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Ú V O D 

Tento svazek má poněkud odlišný charakter od dosavad-
ních svazků edice Škola mladých matematiků, jež byly 
obsahově podstatně vázány na středoškolskou látku. Byly 
v nich uvedeny i některé zcela nové výsledky, jichž mate-
matika ve XX. století dosáhla, ale byly to vždycky takové 
výsledky, které nepotřebovaly předběžného dlouhého vý-
kladu. Naproti tomu tento svazek má ráz docela jiný. Na-
vazuje sice také na středoškolskou látku, ale hlavně sezna-
muje čtenáře s pojmy a metodami, které přesahují rámec 
střední školy. Snažíme se tak rozšiřovat obzor našich mla-
dých nadaných čtenářů - matematiků. Téma o víceroz-
měrných prostorech je k tomu velmi vhodné, neboť jde 
o pojmy, jež jsou dnes všude v matematice běžně vžité. 
Každý student, který se chystá k vážnému studiu matema-
tiky, musí dnes počítat s tím, že už brzy po maturitě narazí 
při svém studiu na pojmy z geometrie vícerozměrných 
prostorů. 

Obsahová odlišnost od předchozích svazků vyžaduje 
pochopitelně i změnu formy výkladu. Má-li si začátečník 
osvojit nové partie sám bez spoléhání na školní výklad, musí 
být text podán formou jakési učebnice pro samouky. Ne-
používáme tedy strohého jazyka školních učebnic z mate-
matiky, ba ani jejich přísně logické stavby. 

Čtyřrozměrný prostor užívá dnes běžně fyzika, ale potře-
bují jej i jiné vědy. Původ tohoto pojmu je však v matema-
tice, kde vznikl mnohem dřív než jeho aplikace ve fyzice. 
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To je první poznatek, který si musí čtenář osvojit. Je těžko 
rozumět čtyřrozměrným úvahám fyzikálním, když neznáme 
matematický obsah tohoto pojmu. V našem svazku se vě-
nujeme jenom matematickým úvahám ve vícerozměrných 
prostorech, a to jen těm nejjednodušším, protože na víc ne-
máme místo. V závěru bude naznačena i užitečnost těchto 
pojmů v matematice samé. Postupovat budeme tak, že si 
nejdříve všimneme prostoru jednorozměrného, pak dvoj-
a trojrozměrného a potom teprve přejdeme k prostorům 
vícerozměrným. Těžiště čtenářovy práce je v kapitole 2; 
tam jsou na příkladě dvojrozměrného prostoru (roviny) 
prováděny všechny úvahy zvlášť podrobně. Proto je důle-
žité pečlivě prostudovat tuto kapitolu i připojená cvičení. 
V dalších kapitolách jsou totiž leckde pro stručnost už jen 
odkazy na obdobný postup v kapitole 2. Čtenář sám přitom 
zjistí, že v geometrii vícerozměrných prostorů nejde o nic 
jiného, než o zobecňování geometrických pojmů a znaků, 
jež jsou společné prostorům jednorozměrným, dvojroz-
měrným a trojrozměrným, které zná ze školy. Nezvyšu-
jeme však jenom počet rozměrů, ale zobecňujeme i pojem 
prostoru a pojem bodu. Toto zobecňování pojmů a vztahů, 
s nimiž matematika pracovala až asi do začátku 19. století, 
je spolu s postupující abstrakcí charakteristické pro vývoj 
dnešní matematiky a netýká se jen zvyšování počtu rozměrů 
v geometrii. Zapadá tedy geometrie vícerozměrných pro-
storů zcela přirozeně do celé dnešní matematiky. 
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1. kapitola 

P Ř Í M K A 

Ze školy je každému známo, že reálná čísla si znázorňu-
jeme jednotlivými body na tzv. ose číselné. Tím rozumíme 
přímku, označme ji písmenem x (viz obr. 1), na níž zvolíme 
bod O, zvaný počátek, jemuž přiřadíme číslo nula. Od 
něho vynášíme obyčejným měřítkem na osu číselnou délky 
znázorňující jednotlivá reálná čísla; obrazem každého čísla 
na této ose je druhý krajní bod úsečky zmíněné délky (první 
její krajní bod je v počátku). Na jedné straně od počátku 
tak dostáváme body znázorňující kladná čísla (na obr. 1 
leží vpravo od bodu O), na druhé straně body znázor-
ňující čísla záporná (na obr. 1 leží vlevo od bodu O). Na 
přímce*máme tak dvojí orientaci; mluvíme o kladném 
smyslu měřeni na ose x, měříme-li délky zleva do prá-
vá, nebo o záporném smyslu, měříme-li je obráceně. 
Oba smysly jsme vyznačili v obr. 1 šipkami s připsáním 
příslušného znaménka. Nutno ještě upozornit, že osa čísel-
ná nemusí být vždycky vodorovná; na teploměru ji 
máme obvykle svislou. 

N 
- 4 

A 
r r 
J 

M 

Obr. 1 

Na ose číselné je každému reálnému číslu přiřazen jeden 
bod a obráceně, každému bodu osy číselné je přiřazeno je-
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diné reálné číslo. Je-li tak reálnému číslu a přiřazen na ose 
číselné bod A, řekneme stručně, že bod A má na ose x 
souřadnici a. Při vynášení souřadnic zachováváme ovšem 
kladný, případně záporný smysl měření na ose číselné. To 
znamená, že bod A s kladnou souřadnicí a > 0 má na- ose 
takovou polohu, abychom úsečku O A probíhali od počátku 
0 k bodu A v kladném smyslu; je-li a < 0, probíháme 
úsečku od počátku k bodu A ve smyslu záporném. 

Smluvíme se na stručném označení: okolnost, že bod A 
má souřadnici a, zapíšeme symbolem A (a). Tak například 
bod M na obr. 1 má souřadnici + 3, píšeme tedy Aí(3); 
symbol N(—2) značí, že bod N tam má souřadnici —2. 

Pro výklady v dalších odstavcích je důležité zvyknout si 
zacházet se souřadnicemi již zde. Všimněme si nejdřív 
jednoduché úlohy měření velikosti úsečky. V praxi vy-
jadřujeme délku úsečky kladným číslem. Zůstaneme přitom 
1 zde. Délku úsečky AB můžeme ovšem vypočítat užitím 
souřadnic bodů A, B; hledanou vzdálenost těchto bodů 
vyjádříme snadno pomocí absolutní hodnoty rozdílu jejich 
souřadnic. Má-li např. bod A souřadnici a = 3, bod B 
souřadnici b = 7, je vzdálenost obou těchto bodů zřejmě 
rovna číslu 4, neboť 4 = 7 — 3 = b — a. Je-li a = 3, 
6 = — 2, je vzdálenost bodů A, B rovna číslu 5, což lze 
psát tak, že 5 = 3 + 2 = 3 — ( - 2 ) = a — b. Obecně 
platí: 

Věta 1,1. Jsou-li A(a), B(b) dva body na ose číselné, pak 
jejich vzdálenost je dána číslem*) 

v=\b-a\ = |l(b - a)2. (1,1) 

*) Užíváme běžně známého vyjádření absolutní hodnoty | m \ =v^ 
pro libovolné reálné číslo m. 
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Důkaz si čtenář podá snadno sám tím způsobem, že si 
promyslí všechna možná seskupení tří bodů na ose číselné, 
totiž bodů A, B a počátku O. 

Vzorec (1,1) platí i v tom případě, kdy body A, B 
splynou, kdy jsou totožné. Pak je a — b a vzdálenost 
v = 0. Rozšíříme tedy hoření výklad tím, že úsečka má 
vždycky délku nezápornou. Úsečka délky nula se často 
v literatuře nazývá úsečka nulová. 

Ve vzorci (1,1) není třeba si pamatovat pořadí souřadnic 
a, b, neboť je b — a = — (a — b) a tedy | b — a | = 
= \a — b\. 

Pro vzdálenost v bodů A, B se užívá také znaku v — AB. 
Podle toho, co bylo právě řečeno, je AB = BA. 

Každá úsečka má jediný střed. Určime jeho souřadnici 
na ose číselné. 

Věta 1,2. Střed S úsečky, jejíž krajní body jsou A (a), 
B (6), má souřadnici 

a + b n 
> = -2~-. M 

Důkaz spočívá ve výpočtu souřadnice s bodu 5 z pod-
mínky, že bod 5 je stejně vzdálen od bodu A jako od bodu 
B; je tedy podle vzorce (1,1) 

\a- - j | = \s-b\. (1,3) 

Abychom se zbavili nepohodlného počítání s absolutními 
hodnotami, umocníme tuto rovnici dvěma. Je pak 

(a - s)2 = (s- b)2. 
Při a * b vychází odtud po krátkém počtu právě výsledek 
(1,2) a zkouškou (dosazením) se snadno přesvědčíte, že 
tato hodnota s vyhovuje rovnici (1,3). Je-li a — b, splývají 
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všechny tři body A,B,Sv jednom bodě aje a = b = s = 
~ ' ' e v^ t a 1)2 dokázána. Obráceně hledejme 

nyní krajní body úsečky, jejíž střed známe: 

Věta 1,3. Souřadnice x bodů, které jsou na ose číselné od 
bodu S(s) vzdáleny o délku r > 0, splňuji kvadratickou 
rovnici (x — s)2 = r2. (1,4) 

Důkaz vychází na základě vzorce (1,1) z podmínky 
| x — s | = r, která je ovšem ekvivalentní s rovnicí (1,4). 

Ptejme se obecně, které body na ose číselné určuje 
kvadratická rovnice 

x2 + px + q = 0, (1,5) 
kde konstanty p, q splňují podmínku 

p2 - 4? > 0. (1,6) 
Za předpokladu (1,6) má totiž rovnice (1,5) právě dva 
různé reálné kořeny x2, jež jsou souřadnicemi dvou 
bodů X-1} X2 na dané ose číselné; střed úsečky X±X2 má 

pak souřadnici s = *2 = — . 

Tohoto výsledku docílíme také převedením rovnice (1,5) 
na tvar (1,4) běžně známým doplňováním kvadratického 
troj členu na úplný čtverec podle předpisu x2 + px + q = 

P P2 

Pak rovnice (1,5) má tvar (x + -y )2 = ^— q, což je tvar 
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(1,4), kde klademe s = — - q. V důsledku. 

podmínky (1,6) je r > 0. Dostáváme tak zároveň souřad-
nici í středu úsečky XxX2 i vzdálenost r tohoto středu od 
kteréhokoli z bodů Xlt X2. 

O bodech na přímce se toho dá říci ještě mnoho, zde 
však vystačíme s tím, co jsme si právě ukázali. Hlavním 
účelem bylo, aby si čtenář uvědomil, že k řešení geometric-
kých úloh o bodech na přímce lze užít jedné souřadnice, 
která polohu každého bodu na přímce charakterizuje. 
Přitom tato souřadnice probíhá množinu (čili množství) 
všech reálných čísel, tj. můželse rovnat kterémukoliv 
reálnému číslu. Z toho důvodu říkáme, že přímka je jedno-
rozměrná nebo že je prostorem jednorozměrným. K zvlád-
nutí geometrie na přímce stačí totiž jedna souřadnice, pro-
bíhající množinu reálných čísel. 

Řekněme si hned, že souřadnice, o níž zde mluvíme, 
znamená geometricky v podstatě délku; její absolutní 
hodnota je vzdálenost na přímce od počátku O. Odtud 
obecněji pro vzdálenost dvou bodů vychází vzorec (1,1), 
který souhlasí s běžným měřením, jemuž se každý učí 
v geometrii už na obecné škole. Protože geometrii založe-
nou na tomto měření poprvé soustavně zpracoval slavný 
řecký matematik Euklides (žil okolo roku 300 př. n. 1.), 
říkáme, že přímka, na níž měření provádíme podle 
vzorce (1,1); je jednorozměrný euklidovský prostor. 

Cvičení 
2 ^ 

1.1. Vyneste na ose číselné body A(2), B(-1), C( — ) , £>(1/2), F.{ ) 
3 ' 2 

a P (jZ)> kde 71 = 3,14 je Ludolfovo číslo. 
1.2. Vypočtěte vzdálenost každých dvou z bodů A (4), B (7), C ( - 5), 

D (—3) daných na přímce. 
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1.3. Vzdálenost bodu A(a) od počátku je rovna číslu | a |. 
1.4. Určete souřadnici i středu úsečky AB, je-li a) A(3), B( — 5); 

b)A(3),B(-3);c)A(7),B(4). 
1.5. Určete body X2 (xji jejichž souřadnice jsou kořeny 

rovnice *2 — 5* -f 4 = 0 a vypočtěte souřadnice středu úsečky XLX2 

i vzdálenost středu této úsečky od kteréhokoli jejího krajního bodu. 
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2. kapitola 

R O V I N A 

Užití souřadnic při řešení geometrických úloh vynikne 
daleko více, postoupíme-li od geometrie v přímce ke geo-
metrii v rovině. Nevystačíme při tom ovšem s jednou 
souřadnicí; pro určení polohy bodu v rovině potřebujeme 
dvě souřadnice. Každý je zná ze školy, připomeňme si je 
tedy jen stručně; zavedeme přitom označení, jež je vhodné 
pro naše další kapitoly. 

Zvolme v rovině dvě osy číselné xv x2 k sobě kolmé 
o společném počátku O (viz obr. 2). Je-li A libovolný bod 
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v rovině, vedme tímto bodem přímky rovnoběžné s osami 
xu x2l ty vytnou na těchto osách body A1} A2 (bod Aj, 
leží na ose xly bod A, na ose x2). Pro každý z těchto bodů 
určíme jeho souřadnici na příslušné ose číselné podle vý-
kladu v kapitole 1. Bod Ax má tak na ose číselné xx jedinou 
souřadnici a u bod A2 na ose x2 souřadnici a2. Na základě 
toho řekneme, že bod A má v naší rovině souřadnice av a2 
a symbolicky to zapíšeme znakem A (ax; a2). Každému 
bodu roviny je tak přiřazena jediná dvojice souřadnic 
a obráceně, každým dvěma číslům, jež zde pokládáme za 
souřadnice, je touto konstrukcí přiřazen jediný bod v ro-
vině. Přitom každá z obou souřadnic probíhá množinu 
všech reálných čísel. Nutno upozornit, že pořadí souřadnic 
v symbolickém zápisu A (aj; a2) je podstatné — srovnej se 
cvičením 2,1. 

Souřadnice zde zavedené nejsou pro naše čtenáře no-
vinkou, znají je už ze školy. Nazývají se pravoúhlé, přímo-
čaré souřadnice nebo stručně souřadnice kartézské.*) 
Ve škole se užívají už při vynášení grafů funkcí, jenže osy 
číselné jc15 x2 jsou tam obvykle označeny písmeny x, y 
a říká se jim osy souřadnic (též souřadnicové osy). My se 
také přidržíme názvu osy souřadnic, zůstaneme však při 
očíslování souřadnic. Průsečík O obou os souřadnic má obě 
souřadnice rovny nule a nazývá se počátek. Obě osy s po-
čátkem a příslušným měřítkem na nich nazývají se sou-
hrnně soustava souřadnic. 

Přistupme k měření vzdáleností v rovině. Jsou-li A a B 
dva body v rovině, označme jejich vzdálenost AB stručně 
písmenem v (viz stále obr. 2) a snažme se ji ze souřadnic 
bodů A, B vypočítat. Dojdeme k následující větě: 

*).René Descartes (1596—1650), který se v latině psal Cartesius 
(čti Kartézijus), byl prvním, kdo těchto souřadnic systematicky užíval; 
proto se tyto souřadnice nazývají kartézské. 
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Věta 2,1. Jsou-li A {a1; a2), B (bl; ¿>2) dva body v rovině, 
pak jejich vzdálenost je dána číslem 

v = Vc^i - + (b, - a2)2. (2,1) 

Důkaz. Přímky, vedené body A, B rovnoběžně s osami 
souřadnými, vytváří obdélník AMBN (viz obr. 2) a hledaná 
vzdálenost v je úhlopříčkou tohoto obdélníka. Vypočítá-
váme ji pomocí Pythagorovy věty, jakmile známe velikosti 
stran tohoto obdélníka. Ty ovšem nejsou nic jiného než 
vzdálenosti bodů Av Bx a Á2, B2 na osách xv x2, jež umíme 
počítat podle věty (1,1) z předcházející kapitoly. Je tedy 
^iBi = | ¿i — a1 |, A2B2 = | b2 — a2 |. Protože čtverce 
těchto výrazů nejsou nikdy čísla záporná, není třeba v zá-
pisu 

= - *i)2 + (K ~ a2)2 

užívat symbolu absolutní hodnoty a tak docházíme ke 
vzorci (2,1). 

Tím je důkaz věty 2,1 proveden, opírá se ovšem o větu 
1,1 dokázanou dříve. Ale nebude na škodu, když si čtenář 
promyslí všechny možné případy rozložení bodů A, B 
v rovině se zřetelem k tomu, jsou-li jejich souřadnice 
kladné, záporné nebo nula. 

Pro výpočet souřadnic středu úsečky užijeme známé geo-
metrické poučky, že při rovnoběžném promítání zobrazí se 
střed úsečky do středu průmětu této úsečky. 

Věta 2,2. Střed S úsečky, jejíž krajní body jsou A (ax; a2), 
B (¿>x; ř2), má souřadnice 

= (2,2) 

Důkaz. Střed 5 úsečky AB (viz obr. 2) promítá se 
rovnoběžně s OBOU x2 na osu xx do bodu SX) který je středem 
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úsečky AJi^, jeho souřadnici sx dovedeme určit pomocí 
včty 1,2, docházíme tak k prvnímu vzorci (2,2). Podobně 
promítnutím bodu 5 rovnoběžně s osou x1 dostaneme na 

Obr. 3 

Střed 5 úsečky AB je ovšem stejně daleko od bodu A 
jako od bodu B (viz cvičení 2,4), ale není to jediný bod 
této vlastnosti. V rovině je nekonečně mnoho bodů stejně 
vzdálených od bodů A, B a ty vyplní, jak známo, přímku, 
totiž osu souměrnosti p úsečky AB (obr. 3). Abychom 
určili souřadnice těchto bodů, označme libovolný z nich 
písmenem AT a jeho souřadnice x15 x2. Podmínka AX = BX 
vede podle vzorce (2,1) k rovnici 

V(*i - + (*2 - a2f = |/(Xl-bl)* + (x2-b2y. 
Po umocnění této rovnice dvěma a po jednoduchém počtu 
dostáváme odtud pro souřadnice x2 rovnici 

(bi ~ + (¿>2 ~ a«) X2 + Y (ai2 - V + 

+ a2
2 - b2

2) = 0. 
(2,3) 
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Souřadnice (2,2) bodu S vyhovují této rovnici; stačí položit 
v ní xt = s15 x2 = s2. To je ovšem samozřejmé, neboť střed 
úsečky leží na její ose souměrnosti. 

