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P Ř E D M L U V A 

Berete-li tuto knížku do ruky s nadějí, že jej ím studiem 
rozšíříte obsah svých matematických vědomostí, že po-
znáte nová, vám dosud neznámá odvětví matematiky, 
budete asi zklamáni. Přesto vám toto studium může při-
nést velký užitek. 

Není dobře, spokojí-li se někdo v matematice pouhým 
vyřešením daného úkolu, i když se mu podaří řešení bez-
vadné a úplné. Nikdy nemůže škodit, když hledá nové 
způsoby řešení. Nejde tedy jen o matematické védomosti, jde 
také o matematické dovednosti. Poznávat nové metody je 
v matematice stejně důležité jako studovat nové mate-
matické pojmy a celé obory. 

Pokud jde o nerovnosti, můžeme k jejich řešení přistu-
povat v podstatě dvojím způsobem, bud aritmeticky, 
nebo geometricky. V některých případech má aritme-
tické řešení mnoho předností; naproti tomu geometrické 
řešení je někdy přehlednější a veďe rychle k cíli. J e tedy 
užitečné znát obě metody. Protože aritmetické metody 
řešení nerovností znáte ze střední školy, uvádím zde 
především metody geometrické. Nevyhneme se při tom 
ovšem zopakování některých pojmů a vět známých ze 
školy (takové věty jsou v první kapitole uvedeny bez 
důkazů) ; účelem první kapitoly je postavit další výklad 
na pevný základ. 
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1. k a p i t o l a 

P Ř E D B Ě Ž N É P O Z N Á M K Y 
P O L O R O V I N A 

Zopakujme si nejdřív některé věci, které známe ze školy. 
Příslušná tvrzení si uvedeme většinou bez důkazů a očís-
lujeme si j e jako věty, abychom se na ně mohli v dalším 
textu snadno odvolávat. 

Především poznamenáváme, že slovo číslo znamená 
všude v této knížce číslo reálné; přídavné jméno reálné 
budeme pro stručnost vynechávat, čísla budeme ozna-
čovat malými písmeny latinské a tecedy, tedy a, b,c, ..., 
k, ..., q, ..., x,y, z. Tak tomu je hned v prvních větách, 
jejichž obsah jistě snadno pochopíte, zvláště když si pří-
slušná čísla znázorníte jako body na ose číselné, tj. na 
přímce. 

Symbol a <b ovšem znamená, že číslo a je menší než 
číslo b; podobně c > d znamená, že číslo c j e větší než 
číslo d. J e vám známo, že jsou-li a, b dvě pevně zvolená 
čísla, pak pro ně platí právě jeden ze vztahů 

a < b, a = b, a > b. (1,1) 

Symboly > , < představují tzv. ostré nerovnosti. Vedle 
toho zavádíme v matematice i neostré nerovnosti; symbol 
a b znamená, že číslo a je menši nebo rovno číslu b. 
Srozumitelnější je, když řekneme, že symbol a iS b 
znamená, že pro čísla a, b platí buď první, nebo druhý 
ze vztahů (1,1). Někdy totiž nemůžeme předem říci, kte-
rý z obou uvedených vztahů a < b a a = b platí ; víme 
jen, že neplatí vztah třetí, že neplatí a > b; to právě 
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zapisujeme stručně symbolem a ^ b. Podobně zápis 
a > b znamená, že neplatí a < b, že tedy je b u d 
a > b, nebo a = b. Neostré nerovnosti nebyly dřiv tak 
často užívány jako dnes, a proto starší lidé na ně nejsou 
zvyklí; těžko pak chápou například správnost zcela prav-
divého zápisu 4 ^ 4 , ačkoliv neříká nic j iného, než že 
číslo 4 není větší než 4. 

Přistupme už k prvním větám. 

Věta 1 ,1 . Je-li a < b, b < c, je také a <c. 

Věta 1,2. Je-li a < b,je také a + c < b + c pro ka£dé c. 

Věta 1,3. Je-li a < b,je také a — c < b — c pro kalié c. 

Obě poslední věty si snadno zapamatu jeme tímto 
heslem: smysl nerovnosti zůstane zachován, přičteme-li 
(nebo odečteme-li) na každé její straně totéž číslo. 

Věta 1,4. Je-li a < b, c < d, je také a + c < b + d. 

To se často vyjadřuje slovy, že nerovnosti stejného 
smyslu je dovoleno sčítat. 

Věta 1,5. Je-li a < b a c > 0, je také ac < bc. 

Aspoň zde si uveďme důkaz. Z předpokladu a < b 
plyne podle věty 1,3, že je b — a > 0. Součin obou 
kladných čísel (6 — a) . c j e ovšem číslo kladné, je tedy 
(b — a) . c > 0 a podle věty 1,2 je pak bc > ac, j ak 
tvrdí naše věta. 

Větu 1,5 si zapamatu jeme slovy, že smysl nerovnosti 
zůstane zachován, znásobíme-li obě její strany týmž 
kladným číslem. Naprot i tomu násobení záporným číslem 
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má za následek obrácení smyslu nerovnosti, jak je přesně 
formulováno v další větě, jejíž důkaz provedete snadno 
podle předcházejícího sami. 

Věta 1,6. Je-li a < b, c < 0, je ac > bc. 

Dělení nerovnosti nějakým číslem d ^ 0 je už v pod-
statě obsaženo ve větách 1,5 a 1,6, protože dělit číslem d 

znamená totéž jako násobit čísle^n c = Uvedeme to 

už stručně: 

Věta 1,7. Je-li a < b, d > 0, je < • 

Věta 1,8. Je-li a < b, d <0, je > • 

Někdy lze výhodně použít této věty: 

Věta 1,9. Je-li 0 < b < a, je — < 4- • 
a b 

Zde si stačí k důkazu uvědomit, že -4 — = a , ^ 
b a ab 

a že z daných předpokladů plyne a — b > 0 i ab > 0. 
Z analytické geometrie si př ipomeneme některé tvary 

rovnice přímky. Užijeme jen pravoúhlých kartézských 
souřadnic x,y\ rovině, přičemž se zásadně smluvíme na 
tom, že souřadnicovou osu x budeme kreslit vodorovně; 
z geometrického hlediska to není nutné, víme, že souřad-
nicové osy můžeme různě otáčet okolo počátku do no-
vých poloh, ale v souvislosti s nerovnostmi se naše vy-
jadřování velmi zjednoduší, zvolíme-li osu x vodorovnou 
a osu y pak ovšem svislou. (Viz obr. 1.) Každá z těchto 
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os souřadnicových není nic j iného než osa číselná; obě 
tyto osy mají společný počátek 0, totiž bod, jehož obě 
souřadnice jsou rovny nule. Na vodorovné ose x vyná-
šejme souřadnice obyčejným měřítkem tak, že ze dvou 
bodů bude vlevo bod s menší souřadnicí a vpravo bod 
s větší souřadnicí. Tak vlevo od počátku jsou na ose x vy-
značeny body, jejichž souřadnice x j e záporná, vpravo 
od počátku jsou body s kladnou souřadnicí x. Na svislé 
ose y jsou podobně body s kladnou souřadnicí y zobra-
zeny nad počátkem a body se zápornou souřadnicí pod 
počátkem. 

Má-li bod A v této soustavě souřadnice x,y, zapíšeme 
to stručně symbolem A [x;y], nebo budeme hovořit j en 
o bodu [x;y] atp. J e zřejmé, že body s kladnou souřadnicí 
y leží nad osou x, kdežto body ležící pod osou x mají sou-
řadnici y zápornou. Podobně body ležící vpravo od osyj> 
mají souřadnici x kladnou, body ležící vlevo od osy y 
mají souřadnici x zápornou. Toto pohodlné užívání slov 
„vlevo", „vpravo" , „ n a d " a „ p o d " je umožněno právě 
tím, že jsme osu x zvolili vodorovnou. 

Základním tvarem rovnice přímky bude pro nás v této 
knížce známý tvar směrnicový 

y=kx+q, (1,2) 

kde k a q jsou konstanty a x,y jsou proměnné souřadnice 
běžného bodu příslušné přímky. Nezapomeňme, že touto 
rovnicí lze vyjádřit každou přímku v rovině s výjimkou 
přímek rovnoběžných s o s o u j . Přitom číslo q se nazývá 
úsek vyťatý naší přímkou na o s e j , neboť průsečík této 
přímky s o s o u y j e bod [0; q\, jak se snadno přesvědčíte 
dosazením x = 0 do rovnice (1,2). Zvláště tedy přímka 
procházející počátkem a různoběžná s osou y má rovnici 

y = k x : (1,3) 
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Číslo k, vystupující v rovnicích (1,2) a (1,3), se nazývá 
smérnice příslušné přímky; ve škole se dokazuje, že j e to 
tangens směrového úhlu 9? této přímky, tedy 

k = tg? ; (1,4) 

v obr. 1 je názorně vyznačen směrový úhel q> přímky m 
a přímky n. 

Vodorovné přímky, tj. přímky rovnoběžné s osou x, 
jsou zřejmě charakterizovány tím, že jejich směrnice j e 
rovna nule, tedy k = 0. Je-li k 0, pak už příslušná 
přímka není vodorovná; to se projevuje tím, že souřad-
nice y bodu, který probíhá tuto přímku, se různě mění; 
buď roste, nebo klesá. Ale tím už jsme přivedeni k ne-
rovnostem. Abychom si to přesně vyjádřili (viz dále věty 
1,10 a 1,11), uvědomíme si, že pro k ^ 0 j e na pravé 
straně rovnice (1,2) nebo (1,3) funkce lineární (proměnná 
x j e tu v první mocnině). Znázorníte-li si graficky ně-
jakou takovou funkci nebo třeba i- j inou funkci (např. 
sin cos x, log x, atd.), víte, že někdy s rostoucím x roste 
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v určitém úseku takéy, tj. roste hodnota funkce; v tom 
případě mluvíme o funkci rostoucí (v určitém úseku). 
Jestliže při rostoucím x klesá příslušné y, nazývá se ta-
ková funkce klesající (v určitém úseku). Pro lineární 
funkci dokážeme snadno tyto dvě věty: 

Věta 1,10. Je-li k > 0, je lineární funkce daná rovnicí 
(1,2) všude rostoucí. 

