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UVOoD

Tento svazek ma ponékud odlisny charakter od dosavad-
nich svazkia edice Skola mladych matematikii, jeZ byly
obsahové podstatné vaziny na stfedoskolskou litku. Byly
v nich uvedeny i n€které zcela nové vysledky, jichz mate-
matika ve XX. stoleti dosdhla, ale byly to vidycky takové
vysledky, které nepotiebovaly pfedbézného dlouhého vy-
kladu. Naproti tomu tento svazek ma raz docela jiny. Na-
vazuje sice také na stfedoSkolskou latku, ale hlavné sezna-
muje tendfe s pojmy a metodami, keeré pfesahuji rimec
stfedni $koly. Snazime se tak rqzSifovat obzor naSich mla-
dych nadanych Ctenafh - matematiki. Téma o viceroz-
mérnych prostorech je k tomu velmi vhodné, nebot jde
o pojmy, jez jsou dnes viude v matematice b&Zné vZité.
Kazdy student, ktery se chystd k viZnému studiu matema-
tiky, musi dnes poditat s tim, Ze uZz brzy po maturité narazi
pfi svém studiu na pojmy z geometrie vicerozmérnych
prostord.

Obsahové odliSnost od pfedchozich svazkd vyZzaduje
pochopitelné i zménu formy vykladu. Ma-li si zaCate¢nik
0svojit nové partie sim bez spoléhdni na Skolni vyklad, musi
byt text podan formou jakési uéebnice pro samouky. Ne-
pouZivime tedy strohého jazyka $kolnich ucebnic z mate-
matiky, ba ani jejich pfisné logické stavby.

Ctyfrozmérny prostor uziva dnes b&¥né fyzika, ale potfe-
buji jej i jiné védy. Pavod tohoto pojmu je viak v matema-
tice, kde vznikl mnohem dtiv neZ jeho aplikace ve fyzice.
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To je prvni poznatek, ktery si musi ¢tenaf osvojit. Je tézko
rozumét ¢tyfrozmérnym uvahdm fyzikilnim, kdyZ neznime
matematicky obsah tohoto pojmu. V naSem svazku se vé-
nujeme jenom matematickym uvaham ve vicerozmérnych
prostorech, a to jen tém nejjednodussim, protoZe na vic ne-
mame misto. V zavéru bude naznacena i uZiteCnost té&chto
pojmi v matematice samé. Postupovat budeme tak, Ze si
nejdfive vSimneme prostoru jednorozmérného, pak dvoj-
a trojrozmérného a potom teprve pfejdeme k prostorum
vicerozmérnym. Té&Zidt€ Ctenafovy préce je v kapitole 2;
tam jsou na pfikladé dvojrozmérného prostoru (roviny)
provadény vSechny avahy zvlast podrobné. Proto je dile-
2ité peclivé prostudovat tuto kapitolu i pfipojena cviceni.
V dalsich kapitolach jsou totiZ leckde pro strucnost uZ jen
odkazy na obdobny postup v kapitole 2. Ctenaf sam pfitom
zjisti, Ze v geometrii vicerozmérnych prostori nejde o nic
jiného, neZ o zobectiovani geometrickych pojmu a znakd,
jeZ jsou spolecné prostorim jednorozmérnym, dvojroz-
mérnym a trojrozmérnym, které znd ze Skoly. Nezvysu-
jeme viak jenom pocet rozméri, ale zobecfiujeme i pojem
prostoru a pojem bodu. Toto zobectiovani pojmi a vztahi,
s nimiZ matematika pracovala aZ asi do zacatku 19. stoleti,
je spolu s postupujici abstrakci charakteristické pro vyvoj
dnesni matematiky a netyka se jen zvySovani po¢tu rozméru
v geometrii. Zapada tedy geometrie vicerozmérnych pro-
storu zcela pfirozené do celé dneSni matematiky.



1. kapitola

PRIMKA

Ze skoly je kaZdému zndmo, Ze realnd Cisla si zndzorfiu-
jeme jednotlivymi body na tzv. ose iselné. Tim rozumime
pfimku, ozna¢me ji pismenem x (viz obr. 1), na niZ zvolime
bod O, zvany pocitek, jemuz pfifadime &islo nula. Od
ného vynasime obycCejnym méfitkem na osu Ciselnou délky
znazornujici jednotliva realna ¢isla; obrazem kazdého Cisla
na této ose je druhy krajni bod tseCky zminéné délky (prvni
jeji krajni bod je v poatku). Na jedné strané od pocitku
tak dostdvime body znizorfiujici kladnd &isla (na obr. 1
leZi vpravo od bodu O), na druhé stran€ body znizor-
fiujici ¢isla zdporna (na obr. 1 leZi vlevo od bodu O). Na
pfimce x mame tak dvoji orientaci; miuvime o kladném
smyslu méfeni na ose x, méfime-li délky zleva do pra-
va, nebo o ziporném smyslu, méfime-li je obricené.
Oba smysly jsme vyznalili v obr. 1 Sipkami s pfipsdnim
ptisluiného znaménka. Nutno jeit& upozornit, Ze osa Cisel-
na nemusi byt vidycky vodorovni; na teploméru ji
mame obvykle svislou.

. N 0 AN < .
-4 3 2 4 o 1 217 3 4 s
| .
Obr. 1

Na ose Ciselné je kazdému redlnému Cislu pfifazen jeden
bod a obracené, kazdému bodu osy Ciselné je piifazeno je-
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diné redlné Cislo. Je-li tak redlnému ¢islu ¢ piifazen na ose
Ciselné bod A, fekneme struéné, Ze bod 4 m4 na ose x
soufadnici a. Pfi vynaSeni soufadnic zachovaviame ovSem
kladny, pfipadné zdporny smysl méfeni na ose Ciselné. To
znamend, Ze bod A4 s kladnou soufadnici ¢ > 0 m4 na:ose
takovou polohu, abychom tse¢ku OA probfhali od poéatku
O k bodu A4 v kladném smyslu; je-li a < 0, probihdme
useCku od pocitku k bodu A ve smyslu zdporném.

Smluvime se na stru¢ném oznaceni: okolnost, Ze bod A
mé soufadnici a, zapiSeme symbolem A (a). Tak napiiklad
bod M na obr. 1 md soufadnici + 3, piSeme tedy M(3);
symbol N(—2) znadi, Ze bod N tam ma soufadnici —2,

Pro vyklady v dal$ich odstavcich je diilezité zvyknout si
zachazet se soufadnicemi jiz zde. Viimnéme si nejdfiv
jednoduché tilohy méfeni velikosti useCky. V praxi vy-
jadfujeme délku usecky kladnym ¢islem. Zistaneme pfitom
i zde. Délku usecky AB muZeme ovSem vypocitat uZitim
soufadnic bodd A, B; hledanou vzdilenost téchto bodl
vyjadfime snadno pomoci absolutni hodnoty rozdilu jejich
soufadnic. Ma-li napf. bod A4 soufadnici a = 3, bod B
soufadnici b = 7, je vzdilenost obou téchto bodd zfejmé
rovna Cislu 4, nebot 4 =7 -3 =b—a. Je-li a=3,
b= — 2, je vzdilenost bodi A4, B rovna Cislu 5, coZ lze
psat tak, 2e 5=34+2=3 — (— 2) = a — b. Obecné
plati:

Véta 1,1. Fsou-li A(a), B(b) dva body na ose Ciselné, pak
Jejich vzddlenost je ddna &islem™)

v:]b-a|=1/(b—a)_2. (1,1)

*) U%ivame b&2né& znadmého vyjadieni absolutni hodnoty | m | = Vr;
pro libovolné realné &slo m.
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Duikaz si ¢tenaf podd snadno sdm tim zpusobem, Ze si
promysli viechna moZn4 seskupeni tfi bodd na ose &iselné,
totiZ boda A, B a pocatku O.

Vzorec (1,1) plati i v tom pfipadé, kdy body A4, B
splynou, kdy jsou totoZné. Pak je a = b a vzdilenost
v = 0. Rozdifime tedy hofeni vyklad tim, Ze Usecka md
vidycky délku nezapornou Usetka délky nula se Casto
v literatufe nazyva tsecka nulova.

Ve vzorci (1,1) neni tfeba si pamatovat pofadi soufadnic
a, b, nebotI je b—a=—(a—0b) a tedy |b—a|=
=]la—2»5

Pro vzdalenost v bodd A, B se uZiva také znaku v == AB.
Podle toho, co bylo pravé feceno, je AB = BA.

Kazda tsetka ma jediny stfed. Uréime jeho soufadnici
na ose Ciselné.

Véta 1,2, Stied S uselky, jejiz krajni body jsou A/(a),
B (b), md souradnici

- (1,2)

Dikaz spotivd ve vypoltu soufadnice s bodu S z pod-
minky, Ze bod § je stejn¢ vzdilen od bodu 4 jako od bodu
B; je tedy podle vzorce (1,1)

,a——-s[}=|s—vb|. (1,3)

Abychom se zbavili nepohodiného pocitdni s absolutnimi
hodnotami, umocnime tuto rovnici dvéma. Je pak

(a — 52 = (s — b

Pfi a + b vychazi odtud po kritkém poctu pravé vysledek
(1,2) a zkouSkou (dosazenim) se snadno pfesvédCite, Ze
tato hodnota s vyhovuje rovnici (1,3). Je-li a = b, splyvdji
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viechny tfi body 4, B, Svjednom bodéajea=b=s =
_a-+b
2

nyni krajni body aseCky, jejiZ stfed zndme:

. Tim je véta 1,2 dokaziana. Obracené hledejme

Véta 1,3. Souradnice x bodii, které jsou na ose Ciselné o&
bodu S (s) vzddleny o délku r > 0, splituji kvadratickou

rovnici (x — 8 =r2 (1,4

Dikaz vychazi na zakladé¢ vzorce (1,1) z podminky
| x — s | = r, kterd je oviem ekvivalentni s rovnici (1,4).

Ptejme se obecné, které body na ose c1selne urcuje
kvadratické rovnice

x4 px+ g=0, (1,5)
kde konstanty p, ¢ splfivji podminku
P — 49 > 0. (1,6)

Za piedpokladu (1,6) ma totiZ rovnice (1,5) pravé dva
rizné realné kofeny x,, x,, jeZ jsou soufadnicemi dvou
bodil X,, X, na dané ose Ciselné; stfed GseCky X, X, mé

X +% P

2 2°

Tohoto vysledku docilime také pfevedenim rovnice (1,5)
na tvar (1,4) bé2né zndmym dopliovanim kvadratického
trojclenu na plny Ctverec podle pfedpisu x® + px + ¢ =

pak soufadnici s =

_ I P _ ? _?
=@+ 2§x—+ T)-I_ 91—~ (x +'§)2+q Y

2
Pak rovnice (1,5) ma tvar (x + %)2 = % — ¢,c0%je tvar



A
(1,4), kde klademe s = — % P = L/ PT — ¢. Vdusledku,

podminky (1,6) je r > 0. Dostdvime tak ziroveri soufad-
nici s stfedu useCky X,X, i vzdalenost » tohoto stfedu od
kteréhokoli z bodi X, X,.

O bodech na pfimce se toho da fici jeSt¢ mnoho, zde
vSak vystatime s tim, co jsme si pravé ukézali. Hlavnim
ucelem bylo, aby si ¢tenaf uvédomil, Ze k feSeni geometric-
kych dloh o bodech na pfimce lze uZit jedné soufadnice,
kterd polohu ka%dého bodu na pfimce charakterizuje.
Pfitom tato soufadnice probihié mnoZinu (¢ili mnoZstvi)
viech redlnych disel, tj. muaZelse rovnat kterémukoliv
redlnému ¢islu. Z toho diivodu fikime, Ze pfimka je jedno-
rozmérna nebo Ze je prostorem jednorozmérnym. K zvlad-
nuti geometrie na primce staci totiZ jedna souradnice, pro-
bihajici mnoZinu reilnych cisel.

Reknéme si hned, %e soufadnice, o ni¥ zde mluvime,
znamend geometricky v podstat¢ délku; jeji absolutni
hodnota je vzdilenost na pfimce od politku O. Odtud
obecnéji pro vzdalenost dvou bodt vychazi vzorec (1,1),
ktery souhlasi s b&Znym méfenim, jemuZ se kaidy uci
v geometrii uZ na obecné $kole. ProtoZe geometrii zaloZe-
nou na tomto méfeni poprvé soustavné zpracoval slavny
fecky matematik Euklides (Zil okolo roku 300 pf. n. L),
fikime, ¢ pfimka, na niZ mé&fFeni providime podle
vzorce (1,1), je jednorozmérny euklidovsky prostor.

Cuiéeni
2 — 3
I, 1. Vyneste na ose ¢iselné body A(2), B(— 1), C( 3 )s D(VZ), E(— 5 )

a P (7)), kde @ = 3,14 je Ludolfovo ¢&islo. )
1,2. Vypoététe vzdalenost kazdych dvou z bodu A4 (4), B (7), C (--5),
D (—3) danych na pfimce.



1,3. Vzdilenost bodu A4(a) od potitku je rovna &islu | a |.

1,4. Uréete soufadnici s stfedu usecky AB, je-li a) A(3), B(—5);
b) A(3), B(—3); ¢) A(7), B (4.

1,5. Ur&ete body X, (x,), X, (xy), jejichz soufadnice jsou kofeny
rovnice x? — 5x - 4 = 0 a vypocltéte soufadnice stfedu usetky X, X,
i vzdilenost stfedu této secky od kteréhokoli jejiho krajniho bodu.
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2. kapitola

ROVINA

Uziti soufadnic pfi feSeni geometrickych tloh vynikne
daleko vice, postoupime-li od geometrie v pfimce ke geo-
metrii v roviné. NevystaCime pfi tom oviem s jednou
soufadnici; pro ureni polohy bodu v roviné potfebujeme
dvé soufadnice. Kazdy je zna ze $koly, pfipomefime si je
tedy jen strutné; zavedeme pfitom oznaceni, jeZ je vhodné
pro nade dal$i kapitoly.

\d

Zvolme v rovin& dv& osy Ciselné x;, x, k sobé kolmé
o spoleném pocatku O (viz obr. 2). Je-li 4 libovolny bod
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v roviné, vedme timto bodem pfimky rovnobéZné s osami
X1, %93 ty vytnou na téchto osich body A,, 4, (bod A4,
leZi na ose x;, bod A4, na ose x,). Pro kazdy z t&chto boda
uréime jeho soufadnici na pfisluSné ose Ciselné podle vy-
kladu v kapitole 1. Bod 4, ma tak na ose Ciselné x, jedinou
soufadnici a,, bod A4, na ose x, soufadnici a,. Na zdkladé
toho fekneme, Ze bod 4 ma v nasi roviné soufadnice a,, a,
a symbolicky to zapiSeme znakem A (a,; a,). Kazdému
bodu roviny je tak pfifazena jedind dvojice soufadnic
a obracené, kazdym dvéma Cislim, jeZ zde poklidime za
soufadnice, je touto konstrukci pfifazen jediny bod v ro-
viné. Pfitom kaZdd z obou soufadnic probihd mnoZinu
viech realnych ¢isel. Nutno upozornit, Ze pofadi soufadnic
v symbolickém zipisu A4 (a,; a,) je podstatné — srovnej se
cvi¢enim 2,I.

Soufadnice zde zavedené nejsou pro naSe Ctendfe no-
vinkou, znaji je uz ze Skoly. Nazyvaji se pravouhlé, pfimo-
Caré soufadnice nebo struné soufadnice kartézské.*)
Ve Skole se uzivaji uZ pti vynaSeni grafﬁ funkci, jenZe osy
Ciselné x,, x, jsou tam obvykle oznaleny pismeny x,y
a fika se jim osy soufadnic (téZ soufadnicové osy). My se
také pfidrZime nazvu osy soufadnic, zistaneme vSak pfi
ocislovani soufadnic. Priisetik O oboy os soufadnic mé obé
soufadnice rovny nule a nazyva se poatek. Ob& osy s po-
Catkem a pfislusnym meéfitkem na nich nazyvaji se sou-
hrnné soustava soufadnic.

Pfistupme k méfeni vzdalenosti v roviné. Jsou-i 4 a B
dva body v roviné, ozname jejich vzdilenost AB struéné
pismenem v (viz stdle obr. 2) a snaZme se ji ze soufadnic
bodd A, B vypocitat. Dojdeme k nasledujici vété:

"-').René Descartes (1596 — 1650), ktery se v latiné psal Cartesius
(&ti Kartézijus), byl prvnim, kdo téchto soufadnic systematicky uZival;
proto se tyto soufadnice nazyvaji kartézské.
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Véta 2,1. Fsou-li A (a,; a,), B (b,; b,) dva body v roviné,
pak jejich "vzddlenost je ddna &islem

v = V(bl — a)* + (b, — a,)% 1)

Dikaz. Pfimky, vedené body 4, B rovnobéZné s osami
soufadnymi, vytvafi obdélnik AMBN (viz obr. 2)a hledana
vzdilenost v je dhlopfiCkou tohoto obdélnika. Vypodita-
vame ji pomoci Pythagorovy véty, jakmile zndme velikosti
stran tohoto obdélnika. Ty oviem nejsou nic jiného neZz
vzdalenosti bodd 4,, B, a A,, B, na osach x,, x,, jeZ umime
pocitat podle véty (1,1) z pfedchdzejici kapitoly. Je tedy
AB, = |b,—a, |, AB, = | by — a,|. Protoze <tverce
téchto vyrazi nejsou nikdy Cisla zdpornd, neni tfeba v za-

pisu
V¥ = (b, — @) + (b — a,)®

uzivat symbolu absolutni hodnoty a tak dochazime ke
vzorci (2,1).

Tim je dikaz véty 2,1 proveden, opira se oviem o vétu
1,1 dokazanou dfive. Ale nebude na $kodu, kdyZ si ¢tenaf
promysli vSechny moZné pfipady rozloZeni bodd A, B
v roviné se zfetelem k tomu, jsou-li jejich soufadnice
kladné, zaporne nebo nula.

Pro vypocet soufadnic stfedu dsecky uZijeme zndmé geo-
metrické poucky, Ze pfi rovnob&Zném promitani zobrazi se
stfed useCky do stfedu prumétu této seCky.

Vé&ta 2,2, Stfed S useky, jejig krajni body jsou A (ay; a,),
B (b,; by), md souFadnice
a, + b, _a,t+b
T > §o = ——2— .
Diukaz. Stfed S usetky AB (viz obr. 2) promitd se
rovnob&Zné s osou x, na osu x, do bodu 8, ktery je sttedem

§ =

(2,2)
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usetky A,B;; jeho soufadnici s, dovedeme uréit pomoci
véty 1,2, dochazime tak k prvnimu vzorci (2,2). Podobné
promitnutim bodu § rovnobéZné s osou x, dostaneme na
ose x, bod S, a tak i druhy ze vzorcu (2,2).

Obr. 3

Stied S tseCky AB je oviem stejné daleko od bodu A
jako od bodu B (viz cviteni 2,4), ale neni to jediny bod
této vlastnosti. V roviné je nekone¢né mnoho boda stejné
vzdalenych od boda A4, B a ty vyplni, jak zndmo, pfimku,
totiz osu soumérnosti p useCky AB (obr. 3). Abychom
urlili soufadnice téchto bodd, oznatme libovolny z nich
pismenem X a jeho soufadnice x,, x,. Podminka AX = BX
vede podle vzorce (2,1) k rovnici

V(xl — @)+ (% — ay) = V(x1 — by + (%, — by)%

Po umocnéni této rovnice dvéma a po jednoduchém poctu
dostavime odtud pro soufadnice x,, x, rovnici

1
(by — ay) x, + (b — ap) x, + > (@2 — b2 +

+ a? — b,%) = 0.
(2,3)
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Soufadnice (2,2) bodu S vyhovuji této rovnici; stadi poloZit
vl x, = 5, X, = 5,. T0 je oviem samoziejmé, nebot stied
usecky leZi na jeji ose soumérnosti.