Rovnici (2,3) můžeme psát stručně ve tvaru 

p1x1+p2x2+p3 = 0,- (2,4) 

klademe-li 

Pi = 6 (¿i — «i)> Pí = Q (b2 — a2), p3 = 

= - | ( « i 2 - V + a 2
2 - 6 2

2 ) , (2,5) 

kde n #= 0 je libovolně zvolené číslo, jímž můžeme celou 
rovnici (2,4) dělit. Při daných bodech A,B jsou ovšem 
čísla />!, p2> p3 konstanty, kdežto x1} x2 jsou proměnné sou-
řadnice běžného bodu X přímky p\ bod X probíhá celou 
přímku p. Důležité je, že rovnice (2,4) je lineární v pro-
měnných Xj, x2 (vyskytují se v ní nejvýše první mocniny 
proměnných xv x2). Protože samozřejmě předpokládáme, 
že body A, B jsou navzájem různé, je nutně aspoň jedno 
z čísel plt p2 nenulové. Je tedy rovnice (2,4) vskutku vždyc-
ky lineární. Protože každou přímku v naší rovině můžeme 
pokládat za osu souměrnosti některé úsečky, plyne z toho, 
že každou přímku v rovině lze vyjádřit lineární rovnicí 
Pi *i + Pí *2 + PÍ = 0. 

Ptejme se nyní, zdali obráceně každá lineární rovnice 
vyjadřuje nějakou přímku. Snadno zjistíme, že odpověď 
na tuto otázku je ldadná. Je-li totiž dána lineární rovnice 
ve dvou proměnných xly x2, existuje vždycky nějaká úsečka, 
jejíž osa souměrnosti je vyjádřena v dané soustavě sou-
řadnic právě danou rovnicí. Přesvědčme se o tom. Danou 
lineární rovnici pišme zase ve tvaru (2,4), kde předpoklá-
dáme aspoň />i * 0 nebo p2 * 0. Zvolme v rovině libo-
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volně bod A {fli, a2) tak, aby jeho souřadnice nevyhovovaly 
dané rovnici (2,4), aby tedy bylo 

Pi «1 + Pí «2 + Ps * 0- (2>6) 
Pak můžeme určit bod B (bít b2), jehož souřadnice b1} b2 
vyhovují rovnicím (2,5) při libovolném q 4= 0 a při daných 
číslech />!, p2, pa, a1} a2. K tomu stačí vypočítat z rovnic 
(2.5) neznámé bv b2. Provede se to jednoduše. Vyloučením 
o z prvních dvou rovnic (2,5) dostáváme pro neznámé 
i13 b2 lineární rovnici 

Pt (bi - = Pí (Pt - a2). (2,7^ 

Dále dosazením z prvních dvou rovnic (2,5) do třetí 
rovnice (2,5) dostáváme po krátkém počtu 

Pi ¿i + P2 h + p3 = - (Pi <*i + Pt a2 + pz). (2 ,8 ) 

To je druhá lineární rovnice pro neznámé bv b2. Řešením 
soustavy rovnic (2,7) a (2,8) je jediná dvojice čísel bv b2; 
podrobný výpočet i diskusi provede si už čtenář sám. 
Všimněme si pro zajímavost, že v důsledku nerovnosti 
(2.6) plyne z rovnice (2,8) 

PÍ ¿i + p2 b2 + Pz * 0, 
takže souřadnice bodu B b2) rovněž nesplňují rovnici 
(2,4) a zároveň body A, B jsou dva různé body. Nyní je 
zřejmé, že osa souměrnosti takto stanovené úsečky AB je 
právě daná lineární rovnice tvaru (2,4), neboť jsou 
splněny podmínky (2,5). To znamená, že taková lineární 
rovnice vyjadřuje přímku. 

Celkově tedy pozorujeme, že v naší soustavě souřadnic 
je každá přímka vyjádřena lineární rovnicí a obráceně 
každá lineární rovnice vyjadřuje nějakou přímku. Podrobně 
řečeno je to tak, že souřadnice běžného bodu přímky (tj. 
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souřadnice bodu, který probíhá celou přímku) vyhovují 
nějaké lineární rovnici a že tuto vlastnost mají právě jen 
souřadnice bodů této přímky. 

Pro stručnost vyjadřování zavádíme obecně toto rčení: 
Když souřadnice všech bodů nějakého útvaru splňuji určitou 
rovnici a když jiné body než body tohoto útvaru tuto vlastnost 
nemají, říkáme, že zmíněná rovnice je rovnici tohoto útvaru, 
nebo že útvar má tuto rovnici. 

Dosavadní výsledky shrneme tedy takto: 

Věta 2,3. V kartézských souřadnicích má přímka v rovině 
rovnici lineární. 

Důkaz byl už podán diskusí rovnic a nerovností (2,3) 
až (2,8). 

Každého přirozeně zajímá, jak se narýsuje v rovině přím-
ka, jejíž rovnici známe. Tu je snadná pomoc; vypočítáme 
souřadnice dvou bodů, jež dané rovnici vyhovují, pak po 
vynesení souřadnic tyto body zakreslíme a nakonec narý-
sujeme jejich spojnici, která je hledanou přímkou. Tak na 
příklad rovnici 

4*! + 3*2 - 12 = 0 
vyhovují souřadnice bodů P (3; 0), Q (0; 4); daná rovnice 
je tedy rovnicí spojnice těchto bodů P, Q. 

Vedle přímky je nejjednodušší čarou v rovině kružnice. 
Stanovíme její rovnici (viz obr. 4). 

Věta 2,4. Kružnice v rovině o středu S (sx; s2) a poloměru 
r > 0 má v kartézských souřadnicích rovnici 

(»i - *x)2 + (*> - *2)2 = r2- (2,9) 
Důkaz vychází z toho, že kružnice je vytvořena všemi 

takovými body X (*x; x2), které od jejího středu 5 (íx; s2) 
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mají stejnou vzdálenost, rovnou poloměru r této kružnice. 
Podle vzorce (2,1) je tedy 

V(*i - *i)2 + (*. - *2)2 = r, 
což při r > 0 je ekvivalentní s rovnicí (2,9). Rozumí se, že 
v rovnici (2,9) značí xu x2 proměnné souřadnice běžného 
bodu kružnice a % s2, r jsou konstanty. 

Obr. 4 

Rovnice (2,9) je v proměnných xv x2 druhého stupně 
čili kvadratická. Provedeme-li v ní naznačené umocňování 
dvěma, převedeme ji na rovnici 

*i2 + x2
2 + Mx i + Nx2 + P = 0, (2,10) 

kde jsme položili 
M = - 2s1} N = - 2s2, P = sj2 s2

a - r2. 
Znásoblme-li tuto rovnici ještě n ě j a k ý nenulovým 
číslem, zůstane ovšem rovnicí téže kružnice jako prve. To 
znamená, že kvadratická rovnice tvaru 

a (V + V ) + bx1 + cx2 + d = 0 
může být rovnicí nějaké kružnice jen tehdy, když je a * 0. 
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(Kdyby zde bylo a = 0, byla by tato rovnice lineární a vy-
jadřovala by přímku a nikoli kružnici.) 

Je-li dána nějaká rovnice (2,10), zajímá nás, jak přísluš-
nou kružnici narýsujeme. K tomu stačí najít její střed a po-
loměr a k tomu zase stačí převést rovnici (2,10) na tvar 
(2,9). Provedeme to opět doplňováním na úplné čtverce, 
tedy podobně jako jsme provedli rozbor rovnice (1,5) 
v předcházející kapitole. Pro každé x„ x2 vychází x^ + 

+ x? + Mx,+ Nx2 + P= (Xl + ^ )2 + (x2 + ^ )* -!-

M2 + N2 

+ P . Rovnice (2,10) má pak tvar 

(*i + ~2 ) + (*2 + ~2 ) =" 4 P-

Srovnáním s rovnicí (2,9) tedy vychází^ že kružnice, vy-
jádřená rovnicí (2,10), má střed S ( s ^ ) a poloměr r, kde je 

i, = r = + 

to ovšem předpokládá AI2 + AT2 - 4 P > 0. 
Vyjádření geometrických útvarů rovnicemi má význam-

ný důsledek. Umožňuje totiž rozborem rovnic studovat 
geometrii. Protože rozbor se nazývá cizím slovem analýza, 
vžil se na celém světě pro právě naznačený způsob studia 
geometrie název analytická geometrie. Zakladatelem ana-
lytické geometrie byl už dříve zmíněný René Descartes, 
vynikající francouzský učenec, především matematik a filo-
sof. Svým objevem analytické geometrie odkryl před zraky 
svých současníků novou, do té doby netušenou souvislost 
mezi geometrií a aritmetikou. To bylo přibližně před třemi 
sty lety. V té době byly už algebraické a vůbec aritmetické 
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metody v matematice mnohem víc propracovány než v geo-
metrii, která vyvrcholila ve starověku Euklidem a až do 
16. století mnoho nepokročila. Je tedy pochopitelné, že 
Descartova metoda znamenala ve vývoji geometrie pod-
statný a vlastně revoluční krok kupředu, neboť umožnila 
velkou řadu aritmetických zákonů převádět do geometrie. 
Aritmetika prokázala tehdy geometrii velkou službu. A geo-
metrie se jí za to později bohatě odměnila, jak poznáme 
v dalších kapitolách. 

Abychom aspoň trochu nahlédli do souvislosti aritmetiky 
s geometrií, položme si nejdřív nějakou úlohu o přímkách 
v rovině, pro názornost výkladu hodně jednoduchou. 
Jsou-li například a, b dvě přímky v rovině, jejichž rovnice 
jsou 

axxx + a^a + a3 = 0, 
¿»jXJ + ¿>2*2 + 63 = 0, (2,11) 

hledejme jejich průsečík. Souřadnice tohoto průsečíku vy-
hovují oběma rovnicím (2,11), neboť je to bod ležící na 
obou přímkách a, b. Analytickou geometrií převádíme zde 
tedy geometrickou úlohu na úlohu z algebry. Místo aby-
chom hledaný průsečík narýsovali, řešíme soustavu (2,11) 
dvou lineárních rovnic o dvou neznámých x1} x2. Tento 
postup má svoje výhody. Neselže například ani v tom pří-
padě, kdy hledaný průsečík je příliš daleko, kdy se nevejde 
na nákresnu, takže ho narýsovat ani nemůžeme. Řešení 
rovnic (2,11) nám dá bezpečnou odpovědi tehdy, když 
v narýsovaném obrázku si nejsme docela jisti; to se může 
stát v případě, kdy obě přímky se velmi málo liší od rovno-
běžek, jež průsečík nemají. Přitom přímky se ještě snadno 
rýsují. Kdybychom však místo průsečíku přímek hledali 
průsečíky křivek, které se rýsují obtížněji, vynikla by vý-
hoda početní metody, protože dá při nejmenším přesnější 
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výsledek než rýsováni. Už například jednoduchá otázka, 
zda-li určitá přímka je tečnou kružnice nebo ne, není 
z obrázku vždycky tak bezpečně patrná jako z řešení pří-
slušných rovnic, jak dále uvidíme. 

Otázka po společném řešení rovnic (2,11) je tedy ekviva-
valentní s otázkou po průsečíku dvou přímek v rovině. 
Z geometrického hlediska je ihned patrné, že mohou nastat 
celkem tři následující případy: 

1. Když se přímky a, b protínají v jednom bodě, má 
soustava (2,11) jediné řešení. Například soustava 

- x2 -+- 1 = 0, 
2xl + 3*2 — 3 = 0 

má jediné řešení: xy = 0, x2 —1. 
2. Když přímky a, b jsou rovnoběžné a navzájem různé, 

pak se neprotínají a neexistuje tedy společné řešení rovnic 
(2,11). Příkladem tu může být soustava rovnic 

X1 — + 1 = 0> 
- *2 + 3 = 0. 

O takových rovnicích říkáme, že jsou ve sporu. 
3. Konečně se může stát, že obě rovnice (2,11) před-

stavují tutéž přímku, čili že přímky a, b splývají. V tom 
případě mají tyto přímky nekonečně mnoho společných 
bodů a soustava rovnic (2,11) má pak qekonečně mnoho 
řešení. Tak na příklad rovnicím 

— *2 + 1 = 
3xj - 3*2 + 3 = 0 

vyhovuje každé řešení = u, x2 — u + 1, kde u je libo-
volně volitelné číslo. 

Z právě podaných příkladů je vidět, že také geometrie 
může účinně pomáhat při řešení aritmetických problémů. 
Podmínky existence řešení soustavy rovnic (2,11) j6ou 
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ovšem dávno v algebře dobře známy a o počtu řešeni roz-
hodují všelijaké vzájemné vztahy mezi součiniteli a u a2, a3, 
6„ b2, b3. Přehled o existenci a počtu těchto řešení dává 
však geometrie bezprostředně, neboť dvě přímky jsou buď 
různoběžné, nebo rovnoběžné a nebo konečně splývají. To 
už narážíme na opačný proces, než jaký převládal za dob 
Descartových, kdy se aritmetiky užívalo k řešení geometric-
kých úloh, kdy tedy převládala aritmetizace geometrie. 
Dnes pozorujeme opačnou tendenci. Podle slov sovětského 
akademika A. N. Kolmogorova (narozen 1903) je pro dnešní 
matematiku příznačná geometrizace aritmetiky. Je třeba, 
aby toto stanovisko zaujal i náš čtenář při sledování dalších 
kapitol. 

Vraťme se teď ještě k Descartově analytické geometrii 
v rovině. Sledujme průsečíky přímky s kružnicí. Má-li 
přímka rovnici (2,4) a kružnice rovnici (2,10), budou sou-
řadnice průsečíků obou těchto čar vyhovovat oběma těmto 
rovnicím. Hledáme tedy v tomto případě řešení soustavy 
rovnic 

PiXL -i- p2x2 + p3 = 0, 
*12+ *22 + M x i + Nx2 + P=0, 

z nichž první je lineární a druhá kvadratická. Vypočítáme-li 
z první z nich jednu neznámou a dosadíme-li ji do druhé 
rovnice, vyjde samozřejmě pro druhou neznámou kvadra-
tická rovnice. Její kořeny jsou buď dvě vzájemně různá 
reálná čísla (pak přímka je sečnou kružnice), nebo existuje 
jeden dvojnásobný kořen (přímka je tečnou kružnice), nebo 
neexistují žádné reálné kořeny (a přímka je pak nesečnou 
kružnice). Pokuste se sami vyřešit konkrétní případy a pří-
slušné čáry zároveň narýsovat (viz cvič. 2,9 a 2,10.) 

Analytickou geometrii v rovině jsme tím ovšem zdaleka 
nevyčerpali. Všimli jsme si jen velmi povrchně rovnic pří-
mek a kružnic. I nerovnosti se zde uplatňují.; na příklad 
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nerovnost x,2 + x a
2<l charakterizuje všechny body ležící 

uvnitř kružnice o středu v počátku a poloměru r = 1, je 
to tedy analytické vyjádření vnitřku kruhu. 

Hlavním účelem tu bylo srovnání početních a geometric-
kých metod a zdůraznění jejich vzájemného vztahu. Uči-
níme z toho podobné závěry jako na konci 1. kapitoly. 
K řešení geometrických úloh v rovině jsme užili dvou sou-
řadnic, které polohu každého bodu v rovině charakterizují. 
Přitom každá z těchto souřadnic probíhá množinu všech 
reálných čísel. Protože tedy máme v rovině dvě souřadnice, 
říkáme, že rovina je dvojrozměrná. A protože běžně známá 
euklidovská geometrie je založena na pojmu vzdálenosti 
dvou bodů, která je vyjádřena vzorcem (2,1), říkáme, že 
rovina, v níž měření provádíme podle vzorce (2,1), 
je dvojrozměrný euklidovský prostor. 

Cvičeni 
2.1. Zakreslete v rovině (v téže soustavě souřadné) body M (3; — 1) 

i N ( - l ; 3 ) a přesvědčte se, že oba tyto body jsou navzájem různé. 
2.2. Určete délky stran trojúhelníka ABC, je-li a)A(l;2),B(4; - 1 ) , 

C (5; 5); b) A (2; 5), B (—4; 2), C (8; - 3 ) . 
2.3. Ukažte, že trojúhelník OPQ, kde O je počátek, P 1) a 

Q (1^3; —3) jsou další dva body, je pravoúhlý. 
2.4. Přesvědčte se, že bod 5 o souřadnicích daných rovnicemi (2,2) 

má stejnou vzdálenost od bodu A (al; a2) jako od bodu B ; ¿2) a že je 
1 

= BS = — AB. 
2 

x, x, 
2.5. Narýsujte přímku, jejíž rovnice je a) i ~ - 1, b)x„ = k x,, 

P 1 
kde p ^ 0, q 4= 0, k jsou libovolně zvolená čísla. 

2.6. Napište rovnici kružnice, která má 
a) střed v počátku a poloměr r = 4; 
b) střed 5 (0; 5) a poloměr r = 5; 
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c) střed 5 (3; 2) a prochází počátkem; 
d) střed S (1; - 4 ) a poloměr r = 2^5. 

2.7. Určete střed a poloměr kružnice, jejíž rovnice je 
a) xf + x2

2 - 4*! - 6*2 - 12 = 0; 
b) xj2 - * 2

2 - 10*, - 24 = 0; 
c) x-,2 -i- x2

2 — 2ax2 = 0, kde je a > 0. 
2.8. Určete průsečík přímek o rovnicích 

a) 2xx - 5*2 + 6 = 0, 8*! + 15*2 10 = 0; 
b) 3*, -V 4*2 - 12 = 0, 6*! - 8*2 - 7 = 0; 

7 
c) 7* l 4*2 - 8 = 0, y *! f 2*„ - 4 = 0. 

2.9. Určete průsečíky přímky s kružnicí, jsou-li rovnice těchto čar 
a) *j - 3*2 - i - 9 = 0, *j2

 - f - * 2
2 - 25 = 0; 

b) x0- *2 - 1 = 0, xj2 * 2
2 + 6*! + 6*2 - 7 = 0. 

2.10. Dokažte, že přímka o rovnici 3*, + 4*2 — 39 = 0 je tečnou 
kružnicc dané rovnicí * 1

2 + * 2
2 — 6x1 + 10 * 2 — 66 = 0 a určete pří-

slušný bod dotyku. 
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3. kapitola 

T R O J R O Z M Ě R N Ý P R O S T O R 

V předcházející kapitole jsme sledovali geometrický vý-
znam některých rovnic o dvou proměnných. Postupme 
o krok dál a ptejme se, mají-li nějaký geometrický význam 
také rovnice o třech proměnných. Odpověď nám dá opět 
analytická geometrie, tentokrát prostorová. 

V prostoru zavedeme zase souřadnice kartézské, a to 
tím způsobem, že zvolíme tři osy číselné xv x2, x3 vzájemně 
k sobě kolmé o společném počátku O (viz obr. 5). Každý 
si je jistě dovede snadno představit, např. tři hrany krychle 
vycházející z téhož vrcholu leží na takovýchto přímkách. 
Osy x1} x2, x3 nazveme opět osy souřadnic, tři roviny, jimi 
po dvou určené, nazývají se roviny souřadnic. Je-li A 
libovolný bod v prostoru, veďme jím roviny kolmé k osám 

x2i tedy tři roviny rovnoběžné s rovinami souřadnic. 
Tyto roviny vytnou na osách body A1} A2, A3 a označme 
aly a2, a3 souřadnice každého z těchto bodů na příslušné 
ose podle výkladů v kapitole 1. Všimněme si, že i obráceně, 
třem zvoleným číslům al} a2, a3 jsou tak na příslušných 
osách určeny jednoznačně tři body Au A2, A3, jimiž vedené 
roviny rovnoběžné s rovinami souřadnic protínají se v jedi-
ném bodě A. Na základě toho říkáme, že bod A má v pros-
toru tři souřadnice a13 a2, a3, a symbolicky to zapíšeme 
znakem A (ú^; a2, a3). Pořadí zapsaných souřadnic je zde 
opět podstatné a každá souřadnice může probíhat množinu 
všech reálných čísel. 
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Pro ty, kdož studují deskriptivní geometrii, je představa 
těchto prostorových souřadnic běžná, snad jsou spíše zvyklí 
užívat pro osy souřadnic označení x, y, z místo našeho 

Obr. 5 
Z obr. 5 je dobře patrné, že vzdálenost bodu A od počát-

ku O je délka v tělesové úhlopříčky kvádru, jehož stěny 
jsou v rovinách souřadnic a v rovinách s nimi rovnoběž-
ných, procházejících bodem A. Rozměry tohotó kvádru 
jsou rovny číslům laji, |a2|, |a3j; je tedy 

v = 1V+ a2
2+ a3\ 

Plyne to ze známého výpočtu délky tělesové úhlopříčky 
kvádru. 