Důkaz. Zvolme xx < x2 a označme 

J>i = kxx + g, y2 = kx2 + q . 
Protože je k > 0, j e podle věty 1,5 také kxx < kx2 a dále 
podle věty 1,2 také kxx +q <kx2 + q čili yx <y2. 
Vzrostlo-li tedy x z xx na x2, vzrostlo také příslušné^" z y x 

naje2. 

Věta 1 , 1 1 . Je-li k < 0, je lineární funkce daná rovnicí 
(1,2) všude klesající. 

Důkaz je stejný jako v předcházejícím případě, jenom 
se místo věty 1,5 užije věty 1,6; pro xx < x 2 vyjde pak 

V obr. 1 jsou znázorněny oba případy uvedené ve 
větách 1,10 a 1,11. Přímka m tam nakreslená má smě-
rový úhel <p ostrý, j e zde tedy podle vzorce (1,4) k > 0; 
vskutku, roste-li x (tj. postupujeme-li po ose x zleva do-
prava), zvětšuje se neustále i souřadnice y příslušného 
bodu přímky m, funkce je rostoucí. Přímka n má k < 0 
a znázorňuje na obr. 1 lineární funkci klesající. 

Nahradíme-li v rovnici (1,2) znamení rovnosti zna-
mením nerovnosti, přejde tato rovnice v nerovnost; 
vzniká otázka, jaký geometrický význam má taková ne-
rovnost, čili které body mají tu vlastnost, že jejich sou-
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radnice x, y splňují příslušnou nerovnost. Prozkoumáme 
to hned podrobně. 

Věta 1 , 12. Horní polorovina vyťatá přímkou o rovnici (1,2) 
je množina (tj. souhrn) všech bodů [x ; jy], jejichž souřadnice 
splňují nerovnost 

y ^ k x + q (1,5) 

a obrácené každý bod, jehož souřadnice splňují tuto nerovnost, 
patří do zntínéné horní poloroviny. 

x 
Důkaz je bezprostřední. Je-li M [x ;y] vnitřní bod 

naší horní poloviny, leží pod ním na hraniční přímce m 
jediný bod M0 [x;y0], který m á stejně velkou souřad-
nici * jako bod M (viz obr. 2); je tedy y >y0 a zároveň 

y0 = kx + q, neboť bod M0 leží na přímce m o rovnicí 
(1,2). O d t u d vychází y > kx + q. Protože body dané 
hraniční přímky počítáme také k polorovině jí vyťaté, 
musíme i tyto body k naší polorovině přidat, a proto 
musíme ve vzorci (1,5) připustit neostrou nerovnost. 
Celý tento myšlenkový postup lze obrátit , čímž je věta 
1,12 dokázána. 

Všimněte si, že celá tato úvaha spočívá na tom, že 
svislá přímka vedená bodem M protíná hraniční přímku 
m poloroviny právě v jednom bodě M0; to je umožně-
no tím, že přímka m o rovnici (1,2) není rovnoběžná s 
osouy. J inak bychom ostatně nemohli mluvit o „horn í " 
polorovině, vyťaté touto přímkou. 

Pro dolní polorovinu, určenou přímkou m, tj. pro po-
lorovinu opačnou k té, o níž hovoří věta 1,12, dokážete 
už obdobně sami tuto větu: 

Věta 1 , 13 . Dolní polorovina vyťatá přímkou o rovnici (1,2) 
je množina všech bodů [x; y], jejichž souřadnice splňují ne-
rovnost 
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y ^ kx + q (1,6) 
a obráceni každý bod, jekot souřadnice splňují tuto nerovnost, 
patří do zmínéné dolní poloroviny. 

Svislá přímka, kterou jsme nutně ve větách 1,12 a 1,13 
vynechali, určuje ovšem také dvě poloroviny; jejich ana-
lytické vyjádření najdete snadno sami a dostanete tento 
výsledek: 

Věta 1,14. Levá polorovina určená hraniční přímkou o rov-
nici x = c (kde c je konstanta) je množina všech bodů, pro niž 
je x ^L c, a pravá polorovina určená touto přímkou je množina 
všech bodů, pro néžje x > c . 

Analytické vyjádření polorovin pomocí příslušných 
nerovností budeme potřebovat i v případě, kdy hraniční 
přímka není určena rovnicí ve směrnicovém tvaru, ale 
kdy je určena jakoukoli lineární rovnicí. Velmi jedno-
duché případy přímek rovnoběžných s osami souřadnic 
však už při tom vynecháme, protože jsou zahrnuty ve 
větách 1,12 až 1,14. 
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Věta 1,15. Předpokládejme, že v rovnici přímky 

ax + by + c = O (1,7) 

je a > O, b > 0. Potom horní polorovina určená touto přímkou 
je množina všech bodů [*; y], pro néžje 

ax + by + c ^ O, (1,8) 

a dolní polorovina určená touto přímkou je množina všech bodů 
[*; y], P™ niž je 

ax + by -\-c ^ O (1,9) 

Důkaz. Rovnici (1,7) přepišme na tvar y = kx + q 
tím, že položíme k = q= y . Horní polo-
rovina je pak podle věty 1,12 charakterizována nerov-
ností (1,5), tj. 

ax c 

čili (viz větu 1,2) 
ax c 

~T+y + T = 

Násobením číslem b > 0 na obou stranách dostáváme už 
odtud podle věty 1,5 žádanou nerovnost (1,8). Z věty 
1,13 dostáváme užitím nerovnosti (1,6) stejným způ-
sobem nerovnost (1,9). Protože myšlenkový postup lze 
v obou těchto případech obrátit, plyne z nerovností 
(1,8) a (1,9) charakterizace příslušných polorovin. T ím 

je věta 1,15 dokázána. 

Věta 1,16. Předpokládejme, že v rovnici přímky 

ax — by + c = 0 (1,10) 
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je a > O, b > 0. Potom horní polorovina určená touto přímkou 
je množina všech bodů [x;y], pro nžžje 

ax — by+c^. 0, , (1,11) 

a dolní polorovina určená touto přímkou je množina všech bodů 
[x;y], pro níž je 

ax — by + c > 0. (1,12) 

Důkaz j e v podstatě stejný j ako u věty 1,15. Přepsáním 
rovnice (1,10) na směrnicový tvar teď dos táváme y = 

= kx + q, kde k = q = a od tud uži t ím vět 1,12 

a 1,13 plynou opět nerovnosti (1,11) a (1,12). 
Všimněte si rozdílu mezi vě tami 1,15 a 1,16. Vě tu 1,16 

nebudeme v dalším potřebovat , j e uvedena j en pro 
úplnost výkladu. 

Pro další pot řebu si p ř ipomeňme ze střední školy ještě 
vzorec pro rovnici př ímky, která prochází d a n ý m bodem 
[jfx; a m á směrnici k, totiž 

y—y1=k(x~x1); (1,13) 

p roměnné souřadnice běžného bodu př ímky jsou zde 
označeny x, y. Je- l i p ř ímka určena dvěma body ; jyJ 
a [*2 > 3>i\ > j e za p ředpokladu x1 ^ x2 

Příklady k tomu znáte ze školy, zde těchto vzorců po-
užijte ve cvičeních 1,7 až 1,10. 
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C v i č e n i 

1.1. Které z vět 1,1 až 1,4 zůstanou v platnosti, když je vyslo-
víme pro neostré nerovnosti místo pro ostré nerovnosti, tj. 
když některé nebo všechny symboly < nebo > v nich 
nahradíme symboly nebo Si ? 

1.2.' Zůstane ostrá nerovnost zachována, násobíme-li každou její 
stranu číslem nula? 

1.3. Rozhodněte, zda je správná tato věta: Je-li a ^ b, c ^ 0, 
j e st ^ bc. ^ . 

1.4. Leží počátek v horní nebo v dolní polorovině vyťaté přím-
kou o rovnici a) 2* + 3y + 2 = 0, b) 3* — 5y + 1 = 0, 
c) ax + by = 0, kde b # 0? 

1.5. Najděte analytické vyjádření polorovin vyťatých přímkou, 
* y 

danou tzv. úsekovou rovnicí K — = 1, kde předpoklá-
P <1 

dáme p 0, q Ť* 0. (Čísla p, q určují úseky vyťaté danou 
přímkou na osách souřadnicových.) 

1.6. Jak se změní věty 1,12 až 1,16, nahradíme-li v nich všechny 
neostré nerovnosti ostrými nerovnostmi? 

1.7. Přímka má směrový úhel <p = 30° a prochází bodem 
A [1; 3]. Určete nerovnost charakterizující horní polorovinu 
vyťatou touto přímkou. 

1.8. Určete nerovnost charakterizující dolní polorovinu vyťa-
tou přímkou, která prochází body [—4; 5] a [1; 2]. 

1.9. Která polorovina je určena nerovností 
a) 3x + 4)i — 12 0, b) x — y + 1 ^ 0, c) * — 2 á 0. 

1.10. Rozhodněte, zda lineární funkce znázorněná přímkou p 
je rostoucí nebo klesající a napište příslušnou rovnici v těchto 
případech: a) přímka p prochází body [0; 0] a [3; 1]; 
b) přímka p má směrový úhel <p =F 135° a prochází bodem 
[1; 0]; c) přímka p prochází body" [— 1; 2] a [5; 2]. 
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2. k a p i t o l a 

L O M E N Á Č Á R A 

Naše dosavadní úvahy o lineárních funkcích a nerov-
nostech se podstatně zpestří, přibereme-li na pomoc 
ještě pojem absolutní hodnoty reálného čísla. Rozšíří se 
tím také působnost těchto úvah, jak poznáme i na prak-
tických příkladech. 

Absolutní hodnotu čísla * značíme, jak víte, symbolem 
geometricky na ose číselné znamená |*| vzdálenost 

bodu, přiřazeného číslu x, od počátku. J e tedy 

|* | = * p r o * ^ 0 , (2,1) 

|* | = — *, pro * < 0. 