Roynici (2,3) miZeme psat struéné ve tvaru

DX+ poXe + Py =0, (2,4)
klademe-li
Pr=0(b— a)spy=0(by— ay), p5 =

4]
j (a® — ;% + a? — by?), (2,5)
kde » + O je libovolné zvolené &islo, jimZz mutZeme celou
rovnici (2,4) délit. Pfi danych bodech A,B jsou oviem
disla py, ps, ps konstanty, kdeZto x,, x, jsou proménné sou-
fadnice béZného bodu X pfimky p; bod X probihd celou
piimku p. DuleZité je, Ze rovnice (2,4) je linedrni v pro-
ménnych x,, x, (vyskytuji se v ni nejvyse prvni mocniny
proménnych Xy, X,). Protoze samozfejmé predpokladame,
Ze body A, B jsou navzijem rizné, je nutn€ aspofi jedno
z Cisel p,, p, nenulové. Je tedy rovnice (2,4) vskutku vzdyc-
ky linedrni. ProtoZe kaZzdou pfimku v nasi roviné¢ miZeme
pokladat za osu soumérnosti nékteré dsecky, plyne z toho,
Ze kaZdou primku v roviné lze vyjddrit linedrni rovmici
Pixi+ P+ py=0.

Ptejme se nyni, zdali obricené kaZda linedrni rovnice
vyjadfuje néjakou pfimku. Snadno zjistime, Ze odpovéd
na tuto otdzku je kladna. Je-li totiz ddna linearni rovnice
ve dvou proménnych x,, x,, existuje vidycky n&jaka usecka,
jejiZ osa soumérnosti je vyjadfena v dané soustavé sou-
fadnic pravé danou rovnici. Pfesvéd¢me se o tom. Danou
linedrni rovnici piSme zase ve tvaru (2,4), kde piedpokla-
ddme aspofi p; + 0 nebo p, + 0. Zvolme v roviné libo-
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volng bod 4 (a,; a,) tak, aby jeho soufadnice nevyhovovaly
dané rovnici (2,4), aby tedy bylo

P1a;+ paay+ ps +0. (2,6)

Pak muZeme urlit bod B (b,, b,), jehoZ soufadnice &y, b,
vyhovuji rovnicim (2,5) pfi libovolném ¢ + 0 a pfi danych
Cislech P15 P2s Pa> @15 Qs K tomu stali vypocitat z rovnic
(2,5) neznamé b,, b,. Provede se to jednoduse. Vyloucenim
o z prvoich dvou rovnic (2,5) dostdvime pro neznimé
by, b, linedrni rovnici

P2 (by — ay) = py (b, — ay). (2a7)

Diéle dosazenim z prvnich dvou rovnic (2,5) do tfeti
rovnice (2,5) dostdvame po kratkém poctu

P1by+poby+ p3= — (pra,+ psay + py).  (2,8)

To je druh4 linedrni rovnice pro neznimé &,, b,. ReSenim
soustavy rovnic (2,7) a (2,8) je jedina dvojice Cisel by, b,;
podrobny vypocet i diskusi provede si uZ ¢tendf sam,
Viimnéme si pro zajimavost, Ze v dusledku nerovnosti
(2,6) plyne z rovnice (2,8)

Prby+peby+py =0,

takZe soufadnice bodu B (b,; b,) rovnéZ nespliiuji rovnici
(2,4) a zaroven body A4, B jsou dva rtzné body. Nyni je
ziejmé, Ze osa soumérnosti takto stanovené usecky AB je
-pravé dand linedrni rovnice tvaru (2,4), nebot jsou
splnény podminky (2,5). To znamend, Ze takova lnedrni
rovnice vyjadiuje piimku.

Celkové tedy pozorujeme, Ze v nasi soustavé soufadnic
je kazdd pfimka vyjidfena linedrni rovnici a obricené
kaZd4 linedrni rovnice vyjadfuje n&jakou pfimku. Podrobné
fefeno je to tak, Ze soufadnice b&Zného bodu pfimky (tj.
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soufadnice bodu, ktery problha celou pnmku) vyhovuji
néjaké linedarni rovnici a Ze tuto vlastnost maji pravé jen
soufadnice boda této pfimky.

Pro strucnost vyjadfovani zavddime obecné toto réeni:
Kdyz soutadnice vSech bodii néjakého vtvaru splfiuji uritou
rovnici a kdyZ jiné body nez body tohoto vtvaru tuto vlastnost
nemaji, ¥ikdme, Ze zminénd rovnice je rovnici tohoto ttvaru,
nebo Ze titvar md tuto rovnici.

Dosavadni vysledky shrneme tedy takto:

Véta 2,3. V kartézskych souiadnicich md ph’mka v roviné
rovnici lmearm

Dukaz byl uz podan diskusi rovnic a nerovnosti (2,3)

az (2,8).

KaZdého pfirozené zajimd, jak se narysuje v roviné pfim-
ka, jejiz rovnici zndme. Tu je snadnd pomoc; vypolitime
soufadnice dvou bodi, jez dané rovnici vyhovuji, pak po
vyneseni soufadnic tyto body zakreslime a nakonec nary-
sujeme jejich spojnici, kter je hledanou pfimkou. Tak na
ptikiad rovnici

4x, + 3x, —12=0

vyhovuji soufadnice bodtd P (3;0), O (0; 4); dand rovnice
je tedy rovnici spojnice téchto bodt P, Q.

Vedle pfimky je nejjednodussi carou v roviné kruZznice.
Stanovime jeji rovnici (viz obr. 4).

Véta 2,4. KruZnice v roviné o stiedu S (s,; s,) @ poloméru
r > 0 md v kartézskych souradnicich rovnici

(1 — 52)° + (v — 59)* = 1% (2,9)

Dukaz vychézi z toho, Ze kruZnice je vytvofena viemi
takovymi body X (x;; x,), které od jejiho stiedu S (s;3 s,)
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maji stejnou vzdalenost, rovnou poloméru r této kruZnice.
Podle vzorce (2,1) je tedy

V(xl — s+ (5P =r
coZ pfi r > 0 je-ekvivalentni s rovnici (2,9). Rozumi se, Ze
v rovnici (2,9) znadi x,, x, proménné soufadnice b&%ného
bodu kruZnice a s;, 55, ¥ jsou konstanty.

Obr. 4

Rovnice (2,9) je v proménnych x;, x, druhého stupné
¢ili kvadratickd, Provedeme-li v ni naznac¢ené umociovani
dvéma, pfevedeme ji na rovnici

%52+ x2 + Mx, + Nx, + P=0, (2,10)
kde jsme polozili
M: _ZSI,N: —-252,st12 :{" 522_1‘2.
Znasobime-li tuto rovmici je$t€ né&jakym nenulovym
Cislem, zistane oviem rovnici téZze kruZnice jako prve. To
znamend, Ze kvadraticka rovnice tvaru

a(x?+ 22+ bx; +cx;+d=0
muzZe byt rovnici n&jaké kruZnice jen tehdy, kdyZ jea + O.
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(Kdyby zde bylo a = 0, byla by tato rovnice lineirni a vy-
jadfovala by pfimku a nikoli kruZnici.)

Je-li dina né&jaka rovnice (2,10), zajima nds, jak pfislus-
nou kruZnici narysujeme. K tomu staci najit jeji stfed a po-
lomér a k tomu zase stali pfevést rovnici (2,10) na tvar
(2,9). Provedeme to opét dopliiovinim na uplné Ctverce,
tedy podobné jako jsme provedli rozbor rovnice (1,5)
v predchizejici kapitole. Pro kaZdé x,, x, vychdzi x,% +-

M N
+ x,2 + Mx,+ Nx,+ P=(x, + > 2+ (% + > )as

2 2
+ P — M I—N— . Rovnice (2,10) mé pak tvar
2 NZ
R L Ly

Srovnanim s rovnici (2,9) tedy vychazi, ze kruZnice, vy-
jddfend rovnici (2,10), ma stied S (s, ;5,) a polomér r, kde je

. M N
i = Ty 2T T 5
to ovSem pfedpoklida M2 + N2 - 4 P > 0.

Vyjddfeni geometrickych utvard rovnicemi md vyznam-
ny disledek. UmoZfuje totiZ rozborem rovnic studovat
geometrii. ProtoZe rozbor se nazyva cizim slovem analyza,
vZil se na celém sv&té pro pravé naznaceny zplisob studia
geometrie nazev analytickd geometrie. Zakladatelem ana-
lytické geometrie byl uZz dfive zminény René Descartes,
vynikajici francouzsky ucenec, predev§im matematik a filo-
sof. Svym objevem analytické geometrie odkryl pfed zraky
svych souCasniki novou, do té doby netuSenou souvislost
mezi geometrii a aritmetikou. To bylo pfiblizné pfed tfemi
sty lety. V té dobé byly uz algebraické a vibec aritmetické

r = o VI T NF—4P;
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metody v matematice mnohem vic propracoviny ne% v geo-
metrii, kterd vyvrcholila ve starovéku Euklidem a aZ do
16. stoled mnoho nepokrodila. Je tedy _pochopitelné, Ze
Descartova metoda znamenala ve vyvoji geometrie pod-
statny a vlastné revoluéni krok kupfedu, nebot umoznila
velkou fadu aritmetickych zdkoni pfevddét do geometrie.
Aritmetika prokazala tehdy geometrii velkou sluzbu. A geo-
metrie se ji za to pozdéji bohaté odménila, jak poznime
v dalSich kapitolach.

Abychom aspon trochu nahlédli do souvislosti aritmetiky
s geometrii, poloZzme si nejdfiv néjakou ulohu o pfimkach
v roviné, pro nazornmost vykladu hodné jednoduchou.
Jsou-li napfiklad a, b dvé pfimky v roviné, jejichZ rovnice
jsou

axy + apXy + a3 =0,
byxy + bsxy + b3 == 0, (2,11)

hledejme jejich prasecik. Soufadnice tohoto priseciku vy-
hovuji obéma rovnicim (2,11), nebot je to bod leZici na
'obou pfimkach a, b. Analytickou geometrii pfevidime zde
tedy geometrickou ulohu na dlohu z algebry. Misto aby-
chom hledany prisecik narysovali, feS§ime soustavu (2,11)
dvou linedrnich rovnic o dvou nezniamych x,, x,. Tento
postup ma svoje vyhody. NeselZze naptiklad ani v tom pfi-
padé, kdy hledany prisecik je pfili§ daleko, kdy se nevejde
na nakresnu, takZe ho narysovat ani nemiZeme. Reseni
rovnic (2,11) nam da bezpeCnou odpovéd i tehdy, kdyz
v narysovaném obrazku si nejsme docela jisti; to se mize
stat v pfipadé, kdy obé pfimky se velmi malo li3i od rovno-
béZek, jeZz prisecik nemaji. Pfitom pfimky se jeSté snadno
rysuji. Kdybychom vSak misto prusefiku pfimek hledali
pruseciky kfivek, které se rysuji obtiznéji, vynikla by vy-
hoda pocetni metody, protoZe d4 pfi nejmensim piesnéjsi
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vysledek neZ rysovani. Uz napl"iklad jednoducha otizka,
zda-li uritd pfimka je teCnou kruZnice nebo ne, neni
z obrazku vZdycky tak bezpeCné patrnd jako z feSeni pfi-
slusnych rovnic, jak dile uvidime.

Otazka po spole¢ném feSeni rovnic (2,11) je tedy ekviva-
valentni s otazkou po priseciku dvou pfimek v roviné.
Z geometrického hlediska je ihned patrné, Ze mohou nastat
celkem tfi nasledujici pfipady:

1. KdyZz se pfimky a, b protinaji v jednom bodé€, ma
soustava (2,11) jediné feSeni. Napfiklad soustava

X — %+ 1=0,
2x,+3x,—3=0

ma jediné feSeni: x, = 0, x, = 1.

2. KdyZ pfimky g, b jsou rovnobéine a navza1em ruzne,
pak se neprotinaji a necmstule tedy spolecné feseni rovnic
(2,11). Prikladem tu miZe byt soustava rovnic

X — %+ 1=0,
X — %+ 3=0.

O takovych rovnicich fikame, Ze jsou ve sporu.

3. Konefné se muZe stit, Ze obé rovnice (2,11) pfed-
stavuji tutéz pfimku, Cili Ze pfimky a, & splyvaji. V tom
piipadé maji tyto pfimky nekonecné mnoho spoleénych
bodl a soustava rovnic (2,11) md pak pekonecné mnoho
feSeni. Tak na pfiklad rovnicim

X —x,+1=0,
3%, —3x, +3=0

vyhovuje kazdé feSeni x; == u, x, = u + 1, kde u je libo-
volné volitelné ¢islo.

Z pravé podanych piikladi je vidét, Ze také geometrie
muZe uCinné pomdhat pfi feSeni aritmetickych problémil.
Podminky existence feSeni soustavy rovnic (2,11) jsou
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oviem divno v algebfe dobfe znamy a o poltu fe$eni roz-
hoduji vielijaké vzdjemné vztahy mezi souliniteli a,, a,, g,
by, by, by. Piehled o existenci a poCtu téchto feSeni dava
vSak geometrie bezprostiedné, nebot dvé pfimky jsou bud
riznobézné, nebo rovnobéZné a nebo konecné splyvaji. To
uZ naraZime na opacny proces, neZ jaky pfevlidal za dob
Descartovych, kdy se aritmetiky uZivalo k feSeni geometric-
kych tloh, kdy tedy pfevladala aritmetizace geometrie.
Dnes pozorujeme opacnou tendenci. Podle slov sovétského
akademika A. N. Kolmogorova (narozen 1903) je pro dnesni
matematiku pfiznalnd geometrizace aritmetiky. Je téeba,
aby toto stanovisko zaujal i nas ¢tenaf pfi sledovani dal§ich
kapitol.

Vratme se ted jeSté k Descartové analytické geometrii
v roviné. Sledujme priseciky pfimky s kruZnici. Ma-li
pfimka rovnici (2,4) a kruZnice rovnici (2,10), budou sou-
fadnice prusediku obou téchto ¢ar vyhovovat obéma témto
rovnicim. Hleddme tedy v tomto pfipadé feSeni soustavy
rovnic

1%+ paxs + py =0,
%2+ x,2 4+ Mx, + Nx, + P=0,

z nichZ prvni je linedrni a druha kvadraticka. Vypocitame-li
z prvni z nich jednu neznamou a dosadime-li ji do druhé
rovnice, vyjde samozfejmé pro druhou nezndmou kvadra-
tickd rovnice. Jeji kofeny jsou bud dvé vzijemné rtzni
realna Cisla (pak pfimka je seCnou kruZnice), nebo existuje
jeden dvojnasobny kofen (pfimka je teCnou kruZnice), nebo
neexistuji Zddné redlné kofeny (a pfimka je pak nese¢nou
kruznice). Pokuste se sami vyreSit konkrétni pfipady a pfi-
slu$né &ary zdroven narysovat (viz cvic. 2,9 2 2,10.)
Analytickou geometrii v roviné jsme tim ovSem zdaleka
nevycCerpali. VSimli jsme si jen velmi povrchné rovnic pfi-
mek a kruZnic. I nerovnosti se zde uplatiivji; na pfiklad
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nerovnost x,2 + x,2<C1 charakterizuje viechny body leZici
uvniti kruZnice o stfedu v pofitku a poloméru r = 1, je
to tedy analytické vyjadfeni vnitfku kruhu.

Hlavnim d¢elem tu bylo srovnani pocetnich a geometric-
kych metod a zdtraznéni jejich vzajemného vztahu. Udi-
nime z toho podobné zivéry jako na konci 1. kapitoly.
K feSeni geometrickych 1loh v roviné jsme uZili dvou sou-
fadnic, které polohu kazdého bodu v roviné charakterizuji.
Pritom kaZd4 z téchto soufadnic probiha mnoZinu vsech
realnych Cisel. Protoze tedy mame v roviné dvé souradmcc,
tikdme, Ze rovina je dvojrozmérnd. A protoZe b&Zné znimd
euklidovskd geometrie je zaloZena na pojmu vzdalenosti
dvou bodu, kterd je vyjadfena vzorcem (2,1), fikime, Ze
rovina, v ni? mé&Feni providime podle vzorce (2,1),
je dvojrozmérny euklidovsky prostor.

Cuiéeni

2,1. Zakreslete v roviné (v téZe soustavé soufadné) body M (3; —-1)
a N (—1; 3) a pfesvédéte se, Ze oba tyto body jsou navzéjem rizné.

2,2. Uréete délky stran trojuhelnika ABC,je-lia) A4 (1;2), B(4; —1),
C(5;5);b) A (2;5), B(—4;2),C(8; —3).

2,3. Ukazte, Ze trojuhelnik OPQ, kde O je poéitek, P (V3; 1) a
Q (V?T, —3) jsou dalsi dva body, je pravouhly.

2,4. Presvédlte se, Ze bod S o soufadnicich danych rovnicemi (2,2)
ma4 stejnou vzdilenost od bodu A4 (a, ; a,) jako od bodu B (b;; b,) a Ze je

1
AS = BS = —_ AB.
2
x Xa
2,5. Narysujte pfimku, jejiZ rovnice jea) — + — = 1, b)x, = k x,,
4

kdep % 0, ¢ F 0, kjsou libovolné zvolen4 &isla.
2,6. Napiste rovnici kruZnice, kterd md

a) stfed v po&atku a polomér r = 4;
b) stfed S (0; 5) a polomér r =



c) stted S (3; 2) a prochdzi poéitkem;
d) stied S (1; —4) a polomér r = 2|/5.
2,7. Urdete stfed a polomér kruZnice, jejiz rovnice je
a) 1,2 + x% — 4x; — 6x, — 12 =0;
b) x,2 = x,2 + 10x; — 24 = 0;
©) x,% - xy,2 — 2ax, = O,kdejea > 0.
2,8. Urctete prisedik pfimek o rovnicich
a) 2x; — 5%, + 6 = 0, 8x, + 15x, - 10 = 0;
b)3x; -+ 4x, — 12 = 0,6x; ~ 8x, — 7 = 0;

7
c)Tx, -I- 4x, - 8 = 0, ?xl 4 2x, —4=0.

2,9. Urcéete prasediky pfimky s kruZnici, jsou-li rovnice téchto &ar
a)x; — 3x, + 9 =0,x,2 2+ 2,2 —25=0;
b)xe— x, — 1 =0, %2 -+ x,2 4 6, + 6x, — T = 0.
2,10. Dokazte, Zze pfimka o rovnici 3x, -+ 4x, — 39 = 0 je tenou
kruZnice dané rovnici x,%2 + x,% — 6x, + 10 x; — 66 = 0 a urete pii-
slusny bod dotyku.



3. kapitola

TROJROZMERNY PROSTOR

V predchazejici kapitole jsme sledovali geometricky vy-
znam nékterych rovnic o dvou proménnych. Postupme
o krok dal a ptejme se, maji-li néjaky geometricky vyznam
také rovnice o tfech proménnych. Odpovéd nam da opét
analyticka geometrie, tentokrat prostorova.

V prostoru zavedeme zase soufadnice kartézské, a to
tim zplsobem, Ze zvolime tfi osy Ciselné x,, x,, x; vzdjemné
k sobé kolmé o spole¢ném pocitku O (viz obr. 5). Kazdy
si je jisté¢ dovede snadno pfedstavit, napf. tfi hrany krychle
vychazejici z téhoZ vrcholu leZi na takovychto pfimkach.
Osy x,, x5, X, nazveme opét osy soufadnic, tfi roviny, jimi
po dvou urCené, nazyvaji se roviny soufadnic. Je-li A4
libovolny bod v prostoru, vedme jim roviny kolmé k osam
X1y Xp5 X3, tedy tfi roviny rovnob&zné s rovinami soufadnic.
Tyto roviny vytnou na osich body 4,, 4,, A; a ozna¢me
a;, ay, ay soufadnice kazdého z téchto bodu na pfislusné
ose podle vykladu v kapitole 1. V§imnéme si, Ze i obracené,
tfem zvolenym ¢islim a,, a,, a, jsou tak na pfislunych
osich uréeny jednoznacné tfi body A,, A,, A, jimiz vedené
roviny rovnobé&%Zné s rovinami soufadnic protinaji se v jedi-
ném bodé A. Na zikladé toho fikdme, Ze bod A ma v pros-
toru tfi soufadnice a,, @, a;, a symbolicky to zapiSeme
znakem A4 (a,; a,; a,). Pofadi zapsanych soufadnic je zde
opét podstatné a kazda soufadnice miiZze probihat mnoZinu
vsech redlnych &isel.
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Pro ty, kdoZz studuji deskriptivni geometrii, je pfedstava
t€chto prostorovych soufadnic béZnd, snad jsou spise zvykli
uzivat pro osy soufadnic oznaCeni x, y, 2 misto naSeho
x1 ’ x:_), 'xa.