Půjde-li o výpočet vzdálenosti v dvou libovolných bodů 
A(a1; a2; a3), B(b1; b2\ ¿3)v prostoru, je úvaha obdobná. 
Jde většinou opět o délku tělesové úhlopříčky AB kvádru, 
jehož stěny leží v rovinách rovnoběžných s rovinami sou-
řadnic a procházejících body A, B. Tento kvádr má pak 
rozměry rovné číslům [éj — <2̂ , \b2 — a21, \b3 — a31; jsou 
to vzdálenosti kolmých průmětů bodů A, B na osách 
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souřadnic.*) Tak docházíme k větě, která je obdobou vět 
1,1 a 2,1 z předcházejících kapitol: 

Věta 3,1. Jsou-li A(a1; a2, a3), b2, í>3) dva body 
v prostoru, pak jejich vzdálenost je dána číslem 

v = }'% - a,Y + (é2 - a2)2 + (63 a3)2. (3,1) 
Důkaz, jak již bylo řečeno, plyne z výpočtu délky těle-

sové úhlopříčky AB kvádru, jehož stěny jsou v rovinách 
rovnoběžných s rovinami souřadnic. 

Sledujeme dále obdobtf s geometrií v přímce a v rovině, 
v tomto případě obdobu s větami 1,2 a 2,2 v prostoru. 

Věta 3,2. Střed S úsečky, jejíž krajní body jsou A (al; a2; 
a3), B(b1

m, b2; b3), má souřadnice 
_ a1 + ž>! _ a2 + ¿2 _ a3 + ¿3 ,, .. 
— 2 ' 2 ' 2 ' ' ' 

Důkaz. Střed S úsečky AB se promítá rovinou kolmou 
k ose Xj do bodu na ose xv který je zřejmě středem úseč-
ky AXBV kde Au Bt jsou právě takové kolmé průměty bodů 
A, B na osu xv Souřadnici bodu dovedeme tedy určit 
(pomocí věty 1,2), čímž docházíme k prvnímu vzorci (3,2). 
Podobně kolmým promítnutím bodu 5 na další osy x2, x3 
dostaneme souřadnice s2, s3 ve tvaru dalších vzorců t3,2). 

Jiný důkaz toho, že bod S(sl; s2 ; s3) o souřadnicích (3,2) 
je středem uvedené úsečky AB, poznáme za chvíli; bude 
nám užitečný pro příští úvahy v prostorech vícerozměr-
ných. Dříve si však ^jasníme geometrický význam lineární 

*) Kolmým průmětem bodu na přímku zde rozumíme průsečík této 
přímky s rovinou jdoucí daným bodem kolmo k této přímce. Tak 
např. na obr. 5 bod Ax je kolmým průmětem bodu A na osu 

27 



rovnice v prostoru, tj. lineární rovnice o třech proměnných. 
Budeme přitom postupovat stejným způsobem, jakým jsme 
v předcházející kapitole dospěli k větě 2,3; výklad zde bude 
ovšem daleko stručnější. 

Každý ví, že všechny takové body X v prostoru, které 
jsou stejně daleko od bodu A jako od bodu B, vyplní 
rovinu, totiž rovinu souměrnosti úsečky AB. Abychom 
našli rovnici této roviny, označíme kartézské souřadnice 
bodu X písmeny xly x2, x3 a souřadnice bodů A, B stejně 
jako v předcházejících větách. Potom podmínka AX = 
= BX zní (podle věty 3,1) 

l(*i - ai¥ + (*2 - ¿O2 + (*3 - a3y 

= y&t - ¿i)2 + (*2 - b2f + (*» - b3f 
a po umocnění dvěma a jednoduché úpravě vychází pro 
naši rovinu rovnice 

Pi*i + Pix2 + P3X3 + PÍ = (3,3) 

kde jsme položili 
px = o (¿! - a,), p2 = o (b2 - a2), p3 = o (b3 — a3), 

Px = | W " V + a3— V ) . (3,4) 

Přitem o #= 0 je libovolně zvolené číslo, jímž můžeme 
v rovnici (3,3) krátit; čísla ply p2, p3 nejsou současně rovna 
nule. 

Čtenář jistě poznává, že je tu stejná úvaha, jaká se v před-
cházející kapitole týkala rovnic (2,3) až (2,5) a jejich význa-
mu. Nebudeme zde už podrobnosti opakovat, řekneme si 
jen, že rovnice (3,3) je v proměnných x1} x2, x3 lineární a že 
je rovnicí roviny souměrnosti úsečky AB. Protože každou 
rovinu lze pokládat za rovinu souměrnosti některé úsečky, 
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lze jistě každou rovinu vyjádřit takovouto lineární rovnicí 
(3,3). Celkem lze vyslovit tuto větu: 

Věta 3,3. V kartézských souřadnicích má rovina v prostoru 
rovnici lineární. 

Důkaz má dvě části. Především se musí dokázat, že 
souřadnice bodů roviny vyhovují lineární rovnici; to už 
jsme provedli při odvození rovnic (3,3) a (3,4). Za druhé 
je třeba ukázat, že když je dána lineární rovnice (3,3), kde 
Pi> Pa p3> Pí jsou zvolené konstanty, že pak body X(x1; *2; 
x3) vytvoří rovinu. Důkaz je zde opět stejný jako v před-
cházející kapitole při rozboru rovnic (2,6) až (2,8), takže 
si ho čtenář už snadno doplní sám. 

Další jednoduchou a každému dobře známou plochou 
je plocha kulová. Její rovnice v prostoru připomíná rovnici 
kružnice v rovině, odvozenou ve větě 2,4 v předcházející 
kapitole. 

Věta 3,4.Plocha kulová o středu S(s1; s2', s3) a poloměru 
r > 0 má v kartézských souřadnicích v prostoru rovnici 

(*i - 5X)2 + (*a - s2y + (x, - s3y = r2. (3,5) 
Důkaz. Plocha kulová je množina bodů X(x1i x2\ x3), 

které mají od jejího středu 5(ÍX; S2; S3) stejnou vzdálenost, 
rovnou poloměru r. Podle vzorce (3,1) je tedy 

V(*1 - h)2 + (*2 - í2)2 + (*3 - s3y = r. 
Umocněním této rovnice dvěma vychází už rovnice (3,5) 
a obráceně, odmocňováním, plyne z rovnice (3,5) poslední 
vztah, neboť předpokládáme r > 0. 

Rovnici (3,5) lze přepsat ve tvar 
*!2 + *2

2 + *32 + Mxx + NX2 + PX3 + Q = 0, (3,6) 
kde jsme pro stručnost položili 
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M — — 2sls N = — 2s2, P = — 2í3, 
Q = í!2 + Í2

2 + Í3
2 - r2. 

To je v proměných x„ x3 kvadratická rovnice, charakte-
rizující plochu kulovou; každá jiná kvadratická rovnice je 
už tedy rovnicí jiné plochy druhého stupně než je plocha 
kulová. (Jiné takové plochy jsou elipsoidy, hyperboloidy, 
paraboloidy, válce a kužele; těmi se zde nebudeme zabý-
vat.) Abychom z rovnice (3,6) poznali střed i poloměr pří-
slušné plochy kulové, převedeme ji zpět na tvar (3,5); 
postup je obdobný tomu, kterým jsme v předcházející ka-
pitole došli od rovnice (2,10) k rovnici (2,9); pro každé 
hodnoty xtí x2, x3 je xf + x2

2 + x3
2 + Mx1 + Nx2 + 

+ Px3+Q=(x1 + ^-y+ (x2 + +(x3 + -J)2+ 

M2 + N2
 - b P2 

Srovnáním s tvarem (3,5) tedy vychází, že naše plocha ku-
lová, daná rovnicí (3,6), má střed 5 o souřadnicích 

_ M _P_ 

íi - 2 ' Í2 " 2 ' h ~ 2 

a poloměr 
r - - j 1/AÍ2 + N2 + P2- 4Q, 

což ovšem předpokládá M2 + N2 + P2 — 4Q > 0. Rov-
nici (3,6) můžeme ovšem násobit jakoukoli nenulovou kon-
stantou; přitom zůstane stále rovnicí téže plochy. 

Rovnice ploch, totiž roviny a plochy kulové, jež jsme ve 
větách 3,3 a 3,4 poznali, jsou jen dva příklady rovnic ploch. 
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Jiné plochy mají jiné rovnice, ale na ty nám zde nezbývá 
místa a nelze v tomto směru udělat nic jiného, než odkázat 
čtenáře na obsáhlejší a podrobnější literaturu. Prozatím si 
zapamatujeme, že plochy v prostoru jsou v analytické geo-
metrii určeny rovnicemi asi tak, jako v rovině byly rovnice-
mi určeny různé čáry (např. přímka a kružnice). Jak je to 
však s rovnicemi čar v prostorové geometrii? 

Nebudeme se zabývat křivkami, spokojíme se jen s nej-
jednoduššími čarami, s přímkami. 

Vyjděme z toho, co už známe, totiž z věty 3,3; odtud 
víme, jak vypadá rovnice roviny. Přímku v prostoru může-
me vždycky pokládat za průsečnici nějakých dvou rovin. 
To nám pomůže při analytickém vyjádření přímky. Jsou-li 

+ a2x2 + a3x3 + aA = 0, 
M i + ¿>2*2 + ¿>3*3 + ¿>4 = 0 (3,7) 

rovnice dvou rovin a, /3, pak ovšem všechny takové body 
X(x j j x2; x3), jejichž souřadnice vyhovují oběma těmto 
rovnicím zároveň, leží jak v rovině a, tak v rovině /?. Tyto 
body X leží tedy na průsečnici rovin a, ¡}, proto vytvoří 
přímku. (Přitom jsme samozřejmě předpokládali, že 
al} a2, a3, a4 a bv b2, b3, bA jsou předem pevně stanovená 
čísla, tedy konstanty.) Obráceně také právě jen body tako-
véto přímky mají tu vlastnost, že jejich souřadnice vyho-
vují oběma rovnicím (3,7) zároveň. Můžeme tedy říci, že 
přímka je v prostorové analytické geometrii určena dvěma 
lineárními rovnicemi. To platí ovšem jen za předpokladu, 
že každá z rovnic (3,7) určuje jinou rovinu a že tyto dvě 
roviny nejsou spolu rovnoběžné. Nepouštějme se však do 
geometrických podrobností a všimněme si raději souvislosti 
těchto úvah s algebrou. 

V prostorové analytické geometrii je tedy určení bodů 
přímky totéž, jako hledám společného řešení dvou rovnic 
(3,7). Jde tedy o řešení soustavy dvou lineárních rovnic 
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(3,7) o třech neznámých x]} x2) x3. Geometrie nám posky-
tuje snadný přehled o existenci takového řešení. Naše sou-
stava totiž buď nemá žádné řešení, nebo jich má nekonečně 
mnoho; jiné možnosti nejsou. Ukažme si příklady. 

1. První možnost nastane tehdy, když dvě různé roviny 
<i, ß určené rovnicemi (3,7) jsou spolu rovnoběžné; pak 
nemají žádný společný bod a soustava (3,7) nemá tedy řeše-
ni. O takových rovnicích říkáme, že jsou ve sporu. To na-
stává např. u soustavy rovnic 

x1 + x2 + x3 — 3 = 0, 
2XY + 2x2 + 2X3 — 5 = 0. 

Snadno zjistíte, že první rovnice představuje rovinu, vytí-
nající na každé souřadné ose úsek 3; obsahuje body 
(3; 0; 0), (0; 3; 0) a (0; 0; 3). Druhá z nich vytíná na osách 

souřadných rovněž stejně úseky, a to d é l k y a je tudíž 

s první rovinou rovnoběžná. Není ostatně nic divného, že 
obě uvedené rovnice jsou ve sporu. První požaduje, aby 

bylo + + x3 = 3, druhá, aby bylo ^ + x2 + x3 = ~; 

oba tyto protichůdné požadavky nelze splnit zároveň. 
2, Další možnost, kdy uvedené dvě různé roviny nejsou 

spolu rovnoběžné, dává vždycky nekonečně mnoho řešení 
příslušné soustavy, protože takovéto dvě roviny mají neko-
nečně mnoho bodů společných. Na příklad řešením sousta-
vy rovnic 

3xl — 2X2 + x3 — 3 = 0, 
xt - 6X2 - x3 - 1 = 0 (3,8) 

je každá trojice 
• _ , u _ u _ 

— 1 2 ' — » — 
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kde u je libovolně volitelné číslo. V učebnicích analytické 
geometrie se dokazuje, že tyto body vytvoří přímku. — 
Konečně uveďme ještě např. soustavu 

2xx — 3*2 + x3 - 1 = 0, 
4*! - 6*2 + 2*3 - 2 0, 

kde každé řešení, jež vyhovuje jedné z těchto rovnic, vyho-
vuje i druhé, protože druhá vznikne z první, násobíme-li 
ji dvěma. Obě tyto rovnice představují tedy tutéž rovinu; 
říkáme také, že roviny určené těmito rovnicemi splývají. 
(To nenastalo v případě soustavy (3,8), kde např. bod 
(0; 0; 3) leží v první tam dané rovině, ale neleží ve druhé. 
Jde tam tedy o dvě různé roviny.) 

Uvedli jsme si tyto příklady ná ukázku souvislosti geo-
metrie a algebry. Algebra dovede ovšem řešit soustavy 
(3,7) bez pomoci geometrie a zná podmínky, kdy taková 
soustava má a kdy nemá řešení a jak se příslušná řešení 
najdou. Na těchto stránkách jsme však chtěli ukázat, že 
geometrie dává pohodlný přehled o možnostech řešení 
takové soustavy. 

Využijme v analytické geometrii ještě jednu známou 
skutečnost: Leží-li dva body přímky v nějaké rovině, pak 
v této rovině leží celá tato přímka. Povede nás to k dříve 
již slíbenému druhému důkazu věty 3,2. Střed 5 úsečky 
AB je charakterizován dvěma vlastnostmi: je od obou 
bodů A, B stejně daleko a leží na přímce určené body A, B. 
První vlastnost potvrdí čtenář snadno sám (viz cvičení 3,3). 
Dokažme ještě druhou z nich. Zvolme libovolnou rovinu 
procházející body A, B. Rovnici této roviny pišme ve tvaru 

01*1 + 02*2 03*3 4 04 = & , (3,9) 

kde qu q2> q3, ?4 jsou konstanty, *15 x2, *3 proměnné. Sou-
řadnice bodů A, B jí podle předpokladu vyhovují, je tedy 
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9lal + Í2<*2 + + = °J 
+ qA + qA + q* = o. 

Sečtením těchto rovnic dostáváme 

ftOl ¿1) + + ¿2) + tfsOs + ^3) + 2?4 = 0 
a po dělení dvěma 

a± + b1 a2 + b2 a3 + b3 . 
— — 2 "" 9 3 — 2 ^ = ^ ^ 

To znamená, že souřadnice (3,2) bodu 5 vyhovují rovnici 
(3,9). To byla, jak víme, rovnice libovolné roviny jdoucí 
body A, B. Můžeme tedy říci: bod 5 leží v každé takové 
rovině, která prochází body A, B. Z toho plyne, že bod 5 
leží na přímce spojující body A, B, jak jsme měli dokázat. 
Protože na přímce leží jediný střed úsečky, je tím znovu 
věta 3,2 dokázána. 

Přejděme nyní k soustavě tří lineárních rovnic o třech 
neznámých x l t x2, x3. I zde studium takovéto soustavy je 
v podstatě totožné se studiem tří rovin v prostoru, jež jsou 
těmito rovnicemi určeny. Ihned poznáváme, že taková 
soustava buď nemá žádné řešení (když např. aspoň dvě 
z těchto tří rovin jsou spolu rovnoběžné nebo když jsou 
všechny tři rovnoběžné s touže přímkou), nebo je řešení 
jediné (když se tři roviny protínají v jednom bodě), nebo 
konečně je řešení nekonečně mnoho (když tři roviny mají 
společnou aspoň jednu přímku). Uveďme si příklad na tuto 
poslední možnost. Řešme soustavu rovnic 

2x1 — 3x2 + 5*3 — 1 = 0 , 
+ *•> + 2X3 - 7 = 0, (3,11) 

*i - 7x2 + 8*3 + 5 = 0. 
Z prvních dvou daných rovnic můžeme vypočítat xv x2 

pomocí třetí neznámé x3; počítá se tak, jakoby šlo o sousta-
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vu dvou rovnic o dvou neznámých x1} x2, při čemž třetí x3 
je libovolně volitelná. Snadno každý spočítá, že je zde 

= 2 X3, = 1 "T 

Dosadíme-li tyto výsledky do třetí z daných rovnic, pozná-
váme, že i tato rovnice je při libovolném x3 vždycky splně-
na. To znamená, že každá trojice čísel 

xt = 2 — w, x2 = 1 + w, x3 =- u, 

kde u je libovolně volitelné číslo, řeší danou soustavu; ta 
má tedy nekonečně mnoho řešení. 

Příčina toho, že soustava (3,11) má nekonečně mnoho 
řešení, je v tom, že tyto tři rovnice nejsou na sobě nezávislé. 
Vskutku, znásobíme-li první rovnici dvěma a od výsledku 
odečteme druhou rovnici, dostaneme právě třetí z nich. 
Pak ovšem každé hodnoty neznámých *„ x2, x3, jež vyho-
vují zároveň prvním dvěma rovnicím (3,11), vyhovují 
nutně i třetí rovnici. Geometricky to znamená, že rovina, 
určená třetí rovnicí (3,11), obsahuje všechny body společné 
dvěma rovinám, jež jsou určeny prvními dvěma rovnicemi 
(3,11); třetí rovina prochází prostě přímkou, v níž se první 
dvě protínají. Další příklady jsou ve cvičení 3,9 až 3,12. 
Otázka společného průsečíku několika rovin vystupuje také 
ve cvičení 3,5; příslušné roviny se tam určí způsobem, 
jakým jsme došli k rovnici (3,3) s koeficienty (3,4). 

Hledání společných bodů jiných geometrických útvarů 
než rovin a přímek neznamená v analytické geometrii 
ovšem zase nic jiného, než řešení příslušné soustavy rovnic; 
rozdíl proti předcházejícímu je jen v tom, že pak nejsou 
všechny příslušné rovnice lineární. Tak např. určení prů-
sečíků přímky s plochou kulovou vede podle předchozích 
výkladů na soustavu tří rovnic, z nichž dvě jsou lineární 
a třetí kvadratická. Při řešení postupujeme obvykle tak, 
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že nejprve z lineárních rovnic vypočteme dvě neznámé 
pomocí třetí neznámé a dosadíme výsledky do kvadratické 
rovnice, z níž třetí neznámou vypočítáme. Další postup je 
už zřejmý. 