Mění-li se * tak, že probíhá množinu všech reálných 
Čísel, j e 

J = | * l (2,2) 
funkce, jejíž graf je na obr. 3 a skládá se ze dvou polo-
přímek. Jejich rovnice dostaneme rozepsáním rovnice 
(2,2) pomocí rovnic (2,1); přitom ovšem musíme pečlivě 
vyznačit obory funkcí, určující tyto polopřímky. Tento 
rozpis rovnice (2,2) zní 

y = x pro * 0, 
y = — * pro * < 0. (2,3) 

Rozepsali jsme tedy rovnici (2,2) do dvou rovnic. Do-
stáváme tak dvě lineární funkce, z nichž každá je defino-
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vána jenom na části množiny reálných čísel. Podle vět 
1,10 a 1,11 vidíme, že j edna z nich je rostoucí, d ruhá kle-
sající (ve svém definičním oboru). Protože rovnice (2,3) 
jsou úplně ekvivalentní s rovnicí (2,2), můžeme říci: ab-
solutní hodnota reálného čísla j e klesající v oboru zá-

Všimněme si přitom, že v bodě x = 0 má tato funkce 
nejmenší ze všech hodnot, kterých vůbec nabývá; funkce 
| x \ má tedy v bodě x = 0 své minimum a toto minimum 
je z d e j = 0, j ak plyne z rovnice (2,2). 

Nepodceňujme tyto velmi jednoduché úvahy a vý-
sledky. V j iných o málo složitějších případech lomených 
čar není určení minima na první pohled tak snadné, jako 
tomu bylo na obr. 3. Ale právě určení minima či maxima 
funkce bývá z hlediska praxe velmi důležité. V dalších 
příkladech poznáme, že někdy taková lomená čára 
žádné minimum ani maximum nemá, j indy nabývá svého 
minima či maxima třeba i v nekonečně mnoha bodech. 

Některé jednoduché případy funkcí, jež vedou při gra-
fickém znázornění k lomeným čarám, které jsou složeny 
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z konečného počtu úseček a polopřímek, se probírají na 
středních školách. Uvedeme si zde takové i další pří-
klady a přihlédneme i k jejich užití v praxi. 

P ř í k l a d 2,1. Graf funkce dané rovnicí 

y = 1| +2x — 5 (2,4) 

je na obr. 4. Dojdeme k němu rozpisem rovnice (2,4) 
na dvě lineární funkce podobně, jako jsme z rovnice (2,2) 
došli k rovnicím (2,3). Se zřetelem k definici absolutní 
hodnoty [viz rovnice (2,1)] je zde nutno rozlišovat dva 
případy, a t o x — 1 > 0 a * — 1 < 0 . Pro x 1 je pak 
|x — 11 = x — 1, pro x < l j e \x — 1| = 1 — x, což 
dosazeno pokaždé do rovnice (2,4) dává po částech dvě 
rovnice téže funkce ve tvaru 
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y = 3x — 6 

y = x — 4 

pro x 25 1, (2,5) 

pro x < 1. 

Každá z těchto rovnic představuje polopřímku a snadno 
zjistíte, že obě tyto polopřímky maj í společný počáteční 
bod*) [1; — 3]. Obě polopřímky vytvoří pak lomenou 
čáru, která je grafem funkce (2,4). Z grafu je také patrno, 
že tato funkce je všude rostoucí. T ím se podstatně liší od 
f u n k c e y = | x | z obr. 3. Všimněme si, že tato okolnost 
není z rovnice (2,4) na první pohl fd pat rná , kdežto 
obr. 4 nás o tom přesvědčí okamžitě. J e tedy vidět, že 
geometrie n á m při vyšetřování funkcí tohoto typu vy-
datně pomáhá. Konečně také poznáváme, že naše funkce 
(2,4) nenabývá nikde svého minima ani maxima; je to 
už důsledek toho, že je všude rostoucí. (Slovíčko „všude" 
zde znamená, že proměnná x probíhá celou množinu 
všech reálných čísel.) 

Poznámka. Zjednodušme si trochu názvosloví. Bod, ve 
kterém se lomená čára „ láme" , budeme nazývat kritic-
kým bodem. Na obr. 3 to byl počátek, na obr. 4 bod 
[1; — 3]. Kritickým je ten bod v tom smyslu, že v něm 
výraz vystupující v rovnici zkoumané funkce v absolutní 
hodnotě přechází ze záporných do kladných hodnot. 
V příkladě 2,1 je to výraz x — 1, neboť ten se v rovnici 
(2,4) vyskytuje v absolutní hodnotě. Skutečně pro x < 1 
j e x — 1 < 0 (a tedy | x — 1 | = 1 — *) a P r o * sĚ 1 je 

*) Počáteční bod čili počátek polopřímky je jejím hraničním bo-
dem; někdy k té polopřímce patří, někdy nikoli. V našem příkladě 
bod [1; —3] leží na první z polopřímek (2,5), na druhé nikoli. 
Přesto říkáme, že obě tyto polopřímky m^jí společný počáteční 
bod. Podobné terminologie se pro stručnost užívá dále i u kraj-
ních bodů úseček či intervalů. Podrobněji je o tom psáno v kapi-
tole třetí. 
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x — 1 ^ 0 (a tedy \ x — 11 = x — 1). Při vyšetřováni 
průběhu takové funkce j e samozřejmě výhodné stanovit 
nejdřív všechny její kritické body; v dosavadních pří-
kladech měla každá funkce jen jeden kritický bod. V dal-
ších příkladech poznáme funkce, které maj í víc kritic-
kých bodů. 

P ř í k l a d 2,2. Lomená čára zobrazující funkci 
y — \2x + 1| + |2 — x \ — x — 1 (2,6) 

má dva kritické body, totiž body, pro které je 2x + 1 = 0 
a 2 — x = 0 . Rozdělíme tedy celou množinu reálných 
čísel x na tři úseky čili intervaly podle toho, je-li x < 

< nebo ^ SS x < 2, nebo 2 ^ x, a p růběh 

funkce (2,6) budeme vyšetřovat v každém tomto inter-
valu zvlášť. 

Pro x < f r j e 2 x + l < 0 a zároveň v důsledku 
1 1 

x < < 2 j e x — 2 < 0, tj. 2 — x> 0; j e zde 

tedy 12x + 11 = — 2x — 1, 12 — = 2 — x, což do-
sazeno do rovnice (2,6) dává po snadném výpočtu 
první z rovnic (2,7). 

Pro ^ * < 2 j e 2x + 1 > 0 a * — 2 < 0 , takže 

zde máme 12x + 1| = 2x + 1 a | 2 — x| = 2 — x, což 
dosazeno do rovnice (2,6) dává druhou rovnici (2,7). 

Konečně pro * ^ 2 je 2 — 2x + 1 > 0 (ne-

boť je * > 2 > a tedy 12x + 11 = 2x + 1 a 12 — 

— x\ =x — 2. Dosazením do rovnice (2,6) vychází 
třetí rovnice (2,7). 
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Celkem jsme tím rozepsali rovnici (2,6) na trojici 
těchto rovnic: „ 1 

y = — 4* pro x < , 

y =2 p r o - - l - ^ * < 2 , (2,7) 

y = 2x — 2 pro 2 ^ x . 

jící se ze tří částí (dvě z nich jsou polopřímky a jedna je 
úsečka). Všechny tyto části mají společné hraniční či 
krajní body, a to právě v kritických bodech této lomené 
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čáry. Z grafu poznáváme, že funkce (2,6) je pro x < 

< klesající a pro x > 2 rostoucí, což souhlasí s větami 

1,10 a 1,11 [viz první a třetí rovnici (2,7)]. V intervalu 
= * = 2 naše funkce není ani rostoucí, ani klesa-

jící, j e tam konstantní a ve všech bodech tohoto intervalu 
nabývá minima, které j e dáno hodnotou y = 2. M á m e 
tedy příklad, kdy funkce nabývá svého minima v neko-
nečně mnoha bodech. 

V dalších příkladech se už budeme vyjadřovat struč-
něji než dosud. 

P ř í k l a d 2,3. Funkce 

y = 1 * + 1| + 2 | * | — 4\x — 2 | (2,8) 

je zobrazena na obr. 6*) lomenou čarou, skládající se 
ze čtyř částí, z nichž dvě jsou polopřímky a dvě úsečky. 
Kritické body nastávají pro hodnoty * = — 1, x = 0 , 
x = 2. Rovnice (2,8) j e ekvivalentní se čtveřicí těchto 
rovnic: 

y = x — 9 pro x < — 1, 

y = 3 * — 7 pro — 1 í í * < 0 , (2,9) 
y = 7 * — 7 pro 0 ^ * < 2 , 
7 = — * + 9 pro 2 x. 

Tyto rovnice dostaneme známým způsobem z rovnic 
(2,8), rozlišíme-li jednotlivé intervaly mezi kritickými 
body. 

*) V obr. 6 je pro úsporu místa v měřítkách na osách souřadnico-
vých zvolena kratší jednotka míry než v obrázcích předcházejí-
cích. 
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Pro x < — 1 je zároveň x < 0 a x < 2 a tedy 
x + 1 < 0, x — 2 < 0 ; celkem tedy dosazujeme do rov-
nice (2,8) v tomto případě |x + 11 = — x — 1, | | = 
= — x,\x — 2| = 2 — x. Tak dojdeme k první rovnici 
(2,9). 

Pro — 1 ^ * < 0 j e také x < 2 a tedy x + 1 > 0, 
x — 2 < 0 čili Ix + 11 = * + 1, |* | = — x, |x — 2 | = 
= 2 — *. T o dává druhou rovnici (2,9). 



Pro 0 ^ x < 2 je také * > — l a tedy x + 1 > 0, 
x — 2 < 0 , což znamená, že třetí rovnici (2,9) dosta-
neme, dosadíme-li do rovnic (2,8) výrazy | x + 1 | = 
= x +1,|*| = x, \ x — 2\ =2 — * . . 