Obr. 5

Z obr. 5 je dobfe patrné, Ze vzdalenost bodu A od podat-
ku O je délka v t€lesové Ghlopficky kvidru, jehoZ stny
jsou v rovinich soufadnic a v rovinich s nimi rovnob&%-
nych, prochézejicich bodem A. Rozméry tohoto kvidru
jsou rovny &islim |a, |, |a,l, |a,; je tedy

V= ]/a12+ a?+ ay.
Plyne to ze znamého vypoCtu délky télesové uhlopficky
kvadru.

Pijde-li o vypocet vzdalenosti v dvou libovolnych bodi
A(a,; ay; ag), B(bl,bz,ba)v prostoru, je uvaha obdobna.
Jde vétSinou opét o délku télesové uhlopiicky AB kvédru,
jehoZ stény leZi v rovindch rovnobé’nych s rovinami sou-
fadnic a prochazejicich body A, B. Tento kviddr m4 pak
rozméry rovné Cislam b, — ‘11!: by — ayl, |bs — as); jsou
to vzdalenosti kolmych praméta bodd A, B na osich
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soufadnic.*) Tak dochazime k v&té, kterd je obdobou vét
1,1 a 2,1 z predchazejicich kapitol:

Véta 3,1. Jsou-li A(ay; ay; a), B(b; by; by) dva body
v prostoru, pak jejich vzddlenost je ddna Eislem

v = V(bl — a1 + (by — ap)* + (b3 - ay)% (3,1)

Diikaz, jak jiz bylo feceno, plyne z vypoltu délky téle-
sové uhlopfiCky AB kvidru, jehoZ stény jsou v rovinich
rovnobéZnych s rovinami soufadnic.

Sledujeme daile obdobur' s geometrii v pfimce a v roviné,
v tomto pfipadé obdobu s vétami 1,2 a 2,2 v prostoru.

Véta 3,2. StFed S secky, jejiz krajni body jsou A (ay; a,;
as);, B(by; by by), md soutadnice

a, +b a, + b, + b
§5 = 12 1’ 52: 2 2 _’ s3=_a32 3' (332)

Dikaz. Stied S useCky AB se promitd rovinou kolmou
k ose x, do bodu S1 na ose x;, ktery je zfejmé stiedem tise¢-
ky 4,B,, kde 4,, B, jsou pravé takové kolmé priiméty bodi
A, B na osu x;. Soufadnici s, bodu S, dovedeme tedy urcit
(pomoci véty 1,2), ¢imZ dochdzime k prvnimu vzorci (3,2).
Podobné kolmym promitnutim bodu S na dalsi osy x,, x,
dostaneme soufadnice s,, s; ve tvaru dalSich vzorcu €3,2).

Jiny dikaz toho, Ze bod S(s,; 5,5 $3) 0 soufadnicich (3,2)
je stiedem uvedené useCky AB, poznidme za chvili; bude
nam uZiteny pro piiSt dvahy v prostorech vicerozmér-
nych. Dfive si viak yjasnime geometricky vyznam linedrni

*) Kolmym primétem bodu na pfimku zde rozumime praseéik této
piimky s rovinou jdouci danym bodem kolmo k této pfimce. Tak
napf. na obr. 5 bod A, je kolmym primétem bodu 4 na osu x,.
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rovnice v prostoru, tj. linedrni rovnice o tfech proménnych.
Budeme pfitom postupovat stejnym zptsobem, jakym jsme
v predchazejici kapitole dospéli k vété 2,3; vyklad zde bude
ovsem daleko struCnéjsi.

Kazdy vi, Ze viechny takové body X v prostoru, které
jsou stejné daleko od bodu A4 jako od bodu B, vyplni
rovinu, totiz rovinu soumérnosti usecky 4B. Abychom
nasli rovnici této roviny, oznatime kartézské soufadnice
bodu X pismeny x,, x,, X3 a soufadnice bodi A4, B stejné
jako v predchazejicich vétach. Potom podminka AX =
= BX zni (podle véty 3,1)

l‘(xl — a)? + (X2 — @)® - (%3 — a3)® =
= V(-"l — b)* + (xy — by)? A (x5 — by)?

a po umocnéni dvéma a jednoduché upravé vychazi pro
nasi rovinu rovnice

i PiXy -+ PaXa + Paxs 1 Py =0, (3,3)
kde jsme polozili

P1=0(by — ay); Py == 0 (by ~ a@y), p3 = 0 (by — ay),

b= %(‘112"‘ b?+ a’— b+ a”— by?). (34)

Pfitem ¢ =+ 0 je libovolné zvolené (Cislo, jimZ miZeme
v rovnici (3,3) kratit; Cisla p,, p,, p4 nejsou soucasné rovna
nule,

Ctendf jisté poznavi, Ze je tu stejna Gvaha, jakd se v pied-
chazejici kapitole tykala rovnic (2,3) aZ (2,5) a jejich vyzna-
mu. Nebudeme zde uz podrobnosti opakovat, fekneme si
jen, Ze rovnice (3,3) je v proménnych x,, x,, x5 linearni a Ze
je rovnici roviny soumérnosti useCky AB. ProtoZe kazdou
rovinu lze pokladat za rovinu soumérnosti nékteré Gsecky,

Bl
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Ize jist® kazdou rovinu vyjadtit takovouto linedrni rovnici
(3,3). Celkem lze vyslovit tuto vétu:

Véta 3,3. V kartézskych souradnicich md rovina v prostoru
rovmici linedrni.

Dikaz ma dvé Casti. Pfedeviim se musi dokdzat, Ze
soufadnice bodi roviny vyhovuji linedrni rovnici; to uZ
jsme provedli pfi odvozeni rovnic (3,3) a (3,4). Za druhé
je tfeba ukézat, Ze kdyZ je ddna linedrni rovnice (3,3), kde
P1> Pa> Pas P4 150U Zvolené konstanty, Ze pak body X(x,; x,;
x,) vytvofi rovinu. Dtikaz je zde opét stejny jako v pied-
chazejici kapitole pfi rozboru rovnic (2,6) aZ (2,8), takie
si ho ¢tenaf uZz snadno doplni sam.

Dalsi jednoduchou a kazdému dobfe znimou plochou
je plocha kulova. Jeji rovnice v prostoru pfipomina rovnici
kruZnice v roviné, odvozenou ve vété 2,4 v predchdzejici
kapitole.

Véta 3,4. Plocha kulovd o stfedu S(s,; sy5 $3) a poloméru
r > 0 md v kartézskych souradnicich v prostoru rovnici
(%) = $% 4 (%3 — $2)* + (%3 — 53> =12 (3,5)
Dukaz. Plocha kulova je mnoZina bodd X(x;; x5 x3),
které maji od jejiho stfedu S(s,; s55 s5) stejnou vzdalenost,
rovoou poloméru r. Podle vzorce (3,1) je tedy
Vo — 5% 4+ (22 — 52 + (g — sp)2 =1,

Umocnénim této-rovnice dvéma vychazi uz rovnice (3,5)
a obricené, odmoctiovinim, plyne z rovnice (3,5) posledni
vztah, nebot pfedpoklidime r > 0.

Rovni¢i (3,5) lze pfepsat ve tvar

%% 4 %2 +x.2 + Mx; + Nx, + Px; +- Q= 0, (3,6)

kde jsme pro stru¢nost poloZili
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M= —2s;; N= — 250 P = — 253,
O =524 5>+ 5.2 — 12
To je v proménych x,, x,, x, kvadraticka rovnice, charakte-
rizujici plochu kulovou; kazd4 jind kvadraticka rovnice je
uZ tedy rovnici jiné plochy druhého stupné neZ je plocha
kulova. (Jiné takové plochy jsou elipsoidy, hyperboloidy,
paraboloidy, valce a kuZele; t&€mi se zde nebudeme zaby-
vat.) Abychom z rovnice (3, 6) poznali stfed i polomér pfi-
slusné plochy kulové, pfevedeme ji zpét na tvar (3,5);
postup je obdobny tomu, kterym jsme v pfedchdzejici ka-
pitole dosli od rovnice (2,10) k rovnici (2,9); pro kaZdé
hodnoty x;, x,, x5 je ;2 + x,2 + x,2 + Mx; + Nx, +

eyt Q= (o TP (5 R (5P

M2 N2_P2
po MNP

Srovnanim s tvarem (3,5) tedy vychazi, Ze naSe plocha ku-
lové, dand rovnici (3,6), ma stied S o soufadnicich

M N P
20 RT3 8T

§ = —

a polomér

r=:L2VM2 + Nz P*—4Q,

coz oviem predpokladda M2 + N2% -+ P2 — 40Q > 0. Rov-
nici (3,6) miZeme oviem nasobit jakoukoli nenulovou kon-
stantou; pfitom ziistane stile rovnici téZe plochy.

Rovnice ploch, totiZ roviny a plochy kulové, jeZ jsme ve
vétach 3,3 a 3,4 poznali, jsou jen dva pfiklady rovnic ploch.
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Jiné plochy maji jiné rovnice, ale na ty nam zde nezbyvi
mista a nelze v tomto sméru udélat nic jiného, neZz odkazat
¢tenafe na obsdhlejsi a podrobngjsi literaturu. Prozatim si
zapamatujeme, Ze plochy v prostoru jsou v analytické geo-
metrii urc':cny rovnicemi asi tak, jako v roviné byly rovnice-
mi urleny ruzné cary (napt. prunka a kruZnice). Jak je to
viak s rovnicemi Car v prostorové geometrii ?

Nebudeme se zabyvat ktivkami, spokojime se jen s nej-
jednoduss$imi ¢arami, s pr1mkam1

Vyjdéme z toho, co uZ znime, totiz z véty 3,3; odtud
vime, jak vypadd rovnice roviny. Pfimku v prostoru muze-
me vidycky pokladat za priseénici né&akych dvou rovin,
To ndm pomuZe pfi analytickém vyjadfeni pfimky. Jsou-li

ax, + asx, +- asxg +a, =0,
byxy + byxy, 4 byxs + by =0 (3,7

rovnice dvou rovin g, f, pak oviem vSechny takové body
X(%15 %03 xa), ]C)lCh.Z soufadnice vyhovuji obéma t&¢mto
rovnicim- zroven, lezi )ak v rovin€ g, tak v rovin& . Tyto
body X leZi tedy na prisecnici rovin a, f§, proto vytvofi
pfimku. (Pfitom jsme samoziejmé piedpoklidali, Ze
a,, a,, ay, a4 a by, by, by, b, jsou pftedem pevné stanovena
Cisla, tedy konstanty.) Obracené také pravé jen body tako-
véto pfimky maji tu vlastnost, Ze jejich soufadnice vyho-
vuji ob&ma rovnicim (3,7) zdrovent. MuZeme tedy fici, Ze
primka je v prostorové analytické geometrii uréena dvéma
linedrnimi rovnicemi. To plati oviem jen za pfedpokladu,
ze kazda z rovnic (3,7) urCuje jinou rovinu a Ze tyto dvé
roviny nejsou spolu rovnobéZné, Nepoustéjme se viak do
geometrickych podrobnosti a v§imnéme si rad&ji souvislosti
téchto Gvah s algebrou

\Y prostorove analytické geometrii 1e tedy urceni bodu
ptimky totéZ, jako hledani spole¢ného feseni dvou rdvmic
(3,7). Jde tgdy o feSeni soustavy dvou linedrnich rovnic
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(3,7) o tfech neznamych x,, x,, x;. Geometrie nam posky-
tuje snadny pfehled o existenci takového feSeni. Nase sou-
stava totiZ bud nema Zadné feSeni, nebo jich ma nekoneéné
mnoho; jiné moZnosti nejsou. UkaZme si ptiklady.

1. Prvni moZnost nastane tehdy, kdyZ dvé rizné roviny
4, # ur€ené rovnicemi (3,7) jsou spolu rovnobéZné; pak
nemaji Zddny spole¢ny bod a soustava (3,7) nema tedy feSe-
ni. O takovych rovnicich fikdme, Ze jsou ve sporu. To na-
stdva napf. u soustavy rovnic

X+ X+ x5 —-3=0,
2%, + 2x, + 2%, — 5=0.

Snadno zjistite, e prvni rovnice pfedstavuje rovinu, vyti-
najici na kaZdé soufadné ose usek 3; obsahuje body
(3;050), (053;0)a (0;0; 3). Druha z nich vytini na osach

“ 1 gy i g O I .
soufadnych rovnéZ stejné useky, a to delky?, a je tudiz

s prvni rovinou rovnobé&Znd. Neni ostatné nic divného, Ze
ob& uvedené rovnice jsou ve sporu. Prvni poZaduje, aby
bylo x; + x, + x5 = 3,druh4, aby bylox, + x, + x, ——g 5
oba tyto protichiidné pozadavky nelze splnit zarovei.

2, Dalsi moznost, kdy uvedené dvé ruzné roviny nejsou
spolu rovnobézné, dava vZdycky nekoneéné mnoho feSeni
prislu$né soustavy, protoZe takovéto dvé roviny maji neko-
necné mnoho bodu spoleénych. Na ptiklad feSenim sousta-
Vy rovnic

3%, —2x,+ %3, —3=0,
X —6x,—x,—1=0 (3,3)
je kazda trojice
¢ n=1-2F% == =
1= 3 Xo T,xa—u,
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kde u je libovolné volitelné &islo. V ulebnicich analytické
geometrie se dokazuje, Ze tyto body vytvofi pfimku. —
Konecné uvedme jesté napf. soustavu

2x1_3x2+x3_1:0,
4x;, — 6x, + 2x, - 2 =0,

kde kaZdé fedeni, jez vyhovuje jedné z téchto rovnic, vyho-
vuje 1 druhé, protoZe druhd vznikne z prvni, nisobime-li
ji dvéma. Obé& tyto rovnice predstavuji tedy tutéZ rovinu;
fikdme také, Ze roviny urcené témito rovnicemi splyvaji.
(To nenastalo v pfipadé soustavy (3,8), kde napf. bod
(0; 0; 3) lezi v prvni tam dané roving, ale neleZi ve druhé.
Jde tam tedy o dvé rtizné roviny.)

Uvedli jsme si tyto pfiklady na ukizku souvislosti geo-
metrie a algebry. Algebra dovede ovsem fesit soustavy
(3,7) bez pomoci geometrie a znd podminky, kdy takova
soustava md a kdy nema feSeni a jak se pfisluSna feSeni
najdou. Na téchto strankiach jsme vSak chtéli ukizat, Ze
geometrie davd pohodlny pfehled- o moZnostech feSeni
takové soustavy.

VyuZijme v analytické geometrii jeSté jednu znamou
skutecnost: Lezi-li dva body pfimky v néjaké roviné, pak
v této roviné leZi celd tato pfimka. Povede nas to k dfive
jiz slibenému druhému dikazu véty 3,2. Stfed S usecky
AB je charakterizovin dvéma vlastnostmi: je od obou
bodti 4, B stejné daleko a leZi na pfimce uréené body A4, B.
Prvni vlastnost potvrdi Ctendf snadno sdm (viz cviceni 3,3).
DokaZme jesté druhou z nich. Zvolme libovolnou rovinu
prochézejici body A, B. Rovnici této roviny piSme ve tvaru

g1xy + @oXy 1 Xy 4 g4 =0, (3,9)

kde ¢, 42, ¢3» 4 Jsou konstanty, x,, x,, x3 proménné. Sou-
fadnice bodl A, B ji podle pfedpokladu vyhovuji, je tedy
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¢1a, + 420; 1 Gad3 + ¢4
qiby + @202 + g3by + ¢4

Seétenim t&chto rovnic dostavame
g(a; + b)) 4 golay + by) + galas -+ by) + 2¢, = 0
a po déleni dvéma

a + b a,+ b a b
1 1 2 ! 2 24 E) 3—2}_—3“‘ g, ="0. (3,10)

+ ¢

To znamend, Ze soufadnice (3,2) bodu S vyhovuji rovnici
(3,9). To byla, jak vime, rovnice libovolné roviny jdouci
body A4, B. MiZeme tedy fici: bod S leZi v kazdé takové
roviné, kterd prochazi body 4, B. Z toho plyne, Ze bod S
lezi na pfimce spojujici body A, B, jak jsme méli dokazat.
ProtoZe na pfimce leZi jediny stfed usecky, je tim znovu
véta 3,2 dokdzana.

Pfejdéme nyni k soustavé tfi linedrnich rovnic o tfech
neznimych x,, x,, x;. I zde studium takovéto soustavy je
v podstaté totoZné se studiem tfi rovin v prostoru, jeZ jsou
témito rovnicemi ureny. Ihned poznivame, Ze takova
soustava bud nemé Z4dné feSeni (kdyZ napf. aspori dvé
z téchto tfi rovin jsou spolu rovnob&zné nebo kdyi jsou
viechny tfi rovnobéZné s touZe pfimkou), nebo je FeSeni
jediné (kdyz se tfi roviny protinaji v ]ednom bod¢), nebo
konelné je feSeni nekonetné mnoho (kdyZ tfi roviny maji
spoleCnou aspori jednu pfimku). Uvedme si ptiklad na tuto
posledni moZnost. ReSme soustavu rovnic

2%, — 3x, +5x3— 1 =0,
3%, + x5+ 2x3 — 7 =0, (3,11)
X, — Txy + 8x3 + 5 = 0.

Z prvnich dvou danych rovnic maZeme vypocitat x,, x,
pomoci tfeti nezndmé x5; pocitd se tak, jakoby $lo o sousta-
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vu dvou rovnic o dvou nezndmych x;, x,, pfi CemZ tfeti x,
je libovolné volitelna. Snadno kaZdy spocita, Ze je zde

x1:2"—x3, x2:1‘+ x3.

Dosadime-li tyto vysledky do tfeti z danych rovnic, pozna-
vame, Ze 1 tato rovnice je pfi libovolném x,; vidycky splné-
na. To znamen4, Ze kazda trojice Cisel

X, =2 —uyx, =14 1, x5 = u,

kde u je libovolné volitelné Cislo, fesi danou soustavu; ta
m4 tedy nekoneCné mnoho feSeni.

Pficina toho, Ze soustava (3,11) mi nekone¢né mnoho
feseni, je v tom, Ze tyto tfi rovnice nejsou na sobé nezdvislé.
Vskutku, zndsobime-li prvni rovnici dvéma a od vysledku
odefteme druhou rovnici, dostaneme pravé tfeti z nich.
Pak ovSem kazdé hodnoty neznimych x,, x,, %5, jeZ vyho-
vuji zarovefi prvnim dvéma rovnicim (3,11), vyhovuji
nutné i tfeti rovnici. Geometricky to znamena, Ze rovina,
urcend tfeti rovnici (3,11), obsahu)e vsechny body spolecné
dvéma rovinam, jeZ jsou urCeny prvnimi dvéma rovnicemi
(3,11); tfeti rovina prochazi prosté pfimkou, v niZ se prvni
dvé protinaji. Dalsi pfiklady jsou ve cvifeni 3,9 aZ 3,12.
Otizka spolecného pruseciku nékolika rovin vystupuje také
ve cviCeni 3,5; pfislusné roviny se tam urci zptsobem,
jakym jsme dosli k rovnici (3,3) s koeficienty (3,4).

