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Tuto knížku věnuji památce 

R U D O L F A Z E L I N K Y , 

želného pracovníka 
Československé matematické olympiády 

a spoluzakladatele mezinárodních 
matematických olympiád 





P Ř E D M L U V A 

Úlohy na vyšetřování geometrických míst bodů dané 
vlastnosti se zařazují do školské matematiky již dlouhou 
dobu. K jejich řešení se používá, s výjimkou nejvyšší 
třídy SVVS, téměř výhradně tzv. syntetické metody. 
V této knížce budeme naproti tomu používat při vy-
šetřování geometrických míst bodů zásadně početní me-
tody, využívající známých výsledků z analytické geo-
metrie; mluvíme o tzv. metodě souřadnic. Přitom se ome-
zíme na nejjednodušší matematické prostředky. Čtenáři 
při studiu příručky vystačí prakticky se znalostmi rovnic 
přímek a kuželoseček, jejichž osy jsou rovnoběžné s osami 
souřadnic, a s výpočtem vzdáleností bodů a přímek. 
Nikde se nepoužívá tečen kuželoseček, jejich polár a rov-
nic algebraických křivek vyšších stupňů. Pro všechny 
případy je ještě v 5. kapitole uveden, bez jakýchkoliv 
důkazů, stručný přehled používaných výsledků z ana-
lytické geometrie. 

I přes omezené matematické prostředky jsme se sna-
žili vybírat takové příklady, které nelze jednoduše řešit 
synteticky. Domníváme se, že není účelné používat me-
tody souřadnic tam, kde známe jiné jednoduché řešení. 
Metody souřadnic používáme naopak právě v těch pří-
padech, kdy neznáme jiný způsob řešení. 

Řekněme si též něco o způsobu zpracování a o studiu 
této knížky. Nejdříve však malé přirovnání. 

Pravděpodobně znáte pokus, který konají fyziologové 
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s myší v bludišti. Jde o bludiště, na jehož jednom konci 
je umístěna potrava, kterou myš ucítí hned na začátku 
své cesty a snaží se k ní co nejrychleji dostat. Samozřejmě 
při prvním pokusu není její cesta nejkratší, často si za-
jde a musí se vracet. Avšak při opakování pokusu do-
sáhne cíle již rychleji a po několika pokusech běží rov-
nou nejkratší cestou. 

V podobné situaci, jako myš před prvním pokusem, 
bývá i matematik, který má řešit nějaký problém nebo 
složitější úlohu. Jeho cesta za výsledkem bývá dost kli-
katá. Jakmile však dojde jednou k cíli, začne obvykle 
své řešení zjednodušovat a to tak dlouho, až dostane co 
nejjednodušší řešení. (Podobnou zkušenost máte asi i vy 
s řešením a vypracováváním soutěžních úloh Matema-
tické olympiády.) Ovšem nejnamáhavější a tím i nej-
poučnější je první objevná cesta. Bohužel, při zpracová-
vání učebnic nebo jiné studijní literatury se na tuto sku-
tečnost bere málokdy zřetel. Obvykle se publikují ta 
nejkratší a nejelegantnější řešení. Tím se ovšem zastře 
důvod, proč při tomkterém kroku řešení se ubíráme 
právě zvolenou cestou nebo jak se na určitý (zdánlivě 
umělý) obrat přijde. 

Autor si byl při zpracování knížky těchto obtíží vědom. 
Proto neuvádí vždy nejkratší řešení. Svá řešení se snaží 
komentovat tak, aby usnadnil čtenáři myšlenkový po-
stup, kterým lze dospět k dalšímu pokračování. Jak se 
mu to podařilo, posoudíte sami. 

Z uvedeného přirovnání plyne důležité poučení i pro 
čtenáře. Pro rozvoj matematických schopností je roz-
hodně účinnější, jestliže se každý pokusí nejdříve sám 
najít svůj vlastní postup (i se všemi oklikami a zatáč-
kami) než pasívní studium předloženého textu. Přitom 
není nikdy vyloučeno, že najde jednodušší řešení. A to 
je koneckonců také účel. 
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Řada příkladů je volena tak, že se v průběhu řešení 
rozpadnou na více případů. Této situaci jsme se mohli 
vyhnout vhodnou obměnou úlohy. Nepovažovali jsme 
to však za účelné. J e známou skutečností, že řešitelé 
matematických úloh při olympiádách velmi často zapo-
mínají na zvláštní případy nebo dokonce na podstatnou 
část řešení. Domníváme se proto, že řešení obdobných 
příkladů vám pomůže vyznat se i v „džungli" řešení 
složitějších soutěžních úloh. 

Tolik slov úvodem. A nyní vám již přejeme mnoho 
úspěchů při studiu knížky. 
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1. k a p i t o l a 

Ú V O D N Í P O Z N Á M K Y 

Každá matematická disciplína si vytváří celou řadu zá-
kladních pojmů, se kterými potom běžně pracuje a které 
dále rozvíjí. Proto úspěšné studium kterékoli matema-
tické disciplíny vyžadu-
je důkladné pochopení 
všech základních pojmů 
i souvislostí mezi nimi. 
Každá nepřesnost nebo 
nejasnost se vždy, ať dří-
ve či později, nějak vy-
mstí. Proto i my si nej-
dříve podrobně vysvětlí-
me některé více či méně 
známé věci z analytické 
geometrie. 

Předně si ujasníme co 
to znamená, když v ana-
lytické geometrii řekne-
me, že nějaký geome-
trický útvar U1) m á 
(v kartézské soustavě sou-
řadnic) to a to početní vyjádření (např. tu a tu rov-
nici či nerovnost). Jako příklad, na kterém si to uká-
žeme, uvedeme včtu: 

*) Geometrické útvary chápeme všude jako množiny bodů. 

y 

w t m d L 

r-r- V / / / / / / / / / / / / / / / / / / M X 

0 

Obr. 1 
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Kruh U se středem S = [3; 1] a poloměrem r = 3 (obr. 1) 
má (v kartézské soustavě souřadnic) početní vyjádření 

(* —3)» + (y—\ys. 9.1) ( l j 
Když si tuto větu podrobně promyslíme, zjistíme, že 

se v ní mluví vlastně o dvou množinách. J e to jednak 
kruh U, který je množinou všech bodů Z = [£> 'íL 
které mají od středu S vzdálenost nejvýše rovnou třem, 
jednak je to množina P všech bodů £ = [ f ; »?], jejichž 
souřadnice vyhovují početnímu vyjádření (1). Uvedená 
věta pak říká, že množiny U a P se sobě rovnají, tzn. 
skládají se přesně z týchž bodů. 

Připomeňme si, že bodové množ iny U a P se sobě 
rovnají (což zapisujeme U = P) právě tehdy, jsou-li 
pro každý bod Z splněny podmínky: 

[A]: Jestliže bod Z patří množině U, potom patří i mno-
žině P. Jinými slovy: Množina U je částí mno-
žiny P, což zapisujeme U CZ P-

V našem případě to znamená: Jestliže bod 
Z = [£; rf\ patří kruhu U, pak jeho souřadnice 
vyhovují nerovnosti (1). 

[B]: Jestliže bod Z Patří množiné P, potom patří i mno-
žině U. Jinými slovy: Množina P je částí mno-
žiny U, což zapisujeme P CZ L/2). 

V našem případě to znamená: Jestliže sou-
řadnice bodu Z — [ f ; v] vyhovují nerovnosti 
(1), pak bod Z patří kruhu U. 

1) Viz napr. [6] na str. 87. 
2) Připomeňme, že v matematice má slovo „část" širší význam 

než v běžné řeči. V hovorové i spisovné češtině je totiž vždy část 
„menší" než celek. Naproti tomu v matematice, mluvíme-li o části, 
nevylučujeme tím celek. Proto například každý č:verec je svou vlast-
ní částí, právě tak jako každá přímka je částí sama sebe. 
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Obě podmínky [A] i [B] můžeme vyslovit též v tzv. 
obměněném (negativním) tvaru: 

[A']: Jestliže bod Z nepatří množině P, potom nepatří 
ani množině U. 

V našem případě to znamená: Jestliže souřad-
nice bodu Z = [ í ! nevyhovují nerovnosti (1), 
pak bod Z nepatří kruhu U. 

[B']: Jestliže bod Z nepatří množině U, potom nepatří 
ani množině P. 

V našem případě to opět znamená: Jestliže 
bod Z = [£; 'í] nepatří kruhu U, pak jeho sou-
řadnice nevyhovují nerovnosti (1). 

Podmínky [A] a [A'], právě tak jako podmínky [B] 
a [B'J, říkají jinými slovy o množinách U a P přesně 
totéž. Tak např. ve všech situacích, kdy je splněna jedna 
z podmínek [A] a [A']( je splněna i druhá, a ve všech 
situacích, kdy jedna z těchto podmínek neplatí, neplatí 
ani druhá. Správnost tohoto tvrzení si můžete ověřit na 

UcP (pldti [A] i [»']) Ui P (neplatí [A] ani [A^ 

Obr . 2ab 
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množinových diagramech na obrázcích 2ab. Totéž platí 
i o podmínkách [B] a [B']. 

Vlastnosti [A] a [B], resp. [A'] a [B'] mají základní 
význam, neboť ukazují cestu, jak se dokazuje rovnost 
dvou množin U a P. J e třeba vždy ověřit jednak jednu 
z podmínek [A] a [A'], jednak jednu z podmínek [B] 
a [B'j. Tuto hlavní myšlenku vyjadřuje schéma: 

ověřit [A] či [A'], tj. U C P _ 
í 

ověřit [B] či [B'], tj. P c U 

Pro úplnost si připomeňme, že kartézskou soustavou sou-
řadnic rozumíme soustavu pravoúhlých souřadnic, při 
níž jsou za jednotky na obou osách zvoleny shodné 
úsečky. V této knížce však budeme pro stručnost místo 
slov „kartézská soustava souřadnic" užívat kratšího ná-
zvu „soustava souřadnic". 

Všimněme si nyní podrobněji s truktury řešení 
úloh na vyšetřování geometr ických m í s t bodů. 
Také zde operujeme s množinami. Jestliže při vyšetřo-
vání geometrických míst bodů dané vlastnosti používá-
me metody souřadnic (tj. analytické geometrie), pracujeme 
většinou dokonce se třemi množinami. Ukážeme si to opět 
na příkladě. 

1. Přiklad. Jsou dány dvě kolmice a, b. Bod X pro-
bíhá přímku a, bod T přímku b a to tak, že úsečka XT 
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má stálóu délku 2d. Má-
me vyšetřit geometrické 
místo M středů Z všech 
úseček XT. 

Řešeni . Za osy souřad-
nic zvolíme přímky a, b 
(obr. 3). Zvolíme si libo-
volnou úsečku XT vyho-
vující zadání příkladu; 
její střed je bod Z — [£;*?]• 
Tím dostaneme libovolný 
bod geometrického místa 
(tj. první množiny) M. Sou-
řadnice bodů X, T zvo-
líme podle obrázku 3. 

Úsečka XT má délku 
2d, tzn. je 

XT = ]/(« — O)2 + (0 — v)2 = y«2 + z/2 = 2d. (2) 

Střed Z úsečky XT má souřadnice 

f = i - ( « + 0 ) = i - a , 

1 1 ( 3 ) 

Parametry u, v vyloučíme, jestliže dosadíme za u, v ze 
vztahů (3) do poslední rovnosti (2). Po úpravě zjistíme, 
že souřadnice libovolného bodu Z = [f > v] množiny M 
vyhovují početnímu vyjádření 

í 2 + jj2 = d\ (4) 

13 



Tím jsme však dostali druhou množinu. J e to množina P, 
kterou tvoří všechny body Z = [£í »7], jejichž souřadnice 
vyhovují rovnici (4). Z dosavadních úvah zároveň vy-
plývá, že je 

M C P. (5) 

(Vztah (5) jsme totiž dokázali ověřením podmínky 
[A].) 

Abychom dokázali rovnost množin M, P, musíme 
ještě dokázat vztah 

PcZřA. (6) 

To provedeme např. ověřením podmínky [B']. Nechť 
bod Z = [£; nepatří množině M, tzn. £ je střed 
úsečky XT, která má sice krajní body na přímkách a, 
by ale nemá délku 2d. Pak 

XT = ]/u2 + ^ 2d. • (2') 

Dosadíme-li opět ze vztahů (3) za u a v do nerovnosti 
(2'), dostaneme po úpravě 

P + Tj> * d\ (4') 

Nerovnost (4') však znamená, že bod £ = [ f ; ne-
patří ani množině P. Tím je tedy dokázán vztah (6), 
který spolu se vztahem (5) ukazuje, že je 

P = M. (7) 

Z analytické geometrie však víme, že rovnice (4) je 
početním vyjádřením kružnice U se středem O v po-
čátku soustavy souřadnic (tj. v průsečíku přímek a, b) 
a s poloměrem d. Kružnice U je tedy třetí množinou; při-
tom analytická geometrie říká, že 

U = P. (8) 

14 



Z rovností (7) a (8) pak plyne, že 
U = M, 

tzn. kružnice U je vyšetřovaným geometrickým mís-
tem M. 

Výsledek. Geometrické místo M je kružnice U se 
středem v průsečíku kolmic a, b a s poloměrem d. 

Řešení příkladu 1 jsme udělali tak podrobně proto, 
abychom ukázali všechny tři množiny, které se v prů-
běhu řešení vyskytují. Přitom ovšem množina P cha-
rakterizovaná společným početním vyjádřením mno-
žin U, M sehrála při řešení pouze úlohu jakéhosi pro-
středníka „třetí osoby". Proto také při řešení dalších 
příkladů ani o množině P explicitně nemluvíme; mlu-
víme však vždy o společném početním vyjádření mno-
žin U, M, což je ovšem v podstatě totéž. 

Strukturu řešení úlohy na vyšetřování geometrických 
míst bodů metodou souřadnic můžeme vyjádřit sché-
matem : 

ověřit [A], tj. M C P 

15 



Můžeme tedy říci, že řešení se v podstatě skládá ze tří 
fází. Předně zjistíme, jakému početnímu vyjádření vy-
hovují všechny body množiny M. Tím vlastně najdeme 
množinu P a zároveň ověřením podmínky [A] doká-
žeme, že M (Z P-

Potom ověřením jedné z podmínek [B] a [B'] doká-
žeme, že je též P C M. Tato fáze řešení má, populárně 
řečeno, zajistit, že se do P nepřipletly body, které ne-
patří geometrickému místu řA, případně takovéto „při-
živující" se body včas vyloučit. 

Konečně ve třetí fázi na základě znalostí z analytické 
geometrie určíme geometrický útvar U, který se rovná 
množině P a tedy i množině M. Tato fáze je tedy vlastně 
jen dílem okamžiku. 

Připomeňme však, že metoda souřadnic je při řešeni jen 
pomocným aparátem, a proto je třeba vždy výsledek formulovat 
nezávisle na zvolené soustavě souřadnic, tj. pouze s použitím 
daných prvků. 