Konečně pro x > 2 j e zároveň * > 0 a x > — 1, takže 
je |* + 11 = * + 1, |* | = x, — 21 = * — 2. Dosa-
díme-li to do rovnice (2,8), dostáváme čtvrtou rovnici 
(2,9). _ 

J e vidět, že pro * < 2 je tato funkce stále rostoucí 
a pro x > 2 stále klesající. Pro x = 2 dostáváme její maxi-
m u m y = 7, které je zobrazeno bodem [2; 7]. M á tedy 
tato funkce jediné maximum. 

Všimněte si, že vyšetřením průběhu této funkce meto-
dami analytické geometrie jsme její max imum našli po-
hodlně a bezpečně a že jeho hledání jen na základě rov-
nice (2,8) bez geometrického znázornění by asi bylo ob-
tížnější. 

P ř i k l a d 2,4. Všimněme si poměrně jednoduché 
funkce 

+ (2,10) 

Kritické body zde jsou * = 0 a x = l a oba leží na ose x. 
Snadným rozborem podle předcházejících vzorů dostá-
váme rozpis rovnice (2,10) na tři rovnice 

y = — * pro x < 0 , 

y = 0 p r o 0 ^ * < l , (2,11) 

y = x — 1 pro 1 ^x . 

K tomuto rozpisu dojdete zase tím, že budete danou 
funkci zkoumat v každém z vypsaných intervalů zvlášť. 
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Přitom musíte vzít v úvahu, že pro * < 0 je také * < 1 
a tedy | * | = — x a | * — 11 = 1 — x a podobně dál. 

Graf této funkce je na obr. 7. V oboru x < 0 je fiinkce 
klesající, v intervalu 0 ^ x 1 je konstantní a pro 
* > 1 je rostoucí. V nekonečně mnoha bodech, totiž pro 
0 ^ x 1, nabývá tato funkce svého minima y = 0. 

P ř í k l a d 2,5. Na přímce p j e dána úsečka a délky 1 
jednotka míry. Úloha zní: stanovit nejmenší vzdálenost 
v bodu X pohybujícího se po přímce p ód úsečky a. 

2 

y 
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v 5 ' > 

•2 -7 0 
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A 
/ 

/ 
/ 

s f 

2 

Obr. 7 

J e zřejmé, že v různých polohách pohybujícího se 
bodu X může se jeho vzdálenost v od úsečky a různě 
měnit ; abychom vyjádřili tuto závislost čísla v na poloze 
bodu X, zvolíme přímku p za osu číselnou a umístíme 
na ní úsečku a do intervalu 0 ^ x 5S 1, tj. zvolíme sou-
stavu souřadnic na přímce p tak, že jeden krajní bod 
úsečky a má souřadnici x = 0 (je to počátek) a druhý je 
bod o souřadnici x = 1. Snadno si to představíte právě 
na obr. 7, ztotožníte-li tam přímku p s osou x. Souřadnici 
běžného bodu X přímky p označme opět x. 
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A nyní zřejmě platí: 
Je-li bod x nalevo od počátku, j e x < 0 a jeho vzdá-

lenost od úsečky a je rovna jeho vzdálenosti od tohoto 
počátku, takže máme 

pro vzdálenost dvou bodů na ose x, z nichž jeden má 
souřadnici *x a druhý x2; v našem případě je x1 = 0, 
*2 = x < 0.) 

Je-li dále bod X na úsečce a, j e v = 0, což analyticky 
vystiženo zní 

Je-li konečně bod X napravo od úsečky a, j e jeho vzdá-
lenost od této úsečky rovna jeho vzdálenosti od bodu 
o souřadnici 1, j e tedy 

(Je zde totiž v = \x — 11, ovšem bod ležící napravo 
od bodu x = 1 má souřadnici x > 1, takže tedy máme 
* — 1 > 0 čili — 1| = x — 1.) 

Rovnice (2,12), (2,14) a (2,15) jsou ekvivalentní rov-
nicím (2,11) z předcházejícího příkladu — záměna 
označení v z a y zde nehraje žádnou roli. Protože rovnice 
(2,11) jsou zase ekvivalentní rovnici (2,10), můžeme 
řešení úlohy našeho příkladu 2,5 zapsat jedinou formulí 

v = — x pro x <0 . 

(Užíváme známého vzorečku 

v = \xx — x2\ 

(2,12) 

(2,13) 

v = 0 pro 0 ^ * ^ 1. (2,14) 

v = x — 1 pro x > 1. (2,15) 

v = 1| 1 . 
2 2 . 2 ' 
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graf této závislosti vidíme tedy zase na obr. 7, nanáší-
me-li tam ve směru osyj> hledanou vzdálenost v. 

Právě podaný příklad ukazuje, že vyšetřování rov-
nice lomené čáry není samoúčelné, protože to lze užít 
při j iných přirozených závislostech, v našem případě 
pro stanovení vzdálenosti bodu od úsečky. Existují 
ovšem i aplikace v jiných oblastech (viz cvič. 2,5 až 
2,7); zde si ukážeme příklad z ekonomie. 

P ř í k l a d 2,6. U téže silnice jsou p o řadě za sebou 
čtyři obce A, B, C, D. Jejich vzdálenosti jsou AB = 
= 8 km, BC = 5 km, CD = 10 km. Přitom B leží mezi 

A a C, C leží mezi B a D. U silnice se mají postavit 
garáže pro autobusy (depo), které ze zdravotních dů-
vodů musí být vzdáleny aspoň 1 km od každé obce. 
Garáže budou vybavovat denně 2 linky z obce A, 3 lin-
ky z obce B, 2 linky z obce C a 5 linek z obce D za stej-
ných podmínek (tj. se stejným počtem vozů na každé 
lince). Úloha zní: nají t při silnici místo G pro garáže 
tak, aby autobusy projezdily cestou z G na jednotlivé 
výchozí stanice co nejméně kilometrů, tj . aby jejich 
neproduktivní d ráha (kdy nevezou cestující) byla co 
nejkratší. 

Silnici, i když není přímočará, znázorněme osou x, 
počátek volme v obci B (obr. 8). Potom má obec A 
na této číselné ose souřadnici —8, obec C souřadnici 5 
a obec D souřadnici 15. Neznámou souřadnici hleda-
ných garáží G označme x. Abychom vyjádřili vzdále-
nost garáží od jednotlivých obcí, užijeme opět vzorce 
(2,13). Vzdálenost garáží od jednotlivých obcí A, B, 
C, D j e pak v kilometrech dána výrazy 

GA = + 8 | , GB= |*|, GC = —5|, GD = \x— 15|. 

Při tom 2 linky, vedené denně z garáží do obce A bez 
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cestujících, znamenaj í zřejmě 2\x + 8 | km neproduk-
tivní dráhy. Pro ostatní obce dostáváme podobně ne-
produktivní kilometry ve tvarech 3 |* | , 2\x— 5| a 
5 — 1 5 1 . Celková neproduktivní cesta, jejíž velikost 
v kilometrech označíme y , je dána součtem 

y =2\x + 8 | + 3 | * | + 2\x — 5 | + 5\x — 15|. (2,16) 

Tak docházíme při tak jednoduché praktické úloze 
k rovnici lomené čáry, která má 4 kritické body. Postu-
pem, který jsme se už naučili v předcházejících příkla-
dech, snadno při trošce trpělivosti vypočítáme, že rov-
nice (2,16) je ekvivalentní těmto pěti rovnicím: 
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y = —12x + 69 pro x < — 8, 
y = —8x + 101 pro — 8 ^ x < 0, 
y = —2x + 101 pro 0 ^ x < 5, (2,17) 
y = 2x + 81 pro 5 ^ x < 15, 
y = 12x — 69 pro 15 ^ x. 

Příslušný graf je narýsován v obr. 8; k tomu j e třeba 
poznamenat , že pro nedostatek místa je nutno volit 
v tomto obrázku na o s e j menší měřítko než na ose x. 
I tak je z obrázku ihned patrno, že naše funkce (2,16) 
má min imum v bodě x = 5; důkaz spočívá ovšem v tom, 
že pro x < 5 je tato funkce klesající (srovnej první tři 
rovnice (2,17) s větou 1,11) a pro x > 5 rostoucí (srov-
nej poslední dvě rovnice (2,17) s větou 1,10). Je j í 
minimální hodnota y = 9 1 se pro x = 5 vypočte bud 
z rovnice (2,16), nebo ze čtvrté rovnice (2,17). 

T í m není ovšem ještě úloha z příkladu 2,6 vyřešena. 
Nezapomeňme, že garáže musí být vzdáleny od každé 
obce aspoň 1 km, kdežto nalezené min imum leží právě 
v obci C. J e nasnadě hledat tedy místo pro garáže 
v okolí bodu C tak, že vzdálenost garáží od bodu C 
(o souřadnici x = 5) bude 1 km; to vede k bodům 
o souřadnicích x = 4 a x = 6 na ose x a snadným dosa-
zením do rovnice (2,16) nebo do příslušných rovnic 
(2,17) vypočítáme, že pokaždé vychází y = 93 km a že 
pro x vzdálenější od bodu C, tedy pro \x — 5 | > 1, j e 
už příslušné y vždycky větší než 93 km. 

Úloha příkladu 2,6 má tedy dvě rovnocenná řešení: 
garáže G j e nu tno vystavět ve vzdálenosti 1 km od obce 
C, lhostejno na které straně od obce C, bud mezi obcemi 
B, C, nebo mezi obcemi C, D. 

K tomuto příkladu př ipojujeme několik poznámek. 
Především je nutno zdůraznit vedoucí úlohu matema-
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tiky při řešení ekonomických otázek. V našem, i když 
velmi jednoduchém příkladě, je to ve lmi 'názorně pa-
trné. Kdybychom tuto úlohu řešili jen povrchním od-
hadem založeným na neodůvodněném tušení, přiklo-
nili bychom se možná k návrhu postavit garáže co 
nejblíž k obci D, protože z ní vyjíždí denně nejvíc 
linek. V naší soustavě souřadnic by to znamenalo stavět 
garáže v bodě o souřadnici x = 14; rovnice (1,16) 
dává však pro x = 14 hodnotu y = 113. T o by zna-
menalo hodnotu o 20 km větší než v př ípadě stavby ga-
ráží v bodech x = 4 nebo x = 6, jež jsme prve našli. 
Autobusy by tedy projezdily denně zbytečně o 20 km 
více, než j e nezbytně nutno. Při celoročním provozu by 
to znamenalo značnou položku figurující v rubrice, 
které by slušel nadpis „zbytečná vydání" . 