Hledéani spolecnych bodu jinych geometrickych utvart
neZ rovin a piimek neznamend v analytické geometrii
oviem zase nic jiného, neZ feSeni piisluSné soustavy rovnic;
rozdil proti pfedchdzejicimu je jen v tom, Ze pak ne)sou
viechny pfisluiné rovnice linearni. Tak napf. uréeni pri-
seCiki pfimky s plochou kulovou vede podle pfedchozich
vykladii na soustavu tfi rovnic, z nich% dvé jsou linedrni
a tfeti kvadratickd. Pfi feSeni postupujeme obvykle tak,

35



7e nejprve z linedrnich rovnic vypocteme dvé neznimé
pomoci tfeti neznamé a dosadime vysledky do kvadratické
rovnice, z niZ tfeti neznamou vypocitime. Dalsi postup je
uZ zfejmy.

Zakonfeme tuto kapitolu obdobné& jako predchizejici
kapitoly. Na rozdil od geometrie v pfimce a v roviné potfe-
bovali jsme v prostorové geometrii uZ ¥ na sob& nezavislé,
tj. libovolné volitelné soufadnice. KaZda z téchto sourfadnic
muZe opét probihat celou mnoZinu reilnych &isel. Proto
fikdme, Ze nas prostor je trojrozmérny. A protoze euklidov-
skd geometrie je ta geometrie, pfi niZ méfeni vzdalenosti
je vyjadfeno vzorcem (3,1), tikime, Ze prostor, v némz
mé&rFeni provddime podle vzorce (3,1), je trojroz-
mérny euklidovsky prostor.

Cuideni

3,1. Ur&ete délky stran trojuhelnika ABC, je-li A (2;1;3), B (5;
4;8),C (3;0; 3') Na zdkladé toho se pfesvéd¢te, Ze tento trojihelnik je
pravouhly. '

3,2. Piesvéd&te se, Ze trojuhelnik 4 (2;3; —1), B(4;1;5), C (1;
—3; 1) je rovnoramenny.

3,3. Presvédéte se, ze bod S o soutfadnicich danych rovnicemi (3,2)
mié stejnou vzdalenost od bodu 4 (a,; a,; a,) jako od bodu B (b, ; b,; b,)

1
azeje AS = BS — e AB.

3.4, Piesvédéte se podtem, Ze stfed usecky leZi v jeji roviné soumér-
nosti.
3,5. Urlete bod S, ktery ma od bodd A(1l; —1;1), B (2;1; —2),
C(—1;3; —-1), D(1; 1; 1) vesmés stejné vzdilenosti.
3,6. Napiste rovnici plochy kulové, ktera mé
a) stfed v poditku a polomér r = 1;

b) stfed S (2; 0; 0) a prochézi politkem ;



¢) stied S (4; 2; 2) a polomér r = 3.
3,7. Urete stfed a polomér plochy kulové, jejiz rovnice je
3)x;2 -+ x% + xsz — 2x; — 6x, — 10x, -+ 10 = 0;
b) x,2 & x% - x42 — 2ax, = 0;kdejea > 0.
3,8. Napiste rovnici plochy kulové, ktera prochazi body 4, B, C, D
ze cvieni 3.5
3,9. Pokuste se fedit soustavu rovnic
3%, — 2xy + %3 — 5 =0,
—~6x, + 4x, — 2%, -7=0,
a na zsklad® vysledki rozhodnéte, zdali obé roviny, uréené témito rov-
nicemi, jsou spolu rovnobézné nebo ne. '
3,10. Ukazte, Ze tii roviny, jejichZ rovnice jsou
a)2x, — 3%, + 5%, — 1 =0,
3%, + 2%, + 2% — 7 =0,
5%, - Tx, — x; — 16 = 0;
b)x, + x, —x3=0,
2%, ~x, —x3 =1,
4x, + 2%, — 3%, = 0,
se protinaji v jednom bodé; najdéte jej! *
3,11. Tti roviny o rovnicich
X T X — 2% 1=0,
3, — x4+ x5 —2=0,
lx, —x, — % —4=0,
maji nekoneéné mnoho spoleénych bodi. Urete jejich soufadnice.
3,12, Ur&ete spoleiné body rovin o rovnicich
% + X — 22y = 0,
X, — X, + %3 = 0,
2%, —x3—1 =0
3,13. Dokazte, Ze pfimka, dani rovnicemi
3%, + 4x, — 25 = 0,
x; + 2% +x3— 11 =0,
je teénou plochy kulové o rovnici
%2 4 %3 + x 42— 25 =0,
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4. kapitola

CTYRROZMERNY PROSTOR

Algebra nekonci u soustav rovmic o tfech nezmamych.
Studuje i rovnice o Ctyfech, péti a vice nezndmych. Nava-
Zeme-li na pfedchazejici kapitoly, vznikne pfirozena otdzka,
maji-li takové rovnice také né&jaky geometricky vyznam.
Uvidime, Ze ano; nevystaime pfitom ovSem s dvojroz-
mérnou rovinou nebo trojrozmérnym prostorem. Matema-
tikové si zde pomahaji tim zpisobem, Ze zavidéji nové,
umélé pojmy. Cini tak analogicky ke znimym pojymim
z geometrie prostortt dvojrozmérnych a trojrozmérnych.

KdyZ jsme v roviné uréili bod 4 pomoci jeho dvou sou-
tfadnic a,, a,, znamenalo to témérf totéZ, jako kdybychom
uspofadané dvojici Cisel® a,, a, divali nové jméno, totiz
jméno ,,bod A*“; podobné jsme si pocinali i v prostoru
trojrozmérném, jenze tam uZ Slo o trojice Cisel. Pro¢ by-
chom nemohli pokracovat stejné i pro Ctvefice Cisel nebo
viibec pro skupiny o vét$im poctu Cisel ? Ziistarfime proza-
tim u Ctvefic.

Pokusme se o tuto abstrakci: KdyZ jsme poznali geo-
metricky vyznam dvojic a trouc disel, rovnic mezi nimi
a jinych aritmetickych pojmi, odloZme na chvili geometric-
ky obrazek ¢i prostorovy model a odmysleme si skoro celou
tu geometrii; jediné, co z ni podrZime v paméti, bude
geometrické ndzvoslovi. Usporadanou <tvefici &isel —
a,, a,, d,, a, nazveme prosté opét ,,bod A* a zapiSeme to
zase znakem A(a,; a,; ay; a,4) a Jednotliva Cisla této Ctvefice
prohlasime za soufadnice tohoto bodu A. (Ctenaf si jisté
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domysli, Ze v matematice skutecné existuji konkrétni ob-
jekty, jeZ lze charakterizovat pravé popsanou Ctvefici Cisel
— ukaZeme si je hlavné v posledm kapitole — a Ze tedy
nejde jen o vyumélkované feci, které by se prakticky nikde
neuplatnily.)

Poznali jsme, Zze bod urleny dvéma soufadnicemi se
zobrazuje v roviné a bod urceny tfemi soufadnicemi v pros-
toru. O roviné jsme fikali, Ze je dvojrozmérnd, body urené
tfemi soufadnicemi vyplnily trojrozmérny prostor. Stejné
tedy fekn€me, Ze vSechny body, jeZ lze charakterizovat
Ctyfmi soufadnicemi, vyplni prostor étyfrozmérny. Dlle¥ité
pfitom je, Ze pfi urceni bodu A4 ve ¢tyfrozmérném prostoru
muZeme Cisla ay, a,, a3, a, (jeho souradnice) volit nezivisle
jedno na druhém. A podobné jako v pfedchazejicich kapi-
tolich budeme i zde pfedpokladat, Ze kaZdd soufadnice
probiha celou mnoZinu realnych &isel. Bod, jehoZ viechny
Ctyti soufadnice jsou rovny nule, nazyva se i zde poédtkem
piislusné soustavy soufadnic.

Abychom mohli mluvit o néjaké geometrii v takovémto
Ctyfrozmérném prostoru, zavedeme si v ném pojem vzdale-
nosti dvou bodi. Rodivéme se nejdfiv na vzorce (1,1), (2,1)
aB3Dv predchazeucmh kapitolach a analogicky k nim
zvolime méfeni délek i zde.

Fsou-li A(a,3a,3a43a,) a B(b,3b,;b,3b,) dva body v prosto-
ru étyfrozmérném, pak za jejich vzddlenost prohldsime Eislo
v dané vzorcem

U= V(bl — @)+ (by — ap)* + (by —— a3)* + (by - ay)™
41)

Piseme zde oviem také AB = v.

Dopliime to hned daliim pojmem, totiz pojmem eukli-
dovského prostoru (srovnej se zdvérecnymi slovy pfedcha-
zejicich kapitol).
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Euklidovskym ¢&tyfrozmérnym prostorem rozu-
mime kaZdou takovou mnozinu (kazdy takovy souhrn)
néjakych pravé popsanych objektd ¢ili boda, kdyz
méFeni vzdalenosti dvou takovych bodu provadime
podle vzorce (4,1).

Pro strucnost budeme euklidovsky Ctyfrozmérny prostor
znadit E,.

Pfisluinym soufadnicim budeme i zde fikat soufadnice
kartézské. Pojem vzdalenost je na né vazan. Z toho, co
bylo feceno, neplyne, Ze bychom v tomtéZ prostoru E,
nemohli zavést vedle téchto soufadnic jeSté néjaké jiné
soufadnice, v nichZ by se vzdailenost dvou bodt pocitala
podle jiného vzorce nez je (4,1). To jsme mohli zkusit uz
v roviné nebo v trojrozmérném prostoru, vzorec pro vzda-
lenost dvou bodu by se pak byl patfi¢n¢ zménil; nebylo by
tam napf. nutno volit osy soufadnic k sobé kolmé. Upusti-
me viak od toho a zistaneme jen pfi nasi nejjednodussi
kartézské soustavé soufadnic.

Pro nade ¢tendfe bude tedy prozatim nejpohodlnéjsi tato
pfedstava prostoru E,: je to mnoZina viech uspofadanych
Ctvefic Cisel, kazdé takové Ctvefici Fikdme bod prostoru E;
a vzdélenosti mezi nimi méfime podle vzorce (4,1).

UzZ na zdkladé téchto nékolika pojmli miZeme feSit
nekteré ulohy geometrie v E,, jak je patrné ze cviCeni 4,|
az 4,5; ptitom napf. stranou AB trojihelnika ABC rozu-
mime i zde vzdilenost jeho vrcholi 4, B; rovhoramennym
trojuhelnikem rozumime trojuhelnik, jehoZ dvé strany jsou
stejné dlouhé atd.

Podobné jako v predchdzejicich kapitolich budeme i zde
sttedem usecky AB rozumét bod S, ktery puli vzddlenost
AB, pro ktery tedy plati AS = BS = LzAB(srovnej se
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cvi¢. 2,4 a 3,3). Soufadnice tohoto stfedu uréin;g stejné
snadno jako v pfedchazejicich kapitoldch (viz vétu 132, vétu
2,2 a vétu 3,2):

Véta 4,1. Stied S tiselky, jejig krajni body jsou A(a,; a,;
ay; a4) B(by; by by by), md souradnice

a, + b a, + b, a; + b,
51:%,522—2‘5—'553:' : 3 A,
+ b
54:;‘1_42_4. (4,2)

Dtkaz se opira o vzorec (4,1). Pro vzddlenost bodu A4S,
kde soufadnice bodu § jsou dény vzorci (4,2), vychazi

N ) 2
AS:V(FIZLI,I'—‘ZI) + ...+ (ﬂé_b_“. *a‘,) =

1 2
=7 Vo~ a2 4. 4 by - a) = 7143

a stejné tak BS = ;— AB;je tedy také AS == BS a tvrzeni

véty 4,1 je dokazino.

Tento zpisob dikazu jsme doporucovali Ctendfam ve
cvié. 2,4 a 3,3, neni tedy pro né novinkou. Véta 4,1 se
vzorci (4,2) potvrzuje existenci stfedu tusecky v prostoru
E, a poskytuje i ndvod pro vypocet jeho soufadnic. Nutno
zde vSak upozornit na to, Ze tato véta nefika nic o tom, zdali
vedle bodu S neexistuje jesté né&jaky jiny bod v E,, ktery
také pili useCku AB; nedokazali jsme tedy, Ze tiseCka ma
v prostoru E, jen jediny stfed (v pfedchazejicich kapito-
lach to bylo zfejmé z nazoru.i z toho, co Ctendfi znaji ze
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Skoly). Ale i to lze ve Ctyfrozmérném prostoru dokazat.
Nemant€ viak na to v této broZurce ani misto, ani patfi¢né
prostiedky ; zdjemce to najde v udebnici E. Cecha, citované
vzadu v seznamu literatury, a to v L. dile na str. 18.

Pristupme nyni podle vzoru predchazejicich kapitol
k hledani vSech takovych bodi X leZicich ve Ctyfrozmér-
ném prostoru E,, které jsou od bodu A stejné vzdileny
jako od bodu B. Stfed S twseCky AB, ureny ve vété 4,1,
je oviem jednim z nich. Jisté viak existuji jesté¢ daldi body
X, pro které je AX = BX. V roviné vytvofi takové body
pfimku, v prostoru trojrozmérném rovinu, pokazdé totiz
»»05u soumnérnosti‘ usecky AB. Byla o tom feC v pfedché-
zejicich dvou kapitolich. Co bude touto osou soumérnosti
useCky AB v prostoru E,? Bude to zfejmé analogicky
pojem k pojmu pfimky v roviné nebo k pojmu roviny ve
trojrozmérném prostoru. ProtoZe viak v prostoru E, ne-
mime dosud pfislusny pojem, nezbyvd neZ ho definovat
nebo pojmenovat. Provedeme tento kfest velmi jednoduse,
uZijeme bézné vzitého nazvu nadrovina. Nadrovina v pro-
storu E, je tedy mnoZina (souhrn) viech takovych bodu,
které jsou od danych dvou vzdjemné riznych bodu stejné
vzdaleny. A hned miZeme pfistoupit k analytickému vy-
jadfeni nadroviny (srovnej s vétami 2,3 a 3,3).

Véta 4,2, V kartézskych soufadnicich md nadrovina
v prostoru E, rovnici linedrni.

Dukaz. Jsou-li A(a,; a,; a,;a,) a B(b,; by; bys b,) dva
rizné body, pak nadrovinu vyplni takové body X(x,; x,;
X33 %,), pro které je AX = BX, tj.

Pp—

= V(xl — by)? - (xz — by)? 4 (x5 — by)® + (x3 — by).
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Po umocnéni této rovnice dvéma a po jednoduché pocetni
upravé vychazi odtud linearni rovnice

P1Xy + PoXe + PaXs + paxy + py =0, (4,3)
kde jsme pro strucnost poloZili

pr=o0(b, — a)sp, = 0(by — ay), p3 = 0 (by — ay),
P1 =0 (by — ay), (4,4)

b5 = %(aﬁ—bﬁ - ag?- byt at—by? +- af- - bf);.

pfitom o + O je libovolny koeficient. V§imnéte si, Ze Cisla
D> P2> P3» P4 DEjsou viechna soucasné rovna nule. Vsechny
body X zde vySetfované nadroviny maji tedy tu vlastnost,
Ze jejich soufadnice vyhovuji rovnici (4,3), ktera je oviem
v proménnych x,,.x,, X3, x, linedrni. Jiné body neZz body
této nadroviny uvedené rovnici nevyhovuji, nebot z rov-
nice (4,3) plyne pfi oznaceni (4,4) zpét podminka AX =
= BX, jak se kazdy snadno pfesvéddi. Je tedy rovnice nasi
nadroviny vskutku linedrni. Ddle je k diikazu véty 4,2 jesté
nutno dodat, Ze obracené kazda linedrni rovnice tvaru (4,3)
je rovnici nékteré nadroviny. Dikaz je i zde myslenkové
stejny jako byl ditkaz véty 2,3 nebo véty 3,3, nebudu jej uz
opakovat. Ctendf si jen znovu promysli diskusi rovnic (2,6)
az (2,8) z druhé kapitoly a pfepise si ji do pomérua ve Ctyi-
rozmérném prostoru, tj. do ¢tyf proménnych x,, x5, X3, X3,
pti ¢emZ rovnice (2,4) a (2,5) nahradi rovnicemi (4,3) a
(4,4). Tim je véta 4,2 dokdzana.

Zkoumejme dal$i geometricky uttvar v prostoru E,,
ktery je obdobou kruZnice v roviné a plochy kulové v pro-
storu. Budeme mu fikat nadkoule, alkoli by presnéjsi nazev
byl kulova nadplocha. Nase strucné vyjadreni, jeZ je ob-
vyklé, nevede vSak k nedorozuméni. Nadkoule je prosté
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mnoZina (souhrn) viech takovych bodii v E,, jeZ jsou od da-
ného bodu, tzv. stfedu nadkoule, stejné vzddleny; vzddlenost
kaZdého bodu nadkoule od jejtho stredu nazyvd se polomér
nadkoule. Ctendf si jist& viimne, %e o nadkouli a jejim stiedu
i poloméru miZeme v prostoru E, mluvit proto, Ze v nénr
dovedeme méfit vzddlenost a Ze k tomu vlastné nic jiného
nepotfebujeme. V daldi v&t¢ (podobné jako ve vétich 2,4
a 3,4) znamenaji pismena x;, x,, xg, x, kartézské souradnice
libovolného bodu X dané nadkoule.

. Vé&ta 4,3. Nadkoule o stfedu S(s,; 555 S35 5,) a poloméru
r > 0 md v kartézskych souradnicich v prostoru E, rovnici

(% = $1)% -+ (%3~ 82)* -+ (%3 — 53)2 + (%1 — 5,)° ==
= r2 (4,5)

Dikaz. Podle toho, co bylo feCeno, je nadkoule tvofena
body X, pro které je SX = r, a jen témito body. Podle
vzorce (4,1) to vede k rovnici

Yoy — s+ (x2 — 522 + (5 — 53 + (6 — 83 = 15
kter4 vzhledem K podmince r >> 0 je ekvivalentni s rovnici
(4,5).

Rovnici (4,5) lze pfepsat na tvar
X3+ x,2 + x,24 1% - Mx, 4- Nx, + Px; 4 Qx;+ R=

= 0, (4,6)

kde je
M = — 25, N == — 25,, P == — 285, Q == — 25y,
R = 52+ 5,2+ 542+ 5,2 -— r2 (4,7

Je-li rovnice nadkoule dina ve tvaru (4,6), poznime jeji
stfed a polomér tim, Ze ji zpét pievedeme na tvar (4,5),
jak uZ jsme to poznali ve dvou a tfech proménnych u rovnic
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(2,9) a (2,10) a u rovnic (3,5) a (3,6). Pfimo ze vzorcu (4,7)
také snadno urlime stfed a polomér nadkoule; je
M N P Q

'2—' b

BV I R R

r:%VMz—{-NZ 4 P24 Q2 -

Za piedpokladu M2 + N2 P2+ Q% — 4R>0jer>0a
rovnice (4,7) je pak rovnici nadkoule. Pfiklady jsou ve cvic.
4,6;4,7;4,12;4,13; 4,14.

Kdy?Z jsme uZ poznali nejjednodussi nadplochy v prostoru
E,, totiZ nadrovinu a nadkouli, postoupime k dalS$im po-
jmim, ale zustaneme pro jednoduchost jen u ttvari line-
arnich, tedy u 1tvari vytvofenych nadrovinami. Za tim
ucelem se vyplad fici si jeSté néco o nadroviné. Z véry 4,2
vime, Ze¢ nadrovina ma rovnici lineirni (proménné —
X1, Xay X3, X, S€ Vv 0 vyskytuji jen v prvni mocniné). Rovnice

% =0 (4,8)

je také takova linedrni rovnice, piedstavuje tudiZz néjakou
nadrovinu. Z rovnice (4,3) ji dostaneme, klademe-li tam
P =ps = p3 = p; = 0, p, = 1. KaZdy bod leZici v nad-
roving (4,8) je charaktenzovan tim, Ze jeho Ctvrta soufad-
nice je rovna nule; jsou-h ¥(y,;y,;¥,;0)a Z(215 235 235 0)
dva takové body, je jejich vzdalenost v prostoru E, urcena
podle vzorce (4,1) vyrazem

YZ = VG 3T T G 3T @ o)
To je oviem aZ na oznaceni bodi a jejich soufadnic pfimo

vzorec (3,1) ze zaatku kapitoly 3. To znameni, Ze vzdale-
nost dvou bodd Y, Z nadroviny (4,8) méfime zde stejné
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jako v trojrozmérném euklidovském prostoru, tudiz Ze tato
nadrovina je sama trojrozmérnym euklidovskym prostorem.

