3 5 + 5 = 2 .3 5 - - 4 . 243 + 5 = 
= 2.35""4 + 5 + 2.35"~*.242 = aH + 2 2 .3 5 »- 4 . II2 . Číslo 
a„ je dělitelné jedenácti a číslo 2 2 . 3 6 " - 4 . I I 2 je rovněž je-
denácti dělitelné. Proto je i součet obou, tj. číslo an+1 dě-
litelné jedenácti. 

15. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 
53, 59, 61, 67, 71, 73, 79, 83, 89, 97. 

16. Číslo 2437 je prvočíslo, číslo 2771 je složené, neboť 
je dělitelné sedmnácti. 

17. a) 3248 = 2 4 . 7 .29 ; b) 2418 = 2 .3 .13 .31 ; c) 
3819 = 3 . 1 9 . 6 7 . 

18. 401. 
19. 45. 
20. Platí 1 0 1 + 1 = 3 628 801. Toto číslo je zřejmě 

dělitelné jedenácti, takže je složené. 
21. 997. 
22. (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), 

(59, 61), (71, 73). 
23. Kdyby taková mezera mezi prvočísly p, q existovala, 

platilo by q — p — 1001. Nepřichází v úvahu p = 2 
takže obě čísla p, q by byla lichá a jejich rozdíl by byl 
tedy sudý. Náš rozdíl je však 1001, což je spor. 

24. Vyhovuje jediná pětice prvočísel, totiž 5, 17, 29, 
41, 53. 

25. Není to možné. 
26. Prvočísla 2 a 3 není možno v uvedeném tvaru vy-

jádřit. Každé větší přirozené číslo lze vyjádřit v jednom 
ze tvarů 6k, 6k + 1, 6k + 2, 6k + 3, 6k + 4, 6k + 5. 
Tvary 6k, 6k + 2, 6k + 3, 6k + 4 vedou zřejmě k číslům 
složeným, takže zbývají jen tvary 6k + 1 a 6k + 5. 

27. a) Nikoliv. Pro k = 4 máme 6k + 1 = 25 = 52. 
b) Nikoliv. Pro k = 5 máme 6£ + 5 = 35 = 7.5. 
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28. 27. 
29. a) 12; b)89; c) 1; d) 4; e) 1. 
30. a) 258; b) 1 283 000; c) 180; d) 300. 
31: Zdvojnásobí se. 
32. Ztrojnásobí se. 
33. Tvrzení plyne že vztahů n(a, b) = a, D(a, b) = b. 
34. 21 = 2 + 2 + 17, 21 = 3 + 5 + 13, 

21 = 3 + 7 + 1 1 , 21 = 5 + 5 + 1 1 , 1 

2 1 = 7 + 7 + 7 . 
35. Označíme-li x, y, z po řadě počet známek v ceně 

30 h, 40 h, 60 h, docházíme po malé úpravě k neurčité 
rovnici 3x + 4y + 6z = 18. Obdobně jako v příkladě 25 
snadno nahlédneme, že x musí být sudé číslo. Počet řešeni 
je pak patrný z této tabulky: 

X y z 

0 0 3 
0 3 1 
2 0 2 
2 3 0 
4 0 1 
6 0 0 

36. Není to možné. Dosadíme-li totiž do levé strany 
libovolná tři přirozená čísla, dostaneme sudé číslo; na 
straně pravé je však číslo liché. 

37. Obdobně jako v příkladě 28 docházíme k soustavám 
a) * + y = 15, b) x + y = 5, 

x — y = 1; x — y = 3. 
Soustava a) má řešení x = 8, y — 7, soustava b) řešení 

x = 4, y = 1. Zkouškou se snadno přesvědčíme, že obě 
nalezené dvojice vyhovují dané rovnici. 

38. Označme x, y velikosti odvěsen; podle Pythagorovy 
věty platí x2 + y2 = 225. Tuto neurčitou rovnici budeme 
řešit „zkusmo", ale tak, abychom na žádnou dvojici přiro-
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zených čísel x, y nezapomněli. Dostáváme buď dvojici 
x = 9,y= 12 nebo dvojici x = 12, y = 9. Obě tyto dvo-
jice ovšem vedou4c témuž pravoúhlému trojúhelníku o stra-
nách 9 cm, 12 cm, 15 cm. 

D a l š í d o p o r u č e n á 
l i t e r a t u r a 

a) Knihy určené začátečníkům: 
A. O. Gelfond: Neurčité rovnice, Populární přednášky 
o matematice, sv. 6, Praha 1956. 
K. Hruša: Základní věty o dělitelnosti, Brána k vědění, 
sv. 9, Praha 1950. 
J. Vyšín: Neurčité rovnice, Brána k vědění, sv. 3, Praha 
1949 
b) Knihy pro pokročilejší čtenáře: 
V. Kořínek: Základy algebry, Praha 1953. 
K. Rychlík: Úvod do elementární číselné teorie, Praha 1950. 

c) Publikace cizojazyčné: 
A. A. Byxurrafí: Teopn« HHceji, MocKBa 1960. 
W. Sierpiriski: Co wiemy a czego nie wiemy o liczbach 
pierwszych, Varšava 1961. 



J I Ř Í S E D L A Č E K 

co víme 

O P Ř I R O Z E N Ý C H 

Č Í S L E C H 

Pro účastníky Matematické olympiády vydává 

tJV Matematické olympiády a ÚV ČSM v nakla-

datelství Mladá fronta. Obálku navrhl Jaroslav 

Příbramský. Odpovědný redaktor Květoslav Pe-

rutka. Publikace čislo 1760. Edice Škola mla-

dých matematiků, svazek 2, stran 44. 

Vytiskl Mír, novinářské závody, n. p., závod 2, 

provozovna 22, Praha 2, Legerova 22. 1,84 AA, 

1,89 VA. D-14*10349. Náklad 5000 výtisků. Tem. 

skup. 03-2.1. vydání. Praha 1961. 

Cena brož. výt. Kčs 1,50 

63/III-7 






		webmaster@dml.cz
	2016-06-29T16:29:36+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