Účelem právě podaného příkladu je především uká-
zat užitečnost úvah, které jsme prováděli před tím. J e 
samozřejmé, že všude v praxi (i v autobusové dopravě) 
se vyskytují úlohy mnohem složitější, v nichž vystupuje 
víc činitelů než 12 autobusových linek denně jako 
v našem příkladě. Obvykle matematickou formulaci 
příslušného ekonomického či j iného problému nelze 
zapsat jedinou formulí, j ako tomu bylo u rovnice (2,16) 
v našem příkladě. Některé, ovšem zase jednoduché pří-
klady toho druhu si uvedeme v kapitole 5. Ale roste-li 
počet podmínek, j e pak i početní řešení příslušné mate-
matické úlohy složitější. V takových případech n á m 
pomáhá i strojová technika, tedy samočinné počítače 
a strojní početní stanice. T í m se však nemůžeme v této 
knížce zabývat ; spokojíme se zde jen právě podaným 
upozorněním na tyto možnosti. 

Zastavme se konečně ještě u toho, že úloha z příkla-
du 2,6 má po matematické stránce dvě rovnocenná 
řešení x = 4 a x = 6, přestože rovnice (2,16) svádí 
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k domněnce, že jde o úlohu lineární. Ale rozpis rovnice 
(2,16) do rovnic (2,17) ukazuje, že jde o funkci po 
částech lineární; to je vidět i z grafu na obr. 8, ktérý se 
skládá z několika polopřímek a úseček. Není tedy nic 
divného, že ve dvou různých bodech nabývá tato funkce 
téže minimální hodnoty. J d e však o náhodu, při ne-
patrné obměně dané úlohy se může stát, že vyjde jediné 
řešení (viz cvičení 2,5). 

V životě se častěji setkáváme s jevy, jejichž grafem 
je lomená čára. Následující běžný přífted nám zároveň 
poskytuje příležitost sestavit rovnici lomené čáry, zná-
me-li její jednotlivé části. 

P ř i k l a d 2,7. Sestrojme graf znázorňující množství 
vody ve vaně o objemu 450 litrů, začňe-li voda rovno-
měrně přitékat kohoutem v 1 hodinu a dává-li kohout 
15 litrů vody za minutu. 

Předpokládá se ovšem, že před otevřením kohoutu 
j e vana prázdná. Označíme-li x čas měřený v hodinách 
a y množství vody ve vaně měřené v litrech, znamená to, 
že pro x < 1 je y = 0 . Snadno se spočítá, že celá vana 
se pak naplní za 30 minu t ; v časovém rozmezí 1 ^ x < 

3 
< bude tedy y = 900 ( x — 1), neboť voda při-
téká stálou rychlostí 900 litrů za hodinu, takže y j e 
přímo úměrné číslu x — 1 (v čase x = 1 je j eš těy = 0). 

3 
Pro x ^ -g- nebude už vody ve vaně přibývat (vana 
bude plná) a pak bude stále y = 450; přitékající voda 
bude buď z vany přetékat, nebo ocjtékat pojistným 
otvorem. Hledanou závislost můžeme tedy po částech 
rozepsat ve tři rovnice 
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7 = 0 
y = 900(* • 

y = 450 

pro x < 1, 
3 

1) pro 1 ig x < -g-

3 .. 
P r o ~2~ — * • 

(2,18) 

Graficky je to znázorněno opět lomenou čarou na obr. 9, 
kde na osu x nanášíme hodiny a na o s u j litry; měřítka 
na obou osách volíme nezávisle na sobě. 

Obr. 9 

Abychom rovnice (2,18) zapsali jedinou formulí, 
uvažme, že kritické body naší lomené čáry zde nastá-

3 
vají pro hodnoty * = 1 a í = y , takže podle před-

cházejících příkladů lze očekávat, že naše funkce 
3 

vznikne kombinací výrazů | x — 1 | a x g- a že 
nadto musíme ještě připustit možnost, že by k tomu 
mohla přistoupit obyčejná lineární funkce. Zkusme 
tedy, je-li hledaná funkce tvaru 
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y — a \x — 1| + 6 + cx + d, (2,19) 

kde a, b, c, d jsou dosud neznámá čísla. Určíme je na 
základě toho, že na naší lomené čáře známe 4 body, 

totiž počátek [0; 0], body [1; 0] a 450 j a např . 

bod [2; 450]. Dosazením souřadnic počátku do rovnice 
(2,19) vychází po jednoduchém počtu 

3 

a + -2~ b + d = 0, 

dosazením bodu [1; 0] podobně 
~ b + c + d =,0, 

dále dosazením bodu 450 dostáváme H 
-y a + y c + d = 450 

a konečně dosazení [2; 450] vede k rovnici 

a + ^-b + 2c + d = 450. 

Tak jsme dostali soustavu 4 lineárních rovnic pro 4 
neznámé a, b, c, d, o níž se snadno přesvědčíte, že má 
jediné řešení*) 

*) Neznáte-li vhodnější způsob, řešte tuto soustavu tak, že z ně-
které rovnice vypočítáte jednu neznámou pomocí ostatních a vý-
sledek dosadíte do zbývajících tří rovnic; tak redukujete úlohu na 
řešení soustavy tří rovnic o třech neznámých a podobně pokraču-
jete dále. 
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a = 450, b = —450, e = 0, i = 225. 

Naše funkce (2,19) tedy zní 

y = 450 — 1 1 — 450 * JT" + 225 

nebo po úpravě 

y = 450 |*- 11 — 225 12* — 31 + 225. 

Proveďte si zkoušku tak, že tuto rovnici rozepíšete zpět 
v rovnice (2,18) způsobem, který jste poznali v před-
cházejících příkladech. 

Budiž ještě připomenuto, že některé funkce tohoto 
druhu jsou svou praktickou povahou omezeny jen na 
určitý, nikoli nekonečný interval nezávisle proměnné *, 
takže jejich grafem není nekonečně dlouhá lomená 
čára, ale jen její část, skládající se z několika úseček. 
Příklad je ve cvičení 2,7. 

C v i č e n í 

2.1. Pro které body [*;>] jey ^ |*|? 
2.2. Pro které body [x;y] jey < [*|? 
2.3. Narýsujte graf funkce 

, | * - 1 | 1*1 , 1 
a 2 r + x~T' 
b) jy = 2x + 1 + — 3 | — 2\x + 1|. 

2.4. Porovnejte navzájem grafy funkcí 
1 

a) y - y + l*D' b ) j r - * + |*|. 

2.5. U přímé silnice stojí tři obce A, B, C. Jejich vzdálenosti jsou 
AB =* 6 km, BC - 8 km, B leží mezi A a C. U silnice se 
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mají postavit autobusové garáže, které ze zdravotních dů-
vodů mají být vzdáleny aspoň 1 km od každé obce. Garáže 
budou vybavovat denně 3 linky z obce A, 2 linky z obce 
B a 4 linky z obce C za stejných podmínek. Kde je třeba 
postavit garáže, aby autobusy projezdily cestou z nich na 
sVé výchozí stanice co nejméně kilometrů (čili aby měly co 
nejkratší neproduktivní dráhu)? 

2.6. Nádrž má objem 10 m3. V čase x = 0 hodin začne do ní 
přitékat přívodem voda rovnoměrnou^ rychlostí v m' za 
hodinu (v > 0). Sestrojte graf znázorňující množství vody 
v nádrži v jednotlivých okamžicích. 

2.7. Při osmihodinové pracovní době činí mzda 4,— Kčs za 
hodinu. Za prácí přesčas se platí 5,— Kčs za hodinu. Se-
strojte graf znázorňující závislost denní mzdy y na odpra-
cované době x, pracuje-li se nejvýše 16 hodin za den. 
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3. k a p i t o l a 

M N O Ž I N Y 

Ačkoliv teorie množin pronikla už dávno celou mate-
matikou, přece naši středoškolští studenti nemají často 
potřebnou představu o tom, co znamená slovo množina. 
Někteří pojem množiny mylně spojují s pojmem „ne-
konečně mnoho" , j iní j e j zaměňují s pojmem „geomet-
rického místa b o d ů " ( jako by se j inde než v geometrii 
množiny neuplatňovaly) a téměř všem je slovo mno-
žina jakýmsi samoúčelným trikem, j ímž matematikové 
oslňují svět. 

Přesvědčíme se, že tomu tak není, že totiž i v jedno-
duchých úvahách množinové pojetí velmi zpřesňuje 
vyjadřování a příslušné pojmy. 

Slovem množina rozumíme v dalším textu souhrn 
(soubor, množství, . . . ) nějakých věcí (předmětů, 
objektů, . . . ) , které nazýváme prvky (elementy) určité 
množiny. Množina j e dána , dovedeme-li o každém ob-
jektu rozhodnout, je-li je j ím prvkem, či nikoli. 

Poznamenejme, že místo slova množina se původně 
v české li teratuře užívalo slovo množství. Čeští mate-
matikové zavedli slovo množina, jež se zřetelněji sklo-
ňuje a jež nelze dobře zaměňovat ani se slovem počet, 
jako je tomu někdy v př ípadě slova množství. 

I když budeme v našem textu potřebovat j en mno-
žiny čísel a množiny bodů v rovině, uveďme stručně 
i několik příkladů j iných množin. 

Množina všech sedadel v Národním divadle; je j ími 
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prvky jsou sedadla. Například každé sedadlo v přízemí 
Národního divadla je prvkem této množiny. Ale židle, 
na které sedíte doma při studiu, není prvkem uvedené 
množiny. 

Množina všech dnes žijících občanů naší republiky 
m á za své prvky lidi. Ale nepatří k ní všichni lidé. Na-
příklad spisovatel Karel Čapek není prvkem této mno-
žiny, protože už není naživu. Dnešní ministerský před-
seda Velké Británie rovněž není prvkem této množiny, 
třebaže je živ; není totiž občanem rilileho státu. Prvky 
této množiny jsou tedy žijící občané našeho státu. 