“Toto tvrzeni viak plati pro kazdou nadrovinu leZici
v prostoru E,, tedy nikoli jen pro nadrovinu danou rovnici
(4,8). Soustavu soufadnic muZeme totiZz vidycky zvolit
v prostoru E, tak, aby dand, pevné zvolena nadrovina méla
rovnici (4,8), tj. aby byla soufadnou nadrovinou. Nebudeme
to zde podrobn¢ dokazovat, rad bych jen upozornil, Ze to
viechno neni Zddné piekvapeni; v prostoru trojrozmér-
ném jsou poméry podobné. Tam je sice ze $koly i z ndzoru
kazdému zfejmé, Ze rovina, leZici v trojrozmérném eukli-
dovském prostoru, je sama dvojrozmérnym prostorem
euklidovskym, ale je dobfe si uv&domit, Ze i tam kazdou
rovinu mohu zvolit za rovinu soufadnou.

Ostatné skutecnost, Ze nadrovina v prostoru E, je sama
prostorem trojrozmérnym, plyne uZ z urleni bodu v takové
nadroving. Je-li X(x,;x,; x4; x,) bod takové nadroviny,
vyhovuji jeho soufadnice rovnici (4,3) a nemiZeme je tedy
volit zcela libovolné, MuZeme volit pravé jen tfi z nich,
Ctvrtou uZz musime vypocitat z rovnice (4,3). Je tedy bod
v nadroviné urcen tfemi soufadnicemi, proto je kaZzda nad-
rovina v prostoru E, sama prostorem trojrozmérnym. Do-
kézat viak obecné, Ze je to euklidovsky trojrozmérny pros-
tor, dalo by uZ vic prace; spokojime se zde tedy jen s ukdz-
kou, kterou jsme si pfedvedli pro nadrovinu o rovnici
(4, 8).

Jsou-li nyni ddny dvé nadroviny rovnicemi (a;; b; jsou
konstanty, x; jsou proménné)

ax, + agx, + azx; + agxy 4-a; =0,
blxl + b2x2 —|“ b3x3 "’_ b4x4 + b5 == 0, (4,9)

muzeme v béznych pfipadech dvé z proménnych soufadnic
(napf. x,, x,) volit libovoln¢ a zbyvajici dv& (zde tedy x4, x,)
vypolitat pak z téchto dvou rovnic. Tak dostaneme sou-
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fadnice vSech bodit X(x,: x, : x5 : x,), jeZ leZi v obou zvole-
nych nadrovinich soucasné. Kolik je takovych bodu? Je
jich nekonené mnoho, protoZe dvé soufadmice kazdého
z téchto bodi muZeme pritom volit libovolné, tedy neko-
necné¢ mnoha zpusoby. ProtoZe dvé soufadnice jsou voli-
telné, vytvofi tyto body dvojrozmérny prostor. To ndm uZ
ptipomina tvahy z kapitoly 2 a mame tedy podezfeni,
neni-li tento dvojrozmérny prostor zase euklidovsky, neni-li
to prosté rovina. NasvédCuje tomu i to, Ze jde o Utvary
lineirni, dané linedrnimi rovnicemi. A skuteCné je tomu
tak; miZeme si to opét pohodlné ovéfit na zvlastnim pii-
padé, kdyZ za rovnice (4,9) zvolime rovnice

Xy = 0, x, = 0. (4,10)

Body, leZici v obou téchto nadrovinach souc¢asné€, maji prvni
dvé soufadnice libovolné a druhé dvé jsou nuly; pro vzda-
lenost takovych dvou boda Y(y,; ¥,; 0; 0) a Z(z,; 2,5 0; 0)
dava vzorec (4,1) vysledek

YZ = | (2 — 31 + (22 — 32
To je oviem vzorec (2,1) a vidime tedy, Ze spolecné body
nadrovin (4,10) vytvofi dvojrozmérny euklidovsky prostor,
tedy rovinu.

V celé této uvaze pfedpoklidime, Ze nadroviny dané
rovnicemi (4,9) vibec né&jaky spoleény bod maji, tj. Ze
obé rovnice (4,9) si vzdjemné neodporuji, a Ze zaroveil neni
jedna z nich niasobkem druhé, {ili, jak se odborné fikd, Ze
tyto dvé rovnice jsou lineiarné nezavislé. Kdyby totiZ jedna
byla niasobkem druhé, dostali bychom vhodnym délenim
druhé z rovnic (4,9) prvni z nich a obé by tedy urcovaly
tutéZ nadrovinu; v tom pfipadé by tyto ,,dvé*“ nadroviny
splynuly v jedinou a neprotly by se jen v roviné. Za pied-
pokladii prdvé vytienych miiZeme viak ¥ici, Ze dvé nadroviny
v prostoru E, se protinaji v roviné. Rikdme také, e primk
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dvou nadrovin v prostoru E, je rovina. Ve star§i literatuie
se misto slova prunik vyskytuje ve stejném vyznamu i slovo
prusek. Zarovell poznivame, Ze rovina v prostoru E, je
uréena dvéma linedrnimi rovnicemi. Tyto rovnice musi byt
oviem linedrné nezavislé a nesmi si vzijemné odporovat,
jak uz o tom byla fe¢. Napf. rovnice

X+ % — 2%+ x,—1=0,
2%, + 2x, —4x;, + 2x, — 1 =0

si odporuji, jimi uréené nadroviny nemaji Zadny spolecny
bod (jak se kazdy snadno pfesvédci) a neprotinaji se tedy
v roviné.

Urleni roviny v prostoru E, je tedy obdobné urleni
ptimky v trojrozmérném prostoru; pokazdé je pfislusny
geometricky utvar uréen dvéma linedrnimi rovnicemi.

Ptejme se dile, co je prunikem tfi nadrovin v prostoru
E,, tj. co vytvoii body spolecné tfem nadrovindm ? Analy-
ticky to znamen4 hledat spole¢né feSeni i linearnich rov-
nic (a;; b;; ¢ jsou konstanty, x; jsou proménné)

A%, + axxy, + asx; + ax, + a; = 0,
blxl '*" b2x2 + b3x3 + b4x4 + b5 = 0, (4,11)
Xy €Xp + Ca3X3 1 C4x4 + 5 =0,

z nich? kaZda je rovnici jedné z danych t¥i nadrovin. Zde
miZeme jen jednu z proménnych x,, x,, X3, x, volit libo-
volné, kdeZto zbyvajici tfi uZ musime vypotitat feSenim
soustavy tfi rovnic (4,11). Volitelni je jedna soufadnice,
body takto uréené vytvofi tedy prostor jednorozmérny,
pfimku. Zvlastni pfipad soustavy (4,11) jsou rovnice

Xy = 0, x5 = 0, %, = 0;

jsou-li ¥(y,50;0;0) a Z(2;;0;0;0) libovolné dva body
spole¢né vSem témto nadrovinim, je jejich vzdalenost
podle vzorce (4,1) dina vyrazem
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YZ = V(zl — Y1) =z — il
To je vzorec (1,1) z prvni kapitoly, nase tfi nadroviny se
tedy protinaji v obycejné euklidovské pfimce.

O soustavé (4,11) musime pfi tom oviem zase pfedpo-
klddat totéz, co jsme pfedpoklddali v diskusi o soustavé
rovnic (4,9). Zadné dvé z t&chto rovnic (4,11) si nesmi na-
vzajem odporovat a celkemn musi byt tyto rovnice lineirné
nezavislé. Oviem linearni nezévislost tfi rovnic je uZ pojem
znalné sloZitéjsi neZ byl u dvou rovnic a nemame zde misto
na vyklad tohoto pojmu. Pfipojme jen upozornéni, Ze
kdyby napf. tfeti z rovnic (4,11) byla sou¢tem prvnich
dvou, pak by oviem kaZd¢ feSeni prvnich dvou rovnic bylo
i feSenim tfeti z nich; geometricky by to znamenalo, Ze
tfeti nadrovina by obsahovala vSechny body spolecné
prvnim dvéma nadrovinam, tedy viechny body roviny
jimi uréené. V takovém pfipadé by tyto tfi nadroviny mély
spoleCnou celou rovinu a neprotinaly by se tedy jenom
v pfimce. PoZadavek linedrni nezavislosti rovmic (4,11)
geometricky prosté znamena pozadavek, aby Ziadna z pfi-
slusnych nadrovin neprochazela prinikem zbyvajicich nad-
rovin takové soustavy. A s timto vysvétlenim pojmu line-
arni nezavislosti se zde spokojime.

Ze viech pravé uvedenych pfedpokladii miZeme tedy
struéné fici, Ze (¥ madroviny v prostoru E, se protingji
v pFimce. Zaroven vidime, Ze primka v prostoru E, je uriena
tiemi linedrnimi rovnicemi.

Dosavadni vysledky muZeme pro prehlednost vyjadfit
jedinou vétou. UZijeme pfitom struéného oznaCeni E,
pro p-rozmérny euklidovsky prostor, tedy E, pro ptimku,
E, pro rovinu a E; pro trojrozmérny prostor. Pfitom pifed-
poklidame, Ze soustava linedrnich rovnic, o které hovoti-
me, je tvofena rovnicemi linedrné nezivislymi a navzéjem
si neodporujicimi, jak uZ bylo nékolikrite zdtraznéno. Za
téchto pfedpokladii 1ze nade vySetfovani shrnout takto:
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Véta 4,4. V karrézskych souradnicich je prostor E, v pros-
toru E, (p<<4) uréen q hinedrné nezdvislymi lLinedrnimi
rovnicemi, pii cemZ je ¢ == 4 — p.

Véta 4,2 je zvlaStnim pfipadem této véty 4,4. Ve vété 4,4
je viak zahrnut i pfipad ¢tyr linedrnich rovnic, pfijmeme-li
oznaceni E, pro bod jakoZto prostor, jehoZ pocet rozméri
je nula. Skute¢né soustava Ctyf linedrnich rovnic o &tyfech
neznimych md za naSich pfedpokladi jediné feSeni, je
tedy jediny spolecny bod Ctyf nadrovin v prostoru E,.
Celkem tedy miZeme ve vété 4,4 klast p = 0, 1, 2, 3.

UkaZme si na piikladech nékteré dusledky véty 4,4.

Hledejme spolecné body dvou rovin v prostoru E,.
Podle véty 4,4 je zde kazda rovina dina dvéma rovnicemi.
Necht prvni rovina je ddna napf. rovnicemi

X, + x, 4+ x3+x4——2=0
X kX — % —x, =0, (4,12)
a druha rovina rovnicemi

2% — Xy + %3 — %, — 5=0,
X, — X+ x4 = 0. (4,13)

Vsechny spolecné body téchto rovin maji tedy tu vlastnost,
Ze jejich soufadnice vyhovuji jak rovnicim (4,12) tak rovni-
cim (4,13). To jsou celkem Ctyfi linedrni rovnice o étyrech
nezndmych x;, x5, X3, %, a stojime pfed tkolem feSit tuto
soustavu rovnic. ReSeni je zde jediné, jak se kazdy snadno
piesvéddi tim, Ze tuto soustavu skuteéné rozie$i. Snadno
dostaneme vysledek

%= 1lyx=0,%3==2,x, = — L. (4,14)

Je tedy jediny bod X (1;0;2; 1) spoleény obéma danym
rovinim. Neni to nic dlvneho, i podle véty 4,4 nae Ctyfi
rovnice (4,12) a (4,13) urcuji v prostoru E, prostor E,,
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tedy jediny bod. Cely tento piiklad ndm tedy ukazuje piipad,
kdy dvé roviny ve étyFrozmérném prostoru se protinaji v jed-
nom bodé.
Sledujeme dile otiazku praseciku pfimky s rovinou
v prostoru E,. Rovina necht je ddna zase rovnicemi (4,12).
Pfimka je tu podle véty 4,4 dina tfemi linedrnimi rovnice-
mi; necht to jsou rovnice (4,13), k nim?Z jako tfeti pfipojime
rovnici
2%+ %, — %3+ 3x, — 7= 0. (4,15)

Soufadnice priseCiku této pfimky s danou rovinou vyho-
vuji tedy viem péti rovnicim (4 12), (4,13) a (4,15). Ale
takovy bod neexistuje. Jediné feSeni soustavy rovnic (4,12)
a (4,13) dévaji hodnoty (4,14), ty viak nevyhovuji rovnici
(4,15), jak se pouhym dosazenim kaZdy presvedc1 Mdme
tedy przpad kdy primka a rovina v prostoru CtyFrozmérném
se neprotinaji, jsou mimobéZné.

Podobnych disledki véty 4,4 l1ze ukazat celou fadu.
Neékteré mame ve cviCenich na konci kapitoly.

Doplfime nyni vétu 4,1 v jednom sméru. KdyZ uz znime
analytické vyjadieni pfimky v prostoru E, pomoci tfi
linedrnich rovnic, snadno dokiZeme, Ze stfed usecky AB
leZi na pfimce urlené témito body A, B. Uvaha je zde
stejnd, jako byla v kapitole 3 pfi odvozeni rovnice (3,10)
z rovnice (3, 9). Budiz

g1%; + go2Xa + gaxX3 + g%, + g5 =0 (4,16)

(¢: jsou konstanty, x; proménné) rovnice nadroviny obsa-
hujici body A(a,; a,; a35 a,) a B(by; by; by; b,). Soufadnice
téchto bodu pak rovnici (4,16) vyhovuji, plati tedy

¢19; + Gud: + 333 + a0y + g5 = 0,
@by + o + gabs + qabs + g5 = 0.
Settenim téchto rovnic a délenim dvéma dostivame
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a, + b a, + b, a; + b
4 l;_ L+ g _12 2+ gy 32 2+

a, -+ b
o 850 g =0 (4,17)

To znamena, Ze souradnice (4,2) stfedu § useCky AB vy-
hovuji rovnici (4,16), Cili Ze stfed useCky AB lezi v kazdé
nadroviné prochazejici body A4, B. ProtoZe kazda pfimka
je podle véty 4,4 urena tfemi linedrnimi rovnicemi, je
prunikem tfi nadrovin a pro kaZdou z nich plati rovnice
(4,17). LeZi tudiz stfed aseCky AB v kazdé z téchto tfi
nadrovin urcujicich pfimku 4B a tedy také na této pfimce
samé. I v prostoru ¢tyfrozmérném md tudiz stfed usecky
viechny ty vlastnosti, které zndme z geometrie v prostoru
trojrozmérném.

Zakonéeme tuto kapitolu je$té zkoumdnim uréeni nad-
koule v prostoru E,. Vime, Ze kruZnice je v roviné uréena
tfemi body, jeZ neleZi v pfimce. Pfesn€ fefeno je to tak, Ze
takovymi tfemi body prochdzi pravé jedna kruZnice. V troj-
rozmérném prostoru je podobné plocha kulovd uréena
Ctyfmi body, jez neleZi v téZe roviné; pfiklad toho byl
uveden ve cviceni 3,8. Podobné v prostoru E, je nadkoule
uréena péri rakovymi body, které nelesi v téfe nadroviné.
UvaZme, Ze v rovnici nadkoule tvaru (4,6) je celkem pét
volitelnych koeficientd M, N, P, Q, R; lezi-li dany bod
A(al, as; ag; a4) na této nadkouh, vyhovu)i jeho soufadnice
jeji rovnici, coZ je ]edna podminka pro urceni koeficienti
M, N, P, Q, R, totiz

Ma, + Na, + Pa, -+ Qa, + R =
= — (a* + a® + a;* + a,%).

To je lineirni rovnice pro koeficienty M, N, P, Q, R;
abychom je urdili jednoznacné, potfebujeme pét takovych
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linedrnich rovnic, tedy pét bodd, jimi%Z md nadkoule pro-
chazet (viz cviCeni 4,12).

Pohovofme jesté o tom, kde leZi stfed S takové nadkoule
uréené pét takovymi body A, B, C, D, E, které neleZi
v téZe nadroviné. Za¢néme se dvéma body 4, B. Z vykladu,
ktery pfedchazel vété 4,2, vime, Ze stfedy viech nadkouli
prochdzejicich dvéma body A, B vyplni nadrovinu o rovnici
(4,3), kterd je osou soumérnosti usecky AB. Pfidime-li
tfeti bod C, pak pro stfedy S vSech nadkouli, jeZ proché-
zeji body A, B, C, bude platit nejen AS = BS, ale také
AS = CS§ a v disledku toho uZ i BS == CS. Tyto stfedy
leZi tedy jak v nadroviné, ktera je osou soumérnosti usecky
AB, tak také v nadroving, ktera je osou soumérnosti Gsecky.
AC. Prunik takovych dvou nadrovin je ov§em rovina, nebot
je to utvar ureny dvéma linedrnimi rovnicemi (viz vétu
4,4). Poznivame tedy, Ze stFedy vSech nadkouli prochdzeji-
cich tiemi body A, B, C vyplni v prostoru E, rovinu. Podobné
pfidanim dalsiho poZadavku, aby naSe nadkoule prochizela
jesté Ctvrtym bodem D, pfidivame jesté dalsi nadrovinu,
napi. osu soumérnosti GseCky AD, v niZ hledany stfed leZi.
MuZeme v nasem pripadé¢ tedy fici, Ze stiedy vSech nadkouli
prochdzejicich &tyrmi body A, B, C, D vypini v prostoru
E, piimku. Pfiddnim dalSiho poZadavku, aby na nasi nad-
kouli leZel i paty bod E, dochdzime k rovnici dal$i nadro-~
Viny a tedy uZ jen k jedinému stfedu nadkoule, urené
témito péti body Sestaveni rovnic téchto nadrovin, 1e2 jsou
osami soumérnosti pfisluSnych tdsecek, nemélo by uZ na-
$emu Ctenafi pusobit Zddné potiZe, protoZe jsme tyto rovni-
ce odvodili ve tvaru (4,3) pfi oznaceni (4,4) v diikazu véty
4,2. Rovné? feSeni pfislusnych soustav linedrnich rovnic
nemélo by pisobit zasadnich potiZi, i kdyZ je nékdy dost
pracné, (jde o soustavy rovnic o ¢tyfech nezndmych). Pfi-
slu$né pfiklady jsou zafazeny pfimo ve cviCeni 4,// a 4,12,

Rovnéz hledani prusecika pfimky s nadkouli je zafazeno
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rovnou do cviceni 4,13 a 4,14 (viz i ndvod ve vysledku cvic.
4,13). Mé-li pfimka s nadkouli jen jeden bod spole¢ny,
fikime, Ze se této nadkoule dotyka, Cili Ze je jeji relnou.
Je to obdoba tecny kruZnice nebo plochy kulové.

Zavérem této kapitoly si znovu pfipomefime, Ze jsme v ni
téma Ctyfrozmérného prostoru ani zdaleka Gplné nevycer-
pali. Slo jen o ukazky, jak lze geometrii v takovém prostoru
vytvafet. Mnoha geometrickych pojmi jsme si viak pfitom
vibec nevS§imli. Nemluvili jsme o tihlech a jejich méfeni,
a tedy ani o kolmosti, rovnobé&znosti apod. Neprobirali jsme
uréeni vzdalenosti bodu od nadroviny, roviny nebo pfim-
ky, ani napf. o vzdalenosti dvou rovnob&’nych nadrovin
atd. Nehovofili jsme vibec o transformaci soufadnic. To
viechno musi zdjemce hledat v podrobnéjii literatufe, kterd
je uvedena na konci této knizky.