J e samozřejmé, že není účelné užívat při vyšetřování 
geometrických míst bodů dané vlastnosti pouze metody 
souřadnic. Např. nebudeme používat této metody, zná-
me-li jednoduchý syntetický způsob řešení. Proto si 
řekněme, kdy při řešení úloh o geometrických místech 
bodů už íváme m e t o d y souřadnic: 

1. Jestliže výsledek nedovedeme jiným způsobem od-
hadnout. 

2. Jestliže sice dovedeme odhadnout výsledek, ale 
svůj odhad nedovedeme jinak dokázat. 

Ukážeme si však později, že ani v uvedených dvou 
případech se nevyhýbáme jednoduchým syntetickým 
úsudkům, neboť ty mohou řešení značně zjednodušit. 
Metoda souřadnic je totiž sice velmi spolehlivá metoda 
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(vede k cíli i tam, kde např. syntetická metoda selhala), 
ale někdy je dost pracná. Odtud staré pořekadlo, že 
analytická geometrie nahradila duchaplnost syntetické 
geometrie trpělivostí. 

Pracnost početní metody do značné míry ovlivňuje 
mimo jiné i vhodnost či nevhodnost volby soustavy sou-
řadnic. Pro nejvýhodnější volbu soustavy souřadnic ne-
existuje bohužel univerzální návod. Ve většině případů 
je však účelné volit soustavu souřadnic podle zá-
sady: Jestliže je geometrické místo M souměrné podle 
nějaké přímky, ztotožníme tuto přímku s některou sou-
řadnicovou osou. Jestliže je geometrické místo M sou-
měrné podle nějakého středu, zvolíme jej za počátek 
soustavy souřadnic. (Této zásady jsme mlčky využili již 
při řešení příkladu 1.) 
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2. k a p i t o l a 

A P L I K A C E V Z D Á L E N O S T I 
D V O U B O D Ů 

Jak napovídá již název kapitoly, budeme se nejdříve za-
bývat geometrickými místy takových bodů, jejichž po-
lohu lze charakterizovat vzdálenostmi od předem daných 
pevných bodů. 

t f 2. Příklad. J e dán trojúhelník ABC a reálné číslo 
c > 0. Ke zvolenému bodu V sestrojíme postupně body 
X, T, Z tak) aby body Y, X byly souměrně sdružené 
podle středu A, body X, T souměrně sdružené podle 
středu B a konečně body V, Z souměrně sdružené podle 
středu C. Vyšetříme geometrické místo Ni všech bodů V, 
pro něž je VZ žs c. 

Řešení . Soustavu souřadnic zvolíme podle obrázku 4. 
Pro zjednodušení je zvolena za jednotku na osách sou-
řadnic úsečka AC. Na obrázku jsou označeny též sou-
řadnice všech potřebných bodů. 

Nyní postupně určíme souřadnice bodů X, T, Z po-
mocí souřadnic bodů A, B, C, V. 

Jestliže bod V — [£; r)\ patří množině M, pak je 
podle předpokladu VZ šs c, neboli 

f i = — f ; 
f , = í + 2 r; 
fa =— f — 2r + 2; 

Vi = —V'y 
VÍ = v + 
J?3 = —rj — 2Í. 

(1) 
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Po dosazení za f 3 a r\z z rovností (1) a po úpravě dosta-
neme nerovnost 

[ f - ( l - r ) ] « + (V (3) 

y 
Y = Í M 

* = 0 M i , 

/ \ / jr 
A II 

ii 

Obr. 4 

Souřadnice libovolného bodu V = [£; r{\ množiny M 
vyhovují tedy nerovnosti (3). T a j e však zároveň počet-
ním vyjádřením kruhu U se středem D = [1 — r; — j ] 

a s poloměrem c. Tím je tedy dokázáno, že M C. U-

Nyní se pokusíme zjistit, zda platí též vztah U C M. 
Budeme postupovat tak, že ověříme podmínku [B]. 

19 



Nechť bod V = [ f ; rj] patří kruhu U, potom jeho sou-
řadnice vyhovují nerovnosti (3). Tu však můžeme upra-
vit na tvar 

[ f — (—f — 2r + 2)]2 + [V— (— f] — 2s)Y ^ c 

resp. s použitím rovností (1) na tvar 

( f - í 3 ) 2 + ( v - y 3 ) 2 ^ c \ 
Protože obě strany této nerovnosti jsou nezáporná čísla, 
můžeme je odmocnit a tím dostaneme tvar (2). Ten 
však znamená, že V Z ^ c, čili bod V patří množině M. 
Tím je dokázáno, že U C M. 

Ze vztahů M ClU a U C M již plyne rovnost 
M = U. J e tedy geometrické místo M kruh U se stře-
dem v bodě D — [1 — r; — j ] a s poloměrem c. To 
však ještě není v pravém slova smyslu výsledek, neboť 
v odpovědi se udává poloha bodu D pomocí souřadnic. 
Snadno si však ukážeme, že bod D dostaneme tak, že 
doplníme trojúhelník ABC na rovnoběžník ABCD. 

Výsledek. Geometrické místo /M je kruh U = (D; 

y c ) . jehož střed Z) je vrcholem rovnoběžníku ABCD. 

Všimněte si, že metoda souřadnic nám dala více než 
to, co jsme žádali. Výpočty a výsledek platí i v tom pří-
padě, když body A, B, C nejsou vrcholy trojúhelníka, 
ale kdy leží v přímce a případně i všelijak splývají. Pak 
sice nelze v řešení hovořit o rovnoběžníku ABCD, ale to 
nevadí; v tom případě se užije jiné formulace. 

Z příkladu 2 můžeme vytěžit navíc tyto obecnější po-
znatky : 

20 



1. Analytická metoda může často automaticky vy-
řešit více než to, co se v dané úloze požaduje. 

2. V některých případech je výhodné zvolit v sou-
stavě souřadnic za jednotkovou úsečku jistou úsečku 
daného útvaru. 

3. Výsledek máme vždy popsat pouze pomocí daných 
prvků, tzn. tak, aby se v něm nevyskytovaly matema^ 
tické objekty (např. souřadnice, body, přímky ap.), 
které jsme zavedli sami až v průběhu řešení. Jinými 
slovy to znamená, že formulace výsledku má být jasná 
po přečtení zadání úlohy i bez studia jejího řešení. 

3. Příklad. J e dána úsečka AB = 2a a číslo k > 0. 
Vyšetříme geometrické místo M všech bodů které 
mají od bodů A, B stálý rozdíl druhých mocnin vzdále-
ností rovný k. 

Řešení . Geometrické místo M je na první pohled 
souměrné podle přímky AB i podle osy úsečky AB. Sou-
stavu souřadnic proto zvolíme podle obrázku 5. 

y 

X 

A = [-a,ó] 0 8=10,0} 

Obr. 5 

21 



Podle předpokladu je pro každý bod Z = [f> v] 
množiny Ni 

| AZ2 — BZ2 | = k, (4) 
neboli 

| [(f + a)2 + V2] ~ [(f - a)2 4- V2] I = (5) 
Odtud postupně dostaneme 

4fl . | f | = k, 

p r o f > 0 > 

f = < * , „ <6> 
— 4J> P r o f < 0 -

To znamená, že každý bod Z = [£> V] množiny M vy-
hovuje jedné z rovností (6). Z ; nalytické geometrie 
víme, že rovnosti (6) jsou početním vyjádřením útvaru 
U složeného ze dvou rovnoběžek s osou je ve vzdálenosti 

k 
| f | = od počátku. Dokázali jsme tedy vztah 

M C U . 
Vztah U C NI dokážeme obrácením dosavadního po-

stupu. Pro souřadnice libovolného bodu £ = [ f ; r(\ 
útvaru U platí některý ze vztahů (6); z nich můžeme 
odvodit vztah (5) a tím i (4). Patří tedy bod Z = [ř5 >?]» 
který vyhovuje jedné z rovností (6), skutečně množině 
M, tzn. U C Ni. 

Výsledek. Geometrické místo Ni je útvar U, který 
se skládá ze dvou přímek rovnoběžných s osou úsečky 
AB vedených ve vzdálenosti ka~l od středu úsečky AB. 
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4. Příklad. J e dán rovnoramenný trojúhelník RST se 
základnou RS = 2/ a k ní příslušnou výškou v. Z j e 

takový bod, že z úseček a = b = SŽ, c = lze 
sestrojit ostroúhlý trojúhelník. Vyšetříme geometrické 
místo Ni všech bodů 

Řešení . Předně musíme zjistit nutnou a postačující 
podmínku pro to, aby úsečky a, b, c byly stranami ostro-
úhlého trojúhelníka. Podle kosinové věty a věty k ní 
obrácené víme, že trojúhelník (ať už ostroúhlý, pravo-
úhlý či tupoúhlý) o stranách a, b, c a protějších úhlech 
a, /?, y existuje právě tehdy, jestliže platí 

a2 = b2 + c2 — 2bc cos <x, j 
b2 = a2 + c2 — 2ac cos /5, l (7) 
c2 = a2 + b2 — 2ab cos y. j 

Duté úhly a, y jsou ostré právě tehdy, když jsou jejich 
kosiny kladné. Tedy vzhledem k rovnostem (7) můžeme 
nutnou a postačující podmínku pro to, aby úsečky a, b, 
c byly stranami ostroúhlého trojúhelníka, vyjádřit sou-
stavou nerovností 

a2 < b2 + c2, | 
¿a < a2 + c2, i (8) 
c2 < a2 + ¿2. J 

Nyní již můžeme začít s analytickým vyšetřováním geo-
metrického místa M. Protože je zřejmě toto geometrické 
místo souměrné podle osy úsečky RS, zvolíme soustavu 
souřadnic podle obrázku 6. Nerovnosti (8) přepíšeme 
užitím souřadnic a uvedeme na konečné tvary 

(£— 2/)2 + (v — v)2 > 4ť2, (9a) 
( í + 2í)2 + fa — v)2 > 4/2, (9b) 
f 2 + fa + z>)2 > 2(v2 — t2). (9c) 
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Zjistili jsme tedy, že souřadnice každého bodu Z — [ f ; 
jy] patřícího množině M, vyhovují nerovnostem (9a) 
až (9c). Přitom nerovnosti (9a) a (9b) jsou početní vy-
jádření vnějšků U1 a U2 kružnic kl = (Cx; 21), k2 ~ 

= (C2; 2ť), kde Cj, C2 
jsou (jak se sami snad-
no přesvědčíte) vrcho-
ly rovnoběžníků RSC1T 
a RSTC2. Pro útvar 
U3, daný početním vy-
jádřením (9c), musíme 
rozlišit tři případy: 

1. Pravá strana ne-
rovnosti (9c) je kladná. 
Pak U3 je vnějšek kru-
hu k3 s poloměrem 
J i ^ — t*) a středem 
C3 souměrně sdruže-
ným s bodem T podle 
přímky RS. Tento pří-
pad nastane právě 

trojúhelník RST ostro-

Obr. 6 

tehdy, je-li v > t, tzn. je-li 
úhlý. 

2. Pravá strana nerovnosti (9c) se rovná nule. Pak je 
U8 celá rovina s výjimkou bodu C3. Tento případ na-
stane právě tehdy, je-li v = t, tzn. je-li trojúhelník RST 
pravoúhlý. 

3. Pravá strana nerovnosti (9c) je záporná. Pak je U3 
celá rovina bez výjimky. To nastane právě tehdy, je-li 
0 < v < t, tzn. je-li trojúhelník RST tupoúhlý. 

Pro každý bod Z = [ f í v] geometrického útvaru M 
jsou splněny všechny tři nerovnosti (9a) až (9c) záro-
veň, a proto je množina M částí všech tří útvarů U1) 
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U2, U3. Množina Ni je tudíž částí průniku1) množin Uu 
U2, U3, tj. Ni c u = Ut n u2 n u3 (na obr. 7abc je 
množina U vyšrafována). 

Nyní dokážeme obrácené tvrzení, tj. U C M. Doká-
žeme to nepřímo, tj. ověřením podmínky [B'J. Jestliže 
z úseček a = RZ, b = SZ, c = TZ nelze sestrojit ostro-
úhlý trojúhelník (tzn., že z nich buď vůbec nelze se-
strojit trojúhelník, nebo je tento trojúhelník pravoúhlý 
či tupoúhlý), pak neplatí aspoň jedna z nerovností (8). 
V důsledku toho neplatí pro bod Z = [f 5 v] aspoň jedna 
z nerovností (9a) až (9c). To však znamená, že bod Z 
nepatří aspoň jednomu z útvarů Ult U2, U3 a tedy ne-
může patřit ani jejich průniku U = O U2 Ó U3. 
Tím je tedy dokázán vztah U C M. 

Výsledek. Geometrické místo Ni je útvar U, jehož 
konstrukce byla popsána (nezávisle na zvolené soustavě 
souřadnic) v průběhu řešení. (Viz obr. 7abc; hraniční 
kružnice ky, k2, k3 geometrickému místu Ni nepatří 
a jsou proto vytaženy pouze čárkovaně.) 

Příklad 4 ukazuje, že geometrické místo může být 
někdy charakterizováno několika podmínkami [viz ne-
rovnosti (8)]. Každá z těchto podmínek určí jedno „po-
mocné" geometrické místo (viz útvary Uu U2, U3). 
Hledané geometrické místo tvoří potom společná část 
neboli průnik těchto „pomocných" geometrických míst. 

Někdy je „ tvar" geometrického místa závislý na vzá-

Průnikem dvou množin M, N rozumíme množinu P, která se 
skládá právě z těch bodů, které patří zároveň oběma množinám 
M, N. (Zapisujeme to P = M D N.) Jestliže množiny M, N nemají 
žádný společný bod, říkáme, že jejich průnik je množina prázdná 
(označení 0 ) . Podobně se definuje průnik tří a více množin. 
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jemné poloze daných prvků. V takovém případě musíme 
provést samozřejmě příslušné třídění vyšetřovaného geo-
metrického místa (viz podrobnou diskusi množiny U3 
v příkladu 4). 

V druhé části řešení příkladu 4 jsme potřebovali vy-
slovit negaci soustavy nerovností (8). Všimněte si, že 
negace správně zněla: Aspoň jedna z nerovností (8) není 
splněna. Často se totiž chybuje v tom, že za negaci se 
prohlásí výrok: „Žádná z nerovností (8) není splněna." 
Podobně se utvoří např. negace výroku: „Všechny vstu-
penky na dnešní představení jsou vyprodány." Negace 
správně zní: „Všechny vstupenky na dnešní představení 
nejsou (ještě) vyprodány čili alespoň jedna vstupenka je 
na prodej." 

5. Přiklad. Jsou dány různoběžky a, b a bod Zi pro 
který platí: Vzdálenost pat kolmic vedených z bodu Z 
ná přímky a, b se rovná danému číslu d > 0. Vyšetříme 
geometrické místo Ni všech bodů Z-

Řešeni . J e zřejmé, že geometrické místo Ni je sou-
měrné podle obou os různoběžek a, b. Zvolíme proto 
tyto osy zároveň za osy soustavy souřadnic (obr. 8). 