Organizaci spojených národů (OSN) můžeme chá-
pat jako množinu států, jejírťiiž prvky jsou členské 
státy OSN. Například ČSSR je prvkem této množiny, 
naprot i tomu Švýcarsko nikoli, protože není členem 
OSN. 
p- Všechny dosavadní příklady množin měly tu vlast-
nost, že počet prvků každé této množiny lze vyjádři t 
určitým přirozeným číslem, tedy číslem celým klad-
ným. Proto říkáme, že jsou to množiny konečné; maj í 
totiž konečný počet prvků. Ale v matematice se vysky-
tují také množiny s nekonečným počtem prvků, čili 
množiny nekonečné. 

Nejjednodušším příkladem nekonečné množiny je 
množina všech přirozených čísel. Je j ími prvky jsou 
tedy čísla 1, 2, 3, 4, . . . , atd. Například číslo 100 j e 

2 
prvkem této množiny, číslo - y , n, ]]2 nikoli, protože 
to nejsou celá kladná čísla. Rovněž sedadlo v Národním 
divadle není prvkem této množiny, prptože sedadlo není 
číslo (zvláště pak ne celé kladné); -nic nevadí, že na 
takovém sedadle číslo může být napsáno, přesto toto 
číslo j e pojmově něco j iného než zmíněné sedadlo. 
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J iný příklad nekonečné množiny, tentokráte z geo-
metrie, j e množina všech bodů ležících uvnitř kružnice, 
tedy vnitřek kruhu. Prvky této množiny jsou tedy body. 

Z dosavadních příkladů je zřejmé, že množiny mohou 
být vytvořeny nejrůznějšími prvky. Zde byly prvky 
množin tak nesourodé objekty jako sedadla, lidé, státy, 
čísla a body. V matematice se jeví účelné zavádět i ta-
kovou množinu, která vůbec žádné prvky nemá. 

Množina, která neobsahuje žádný prvek, se nazývá 
množina prázdná a označuje se symbolem 0 . Množinu 
prázdnou počítáme mezi množiny konečné. 

Vyplatí se zavést jednoduchou symboliku pro různé 
vztahy mezi množinami, případně jejich prvky. Pro 
vztah „býti prvkem množiny", užívá se všude ve světě 
znak € . Zápis 

a e M (3,1) 
tedy znamená, že a je prvkem množiny M, že a patří 
k množině M, případně do množiny Ni, že a leží v mno-
žině M atp. J e vidět, že celkem jednoduchou věc musíme 
říci několika slovy. To je vada řeči, která může vést 
i k nedorozumění. Naproti tomu vztah (3,1) říká totéž 
užitím jediného symbolu e . Ghceme-li vyjádřit, že něco 
není prvkem určité množiny, zapíšeme to tak, že sym-
bol e prostě přeškrtneme, že tedy napíšeme ^ . Označí-
me-li tedy například množinu všech přirozených čísel, 
o níž jsme před chvíli mluvili, znakem P, jsou pravdivé 
tyto zápisy: 

lOOeP, 

Čteme to takto: číslo 100 je prvkem množiny P, číslo 
2 

-=- není prvkem množiny P. J inak řečeno: číslo 100 je 
2 

přirozené číslo (tj. celé kladné),-číslo nikoli. 
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Z číselných množin (tj. z množin, jejichž prvky jsou 
reálná čísla) nás budou v této knížce zajímat hlavně 
intervaly. Snad jste si všimli, že jsme několikrát užili 
tohoto slova už dříve; teď si vymezíme přesně' jeho 
obsah. 

Mysleme si, že jsou dána dvě reálná čísla a, b, při-
čemž je a < b. Uzavřeným intervalem od a do b pak rozu-
míme množinu všech takových reálných čísel x, pro 
která platí 

a ^ x (3,2) 

Pro tento uzavřený interval zavádíme symbol (a; b). 
Podobně otevřeným intervalem od a do b rozumíme 

množinu všech takových reálných čísel x, pro která 
platí 

a <x <b. (3,3). 

Pro tento otevřený interval zavádíme symbol (a; b). 
J e vidět, že uzavřený interval vzniká z otevřeného 

tím, že k němu přidáme jeho krajní body. Zapsáno 
naší symbolikou to vypadá takto: 

ae(a; b), be(a;b), a$(a;b), b$(a;b). 

Zaveďme stručně další intervaly. 
Polouzavřeným intervalem (a; b) rozumíme množinu 

všech takových reálných čísel x, pro která platí 
a ^ x < b . (3,4) 

Polouzavřeným intervalem (a; b) rozumíme množinu 
všech takových reálných čísel x, pro která platí 

a <x^b. (3,5) 

Pro polouzavřené intervaly se používá někdy také 
názvu polootevřené intervaly. 
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Každý z těchto intervalů je ovšem ňa ose číselné 
zobrazen úsečkou s krajními body a, b; proto říkáme, 
že čísla a, b jsou krajní body příslušného intervalu. Všech-
na ostatní čísla tohoto intervalu nazýváme pak jeho 
vnitřními body. Rovněž délku této úsečky, zobrazující 
náš interval na ose číselné, prohlásíme za délku přísluš-
ného intervalu. 

Mezi intervaly počítáme také intervaly mající neko-
nečnou délku; na ose číselné se zobrazují polopřímkami. 
Množinu všech takových reálných čísel x, pro něž 
platí a x, nazýváme polouzavřeným intervalem 
(a; + 0 0 ) ; symbol 00 není ovšem číslo, ale znamená 
odedávna pojem nekonečna; nerovnost a * nahra-
zujeme tedy i zápisem a ^ x < + oo. Podobně polo-
uzavřený interval (—00; a) j e množinaVšech takových 
čísel x, pro která platí — 00 < x íS a, čili prostě x a. 
Stejně otevřeným intervalem (a; + 0 0 ) rozumíme 
množinu všech čísel x splňující podmínku a < x < + 00 
čili a <x\ symbol (—00; a) znamená ^otevřený inter-
val, tj. množinu všech čísel x, pro' která je"!— 00 < x < a 
čili x < a. Množinu všech reálných čísel vůbec počítáme 
rovněž mezi otevřené intervaly a označujeme j i symbo-
lem (— 00; + 00). 

Intervaly n á m poslouží j ako konkrétní příklady mno-
žin, na nichž se naučíme zacházet s dalšími množino-
vými pojmy. Jsou to tyto pojmy: podmnožina, sjedno-
cení množin a průnik množin. Budou n á m užitečné 
v dalších kapitolách. 

Říkáme, že množina A j e podmnožinou množiny B, 
když každý prvek množiny A j e zároveň prvkem mno-
žiny B. Symbolicky to píšeme ve tvaru 

A C B nebo B D A . 
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Pro naše intervaly zřejmě například platí 

(a; b) C (a; b). 

Místo slova podmnožina užíváme též někdy slov „část 
množiny", ale vzhledem k výsledku ve cvičení 3,7 to 
není zcela výstižné. 

Řekneme-li, že každý prvek jedné množiny je zároveň 
prvkem druhé množiny, je to logicky totéž, jako když 
řekneme, že v první množině neexistuje prvek, který 
není prvkem druhé množiny. Z toho dftvodu pokládáme 
prázdnou množinu za podmnožinu každé množiny 
a píšeme tedy pro každou množinu A vztah 

0 C A. ' (3,6) 

Některé jednoduché množinové vztahy jsou ve cvi-
čení 3,7 a 3,8 a ve cvičení 3,13 až 3,16. J d e v nich 
vlastně jen o získání návyku na množinovou symboliku; 
proto nemá smysl uvádět jejich řešeni v seznamu vý-
sledků cvičení. Zde si všimněme aspoň jednoho př ípadu: 

P ř i k l a d 3,1. Jestliže pro dvě množiny A, B plati 
zároveň oba vztahy A C B i B C A, pak jsou obě tyto 
množiny totožné (stejné, shodné) a píšeme A = B. 

T o j e totiž zřejmé, neboť z předpokladů AC. B 
i B C A plyne, že každý prvek kterékoli z těchto mno-
žin je zároveň prvkem druhé z nich, a proto se obě tyto 
množiny skládají z týchž prvků. Novinkou je tu pro 
čtenáře jen to, že pro takové dvě množiny zavádíme 
symbol rovnosti A = B, všeobecně známý z j iných 
partií matematiky. 

Přistupme k dalším pojmům. 
Sjednocením dvou množin A, B rozumíme množinu C, 

jejímiž prvky jsou všechny prvky množiny A i všechny 
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prvky množiny B a žádné j iné ; symbolicky to zapisu-
jeme pomocí znaku U takto: 

C = A U B . 
Tento zápis tedy znamená, že je m s C tehdy a jen tehdy, 
platí-li m e A , nebo m e B , přičemž se nevylučuje případ, 
že m j e zároveň prvkem obou množin A, B. 

P ř í k l a d 3,2. Je-l i A = (0; 2), B = ( l ; 3), je 
A U B = <0; 3). 

Věc j e sice zřejmá, ale rozepišme to napoprvé po-
drobně. Množina A j e interval, který obsahuje všechna 
čísla x, jež splňuji nerovnosti 0 5Í * ^ 2. Podobně in-
terval B obsahuje všechna taková čísla y, pro která platí 
1 ^ y ^ 3. Všechna čísla obou těchto intervalů jsou 
tedy čísla z, splňující nerovnosti 0 sS z ík 3. Proto j e 
(0; 3) = ( 0 ; 2) J < 1 ; 3). 

P ř í k l a d 3,3. Která čísla x jsou prvky sjednoceni C 
intervalů (1; 2) a (4; 6)? 

Zde j e C = (1; 2) (J <4; 6). J eho prvky nelze ovšem 
charakterizovat jedinou nerovností, neboť oba dané 
intervaly se ani nepřekrývají, ani se nestýkají. Hledaná 
čísla x e C jsou tedy čísla, která splňují buď nerovnosti 
1 ^ * ^ 2, nebo nerovnosti 4 sS * 6. Znázorněte si 
množinu C na ose číselné; její obraz se skládá ze dvou 
od sebe oddělených úseček. 