Zakončeme tuto kapitolu obdobně jako předcházející 
kapitoly. Na rozdíl od geometrie v přímce a v rovině potře-
bovali jsme v prostorové geometrii už. tři na sobě nezávislé, 
tj. libovolně volitelné souřadnice. Každá z těchto souřadnic 
může opět probíhat celou množinu reálných čísel. Proto 
říkáme, že náš prostor je trojrozměrný. A protože euklidov-
ská geometrie je ta geometrie, při níž měření vzdáleností 
je vyjádřeno vzorcem (3,1), říkáme, že prostor, v němž 
měřeni provádíme podle vzorce (3,1), je trojroz-
měrný euklidovský prostor. 

Cvičeni 
3.1. Určete délky stran trojúhelníka ABC, je-li A (2; 1; 3), B (5; 

4; 8), C (3; 0; Ť). Na základě toho se přesvědčte, že tento trojúhelník je 
pravoúhlý. ' 

3.2. Přesvědčte se, že trojúhelník A (2; 3; - 1 ) , B (4; 1; 5), C (1; 
— 3; 1) je rovnoramenný. 

3.3. Přesvědčte se, že bod 5 o souřadnicích daných rovnicemi (3,2) 
má stejnou vzdálenost od bodu A (a,; a2; a3) jako od bodu B (6,; b2; b:l) 

1 
a že je AS = BS — AB. 

2 

3.4. Přesvědčte se počtem, že střed úsečky leží v její rovině souměr-
nosti. 

3.5. Určete bod S, který má od bodů A( 1; - 1 ; 1), B (2; 1; - 2 ) , 
C (— 1; 3; - 1), D (1; 1; 1) vesměs stejné vzdálenosti. 

3.6. Napište rovnici plochy kulové, která má 
a) střed v počátku a poloměr r = 1; 

b) střed 5 (2; 0; 0) a prochází počátkem; 
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c) střed S (4; 2; 2) a poloměr r = 3. 
3.7. Určete střed a poloměr plochy kulové, jejíž rovnice je 

a) jcj2 + x2
2 4- xs

2 - 2x1 - 6X2 - 10*3 -r 10 = 0; 
b) xj2 4- * 2

2 •!- *j2 — 2axs = 0; kde je a > 0. 
3.8. Napište rovnici plochy kulové, která prochází body A, B, C, D 

ze cvičení 3,5. 
3.9. Pokuste se řešit soustavu rovnic 

3*, - 2*, 4- *3 - 5 -- 0, 
- 6 * ! 4- 4*2 - 2*a r 7 = 0, 

a na základě výsledků rozhodněte, zdali obě roviny, určené těmito rov-
nicemi, jsou spolu rovnoběžné nebo ne. 

3.10. Ukažte, že tři roviny, jejichž rovnice jsou 
a) 2x1 — 3X2 4- 5*;, — 1 = 0, 

3*! -¡- *2 + 2*3 - 7 = 0, 
5*! 4- 7*2 - *3 - 16 = Oj 

b) *, 4 - x2 - x3 = 0, 
2jCj ~r X2 ^ lj 
4*, 4- 2*2 - 3*3 = 0, 

se protínají v jednom bodě j najděte jej! 
3.11. Tři roviny o rovnicích 

*! 4- *2 — 2*3 4- 1 = 0, 
3*! - *2 4- *3 —2 = 0, 

11*! — *2 — *3 — 4 0, 
mají nekonečně mnoho společných bodů. Určete jejich souřadnice. 

3.12. Určete společné body rovin o rovnicích 
*! 4- *2 — 2*3 = 0, 
*, - *2 4" *3 = 0, 

2*, - *3 - 1 = 0. 
3.13. Dokažte, že přímka, daná rovnicemi 

3*! 4 4*2 - 25 = 0, 
* , 4- 2*2 4- *3 - 11 = 0, 

je tečnou plochy kulové o rovnici 
*l2 + x2 + x 38 - 2 5 = 
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4. kapitola 

Č T Y Ř R O Z M Ě R N Ý P R O S T O R 

Algebra nekončí u soustav rovnic o třech neznámých. 
Studuje i rovnice o čtyřech, pěti a více neznámých. Navá-
žeme-li na předcházející kapitoly, vznikne přirozená otázka, 
mají-li takové rovnice také nějaký geometrický význam. 
Uvidíme, že ano; nevystačíme přitom ovšem s dvojroz-
měrnou rovinou nebo trojrozměrným prostorem. Matema-
tikové si zde pomáhají tím způsobem, že zavádějí nové, 
umělé pojmy. Činí tak analogicky ke známým pojmům 
z geometrie prostorů dvojrozměrných a trojrozměrných. 

Když jsme v rovině určili bod A pomocí jeho dvou sou-
řadnic av a,, znamenalo to téměř totéž, jako kdybychom 
uspořádané dvojici čísel a15 a% dávali nové jméno, totiž 
jméno „bod A"; podobně jsme si počínali i v prostoru 
trojrozměrném, jenže tam už šlo o trojice čísel. Proč by-
chom nemohli pokračovat stejně i pro čtveřice čísel nebo 
vůbec pro skupiny o větším počtu čísel ? Zůstaňme proza-
tím u čtveřic. 

Pokusme se o tuto abstrakci: Když jsme poznali geo-
metrický význam dvojic a trojic čísel, rovnic mezi nimi 
a jiných aritmetických pojmů, odložme na chvíli geometric-
ký obrázek či prostorový model a odmysleme si skoro celou 
tu geometrii; jediné, co z ní podržíme v paměti, bude 
geometrické názvosloví. Uspořádanou čtveřici čísel — 
a1} a.u a3, nazveme prostě opět „bod A" a zapíšeme to 
zase znakem A(a1; a2; a3; a4) a jednotlivá čísla této čtveřice 
prohlásíme za souřadnice tohoto bodu A. (Čtenář si jistě 
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domyslí, že v matematice skutečně existují konkrétní ob-
jekty, jež lze charakterizovat právě popsanou čtveřicí čísel 
— ukážeme si je hlavně v poslední kapitole — a že tedy 
nejde jen o vyumělkované řeči, které by se prakticky nikde 
neuplatnily.) 

Poznali jsme, že bod určený dvěma souřadnicemi se 
zobrazuje v rovině a bod určený třemi souřadnicemi v pros-
toru. O rovině jsme říkali, že je dvojrozměrná, body určené 
třemi souřadnicemi vyplnily trojrozměrný prostor. Stejně 
tedy řekněme, že všechny body, jež lze charakterizovat 
čtyřmi souřadnicemi, vyplní prostor čtyřrozměrný. Důležité 
přitom je, že při určení bodu A ve čtyřrozměrném prostoru 
můžeme čísla a15 a2, a3, a4 (jeho souřadnice) volit nezávisle 
jedno na druhém. A podobně jako v předcházejících kapi-
tolách budeme i zde předpokládat, že každá souřadnice 
probíhá celou i^nožinu reálných čísel. Bod, jehož všechny 
čtyři souřadnice jsou rovny nule, nazývá se i zde počátkem 
příslušné soustavy souřadnic. 

Abychom mohli mluvit o nějaké geometrii v takovémto 
čtyřrozměrném prostoru, zavedeme si v něm pojem vzdále-
nosti dvou bodů. podíváme se nejdřív na vzorce (1,1), (2,1) 
a (3,1) v předcházejících kapitolách a analogicky k nim 
zvolíme měření délek i zde. 

Jsou-li A (ax; a 2 ; a3; a4) a B(b1; b2; b3; é4) dva body v prosto-
ru čtyřrozměrném, pak za jejich vzdálenost prohlásíme číslo 
v dané vzorcem 

(4,1) 
Píšeme zde ovšem také AB = v. 

Doplňme to hned dalším pojmem, totiž pojmem eukli-
dovského prostoru (srovnej se závěrečnými slovy předchá-
zejících kapitol). 
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Euklidovským čtyřrozměrným prostorem rozu-
míme každou takovou množinu (každý takový souhrn) 
nějakých právě popsaných objektů čili bodů, když 
měření vzdáleností dvou takových bodů provádíme 
podle vzorce (4,1). 

Pro stručnost budeme euklidovský čtyřrozměrný prostor 
značit E4. 

Příslušným souřadnicím budeme i zde říkat souřadnice 
kartézské. Pojem vzdálenosti je na ně vázán. Z toho, co 
bylo řečeno, neplyne, že bychom v tomtéž prostoru E4 
nemohh zavést vedle těchto souřadnic ještě nějaké jiné 
souřadnice, v nichž by se vzdálenost dvou bodů počítala 
podle jiného vzorce než je (4,1). To jsme mohli zkusit už 
v rovině nebo v trojrozměrném prostoru, vzorec pro vzdá-
lenost dvou bodů by se pak byl patřičně změnil; nebylo by 
tam např. nutno volit osy souřadnic k sobě kolmé. Upustí-
me však od toho a zůstaneme jen při naší nejjednodušší 
kartézské soustavě souřadnic. 

Pro naše čtenáře bude tedy prozatím nejpohodlnější tato 
představa prostoru E4: je to množina všech uspořádaných 
čtveřic čísel, každé takové čtveřici říkáme bod prostoru E4 
a vzdálenosti mezi nimi měříme podle vzorce (4,1). 

Už na základě těchto několika pojmů můžeme řešit 
některé úlohy geometrie v E4, jak je patrné ze cvičení 4,1 
až 4,5; přitom např. stranou AB trojúhelníka ABC rozu-
míme i zde vzdálenost jeho vrcholů A, B; rovnoramenným 
trojúhelníkem rozumíme trojúhelník, jehož dvě strany jsou 
stejně dlouhé atd. 

Podobně jako v předcházejících kapitolách budeme i zde 
středem úsečky AB rozumět bod S, který půlí vzdálenost 

AB, pro který tedy platí AS — BS = \rAB(srovnej se 
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cvič. 2,4 a 3,3). Souřadnice tohoto středu určínj| stejně 
snadno jako v předcházejících kapitolách (viz větu 1;2, větu 
2,2 a větu 3,2): 

Věta 4,1. Střed S úsečky, jejíž krajní body jsou A(a1; a.,; 
a3; a4), B(bx; b2;b3', 64), má souřadnice 

ax + <22"̂  . £3 63 
~ Y " — O > S2 — ň ~ 5 — 

' (4,2) 

Důkaz se opírá o vzorec (4,1). Pro vzdálenost bodů AS, 
kde souřadnice bodu S jsou dány vzorci (4,2), vychází 

= l
2 + + = j A B 

a stejně tak BS ~AB; je tedy také AS --- BS a tvrzení 

věty 4,1 je dokázáno. 
Tento způsob důkazu jsme doporučovali čtenářům ve 

cvič. 2,4 a 3,3, není tedy pro ně novinkou. Věta 4,1 se 
vzorci (4,2) potvrzuje existenci středu úsečky v prostoru 
E4 a poskytuje i návod pro výpočet jeho souřadnic. Nutno 
zde však upozornit na to, že tato věta neříká nic o tom, zdali 
vedle bodu 5 neexistuje ještě nějaký jiný bod v E4, který 
také půlí úsečku AB; nedokázali jsme tedy, že úsečka má 
v prostoru E, jen jediný střed (v předcházejících kapito-
lách to bylo zřejmé z názoru i z toho, co čtenáři znají ze 
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školy). Ale i to lze ve čtyřrozměrném prostoru dokázat. 
Nemáiri&však na to v této brožurce ani místo, ani patřičné 
prostředky; zájemce to najde v učebnici E. Čecha, citované 
vzadu v seznamu literatury, a to v I. díle na str. 18. 

Přistupme nyní podle vzoru předcházejících kapitol 
k hledání všech takových bodů X ležících ve čtyřrozměr-
ném prostoru E4, které jsou od bodu A stejně vzdáleny 
jako od bodu B. Střed 5 úsečky AB, určený ve větě 4,1, 
je ovšem jedním z nich. Jistě však existují ještě další body 
X, pro které je AX = BX. V rovině vytvoří takové body 
přímku, v prostoru trojrozměrném rovinu, pokaždé totiž 
„osu souměrnosti" úsečky AB. Byla o tom řeč v předchá-
zejících dvou kapitolách. Co bude touto osou souměrnosti 
úsečky AB v prostoru E4? Bude to zřejmě analogický 
pojem k pojmu přímky v rovině nebo k pojmu roviny ve 
trojrozměrném prostoru. Protože však v prostoru E4 ne-
máme dosud příslušný pojem, nezbývá než ho definovat 
nebo pojmenovat. Provedeme tento křest velmi jednoduše, 
užijeme běžně vžitého názvu nadrovina. Nadrovina v pro-
storu E4 je tedy množina (souhrn) všech takových bodů, 
které jsou od daných dvou vzájemně různých bodů stejně 
vzdáleny. A hned můžeme přistoupit k analytickému vy-
jádření nadroviny (srovnej s větami 2,3 a 3,3). 

Věta 4,2. V kartézských souřadnicích má nadrovina 
v prostoru Ex rovnici lineární. 

Důkaz. Jsou-li Afa; a2~, a3; a4) a B(b1; b2, ¿>3; é4) dva 
různé body, pak nadrovinu vyplní takové body X(xt; x2; 
x3; x4), pro které je AX — BX, tj. 

V(*1 - fli)2 + ( * 2 - + (*•• - as)2 + ^ =-

= Wi - *i)2 -i- (*2 - + (x„ - b,f +(x4-bj. 
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Po umocnění této rovnice dvěma a po jednoduché početní 
úpravě vychází odtud lineární rovnice 

Pi*i + P2X2 + p3*3 + P^i + Pr, = o, (4,3) 
kde jsme pro stručnost položili 

Pi = Q (¿1 — «i)> P2 = Q ih - a2), p3 =-• Q (b3 — a3), 
PÍ = 0 (¿4 - (4,4) 

/>, - | (a,ž —V + a,? b2*+ a3
2 —V + ^ •• V ) i. 

přitom o + 0 je libovolný koeficient. Všimněte si, že čísla 
Pi> P23 Pw Pí nejsou všechna současně rovna nule. Všechny 
body X zde vyšetřované nadroviny mají tedy tu vlastnost, 
že jejich souřadnice vyhovují rovnici (4,3), která je ovšem 
v proměnných x^ x^, x3, x, lineární. Jiné body než body 
této nadroviny uvedené rovnici nevyhovují, neboť z rov-
nice (4,3) plyne při označení (4,4) zpět podmínka AX — 
= BX, jak se každý snadno přesvědčí. Je tedy rovnice naší 
nadroviny vskutku lineární. Dále je k důkazu věty 4,2 ještě 
nutno dodat, že obráceně každá lineární rovnice tvaru (4,3) 
je rovnicí některé nadroviny. Důkaz je i zde myšlenkově 
stejný jako byl důkaz věty 2,3 nebo věty 3,3, nebudu jej už 
opakovat. Čtenář si jen znovu promyslí diskusi rovnic (2,6) 
až (2,8) z druhé kapitoly a přepíše si ji do poměrů ve čtyř-
rozměrném prostoru, tj. do čtyř proměnných x„ x2, x3, xA, 
při čemž rovnice (2,4) a (2,5) nahradí rovnicemi (4,3) a 
(4,4). Tím je věta 4,2 dokázána. 

Zkoumejme další geometrický utvař v prostoru E4, 
který je obdobou kružnice v rovině a plochy kulové v pro-
storu. Budeme mu říkat nadkoule, ačkoli by přesnější název 
byl kulová nadplocha. Naše stručné vyjádření, jež je ob-
vyklé, nevede však k nedorozumění. Nadkoule je prostě 
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množina (souhrn) všech takových bodů v E4, jež jsou od da-
ného bodu, tzv. středu nadkoule, stejné vzdáleny; vzdálenost 
každého bodu nadkoule od jejího středu nazývá se poloměr 
nadkoule. Čtenář si jistě všimne, že o nadkouli a jejím středu 
i poloměru můžeme v prostoru E4 mluvit proto, že v něifr 
dovedeme měřit vzdálenosti a že k tomu vlastně nic jiného 
nepotřebujeme. V další větě (podobně jako ve větách 2,4 
a 3,4) znamenají písmena x„ x2, x3, x4 kartézské souřadnice 
libovolného bodu X dané nadkoule. 

.Věta 4,3. Nadkoule o středu Sfo; s2; s3", s4) a poloměru 
r > 0 má v kartézských souřadnicích v prostoru E4 rovnici 

(*1 - h)2 + (*2 - *2)2 + (*3 — %)2 + (*. - h)2 

= r2. (4,5) 
Důkaz. Podle toho, co bylo řečeno, je nadkoule tvořena 

body X, pro které je SX = r, a jen těmito body. Podle 
vzorce (4,1) to vede k rovnici 

V(*i - -Si)2 + (*2 — s2)2 + (*s - sa)2 + (*4 - i4)2 = r, 
která vzhledem kS podmínce r > 0 je ekvivalentní s rovnicí 
(4,5). 

Rovnici (4,5) lze přepsat na tvar 

*J2+ X,2 + X.,24- X4
2 -J- Mx 1 H- Nx„ 4- Px3 H Qx4 4 i? = 

= 0, (4,6) 
kde je 
M • - 2s„ N = - 2S2, P - - 2s3, Q - — 2st, 

R = í2
2+ j3

2+ í4
2 - r2. (4,7) 

Je-li rovnice nadkoule dána ve tvaru (4,6), poznáme její 
střed a poloměr tím, že ji zpět převedeme na tvar (4,5), 
jak už jsme to poznali ve dvou a třech proměnných u rovnic 
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(2,9) a (2,10) a u rovnic (3,5) a (3,6). Přímo ze vzorců (4,7) 
také snadno určíme střed a poloměr nadkoule; je 

M _ _N_ P_ Q 
— • 2 ' — 2 ' 53 - * 2 ' ~ 2 ' 

r = y yAÍ2 + JV2 + P2 + Q2 ~ 4R. 

Za předpokladu M2 + N2 + P2 + Q2 — 4/?>0 je r > 0 a 
rovnice (4,7) je pak rovnicí nadkoule. Příklady jsou ve cvič. 
4,6-, 4,74.12; 4,13; 4,14. 

Když jsme už poznali nejjednodušší nadplochy v prostoru 
E4, totiž nadrovinu a nadkouli, postoupíme k dalším po-
jmům, ale zůstaneme pro jednoduchost jen u útvarů line-
árních, tedy u útvarů vytvořených nadrovinami. Za tím 
účelem se vyplatí říci si ještě něco o nadrovině. Z věty 4,2 
víme, že nadrovina má rovnici lineární (proměnné — 
xi> xi> x3> se v ni vyskytují jen v první mocnině). Rovnice 

*4 = 0 (4,8) 
je také taková lineární rovnice, představuje tudíž nějakou 
nadrovinu. Z rovnice (4,3) ji dostaneme, klademe-li tam 
Pi — P2 — Ps = Ph = 0, px = 1. Každý bod ležící v nad-
rovině (4,8) je charakterizován tím, že jeho čtvrtá souřad-
nice je rovna nule; jsou-li V ^ ; j2;jy3; 0) a Z(z1; z.ž; z3; 0) 
dva takové body, je jejich vzdálenost v prostoru E , určena 
podle vzorce (4,1) výrazem 

y z - [ ' ( * , ~yj2'.'(z2 yj*~~(za yay. 

To je ovšem až na označení bodů a jejich souřadnic přímo 
vzorec (3,1) ze začátku kapitoly 3. To znamená, že vzdále-
nost dvou bodů Y, Z nadroviny (4,8) měříme zde stejně 
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jako v trojrozměrném euklidovském prostoru, tudíž že tato 
nadrovina je sama trojrozměrným euklidovským prostorem. 