V souvislosti s tim bude snad né&kterého ¢tenafe mrzet,
Ze jsme zde merysovali Zddné obrazky z prostoru Ctyiroz-
mérného. (Mald ukazka je jen v kapitole 6, obr. 8.) Neméli
jsme totiz k dispozici ani nejjednodussi kolmé promitani,
protoZe jsme o kolmosti v prostoru E, nemluvili. Nutno
vsak upozornit, Ze obrazky se rysuji na papir, tedy na dvoj-
rozmé&rnou rovinu, Tak to déldme i se zobrazovanim troj-
rozmé&rného prostoru. Ale studentiim, ktefi nejsou zvykli
na deskriptivni geometrii nebo nemaji dostatek prostorové
predstavivosti, se stava, Ze v takovém obrazku nic prostoro-
vého nevidi; vidi prosté jen zmét Car na papife. Tyto obtize
ovSem rostou, zvySujeme-li pocet rozméru prostoru, ktery
zobrazujeme. ZileZi pak hodné na cviku a zrucnosti. Je
oviem moZné uZitim promitdni zobrazovat Ctyfrozmérny
prostor na dvojrozmérnou nakresnu; bylo uZ feceno, Ze
se timto zpisobem v deskriptivni geometrii zobrazuje uZ
prostor trojrozmérny. Podobné lze Ctyfrozmérny prostor
promitnout nejdiiv do prostoru trojrozmérného a vysledek
pak dile promitnout na dvojrozmérnou nikresnu, tedy na
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papir. To vSechno patfi do deskriptivni geometrie a znalost
zdkladnich pojmi z prostoru Ctyfrozmérného, které jsme
si ani zde vSechny nevyloZili, se pfitom pfedpoklida.
V seznamu literatury vzadu je uvedena i uebnice deskrip-
tivni geometrie, v niZ o promitdni v prostoru Ctyfrozmér-
ném je pojedndno.

Cuileni . .

4,1. Vypoététe vzdilenost bodu A (a,, a,, a3, a,) od poéitku v pro-
storu E,.

4,2. THi body 4 (—1;2;5;3), B(3;2; —1;7), C(3; —1;2;3)
tvofi v prostoru E, trojihelnik. DokaZte, Ze je to rovnoramenny troj-
thelnik. .

4,3. Dokazte, Ze trojuhelnik ABC v prostoru E,, kde je 4 (—1;2;
5;3), B(1;2;2;5), C(3; —1;2; 3), je pravouhly a rovnoramenny.

4,4. Vypoététe soufadnice stfedu S use¢ky PQ, kde je P (—1;2;5;
3), Q(3;2; —1;7) a vysledek srovnejte se zadianim pfedchéazejicich
dvou cviceni.

4,5. Dokazte, 7¢ body 4 (—1;0;3)/2; — 3)/2, B (1505 — §]/2;

%]/2), (o) (] ;V3; %VE, %VG) tvofi v prostoru E, trojithelnik rovnostranny.
4,6. Napiste rovnici nadkoule v prostoru E;, kterd ma
a) stfed v po&atku a polomér r = 1;
b) stfed S (2; 0; 0; 0) a prochazi pocitkem ;
c) stted S (3; —1; 23 2) a polomér r = 4.
4,7 UrZete stied a polomér nadkoule, jejiZ rovnice je
a) 1,2 L a2 -k xy? + x,% + 2x; 4 8x, — 6k + 1 = 0;
b) 2,2 + x,% + x5 + x,2— 2ax; = 0,kdejea > 0.
4,8. Urgete pruseik dvou rovin v prostoru E,, je-li prvni rovina
déna rovnicemi
X+ xy +x3—x,—12=0,
X+ X —x3+x,—-13=0,
a druh4 rovina rovnicemi
X, — X x4+ %, —-5=0,

55



X, — X3 — %3 —x; +8=0.
4,9. V prostoru E, je dina pfimka rovnicemi
% + 3%, —6x3 —6xy —7T=0,
2%, - xy —4xy — 2%, — 15 =0,
4x, — xy — 5%3 -+ 5%, — 30 =0
a nadrovina rovnici
5%, + 10x, — 20x, — 22x, — 38 = O.
Které jsou prusediky této pfimky s touto nadrovinou ?
4,10. V prostoru E, je dina rovina rovnicemi
Xy + %y + x5 — 10 =0,
Xo+ %3+ % —20=0
a nadrovina rovnici
2% - xy — x3 — x3 — 30 = 0. .

Najdéte soufadnice bodu pfimky, v nizZ dand rovina protind danou
nadrovinu. (N4vod: postupujte obdobné jako u fefeni soustavy (3,8)
v kapitole 3.)

4,11, V prostoru E, ur¢ete bod S, ktery m4 od bodt 4 (3; —2; 4; 0),
B(1;0;4;0), C(1; —2;6;0), D(1; —2;4;2), E(2; —1;5;1) ve-
smés stejné vzdalenosti.

4,12. Napiste rovnici nadkoule, kterd prochézi péti body 4, B, C,
D, E ze cvideni 4,11 a vypottéte jeji polomér r.

4,13. Ukazte, Ze v prostoru E, pfimka dani rovnicemi

Xy — Xy — X3 — %4 +2=0,
Xy — X3 =0,
X3 —x,=0
protind nadkouli o rovnici
"12 + xzz + x32 + x42 =4
ve dvou bodech. Najdéte je.
4,14. Ukazte, ze pfimka dan4d rovnicemi
X+ %+ % +x—~4=0,
x — x, =0,
Xq — %y == 0
je te&nou nadkoule o rovnici
g A x? 4 xg? - ox,2 =4
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’ 5. kapitola

VICEROZMERNE PROSTORY

Uvshy o &tytrozmérném prostoru lze bez nesnizi zevie-
obecnit na prostory s vétsim podtem rozmérti neZ 4. Na-
znalime si to zde jen strucné, protoZe myslenkové uz to ve
srovnani s pfedchazejici kapitolou neznamend v podstaté
nic nového. Reknéme si tedy hned, co rozumime eukli-
dovskym #n-rozmérnym prostorem E,, pfitom # je jakékoli
pevnédzvolené pfirozené &islo, tedy n =1, 2, 3, 4, 5, 6,
... atd.

MnozZinu (souhrn) jakychkoli prvka, jimz Fikime
body, nazveme euklidovskym 7n-rozmérnym prosto-
rem E,, kdyZ jsou splnény tyto dva pifedpoklady:

1. Je mozZno zavést v E, takovou soustavu soufad-
nou, Ze kazdy bod 4 tohoto prostoru je jednoznaéné
urcen n soufadnicemi a,, a,, ..., a.; tyto soufadnice
jsou vzijemné na sob& nezivislé a kaZda probiha
mnozinu vSech redlnych ¢isel. Toto uréeni bodu A4
soufadnicemi a,, a,, ..., a, zapisujeme stru¢né¢ sym-
bolem A (a;; a5 . .. ; an).

2. Jsou-li A (a,; a,; ...;an) a B(b;; by5 ...; bs) dva
body v prostoru E,, je jejich vzdilenost » dana vzor-
cem

v=JGr—af+ O —aff + ...+ (s — an)
(s1)

PiSeme také v = AB. Pravé popsani soustava soufadnic
v prostoru E, nazyva se kartézskd.
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Bod, jehoz viechny soufadnice jsou rovny nule, nazyva'
se poldtek prislusné soustavy soufadnic.

Ze vzorce (5,1) plyne, Ze dva rizné body se li§i aspon
v jedné soufadnici, nebot z poZadavku v = 0 plyne ihned
b, = ay;, b, = ay, ..., bu = an. Ale je-li vzdalenost dvou
bodu rovna nule, pak pfirozené fikdme, Ze tyto body sply-
vaji, Ze jsou totoZné; v takovém pfipad¢ se nejednd o dva
razné body.

VSechny zakladni poznatky z pfedchézejici kapitoly pfe-
piSeme nyni do vicerozmérnych prostori; vyklad uz zde
viak je stru¢ny, rovnéz diukazy jednotlivych vét jsou piene-
chény pili ¢tenafe nebo jsou jen strucné naznaCeny, protoze
myslenkovy postup je doslova stejny jako v prostoru E,.

Véta 5,1. Stied S usecky, jejiz krajni body jsou
A(ay; as5 .. .5 an)y B(by; by . . . 3 by), md souradnice
a, + b, a, + b, an + by

§ = 2 ,52‘— 2 cvey S = 2

(5:2)

Dikaz. Pomoci vzorce (5,1) ovéfime platnost vztahu

AS = BS = -;— AB.'— AZCtenaf na zakladé véty 5,4 zjisti,

jak vypada analytické vyjadfeni pfimky v prostoru E,,
dokaZe i zde, Ze stfed useCky AB leZi na pfimce urlené
body A, B; sta¢i k tomu opakovat postup, ktery vedl od
rovnice (4,16) k rovnici (4,17) v pfedchazejici kapitole.

Stied S usectky AB neni jedinym bodem v prostoru E,,
ktery je stejné vzdilen od bodu A jako od bodu B. Viechny
body X, pro které je AX = BX, vytvofi mnoZinu bodia
v prostoru E., kterd se podobné jako ve &tyfrozmérném
prostoru nazyva nadrovina v prostoru E,; pfedpoklidime
ptitom, Ze body A4, B jsou razné.
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Analytické vyjadfeni nadroviny je obdobné jako dfiv, na
misto linedrni rovnice ve Ctyfech proménnych nastoupi
linedrni rovnice v #» proménnych.

Véta 5,2. V kartézskych soufadnicich md nadrovina v pros-
toru E, rovnici linedrni.

Dikazje ste;ny jako uvety 4,2. Jsou-li A(a,; a5 .. .5 an)
a B(by; by; ...;bs) dva rizné body a X(x;5 Xp5 ... 3 Xn)
bézny bod zkoumane nadrovmy, kterd je ,,0s0u soumér—
nosti* useCky AB, vede uZitim vzorce (5,1) podminka
AX = BX na rovnici

Pr¥1t+pXet+ oo+ PaXnt Pu1 =0, (5,3)
kde je pfio + 0,

P = Q(bl - al), P= g(b2 - az)s ey Pn=290 (bn - an):
P11 = % (a*— b+ a? — b*+ ... +- an’— ba®). (5:4)

Dile se uZ jen opakuje uvaha z diikazu véty 4,2.

ProtoZe pojem vzdalenosti dvou bodi.v prostoru E, je
ndm uZ zndm, miZeme hovotit i zde o nadkouli. Nadkoule
v prostoru E, je mnogina viech takovych bodii tohoto prostoru,
jeZ jsou od daného bodu, tzv. stfedu nadkoule, stejné vzddleny
vzddlenost kasdého bodu nadkoule od jejiho stiedu nazyvd se
polomér nadkoule. Obdoba véty 4,3 plati ovSem i zde,
X(x%;3 %55 ...3%,) znamend pfitom zase b&Zny bod nad-
koule s jeho soufadnicemi:

Véta 5,3. Nadkoule o stiedu S(s; s55 . .. S») a poloméru
r>0 md v kartézskych soutadnicich v prostoru E, rovmici

(0 — 52+ (30— 5902+ ...+ (x5 — sw)2 =12 (5,5)
Z tohoto tvaru rovnice nadkoule pozndvame ihned sou-
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fadnice jejiho stfedu a velikost poloméru. Uspoiddidme-li
tuto rovnici podle mocnin proménnych x;, Xy, ..., Xn,
nabude tvaru

x12+ x22 + DY + xn2+ Mlxl "‘I“ M2x2 + e + Mﬂxn _l"
+ N=0, (5,6)
kde jsme poloZili
M, = — 25, My = — 254y ...y Mp = — 25,
N = s+ 5,2+ ... 4- 5.2 — r2 (5,7)
Z obecného tvaru rovnice nadkoule (5,6) ur¢ime jeji stfed
a polomér nejpohodiné)i tim, Ze tento tvar pfevedeme ob-

vyklym zplsobem zpét na tvar (5,5) nebo feSenim rovnic
(5,7), odkud plyne

TZ_;_VM12+ M2+ + M.* — 4N.

V rovnici (5,6) se tedy pfedpoklada, Ze je
M2+ M2+ ... + M2 — 4N > 0.
Obratme se nakonec k soustavim lineirnich rovnic.
Vime uZ, Ze kaZd4 linedrni rovnice
G+ aky ... F At a1 =0  (59)

znamena nadrovinu; pfitom a,, a,, . . ., dn, @5 1 jsoU kon-
stanty, z nichZ a,, . . ., d» nejsou viechny rovny nule, kdez-
to X5, Xay . . .5 Xn jsou soufadnice b&Zného bodu této nad-
roviny, tedy proménné. Chceme-li néjaky bod v takové
nadroviné urdit, volime pouze n — 1 jeho soufadnic, kdeZto
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zbyvajici n-tou soufadnici uZ musime vypocitat z rovnice
(5,9). ProtoZe bod v nadroviné je tedy uréen n» — 1 soufad-
nicemi, je nadrovina v prostoru E. prostorem (n — 1) —
rozmérnym. Na zvld$tnim pfipadé nadroviny x, = 0 si
miiZe kazdy podobné jako v predchazejici kapitole ovéfit, Ze
jde opét o euklidovsky prostor, Ze tedy nadrovina v prostoru
E. je sama prostorem E,_;. (Uvédomujeme si oviem, Ze
takovéto ovéfeni né&jaké vlastnosti na zvlaStnim pfipadé
neni ditkazem obecné véty.)

Pfidame-li k rovnici (5,9) dalsi takovou rovnici, dostdva-
me soustavu dvou rovnic o # proménnych x;, x5, ..., Xa
a tato soustava znamend geometricky prinik dvou nad-
rovin, Takovy priinik md pak podobné jako dfiv o dalsi
rozmér méné, je to tedy prostor E,..» vnofeny do plivodni-
ho prostoru E,. Prost€ pfidivinim kaZd¢ dalii linedrni
rovnice sniZuje se o jednu pocet rozméru pfisluSného pri-
niku nadrovin. Vyslovme hned pfislu§nou vétu, analogic-
kou k vét€ 4,4; o pfedpokladech, za kterych plati, pohovo-
fime dodate¢ng.

Véta54. V kartézskych soutadnicich je prostor E, v pros-
toru E, (p<n) uréen q linedrné nezduvislymi linedrnimi rovni-
cemz, PTl ems3 76 qg—=n— P

Dikaz této véty zde nepodavame, jeji obsah i vyznam
je uZ Ctenafi po prapraveé z pfedchdzejici kapitoly srozu-
mitelny. Musime oviem vytknout pfedpoklady, za nichZ
tato véta plati. Je to stejné jako u véty 4,4. Prvni pfedpo-
klad je samozfejmy, Zddné dv€ z téch ¢ rovnic, o kterych
se tu mluvi, nesmi byt ve vzdjemném Sli‘ ru, jedna nesmi
odporovat druhé (jinak by pfislusné dvé hadroviny nemély
spoleény bod a nemohli bychom tedy mluvit o jejich pra-
niku — to nastivd napf. u dvou rovnob&Znych rovin
v prostoru E;). Druhy predpoklad 1e sloZitéjsi, soustava
nasich ¢ linedrnich rovnic musi byt tvorena rovnicemi line-
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drné nezivislymi; nemdme zde moZnost formulovat to
algebraicky, fekneme si jen, Ze je tento pfedpoklad ekviva-
lentni s poZadavkem, Ze kterdkoli z pfislu$nych nadrovin
nesmi obsahovat cely prinik viech zbyvajicich nadrovin,
jeZ jsou témito rovnicemi urleny.

Véta 5,4 ma ovSem své dasledky. Tak napf. v prostoru
pétirozmérném je podle toho rovina urcena tfemi rovnice-
mi, nebot pro n =5, p = 2 je ¢ = 3. Dvé rlizné roviny
maji zde tedy celkem Sest rovnic a ty uZ v péti proménnych
X135 Xp5 . . .5 X; Nemusi mit spolecné fedeni; v takovém pFi-
padé tedy dvé roviny v prostoru E se neprotinaji, jsou mimo-
bézné. Priklad toho mime ve cvié. 5,11.

Z véty 5,4 také poznime, Ze napf. trojrozmérny prostor
E; je v prostoru E, urlen soustavou » — 3 linedrnich rov-
nic atd. (Viz cvi¢. 5,12.) Hleddme-li spolené body » nad-
rovin v prostoru E, znameni to Fe$it soustavu » linearnich
rovnic o n nezndmych xy, x, ..., x,. Takova soustava ma
za nalich pfedpokladd privé jedno fefeni; v prostoru En
protind se pak » nadrovin pravé v jednom bodé. I toto
tvrzeni je ve vété 5,4 obsaZeno, uZijeme-li tak jako u véty 4,4
oznaceni E, pro bod jakoZto prostor bez rozmért (ptfiklad
je ve cviceni 5,10).

Cuiéeni

5,1. Vypoététe vzdilenost bodu 4 (a;; ay; - .. ; @) od poditku v pro-
storu E,.

5,2. V prostoru E, je dan bod 4 (a,; a;; ...; a,). Urlete takovy
bod B, aby pocatek byl stfedem usecky AB.

5,3. Pfesvédcte se poétem, Ze stfed secky leZi v nadroviné, kteri je
jeji osou soumérnosti.

5.4. Co je nadrovina a) v prostoru E, (tj. v roving), b) v prostoru E,?

5,5. Co je nadkouli a) v prostoru E, (tj. v roviné), b) v prostoru E;?
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5,6. Napiste rovnici nadkoule v pétirozmérném prostoru E;, ktera
m4 a) stfed v potitku a polomér r = 1; b) stfed S (1; —1;2;4;0)
a polomér r = 5.

5,7. V Sestirozmérném prostoru je ddna nadkoule rovnici
xy2 + xp% - xg? k.2 + g L xg? — dxy — 2%, + 6xy — 10x, —
— 2x5 — 2xqg + 25 = 0.

Urdete jeji stied a polomér.

5,8. V pétirozm&mém prostoru uréete rovnici nadkoule, kterd m4
stted S(—1;0;5; —3;2) a prochdzi bodem A4 (2;1;3;1;4). Jak
velky je jeji polomér?

5,9. V prostoru E,, urete stfed a polomér nadkoule, jejiZz rovnice je
%2 + %32 + ... + x,® — 2ax, = 0, pfitemz pfedpoklddame a > 0.

5,10. V pétirozmémém prostoru uréete prisedik nadrovin, jejichz
rovnice jsou

X, 2%y — X3+ %3+ 3x5—-2=0,
3x;, — xy L a3 — 2%y F x5 — 12 =0,
x, - 3x, — X3 + %, — x5 +-6=0,
2x, — 3x,— 8 =0,

4xg + x4 — x5 - 4 = 0.

5,11.V pétirozmérném prostoru jsou diny dvé roviny. Prvni rovi-

na je urlena rovnicemi
2%, — Xy + X3 — %3 + 3% — 6 =0,
% —x3+-x53—1=0,
X, — %3 - 1=0,
druha rovnicemi

X L Xy — Xy — %4+ 2x5 - 1=0,
X — X+ x +x —3=0
% +x+x, —4=0.

Dokazte, Ze tyt6 roviny se neprotinaji v Zadném bodé.
5,12. Kolika linearnimi rovnicemi je v prostoru E, uréena a) rovina,
b) pfimka?
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6. kapitola

KRYCHLE

V pfedchazejicich kapitolich jsme hovofili o takovych
utvarech, které byly ureny rovnicemi nebo soustavou
rovnic v prostoru E,. VSimnéme si ted strucné také vy-
znamu nerovnosti a spojme tuto zileZitost s pfedstavou
vicerozmérného télesa. UkaZeme si jen jeden pfiklad, totiZ
krychli. '

V jednorozmérném prostoru E, (tedy v ptimce) vyplni
viechny body X(x), pro jejichZ soufadnice plati (a>0 je
dané &islo)

0=x=a (6,1)
usecku o krajnich bodech A(0), B(a). Je to tsecka délky a.

2
D c
- A ‘B X .
i-

Obr. 6

V roviné E, podobné vSechny body X(x,; x,), jejichz
soufadnice spliuji nerovnosti
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0sxysa 0sxsaq (6:2)

vyplni ¢tverec ABCD (obr. 6), jak se kazdy snadno pte-
svédci. Délka strany tohoto Ctverce je a. Znameni rovnosti
v nékterém ze vzorcu (6,2) pfichazi v dvahu jen u téch
bodl naseho Etverce, které lezi na jeho obvodu. Ty body,
jejichZ soufadnice nabyvaji dokonce vylucné jen hodnot 0
nebo g, jsou jen vrcholy tohoto Ctverce, a to: A(0:0),B(a;
0), C(a; a), D(0; a). Tento Ctverec muZeme vytvofit tak,
Ze tseCku AB urfenou na ose x, prvni z nerovnosti (6,2)
nebo, coZ je v podstaté totéZ, nerovnosti (6,1), posunujeme
v dané rovin€ ve sméru kolmém k této usecce o délku a.
Tak lze z jednorozmérné iseCky vytvofit Ctverec.