Předpokládejme, že bod Z = [£! v] patří množině M. 
Určíme souřadnice bodů A, B, které jsou patami kolmic, 
z bodu Z n a přímky a, b. Výpočet provedeme napřed 
pro bod A. Určíme rovnici přímky AZ', je to kolmice 
k přímce y — kx a prochází bodem Z = [f > Směr-
nice přímky AZ je Rovnice přímky AZ je tedy 

y—v =— y (*— f)-

Souřadnice bodu A dostaneme tudíž řešením soustavy 
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^ k v 

Po snadném výpočtu vyjde 

í i = 
k>] + f . 
1 +k* ' Vi = 

k(krj + £) 
1 + (10) 

/ / \ 
/ V - Í M J 

L / 
r / * 

/ O v / / 
\ / / 

\ / / \ / / 
'a 

y = -kx 
Obr. 8 

Výpočet souřadnic bodu B bychom mohli provést úplně 
stejně; je to ovšem zbytečné. Stačí totiž ve výsledcích 
(10) nahradit všude číslo k číslem k němu opačným. 

t _ — + í . „ —k(—kr, + I) 
f ^ T T ť " ' r + i 5 • [ ' 

Protože bod Z patří množině M, je AB = d, tzn. 
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l / ^ - f , ) 2 + ( V i - K ) 2 = d; (12) 

po dosazení z (10) a (11) a po úpravě vyjde 

Rovnice (13) je početním vyjádřením kružnice U se 
středem O v průsečíku různoběžek a, b a s poloměrem 
d{ 1 + A2)(2A)-1. Tím je dokázána první část M C U. 

Nyní dokážeme obrácené tvrzení: U (Z M. Nechť bod 
Z — [£ > v] nepatří množině M, pak příslušná úsečka 
AB nemá délku d, tzn. 

V í f i - W + foi (12') 

Odtud pak, podobně jako výše, odvodíme nerovnost 

(13') 

To však znamená, že bod Z — [f 5 v] nepatří kružnici U. 
Tím je důkaz ukončen. 

Zbývá pouze určit poloměr kružnice U nezávisle na 
zvolené soustavě souřadnic. Označme <* odchylku pří-
mek a, b. Potom zřejmě směrnice k přímky a je k = 

= tg-^- ; jednoduchým výpočtem pak zjistíte, že polo-

měr kružnice U je 

d( 1 + k2) (2k) ' 1 =d. (sin «)"». 

Výsledek. Geometrické místo M je kružnice U se stře-
dem v průsečíku různoběžek a, b a s poloměrem r = 
= d. (sin a)_1, kde a je odchylka přímek a, b. 
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Všimněme si, že poloměr r kružnice U jsme mohli 
uhodnout i bez výpočtu. Stačí totiž zvolit bod Z Seo~ 
metrického místa M na některé z přímek a, b (obr. 9). 

Obr. 9 

C v i č e n í 

1. a) J e dán čtyřúhelník ABCD a číslo d> 0. Zvolte si bod F a se-
strojte lotnenou čáru VWXYZ tak, že body A, B, C, D jsou 
po řadě středy úseček VIV, WX, XT, Vyšetřete geo-
metrické místo M bodů V, pro něž je velikost úsečky VZ < d. 

b) Řešte obdobnou úlohu pro pětiúhelník ABCDE! 
2. a) Jsou dány dva různé body A, B a číslo k > 0. Vyšetřete geo-

metrické místo M všech bodů Z* které mají od bodů A, B 
stálý součet druhých mocnin vzdáleností rovný k2. 

b) Řešte obdobnou úlohu pro případ, že jsou dány tři body A, 
B, C, resp. čtyři body A, B, C, D. (Výsledné geometrické místo 
určete pomocí vzdáleností daných bodů.) 

3. J e dána úsečka AB a číslo k (0 < k ^ 1). Vyšetřete geometrické 
místo M všech bodů Z> P r o něž platí AZ : BZ = k. 

30 



4. J e dán trojúhelník PQR. Vyšetřete množinu M všech bodů Z< 
pro něž platí: PZ* + Q.Z2 = RZ*-

5. Půdorys místnosti je rovnostranný trojúhelník ABC o straně 
10 m. Všechny stěny jsou obloženy zrcadly. Paprsek, který vy-
šel z bodu Zo, se po odrazu od všech tří stěn vrátil zpět do bodu 
Zo! přitom urazil vodorovnou dráhu dlouhou 20 m. Vyšetřete 
geometrické místo M všech bodů Z> které mají stejnou vlast-
nost jako bod Zo-

6. Jsou dány dvě kolmice o1; os. Po přímce o, se pohybuje bod A 
a po přímce o2 bod B tak, že úsečka AB má stálou délku d. Vy-
šetřete geometrické místo M všech bodů Z> P r o n ěž platí : bod 
B je středem úsečky AZ-

7. J e dán tzv. deltoid ABCD, tj. čtyřúhelník souměrný podle úhlo-
příčky AC. Vyšetřete geometrické místo M všech bodů Z< P r o 

něž platí : 
AZ'< BZ*+DZ*< CZ%. 

8. J e dán rovnostranný trojúhelník ABC. Vyšetřete geometrické 
místo M všech bodů Z, pro něž platí: AZ+ BZ= CZ. (Ná-
vod: Soustavu souřadnic zvolte tak, aby C = [0; —1] a těžiště 
trojúhelníka ABC bylo v počátku souřadnic.) 
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3. k a p i t o l a 

A P L I K A C E V Z D Á L E N O S T I 
B O D U A P Ř Í M K Y 

Budeme vyšetřovat geometrická místa takových bodů, 
jejichž polohu lze charakterizovat pomocí vzdáleností 
od daných bodů a přímek. 

6. Příklad. Jsou dány dvě různoběžky p, q a číslo 
k > 0. Vyšetříme geometrické místo řA všech bodů 
které mají od přímek p, q stálý součet vzdáleností 
rovný k. 

Řešení . Geometrické místo M je zřejmě souměrné 
podle obou os různoběžek p, q. Zvolíme proto tyto osy 

y 

N ? 

¿^Sux-by =0 

/ y-iN / 
/ 

/ 
\ / 

< f 
by ~o 

Obr. 10 
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zároveň za osy soustavy souřadnic (obr. 10). Rovnice 
přímek p, q napíšeme po řadě ve tvaru 

STfc:«:} «>»• s>°-
Jestliže bod £ = [ f ; patří geometrickému místu M, 
potom je (viz obr. 10) 

ZZi + = k, (1) 
kde Zu Zi J s o u paty kolmic vedených z bodu Z n a 

přímky p, q. Vyjádříme-li rovnost (1) pomocí analytické 
geometrie, dostaneme 

|af — br, | + |af + br, | = k. (2) 

Nyní rozlišíme několik případů. 

1. Za předpokladu, že je 

ai — br] ^ 0, flf + br] ^ 0, (3) 
(tzn. za předpokladu, že bod Z — [f > v] ^ž í ) 5pod" nebo 
na přímce p a zároveň „nad" nebo na přímce q), mů-
žeme na základě definice absolutní hodnoty přepsat 
rovnici (2) ve tvaru 

(af — br]) + (af — br]) =k 
neboli 

To znamená, že každý bod Z — [f 5 *?]» patřící geo-
metrickému místu M a vyhovující podmínkám (3), leží 
na přímce o rovnici (4); přesněji řečeno na úsečce uu 
kterou na této přímce vytínají různoběžky p, q. (Sou-
řadnice rj všech bodů této úsečky bychom mohli zjistit 
z nerovností (3) po dosazení za f z rovnice (4).) 
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2. Za předpokladu, že je 

ai — brj 0, a£ + br]^ 0, (5) 

(tzn. za předpokladu, že bod £ = [ í ; »?] leží zároveň 
„nad" nebo na přímce p i q), můžeme rovnici (2) pře-
psat ve tvaru 

Proto každý bod = [ f ; patřící množině M, musí 
za uvedených předpokladů ležet na přímce o rovnici 
(6); lépe řečeno na úsečce w2, kterou na ní vytínají růz-
noběžky p, q. 

Všimněte si, že úsečky a u.2 mají na přímce p spo-
lečný krajní bod. K tomuto výsledku můžeme dojít i bez 
výpočtu; z jednoduché syntetické úvahy totiž ihned 
plyne, že na každé z přímek p, q leží pouze dva body 
geometrického místa M, které jsou souměrně sdružené 
podle průsečíku O různoběžek p, q. 

Protože celé geometrické místo M je souměrné podle 
průsečíku O přímek a, b, nemusíme zřejmě zbývající dva 
případy 

ani početně vyšetřovat. 
Z našich dosavadních úvah tedy vyplývá, že geo-

metrické místo NI je částí obvodu U obdélníku ABCD 
s vrcholy na přímkách p, q. Body A, B, C, D dostaneme 
v souhlase se zadáním geometrického místa M tak, že 

(—flf + brj) + (ař + bt]) = k 
neboli 

k 
(6) 

aŠ — br)£ 0, + brt ^ 0, 

<z£ — ¿í? ^ 0, af + brj ^ 0 
(7) 

(8) 

34 



na přímce p, resp. q najdeme body, které mají od 
přímky q, resp. p vzdálenost k (obr. 11). 

Nyní vyšetříme obráceně, zda je obvod U obdélníku 
ABCD částí geometrického místa M. Vzhledem k sou-
měrnosti obdélníku ABCD i množiny M podle středu 
0 můžeme se omezit např. pouze na strany AB, BC 

(obr. 11). Stačí tedy dokázat, že ABczM a také 
BCcM. 

Jestliže bod Z — [f > v] patří úsečce AB, pak jeho 
souřadnice vyhovují rovnici (4) a nerovnostem (3). Ale 
rovnici (4) můžeme přepsat ve tvaru 

a vzhledem k nerovnostem (3) ve tvaru (2). Rovnost (2) 
je však jen jiný tvar rovnosti (1). Patří tedy uvažovaný 
bod Z ^ ž geometrickému místu M a proto je AB C M. 

Úplně stejně se dokáže BC C M. Tím je důkaz hotov. 

Výsledek. Geometrické místo řA je obvod U obdél-
níku ABCD, jehož každý vrchol leží na jedné z různo-
běžek p, q a má od zbývající vzdálenost k. 

Obr. 11 

(af — brj) + (af + bV) = k 
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Při řešení tohoto příkladu se nám vyplatila kombinace 
početní metody s jednoduchými syntetickými úvahami. 
Tím se totiž řešení znatelně zkrátilo. 

Dále si řekněme ještě jednu praktickou radu. Při 
podrobnějším vyšetřování rovnic typu (2) se poměrně 
snadno udělá chyba ve znaménku. Dobrou kontrolu vý-

Q . 
Obr. 12ab 

počtů umožňuje někdy věta, kterou lze poměrně jedno-
duše dokázat. 

Útvar U, daný rovnici s absolutními hodnotami mnohočlenů, 
je ve všech svých bodech „spojitou" larou. Je to tedy útvar slo-
žený z jedné nebo několika „lomených lar nebo křivek", které 
nemají žádné krajní body. 

Nemůže to tedy být např. žádný z útvarů na obr. 12ab. 
První z nich má totiž jeden krajní bod (A), druhý má 
dva krajní body (B, C). 

7. Přiklad. J e dána přímka p a mimo ni ve vzdále-
nosti v (v > 0) bod D. Vyšetříme geometrické místo M 
bodů Z> které mají od přímky p a od bodu D součet 
vzdáleností nejvýše rovný k {k > v). 

Řešení . Okamžitě je vidět, že geometrické místo Ni 

A 
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y*p 

7. 

r- 0'X 

0 D = M 

Obr. 13 

je souměrné podle kol-
mice o k přímce p, pro-
cházející bodem D. 
Zvolíme proto přímku 
o za osu x a přímku p 
za o s u j (obr. 13). 

Jestliže bod Z = 

= [ f ; rf\ patří geome-
trickému místu M, pak 
platí 

Z Z i + Z D ^ k , (9) 

kde Z\ J e P a t a kolmice z bodu Z n a přímku p. Nerov-
nost (9) přepíšeme užitím prostředků analytické geo-
metrie ve tvaru 

\i \ +U(Š-V)* (10) 

resp. ve tvaru 

V(f — vy f, p r o f ^ 0 , (11a) 

V(l — vy + v* ^ k + f, p r o f ^ 0 . (11b) 
Nejdříve vyšetříme nerovnost (11a). Obě strany umoc-
níme na druhou a po další úpravě dostaneme 

rf ^ 2((v — k) — (v — k){v + *). (12) 

Nerovnost (12) připomíná početní vyjádření jistého ro-
vinného útvaru omezeného parabolou, jejíž osa je rov-
noběžná s osou x. Nerovnost (12) proto upravíme na 
tvar 

r 2 ( » - * ) [ | - i > + A ) ] . . (13) 
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Protože je podle předpokladu v < k, je v — k < 0. J e 
tedy nerovnost (13) početním vyjádřením útvaru Ult 
skládajícího se z paraboly Px o rovnici 

V* = 2 ( , + * ) ] 

a jejího vnitřku. Přitom vrchol paraboly P1 je bod 

V1 = (v + k); 0 j . Její ohnisko splývá s bodem 

D = [»; 0], neboť 

Řidiči přímka d1 má od přímky p vzdálenost k, neboť 

! ( * + * ) - ! ( . - * ) = * . ' ) 

Zjistili jsme tedy, že každý bod Z = [f '> v] (kde f ^ 0), 
patřící geometrickému místu M, náleží útvaru U1 (do-
konce pouze té části útvaru U,, která leží v polorovině 
PD), 

Úplně stejně můžeme vyšetřit nerovnost (11b). Zjis-
tíme, že je početním vyjádřením útvaru U2, složeného 
z paraboly P2 o rovnici 

v* = 2{v +k) [ f k ) J 

a jejího vnitřku. Parabola P2 má ohnisko opět v bodě D 
a její řídicí přímka d2 má také od přímky p vzdálenost 
k. Proto každý bod Z = [£; v] (kde £ ^ 0) patřící geo-

') Viz např. [7], str. 88. 
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metrickému místu M, náleží útvaru U2 (dokonce pouze 
té části útvaru U2, která patří k polorovině opačné 
k polorovině pD). 

Obě paraboly P1} P2 protínají přímku p v týchž bo-

d2 

K 

P? J 

p ¿1 

0 

c k L 

Wmv< 

k a 

Obr. 14 

dech, které mají od bodu D vzdálenost rovnou k. Mů-
žeme proto říci, že geometrický útvar M je částí útvaru 
U = Ut f ) U2 (na obr. 14 je útvar U vyšrafován). 

Zbývá dokázat, že je též U C M. Zde ukážeme pouze, 
že část Ut, patřící polorovině pD, je součástí množiny M. 
Důkaz obdobného tvrzení pro útvar U2 přenecháme čte-
náři. Jestliže bod Z = (kde £ ^ 0) patří útvaru 
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U„ pak jeho souřadnice vyhovují nerovnosti (13). Tu 
můžeme upravit na tvar 

V ( f - » ) 2 + t ] t ^ — f |. (14) 
Z definice útvaru Ux však ihned plyne, že A > f neboli 
A:—f > 0. Můžeme proto nerovnost (14) přepsat ve 
tvaru ( l la) , resp . (10). Tzn., že b o d ^ p a t ř í množině Ni. 

Výsledek. Označme Ult U2 útvary skládající se z pa-
rabol (a jejich vnitřků), které mají společné ohnisko D, 
a jejichž řídicí přímky jsou rovnoběžky s přímkou p, ve-
dené ve vzdálenosti k. Geometrické místo Ni je pak 
útvar U = U1 n U2. 