Toto tvrzení však platí pro každou nadrovinu ležící 
v prostoru E4, tedy nikoli jen pro nadrovinu danou rovnicí 
(4,8). Soustavu souřadnic můžeme totiž vždycky zvolit 
v prostoru E4 tak, aby daná, pevně zvolená nadrovina měla 
rovnici (4,8), tj. aby byla souřadnou nadrovinou. Nebudeme 
to zde podrobně dokazovat, rád bych jen upozornil, že to 
všechno není žádné překvapení; v prostoru trojrozměr-
ném jsou poměry podobné. Tam je sice ze školy i z názoru 
každému zřejmé, že rovina, ležící v trojrozměrném eukli-
dovském prostoru, je sama dvojrozměrným prostorem 
euklidovským, ale je dobře si uvědomit, že i tam každou 
rovinu mohu zvolit za rovinu souřadnou. 

Ostatně skutečnost, že nadrovina v prostoru E4 je sama 
prostorem trojrozměrným, plyne už z určení bodu v takové 
nadrovině. Je-li X(x1; x2~, x3~, x}) bod takové nadroviny, 
vyhovují jeho souřadnice rovnici (4,3) a nemůžeme je tedy 
volit zcela libovolně. Můžeme volit právě jen tři z nich, 
čtvrtou už musíme vypočítat z rovnice (4,3). Je tedy bod 
v nadrovině určen třemi souřadnicemi, proto je každá nad-
rovina v prostoru E4 sama prostorem trojrozměrným. Do-
kázat však obecně, že je to euklidovský trojrozměrný pros-
tor, dalo by už víc práce; spokojíme se zde tedy jen s ukáz-
kou, kterou jsme si předvedli pro nadrovinu o rovnici 
(4, 8). 

Jsou-li nyní dány dvě nadroviny rovnicemi (a,-; b, jsou 
konstanty, x, jsou proměnné) 

alXl + a2X2 + ^3*3 + aiXi + ab = 0, 
blx1 + ¿2x2 + b3x 3 + 64x, + ¿>5 = 0, (4,9) 

můžeme v běžných případech dvě z proměnných souřadnic 
(např. Xj, x2) volit libovolně a zbývající dvě (zde tedy x3, x4) 
vypočítat pak z těchto dvou rovnic. Tak dostaneme sou-
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radnice všech bodů X{xx: x2 : x3 : je.,), jež leží v obou zvole-
ných nadrovinách současně. Kolik je takových bodů? Je 
jich nekonečně mnoho, protože dvě souřadnice každého 
z těchto bodů můžeme přitom volit libovolně, tedy neko-
nečně mnoha způsoby. Protože dvě souřadnice jsou voli-
telné, vytvoří tyto body dvojrozměrný prostor. To nám už 
připomíná úvahy z kapitoly 2 a máme tedy podezření, 
není-li tento dvojrozměrný prostor zase euklidovský, není-li 
to prostě rovina. Nasvědčuje tomu i to, že jde o útvary 
lineární, dané lineárními rovnicemi. A skutečně je tomu 
tak; můžeme si to opět pohodlně ověřit na zvláštním pří-
padě, když za rovnice (4,9) zvolíme rovnice 

xa = 0, x4 = 0. (4,10) 

Body, ležící v obou těchto nadrovinách současně, mají první 
dvě souřadnice libovolné a druhé dvě jsou nuly; pro vzdá-
lenost takových dvou bodů Y(yx;y2; 0; 0) a Z(z1; z.,-,0; 0) 
dává vzorec (4,1) výsledek 

y z = r ^ - ^ + fe-^)2. 
To je ovšem vzorec (2,1) a vidíme tedy, že společné body 
nadrovin (4,10) vytvoří dvojrozměrný euklidovský prostor, 
tedy rovinu. 

V celé této úvaze předpokládáme, že nadroviny dané 
rovnicemi (4,9) vůbec nějaký společný bod mají, tj. že 
obě rovnice (4,9) si vzájemně neodporují, a že zároveň není 
jedna z nich násobkem druhé, čili, jak se odborně říká, že 
tyto dvě rovnice jsou lineárně nezávislé. Kdyby totiž jedna 
byla násobkem druhé, dostali bychom vhodným dělením 
druhé z rovnic (4,9) první z nich a obě by tedy určovaly 
tutéž nadrovinu; v tom případě by tyto „dvě" nadroviny 
splynuly v jedinou a neprotiy by se jen v rovině. Za před-
pokladů právě vytčených můžeme však říci, že dvě nadroviny 
v prostoru E4 se protínají v rovině. Říkáme také, že průnik 
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dvou nadrovin v prostoru E4 je rovina. Ve starší literatuře 
se místo slova průnik vyskytuje ve stejném významu i slovo 
průsek. Zároveň poznáváme, že rovina v prostoru E4 je 
určena dvěma lineárními rovnicemi. Tyto rovnice musí být 
ovšem lineárně nezávislé a nesmí si vzájemně odporovat, 
jak už o tom byla řeč. Např. rovnice 

*i + x2 — 2x3 -)- x4 — 1 = 0, 
2xj + 2X2 — 4jc3 + 2*4 — 1 = 0 

si odporují, jimi určené nadroviny nemají žádný společný 
bod (jak se každý snadno přesvědčí) a neprotínají se tedy 
v rovině. 

Určení roviny v prostoru E4 je tedy obdobné určení 
přímky v trojrozměrném prostoru; pokaždé je příslušný 
geometrický útvar určen dvěma lineárními rovnicemi. 

Ptejme se dále, co je průnikem tří nadrovin v prostoru 
E4, tj. co vytvoří body společné třem nadrovinám? Analy-
ticky to znamená hledat společné řešení tří lineárních rov-
nic (ar, br, a jsou konstanty, *, jsou proměnné) ^ __ 

flj*! + a 2*2 + a3x3 + a4*4 + a5 = 0, 
¿1*1 + ¿2*2 + ¿3*3 + ¿4*4 + ¿5 = (4 ,11) 
Cj*! + C2*2 + C3*3 + C4X4 + C5 = 0, 

z nichž každá je rovnicí jedné z daných tří nadrovin. Zde 
můžeme jen jednu z proměnných *I5 *2, *3, *4 volit libo-
volně, kdežto zbývající tři už musíme vypočítat řešením 
soustavy tří rovnic (4,11). Volitelná je jedna souřadnice, 
body takto určené vytvoří tedy prostor jednorozměrný, 
přímku. Zvláštní případ soustavy (4,11) jsou rovnice 

*2 = 0, *;) - 0, *4 = 0; 
jsou-li Y(y1~, 0; 0; 0) a Z{zx \ 0; 0; 0) libovolné dva body 
společné všem těmto nadrovinám, je jejich vzdálenost 
podle vzorce (4,1) dána výrazem 
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To je vzorec (1,1) z první kapitoly, naše tři ňadro viny se 
tedy protínají v obyčejné euklidovské přímce. 

O soustavě (4,11) musíme při tom ovšem zase předpo-
kládat totéž, co jsme předpokládali v diskusi o soustavě 
rovnic (4,9). Žádné dvě z těchto rovnic (4,11) si nesmí na-
vzájem odporovat a celkem musí být tyto rovnice lineárně 
nezávislé. Ovšem lineární nezávislost tří rovnic je už pojem 
značně složitější než byl u dvou rovnic a nemáme zde místo 
na výklad tohoto pojmu. Připojme jen upozornění, že 
kdyby např. třetí z rovnic (4,11) byla součtem prvních 
dvou, pak by ovšem každé řešení prvních dvou rovnic bylo 
i řešením třetí z nich; geometricky by to znamenalo, že 
třetí nadrovina by obsahovala všechny body společné 
prvním dvěma nadrovinám, tedy všechny body roviny 
jimi určené. V takovém případě by tyto tři nadroviny měly 
společnou celou rovinu a neprotínaly by se tedy jenom 
v přímce. Požadavek lineární nezávislosti rovnic (4,11) 
geometricky prostě znamená požadavek, aby žádná z pří-
slušných nadrovin neprocházela průnikem zbývajících nad-
rovin takové soustavy. A s tímto vysvědením pojmu line-
ární nezávislosti se zde spokojíme. 

Ze všech právě uvedených předpokladů můžeme tedy 
stručně říci, že tři nadroviny v prostoru E4 se protínají 
v přímce. Zároveň vidíme, že přímka v prostoru En je určena 
třemi lineárními rovnicemi. 

Dosavadní výsledky můžeme pro přehlednost vyjádřit 
jedinou větou. Užijeme přitom stručného označení Ê  
pro p-rozměrný euklidovský prostor, tedy E, pro přímku, 
E2 pro rovinu a E3 pro trojrozměrný prostor. Přitom před-
pokládáme, že soustava lineárních rovnic, o které hovoří-
me, je tvořena rovnicemi lineárně nezávislými a navzájem 
si neodporujícími, jak už bylo několikráte zdůrazněno. Za 
těchto předpokladů lze naše vyšetřování shrnout takto: 
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Věta 4,4. V kartézských souřadnicích je prostor Ep v pros-
toru E4 (/>< 4) určen q lineárně nezávislými lineárními 
rovnicemi, při čemž je q — 4 — p. 

Věta 4,2 je zvláštním případem této věty 4,4. Ve větě 4,4 
je však zahrnut i případ čtyř lineárních rovnic, přijmeme-li 
označení E0 pro bod jakožto prostor, jehož počet rozměrů 
je nula. Skutečně soustava čtyř lineárních rovnic o čtyřech 
neznámých má za našich předpokladů jediné řešení, je 
tedy jediný společný bod čtyř nadrovin v prostoru E4. 
Celkem tedy můžeme ve větě 4,4 klást p = 0,1, 2,3. 

Ukažme si na příkladech některé důsledky věty 4,4. 
Hledejme společné body dvou rovin v prostoru E4. 

Podle věty 4,4 je zde každá rovina dána dvěma rovnicemi. 
Nechť první rovina je dána např. rovnicemi 

Xl ~t~ x2 "1" X3 Xi — 2 = 0, 
+ *2 — *3 — *4 = (4,12) 

a druhá rovina rovnicemi 
2*! — x2 + x3 — xA — 5 = 0, 

- x2 + x4 = 0. (4,13) 
Všechny společné body těchto rovin mají tedy tu vlastnost, 
že jejich souřadnice vyhovují jak rovnicím (4,12) tak rovni-
cím (4,13). To jsou celkem čtyři lineární rovnice o čtyřech 
neznámých x1} x2, x3, x4 a stojíme před úkolem řešit tuto 
soustavu rovnic. Řešení je zde jediné, jak se každý snadno 
přesvědčí tím, že tuto soustavu skutečně rozřeší. Snadno 
dostaneme výsledek 

Xj = 1, x2 = 0, x3 = 2, x4 = - 1. (4,14) 

Je tedy jediný bod X(1; 0; 2; — 1) společný oběma daným 
rovinám. Není to nic divného, i podle věty 4,4 naše čtyři 
rovnice (4,12) a (4,13) určují v prostoru E4 prostor E<„ 
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tedy jediný bod. Celý tento příklad nám tedy ukazuje případ, 
kdy dvě roviny ve čtyřrozměrném prostoru se protínají v jed-
nom bodě. 

Sledujeme dále otázku průsečíku přímky s rovinou 
v prostoru E4. Rovina nechť je dána zase rovnicemi (4,12). 
Přímka je tu podle věty 4,4 dána třemi lineárními rovnice-
mi; nechť to jsou rovnice (4,13), k nimž jako třetí připojíme 
rovnici 

2xj + *2 - *3 + 3*4 - 7 = 0. (4,15) 

Souřadnice průsečíku této přímky s danou rovinou vyho-
vují tedy všem pěti rovnicím (4,12), (4,13) a (4,15). Ale 
takový bod neexistuje. Jediné řešení soustavy rovnic (4,12) 
a (4,13) dávají hodnoty (4,14), ty však nevyhovují rovnici 
(4,15), jak se pouhým dosazením každý přesvědčí. Máme 
tedy případ, kdy přímka a rovina v prostoru čtyřrozměrném 
se neprotínaji, jsou mimoběžné. 

Podobných důsledků věty 4,4 lze ukázat celou řadu. 
Některé máme ve cvičeních na konci kapitoly. 

Doplňme nyní větu 4,1 v jednom směru. Když už známe 
analytické vyjádření přímky v prostoru E, pomocí tří 
lineárních rovnic, snadno dokážeme, že střed úsečky AB 
leží na přímce určené těmito body A, B. Úvaha je zde 
stejná, jako byla v kapitole 3 při odvození rovnice (3,10) 
z rovnice (3, 9). Budiž 

01*1 + 0 2 * 2 + ? 3 * 3 + ? 4 * 4 + 0 5 = 0 (4,16) 
{qi jsou konstanty, x, proměnné) rovnice nadroviny obsa-
hující body A(a1", a2", a3; a4) a B(bx \ b2; ba; b4). Souřadnice 
těchto bodů pak rovnici (4,16) vyhovují, platí tedy 

qxax + q2a2 + q3a3 + q4a4 + qs = 0, 
+ qA + l A + 9A + qh = o. 

Sečtením těchto rovnic a dělením dvěma dostáváme 
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al -r b, a, + b2 a3 + b3 
íi 2 r q'2 —~2 ^ 93 2 

• * 2
 b i í , - 0. (4,17) 

To znamená, že souřadnice (4,2) středu 5 úsečky /1B vy-
hovují rovnici (4,16), čili že střed úsečky AB leží v každé 
nadrovině procházející body A, B. Protože každá přímka 
je podle věty 4,4 určena třemi lineárními rovnicemi, je 
průnikem tří nadrovin a pro každou z nich platí rovnice 
(4,17). leží tudíž střed úsečky AB v každé z těchto tří 
nadrovin určujících přímku AB a tedy také na této přímce 
samé. I v prostoru čtyřrozměrném má tudíž střed úsečky 
všechny ty vlastnosti, které známe z geometrie v prostoru 
trojrozměrném. 

Zakončeme tuto kapitolu ještě zkoumáním určení nad-
koule v prostoru E4. Víme, že kružnice je v rovině určena 
třemi body, jež neleží v přímce. Přesně řečeno je to tak, že 
takovými třemi body prochází právě jedna kružnice. V troj-
rozměrném prostoru je podobně plocha kulová určena 
čtyřmi body, jež neleží v téže rovině; příklad toho byl 
uveden ve cvičení 3,8. Podobně v prostoru E4 je nadkoule 
určena pěti takovými body, které neleží v téže nadrovině. 
Uvažme, že v rovnici nadkoule tvaru (4,6) je celkem pět 
volitelných koeficientů M, N, P, Q, R; leží-li daný bod 
A{aí; a2; a3; a4) na této nadkouli, vyhovují jeho souřadnice 
její rovnici, což je jedna podmínka pro určení koeficientů 
M, N, P, Q, R, totiž 

Ma, + Na., + Pa.t 4 Qat -f R -
- - (a,« + a2 + a3

2 '+ a4
2). 

To je lineární rovnice pro koeficienty Aí, N, P, Q, R; 
abychom je určili jednoznačně, potřebujeme pět takových 
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lineárních rovnic, tedy pět bodů, jimiž má nadkoule pro-
cházet (viz cvičení 4,12). 

Pohovořme ještě o tom, kde leží střed 5 takové nadkoule 
určené pěti takovými body A, B, C, D, E, které neleží 
v téže nadrovině. Začněme se dvěma body A, B. Z výkladu, 
který předcházel větě 4,2, víme, že středy všech nadkoulí 
procházejících dvěma body A, B vyplní nadrovinu o rovnici 
(4,3), která je osou souměrnosti úsečky AB. Přidáme-li 
třetí bod C, pak pro středy 5 všech nadkoulí, jež prochá-
zejí body A, B, C, bude platit nejen AS = BS, ale také 
AS = CS a v důsledku toho už i BS = CS. Tyto středy 
leží tedy jak v nadrovině, která je osou souměrnosti úsečky 
AB, tak také v nadrovině, která je osou souměrnosti úsečky 
AC. Průnik takových dvou nadrovin je ovšem rovina, neboť 
je to útvar určený dvěma lineárními rovnicemi (viz větu 
4,4). Poznáváme tedy, že středy všech nadkoulí procházejí-
cích třemi body A, B, C vyplní v prostoru E, rovinu. Podobně 
přidáním dalšího požadavku, aby naše nadkoule procházela 
ještě čtvrtým bodem D, přidáváme ještě další ňadro vinu, 
např. osu souměrnosti úsečky AD, v níž hledaný střed leží. 
Můžeme v našem případě tedy říci, že středy všech nadkoulí 
procházejících čtyřmi body A, B, C, D vyplní v prostoru 
E4 přímku. Přidáním dalšího požadavku, aby na naší nad-
koulí ležel i pátý bod E, docházíme k rovnici další nadro-
viny a tedy už jen k jedinému středu nadkoule, určené 
těmito pěti body. Sestavení rovnic těchto nadrovin, jež jsou 
osami souměrnosti příslušných úseček, nemělo by už na-
šemu čtenáři působit žádné potíže, protože jsme tyto rovni-
ce odvodili ve tvaru (4,3) při označení (4,4) v důkazu věty 
4,2. Rovněž řešení příslušných soustav lineárních rovnic 
nemělo by působit zásadních potíží, i když je někdy dost 
pracné, (jde o soustavy rovnic o čtyřech neznámých). Pří-
slušné příklady jsou zařazeny přímo ve cvičení 4,11 a 4,12. 

Rovněž hledání průsečíků přímky s nadkoulí je zařazeno 
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rovnou do cvičení 4,13 z 4,14 (viz i návod ve výsledku cvič. 
4,13). Má-li přímka s nadkoulí jen jeden bod společný, 
říkáme, že se této nadkoule dotýká, čili že je její tečnou. 
Je to obdoba tečny kružnice nebo plochy kulové. 

Závěrem této kapitoly si znovu připomeňme,-že jsme v ní 
téma čtyřrozměrného prostoru ani zdaleka úplně nevyčer-
pali. Šlo jen o ukázky, jak lze geometrii v takovém prostoru 
vytvářet. Mnoha geometrických pojmů jsme si však přitom 
vůbec nevšimli. Nemluvili jsme o úhlech a jejich měření, 
a tedy ani o kolmosti, rovnoběžnosti apod. Neprobírali jsme 
určení vzdálenosti bodu od nadroviny, roviny nebo přím-
ky, ani např. o vzdálenosti dvou rovnoběžných nadrovin 
atd. Nehovořili jsme vůbec o transformaci souřadnic. To 
všechno musí zájemce hledat v podrobnější literatuře, která 
je uvedena na konci této knížky. 