Další příklady tohoto d ruhu najdete ve cvičení. 
Poznámka. Konstrukci sjednocení množin A, B lze si 

představit tak, že k prvkům množiny A „p ř idáme" 
ještě všechny prvky množiny B (pokud ovšem již nejsou 
prvky množiny A). Z toho důvodu se dříve pro sjedno-
cení množin užívalo názvu součet množin a mluvilo se 
o množinovém součtu. Pro odlišení tohoto pojmu od 
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součtu čišel bylo účelné zavést samostatný název sjed-
nocení množin, který se plně vžil. 

Vedle sjednocení množin má stejnou důležitost další 
základní pojem, totiž průnik množin. 

Průnikem dvou množin A, B rozumíme množinu D, 
jejímiž prvky jsou všechny společné prvky množin 
A, B a žádné j iné ; j inými slovy řečeno: průnik D je 
množina tvořená společnými prvky množin A, B čili 
všemi těmi prvky množiny A, které leží zároveň v mno-
žině B. Zapisujeme to užitím symbolu f ) takto: 

D = A n B. 

Tento zápis tedy znamená, že je ne D tehdy a jen tehdy, 
platí-li zároveň vztahy ne A a ne B. 

P ř í k l a d 3,4. Je-li A = (0; 2), B = <1; 3), je 
A n B = ( l ; 2 ) . 

Prvky množiny A jsou totiž čísla splňující nerovnosti 
0 x íS 2 a prvky množiny B jsou čísla x splňující 
nerovnosti 1 ^ x 3. Čísla patřící jak do množiny A, 
tak do množiny B splňují tedy všechny zde vypsané 
podmínky zároveň, což v důsledku nerovností 0 < 1 < 
< 2 < 3 dává 1 ^ * ^ 2. 

Všimněte si při tom rozdílu mezi příklady 3,2 a 3,4. 

P ř í k l a d 3,5. Průnikem intervalů (1; 2) a (4; 6) je 
množina prázdná. 

Neexistuje totiž číslo pro které by zároveň platily 
nerovnosti 1 Průnik obou zkou-
maných intervalů nemá tedy žádný prvek, proto píšeme 

(1; 2 ) f l (4; 6) = 0. 
Z dosavadních příkladů je jistě zřejmé, co znamenaj í 

slova sjednocení či průnik dvou množin. V matema-
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tice rozšiřujeme ovšem tyto pojmy i pro případy, kdy 
jde o více než dvě množiny. Sjednocení libovolného 
počtu či systému množin je prostě souhrn všech jejich 
prvků vůbec. Průnik těchto množin je zase souhrn všech 
takových prvků, které leží ve všech těchto daných 
množinách zároveň. 

Vedle číselných množin (přesněji intervalů a jejich 
skupin), jež jsme si dosud uvedli, budou n á m v poslední 
kapitole užitečné i některé úvahy o množinách bodů 
v rovině; množiny se totiž uplatňuj í výhodně i v geo-
metrii roviny. Některé z těchto množin znáte. Základní 
význam má pro nás polorovina, jak lze už vidět z 1. 
kapitoly. Každá polorovina má důležitou vlastnost, že 
totiž úsečka, která spojuje dva libovolné body téže 
poloroviny, v ní leží celá; říkáme to stručně slovy, že 
polorovina je konvexní útvar . Tu to vlastnost maj í i j iné 
množiny bodů v rovině, proto si příslušný pojem zave-
deme obecně. Vyhneme se však množině prázdné; 
každou množinu, která není prázdná, nazveme ne-
prázdnou. 

Konvexní množinou bodů rozumíme takovou neprázd-
nou množinu, která má tuto vlastnost: jsou-li P, ( ¿ d v a 
různé body této množiny, pak každý bod X úsečky 
P Q je rovněž bodem této množiny. Přitom množinu, 
která má jen jeden prvek, pokládáme také za množinu 
konvexní. 

Z předcházejících výkladů vychází tento nejjedno-
dušší příklad: 

P ř í k l a d 3,6. Polorovina j e konvexní množina. 

J e důležité uvědomit si také aspoň jeden příklad 
množiny, která není konvexní. V obr. 10 je znázorněno 
mezikruží. T o ovšem není konvexní množina, neboť 
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v mezikruží lze zvolit body P, (¿tak, že úsečka PQ_v něm 
celá neleží; lze na ní pak najít bod X, který danému 
mezikruží nepatří. 

Pro průnik konvexních množin platí důležitá, i když 
jednoduchá a snadno srozumitelná věta: 

Věta 3,1. Neprázdný průnik konvexních množin je zase 
konvexní množina. 

Obr. 10 

Důkaz: Dané konvexní množiny, jichž může být 
i nekonečně mnoho, mají společný aspoň jeden bod, 
neboť předpokládáme, že jejich průnikem není množi-
na prázdná. Obsahuje-li tento průnik právě jeden bod, 
j e věta dokázána, neboť jednobodovou množinu poklá-
dáme za konvexní množinu už podle definice. Zbývá 
tedy dokázat větu 3,1 pro případ, že zkoumaný průnik 
obsahuje aspoň dva různé body. Zvolme libovolné dva 
takové body P, Q tohoto průniku. Pak ovšem podle de-
finice průniku množin leží body P, Q, v každé z daných 
konvexních množin a v každé z nich leží tedy i celá 
úsečka PQ (neboť jde o konvexní množiny). To zna-
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mená, že úsečka P Q celá leží i v průniku daných mno-
žin (neboť leží v každém z nich) a náš průnik j e tedy 
konvexní množina. T ím j e věta 3,1 dokázána. 

P ř í k l a d 3,7. Neprázdný průnik libovolného systému 
polorovin j e konvexní množina. 

T o je okamžitý důsledek věty 3 , 1 a příkladu 3,6. Nej-
běžnějším př ípadem toho druhu je trojúhelník, který j e 
vždycky průnikem tří polorovin (obr. 11). Obráceně 

však průnikem tří polorovin nemusí být vždycky troj-
úhelník, j ak ukazuje obr. 12, ale přesto je to i v tomto 
př ípadě konvexní množina. Rovněž mnohoúhelníky, 
které lze vytvořit jako průnik konečného počtu polo-
rovin, jsou konvexní množiny a jsou zahrnuty v pří-
kladu 3,7; nazývají se konvexní mnohoúhelníky a právě ty 
budeme v poslední kapitole potřebovat. Ext rémním 
př ípadem příkladu 3,7 j e kruh, který lze vždycky vy-
tvořit jako průnik nekonečně mnoha polorovin; každá 
taková polorovina má za hraniční přímku tečnu kruhu 
a obsahuje jeho střed. J e tedy kruh rovněž konvexní 
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množinou. Podrobnosti o tom se dočtete v příslušné 
li teratuře uvedené vzadu, máme zde na mysli hlavně 
knížku Vyšínovu.*) 

Upozorňuj i ještě, že ve cvičení 3,21, jež na tento pří-
klad 3,7 navazuje, rozumíme ovšem slovy „bod troj-
úhelníka" bod příslušné množiny, totiž bod ležící v prů-
niku tří polorovin. J e to tedy bod ležící uvnitř trojúhel-
níka nebo na jeho obvodu. 

U konvexních množin je ještě jeden důležitý pojem, 
totiž pojem opěrné přímky. Všimněme si kruhu, k ně-
muž počítáme i jeho hranici, totiž kružnici k v obr. 13 
a přibližujme k němu přímku a, která není sečnou ani 
tečnou kružnice k. Posunujeme přímku a do poloh a', 
a", . . . , atd. tak, aby všechny tyto přímky byly stále 

*) Nebudete-li si moci tuto či jinou knížku Jcoupit, můžete si ji 
vypůjčit v knihovnách, hlavně v odborných »školních knihovnách. 
Knížky této naší edice jsou obvykle dost brzy vyprodané; snaživý 
zájemce se tedy nespoléhá jen na knižní trh, ale v případě potřeby 
se obrací ke knihovnám; je dobře si na to zvyknout už v mládí. 

Obr. 12 
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Spolu rovnoběžné. V jistém okamžiku přejde přímka a 
do polohy přímky p, která má s kružnicí k a tím i s ce-
lým kruhem jeden bod společný. Přímka/» je zde zřejmě 
tečnou kružnice k. Z představy, že celý kruh se o tuto 
přímku opírá, je pro přímku p odvozen název oplrná 
přímka zmíněného kruhu. Kdybychom přímku a posu-
nuli dále až do polohy sečny b kružnice k, rozdělí 

Obr. 13 

přímka b daný kruh ve dvě části a nemůžeme už tedy 
pro ni užít názvu opěrná přímka; body našeho kruhu 
jsou už rozloženy po obou stranách přímky b, tj . body 
kruhu leží v tomto případě v obou polorovinách vyťa-
tých přímkou b. Na základě tohoto pozorování vyslovíme 
definici opěrné přímky množiny bodů takto: 

Nechť je v rovině dána nějaká neprázdná množina 
bodů, označme j i M. Přímka p se nazývá opěrná přímka 
této množiny M, když má tyto dvě vlastnosti: 

1. přímka p obsahuje aspoň jeden bod množiny 
2. množina M leží celá jen v jedné polorovině vyťaté 

přímkou p. 
Tato definice opěrné přímky se hodí pro každou ne-
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prázdnou množinu bodů v rovině, tedy i pro množinu, 
která není konvexní. Nás však zde zajímají hlavně kon-
vexní množiny. 

Na obr. 14 je konvexní pětiúhelník s opěrnou přím-
kou p. Chceme tím ukázat, že opěrná přímka může mít 
s příslušnou množinou, která se o ni opírá, i nekonečně 
mnoho bodů společných. Obr . 15 zase ukazuje, že ně-

kterým bodem množiny M, kterou je zde trojúhelník 
ABC, může procházet více a dokonce nekonečně mnoho 
opěrných přímek množiny M ; v tomto obrázku jsou to 
všechny přímky vedené např. bodem A, jež neprotínají 
protější stranu BC v jejich vnitřních bodech. Jsou to 
všechny ty přímky vedené bodem A, které leží ve vněj-
ších úhlech tohoto t oj úhelníka při vrcholu A. 