Při řešení našeho příkladu jsme vztah U C Ni doka-
zovali obrácením postupu, kterým jsme ověřili vztah 
Ni C U, tj. ověřením podmínky [B]. 

V jistém smyslu bude poučné, jestliže tlůkaz vztahu 
U CL Ni provedeme ještě jednou ověřením obměněné 
podmínky [B'J. Omezíme se však opět pouze na pří-
pad, že f S; 0. Případ f ^ 0 přenecháme opět čtenáři. 

Nechť bod Z — [f l v] (kde f = 0) nepatří množině 
AI. Potom postupně dostaneme: 

ZZi +ZD>k, (9') 

I f I + V(f — vy + r,*> k, (10') 

]l(Š-vy + n2>k-e. ( l l a ' ) 
Nyní však musíme rozlišit dva případy. 

a) Pravá strana nerovnosti ( l l a ' ) je záporná, tzn. 

k < £ . (15) 
Avšak žádný bod Z = [f j v] vyhovující nerovnosti (15) 
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nemůže náležet útvaru U1 (viz obr. 14) a tedy ani 
útvaru U. 

b) Pravá strana nerovnosti (11a') je nezáporná. Pak 
můžeme obě strany umocnit na druhou a dostaneme 

(f — + V2> 
a po dalších úpravách 

, « > 2 ( , _ * ) [ > _ - ! ( , + * ) ] . (13') 

Tedy ani v tomto případě nepatří bod Z útvaru U1 
a tudíž ani útvaru U. 

Připomeňme, že při tomto postupu nesmíme vynechat 
případ a). Opomenutí tohoto případu by mohlo v ob-
dobných situacích vést k hrubé chybě. Můžeme se o tom 
přesvědčit na jednoduchém příkladu. Snadno totiž zjis-
tíme, že z nerovnosti 

y n r T > — 2 (i6) 
neplyne nerovnost 

f + n > 4, 
která vznikne z (16), jestliže umocníme obě strany na 
druhou. Stačí zvolit např. f = r) = 1. 

K uvedenému řešení příkladu 7 připojíme ještě jednu 
poznámku. V okamžiku, kdy jsme zjistili tvar geometric-
kého místa M, tj. v okamžiku, kdy jsme dokázali vztah 
M C U, mohli jsme již docela pohodlně řešení dokončit 
syntetickou metodou. (Pokuste se o to sami!) Početní 
metoda měla proto v tomto případě cenu hlavně ,,ob-
jevitelskou". 

8. Příklad. J e dána přímka p a mimo ni ve vzdále-
nosti v (v > 0) bod D. Kromě toho je dáno číslo k > 1. 
Vyšetříme geometrické místo M všech bodů Z> P ro něž 
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platí: Poměr vzdáleností bodu Z přímky p a od 
bodu D je stálý a rovná se k. 

Řešeni . Geometrické místo Ni je souměrné podle 
přímky o jdoucí bodem D kolmo k přímce p. Soustavu 
souřadnic zvolíme jako na obr. 13. 

Označíme Zi P a t u kolmice z bodu Z = [f > n a 

přímku p. Jestliže bod Z patří množině Ni, pak je 

Pomocí souřadnic přepíšeme rovnost (17) ve tvaru 

I f l _ = * 
v)2+r,2 

rcsp. 
|l| = (18) 

Umocníme obě strany rovnice (18) na druhou a upra-
víme na tvar 

Š2(k* — 1) — 2k2v£ + k2v2 + k2r)2 = 0. (19) 
Dostali jsme rovnici, která je vzhledem k oběma sou-
řadnicím -i] kvadratická. Rovnice (19) je proto prav-
děpodobně početním vyjádřením nějaké středové ku-
želosečky; upravíme ji proto na některý tvar uvedený 
v [8] nebo [9]. (Viz str. 88—90.) Postupně dostaneme 

r 

k2— 1 

v* = 1 . (20) v 
U 2 — 1 J A2 — 1 
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Proťože k > 1, je j- > 0. Proto je rovnice (20) 

početním vyjádřením elipsy U se středem S = k2 — 
— I)"1; 0] a s délkami poloos 

kv , v 

Protože souřadnice každého bodu <£ = [£; »7] množiny 
N[ vyhovují rovnici (20), je tím dokázáno, že M C U-

Nyní obráceně předpokládejme, že bod Z — [f > v] 
vyhovuje rovnici (20). Potom obráceným postupem do-
jdeme od rovnice (20) až k rovnici (18). Geometrický 
význam rovnice (Í8) je vyjádřen vztahem (17). To 
tedy znamená, že bod Z patří množině M, neboli 
( i C M . 

Zbývá popsat elipsu U nezávisle na zvolené soustavě 
souřadnic. Přitom chceme, aby popis byl co nejjedno-
dušší. V takovém případě bývá výhodné zobrazit si pro 
určité k elipsu U a výsledek nejdříve uhodnout a pak 
teprve dokázat. Na obrázku 15 je znázorněna elipsa U 
pro k = 2. Jistě se vám bude zdát nápadná poloha 
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bodu D. Není těžké přijít na to, že bod D je ohniskem 
elipsy U. Tento odhad skutečně ověříme výpočtem. Ex-
centrická elipsy U je 

1 l-x U M Vv* ~ 2 v 

a ohniska mají první souřadnici 
k' + 1 

_ k 2 v v /vj2Z=T' 
k2—\±k2—\ 

J e tedy bod D to ohnisko elipsy U, které je blíže přím-
ce p. 

Hlavní vrcholy mají první souřadnice 

k2v ko kv 
f l4 = ± k 2 _ l 

Zřejmě jsou obě souřadnice f3> f 4 kladné (k > 1), proto 
leží hlavní vrcholy v polorovině pD. 

Výsledek. Geometrické místo M je elipsa U s ohnis-
kem D, hlavní osou kolmou k přímce p. Hlavní vrcholy 
leží v polorovině pD a mají od přímky p vzdálenosti 
kv(k— l)" 1 a kv{k + l ) - 1 . 

Při řešení příkladu 8 jsme dostali kvadratickou rovnici 
(19) pro souřadnice rj. Všimněte si, že jsme se o geo-
metrickém útvaru, jehož početním vyjádřením je rov-
nice (19), vyjádřili velmi opatrně. Nemusí být totiž 
každá kvadratická rovnice pro r\ početním vyjádře-
ním kuželosečky, přesněji řečeno „nedegenerované" ku-
želosečky. Uvedeme si příklady: 
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1. Rovnice 
4x2 — 8* + y2 + 4 = 0 

je početním vyjádřením jediného bodu £ = [1; 0], 
neboť je ekvivalentní s rovnicí 

4(* — l)2 = 0. 
2. Rovnice 

4x2 — 8x — + 4 = 0 

je početním vyjádřením dvou různoběžek, neboť je ekvi-
valentní s rovnicí 

4(* — l)2 —y* = 0 , 
resp. s rovnicí 

(2* — y — 2) (2* +y — 2) = 0 . 

3. Rovnice 

4x2 — 8x + y2 + 3=0 
je početním vyjádřením množiny prázdné, neboť je 
ekvivalentní s rovnicí 

4 (x— l)2 + j 2 = —1 . 

Z uvedených příkladů je tedy vidět, že nestačí pro-
hlédnout si, jak se to bohužel dost často stává, pouze 
koeficienty u kvadratických členů. Kromě toho je vidět, 
že početní vyjádření množiny bodů nemusí být jediné. 

9. Příklad. J e dán rovnoramenný trojúhelník ABC 
se základnou AB = c a úhlem a při základně. Vzdále-
nost libovolného bodu Z hledané množiny Ní od přímky 
AB je geometrickým průměrem jeho vzdáleností od pří-
mek AC, BC. Vyšetříme toto geometrické místo M. 
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Řešení . Geometrické místo M je zřejmě souměrné 
podle osy o základny AB trojúhelníka ABC; zvolíme ji 
proto za jednu ze souřadnicových os. Trojúhelník ABC 

umístíme podle obr. 16. Směrový úhel přímky AC je « 
(neboť AB || x); přímka AC má proto rovnici 

x sin a. — y cos a = 0 (21) 

a přímka BC, která je souměrně sdružená s přímkou AC 
podle osyy, má rovnici 

x sin a +y cos a. = 0 . (22) 
Položíme-li 

sin a. = a , cos <x = b , 
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můžeme rovnice (21) a (22) napsat ve tvaru 

Rovnice přímky AB je 
1 y = "2 ř t e a ' 

resp. 
y = V , (24) 

kde v = - y f tg a je výška trojúhelníka ABC na základ-

nu AB. 
Jestliže nyní bod £ = [ f ; rf[ patří geometrickému 

místu M, potom je (viz obr. 16) 

ZZa = ( 25) 
kde Zi> Zzi Z* J s o u paty kolmic vedených z bodu Z n a 

přímky AC, BC, AB. Tuto podmínku vyjádříme po-
četně : 

\v — r j \ = y [ a J ^ b r j \ . | a f + by] f . (26) 

Odtud vypočítáme, že 

(v — T])2 = | a 2 f 2 — ¿ V ! - (27) 
Nyní rozlišíme dva případy: 

a) Nechť je a 2 f 2 — ¿> V ^ 0, neboli a|£| ^ b\t]\. Tato 
podmínka znamená, že bod Z = [f 5 v] P a t ř í b u c I úhlu 
ACB, nebo úhlu k němu vrcholovému. Potom rovnice 
(27) má tvar 

(» — n y = — a2£2 + ¿ V - (28) 

Rovnici (28) upravíme s použitím rovnosti a2 ¡- ¿2 = 1 
na tvar 

47 



Rovnici (29) přepíšeme ještě jednou s použitím daných 
prvků c, a : 

f « + í i , = (30) 
{ sin 2a.) {sin 2a J v ' 

V případě a) leží tedy body Z n a kružnici Ux se středem 

S = 0; • Cr. a poloměrem -¿-4-— . Protože ze za-L sin 2a J 2 sin a 
dání úlohy je ihned patrné, že geometrické místo M 
musí obsahovat body A, B, snadno na základě dosavad-
ních výsledků usoudíme, že množinu U, lze sestrojit 
jako kružnici dotýkající se přímek AC, BC v bodech A, 
B (obr. 17). Stačí např. ukázat, že trojúhelník BCS má 
při vrcholu B pravý úhel. Víme, že 

cs = -Ar> 
sin la. 

Odtud postupně dostaneme 

c s _ BD 1 = BC = BC 
cos <x sin ol sin a. cos (R — a) 

a tedy trojúhelník BCS je skutečně pravoúhlý. [K dů-
kazu jsme ovšem mohli použít i metody souřadnic; např. 
vyšetřovat vzájemnou polohu kružnice U1 dané rovnicí 
(30) a přímek AC, BC daných rovnicemi (23).] 

b) Nechť je a 2 p — é V ^ 0, neboli a | f j ^ b\r)\. Tato 
podmínka znamená, že bod Z = [£; V] patří některé-
mu z vnějších úhlů trojúhelníka ABC při vrcholu C. 
Potom rovnice (27) má tvar 

(v — riy = a2? — bh)t. (31) 

48 



Rovnici (31) uvedeme na tvar 

v*b2 (32) 

a2 ( 1 + ¿ 2 ) ( 1 + ¿ 2 ) 2 

použijeme-li daných prvků c, a, dostaneme 

í 2 L T 
r 2(1 + cos2«) J _ 

o • o ^ ' 

4(1 + cos2«) 
c2 sin2 a 

4(1+cos 2 a)» 

(33) 

Obr. 17 
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V tomto případě tedy leží body Z n a hyperbole l/2 
dané rovnicí (33). Ze zadání úlohy je opět zřejmé, že 
body A, B patří geometrickému místu M. Protože sou-
řadnice těchto bodů vyhovují podmínce a 2 f 2 — b2rj2 ^ 
S; 0, musí tedy hyperbola U2 procházet body A, B. 

Dokonce se hyperbola U2 v bodech A, B přímek AC, 
BC dotýká. Ze zadání úlohy je totiž zřejmé, že body A, 
B jsou jediné dva body geometrického místa M ležící 
na přímkách AC, BC. To ovšem znamená, že každá 
z přímek AC, BC má s hyperbolou U2 společný jediný 
bod. Protože však přímky AC, BC nejsou rovnoběžné 
s žádnou z asymptot hyperboly U2 (přesvědčte se o tom 
výpočtem sami!), musí být přímky AC, BC tečnami 
hyperboly U2. (Vzájemnou polohu přímek AC, BC 
bychom mohli samozřejmě vyšetřit i početně.) 

Shrneme-li případy a) a b), dostaneme částečný vý-
sledek: Každý bod geometrického místa M patří buď 
kružnici U1, nebo hyperbole U2, neboli Ál C U — 
= U , U U 2 (obr. 17)i). 

Důkaz obráceného tvrzení U C. M bude nyní již 
lehkou záležitostí. Nechť bod Z = [f> vl nepatří mno-
žině M, pak neplatí rovnost (25). Odtud však snadno 
dojdeme k závěru, že souřadnice bodu Z nevyhovují ani 
rovnici (30), ani rovnici (32). To znamená, že bod Z ne-
patří ani množině U = U1 \J U2. 

Výsledek. Nechť U1 značí kružnici dotýkající se pří-
mek AC, BC v bodech A, B. Nechť U2 je hyperbola do-
týkající se také přímek AC, BC v bodech A, B, s hlavní 
osou délky c(l - cos2 a)"2 rovnoběžnou s přímkou AB 

') Množina U = U1 (J U2 je tzv. sjednocení množin U, a U2; 
skládá se právě z těch bodů, které patří bud útvaru U„ nebo útvaru 
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a vedlejší osou délky c s i n a ( l + cos 2 «) - 1 splývající 
s osou o úsečky AB. Potom geometrické místo Ni je 
útvar složený z kružnice U1 a hyperboly U2 (obr. 17). 

Hyperbola U2 je sice ve výsledku příkladu 9 popsána 
jednoznačně, avšak tento popis pro přímou konstrukci 
není nejvhodnější. Potřebné 
prvky hyperboly U2 může-
me ovšem na základě uve-
deného řešení určit též kon-
struktivně. 

Předně určíme střed 0 
hyperboly U2. Víme, že jeho 
vzdálenost od vrcholu C je 
[viz rovnici (32)] 

1 + b2 1 + cos2 a 

1 
1 + COS2 a ' Obr. 18 

kde v je výška trojúhelníka 
ABC k základně AB. Určíme proto nejdříve konstruk-
tivně poměr 1 : (1 + cos2 a). Ze středu D základny 
AB (obr. 18) spustíme kolmici na stranu AC\ patu této 
kolmice označíme E. Potom je 

AE = AC cos2 «. 

Sestrojíme bod F souměrně sdružený s bodem E podle 
středu A. Potom platí 

AC 1 AC = 

FC ~~ AC{\ + cos2 aj ~ 1 + cos2 a 
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Střed O je proto průsečík přímky CD s přímkou p ve-
denou bodem A rovnoběžně s DF. 

Obdobně lze udat konstrukci délek obou os. To však 
již přenecháváme čtenáři. 