Obr. 7

Podobné mizeme tento Ctverec posunout kolmo k jeho
roviné o délku a a vytvofit tak krychli v prostoru E, (obr.
7.). Zachovejme pfitom v roviné tohoto Ctverce soufadné
osy tak jako na obr. 6 a tfeti soufadna osa bude pak kolma
k této roviné a bude prochizet bodem A. Prvni dv& sou-
fadnice ka2dého bodu nasi krychle jsou opét vizdny nerov-
nostmi (6,2), tfeti soufadnice nemiize byt vétsi neZ a, nebot
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cely ¢tverec jsme posunuli pravé o délku a. Jsou tedy vech-
ny body X(x,; x,; x;) nasi krychle charakterizovany ne-
rovnostmi

0§x1§a3 Oéxzéa, Oéxgéa; (6,3)

&islo a znadi opét délku hrany této krychle.

Postupujme tak dale. Krychle v obr. 7 leZi v trojrozmér-
ném prostoru E,; vnofime-li jej do Ctyfrozmérného prosto-
ru E,, miZeme v ném sestrojit ¢tvrtou osu soufadnou x,
tak, aby prochdzela opét bodem A a aby neleZela v plivod-
nim E,. (Tato ¢tvrtd osa soufadnd je k pivodnimu prostoru
E, kolm4, jak na$ Ctenaf jisté sam tusi, i kdyZ jsme o kol-
mosti v této knizce nemluvili) Posuneme-li nasi krychli
ve sméru této Etvrté osy opét o délku g, vyplni viechny jeji
body v prostoru E, utvar, ktery je charakterizovin jednak
nerovnostmi (6,3) a za druhé stejnou podminkou pro
¢tvrtou soufadnici; jde tedy o body X(x;;x,; X33 Xy),
jejichZ soufadnice spliiuji podminky

0=x,=a,0=x=00=x=a 0=<x =a (64)

Analogicky k trojrozmérnému pfipadu fikime, Ze vSechny
body X(x,; X3 X33 Xy), ]ejzchz soutadnice sphiuji podminky
(6,4), vyrvori éryirozmérnou krychli o hrané délky a.

Konstrukci této ¢tyfrozmérné krychle si miZeme pied-
stavit také tak, Ze kaZdym z osmi vrchold obylejné troj-
rozmérné krychle z obr. 7 vedeme pfimku (kolmou k pros-
toru E; piivodni krychle) a naneseme na ni od kaZzdého
tohoto vrcholu tutéZ délku a. Tak vznikne novych osm
bodll, jez tvofi spolu s vrcholy puvodni trojrozmérné
krychle skupinu vSech vrcholi ¢tyfrozmérné krychle.
Téchto vrchola je tedy 16 a jsou i s hranami krychle vy-
znaceny schematicky v obr. 8. Upoustime pfitom umyslné
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od stanoveni viditelnosti jednotlivych hran této krychle,
protoZe tato otdzka by vyZadovala patfiény vyklad z de-
skriptivni geometrie v prostoru ¢tyfrozmérném; proto také
fikdm, Ze obr. 8 pfedstavuje jen schéma.hran a vrchold

Obr. 8

Ctyfrozmérné krychle. Vznik tohoto obrizku si muZeme
pfedstavit tak, Ze nejdfiv ¢tyfrozmérnou krychli promitne-
me do trojrozmérného prostoru E;, v némZ je ptvodni
trojrozmérnd krychle a vysledek promitneme znovu do
roviny, v niZ na§ obrdzek kreslime. Je to nakonec obdoba
obr. 7, jenZe tu mame obrazy &étyf os soufadnych x;, x5, X3,
x4, vychdzejicich ze spolefného pocitku A (0; 0; 0; 0).
V obr. 8 je pomérné zfetelné ,,vidét obraz ptivodni troj-
rozmérné krychle o vrcholech 4, B, C, D, E, F, G, H
(srovnej s obr. 7) a ostatni vrcholy I, ¥, K, L, M, N, P, Q
leZi mimo piivodné dany prostor E,. Snadno sepiSeme sou-
fadnice jednotlivych vrcholi této Ctyfrozmérné krychle
do tabulky:
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A(0;0;0;0) I (0;0;0;a)
B (a; 0;0;0) J (a;050;0)
C (a;a;0;0) K (a;a;0;a)
D (0;4a;0;0) L (0;a;0;a)
E (0;0;a;0) M (0;0;a; a) (6,5)
F (a;0;5a;0) N (a;0;a;a)
G (a;a;a;0) P (ajaja;a)
H(0;a;a;0) Q (0;a;a;a)

Vsechny hrany této c':tyfrozmérné krychle jsou v obr. 8 za-
kresleny Nejsou to oviem viechny sp0)mce vSech téchto
$estnacti bodl mezi sebou. Ty z nich, jeZ v obr. 8 zakresleny
nejsou, jsou uhlopncky nasi krychle. Uhlopnéky jsou zde
trojiho druhu: prvni z nich jsou thlopficky ¢tverct tvofi-
cich strany krychle (napf. uhlopficky AC = AH = AF =

== g)/2), druhé jsou télesove uhlopficky trojrozmérnych
krychh tvoficich ,,stény* nasi &tyfrozmérné krychle (napf.
AG = aV3) a teti druh, ktery ze-$koly ¢tendfi neznaji, je
uhlopficka ve ¢tyfrozmérném prostoru, )ez nelezi v Zddné
z prve zminénych trojrozmérnych ,,stén‘ této ctyfrozmérné
krychle (napi. AP = a|/4 = 2a). Vypolet délky AP pro-
vedete snadno uZitim vzorce (4,1) pro soufadnice bodil
A, P z tabulky (6,5). Tento tieti druh pfedstavuje nejdelsi
uhlopficku ¢tyfrozmérné krychle, jak se mUZe kazdy pfi
dostate¢né trp&livosti pfesvéddéit tim, Ze vypolita vzdjemné
vzdilenosti v§ech dvojic bodi z tabulky (6,5).

Na zikladé téchto pfikladi nebude uZ ¢tendfi Cinit po-
tiZze zobecnéni pojmu krychle pro vicerozmérné utvary.
Mnozina vSech takovych bodi X (xy; %55 ... ; Xn) prostoru
En, jejichZ soutadnice splfiuji nerovnosti

0sx,=a,0=x=a,...,0=x.=a, (6,0)
se nagyvd n-rozmérnd krychle o hrané délky a.
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Je zfejmé, Ze pro n = 1, 2, 3 jsou to ddvno ndm zndmé
pojmy. Jednorozmérna krychle je useCka [srovnej nerov-
nosti (6,1) a (6,6)], dvojrozmérnd krychle je C&tverec
[viz nerovnosti (6,2)] a trojrozmérna krychle je obycejna
krychle znama ze §koly [viz nerovnosti (6,3)].

Stanovme pocet vrchold n-rozmérné krychle. Oznacme
tento pocCet na chvili znakem V... Pfipomefime si, jak tako-
vou krychli vytvofime. Provedli jsme to uZ pron = 2, 3, 4.
Zkusme to nyni obecné pro libovolné n. Ziejmé staci vzit
(n-1) — rozmérnou krychli leZici v prostoru E,; a kazdym
jejim vrcholem, jichz je V,_i, vést kolmici k tomuto
Es-1 a nanést na ni délku hrany a. Takovych kolmic je
rovnéZ V,_, a na kazdé z nich leZi jeden dal$i vrchol nasi
n-rozmérné krychle, coz je novych V,_; vrchola. Pfidé-
me-li k tomu pavodnich V,_; vrcholi (n-1) — rozmérné
krychle, z niZ jsme vysli, mdme celkem

Vn = 2Vn—-l (6’7)

vrcholi dané n-rozmérné krychle. Protoze pro n =1 je
V, = 2 (asecka ma dva krajni body), je V, = 2%, V, =
=222=28,V,=2%2=2%atd,, celkem V, = 2" . M-
Zeme tedy Fici; n-rozmérnd krychle md celkem 2" vrcholi.

Soufadnice téchto vrcholu plynou z podminek (6,6) tim
zpusobem, Ze jsou to krajni pfipustné hodnoty pro pfislus-
né soufadnice, tedy 0 nebo a. Jinymi slovy: vrcholem nasf
n-rozmérné krychle je bod, jehoZ souradnice

xl’ xz, ey JC,. (6)8)

nabyvaji bud hodnoty 0, nebo a. Pro ¢tyfrozmérnou krychli
jsme je sestavili v tabulce (6,5). Viimnéme si tu zase sou-
vislosti geometrie s aritmetikou. Aritmeticky jde pfi stano-
veni t&chto vrcholil o to, kdy # proménnych soufadnic &
parametra (6,8) nabyva hodnoty 0 nebo a, a kolik je tako-
vych pfipadi. Jde tedy o stanoveni viech moZnych skupin
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po n Cislech (6, 8), kde kazdé to Cislo je bud 0, nebo a.
Pfipomefime si, kde se v matematice mluvi o takovych
Ciselnych systémech, pii nichZ kazdé Cislo nabyva jen dva
moZné znaky, napf. znaky O a 1. Je to napt. v tzv. dvojkové
soustavé, na niZ je zaloZena i vétsina samocinnych pocitacu.
Maime-li v takovém pfipadé zpracovat ulohu, v niZ se vy-
skytuje n parametri, zajima nés, kolik je takovych moZnych
skupin ve dvojkové soustavé. Ptame se tedy, kolik je moz-
nych takovych skupin tvaru (6,8), kde kazdé Cislo je bud
0, nebo 1. Nae avahy o poCtu vrcholli n-rozmérné krychle
o hrané délky a == 1 nam dévaji ihned vysledek, totiZz 2~

Tento vysledek mtZzeme oviem odvodit i bez geometrie
n-rozmérnych prostori, a to dplnou indukci, ale tu jsme
ve skuteCnosti provedli i my pfi odvozeni vzorce (6,7).
Tyto fadky slouZi vSak pfedeviim tomu, aby si Ctenaf
viiml vzdjemné souvislosti dvou zdanlivé velmi odlehlych
partii matematiky, jako je #-rozmérna geometrie a pocitani
ve dvojkové soustavé. Je jednim z nejkrasnéjSich rysa
matematiky, %e mezi nejriznéj$imi jejimi disciplinami
existuji Casto velmi Uzké vztahy. Nelze se tedy divit, Ze
geometrii vicerozmérnych prostori muZeme leckdy apli-
kovat i tam, kde to pfedem ani netusime.

Zakonceme tuto kapitolu jesté vypoctem délky nejdelsi
uhlopficky #n-rozmérné krychle. Jde o vzdalenost dvou
vrchold této krychle. Bez iymy obecnosti miZzeme pfedpo-
kladat, Ze jeden z téchto vrchold zvolime v pocitku sou-
fadnic, je to bod 4 (0; 0; ...; 0). Druhy je ten z vrchold
nasi krychle, ktery ma od tohoto bodu A nejvétsi vzdalenost,
coZ je zfeymé bod P (a; a; .. .; a). Podle vzorce (5,1) vy-
chizi pak pro nejdelsi uhlopficku n-rozmérné krychle
o hran& délky a vysledek AP = al/n.

Zavérem upozorfiuji, Ze zménou soustavy soufadnic
v prostoru E, mohou se zménit i podminky (6,6), i kdyZz
krychle se pochopitelné co do tvaru nezméni. My jsme zde
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vySetfovali jen zcela zvldstni polohu krychle, jejiz jeden
vrchol byl v pocatku soufadnic a jejiZ hrany z ného vycha-
zejici leZely v osdch soufadnych; i tak jsme poznali nékteré
vlastnosti krychle. Ale nic nidm nebrdni, abychom krychli
neumistili v prostoru jesté néjak jinak, napf. tak, Ze posu-
neme soustavu soufadnou do jiného mista v prostoru.
Jednoduchy pfipad mdme ve cvideni 6,2 a% 6,4.

Cuiéeni
6,1. Kolik hran mé &tyfrozmérnd krychle?
6,2. Piesvédéte se, Ze viechny body X(x;; x,; ...; Xp) v prostoru
E,, pro jejichZ soufadnice plati
ey S L lag| =1, 0.0, =1,

vytvoti n-rozmérnou krychli. Uréete délku jeji hrany!

6,3. Urete soufadnice vrcholi krychle ze cvifeni 6,2. Kolik je
vrchola ?

6,4. Jak dlouh4 je nejdeldi uhlopfi¢ka krychle ze cvileni 6,2°
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7. kapitola

VYZNAM VICEROZMERNYCH
PROSTORYU

Geometrie vicerozmérnych euklidovskych prostori md
v matematice zna¢né uplatnéni. Jeji souvislost s algebrou
jsme neustdle sledovali na pfedchazejicich strankach;
v z4véru predchazejici kapitoly pfi odhadu poctu vrcholi
n-rozmérné krychle jsme poznali i jeji bezprostfedni vztah
k aritmetice dvojkové soustavy. Kdybychom vS$ak chtéli
ptistoupit k pfimé interpretaci euklidovskych prostort na
jinych ptfikladech z matematiky, potfebovali bychom
oviem dalsi vyklady z téchto partii matematiky. Euklidov-
ské prostory nam tedy ve skuteCnosti jen pomohly k za-
kladni orientaci ve vicerozmérné geometrii, ale pravé svou
jednoduchosti ndm vyborné pomohly. Neni jisté tfeba
zdurazﬁovat, Ze kdybychom méfeni v _prostoru provadé]j
2,1, (3,1), (4,1) a (5, 1) byl by vyklad sloZit&j§i. Pro prvm
orientaci nasich tendfd ve vicerozmérné geometrii slouZi
tedy Euklidova geometrie ne)lepe, proto jsme ji zde zvo-
lili. Pokud viak sledujeme piimé aplikace vicerozmérnych
prostord v geometrii, nachizime sice nékteré jednoduché
modely vicerozmérnych prostori, ale ty nejsou euklidov-
ské. UkédZeme si je v této kapitole, ale Ctenaf nesmi byt
zklamdn, kdyZ v nich nepujde o méfeni ve smyslu Eukli-
dovy geometrie. I tak fada pojmi i zpasob mySleni z pfed-
chazejicich kapitol se ndm zde vyplati. 'V nékterych pfi-
kladech ptijde dokonce o geometrii, v niZ viibec Zddné mé-
feni vzdalenosti neprovidime — o tzv. geometrii projektiv-

72



ni. Ale poskytne ndm to konkrétni pfedstavy nadrovin
i jinych pojmu, s nimiZ jsme se dfive setkali.

Ruku v ruce s vytvofenim polmu vicerozmérného pro-
storu doslo v minulém stoleti k rozsifeni pojmu soufadnic.
Soufadnice” znamenaly pivodné &iselné wdaje, které cha-
rakterizovaly polohu bodu v roviné nebo v prostoru. Ale
nejen body, nybrZ i jiné geometrické utvary lze charakte-
rizovat Ciselnymi tdaji. Zkoumejme napfiklad mnoZinu
viech kruZnic v roviné. Jak jednotlivé kruZnice mezi sebou
rozli§ime ? Naskyta se tu nékolik moZnosti. Zvolme nej-
jednodussi z nich, zaloZenou na tom, Ze kaZdd kruZnice
v roviné je déna svym stfedem S a polomérem r > 0.
Polohu stfedu S vysthneme v roviné jeho soufadnicemi
$15 S, jak to zndme z kapitoly 2. Volbou déisel s, 5, a 7 je
tedy v roviné stanovena jedind kruZnice a obracené, kazdé
kruZnici v roviné je timto zplsobem pfifazena jedind
trojice téchto &isel. Pfitom riznym kruZnicim odpovidaji
rizné trojice Cisel sy, 55, 7, a tato Cisla miiZzeme volit neza-
visle na sobé. Je vidét, Ze tato tfi Cisla maji pro uréeni
kruZnice v roviné stejny vyznam, jaky maji soufadnice pro
urCeni bodu, a proto jim miZeme dit nazev soufadnice
kruznice.

Tim dévame slovu soufadnice $irSi vyznam, neZ jaky mél
na mysli R. Descartes, ktery mluvil jen o soufadnicich
bodu. Nikterak pfi tom nevadi, Ze jsme v naSem piipadé
pfi volbé tfeti soufadnice kruZnice omezeni podminkou
r > 0, i tak probihd tato soufadnice nekonecn¢ mnoho
redlnych Cisel. Uvidime za chvili, Ze ani toto omezeni neni
nutné, ale neZ k tomu pfikro¢ime, uvédomime si uZ ted,
¥e vSechny krugnice v roviné rvofi trojrozmérny prostor. To
je v souhlase s tim, Ze kaZda takova kruZnice mé tfi sou-
fadnice. Slovem prostor zde tedy nazyvime mnoZinu viech
kruZnic v roviné a kaZdou jednotlivou kruZnici bodem toho
prostoru. Mame tak novy konkrétni pfiklad trojrozmérného

73



prostoru; protoZe viak v ném prozatim nemluvime o mé-
feni vzddlenosti, nemiZeme fici, zdali je to prostor eukli-
dovsky nebo ne.

+ a

Obr. 9

Je zfejmé, Ze jménem prostor nebo bod toho prostoru
oznatujeme zde néco docela jiného, neZ si nezasvé&cenci
pod témito nazvy pfedstavuji. Matematikové si uz divno
zobecnili tyto pojmy Cisté pro své Gcely a divaji dnes jméno
prostor nejruznéj$im souborum vielijakych ttvari, jeZ pak
nazyvaji body takového prostoru.

Pravé naznaeny vztah kruZnic v roviné k bodum troj-
rozmérného prostoru vede k zajimavé a dulezité metodé,
kterou lze kruZnice v roviné zobrazit do bodt euklidovské-
ho trojrozmérného prostoru E,. Ma-li kruZnice a vySe po-
psané soufadnice s,, s,, ¥, miZeme sestrojit v prostoru E,
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bod 4 (a,; a,; a,) tak, Ze a, = s,, a, = 8y, ay = r. Ziejmé
dvéma riznym kruZnicim a, & jsou timto pfedpisem pfi-
fazeny dva razné body A4, B v prostoru E,. Toto zobrazeni
si snadno pfedstavime na obr. 9a), b). Ve stfedu S kruZnice
a sestrojime kolmici k roviné této kruZnice a naneseme na
ni od bodu S délku AS = r; tim je poloha bodu A urdena.
MiuZeme také fici, Ze bod A je vrcholem rotatni kuZelové
plochy, kterda danou kruZnici @ prochazi, a jejiZ povrchové
pfimky sviraji s rovinou této kruZnice thel 45°. Vyznam
tohoto zobrazeni je zfejmy; rizné tlohy o kruZnicich v ro-
viné€ daji se tak feSit pomoci t&chto rotanich kuZelovych
ploch. KaZda 1uloha z geometrie kruZnic v roviné pfevadi se
touto cestou na ulohu z geometrie bodl v trojrozmérném
prostoru E;. Stava se, Ze tato prostorova tloha se snize
fedi neZ sama tloha o kruZnicich v roviné. Prostorové feseni
zobrazime nakonec zpét do geometrie kruZnic v rovin&, Pro
tplnost feSeni se vSak musi brat zfetel i na ty body A4
v _prostoru, jejichZ treti soufadnice neni kladni. To se do-
ciluje tim, Ze zavadime pojem orientovanych kruZnic v ro-
vin€, Kladné orientovanou kruZnici rozumime kruZnici
s kladnym polomérem a zdporné orientovanou kruZnici se
zdpornym polomérem. Kladné orientovanou kruZnici si
¢asto zndzorfiujeme tim, Ze ji probihame proti pohybu
hodinovych rudifek, zipornou kruznici probihdme tak jako
hodinové rudicky. Pfiddme-li k tomu jesté vSechny body
v roviné jakoZto kruZnice s polomérem rovnym nule, mame
dplné zobrazeni vSech bodi v prostoru E, do orientovanych
kruZnic v roving€; tfeti soufadnice r neni pak omezena
Zidnou podminkou a probihd i zde mnoZinu viech reilnych
Cisel.