V souvislosti s tím bude snad některého čtenáře mrzet, 
že jsme zde nerýsovali žádné obrázky z prostoru čtyřroz-
měrného. (Malá ukázka je jen v kapitole 6, obr. 8.) Neměli 
jsme totiž k dispozici ani nejjednodušši kolmé promítání, 
protože jsme o kolmosti v prostoru E4 nemluvili. Nutno 
však upozornit, že obrázky se rýsují na papír, tedy na dvoj-
rozměrnou rovinu. Tak to děláme i se zobrazováním troj-
rozměrného prostoru. Ale studentům, kteří nejsou zvyklí 
na deskriptivní geometrii nebo nemají dostatek prostorové 
představivosti, se stává, že v takovém obrázku nic prostoro-
vého nevidí; vidí prostě jen změť čar na papíře. Tyto obtíže 
ovšem rostou, zvyšujeme-li počet rozměrů prostoru, který 
zobrazujeme. Záleží pak hodně na cviku a zručnosti. Je 
ovšem možné užitím promítání zobrazovat čtyřrozměrný 
prostor na dvojrozměrnou nákresnu; bylo už řečeno, že 
se tímto způsobem v deskriptivní geometrii zobrazuje už 
prostor trojrozměrný. Podobně lze čtyřrozměrný prostor 
promítnout nejdřív do prostoru trojrozměrného a výsledek 
pak dále promítnout na dvojrozměrnou nákresnu, tedy na 
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papír. To všechno patří do deskriptivní geometrie a znalost 
základních pojmů z prostoru čtyřrozměrného, které jsme 
si ani zde všechny nevyložili, se přitom předpokládá. 
V seznamu literatury vzadu je uvedena i učebnice deskrip-
tivní geometrie, v níž o promítání v prostoru čtyřrozměr-
ném je pojednáno. 

Cvičeni 
4.1. Vypočtěte vzdálenost bodu A (au a2, a3, at) od počátku v pro-

storu E4. 
4.2. Tři body A ( - 1 ; 2 ;5 ;3 ) , B ( 3 ; 2 ; - l ; 7 ) , C ( 3 ; - l ; 2 ; 3 ) 

tvoří v prostoru E4 trojúhelník. Dokažte, že je to rovnoramenný troj-
úhelník. 

4.3. Dokažte, že trojúhelník ABC v prostoru kde je A (— 1; 2; 
5; 3), B (1; 2; 2; 5), C (3; — 1; 2; 3), je pravoúhlý a rovnoramenný. 

4.4. Vypočtěte souřadnice středu 5 úsečky PQ, kde je P (— 1; 2; 5; 
3), Q (3; 2; — 1; 7) a výsledek srovnejte se zadáním předcházejících 
dvou cvičení. 

4.5. Dokažte, že body A ( - 1 ; 0; $2-, - \]]2), fl(l;0; -

$2), C (0;|/3; ^j/T; ^ ̂ 6) tvoří v prostoru E4 troj úhelník rovnostranný. 
4.6. Napište rovnici nadkoule v prostoru E4, která má 

a) střed v počátku a poloměr r = 1; 
b) střed 5 (2; 0; 0; 0) a prochází počátkem; 
c) střed S (3; — 1; 2; 2) a poloměr r = 4. 

4,7* Určete střed a poloměr nadkoule, jejíž rovnice je 
a) xf - x2

2 -- *3
2 + *4

2 + 2*! + 8*2 - 6*3 + 1 = 0 ; 
b) *j2 + *2

2 + * 3
2 + * 4

2 - 2a*! = 0, kde je a ;> 0. 
4,8. Určete průsečík dvou rovin v prostoru E4, je-li první rovina 

dána rovnicemi 
*1 + *2 + *3 — *1 — 12 = 0, 
*! + *2 — *3 + *4 — 13 = 0, 

a druhá rovina rovnicemi 
*! - x2 + *3 -f xt - 5 = 0, 
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*1 — *2 — *3 — *4 + 8 = 0. 
4.9. V prostoru E4 je dána. přímka rovnicemi 

* t + 3*2 — 6*3 — 6*4 — 7 = 0, 
2* , + * 2 - 4 * j - 2* ! - 15 = 0, 
4* ! - * 2 - 5*3 + 5*4 - 30 = 0 

a nadrovina rovnicí 
5*j + 10*2 - 20*3 - 22*,, - 38 = 0. 

Které jsou průsečíky této přímky s touto"nadrovinou ? 
4.10. V prostoru E4 je dána rovina rovnicemi 

*! + *2 + *3 - 10 = 0, 
*2 + *3 + *4 - 20 = 0 

a nadrovina rovnicí 
2*! + * j — * 3 — *4 — 30 = 0. 

Najděte souřadnice bodů přímky, v níž daná rovina protíná danou 
nadrovinu. (Návod: postupujte obdobně jako u řešení soustavy (3,8) 
v kapitole 3.) 

4.11. V prostoru E, určete bod S, který má od bodů A (3; — 2; 4; 0), 
B ( l ; 0 ; 4 ; 0 ) , C ( l ; - 2 ; 6 ; 0 ) , D( 1; - 2 ; 4; 2), J?(2; — 1; 5; 1) ve-
směs stejné vzdáleností. 

4.12. Napište rovnici nadkoule, která prochází pěti body A, B, C, 
D, E ze cvičení 4,11 a vypočtěte její poloměr r. 

4.13. Ukažte, že v prostoru E4 přímka daná rovnicemi 
*i — *2 — *3 — *4 + 2 = 0, 

*2 - * 3 = 0, 
*3 - x, = 0 

protíná nadkouli o rovnici 
X I + * 2 2 + * 3 a + * 4 2 = 4 

ve dvou bodech. Najděte je. 
4.14. Ukažte, že přímka daná rovnicemi 

* , + * 2 + * 3 + * 4 — 4 = 0, 
* ! - * , = 0, 
*3 - *4 0 

je tečnou nadkoule o rovnici 
XII "I" X22 + X3Z

 ~
 x \

 = 4" 
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5. kapitola 

V Í C E R O Z M Ě R N É P R O S T O R Y 

Úvahy o čtyřrozměrném prostoru lze bez nesnází zevše-
obecnit na prostory s větším počtem rozměrů než 4. Na-
značíme si to zde jen stručně, protože myšlenkově už to ve 
srovnání s předcházející kapitolou neznamená v podstatě 
nic nového. Řekněme si tedy hned, co rozumíme eukli-
dovským «-rozměrným prostorem E„, přitom n je jakékoli 
pevně zvolené přirozené číslo, tedy n = 1, 2, 3, 4, 5, 6, 
. . . atd. 

Množinu (souhrn) jakýchkoli prvků, jimž říkáme 
body, nazveme euklidovským «-rozměrným prosto-
rem E„, když jsou splněny tyto dva předpoklady: 

1. Je možno zavést v E„ takovou soustavu souřad-
nou, že každý bod A tohoto prostoru je jednoznačně 
určen n souřadnicemi a19 a2, ..., a„; tyto souřadnice 
jsou vzájemně na sobě nezávislé a každá probíhá 
množinu všech reálných čísel. Toto určení bodu A 
souřadnicemi au a2, . . . , a„ zapisujeme stručně sym-
bolem A (ax; a2\ ...; a„). 

2. Jsou-li A (ax; a2; ...; a„) a B(b1; b2; ...; b„) dva 
body v prostoru En, je jejich vzdálenost v dána vzor-
cem 

o = 1/(b, — a,f + {b2 - a2f + . . . + 

(5,1) 
Píšeme také v = AB. Právě popsaná soustava souřadnic 
v prostoru E„ nazývá se kartézská. 
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Bod, jehož všechny souřadnice jsou rovny nule, nazývá' 
se počátek příslušné soustavy souřadnic. 

Ze vzorce (5,1) plyne, že dva různé body se liší aspoň 
v jedné souřadnici, neboť z požadavku v = 0 plyne ihned 
¿1 = ai> b2 = a2, ..., bn = an. Ale je-li vzdálenost dvou 
bodů rovna nule, pak přirozeně říkáme, že tyto body splý-
vají, že jsou totožné; v takovém případě se nejedná o dva 
různé body. 

Všechny základní poznatky z předcházející kapitoly pře-
píšeme nyní do vícerozměrných prostorů; výklad už zde 
však je stručný, rovněž důkazy jednotlivých vět jsou přene-
chány píli čtenáře nebo jsou jen stručně naznačeny, protože 
myšlenkový postup je doslova stejný jako v prostoru E4. 

Věta 5,1. Střed S úsečky, jejíž krajní body jsou 
A(a1;a2; ...; a„), B(b1; b2; • •.; b„), má souřadnice 

_ ax + ¿i _ a2 + b2 _ a„ + b„ 
Ji — 2 ' 2 — 2 ' ' — 2 ' ' ' 

Důkaz. Pomocí vzorce (5,1) ověříme platnost vztahu 

AS = BS = Y AB. — Až čtenář na základě věty 5,'4 zjistí, 

jak vypadá analytické vyjádření přímky v prostoru E„, 
dokáže i zde, že střed úsečky AB leží na přímce určené 
body A, B; stačí k tomu opakovat postup, který vedl od 
rovnice (4,16) k rovnici (4,17) v předcházející kapitole. 

Střed 5 úsečky AB není jediným bodem v prostoru E„, 
který je stejně vzdálen od bodu A jako od bodu B. Všechny 
body X, pro které je AX = BX, vytvoří množinu bodů 
v prostoru E„, která se podobně jako ve čtyřrozměrném 
prostoru nazývá nadrovina v prostoru E„; předpokládáme 
přitom, že body A, B jsou různé. 
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Analytické vyjádření nadroviny je obdobné jako dřív, na 
místo lineární rovnice ve čtyřech proměnných nastoupí 
lineární rovnice v n proměnných. 

Věta 5,2. V kartézských souřadnicích má nadrovina v pros-
toru En rovnici lineární. 

Důkaz je stejný jako u věty 4,2. Jsou-li A(a1;a2; ...; On) 
a B(b1; b2, ...; b„) dva různé body a X(xx; x2; ...; x„) 
běžný bod zkoumané nadroviny, která je „osou souměr-
nosti" úsečky AB, vede užitím vzorce (5,1) podmínka 
AX = BX na rovnici 

+ />2*2 + • • • + PnXn + Pn -f 1 = 0, (5,3) 
kde je při Q * 0, 

Pi = Q(f>i — ai)> P2 = QÍb2 ~ <*2)> • • • j Pn = Q (b„ — a„), 

pH + 1 = ( a f - b2+ a2
2 - V + ... H- a*- bn*). (5,4) 

Dále se už jen opakuje úvaha z důkazu věty 4,2. 
Protože pojem vzdálenosti dvou bodů v prostoru E„ je 

nám už znám, můžeme hovořit i zde o nadkouli. Nadkoule 
v prostoru E„ je množina všech takových bodů tohoto prostoru, 
jež jsou od daného bodu, tzv. středu nadkoule, stejně vzdáleny, 
vzdálenost každého bodu nadkoule od jejího středu nazývá se 
poloměr nadkoule. Obdoba věty 4,3 platí ovšem i zde, 
X{x1~, x2; .. .;x„) znamená přitom zase běžný bod nad-
koule s jeho souřadnicemi: 

Věta 5,3. Nadkoule o středu S(s1; s2; ...; s„) a poloměru 
r > 0 má v kartézských souřadnicích v prostoru E„ rovnici 
(*i - *i)2 + (*2 - s2f +...+(*„- s„f = r2. (5,5) 

Z tohoto tvaru rovnice nadkoule poznáváme ihned sou-
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řadnice jejího středu a velikost poloměru. Uspořádáme-li 
tuto rovnici podle mocnin proměnných xls x2, ..., x„, 
nabude tvaru 

V + *22 + • • • + x"2+ + M2x2 + ... + M„x„ + 
+ N = 0, (5,6) 

kde jsme položili 

Mx = — 2su M2 = — 25», ..., M„ = — 2s„, 
N = S l i+ j2»+ . . . 4 s„2 - r2. (5,7) 

Z obecného tvaru rovnice nadkoule (5,6) určíme její střed 
a poloměr nejpohodlněji tím, že tento tvar převedeme ob-
vyklým způsobem zpět na tvar (5,5) nebo řešením rovnic 
(5,7), odkud plyne 

si 2 , S 2 ~ z 2 >•••»$»!= 2 ' 

r = ~ | / M 7 + M2
2+ . . . + Aí„2 - 4ÁT 

V rovnici (5,6) se tedy předpokládá, že je 
AÍ!2+ Aí2

2+ . . . + Mn* - 4iV > 0. 

Obraťme se nakonec k soustavám lineárních rovnic. 
Víme už, že každá lineární rovnice 

fli*! + 1-2*2 + • • • + a„x„ + a„ + i = 0 (5,9) 
znamená ňadro vinu; přitom alt a2, ..., a„, a„ T i jsou kon-
stanty, z nichž a19 . . . , a„ nejsou všechny rovny nule, kdež-
to x2, ..x„ jsou souřadnice běžného bodu této nad-
roviny, tedy proměnné. Chceme-li nějaký bod v takové 
nadrovině určit, volíme pouze n — 1 jeho souřadnic, kdežto 
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zbývající «-tou souřadnici už musíme vypočítat z rovnice 
(5,9). Protože bod v nadrovině je tedy určen n — 1 souřad-
nicemi, je nadrovina v prostoru E„ prostorem (n — 1) -
rozměrným. Na zvláštním případě nadroviny x„ = 0 si 
může každý podobně jako v předcházející kapitole ověřit, že 
jde opět o euklidovský prostor, že tedy nadrovina v prostoru 
E„ je sama prostorem E«-i. (Uvědomujeme si ovšem, že 
takovéto ověření nějaké vlastnosti na zvláštním případě 
není důkazem obecné věty.) 

Přidáme-li k rovnici (5,9) další takovou rovnici, dostává-
me soustavu dvou rovnic o n proměnných x>, ..., x„ 
a tato soustava znamená geometricky průnik dvou nad-
rovin. Takový průnik má pak podobně jako dřív o další 
rozměr méně, je to tedy prostor E„ 2 vnořený do původní-
ho prostoru E„. Prostě přidáváním každé další lineární 
rovnice snižuje se o jednu počet rozměrů příslušného prů-
niku nadrovin. Vyslovme hned příslušnou větu, analogic-
kou k větě 4,4; o předpokladech, za kterých platí, pohovo-
říme dodatečně. 

Věta 5,4. V kartézských souřadnicích je prostor Eř v pros-
toru E„ ( p < n ) určen q lineárně nezávislými lineárními rovni-
cemi, při čemž je q — n — p. 

Důkaz této věty zde nepodáváme, její obsah i význam 
je už čtenáři po průpravě z předcházející kapitoly srozu-
mitelný. Musíme ovšem vytknout předpoklady, za nichž 
tato věta platí. Je to stejné jako u věty 4,4. První předpo-
klad je samozřejmý, žádné dvě z těch q rovnic, o kterých 
se tu mluví, nesmí být ve vzájemném sporu, jedna nesmí 
odporovat druhé (jinak by příslušné dvě nadroviny neměly 
společný bod a nemohli bychom tedy mluvit o jejich prů-
niku — to nastává např. u dvou rovnoběžných rovin 
v prostoru E3). Druhý předpoklad je složitější, soustava 
našich q lineárních rovnic musí být tvořena rovnicemi line-
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árně nezávislými; nemáme zde možnost formulovat to 
algebraicky, řekneme si jen, že je tento předpoklad ekviva-
lentní s požadavkem, že kterákoli z příslušných nadrovin 
nesmí obsahovat celý průnik všech zbývajících nadrovin, 
jež jsou těmito rovnicemi určeny. 

Věta 5,4 má ovšem své důsledky. Tak např. v prostoru 
pětirozměrném je podle toho rovina určena třemi rovnice-
mi, neboť pro n = 5, p = 2 je q = 3. Dvě různé roviny 
mají zde tedy celkem šest rovnic a ty už v pěti proměnných 

• . . , nemusí mít společné řešení; v takovém pří-
padě tedy dvě roviny v prostoru Es se neprotinají, jsou mimo-
běžné. Příklad toho máme ve cvič. 5,11. 

Z věty 5,4 také poznáme, že např. trojrozměrný prostor 
E3 je v prostoru E„ určen soustavou n — 3 lineárních rov-
nic atd. (Viz cvič. 5,12.) Hledáme-li společné body n nad-
rovin v prostoru E„ znamená to řešit soustavu n lineárních 
rovnic o n neznámých xu x2, ..., x„. Taková soustava má 
za našich předpokladů právě jedno řešení; v prostoru E„ 
protíná se pak n nadrovin právě v jednom bodě. I toto 
tvrzení je ve větě 5,4 obsaženo, užijeme-h tak jako u věty 4,4 
označení E„ pro bod jakožto prostor bez rozměrů (příklad 
je ve cvičení 5,10). 

Cvičeni 
5.1. Vypočtěte vzdálenost bodu A (a^a^-, . . . ; an) od počátku v pro-

storu E„. 
5.2. V prostoru E„ je dán bod A {a1',a.1-, ...; a„). Určete takový 

bod B, aby počátek byl středem úsečky AB. 
5.3. Přesvědčte se počtem, že střed úsečky leží v nadrovině, která je 

její osou souměrnosti. 

5.4. Co je nadrovina a) v prostoru E2 (tj. v rovině), b) v prostoru E, ? 
5.5. Co je nadkoulí a) v prostoru E„ (tj. v rovině), b) v prostoru E3? 
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5.6. Napište rovnici nadkoule v pětirozměrném prostoru Es, která 
má a) střed v počátku a poloměr r = 1; b) střed 5 (1; — 1; 2; 4; 0) 
a poloměr r = 5. 

5.7. V šestirozměmém prostoru je dána nadkoule rovnici 

*12 + X2 *32 + *42 + *82 ~ 4xl - 2xi ~ 6x3 ~ 10*1 -
- 2*5 - 2*„ + 25 = 0. 
Určete její střed a poloměr. 

5,0. V pětirozměrném prostoru určete rovnici nadkoule, která má 
střed 5 ( — 1; 0; 5; — 3; 2) a prochází bodem ^ (2; 1; 3; 1; 4). Jak 
velký je její poloměr? 

5.9. V prostoru En určete střed a poloměr nadkoule, jejíž rovnice je 
je-,2 + * a

a + . . . + *„a — 2a*, = 0, přičemž předpokládáme <z > 0. 
5.10. V pětirozměrném prostoru určete průsečík nadrovin, jejichž 

rovnice jsou 
*! + 2*2 - * 3 + * 4 + 3* s - 2 = 0, 

3*! - * 2 + Xj - 2*4 + X, - 12 = 0, 
X1 — 3*2 — * 3 + * 4 — 4*5 + 6 = 0, 

2xl — 3*4 - 8 = 0, 
4 * , + *4 — *5 + 4 = 0. 

5.11. V pětirozměrném prostoru jsou dány dvě roviny. První rovi-
na je určena rovnicemi 

2*! — *2 + *3 — *4 + 3*5 - 6 = 0, 
* x - *3 + *5 - 1 = 0, 

*2 — *4 — 1 = 0, 
druhá rovnicemi 

*! + x2 — x3 - - *4 + 2*s - 1 = 0 , 
*! - *3 + x4 + x6 - 3 = 0, 

x, + *2 + *4 — 4 = 0. 

Dokažte, že tyto roviny se neprotínají v žádném bodě. 
5.12. Kolika lineárními rovnicemi je v prostoru E„ určena a) rovina, 

b) přímka? 
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6. kapitola 

K R Y C H L E 

V předcházejících kapitolách jsme hovořili o takových 
útvarech, které byly určeny rovnicemi nebo soustavou 
rovnic v prostoru E„. Všimněme si teď stručně také vý-
znamu nerovností a spojme tuto záležitost s představou 
vícerozměrného tělesa. Ukážeme si jen jeden příklad, totiž 
krychli. 

V jednorozměrném prostoru Ex (tedy v přímce) vyplní 
všechny body X(x), pro jejichž souřadnice platí (a>0 je 
dané číslo) 

0 á i š a, (6,1) 
úsečku o krajních bodech A(0), B(a). Je to úsečka délky a. 