Na závěr našeho příkladu znovu upozorňujeme na 
efektivnost kombinace 
syntetické metody 
s početní metodou. 
Kdo má dost trpěli-
vosti, může si pro srov-
nání např. numericky 
vyšetřit vzájemnou po-
lohu přímky AC a hy-
perboly U2. 

y 

a2yb2y = 0 a1x-b1y=0 
\ c Z, B / 

va / y= 1 

A 
10. Přiklad. Je dán 

trojúhelník ABC. 
Nechť Z J e libovolný 

O o r - 19 bod trojúhelníka 
ABC1); paty kolmic 

spuštěných z bodu Z n a strany AB, BC, AC označme 
po řadě Zsr Zu Z*- Vyšetříme geometrické místo M 
všech bodů Z trojúhelníka ABC, pro něž platí 

\ZZi-ZZÁ^ZZ^ZZ. + ZZz- (34) 

Řešeni . V každém trojúhelníku alespoň jedna pata 
výšky na příslušnou stranu náleží vnitřku této strany. 
Můžeme proto bez omezení obecnosti předpokládat, že 
to nastane pro výšku ke straně BC. Soustavu souřadnic 
pak zvolíme podle obrázku 19. Rovnice přímek AB, 
AC, BC můžeme pak napsat po řadě ve tvaru: 

*) Bod trojúhelníka je jeho vnitřní bod nebo bod na jeho obvodu. 
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axx — bxy = O , kde a\ + b\ = 1, ax > O, bx > O, 
a2x + b2y = O, kde a\ + b\ = 1, a2 > O, b2 > O, (35) 

j = l . 

Nechť bod £ = [! ; »?] patří geometrickému místu M. 
To znamená, že bod Z patří trojúhelníku ABC a vyho-
vuje podmínce (34). Bod Z patří trojúhelníku ABC právě 
tehdy, jestliže leží zároveň „nad" nebo na přímkách 
AB, AC a „pod" nebo na přímce BC; pro bod Z tedy 
platí nerovnosti 

a i š — M ^ 
a 2 | + b2r] ^ 0 , 

V ^ 1 • 

(36) 

Podmínku (34) nejdříve nahradíme ekvivalentní sousta-
vou nerovností 

ZZi ^ + , 
Z Z ^ Z Z s + Z Z i , (37) 
ZZ^ZZi+ZZ,- . 

Soustavu (37) přepíšeme pomocí souřadnic bodu Z• 

|1 —rj\ ^ |a 2 | + M l + — b t f | , 
|a«f + M l ^ \ a j — M l + J1 — , (38) 

" K f — M l n\ + + M I - . 
Absolutní hodnoty odstraníme na základě nerovností 
(36). Po další jednoduché úpravě dostaneme 

{—a, + at)( + {b1+b2 + 1)>?—1 ^ 0, 
(_ a2)£ + (t>1 — b2—l)rj + 1^0, 
(a, + a2)f + (—b, + b2 — l)i, + 1 ^ 0. 

(39) 
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Každá z nerovností (39) je (za předpokladu, že vždy 
alespoň jeden z koeficientů u f a rj se nerovná nule) po-
četním vyjádřením jisté poloroviny. Geometrické místo 
M musí být proto částí všech těchto tří polorovin i da-
ného trojúhelníka ABC. Průnikem těchto tří polorovin 
a trojúhelníka ABC bude zřejmě nějaký mnohoúhelník; 
jeho vrcholy bychom mohli zjistit početně. Místo počí-
tání se nám však opět více vyplatí jiný postup. Vyšetří-
me totiž synteticky, kolik bodů má množina M na stra-
nách trojúhelníka ABC. Nechť bod Zo geometrického 
místa M leží např. na straně BC. Potom je ZoZi = 0, 
takže poslední dvě z nerovností (37) mají zjednodušený 
tvar 

Odtud však plyne, že Z0Z2 = Z0Z3 a t e dy bod Zo leží 
na ose vnitřního úhlu BAC. Přitom je zřejmé, že bod 
Zo leží zároveň na hraničních přímkách polorovin vy-
jádřených posledními dvěma nerovnostmi v soustavě 
(39). Obdobná úvaha platí i pro zbývající dvě strany 
trojúhelníka ABC. 

Z dosavadních úvah tedy plyne: Geometrické místo 

. 2 - (40) 

/ 
AI je částí trojúhelníka T, 
jehož vrcholy jsou průse-
číky os vnitřních úhlů 
s protějšími stranami troj-
úhelníka ABC (obr. 20). 

Důkaz obráceného tvr-
zení T C. M přenecháme 
již čtenářům. 

Obr. 20 

Všimněte si, jak lze 
charakterizovat nerov-
nostmi body vnitřku troj-
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úhelníka T. Jaký geometrický význam mají pak body 
vnitřku trojúhelníka T? 

Při řešení příkladu 10 jsme se omezili na body patřící 
trojúhelníku ABC. J e samozřejmě možné vyšetřovat 
stejným způsobem i vnějšek trojúhelníka ABC; viz cvi-
čení 18. 

11. Příklad. Je dána úsečka AB s vnitřním bodem V, 
který ji dělí na úsečky VA = a, VB = b (a > b). Vy-
šetříme geometrické místo M všech bodů C, pro něž 
platí: přímka CV je osou vnitřního úhlu trojúhelníka 
ABC. 

Řešení . Ülohu bychom mohli samozřejmě řešit tak, 
že bychom početně vyjádřili podmínku 

«£ BCV = ACV. (41) 

Tento postup však není právě lákavý pro svou pracnost. 
Stačí si uvědomit, že jen k výpočtu úhlu BCV musíme 
znát směrnice přímek BC a VC. 

Z planimetrie však víme, že podmínka (41) je splněna 
právě tehdy, jestliže má bod V od obou z přímek AC, 
BC stejnou vzdálenost. Protože budeme vyšetřovat vzdá-
lenosti dvojic přímek od bodu V, umístíme kvůli zjed-
nodušení výpočtů počátek soustavy souřadnic v bodě V. 
Soustavu souřadnic zvolíme podle obr. 21. 

Podmínka (41) je tedy ekvivalentní s podmínkou 

VV1 = VV2, (42) 

kde Vu V2 jsou paty kolmic z bodu V na přímky AC, 
BC. Nechť bod C = [ f ; tj] patří geometrickému místu 
M. Potom rovnice přímek AC, BC můžeme napsat po-
řadě ve tvaru (viz [3], str. 86) 
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resp. 

r](x — a) — (f — a)y = O, 
tj(x + b) — (f + b)y = O, 

»7* — (f — fll)1 — = O , 1 
— {£ + b)y + r)b = O .] 

(32) 

y 

/ K 

/ \ / \ 

/ \ * 
B'[-b;0] v A = [aió] 

Obr. 21 

Užitím souřadnic bodu C můžeme nyní s pomocí rovnic 
(43) vyjádřit též rovnost (42): 

( f _ a y yv* + (š + by ' 

Protože bod C nemůže ležet na přímce AB, j e r] ^ 0. 
Můžeme tedy číslem i] rovnici (44) dělit. Po odstranění 
zlomků a umocnění dostaneme 
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£2(a2 — b2) + 2 abi{a + b) + r)2{a2 — b2) = O, (45) 

neboli po dělení součtem a + b (^ 0) 

f2(<z — b) + + rf(a — b) = 0 . (46) 

Protože je a > b, můžeme rovnici (46) převést na tvar 

\ 

Tak jsme zjistili, že geometrické místo M je částí útvaru 
U, který se skládá ze všech bodů kružnice k se středem 

5 = ^ — ^ a ^ ; o j a poloměrem a ° ^ , s výjimkou 

průsečíků s přímkou AB. 
Nyní obráceně nechť bod C — [£; rf\ patří útvaru U. 

Pak jeho souřadnice vyhovují rovnici (45), z níž snadno 
odvodíme rovnici 

a2[r)2 + ( I + b)21 = b2[rj2 + (f — a)2] , (48) 
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resp. rovnici 

1 i í » ~ + ( f — a j « h * u + w ' 

Protože bod C leží mimo osu x, je r\ =^0; můžeme tedy 
obě strany rovnice (49) násobit číslem \ri\ = |—r\ |. 
Tím dostaneme rovnici (44), která je jen jiným vy-
jádřením rovnosti (42). To však dokazuje, že platí též 
U C/V1. 

Výsledek. Nechť k značí kružnici, která má střed S 

na polopřímce VB ve vzdálenosti ^ od počátku V 
a která prochází bodem V. Geometrické místo M je 
pak kružnice k s výjimkou jejich průsečíků s přímkou 
AB. (Konstrukce kružnice k je zřejmá z obrázku 22.) 

C v i č e n í 

9. J e dána přímka p a mimo ni, ve vzdálenosti v (v > 0), bod D. 
Vyšetřete geometrické místo M všech bodů Z, které mají od 
přímky p a bodu D stálý rozdíl vzdáleností rovný k (k> 0). 

10. J e dána přímka p a mimo ni, ve vzdálenosti v (v > 0), bod D. 
Vyšetřete geometrické místo M všech bodů Z, které mají od 
přímky p a bodu D součet druhých mocnin vzdálenosti menši 
než dané číslo k> 0. 

11. J e dána přímka p a mimo ni, ve vzdálenosti v (v > 0), bod D. 
Vyšetřete geometrické místo M všech bodů Z< které mají od 
přímky p a bodu D stálý rozdíl druhých mocnin vzdáleností 
rovný k (k> 0). 

12. Jsou dány dvě různoběžky a, b. Vyšetřete geometrické místo M 
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všech bodů Z, které mají od přímek a, b rozdíl vzdáleností 
aspoň k (k> 0). 

13. Jsou dány dvě různoběžky a, b s odchylkou a. Vyšetřete geo-
metrické místo M všech bodů Z> které mají od přímek a, b 
stálý rozdíl druhých mocnin vzdáleností rovný k' (k > 0). 

14. J e dána úsečka AB — 2a se středem S a číslo k> 1. Je-li C 
libovolný bod, značí body S u Ss po řadě paty kolmic spuštěných 
z bodu S na přímky AC, BC. Vyšetřete geometrické místo M 
takových bodů C, pro něž platí SSt — kSS2. 

15. J e dána úsečka AB = 2a se středem S. Vyšetřete geometrické 
místo M všech bodů C, pro něž platí: součet převrácených 
hodnot druhých mocnin vzdáleností bodu S od přímek AC, 
BC je roven danému čís'u k (k > 0). 

16. Jsou dány dvě různoběžky a, b s odchylkou <p. Vyšetřete geo-
metrické místo M všech bodů Zi které mají stálý součet pře-
vrácených hodnot vzdáleností od přímek a, b rovný k (k> 0). 

17. J e dán trojúhelník ABC a číslo k> 0. Vyšetřete geometrické 
místo M všech bodů Z> které mají od přímek AB, AC, BC stálý 
součet vzdáleností rovný k. Geometrické místo M skutečně pro 
nějaký trojúhelník sestrojte. 

18. J e dán trojúhelník ABC. Je-li Z libovolný bod, pak označíme 
Zd Za Z» po řadě paty kolmic z bodu Z na přímky BC, AC, 
AB. Vyšetřete množinu M všech bodů Z vnějšku trojúhelníka 
ABC, pro něž platí: 

I ZZi — ZZ, i < ZZ* < ZZi 4- ZZt. 
19. J e dán úhel A VB = 2<p a na jeho ose o, ve vzdálenosti v od 

vrcholu, bod D. Vyšetřete geometrické místo M všech bodů Z> 
pro něž platí: Součin vzdáleností libovolného bodu Z pří-
mek AV, BV se rovná druhé mocnině jeho vzdálenosti od 
bodu D. 

20. J e dán úhel A VB = 2<p a na jeho ose o, ve vzdálenosti v od 
vrcholu V, bod D. Vyšetřete geometrické místo M všech bodů 
Z, pro něž platí: Vzdálenosti libovolného bodu Z od přímek 
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AV, B F jsou délky stran pravoúhlého trojúhelníka, jehož pře-
pona má délku 

21. J e dána přímka p a mimo ni, ve vzdálenosti v, bod D. Kromě 
toho je dáno kladné číslo k < 1. Vyšetřete geometrické místo 
M všech bodů Z> P r o něž platí: Poměr vzdálenosti bodu Z °d 
přímky p a jeho vzdálenosti od bodu D je roven stále k. 

22. Nechť ABC je rovnostranný trojúhelník a x, y, z jsou vzdále-
nosti libovolného bodu V od jeho stran. Vyšetřete geometrické 
místo M všech bodů V trojúhelníka ABC, pro něž jsou čísla 
x,y, z délky stran ostroúhlého trojúhelníka. 
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4. k a p i t o l a 

A P L I K A C E V Y Š E T Ř O V Á N Í 
V Z Á J E M N É P O L O H Y 

D V O U Ú T V A R U 

Přicházíme ke třetí a poslední skupině příkladů. Jde 
o geometrická místa, která vyplní body incidující s jed-
ním nebo dvěma proměnnými (např. pohybujícími se) 
útvary. Při jejich vyšetřování budeme proto zkoumat 
vzájemnou polohu daných a proměnných útvarů. 

12. Příklad. Jsou dány dvě soustředné kružnice 
kí = (S\ r t), k2 e= (S; r2), kde r, > r2 a číslo £(0 < k ^ 
^ 1). Na kružnici A, je dán bod A. Po kružnici k1 se 
pohybuje bod Z a po kružnici k2 bod T tak, že polo-
přímka SA je osou úhlu XST. Bod Z leží na polopřímce 
XT a platí pro něj X£ = k.XT. Vyšetříme geometrické 
místo M všech bodů Z-

Řešení . Geometrický útvar M je zřejmě souměrný 
podle přímky SA i podle kolmice vedené středem S 
k přímce SA. Soustavu stfuřadnic zvolíme proto podle 
pbrázku 23. 

Souřadnice bodů X, Zmůžeme vyjádřit takto: 

= r y cos <p; f 2 = r2 cos (—<p) = r2 cos <p; 

Tji = r t sin <p; r)2 = r 2 sin (—<p) = —r2 sin q>. ^ ' 

Potom souřadnice bodu ^ jsou (viz [2], str. 85) 

f = f i + * ( f , — f O , 
•n = Vi + i — Vi)> 
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resp. 

' = í/l + K r2 — ^i)] cos tp, 

r) = [>! — k { r t + r,)] sin <p. 

/ 

/ / L r 
o*Y i 

\ 
J f ^ f y k 

Obr. 23 

Z rovnic (2) musíme nyní vyloučit parametr <p. Přitom 
rozlišíme tři případy: 

a) Výraz 
+ k ( r 2 — j- j) = 0 . 