Orientovana kruZnice se nazyva strucné cyk/ a pravé po-
psané zobrazeni cykli roviny do bodd trojrozmérného
prostoru se nazyva cyklografie. Vyplati se pfitom za ,,vzda-
lenost® dvou takovych cykli poloZit délku jejich spolecné
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teny, tim rozumime vzdilenost bodd dotyku spole¢né
te¢ny obou cyklll. Jde pak ve skuteCnosti o studium jiného
trojrozmérného prostoru neZ je prostor euklidovsky.
Cyklografie spada svou povahou do deskriptivni geometrie
a médme o ni v ¢e$tiné p&€knou kniZku od profesora brnénské
university dr. L. Seiferta (viz seznam literatury vzadu).

Podobné, jakd jsme hovofili o kruZnicich v roving, mi-
Zeme hovofit o plochdch kulovych nebo jednoduse o koulich
v prostoru. Obdobu cyklografie mame i zde. Kazda koule
ma viak Ctyfi soufadnice. Je totiZ urCena svym stfedem S
a polomérem r. Poloha stfedu S je v prostoru E, charakte-
rizovéna tfemni kartézskymi soufadnicemi s,, s,, 55 a polomér

je Ctvrty c1selny udaj charakterizujici kaZdou kouli.
Rekneme tedy Ctvefici Cisel s,, 5y, 53, 7 OpEt souFadnice koule
a mnoina viech kouli v trojrozmérném prostoru E, je tak
pronim naSim konkrétnim p¥ikladem CtyFrozmérného pro-
storu. Zavedeme-li i zde orientované koule tak, Ze kladné
orientovani koule ma kladny polomér a zdporné oriento-
vand zdporny polomér, a pfiddme-li k tomu i obyCejné
body jako koule s nulovym polomérem, miZeme kaZdou
kouli a o soufadnicich s,, s, $§5, r zobrazit do bodu
A(ay; ay; ay5 a,) pfedpisem a, = §,,a, = $p,a53 = S350, = 1.
Tim dostaneme vzdjemné jednoznalné zobrazeni kouli
prostoru trojrozmérného do bodu Ctyfrozmérného prosto-
ru, které je obdobou cyklografie. Pojmy, které jsme ve 4. ka-
pitole zavedli, miZeme si zde podepfit konkrétni predsta-
vou. Tak vSechny koule o témZe poloméru, napf. r = 2,
vytvafeji nadrovinu v tomto Ctyfrozmérném prostoru.
Skutené rovnice r = 2 je linedrni a ur¢uje tedy nadro-
vino. UkaZme si i piiklad roviny v tomto Ctyfrozmérném
prostoru viech kouli. Podle vykladu v kapitole 4 je rovina
ve ctyrrozmérnem prostoru urena dvéma linedrnimi
rovnicemi, zde tedy napf. rovnicemi*)

*) Nezapomenme, Ze proménné soufadnice ted znadime s,, $y, S35 7.
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s3=0,r=.2. (7,1)

Tato mnoZina je tedy tvofena témi koulemi v prostoru Eg,
jejichZ stfedy leZi v roviné x, = 0 a jejichZ polomér je
r = 2. Zkoumejme dale ty koule, jejichZ stfedy leZi na ose
soufadné x; v naSem daném prostoru E;. Ma-li takovy
stfed S leZet na této souradné ose, plati pro jeho kartézské
soufadnice v prostoru E, rovnice

51=0,5,=0. - (1,2)

Ve Ctyfrozmérném prostoru znamenaji tyto dvé lineirni
rovnice opét rovinu. Celkem tedy mame v rovaicich
(7,1) a (7,2) ptiklady dvou rovin ve Ctyfrozmérném prosto-
ru. Prvni z nich si pfedstavime jako mnoZinu vSech kouli
téhoZ poloméru r = 2, jejichZ stfedy leZi v néjaké roviné
a v E;, druhou si pfedstavime jako mnozinu viech kouli,
jejichZ stiedy leZi na pfimce a kolmé k roviné a v prostoru
E;. ]e zre)mé ]edma koule, jez vyhovuje obéma témto pred-
stavdm; jeji stfed je v priseCiku pfimky a s rovinou a a jeji
polomér ma velikost 2. To souhlasi s tim, %e ve étyfrozmér-
ném prostoru dvé roviny (7,1) a (7,2)se protinaji v jednom
bodé&. Zde je to bod M (0; 0; 0; 2), ktery je obrazem koule
z prostoru E,, jez ma stfed v poCatku a polomér 2. Tak
bychom mohli pokracovat dile, nebudeme to vsak roz-
vadét. Spokojime se upozornénim, Ze studium geometrie
kouli v obyCejném prostoru, zaloZené na myslence zobra-
zeni kouli do bodd prostoru étyfrozmérného, je zdkladem
tzv. kulové geomerrie.

Uvedme si jesté dalsi ptiklad Ctyfrozmérného prostoru.
Mysleme si v obylejném trojrozmérném prostoru E, né-
jakou pfimku p a zvolme si rovinu a, ktera s pfimkou p
neni rovnobéina (viz obr. 10). Pfimka p protini rovinu «
v bodé& A. Vedle toho zvolme v prostoru bod S, ktery ne-
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leZi v rovin& a. Bodem S lze vést pravé jednu rovnobézku
s pfimkou p, oznatme ji p’. Pfimka p’ protina rovinu «
v bodé¢ A’. Jsou-li rovina a i bod S pevné zvoleny, jsou
timto zpisobem pfimce p jednoznalné prifazeny dva body

A, A’ v roviné a. Zavedeme-li v roviné a soustavu sou-
fadnic tak, jak jsme to ucinili v kapitole 2, ma kazdy z bodu
A, A’ dvé soufadnice. Soufadnice bodu A oznatme jako
obvykle a,, a,, soufadnice bodu A’ podobré q,’, a,’. Tim
jsme pfimce p pfifadili prostfednictvim bodd A, A’ {tve-
fici Cisel ay, a,, a,’, a,’. Cely postup viak 1ze obratit. Jsou-li
déna Ctyfi Cisla a,, a,, a,’, a,, sestrojime nejdiiv v roviné «
body A4 (a;; a,) a 4’ (a,’; ay), pak sestrojime pfimku p’
spojujici body 4’, S a nakonec vedeme bodem A pfimku p
rovnobéZnou s piimkou p’. Tim jsme Ctvefici Cisel a,, a,,
a,’, a,’ ptifadili jedinou pfimku p v prostoru. Na zdkla-
dé toho miizeme ¢isla a,, a,, a,’, a,’ prohlasit za soufadni-
ce ptimky p. Rikime, %e mnofina viech primek leZicich
v obyéejném trojrozmérném prostoru je prostor CtyFroz-
mérny. Budeme ji struné fikat pifimkovy prostor.

K tomu je tfeba pfipojit nékolik poznamek.

Na&s pfiklad s pfimkovym prostorem je ponékud chou-
lostivéjsi neZ byl prve pfiklad prostoru viech kouli. Stano-
veni naSich soufadnic pfimky p selZe v tom pfipadé, kdyZz
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piimka p je s rovinou « rovnobézna. To vSak neni podstat-
né, protoZe piimek rovnob&Znych s rovinou ¢ je ,,tak malo*,
Ze v otazce poltu rozmért piimkového prostoru nehraji
roli. Odstranéni této vady je ostatné moZné tim zpisobem,
Ze k roviné « pfidime tzv. body nevlastni (body v ,,neko-
nefnu‘) a Zze zavedeme v rovin¢ takové soufadnice, jimiZ
Ize i tyto body zvladnout.

V pFimkové geometrii (to je obor, ktery studuje ptimkovy
prostor) se obvykle zavadéji jiné soufadnice pfimky neZ ty,
které jsme zde zvolili my. NaSe uivahy nejsou vSak novinkou
pro toho, kdo v deskriptivni geometrii uZ poznal zdklady
perspektivy nebo stfedového promitini vabec. Skute¢né,
je-li rovina a v obr. 10 primétna a bod § stfed promitani,
je bod A stopnikem pfimky p a bod A4’ jejim ub&Znikem.
Svym stopnikem a wUbéZnikem je pfimka jednoznalné
urcena, a na tom byl zaloZen na$ pfiklad.

Naznacme si je$té jednu problematiku, s niZ se tu setkd-
vame. Ctyfrozmé&rny prostor nim zprostfedkuje bezd&né
pribuznost mezi pfimkovou a kulovou geometrii. Je jisté,
e kazdé geometrické vlastnosti nebo konstrukci ve Ctyi-
rozmérném prostoru odpovida patfi¢nd vlastnost v pfimko-
vé geometrii a rovnéZ tak v kulové geometrii. Je v8ak docela
dobte myslitelné, Ze poméry v pfimkové geometrii jsou nd-
zornéjsi nez v kulové, a e tedy pfimkové tutvary byly
hlavng dfiv lépe prostudovany neZ utvary kulové. Pienese-
me-li takovou zndmou vlastnost pfimkovych utvard do
pfisluSného Ctyfrozmérného prostoru, muZeme je ob-
dobou cyklografie zobrazit d4l na kulové utvary. Nejednou
se stalo, Ze touto cestou byly skute¢né objeveny nové za-
kony v kulové geometrii.

Uplatnéni vicerozmérnych prostori je samozfejmeé
znalné a neni vdzdno jen na euklidovské prostory, o nich
jsme hovofili. V n&kterych prostorech nemd vyznam mé-
feni podle vzorce (5,1), ktery jsme uvedli zde. Dotkli jsme
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se toho u cyklografie. Je dokonce celé odvétvi geometrie,
tzv. projekuvni geometrie, kde méfeni nezavidime vibec,
kde studujeme jen otdzky protindni ¢ar, ploch a nadploch,
spojovani bodl apod. V tom pfipadé mluvime o projekriv-
nich prostorech.

Byly studovany i prostory s nekoneéné mnoha rozméry
a uplatnily se i ve fyzice. Pfi jejich studiu v3ak uZ nevysta-
¢ime s algebrou a musime vzit na pomoc matematickou
analyzu.

Rovné? uZiti- geometrie tyfrozmérného prostoru ve fy-
zice je zcela pfirozené. Fyzika totiZ, aby charakterizovala
néjaky jev, udava misto jevu i ¢as, v némz jev nastal. Totéz
déla i d&jepis, jenZe pritom nehovofi o Ctyfech rozmérech;
ulime se napfiklad, Ze Karel IV. zaloZil v Praze universitu
roku 1348. V t&chto slovech je obsaZeno mistni i Casové
ureni udélosti. Fyzik sleduje zase napfiklad zablesknuti
Zarovky ve své pracovné. To je fyzikalni jev, jehoZ misto je
dano polohou Zirovky a lze je stanovit tfemi délkovymi
soufadnicemi x, y, 2, tfeba vzdilenostmi Zirovky od dvou
sousednich stén a od podlahy mistnosti. JenZe celd mist-
nost leti vesmirem, soustava téchto soufadnic x, y, 2 nema
v prostoru pevnou polohu, fyzik se nema o co opfit. V jiné
chvili pfijde jiné zablesknuti téZe Zdrovky s tymiZ soufad-
nicemi x, y, 2, a pfece to uZ bude jiny fyzikdlni jev nez
prvni zablesknuti. Aby fyzik oba tyto jevy rozlisil, pfipoji
Casovy udaj. Jev, ktery ho zajima, nastane v ¢ase ¢ a on tedy
pro jeho charakterizaci uZil ¢tyf Eisel x, y, z, £. Nikterak mu
nevadi, ¥e prvni tfi z téchto Cisel se méfi délkovou mirou
a Ctvrté na hodinkdch. Ale fyzika na rozdil od déjepisu
uZiva velmi hojn¢ matematickych metod. V relativistické
fyzice se pak uvedend Ctyfi Cisla x, y, 2z, t vyskytuji v roli
proménnych veliin; je proto pochopitelné, Ze fyzikové na
né aplikovali my3lenku proménnych soufadnic a vyuZitko-
vali znalosti matematikt o prostoru ¢tyfrozmérném.
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Zakonfeme vyrokem italského matematika T. Levi-
Civity (1873—1941), ktery vyborné vystihuje vyznam vice-
rozmérnych prostori: ,,Je dobfe znimo, Ze kazdé vété
z algebry nebo z analyzy da se pfifadit geometrickd véta
v podstaté stejného vyznamu, jestlize pfisluSné proménné
interpretujeme jako soufadnice bodu v jakémsi — obycejné
vicerozmérném — prostoru. Pfitom nejen Ze tyto geo-
metrické véty se daji ¢asto jednoduSeji formulovat neZ
odpovidajici jim tvrzeni analytickd, ale jsou také jasné&jsi
a nézornéjsi; nezfidka se dokonce stiva, Ze lecktery pro-
blém se dé snaze FeSit v geometrickém podéni, takZe tento
zpisob geometrické feli neni jen vyraznou metodou vy-
kladu, ale pfedstavuje i daleZity prostfedek badani.
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VYSLEDKY CVICENT{

1,2. AB=3, AC=9, AD=17, BC=12, BD =10, CD = 2

1,3. Ve vzorci(1,1) klademe b = 0. 1,4.a) — 1;b) 0; ¢) ; 5 x =1,
4 5

X, = ,5—2,r7—2

2,2. 9) 3|2, |/37, 5; v) 3)/5, 13, 10. 2.3. OP = 2, 0Q =2|/3,
PQ = 4; protoze je OP% + 0Q? = PQ?, plati zde Pythagorova véta
a tento trojuhelnik je tedy pravouhly. 2,4. Uzijte véty 2,1 pro vzdile-
nosti AS a BS. 2,5. Ptimka je spojnici a) bodia P(p; 0) a Q(0; g);
b) poéitku a bodu (1; k). 2,6. a) x,2-- x,2 = 16;b) x>+ x,2— 10x, =
= 0;0) %%+ x,2 — 6%, — 4%, = 0;d) %24 x,2— 2%, + 8x, — 3 =0.
2,7.a) §(2;3),r = 5;b) S(—=5;0), r = 7; ¢) $(0; a), r = a. Postupu~

; uZije se rozboru rovnice (1,5).

2
je se podle vzoru rozboru rovnice (2,10). 2,8. a) (—2; 5 ); b) prase¢ik

neexistuje, pfimky jsou rovnobéiné; c) body (4u; 2—7u), kde u je
libovolné volitelné &islo, obé ptimky spolu splyvaji. 2,9. a) Body (3; 4)

24 7 .
a(— ? ;? );b)body (1;0)a(—6; —7). 2,10. Vychazi jediny prusedik

(9; 3), tudiz piimka je teCnou kruznice.

3.1. 4B = |43, 4Ac = |/2, BC = 3|/5; protoze je zde AB +
-+ AC? = BC?, plati zde véta Pythagorova a tento trojuhelnik je tedy
pravouhly. 3,2. AC = BC == ]/4—1, AB = 2|/11. 3.3. Usijte véty 3,1
pro vzdalenosti A4S a BS. 3,4. Stadi dosadit soufadnice uréené rovni-
cemi (3,2) do rovnice (3,3), jejiz koeficienty maji tvar (3,4) 3,5. —

82



3 5 146
S(—Z;O;—:);AS=BS=CS=DS= V2 . 36. a)

x4 22+ x92 = 15 b) 2,24 2,2+ 22— 4x; = 05 €) %24 234 xy2—
— 8x, — 4x, — 4x, + 15 = 0. 3,7. a) S(1; 3; 5),r = 5; b) S(0;
0;a), r = a. 3,8. 8 (%2 + x,2+ %% + 12x,_-- 20x, — 567 = 0. 3,9.
Soustava nem4 feSeni, jde o roviny rovnobéiné. 3,10.

1 1
2) (3505 —1; b) (151;2). 3y = (@ + 1), % = - (Tw — 5),

x; = u, kde u je libovolné volitelné &islo. 3,/2. Roviny nemaji spoledny
bod. 3,13. VychAzi jediny prisedik (3; 4; 0), tudiZ ptimka je teénou
plochy kulové.

41. v=)a?+ a+ a2+ al. 42. AB = 2|17, AC=BC =
= /34 4.3. 4B = BC = |17, AC = |/34; jest 4B + BC? = AC?,
to znamend, Ze zde plati véta Pythagorova a trojuhelnik je tudiZ pravo-
uhly. 4,4. S(1;2;2;5). 45. AB= AC = BC = 2V2. 4,6. a) —
224 3+ a2+ 22 =15 b) x4+ 2,04+ x4+ 22— 4%, = 0; ¢) —
x4+ x,2L x4 x?— 6x; - 2%, —dx; —4x, - 2=0. 47. a) —
S(—-1; —4;3;0), r=5; b) Sa;0;0;0), r =a. 48. Jediny bod

11 7

(% 375 3 7 ). 4,9.Jediny prusedik (10;5; 2; 1). 4,10. Jsouto body
o soufadnicich x; = — 10 4+ u, x, = 35 — u, x, = — 15, x;, = u, kde
u je libovolné &islo; danou soustavu fefte tim zpisobem, Ze poloZite
x4 = u a zbyvajici tfi soufadnice x,, x,, x; vypoltete jako fefeni sousta-
vy danych @i rovnic. 4,/1. S(1; —2;4;0). 4,12, x>+ x>+ 2,2 +
+ x3— 2%, - 4x, — 8xy + 17 = 0; r = 2. 4,13. Jde o feleni sousta-
vy &yt rovnic v dloze danych, z nichZ tfi jsou linedrni a jedna kvadra-
ticka; vychazeji dva priseéiky (—2;0;0;0)a (1;1;1; 1). 4,14. Vy-
chézi jediny pruseé&ik pfimky s nadkouli, totiZ bod (1; 1; 1; 1); pfimka
je tudiz te¢nou nadkoule.

51. v= Val2+ a2+ ... +ayl 52. B(—a;; —ag;... 5 —ap).
5,3. Soufadnice dané rovnicemi(5,2) stali dosadit do rovnice (5,3),
jejiz koeficienty maji tvar (5,4). 5,4. a) Pfimka; b) rovina. 5,5. a) Kru2-
nice; b) plocha kulovi. 5,6. a) x,2+4 x.2+ 22+ x.2+ %2 = 1; b)
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X124 %o+ xyP x®+ xgi— 2%y - 2x, — 4% — 8x, — 3 = 0. 57.
S(231; —3;5; —1;1), r=4. 58 x4+ 22+ 2%+ 22+ x? +
+ 2% —10%, + 6x, —dx5 + 5=0, r=AS=|34 59 —
§(a;0;0;...;0), r=a. 510. Jediny bod (1;0;3; —2;2). 5/1.
Soustava danych $esti rovnic nemé fefeni; vynechdme-li napf. prvni
rovnici, m4a zbyvajicich pét jediné fefeni x;, = x, = x3 = x5 = 1,
x, = 2, ale toto fe¥eni nevyhovuje rovnici prvnil. 5,12. a) n — 2;
b) n — 1.

6,1. 32 — viz obr. 8. 6,2. Nerovnost [x;| = 1 je shodni s nerovnosti
—1 = x; £ + 1. Délka tohoto intervalu je 2, tedy hrana této krychle
ma délku 2. 6,3. Je to 2" bodu, jejichZ soufadnice jsou vesmés rovny

+1nebo — 1. 6,4. 2)/n.
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(str. 698 —767); v této knize jsou bohaté odkazy na dalsi literaturu.
Kraemerova kniha neobsahuje sice latku z geometrie vicerozmérnych
prostory, ale je vybornou priipravou pro studium knihy Cechovy.

Kadetivkova, Klimova a Kounovského kniha pojedndva o promi-
tani v prostoru étyfrozmérném ve Il. dile v kapitole XXV (str. 931 az
949) metodami deskriptivni geometrie. Seifertova kniha podava uziti
cyklografie v elementirni geometrii a v neeuklidovské geometrii.

Upozoriiuji jedté, Ze ndzvoslovi neni v téchto knihidch dplné jed-
nomé.
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