Obr. 6 

V rovině E2 podobně všechny body X(xx; x2), jejichž 
souřadnice splňují nerovnosti 
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O á á a, O á x2 š a, (6,2) 
vyplní čtverec ABCD (obr. 6), jak se každý snadno pře-
svědčí. Délka strany tohoto čtverce je a. Znamení rovnosti 
v některém ze vzorců (6,2) přichází v úvahu jen u těch 
bodů našeho čtverce, které leží na jeho obvodu. Ty body, 
jejichž souřadnice nabývají dokonce výlučně jen hodnot 0 
nebo a, jsou jen vrcholy tohoto čtverce, a to: A(0;0),B(a', 
0), C(a; a), D(0; a). Tento čtverec můžeme vytvořit tak, 
že úsečku AB určenou na ose první z nerovností (6,2) 
nebo, což je v podstatě totéž, nerovností (6,1), posunujeme 
v dané rovině ve směru kolmém k této úsečce o délku a. 
Tak lze z jednorozměrné úsečky vytvořit čtverec. 

Podobně můžeme tento čtverec posunout kolmo k jeho 
rovině o délku a a vytvořit tak krychli v prostoru E3 (obr. 
7.). Zachovejme přitom v rovině tohoto čtverce souřadné 
osy tak jako na obr. 6 a třetí souřadná osa bude pak kolmá 
k této rovině a bude procházet bodem A. První dvě sou-
řadnice každého bodu naší krychle jsou opět vázány nerov-
nostmi (6,2), třetí souřadnice nemůže být větší než a, neboť 

Xj 

E 

G 

Obr. 7 
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celý čtverec jsme posunuli právě o délku a. Jsou tedy všech-
ny body X(x1;x2',x3) naší krychle charakterizovány ne-
rovnostmi 

0 š xx š a, 0 š í 2 g a, 0 á x3 á a; (6,3) 

číslo a značí opět délku hrany této krychle. 
Postupujme tak dále. Krychle v obr. 7 leží v trojrozměr-

ném prostoru E3; vnoříme-li jej do čtyřrozměrného prosto-
ru E4, můžeme v něm sestrojit čtvrtou osu souřadnou x4 
tak, aby procházela opět bodem A a aby neležela v původ-
ním E3. (Tato čtvrtá osa souřadná je k původnímu prostoru 
E3 kolmá, jak náš čtenář jistě sám tuší, i když jsme o kol-
mosti v této knížce nemluvili.) Posuneme-li naši krychli 
ve směru této čtvrté osy opět o délku a, vyplní všechny její 
body v prostoru E4 útvar, který je charakterizován jednak 
nerovnostmi (6,3) a za druhé stejnou podmínkou pro 
čtvrtou souřadnici; jde tedy o body X{xx; x2; *3; x4), 
jejichž souřadnice splňují podmínky 

0 á x, á a, 0 S x2 S a, 0 á x3 ^ a, 0 ě x4 á a. (6,4) 

Analogicky k trojrozměrnému případu říkáme, že všechny 
body X(xx; x2; x3; x4), jejichž souřadnice splňuji podmínky 
(6,4), vytvoří čtyřrozměrnou krychli o hraně délky a. 

Konstrukci této čtyřrozměrné krychle si můžeme před-
stavit také tak, že každým z osmi vrcholů obyčejné troj-
rozměrné krychle z obr. 7 vedeme přímku (kolmou k pros-
toru E3 původní krychle) a naneseme na ni od každého 
tohoto vrcholu tutéž délku a. Tak vznikne nových osm 
bodů, jež tvoří spolu s vrcholy původní trojrozměrné 
krychle skupinu všech vrcholů čtyřrozměrné krychle. 
Těchto vrcholů je tedy 16 a jsou i s hranami krychle vy-
značeny schematicky v obr. 8. Upouštíme přitom úmyslně 
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od stanovení viditelnosti jednotlivých hran této krychle, 
protože tato otázka by vyžadovala patřičný výklad z de-
skriptivní geometrie v prostoru čtyřrozměrném; proto také 
říkám, že obr. 8 představuje jen schéma hran a vrcholů 

čtyřrozměrné krychle. Vznik tohoto obrázku si můžeme 
představit tak, že nejdřív čtyřrozměrnou krychli promítne-
me do trojrozměrného prostoru E3, v němž je původní 
trojrozměrná krychle a výsledek promítneme znovu do 
roviny, v níž náš obrázek kreslíme. Je to nakonec obdoba 
obr. 7, jenže tu máme obrazy čtyř os souřadných x1} x2, x3, 
x4, vycházejících ze společného počátku A (0; 0; 0; 0). 
V obr. 8 je poměrně zřetelně „vidět" obraz původní troj-
rozměrné krychle o vrcholech A, B, C, D, E, F, G, H 
(srovnej s obr. 7) a ostatní vrcholy I, J, K, L, M, N, P, Q 
leží mimo původně daný prostor É3. Snadno sepíšeme sou-
řadnice jednotlivých vrcholů této čtyřrozměrné krychle 
do tabulky: 

M 

Obr. 8 
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A (0; 0; 0; 0) I ( 0 ; 0 ; 0 ; a ) 
B (a; 0; 0; 0) J (a;0;0;a) 
C ( a ; a ; 0 ; 0 ) K (a;a;0;a) 
D ( 0 ; a ; 0 ; 0 ) L (0;a;0;á) 
E (0; 0; a; 0) M(0;0;a;a) (6,5) 
F (a; 0; a; 0) N (a; 0; a; a) 
G(a;a;a; 0) P (a;a;a~,a) 
H (0; a; a; 0) Q ( 0 ; a ; a ; a ) 

Všechny hrany této čtyřrozměrné krychle jsou v obr. 8 za-
kresleny. Nejsou to ovšem všechny spojnice všech těchto 
šestnácti bodů mezi sebou. Ty z nich, jež v obr. 8 zakresleny 
nejsou, jsou úhlopříčky naší krychle. Úhlopříčky jsou zde 
trojího druhu: první z nich jsou úhlopříčky čtverců tvoří-
cích strany krychle (např. úhlopříčky AC = AH = AF = 
= a]/2), druhé jsou tělesové úhlopříčky trojrozměrných 
krychlí tvořících „stěny" naší čtyřrozměrné krychle (např. 
AG = a]/3) a třetí druh, který ze-školy čtenáři neznají, je 
úhlopříčka ve čtyřrozměrném prostoru, jež neleží v žádné 
z prve zmíněných trojrozměrných „stěn" této čtyřrozměrné 
krychle (např. AP = a]/4 = 2a). Výpočet délky AP pro-
vedete snadno užitím vzorce (4,1) pro souřadnice bodů 
A, P z tabulky (6,5). Tento třetí druh představuje nejdelší 
úhlopříčku čtyřrozměrné krychle, jak se může každý při 
dostatečné trpělivosti přesvědčit tím, že vypočítá vzájemné 
vzdálenosti všech dvojic bodů z tabulky (6,5). 

Na základě těchto příkladů nebude už čtenáři činit po-
tíže zobecnění pojmu krychle pro vícerozměrné útvary. 
Množina všech takových bodů X x2; ...; x„) prostoru 
E„, jejichž souřadnice splňuji nerovnosti 

0 ž x 1 š a , 0 á j ; 2 á f l , . . . 1 0 < i r , á f l ) (6,6) 

se nazývá n-rozměrná krychle o hraně délky a. 
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Je zřejmé, že pro n = 1, 2, 3 jsou to dávno nám známé 
pojmy. Jednorozměrná krychle je úsečka [srovnej nerov-
nosti (6,1) a (6,6)], dvojrozměrná krychle je čtverec 
[viz nerovnosti (6,2)] a trojrozměrná krychle je obyčejná 
krychle známá ze školy [viz nerovnosti (6,3)]. 

Stanovme počet vrcholů «-rozměrné krychle. Označme 
tento počet na chvíli znakem V„. Připomeňme si, jak tako-
vou krychli vytvoříme. Provedli jsme to už pro n = 2,3,4. 
Zkusme to nyní obecně pro libovolné «. Zřejmě stačí vzít 
(w-1) — rozměrnou krychli ležící v prostoru E„-i a každým 
jejím vrcholem, jichž je Vn-u vést kolmici k tomuto 
E„-i a nanést na ni délku hrany a. Takových kolmic je 
rovněž F„-i a na každé z nich leží jeden další vrchol naší 
«-rozměrné krychle, což je nových V„~i vrcholů. Přidá-
me-li k tomu původních Vn-i vrcholů («-1) — rozměrné 
krychle, z níž jsme vyšli, máme celkem 

V„ = 2Vn-i (6,7) 
vrcholů dané «-rozměrné krychle. Protože pro « = 1 je 
Vx = 2 (úsečka má dva krajní body), je V2 = 22, V3 = 
= 22.2 = 23, F4 = 23.2 = 24 atd., celkem V„ = 2" . Mů-
žeme tedy říci: n-rozměrná krychle má celkem 2" vrcholů. 

Souřadnice těchto vrcholů plynou z podmínek (6,6) tím 
způsobem, že jsou to krajní přípustné hodnoty pro přísluš-
né souřadnice, tedy 0 nebo a. Jinými slovy: vrcholem naší 
«-rozměrné krychle je bod, jehož souřadnice 

xv x2, . . .,x„ (6,8) 
nabývají bud hodnoty 0, nebo a. Pro čtyřrozměrnou krychli 
jsme je sestavili v tabulce (6,5). Všimněme si tu zase sou-
vislosti geometrie s aritmetikou. Aritmeticky jde při stano-
vení těchto vrcholů o to, kdy n proměnných souřadnic či 
parametrů (6,8) nabývá hodnoty 0 nebo a, a kolik je tako-
vých případů. Jde tedy o stanovení všech možných skupin 
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po « číslech (6, 8), kde každé to číslo je buď 0, nebo a. 
Připomeňme si, kde se v matematice mluví o takových 
číselných systémech, při nichž každé číslo nabývá jen dva 
možné znaky, např. znaky 0 a 1. Je to např. v tzv. dvojkové 
soustavě, na níž je založena i většina samočinných počítačů. 
Máme-li v takovém případě zpracovat úlohu, v níž se vy-
skytuje « parametrů, zajímá nás, kolik je takových možných 
skupin ve dvojkové soustavě. Ptáme se tedy, kolik je mož-
ných takových skupin tvaru (6,8), kde každé číslo je buď 
0, nebo 1. Naše úvahy o počtu vrcholů «-rozměrné krychle 
o hraně délky a = 1 nám dávají ihned výsledek, totiž 2". 

Tento výsledek můžeme ovšem odvodit i bez geometrie 
«-rozměrných prostorů, a to úplnou indukcí, ale tu jsme 
ve skutečnosti provedli i my při odvození vzorce (6,7). 
Tyto řádky slouží však především tomu, aby si čtenář 
všiml vzájemné souvislosti dvou zdánlivě velmi odlehlých 
partií matematiky, jako je «-rozměrná geometrie a počítání 
ve dvojkové soustavě. Je jedním z nejkrásnějších rysů 
matematiky, že mezi nejrůznějšími jejími disciplínami 
existují často velmi úzké vztahy. Nelze se tedy divit, že 
geometrii vícerozměrných prostorů můžeme leckdy apli-
kovat i tam, kde to předem ani netušíme. 

Zakončeme tuto kapitolu ještě výpočtem délky nejdelší 
úhlopříčky «-rozměrné krychle. Jde o vzdálenost dvou 
vrcholů této krychle. Bez újmy obecnosti můžeme předpo-
kládat, že jeden z těchto vrcholů zvolíme v počátku sou-
řadnic, je to bod A (0; 0; . . . ; 0). Druhý je ten z vrcholů 
naší krychle, který má od tohoto bodu A největší vzdálenost, 
což je zřejmě bod P (a; a; ...; a). Podle vzorce (5,1) vy-
chází pak pro nejdelší úhlopříčku «-rozměrné krychle 
o hraně délky a výsledek AP = a]/n. 

Závěrem upozorňuji, že změnou soustavy souřadnic 
v prostoru E„ mohou se změnit i podmínky (6,6), i když 
krychle se pochopitelně co do tvaru nezmění. My jsme zde 
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vyšetřovali jen zcela zvláštní polohu krychle, jejíž jeden 
vrchol byl v počátku souřadnic a jejíž hrany z něho vychá-
zející ležely v osách souřadných; i tak jsme poznali některé 
vlastnosti krychle. Ale nic nám nebrání, abychom krychli 
neumístili v prostoru ještě nějak jinak, např. tak, že posu-
neme soustavu souřadnou do jiného místa v prostoru. 
Jednoduchý případ máme ve cvičení 6,2 až 6,4. 

Cvičeni 
6.1. Kolik hran má čtyřrozměrná krychle? 
6.2. Přesvědčte se, že všechny body X(xx; x2; ...; x„) v prostoru 

En, pro jejichž souřadnice platí 

l*il á 1, |*s| s i , . . . , |*„| S 1, 

vytvoří n-rozměrnou krychli. Určete délku její hrany! 
6.3. Určete souřadnice vrcholů krychle ze cvičeni 6,2. Kolik je 

vrcholů ? 
6.4. Jak dlouhá je nejdelší úhlopříčka krychle ze cvičeni 6,2 ? 
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7. kapitola 

V Ý Z N A M V Í C E R O Z M Ě R N Ý C H 
P R O S T O R Ů 

Geometrie vícerozměrných euklidovských prostorů má 
v matematice značné uplatnění. Její souvislost s algebrou 
jsme neustále sledovali na předcházejících stránkách; 
v závěru předcházející kapitoly při odhadu počtu vrcholů 
n-rozměrné krychle jsme poznali i její bezprostřední vztah 
k aritmetice dvojkové soustavy. Kdybychom však chtěli 
přistoupit k přímé interpretaci euklidovských prostorů na 
jiných příkladech z matematiky, potřebovali bychom 
ovšem další výklady z těchto partií matematiky. Euklidov-
ské prostory nám tedy ve skutečnosti jen pomohly k zá-
kladní orientaci ve vícerozměrné geometrii, ale právě svou 
jednoduchostí nám výborně pomohly. Není jistě třeba 
zdůrazňovat, že kdybychom měření v prostoru prováděli 
užitím jiných (složitějších) vzorců, než byly vzorce (1,1), 
(2,1), (3,1), (4,1) a (5,1), byl by výklad složitější. Pro první 
orientaci našich čtenářů ve vícerozměrné geometrii slouží 
tedy Euklidova geometrie nejlépe, proto jsme ji zde zvo-
lili. Pokud však sledujeme přímé aplikace vícerozměrných 
prostorů v geometrii, nacházíme sice některé jednoduché 
modely vícerozměrných prostorů, ale ty nejsou euklidov-
ské. Ukážeme si je v této kapitole, ale čtenář nesmí být 
zklamán, když v nich nepůjde o měření ve smyslu Eukli-
dovy geometrie. I tak řada pojmů i způsob myšlení z před-
cházejících kapitol se nám zde vyplatí. V některých pří-
kladech půjde dokonce o geometrii, v níž vůbec žádné mě-
ření vzdáleností neprovádíme — o tzv. geometrii projektiv-
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ní. Ale poskytne nám to konkrétní představy nadrovín 
i jiných pojmů, s nimiž jsme se dříve setkali. 

Ruku v ruce s vytvořením pojmu vícerozměrného pro-
storu došlo v minulém století k rozšíření pojmu souřadnic. 
Souřadnice'znamenaly původně číselné údaje, které cha-
rakterizovaly polohu bodu v rovině nebo v prostoru. Ale 
nejen body, nýbrž i jiné geometrické útvary lze charakte-
rizovat číselnými údaji. Zkoumejme například množinu 
všech kružnic v rovině. Jak jednotlivé kružnice mezi sebou 
rozlišíme? Naskýtá se tu několik možností. Zvolme nej-
jednodušší z nich, založenou na tom, že každá kružnice 
v rovině je dána svým středem 5 a poloměrem r > 0. 
Polohu středu 5 vystihneme v rovině jeho souřadnicemi 
s1} s2> jak to známe z kapitoly 2. Volbou čísel s2 a r je 
tedy v rovině stanovena jediná kružnice a obráceně, každé 
kružnici v rovině je tímto způsobem přiřazena jediná 
trojice těchto čísel. Přitom různým kružnicím odpovídají 
různé trojice, čísel Í1s Í2, r, a tato čísla můžeme volit nezá-
visle na sobě. Je vidět, že tato tři čísla mají pro určení 
kružnice v rovině stejný význam, jaký mají souřadnice pro 
určení bodu, a proto jim můžeme dát název souřadnice 
kružnice. 

Tím dáváme slovu souřadnice širší význam, než jaký měl 
na mysli R. Descartes, který mluvil jen o souřadnicích 
bodu. Nikterak při tom nevadí, že jsme v našem případě 
při volbě třetí souřadnice kružnice omezeni podmínkou 
r > 0, i tak probíhá tato souřadnice nekonečně mnoho 
reálných čísel. Uvidíme za chvíli, že ani toto omezení není 
nutné, ale než k tomu přikročíme, uvědomíme si už ted, 
že všechny kružnice v rovině tvoři trojrozměrný prostor. To 
je v souhlase s tím, že každá taková kružnice má tři sou-
řadnice. Slovem prostor zde tedy nazýváme množinu všech 
kružnic v rovině a každou jednotlivou kružnici bodem toho 
prostoru. Máme tak nový konkrétní přiklad trojrozměrného 
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prostoru; protože však v něm prozatím nemluvíme o mě-
ření vzdáleností, nemůžeme říci, zdali je to prostor eukli-

Je zřejmé, že jménem prostor nebo bod toho prostoru 
označujeme zde něco docela jiného, než si nezasvěcenci 
pod těmito názvy představují. Matematikové si už dávno 
zobecnili tyto pojmy čistě pro své účely a dávají dnes jméno 
prostor nejrůznějším souborům všelijakých útvarů, jež pak 
nazývají body takového prostoru. 

Právě naznačený vztah kružnic v rovině k bodům troj-
rozměrného prostoru vede k zajímavé a důležité metodě, 
kterou lze kružnice v rovině zobrazit do bodů euklidovské-
ho trojrozměrného prostoru E3. Má-li kružnice a výše po-
psané souřadnice s2, r, můžeme sestrojit v prostoru E3 
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bod A (a^, a2; a3) tak, že = s13 a2 = s2, a3 = r. Zřejmě 
dvěma různým kružnicím a, b jsou tímto předpisem při-
řazeny dva různé body A, Bv prostoru E3. Toto zobrazení 
si snadno představíme na obr. 9a), b). Ve středu S kružnice 
a sestrojíme kolmici k rovině této kružnice a naneseme na 
ní od bodu 5 délku AS = r ; tím je poloha bodu A určena. 
Můžeme také říci, že bod A je vrcholem rotační kuželové 
plochy, která danou kružnicí a prochází, a jejíž povrchové 
přímky svírají s rovinou této kružnice úhel 45°. Význam 
tohoto zobrazení je zřejmý; různé úlohy o kružnicích v ro-
vině dají se tak řešit pomocí těchto rotačních kuželových 
ploch. Každá úloha z geometrie kružnic v rovině převádí se 
touto cestou na úlohu z geometrie bodů v trojrozměrném 
prostoru E3. Stává se, že tato prostorová úloha se snáze 
řeší než sama úloha o kružnicích v rovině. Prostorové řešení 
zobrazíme nakonec zpět do geometrie kružnic v rovině. Pro 
úplnost řešení se však musí brát zřetel i na ty body A 
v prostoru, jejichž třetí souřadnice není kladná. To se do-
ciluje tím, že zavádíme pojem orientovaných kružnic v ro-
vině. Kladně orientovanou kružnicí rozumíme kružnici 
s kladným poloměrem a záporně orientovanou kružnici se 
záporným poloměrem. Kladně orientovanou kružnici si 
často znázorňujeme tím, že ji probíháme proti pohybu 
hodinových ručiček, zápornou kružnici probíháme tak jako 
hodinové ručičky. Přidáme-li k tomu ještě všechny body 
v rovině jakožto kružnice s poloměrem rovným nule, máme 
úplné zobrazení všech bodů v prostoru E3 do orientovaných 
kružnic v rovině; třetí souřadnice r není pak omezena 
žádnou podmínkou a probíhá i zde množinu všech reálných 
čísel. 