Potom je 

Podle předpokladu je rx > r2, a tedv k > 0. Zjistili 
jsme, že tento případ skutečně může nastat. Potom však 
mají rovnice (2) tvar 
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f = °> V = [fl — k(T2 + r l ) ] s i n <f , 

resp. po dosazení za k z (3) 

£ = 0, i} = 2TiTa sin . (4) 
r 2 

Protože je |sin <p| sS 1, jsou rovnice (4) početním vy-
jádřením úsečky PQ, kde 

b) Výraz 
Tr — k ( r 2 + Ty) = 0 

Potom je 

Tento případ může tedy také nastat. Přitom rovnice (2) 
mají tvar 

£ = 7 ^ £ r c o s < P > V = 0 . (6) 
Ty -t" T 2 

Protože | cos ^ 1, jsou rovnice (6) opět početním 
vyjádřením úsečky, tentokrát úsečky RT, kde 

L Ty + r2 ' J ' L Ty + r 2 J 

c) Pro oba výrazy je 

Ti + k(rt — ry) # 0, — A(r8 + r,) # 0 , 

to znamená 

( 7> 
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V tomto případě užijeme k vyloučení parametru <p zná-
mé identity sin2 <p + cos2 ip = 1. Vyjádříme proto z rov-
nic (2) cos2 <p a sin2(p: 

I (8) 
^ ^ [ n - J r l + r W 1 

a pak sečteme levé a pravé strany těchto rovnic. Vyjde 
nám 

1 = £ + 5 ! (9) 
[r, +k(r2-rl)y + [rx-k(r2 + rx)]2 " [ > 

Došli jsme tak k početnímu vyjádření elipsy E, jejíž osy 
splývají se souřadnicovými osami, a délky poloos jsou 
a =r1 + k(r2 — r,), b = rx — k{r2 + r,). 

Zjistili jsme tedy, že každý bod Z geometrického 
místa M patří útvaru U, který je v závislosti na k bud 
úsečka PQ, nebo úsečka RT, nebo elipsa E. Jinými 
slovy to znamená, že M C U. 

Nyní zbývá dokázat, že je též U C M. Budeme ově-
řovat podmínku [B']. Nechť bod Z = [£> v] nepatří 
množině M. To znamená, že pro příslušné body X, T 
neplatí XZ = k . XT. V tom případě pro souřadnice 
f , rj nemohou platit obě rovnice (2), to znamená, že 
aspoň jedna z nich neplatí. Pak však neplatí za příslušných 
podmínek ani rovnice (4), ani rovnice (6), ani rovnice 
(8). Proto bod Z nepatří ani útvaru U. 

Výsledek, a) Je-li k = r^r-y — r ) p a k je geo-
metrické místo M úsečka PQ_, která je kolmá k přímce 
SA, má střed v bodě S a délku 4r1r2(r1 — r2)-1. (Obr. 
24a.) 
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b) Je-li k = r^Ty + r2) 1, pak je geometrické místo 
M úsečka RT, která je částí přímky SA, má střed v bodě 
S a délku 4r1r2(r1 + r,)"1. (Obr. 24b.) 

c) Je-li k ^ r1(r1 ± r2)_1, pak je geometrické místo 
M elipsa £ se středem v bodě S, jejichž jedna osa splývá 
s přímkou &4 a má délku 2a = + k(r2 — r ^ ] 
a druhá osa má délku 2b = 2[r1 — k(r2 + r^ ] . (Obr. 

24c pro rt = | t2, k = - j .j 

Obr. 24abc 
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Čtenáři, kteří znají funkce sin h x cos h x (tzv. hyper-
bolický sinus a hyperbolický kosinus), mohou stejně jedno-
duše řešit obdobnou úlohu, kterou dostaneme, jestliže 
v příkladě 12 kružnice ku k2 nahradíme rovnoosými 
hyperbolami se společnými asymptotami a společnou 

hlavní osou. Úlohu lze 
sice řešit i bez znalostí 
zmíněných funkcí, ře-
šení je však složitější. 

D'K'] 1 3 P ř í k l a d < j e d á n 

čtverec ABCD. Bod X 
probíhá přímku AC. 
Bodem X procházejí 
dvě kružnice k t a A,. 
První z nich se dotýká 
přímky AD v bodě A 
a druhá se dotýká 
přímky DC v bodě C. 
Kružnice ky a k2 se pro-
tínají kromě bodu X 
ještě v dalším bodě Z-
Vyšetříme geometric-
ké místo M bodů Z-

Řešeni . Soustavu souřadnic zvolme podle obrázku 25. 
Za jednotku na osách zvolíme polovinu strany čtverce 
ABCD. 

Středy kružnic ku k2 mají souřadnice 

Sy = [a; —1], S2 = [1; u] , 
a polorrtěry 

ri = |1 + r. = |1 — "I, kde |u| * 1. (10) 

Podmínka |u| ^ 1 zajišťuje, že žádná z kružnic ku k2 

Obr. 25 

06 



nedegeneruje v jediný bod. Můžeme proto napsat rov-
nice kružnic ku k2 ve tvaru 

( * - « ) » + ( , + 1 ) ' = (1 + « ) ' , I ( n ) 

(*—1)» + {y — uY = [l—uy. i 
Protože bod Z = [£> v] leží na obou kružnicích ku k2, 
vyhovují jeho souřadnice rovnicím (11). Po dosazení 
a úpravě dostaneme 

f« + r? + 2rj = 2u(f + 1), 1 ( 1 2 ) 

P+r)* — 2f = — 1). | 

Abychom dostali početní vyjádření množiny M, musíme 
z rovnic (12) vyloučit parametr u.Tak dostaneme rovnici 

( P + i j« + 2^(7?— 1) = (f a + v2 — 2f)( f + 1) 

a po další úpravě 

( f 2 + » ? a - 2 ) f a - £ ) = 0 . (13) 

Protože všechny body £ = [£;»?] geometrického místa 
M leží mimo přímku AC, j e f ^ ^ a můžeme tedy rov-
nici (13) dělit výrazem t] — f ^ 0. Tak upravíme rov-
nici (13) na konečný tvar 

p + rf — 2 = 0 , 
resp. 

f 2 + í?2 = 2 . (14) 
Rovnice (14) představují kružnici K opsanou čtverci 
ABCD. Tím jsme dokázali, že každý bod Z geometric-
kého místa M patří kružnici K. Protože však musí být 
v (10) |u| 1, snadno zjistíme, že z kružnice K musíme 
vyloučit vrcholy A, C, D. Pro takto vzniklý útvar U je 
tedy dokázán vztah M ^ U. 
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Protože lze postup zřejmě obrátit, je též U C M. 
(Proveďte podrobně sami.) 

Výsledek. Geometrické místo M je útvar U, sklá-
dající se ze všech bodů kružnice K opsané čtverci ABCD, 

s výjimkou bodů A, C, D. 
(Obr. 26.) 

Všimněme si, že rovnice 
(7) je vlastně početním vy-
jádřením útvaru, který se 
skládá jednak z kružnice 
opsané nad průměrem AC, 
jednak z přímky AC. To ply-
ne ihned z toho, že souřad-
nice bodu Z = [f '•> »?] vyho-
vují rovnici (13) právě 
tehdy, je-li bud 

ť + r,2 — 2 = 0 , 
nebo 

r, — £ = 0 . 
S podobnými rovnicemi se v analytické geometrii se-

tkáváme dosti často. Například rovnice 

(3x — éy)(3x + 4y) = 0 
značí dvojici různoběžek procházející počátkem. Jindy 
se musíme sami teprve pokusit upravit dané početní vy-
jádření na takový tvar, aby na jedné straně rovnice (ne-
rovnosti) byla nula a na zbývající straně vznikl součin. 

V takovém případě dostaneme obvyklé vítané zjed-
nodušení. Například máme-li rovnici 

x4 + 2 x y — 4x2 = o , 
nemůžeme předem o příslušné křivce mnoho říci. Snad-
no však provedeme úpravy 
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(*» ( 2 X y = o , 

(*2 + 2x) (x2 +y2 — 2x) = O , 

[(* + 2)2 + y2 — 4] [(* — 2)2 + y2 — 4] = 0. 
Odtud je již okamžitě vidět, že jde o dvě shodné kruž-
nice o poloměru 2, dotýkající se osy v počátku soustavy 
souřadnic. 

14. Přiklad. Je dán trojúhelník ABC. Vyšetříme geo-
metrické místo AI všech bodů Z-> pro něž platí: Paty kol-
mic vedených z bodů Z n a přímky AB, BC, AC leží 
v přímce. 

y 
\a2x*b2y=o 
\ ^' 

\ s \ • 
a1x-b1yo 

Z -
\ 3 

X 1 

X 
/C 

\ 

Obr. 27 

Řešení . Podobně jako při řešení příkladu 10 můžeme 
zvolit soustavu souřadnic podle obr. 27. 

Rovnice přímek BC, AC, AB zapíšeme po řadě ve 
tvaru: 
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axx — bxy = O, kde a\ + b\ = 1; ax > O, bx> O, (15) 

a^x + by = O, kde a\ + b\ = 1; a2 > O, bt > O, (16) 

j = 1. 

Kolmice k přímce BC, procházející bodem Z = [f j v]> 
má rovnici 

b1(x-e)+al(y-r,)= 0 . (18) 
Pata Zi - [f i» kolmice z bodu = [ f ; »7] k přím-
ce BC má za souřadnice kořeny soustavy rovnic 

axx — bxy = 0 , 

M * — f ) +«i0 '—»?) = 0 . 
Po jednoduchém výpočtu dostaneme 

£i = + M ) > I (ig) 
Vi = «íífli1? + M ) • I 

Podobně vypočteme souřadnice paty Zz = [faí ^2], 
resp. = [fs> ^3] kolmic vedených z bodu Z = [£> 
k přímce resp. .<4.5: 

£2 = — b 2 [ a 2 r j — ¿ 2 f ) ; £a = £ ; 1 ^ Q ) 

Nyní musíme využít předpokladu, že všechny tři body 
Zd Za Za v přímce. Nejdříve si vyřešíme případ, 
kdy dva z těchto tří bodů splynou. Jestliže např. Zi — 
—• Z * zřejmě bod Z splyne s vrcholem C trojúhel-
níka ABC (nakreslete si sami příslušný obrázek). Geo-
metrickému místu M tedy patří vrchol C. Podobně se 
ukáže, že mu patří i další dva vrcholy B, A daného 
trojúhelníka. 

Můžeme tedy v dalším předpokládat, že všechny tři 
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body Zi> Zi-> Zs j s o u navzájem různé. Potom mají 
přímky Z\Z& ZiZs tytéž směrnice, tzn. 

Vi — Va = V2 — V3 
f 1 fa f 2 fa 

odtud plyne 

fai-^Xfi-ř,) = ( í . - » ? . ) ( f 1 - f , ) . (21) 
Rovnost (21) však vyjadřuje nutnou a postačující pod-
mínku pro to, aby body Zu Zz> Za ležely v přímce, 
i v případě, že některé z nich splynou. Kromě toho má 
rovnice (21) i tu výhodu, že nevylučuje případy, kdy 
přímky ZiZa> Z2Z3 j s o u rovnoběžné s osoujy. 

Po dosazení z rovnic (19) a (20) do rovnice (21) po 
několikeré úpravě, s využitím rovností 

fa\+b\ = 1 , a\+b\ = 1 , 

dostaneme tvar 

a1ai(aib1 + a ^ f 2 + axa2(aj>x + + %(b\ — b\) — 
— r](a1b1+a2b2)=0. (22) 

Koeficienty u kvadratických členů se sobě rovnají 
a jsou různé od nuly (odůvodněte!). Rovnice (22) může 
být proto rovnicí kružnice. Aby to byla skutečně kruž-
nice (a nikoliv pouze bod nebo dokonce množina prázd-
ná), musí jí vyhovovat souřadnice alespoň dvou růz-
ných bodů. Avšak podle naší předběžné úvahy již víme, 
že geometrickému místu M patří body A, B, C. Odtud 
tedy dostáváme, že rovnice (22) představuje kružnici K 
opsanou trojúhelníku ABC. 

Tím je dokázáno, že M C K . 
Nechť nyní bod Z = [f I nepatří množině M. Pak 

body Zi, Z29 Zs neleží v přímce, a tedy neplatí pro jejich 
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souřadnice rovnost (21). Pak však nemůže pro souřad-
nice bodu Z platit ani rovnost (22). To však znamená, 
že K C M. 

Výsledek. Geometrické místo M je kružnice K opsa-
ná trojúhelníku ABC. 

Z řešení posledního příkladu je vidět, že nemusíme 
vždy nutně upravovat získanou kvadratickou rovnici na 
některý ze základních tvarů, které uvádíme v kapitole 5. 
V našem případě např. včas provedená syntetická úvaha 
nás zachránila od nepříliš lákavé úpravy algebraické 
rovnice (22). Kromě toho zjištění středu a poloměru 
kružnice K by nám neukázalo, že jde o kružnici opsanou 
trojúhelníku ABC. 

15. Příklad. J e dána kružnice k se středem S a polo-
měrem q. Ve vzdálenosti v (0 < v ^ q) od středu S 
je dán bod D. Bod X probíhá kružnici k. Druhý průse-
čík přímky DX s kružnicí k je bod Y. Označme Z t a " 
kový bod polopřímky DX, pro který platí 

- — + — (23) 
DZ DX DY ' [ ' 

Vyšetříme geometrické místo M bodů Z-

Řešení . Vyšetřované geometrické místo M je zřejmě 
souměrné podle přímky DS i podle středu D. Soustavu 
souřadnic můžeme tvolit pro v > q podle obrázku 28a 
a pro 0 < v < q podle obrázku 28b. 

Kružnice k má potom rovnici 

(* — vy = e \ (24) 
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a přímka DX má rovnici 

x sin <p — y cos (p = 0, (0 <p < In) . (25) 

V tomto případě bude vhodnější použít polární sou-
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stavy souřadnic, jejichž pól je v bodě D a polární osa 
v polopřímce DS. Použijeme převodních vzorců 

x = r cos (p , y = r sin <p , (26) 

a rovnici (24) přepíšeme ve tvaru 

(r cos <p — v)2 + r2 sin2 <p = Q2, 

resp. po úpravě 

r2 — 2rv cos cp + v2 — q2 = 0 . (27) 

Rovnici (27) vyhovují ovšem i polární souřadnice 
bodů X = [rx; <p{\, T = [r2; gj2]. Musíme však rozlišit 
dva případy: a) Bod D leží vně kružnice k (tj. v > 0), 
pak bod Y leží na polopřímce DX a je tedy <pí = <p2 
(obr. 28a). b) Bod D leží uvnitř kružnice k (tj. 0 < 
< v < q), pak bod Y leží na polopřímce opačné 
k polopřímce DX. V tom případě je <px = (p2 — n 
(obr. 28b). 

Všimněme si nejdříve prvního případu. Čísla rx = 
= DXr2 = D Y jsou (kladné) kořeny rovnice 

r2 — 2rv cos <pt + v2 — g2 = 0 . (27a) 

Pokud je diskriminant 

A = v2cos2<p1 + q2 — v2 = q2 — í^sinVi (28) 

nezáporný, jsou kořeny r1>2 rovnice (27a) rovny 

r1>2 = v cos <pj ± ]/ŽT. (29) 

Diskriminant A je nezáporný právě tehdy, je-li 

[sin < 1 . (30) 
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71 Odtud plyne pro <px nutná podmínka l^ l < , 

a tedy cos 9?, > 0. Protože v tomto případě je 

A < z>2cos2 <Pi , 

plyne z našich úvah, že oba kořeny (29) jsou, za před-
pokladu, že á > 0 , kladné. Jsou to proto první souřad-
nice bodů X a ¥ v soustavě polárních souřadnic. 

Nechť je nyní vzdálenost = r. Potom z podmínky 
(23) dostaneme 

neboli po dosazení 

i — L + - L 
r r, r, 

2 1 1 
r V COS <Pi + ]/zl V COS cpy ^ň 

a po úpravě 
v2 — q2 = rv cos . (31) 

Použijeme-li opět převodních vzorců (26), můžeme rov-
nici (31) přepsat v kartézské soustavě souřadnic ve tvaru 

resp. 
•Q2 = V X , 

(32) 

Dostali jsme tak rovnici přímky. Bez dlouhého počet-
ního vyšetřování je však zřejmé, že geometrické místo 
M je podmnožinou pouze té části P přímky (32), která 
leží uvnitř úhlu určeného tečnami z bodu D ke kružnici 
k (obr. 29a). Z podmínky (23) kromě toho snadno od-
vodíme, že 
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DX <DZ< DT, resp. DY <DZ< DX. 
Není proto těžké uhodnout, že P je vnitřek úsečky, jejíž 
krajní body jsou body dotyku Tu 7~2 tečen kružnice k 
vedených z bodu D. (Tento odhad snadno dokážete 
pomocí Euklidovy a Pythagorovy věty s užitím rov-
nosti (32).) 

Důkaz tvrzení P c W přenecháváme již čtenáři. 

Dále se budeme zabývat druhým případem (0 < 
< v < q). Podobně jako výše zjistíme, že čísla Ty = 
= DX, r, = D Y jsou kladné kořeny rovnic 

r 2 — 2TV cos (plt 4 + v2 — g2 = 0 , (27b) 
resp. 

r2 ^ 2rv cos <p1 -f v2 — q2 = 0 . 

Společný diskriminant 

A = q2 — v2 sin2 (py 

obou rovnic (27b) je vždy kladný. Kořeny rovnic (27b) 
jsou 

v cos 9>! ± |/zl , resp. —v cos <px ± |/zl ; 

kladné z nich jsou pouze kořeny 

rx = v cos (f y + ]/A , resp. r2 = —v cos q>y + ]/zl . 

To jsou první souřadnice bodů X, Y (v soustavě polár-
ních souřadnic). 

Nyní opět využijeme podmínky (23). Po dosazení za 
DZ — DY = r2 dostaneme 
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resp. 
1 

r v cos q>y + ]//! 

Po úpravě dojdeme k rovnici 

r2(g2— p2sin2<p,) = (q 2 

v cos <pí + \A 

v2)2. (33) 

Rovnici (33) přepíšeme v kartézské soustavě souřadnic 
s užitím převodních vzorců (26). Po úpravě dostaneme 
konečný tvar 

x2 y2 

g2 — V2 
+ - 1 . (34) 

Protože je q > v, je i q2 — v2 > 0 a tedy rovnice (34) 
je početním vyjádřením elipsy E se středem D a hlavní 
osou v přímce DS. 

Tím je dokázáno, že M C E. Důkaz tvrzení E c M 
přenecháváme opět čtenáři. 

Obr . 29ab 
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Výsledek, a) Je-li v > g, je geometrické místo M 
vnitřek P úsečky TtT2, jejíž krajní body jsou zároveň 
body dotyku tečen z bodu D ke kružnici k (obr. 29a). 

b) Je-li v < g, je geometrické místo M elipsa E se 
středem D. Dále, jak sami snadno zjistíte, jsou hlavni 
vrcholy elipsy E průsečíky kružnice k s kolmicí l k přím-

ce DS jdoucí bodem D. 
Excentricita elipsy E je 
rovna výšce pravoúhlého 
trojúhelníka s přeponou g 
a odvěsnou v (obr. 29b). 

Uvedeme si ještě jeden 
příklad, ve kterém s vý-
hodou použijeme polár-
ních souřadnic. 

16. Příklad. Je dána 
kružnice k = (S; g) a její 

Ov. 31 průměr AB. Bod X pro-
bíhá kružnici k. Z je ta-
kový bod polopřímky SX, 

jehož vzdálenost od počátku S je menší než vzdálenost 
bodu X od přímky AB. Vyšetříme geometrické místo M 
všech bodů Z-

Řešení . Geometrické místo M je souměrné podle 
přímky AB i podle osy úsečky AB. Zvolíme proto nej-
dříve kartézskou soustavu souřadnic podle obrázku 30. 

Souřadnice bodu X vyjádříme s výhodou pomocí 
směrového úhlu q> přímky SX. 

f j = g cos <p, ??! = g sin <p . (35) 

Zvolme nyní soustavu polárních souřadnic s pólem 5 

c 

/ 1 / ^ 

y / z 

^ 1 
s B 

D 
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a polární osou v polopřímce SB. Jsou-li nyní r, <p polární 
souřadnice libovolného bodu Z množiny M, pak je 

r <\q sin cp\ . (36) 

Zbývá zjistit, který útvar má v polárních souřadnicích 
početní vyjádření (36). Pro r = 0 dostaneme pól S, 
který tedy patří množině M. Můžeme tedy v dalším 
předpokládat, že je r > 0 a užít převodních vzorců 

r = )/x* + y2, x = T cos (p, y = r sin <p 
k vyjádření nerovnosti (36) v kartézské soustavě sou-
řadnic; dostaneme 

resp. po úpravě 
r i i 2 i 

* 2 + | y pro y ^ O , 

r 1 l 2 1 + \_y + T e J < I ? 2 > pro j c ^ O . 

Protože nerovnosti (37) jsou početním vyjádřením vnitř-
ků Ult U2 kruhů dotýkajících se osy X v počátku, je tím 
dokázán vztah M c U = U 1 U U í U {S}.1) 

Obráceně si sami již snadno ověříte, že je splněn vztah 
U C M . 

Výsledek. Geometrické místo M tvoří vnitřky Ult 
U2 dvou kruhů s průměry CS, DS spolu s bodem S, kde 
CD je průměr kružnice k kolmý k přímce AB a bod S je 
průsečníkem průměrů AB a CD (obr. 31).2) 

(37) 

? Zápis (5) znáči množinu obsahující jediný bod S. 
Na obr. 31 si doplňte označení S středu kružnice k. 
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17. Přiklad. Jsou dá-
ny dvě různoběžky p, q 
s průsečíkem R. Na jed-
né z os různoběžek p, q 
je dán bod D ve vzdále-
nosti v (v > 0) od bodu R. 
Bodem D prochází přím-
ka d, která se kolem něj 
otáčí. Body P, Qjsou prů-
sečíky přímky d s přímka-
mi p, q. Vyšetříme geo-
metrické místo M všech 
středů Z úseček PQ. 

Řešeni . Vzhledem 
k souměrnosti geometric-

kého místa M podle přímky DR, zvolíme soustavu sou-
řadnic podle obrázku 32. 

Obr. 3 i 

y / 

/ y ~ax 

c ^ ^ * 

/ p 
N. y = -ax 

Obr. 32 
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Rovnice přímek^, q, d můžeme napsat po řadě ve tvaru 

y = ax , (38a) 
y = —ax , (38b) 
y—v=kx. (38c) 

J e sice pravda, že ve tvaru (38c) nemůžeme zapsat 
přímku d v případě, že splyne s osou y, ale v tomto pří-
padě body P, Q, splynou a nemá smyslu mluvit o středu 
úsečky PQ,. 

Nyní určíme souřadnice bodů P = t^], Q, = 
= [¿2 > ^2]' Řešením soustavy složené z rovnic (38a), 
(38c) a soustavy rovnic (38b), (38c) dostaneme (pokud 
1*1 * «) 

. v av 
f I = r . Vl 

— (39) 
t " _ a V 
f í = ^ T T ' ^ " T + k -

Nyní již můžeme vypočítat souřadnice středu Z úsečky 
PQ 

t kv a2v /Ar\\ 

Abychom dostali početní vyjádření množiny M, vylou-
číme z rovnic (40) parametr k. Předně určíme podíl 
(zřejmě je 77 # 0) 

1 = A 
r) a2 

Odtud vypočítáme k a dosadíme do druhé rovnice (40): 
a*v 

V = 

" - ( f f 
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Po jednoduchém výpočtu vyjde 

^(rj2 — a2f2 — vrj) = 0 . 

Protože rj ^ 0, můžeme jím krátit a po další úpravě do-
jít k tvaru 

V J 1 (41) 

(¿r m 

= — i . 

Dostali jsme početní vyjádření hyperboly H. Jak snadno 
zjistíme, jsou hlavními vrcholy hyperboly H body R, D 

a asymptoty jsou rovnoběž-
né s přímkami p, q. 

Nezapomeňme však, že 
z hyperboly musíme vyloučit 
bod R. Zjistili jsme tedy, 
že geometrické místo M je 
částí útvaru U, který se sklá-
dá ze všech bodů zmíněné 
hyperboly H s výjimkou bo-
du R. (Obr. 33.) 

Obrácení provedeného 
postupu přenecháváme již 
čtenáři. 

Výsledek. Geometrické 
místo N\ j e (s výjimkou jedi-
ného bodu R) hyperbola H 
s hlavními vrcholy R, D 
a asymptotami rovnoběžný-

Obr. 33 mi s přímkami p, q. 
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C v i č e n í 

23. Jsou dány dvě různé rovnoběžky AB, c. Bod C probíhá přím-
ku c. Vyšetřete geometrické místo M všech průsečíků výšek 
trojúhelníků ABC. 

24. Jsou dány dvě shodné kružnice K„ K2 se společným bodem do-
tyku 7*. Bod X probíhá kružnici K„ bod T kružnici K2 tak, že 
úhel XTT je pravý. Vyšetřete geometrické místo M středů 
Z úseček XT. 

25. Dvě rovnoběžky a, b protíná společná kolmice AB (A je bod 
přímky a, B je bod přímky b). Bod AT probíhá přímku a, bod T 
přímku b a to tak, že součin AX. BT je stále roven číslu 
A # 1. Body X, r j s o u 

a) v téže polorovině určené přímkou AB, 
b) v opačných polorovinách určených přímkou AB. 

Vyšetřete geometrické místo M průsečíků Z přímek AT, BX. 
26. Jsou dány dva nesoustředné kruhy K, = (Sl; r,), K2 = (Ss; r2). 

Bod X probíhá kruh Kít bod T kruh K2 tak, že součet úhlů 
SlS1 T, S^SiX je stále roven <p. Vyšetřete geometrické místo M 
středů Z úseček XT. 

27. Jsou dány dvě různoběžky a, b se společným bodem S. Po 
přímce a se pohybuje bod X a po přímce b bod Y tak, že troj-
úhelník XTS má konstantní obsah P. Vyšetřete geometrické 
místo M středů Z úseček XT. 

28. Na obvodu čtverce PQRS se pohybují stálou rychlostí tři body 
U, V, W, které rozdělují obvod tohoto čtverce na tři stejně 
dlouhé části (lomené čáry). Vyšetřete geometrické místo M 
těžišť Z všech trojúhelníků UVW. 

29. a) J e dána kružnice K = (S; g) a bod O ve vzdálenosti v 
(0 < v ť̂  g) od středu S. Dále je dáno číslo a > 0. Bod X pro-
bíhá kružnici K. Vyšetřete množinu M všech bodů Z> kde Z j e 

takový bod polopřímky OX, pro který je OX. OZ = <**• 
(Užijte soustavy polárních souřadnic!) 
b) Řešte tutéž úlohu pro případ v = q. 
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30. Jsou dány dvě různoběžky p, q s průsečíkem R. Na ose přímek 
p, q je dán bod D ve vzdálenosti v (v > 0) od bodu R. Bod P 
probíhá přímku p; Q_ je průsečík přímky DP s přímkou q. 
Vyšetřete geometrické místo M průsečíků Z výšek všech troj-
úhelníků PQR. 
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5. k a p i t o l a 

P Ř E H L E D U Ž I T Ý C H V Ý S L E D K Ů 
Z A N A L Y T I C K É G E O M E T R I E 

[1] Délka úsečky 

Délku úsečky s krajními body A = [xjj jCj], B = 
= [x2;jy2] počítáme podle vzorce 

AB = l/(*x— x2)* + (j,— J2y. 

[2] Úsečka, po lopř ímka 

Nechť jsou dány dva různé body A = j j ] , 
B = [x2; jy2]. Potom bod Z = [ f ! v] patří úsečce AB 
právě tehdy, když pro jeho souřadnice platí 

f = X l t iix* ~ X l ) ' } kde 0 ^ A sS 1 . 
v =h + Kyt— J i ) » J 

Přitom pro polohu bodu Z platí A-Z = XAB. 
Speciálně pro střed S = [ í j j íjJ úsečky AB dostaneme 

f i = y (*i + x2), ( j i + ) • 

Bod Z — [f ! patří polopřímce AB právě tehdy, 
když pro jeho souřadnice platí 

f = + X{X2 — Xl) , 1 ^ Q < x 

V =Ji Ji) , J 

Pro polohu bodu Z přitom platí AZ = h.AB. 
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[3] P ř í m k a 
Směrnicový tvar rovnice přímky různoběžné s osou y je 

y = kx + g, 
kde k je tangens směrového úhlu <p(k = tg <p). 

Obecný tvar rovnice přímky je 

ax + by + c = 0 , 
přitom čísla a, b nejsou zároveň rovna nule. 

Vyjádření přímky pomocí tzv. smírových sinů a kosinů 
(tj. pomocí sinů a kosinů směrového úhlu <p) je 

x sin <p — y cos <p + c = 0 . 
Přímka urlená dvěma různými body A = [x1; j J , B = 

= |x 2 ;y 2 ] má početní vyjádření 

(>i — y*) ( x — — (*i — *i) (y —j>i) = 0 • 
Tento tvar má oproti často užívanému směrnicovému 
tvaru tu výhodu, že zahrnuje i přímky rovnoběžné 
s o s o u j . 

[4] Polorovina 
„Horní" polorovina určená přímkou o rovnici 

ax + by + c = 0 , kde a > 0, b > 0, 
má početní vyjádření 

ax + by + c ^ 0 . 
„Horní" polorovina určená přímkou o rovnici 

ax — by + c = 0 , kde a > 0, b > 0, 
má početní vyjádření 

ax — by + c ^ 0 . 
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Pro příslušné „dolní" poloroviny platí obrácené ne-
rovnosti. 

[5] Vzdálenost bodu a př ímky 
Vzdálenost v bodu A = [x^jVi] od přímky, která má 

rovnici 
ax + by + c = 0 , (1) 

se vypočte podle vzorce 

]/a2 + ¿2 W 

Jestliže pro koeficienty rovnice (1) platí 

a2 + b2 = 1 , 

má vzorec (2) tvar 

v = |a*! + byx + c| . 

[6] Kružnice 
Kružnice k se středem S = \m\ re] a s poloměrem r má 

rovnici 
(* — m)2 + ( j — n)2 = r2. 

Vnitřek, resp. vnijšek kružnice k má početní vyjádření 

(* — m)ž + (y — n)2 < r 2 , 
resp. 

(* — m)2 + (jy — n)2 > r 2 . 
Rovnice 

(x — m)2 + [y— n)2 = 0 
je početním vyjádřením jediného bodu S = [m; n]. 

Nerovnost 
(x — m)2 + (y — n)2 < 0 
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představuje množinu prázdnou (tj. není početním vy-
jádřením žádného bodu). 