Orientovaná kružnice se nazývá stručně cykl a právě po-
psané zobrazení cyklů roviny do bodů trojrozměrného 
prostoru se nazývá cyklografie. Vyplatí se přitom za „vzdá-
lenost" dvou takových cyklů položit délku jejich společné 
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tečny, tím rozumíme vzdálenost bodů dotyku společné 
tečny obou cyklů. Jde pak ve skutečnosti o studium jiného 
trojrozměrného prostoru než je prostor euklidovský. 
Cyklografie spadá svou povahou do deskriptivní geometrie 
a máme o ní v češtině pěknou knížku od profesora brněnské 
university dr. L. Seiferta (viz seznam literatury vzadu). 

Podobně, jakd jsme hovořili o kružnicích v rovině, mů-
žeme hovořit o plochách kulových nebo jednoduše o koulích 
v prostoru. Obdobu cyklografie máme i zde. Každá koule 
má však čtyři souřadnice. Je totiž určena svým středem 5 
a poloměrem r. Poloha středu 5 je v prostoru E3 charakte-
rizována třemi kartézskými souřadnicemi Í15 S2, S3 a poloměr 
r je čtvrtý číselný údaj charakterizující každou koulí. 
Řekneme tedy čtveřici čísel s15 s2, s3, r opět souřadnice koule 
a množina všech kouli v trojrozměrném prostoru E3 je tak 
prvním našim konkrétním příkladem čtyřrozměrného pro-
storu. Zavedeme-li i zde orientované koule tak, že kladně 
orientovaná koule má kladný poloměr a záporně oriento-
vaná záporný poloměr, a přidáme-li k tomu i obyčejné 
body jako koule s nulovým poloměrem, můžeme každou 
kouli a o souřadnicích j1} s2, s3, r zobrazit do bodu 
A (a,; a2; a3; a4) předpisem a! = sx,a2 = s2,a3 = s3,a4 = r. 
Tím dostaneme vzájemně jednoznačné zobrazení koulí 
prostoru trojrozměrného do bodů čtyřrozměrného prosto-
ru, které je obdobou cyklografie. Pojmy, které jsme ve 4. ka-
pitole zavedli, můžeme si zde podepřít konkrétní předsta-
vou. Tak všechny koule o témže poloměru, např. r — 2, 
vytvářejí nadrovinu v tomto čtyřrozměrném prostoru. 
Skutečně rovnice r = 2 je lineární a určuje tedy nadro-
vinu. Ukažme si i příklad roviny v tomto čtyřrozměrném 
prostoru všech koulí. Podle výkladů v kapitole 4 je rovina 
ve čtyřrozměrném prostoru určena dvěma lineárními 
rovnicemi, zde tedy např. rovnicemi*) 

*) Nezapomeňme, že pioměnné souřadnice teď značíme Sj, i2, s3, r. 
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J3 = O, r = 2. (7,1) 
Tato množina je tedy tvořena těmi koulemi v prostoru E3, 
jejichž středy leží v rovině x3 = 0 a jejichž poloměr je 
r = 2. Zkoumejme dále ty koule, jejichž středy leží na ose 
souřadné x3 v našem daném prostoru E3. Má-li takový 
střed 5 ležet na této souřadné ose, platí pro jeho kartézské 
souřadnice v prostoru E3 rovnice 

íi = 0, s2 = 0. ' (7,2) 
Ve čtyřrozměrném prostoru znamenají tyto dvě lineární 
rovnice opět rovinu. Celkem tedy máme v rovnicích 
(7,1) a (7,2) příklady dvou rovin ve čtyřrozměrném prosto-
ru. První z nich si představíme jako množinu všech koulí 
téhož poloměru r = 2, jejichž středy leží v nějaké rovině 
a v E3, druhou si představíme jako množinu všech koulí, 
jejichž středy leží na přímce a kolmé k rovině a v prostoru 
E3. Je zřejmě jediná koule, jež vyhovuje oběma těmto před-
stavám; její střed je v průsečíku přímky a s rovinou a a její 
poloměr má velikost 2. To souhlasí s tím, že ve čtyřrozměr-
ném prostoru dvě roviny (7,1) a (7,2) se protínají v jednom 
bodě. Zde je to bod M (0; 0; 0; 2), který je obrazem koule 
z prostoru E3, jež má střed v počátku a poloměr 2. Tak 
bychom mohli pokračovat dále, nebudeme to však roz-
vádět. Spokojíme se upozorněním, že studium geometrie 
koulí v obyčejném prostoru, založené na myšlence zobra-
zení koulí do bodů prostoru čtyřrozměrného, je základem 
tzv. kulové geometrie. 

Uvedme si ještě další příklad čtyřrozměrného prostoru. 
Mysleme si v obyčejném trojrozměrném prostoru E3 ně-
jakou přímku p a zvolme si rovinu a, která s přímkou p 
není rovnoběžná (viz obr. 10). Přímka p protíná rovinu a 
v bodě A. Vedle toho zvolme v prostoru bod S, který ne-
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leží v rovině a. Bodem 5 lze vést právě jednu rovnoběžku 
s přímkou p, označme ji p'. Přímka p' protíná rovinu a 
v bodě A'. Jsou-li rovina a i bod 5 pevně zvoleny, jsou 
tímto způsobem přímce p jednoznačně přiřazeny dva body 

A, A' v rovině a. Zavedeme-li v rovině a soustavu sou-
řadnic tak, jak jsme to učinili v kapitole 2, má každý z bodů 
A, A' dvě souřadnice. Souřadnice bodu A označme jako 
obvykle av a2, souřadnice bodu A' podobně a2'. Tím 
jsme přímce p přiřadili prostřednictvím bodů A, A' čtve-
řici čísel als a2y a / , a2. Celý postup však lze obrátit. Jsou-li 
dána čtyři čísla a15 a2, a / , a2, sestrojíme nejdřív v rovině a 
body A (aji a2) a A' ( a / ; a2'), pak sestrojíme přímku p' 
spojující body A', S a nakonec vedeme bodem A přímku p 
rovnoběžnou s přímkou p'. Tím jsme čtveřici čísel av a2, 
a / , a2 přiřadili jedinou přímku p v prostoru. Na zákla-
dě toho můžeme čísla alt a2, a / , a2 prohlásit za souřadni-
ce přímky p. Říkáme, že množina všech přímek ležících 
v obyčejném trojrozměrném prostoru je prostor čtyřroz-
měrný. Budeme jí stručně říkat přímkový prostor. 

K tomu je třeba připojit několik poznámek. 
Náš příklad s přímkovým prostorem je poněkud chou-

lostivější než byl prve příklad prostoru všech koulí. Stano-
vení našich souřadnic přímky p selže v tom případě, když 
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přímka p je s rovinou a rovnoběžná. To však není podstat-
né, protože přímek rovnoběžných s rovinou a je,„tak málo", 
že v otázce počtu rozměrů přímkového prostoru nehrají 
roli. Odstranění této vady je ostatně možné tím způsobem, 
že k rovině a přidáme tzv. body nevlastní (body v „neko-
nečnu") a že zavedeme v rovině takové souřadnice, jimiž 
lze i tyto body zvládnout. 

V přímkové geometrii (to je obor, který studuje přímkový 
prostor) se obvykle zavádějí jiné souřadnice přímky než ty, 
které jsme zde zvolili my. Naše úvahy nejsou však novinkou 
pro toho, kdo v deskriptivní geometrii už poznal základy 
perspektivy nebo středového promítání vůbec. Skutečně, 
je-li rovina a v obr. 10 průmětna a bod 5 střed promítání, 
je bod A stopníkem přímky p a bod A' jejím úběžníkem. 
Svým stopníkem a úběžníkem je přímka jednoznačně 
určena, a na tom byl založen náš příklad. 

Naznačme si ještě jednu problematiku, s níž se tu setká-
váme. Čtyřrozměrný prostor nám zprostředkuje bezděčně 
příbuznost mezi přímkovou a kulovou geometrií. Je jisté, 
že každé geometrické vlastnosti nebo konstrukci ve čtyř-
rozměrném prostoru odpovídá patřičná vlastnost v přímko-
vé geometrii a rovněž tak v kulové geometrii. Je však docela 
dobře myslitelné, že poměry v přímkové geometrii jsou ná-
zornější než v kulové, a že tedy přímkové útvary byly 
hlavně dřív lépe prostudovány než útvary kulové. Přenese-
me-li takovou známou vlastnost přímkových útvarů do 
příslušného čtyřrozměrného prostoru, můžeme je ob-
dobou cyklografie zobrazit dál na kulové útvary. Nejednou 
se stalo, že touto cestou byly skutečně objeveny nové zá-
kony v kulové geometrii. 

Uplatnění vícerozměrných prostorů je samozřejmě 
značné a není vázáno jen na euklidovské prostory, o nichž 
jsme hovořili. V některých prostorech nemá význam mě-
ření podle vzorce (5,1), který jsme uvedli zde. Dotkli jsme 
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se toho u cyklografie. Je dokonce celé odvětví geometrie, 
tzv. projektivní geometrie, kde měření nezavádíme vůbec, 
kde studujeme jen otázky protínání čar, ploch a nadploch, 
spojování bodů apod. V tom případě mluvíme o projektiv-
ních prostorech. 

Byly studovány i prostory s nekonečně mnoha rozměry 
a uplatnily se i ve fyzice. Při jejich studiu však už nevysta-
číme s algebrou a musíme vzít na pomoc matematickou 
analýzu. 

Rovněž užití geometrie čtyřrozměrného prostoru ve fy-
zice je zcela přirozené. Fyzika totiž, aby charakterizovala 
nějaký jev, udává místo jevu i čas, v němž jev nastal. Totéž 
dělá i dějepis, jenže přitom nehovoří o čtyřech rozměrech; 
učíme se například, že Karel IV. založil v Praze universitu 
roku 1348. V těchto slovech je obsaženo místní i časové 
určení události. Fyzik sleduje zase například zablesknutí 
žárovky ve své pracovně. To je fyzikální jev, jehož místo je 
dáno polohou žárovky a lze je stanovit třemi délkovými 
souřadnicemi x, y, z, třeba vzdálenostmi žárovky od dvou 
sousedních stěn a od podlahy místnosti. Jenže celá míst-
nost letí vesmírem, soustava těchto souřadnic x, y, z nemá 
v prostoru pevnou polohu, fyzik se nemá o co opřít. V jiné 
chvíli přijde jiné zablesknutí téže žárovky s týmiž souřad-
nicemi x, y, z, a přece to už bude jiný fyzikální jev než 
první zablesknutí. Aby fyzik oba tyto jevy rozlišil, připojí 
časový údaj. Jev, který ho zajímá, nastane v čase t a on tedy 
pro jeho charakterizaci užil čtyř čísel x,y, z, t. Nikterak mu 
nevadí, že první tři z těchto čísel se měří délkovou mírou 
a čtvrté na hodinkách. Ale fyzika na rozdíl od dějepisu 
užívá velmi hojně matematických metod. V relativistické 
fyzice se pak uvedená čtyři čísla x, y, z, t vyskytují v roli 
proměnných veličin; je proto pochopitelné, že fyzikové na 
ně aplikovali myšlenku proměnných souřadnic a využitko-
vali znalosti matematiků o prostoru čtyřrozměrném. 
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Zakončeme výrokem italského matematika T. Leví-
Civity (1873—1941), který výborně vystihuje význam více-
rozměrných prostorů: „Je dobře známo, že každé větě 
z algebry nebo z analýzy dá se přiřadit geometrická věta 
v podstatě stejného významu, jestliže příslušné proměnné 
interpretujeme jako souřadnice bodu v jakémsi — obyčejně 
vícerozměrném — prostoru. Přitom nejen že tyto geo-
metrické věty se dají často jednodušeji formulovat než 
odpovídající jim tvrzení analytická, ale jsou také jasnější 
a názornější; nezřídka se dokonce stává, že leckterý pro-
blém se dá snáze řešit v geometrickém podání, takže tento 
způsob geometrické řeči není jen výraznou metodou vý-
kladu, ale představuje i důležitý prostředek bádání." 
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V Ý S L E D K Y C V I Č E N Í 

1,2. AB = 3, AC = 9, AD = 7, BC = 12, BD = 10, CD = 2 
11 

(, 3. Ve vzorci (1,1) klademe 6 = 0. J.f a) - l ; b ) 0 ; c ) y . /,J. = 1, 
5 3 

x, =• 4, s = — , r = — ; užije se rozboru rovnice (1,5). 
2 2 

2,2. a) 3|/2Í ]/3Ťi 5; b) 3^5, 13, 10. 2,3. OP = 2, OQ = 2] /^ 
PQ = 4; protože je O/52 - OQ2 = PQ2, platí zde Pythagorova věta 
a tento trojúhelník je tedy pravoúhlý. 2,4. Užijte věty 2,1 pro vzdále-
ností AS a BS. 2,5. Přímka je spojnicí a) bodů P(p; 0) a Q(0; q)-, 
b) počátku a bodu (1; fc). 2,6. a) x^-!-*,» = 16; b) *L

2 + * 2
2 - 10*2 = 

= 0; c) x , 2 - *22 - 6*1 - 4*2 = 0; d) V + x2
2- 2xx + 8x2 - 3 = 0. 

2,7. a) 5(2; 3), r = 5; b) S ( - 5 ; 0), r = 7; c) 5(0; a), r = a. Postupu-
2 

je se podle vzoru rozboru rovnice (2,10). 2,8. a) ( — 2; — ); b) průsečík 

neexistuje, přímky jsou rovnoběžné; c) body (4u; 2 —Tu), kde u je 
libovolně volitelné číslo, obě přímky spolu splývají. 2,9. a) Body (3; 4) 

24 7 
a ( ;— );b) body (1 ;0) a( —6; —7). 2,10. Vychází jediný průsečík 

5 5 
(9; 3), tudíž přímka je tečnou kružnice. 

3,1. AB = ]/«] AC = ]/2, BC = 3]/5~; protože je zde AB2 + 
+ AC2 =. BC2, platí zde věta Pythagorova a tento trojúhelník je tedy 
pravoúhlý. 3,2. AC = BC = j/íTT AB = 2]/TT. 3,}. Užijte věty 3,1 
pro vzdálenosti AS a BS. 3,4. Stačí dosadit souřadnice určené rovni-
cemi (3,2) do rovnice (3,3), jejíž koeficienty mají tvar (3,4) 3,5. — 
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3 5 
5 ( ; 0; ); AS = BS = CS = DS = 

4 4 
]/l46 
i . 3,6. a) 

2 
*!»+ * 2

2 r = 1; b) *!»+ *2
2 + * 3

2 - 4*! = 0; c) V + V + *3 2 -
- 8*! - 4*2 - 4*3 - 15 = 0. 3,7. a) 5(1; 3; 5), r = 5; b) 5(0; 
0 ; a ) , r = a. 3,8. 8 ( V + *s

2 + *3
2) + 12*^ 20*, - 567 = 0. 3,9. 

Soustava nemá řešeni, jde o roviny rovnoběžné. 3,10. 

*3 = u, kde u je libovolně volitelné čislo. 3,12. Roviny nemají společný 
bod. 3,13. Vychází jediný průsečík (3;4;0) , tudíž přímka je tečnou 
plochy kulové. 

4,1. v = y^M- a2 + «3»+ a4
2. 4,2. AB = 2]jyf, AC = BC = 

= j /34 4,3. AB = BC = yíŤ] ^ C = y34 ; jest AB2 -f BC2 = AC2, 
to znamená, že zde platí věta Pythagorova a trojúhelník je tudíž pravo-
úhlý. 4,4. 5 ( 1 ; 2; 2; 5). 4.5. AB = AC = BC = 2]/2. 4,6. a) -
X l

2 + * 2 2 + * 3 2 + *.,2 = 1 ; b) * ! 2 + * 2 a + * , 2 + * 4
2 - 4 * , = 0 ; c) -

* ! 2 + *22-!- * 3 ' + * 4
a - 6 * ! - 2*2 - 4*3 - 4xt : 2 = 0 . 4 ,7 . a) -

5 (—1; —4; 3; 0), r = 5; b) 5(<z;0;0;0), r = a. 4,8. Jediný bod 
11 7 

( Y ' 7 ' Jediný průsečík (10; 5; 2; 1). 4,/0. Jsou to body 

o souřadnicích * t = — 10 + u, x2 = 35 — u, *3 = — 15, x4 = u, kde 
u je libovolné číslo; danou soustavu řešte tím způsobem, že položíte 
*4 = m a zbývající tři souřadnice xlt *2, *3 vypočtete jako řešeni sousta-
vy daných tří rovnic. 4,11. 5 ( 1 ; - 2 ; 4; 0). 4,12. *,2 + *a

2 + *32 + 
+ *4

2— 2*j + 4*2 - 8*3 + 17 = 0; r = 2. 4,13. Jde o řešeni sousta-
vy čtyř rovnic v úloze daných, z nichž tři jsou lineární a jedna kvadra-
tická; vycházejí dva průsečíky ( - 2 ; 0; 0; 0) a (1; 1; 1; 1). 4,14. Vy-
chází jediný průsečík přímky s nadkoulí, touž bod (1; 1; 1; 1); přímka 
je tudíž tečnou nadkoule. 

5,1. v = l/<i1
2+ ... + an\ 5,2. B ( - a i ; - a 2 ; . . . ; -a„) . 

5,3. Souřadnice dané rovnicemi (5,2) stačí dosadit do rovnice (5,3), 
jejíž koeficienty mají tvar (5,4). 5,4. a) Přímka; b) rovina. 5,5. a) Kruž-
nice; b) plocha kulová. 5,6. a) * , 2 + * 2

a + * 3
2 + * 4

2 + *6
2 = 1; b) 
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I I ! T v - jí3
!T *«2 + V - 2*1 - 2*a - 4* s - 8*4 - 3 = 0. 5,;. 

5 (2; 1; - 3 ; 5; -1; 1), r = 4. J,fl. *2
2 + xa*j * 4

2 + x,a + 

+ 2*! - 1 0 * 3 + 6*4 - 4*5 + 5 = 0, r = AS = | /34. 5,9. -
S ( a ; 0 j 0 ; . . . j 0 ) , r = <z. 5,/0. Jediný bod (1; 0; 3 ; - 2 ; 2). 5 , / / . 
Soustava daných šesti rovnic nemá řešeni; vynecháme-li např. prvni 
rovnici, má zbývajících pět jediné řešení *j = * 2 = *3 = * s = 1, 
*4 = 2, ale toto řešení nevyhovuje rovnici první. 5,12. a) n — 2; 
b) n - 1. 

6,1. 32 — viz obr. 8. 6,2. Nerovnost |*,| ^ 1 je shodná s nerovností 
— 1 g *,• S + 1. Délka tohoto intervalu je 2, tedy hrana této krychle 
má délku 2. 6,3. Je to 2" bodů, jejichž souřadnice jsou vesměs rovny 
+ 1 nebo - 1 . 6,4. 2]jň. 
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