[7] Parabola 
Rovnice 

(y — n)2 = 4p{x — m), kde p¥=0, (3) 

j e početním vyjádřením paraboly Pj s vrcholem = 
= [m; n] a ohniskem F1 = [m + p; n\. 

Rovnice 

(x — m)2 = 4p(y — n), kde p 0 , (4) 

je početním vyjádřením paraboly P2 s vrcholem V2 = 
= [TO; n] a ohniskem Ft = [m; n + />]. 

Vnějšek paraboly Px má početní vyjádření 

(y — n)2> 4p(x — m) pro p > 0 
a 

(y — n)2 < 4p(x — m) pro p < 0 . 

Vnějšek paraboly P2 má početní vyjádření 

(* — m)2 > 4p(y — n) pro p > 0 
a 

(y — n)2 < 4/>(* — m) pro /> < 0 . 
Pro vnitřky parabol Pu P2 platí obrácené nerovnosti. 

[8] Elipsa 
Rovnice 

= [a > 0, 4 > 0 ) 

je početním vyjádřením elipsy £ se středem £ = [m; re] 
a vrcholy = [m ± a; »], 2?1)2 = [m; tz ± 
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Excentrická (tj. vzdálenost ohnisek elipsy E od jejího 
středu S) je 

e = ]/V — ¿2| . 
Vnitřek, resp. vnějšek elipsy E má početní vyjádření 

[x — my (y — nY ^ 
a2 ¿2 ' 

resp. 

(*-M)a , (y—ny . 
a2 ¿2 " 

[9] Hyperbola 
Rovnice 

je početním vyjádřením hyperboly Hx se středem S = 
= [m; n], hlavními vrcholy A1)2 = [m ± a; n\ a 
asymptotami 

y — n = —m). 

Rovnice 

(x— m)2 (j> — ny 
o2 ~ ¥ = —1 ; (a > 0, A > 0) 

je početním vyjádřením hyperboly H2 se středem S — 
= [m; n], hlavními vrcholy 5 1 ) a = [m; n ± ¿] a 
asymptotami 

v — n = ± — {x — m) . 



Obě hyperboly Hu H2 mají stejnou excentricitu 

Vnějšek hyperboly Hu resp. hyperboly H2 má početní 
vyjádření 

Vnitřky hyperbol Hl a H2 vyhovují obráceným nerov-
nostem. 

[10] Soustava polárních souřadnic 
Zvolme v rovině dva různé body P, J. Těmito body 

je určena tzv. soustava polárních souřadnic, která má 
pól v bodě P, polární osu v polopřímce PJ a jed-
notkovou úsečku PJ. 

Je-li bod A ^ P, pak pro jeho polární souřadnice 
[r; <p] platí (obr. 34): 

a) první souřadnice r je délka úsečky AP při zvolené 
jednotkové úsečce PJ\ 

e = ]/a2 + b*. 

[x-mY 

resp. 

y 

r. sin y d =[*,/] 

x 
P 

Obr. 34 Obr. 35 
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b) druhá souřadnice <p je velikost orientovaného úhlu 
y p A - . 

Je-li A = P, pak bod A má první souřadnici r = 0; 
jeho druhá souřadnice se nezavádí. 

Obráceně každé dvojici reálných čísel [r; 95], kde 
r > 0, odpovídá v rovině se zavedenou soustavou polár-
ních souřadnic jediný bod A = [r; 93]. 

[11] Transformační rovnice 
pro převod kartézské soustavy souřadnic v polární sou-
stavu souřadnic a obráceně. 

Nechť počátek kartézské soustavy souřadnic splyne 
s pólem polární soustavy souřadnic a nezáporná část 
osy x splyne s polární osou (obr. 35). 

Pro převod mezi kartézskými a polárními souřadni-
cemi užíváme vzorců 

x = r cos <p, y = r sin q>, 
resp. 

r = V š T 7 , cos * = 7 = = • 
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V Ý S L E D K Y C V I Č E N Í 

2. k a p i t o l a 

1. a) Všechny úsečky VZ jsou navzájem shodné a platí V Z = 

= 2AE, kde £ je vrchol rovnoběžníku BCDE. Je-li AE< ^-d, 

je geometrickým místem M celá rovina. Je-li AE ^ — d, je 

geometrické místo M množina prázdná (neobsahuje žádný 
bod). 

b) Geometrické místo M je vnitřek kruhu k = —<fj, kde 

S je střed libovolné úsečky spojující krajní body příslušné lo-
mené čáry. 

2. a) Je-li q =• — (2k* — AB1) > 0, je geometrickým místem M 

kružnice U = (T; ] /p), kde T je střed úsečky AB. Je-li e = 0, 
je geometrickým místem M jediný bod T. Je-li g < 0, je geo-
metrické místo M množina prázdná, b) Pro Hané tři body A, 

B, C dostáváme: Je-li S =• j [3Aa — (AB> + AC1 + BC')] > 0, 

je geometrickým místem M kružnice U s ( I ; j /o) , kde T je 
těžiště trojúhelníka ABC. Je-li g = 0, je geometrickým místem 
jedině bod 7", je-li q < 0, je geometrickým místem množina 
prázdná. Pro dané čtyři body A, B, C, D dostáváme: Je-li 

q = [4k* — {AB1 + AC' + AD* + BC* + BD> + CDS)] > 0, 
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je geometrickým místem kružnice U = (T; ]]q ), kde T je 
těžištěm čtveřice bodů A, B, C, D (tzn. T je střed úsečky spo-
jující středy úseček AB, CD). Je-li g = 0, je geometrickým 
místem jediný bod T a je-li g < 0, je geometrické místo mno-
žina prázdná. 

3. Tzv. Apolloniova kružnice, tj. kružnice opsaná nad průměrem 
CD, kde C a D jsou body přímky AB, pro které platí: AC : 
:BC= AĎ : BD= k. 

71 
4. Je-li PRQj> — , je geometrické místo množina prázdná. 

71 
Je-li -$.PRQ_= — , je geometrické místo jediný bod S, čtvrtý 

71 
vrchol rovnoběžníka PRQS. Je-li -^PRQ_< — , je geometrické 

místo M kružnice U = (S; g), kde q = ]/2RP . RV, V je pata 
výšky vedené z bodu Q na stranu RP. 

5. Za předpokladu, že paprsek se odrazil postupně od stěn urče-
ných přímkami AB, BC, CA, je půdorysem geometrického 
místa společná část vnitřku trojúhelníka ABC a rovnoběžky p 
se stranou BC ve vzdálenosti v = 5 \\]l — ]/3 ] = 4,57 metrů 
od vrcholu A. * 

6. Elipsa s osami ol a o„ délkou hlavní poloosy Id a délkou 
vedlejší poloosy d. 

7. Geometrické místo M je průnik dvou množin U l a U2, které 
popíšeme každou zvlášť. Označme 5 průsečík úhlopříček AC 
a BD. Je-li e , = 2(Z)52 — i 4 5 8 ) > 0, je U1 vnějšek kruhu 
A, = (E ; j /p , ) , kde E je bod souměrně sdružený podle středu S 
s vrcholem A. Je-li ¡>, = 0, je l/ t celá rovina s výjimkou bodu E 
a konečně, je-li < 0, je U1 celá rovina bez výjimky. Je-li 
p, = 2 (AS2 — CS1) > 0, je U, vnitřek kruhu kt = (F; J/ěT), kde 
F je bod souměrně sdružený podle středu S s vrcholem C. 
Je-li ei á 0, je (J, množina prázdná. 
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8. Geometrické místo M je kratší oblouk AB kružnice opsané 
trojúhelníku ABC. 

3. k a p i t o l a 

9. Označme o kolmici vedenou z bodu D na přímku p a rf„ d2 

rovnoběžky s přímkou p ve vzdálenosti k\ přitom označení 
volme tak, aby přímka dt ležela v polorovině pD. Je-li v> k, 
skládá se geometrické místo M z parabol Pu Pt se společným 
ohniskem D a řídicími přímkami du d2. Je-li v = k, skládá se 
g . m . M z paraboly P, s ohniskem D a řídicí přímkou dt a z těch 
bodů přímky o, které neleží „mezi" bodem D a přímkou p. 
Je-li v < k, skládá se g. m. M z té části paraboly P„ která 
náleží polorovině pd, a z té části paraboly P2, která náleží 
polorovině pD. 

10. Označme P patu kolmice vedené z bodu D na přímku p a S 
střed úsečky PD. Je-li v2 ¡g 2k, je geometrické místo M mno-
žina prázdná. Je-li v2 < 2k, je g. m. M vnitřek U elipsy se 
středem v bodě S, s hlavní osou délky |/2(2k — v)' rovnoběž-
nou s přímkou p a vedlejší osou délky j/2k — v'. 

11. Označme P parabolu s ohniskem D a řídicí přímkou p. Geo-
metrické místo M se skládá ze dvou shodných parabol Pt, P„ 
které vzniknou z paraboly P posunutím ve směru její osy v obou 

k 
smyslech o vzdálenost —— • 

2v 
12. Nechť každý vrchol obdélníku ABCD leží na jedné z přímek 

a, b a má od zbylé přímky vzdálenost k. Geometrické místo M 
se pak skládá z celé roviny s výj mkou vnitřků dvou pásů rov-
noběžek AB, CD a BC, AD. 

13. Geometrické místo M tvoří shodné rovnoosé hyperboly, s dél-
kou hlavní poloosy (k sin a)-1 '» a a s asymptotami splývajícími 
s osami různoběžek a, b. 
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14. Geometrické misto M je kružnice se středem O na polopřímce 
SA ve vzdálenosti a(k2 + 1) {k1 — 1)_1 od počátku S a s polo-
měrem 2ak(k' — l ) - 1 . 

2 
15. Je-li k sá , je geometrické místo M množina prázdná. Je-li 

a* 
2 

k > , je geometrické místo M hyperbola se středem v bodě 
a• 

S, s vedlejší osou délky 2a splývající s přímkou AB a hlavní 
osou délky a ]/2 (ka* — 2 ) - ' / . . 

16. Označme H„ Ht hyperboly se společnými asymptotami a, i 
a excentricitou (vzdálenost ohniska od středu hyperboly) 
2 {k . y sin a ) _ 1 . Každou větev těchto dvou hyperbol posuňme 
ve směru hlavni osy příslušné hyperboly od průsečíku P růz-
noběžek a, b o příslušnou délku hlavní poloosy. Všechny čtyři 
posunuté větve hyperbol tvoří dohromady geometrické místo M. 

17. Geometrické místo M je buď množina prázdná, nebo bod, nebo 
úsečka anebo uzavřená lomená čára maximálně se šesti vrcholy 
umístěnými po dvou na každé z přímek AB, AC, BC (některé 
z těchto vrcholů mohou případně splynout). Vrcholy na přímce 
AB můžeme sestrojit napr. takto: Sestrojíme geometrické místo 
M' všech bodů Z> které mají od přímek BC, AC stálý součet 
vzdáleností rovný k (viz příklad 6 na str. 32). Společné body 
geometrického místa M' a přímky AB vyčerpávají všechny 
body geometrického místa M, ležící na přímce AB. 

18. Geometrické misto M se skládá z vnitřku tří trojúhelníků, je-
jichž jeden vrchol je vždy průsečík osy vnitřního úhlu s pro-
tější stranou a další dva vrcholy jsou průsečíky os vnějších 
úhlů při zbývajících vrcholech s přímkami obsahujícími pro-
tější strany. 

19. Geometrické místo M je elipsa E, jejíž hlavní osa splývá 
s přímkou o, střed S leží na polopřímce VD ve vzdálenosti 
v c o s - ' <p od počátku V, její délky poloos jsou v sin <p c o s - ' <p, 
v sin <p c o s - ' <p (1 + cos' <p)~l/'-

95 



20. Je-li q> = 45°, pak je geometrické místo M osa úsečky DV 
s výjimkou jejích průsečíků s přímkami V A, VB. Je-li <p ¥= 45°, 
pak je geometrické místo M rovnoosá hyperbola H (bez prů-
sečíků s přímkami VA, VB), jejíž hlavní osa splývá s přímkou 
o, střed S má od bodu V vzdálenost | v cos - 1 2<p | a délky obou 
poloos jsou | v 1/2 sin <p cos - 1 2<p |. Přitom pro <p < 45° leží 
bod S na polopřímce VD a pro <p> 45° na polopřímce k ní 
opačné. 

21. Geometrické místo M je hyperbola H, která má jedno ohnisko 
v bodě D, hlavní osa délky kv{k* — l ) - 1 je kolmá k přímce p, 
střed hyperboly leží v polorovině pD ve vzdálenosti k2v(k — l ) - 1 

od přímky p. 
22. Nechť ABCD je rovnoběžník. Hl značí hyperbolu se středem 

D, asymptotami BD, CD, hlavní osou AD a délkou hlavní 
poloosy a —v ]/2 (v je výška trojúhelníka ABC). H2| H, jsou 
hyperboly, které vzniknou otočením hyperboly H, kolem tě-
žiště trojúhelníka ABC o úhly 120° a —120°. Geometrické 
místo M je společná část vnějšků hyperbol H„ H„ H, a troj-
úhelníka ABC; je to „hyperbolický trojúhelník" s vrcholy ve 
středech stran trojúhelníka ABC. 

4 k a p i t o l a 

23. Geometrické místo M je parabola P, jejíž osa splývá s osou 
úsečky AB, vrchol V je průsečík výšek rovnoramenného troj-
úhelníka ABC. Parabola P prochází body A, B. 

24. Geometrické místo M je kružnice K, shodná s kružnicemi K,, 
K, se středem T, s výjimkou středů St, S3 kružnic K„ Kt. 

25. a) Geometrické místo M je s výjimkou bodů A, B elipsa E 
s hlavními vrcholy A, B a vedlejší osou délky y * . 
b) Geometrické místo M je s výjimkou bodů A, B hyperbola H 
s hlavními vrcholy A, B a vedlejší osou délky )'k. 
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26. Geometrické místo M je kruh K, jehož střed S splývá se stře-

dem úsečky StS, a poloměr je r = — (r, + r2). Výjimku tvoří 

bod S, který geometrickému místu AI nepatří. 
27. Geometrické místo M tvoří dvě hyperboly H„ H, s asympto-

tami a, b a excentrickou e = P sin _ I <p, kde <p je odchylka 
přímek a, b. 

28. Geometrické místo M je obvod O čtverce P'Q'R'S', který je 
stejnolehlý se čtvercem PQRS se středem stejnolehlosti v prů-
sečíku úhlopříček PR, QS a koeficientem stejnolehlosti k = 1/9. 

29. a) Geometrické místo M je kružnice L se středem C na polo-
přímce opačné k polopřímce OS. Přitom je OC = a!v(o1 — 
— e«)"1 a poloměr kružnice L je a*g — g2) - 1 . 
b) Geometrické místo M je kolmice P k přímce OS. Jej í prů-
sečík C s polopřímkou OS má od bodu O vzdálenost 

30. Geometrické místo M je hyperbola H s vrcholy R, V (V je 
průsečík výšek rovnoramenného trojúhelníka PQR) a asympto-
tami kolmými k přímkám p, q. 
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