Pro konvexní množiny už z názorné představy vychází 
celkem tato snadno srozumitelná věta: 

Věta 3,2. Je-li řA množina bodů v rovtnž a s nijaká přimka 
téže roviny, pak existují nejvýše dvl opérné přímky množiny M, 
jež jsou rovnobéžné s přímkou s. 
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Důkaz zde nepodáváme pro nedostatek místa. Najde te 
ho ve zmíněné už Výšinově knížce a dozvíte se tam, že 
tato věta platí i v př ípadě, že M není konvexní množi-
nou. Ale pro konvexní množiny je tato věta zvlášť ná-
zorná, j ak ukazují už obr. 14, 15, 16, kde jsou vždycky 
dvě rovnoběžné opěrné přímky příslušné množiny ozna-
čeny/», q. 

J e však potřeba rozumět dobře obsahu věty 3,2. 
Mluví se tam o tom, že počet příslušných opěrných pří-
mek je nejvýše 2. Tu to možnost ukazují právě obr. 14, 
15, 16. Musíme ovšem počítat s tím, že tento počet může 
být menší, tedy 1 nebo i 0. Např . v obr. 12 je j edna 
opěrná přímka příslušné množiny označena p a př i tom 
je zřejmé, že tato množina už nemá žádnou další opěr-
nou přímku rovnoběžnou s přímkou p. Na obr. 17 j e 
vyznačena šrafováním množina M, ohraničená dvěma 
rovnoběžnými př ímkami a, b. Pro tuto množinu ne-
existuje žádná opěrná přímka rovnoběžná s přímkou s, 
jakmile přímka s není rovnoběžná s př ímkami a, b. 

Obr. 15 Obr. 16 
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V některých ú lohách z l ineárního programování , jež 
poznáme v kapitole 5, uži jeme věty 3,2 p ro konvexní 
mnohoúhelníky. V tom př ípadě existují ovšem vždycky 
dvě opěrné př ímky rovnoběžné s d a n ý m směrem. 

C v i č e n í 

3.1. Vyjádřete nerovnostmi, která čísla * leží v inten ilech 
(0; 1) a (0; 1). 

3.2. Které z těchto zápisů jsou správné a které nikoli: 
a) 0e<0; 1); b) 06(0; 3); 
c) V2 e (0 ;2 ) ; d ) s in*e (— 1; +1); 

e ) « e < 2 ; 3 ) ; f) e (0; 1); 

( 223 22 ^ 
g ) ^ [ - t T ' — ) -

3.3. Pro a < b vypočtěte délku d intervalů (a; i), (a; b), (a; b), 
{a', b). 

3.4. Jsou-li x, y dva prvky téhož intervalu á krajními body a, b, 
x + y 

je číslo — - — také prvkem tohoto intervalu. Dokažte to! 
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3.5. Pro a < b je číslo — prvkem každého intervalu 

s krajními body a, b. Dokažte to a všimnete si rozdílu proti 
předcházejícímu cvičení. 

3.6. Je interval množina konečná nebo nekonečná? Dokažte 
příslušné tvrzení! 

3.7. Pro každou množinu A platí A C A (tj. každá množina je 
podmnožinou sama sebe). 

3.8. Jsou-li A, B, C takové tři množiny, že platí AC B, 6 C C 
pak platí také A C C. (Slovy: Je-li A podmnožinou mno-
žiny B a B podmnožinou množiny C, je také A podmnoži-
nou množiny C. Můžeme pak tedy psát A C B C C.) 

3.9. Přesvědčte se, že pro a < b platí 
a) (a; b) C (a; b) C (a; + co) C (— oo; + co); 
b) (a; b) C (a; b) C ( - co-, b); 

c) (a; b) C (a; b). 
3.10. Pro a < a' < b' < b platí 

a) (a'-,b') c («;*); 
b) (a': b') C (a; b). 

3.11. Určete sjednocení intervalů A, B, je-li 
a) A = (0; 1), B = <1; 2); 
b) A = (0; 2), B = (1; 2); 
c) A = <1;5), B = (2; 3); 
d) A = (3; 4), B = (4; 5). 

3.12. Nerovnostmi charakterizujte čísla x, tvořící sjednocení in-
tervalů 
a) (—1; 0) a (0; 1); b) (0; 2) a (1; 3); 
c) (a; + co) a (a; b). 

3.13. Dokažte: Je-li C =. A (J B, je A C C. 
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3.14. Pro každou množinu A platí a) A = A y A;1 

b) A = A U 0. 
3.15. Je-li D = A P) B, je D C ^ i D C B . (Průnik množin 

je podmnožinou každé z nich.) 
3.16. Pro každou množinu A platí A = A (") A. 
3.17. Stanovte průnik intervalů 

a) (0; 2) a (1;3); 
b) (0; 2) a (1; 3>; 
c) (0; 2) a (1; 3). 

3.18. Stanovte sjednocení C i průnik O tří intervalů 
a) (0; 2), (1;3) a (2; 4); 
b) <0;3>, (1;4> a (2; 5). 

3.19. Je dáno nekonečně mnoho intervalů An = (n; n + 1), kde 
n = 0, ±1, ±2, ±3, . . . , čili n probíhá množinu všech 
celých čísel. Stanovte sjednocení všech těchto intervalů A„. 

3.20. Je dáno nekonečně mnoho intervalů a) B„ = / o ; - í - / , 
, í 1 \ \ » / b) Bn = 10; — j , kde n = 1, 2, 3, . . . (n probíhá množinu 

všech přirozených čísel). Stanovte průnik všech intervalů 
B„ a všech intervalů B .̂ 

3.21. Rozhodněte, zda jsou správná tato tvrzení: 
a) průsečík výšek každého trojúhelníka je bodem tohoto 

trojúhelníka; 
b) průsečík os vnitřních úhlů každého trojúhelníka je bo-

dem tohoto trojúhelníka. 

52 



4. k a p i t o l a 

Ř E Š E N Í N E R O V N O S T Í 

Užití analytické geometrie si ukážeme na jednoduchých 
úlohách z řešení nerovností. Zprvu j e asi stejně snadné 
i řešeni aritmetické, tím lépe však na těchto jedno-
duchých příkladech pochopíme metodu geometrickou. 

P ř í k l a d 4,1. Pro která čísla x je 

J | L > 3 — * ? (4,1) 

Výraz na každé straně této nerovnosti představuje ně-
jakou funkci proměnné x, což zapíšeme ve tvaru 

g ( x ) = 3 - x . 

Snadno sestrojíme grafy funkcí y — f(x) a y = g(x) ve 
zvolené soustavě souřadnic (viz obr. 18). Graf funkce 

I x I 
f(x), mající rovnic iy = 2 ' j e lomená čára s kritickým 
bodem v počátku a dovedeme je j snadno sestrojit podle 
výkladu v kapitole 2. V obr. 18 j e vyrýsován plnou čarou. 
Ještě snazší j e graf funkce g(x), neboť j e to lineární 
funkce o rovnici y = 3 — x; tento graf j e v obr. 18 vy-
rýsován čárkovanou (přerušovanou) čarou. Poněvadž 
jde vesměs o přímky (příp. polopřímky), zjistíme takřka 
pouhým pohledem na obr. 18, že oba tyto grafy se pro-
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tíhají v bodě A [2; 1]. Ale my hledáme takové x, pro 
které je podle (4,1) f(x) > g(x). Snadným rozborem 
zjistíme užitím věty 1,10 a věty 1,11, že pro x > 2 
(vpravo od průsečíku obou grafů) j e f{x) funkce rostoucí 
a g(x) klesající. J e tedy pro * > 2 stále f(x) >/(2) = 1 
a g(x) < g(2) = 1 čili celkem f(x) > g(x). Podobně 
vidíme, že pro x < 2 je f(x) <g(x). Danou nerovnost 

Napišme to ještě ve tvaru množinovém podle kapito-
ly 3. Nerovnost (4,1) je řešena právě těmi čísly x, pro kte-
rá platí x e (2; + oo). 

P ř í k l a d 4,2. Řešte nerovnost 

|*+ 1| — \x\+3\x— 1| — 2\x — 2 | < * + 2 . (4,2) 

Položme podobně jako prve 

yi*) = | * + 1 | — | * I + 3 I * — 1 1 — 2 I* — 2 I , 
g(x) = x + 2. 
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Graf funkce f(x) j e lomená čára se čtyřmi kritickými 
body pro hodnoty x = —1, í = l a * = 2 . N a 
obr. 19 j e vytažena plnou čarou. Graf funkce g(x) j e 
přímka, vyrýsovaná na obr. 19 čárkované. O b a grafy 
se protínají v bodě A [—2; 0] a pak maj í pro x S: 2 
společnou celou polopřímku počínající v bodě B [2; 4]. 
Podobně jako v předcházejícím příkladě vidíme, že ne-

rovnost (4,2), tj. nerovnost f(x) < g(x), j e splněna 
pouze pro x e (—2; + 2 ) čili pro čísla x splňující nerov-
nosti —2 < x < + 2 , neboť jen v tomto úseku je čára 

y =f{x) pod č a r o u y = g{x). 
Zkuste vyřešit nerovnost (4,2) aritmeticky a porov-

nejte pak výhody i nevýhody aritmetického řešeni proti 
geometrickému. 

V další úloze bude pro začátečníka důležitá formulace 
výsledku. 
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P ř í k l a d 4,3. Řešte nerovnost 

-g- (5 | * — 1| — * + 1) — 3 | * — 2 | + — 4| > 

> - * - ( l l _ 3 * — 5 | * - 1 | ) . (4,3) 

Postup řešení není už pro nás nový. Písmeny f , g označ-

g(x) = - i - ( l l - 3 * - 5 | « - l | ) . 

Je j ich grafy jsou na obr. 20; jsou to lomené čáry. Kri-
tické body funkcey =f(x) dostáváme pro x = l, x = 2 
a x = 4, funkce y = g(x) má jediný kritický bod pro 
* = 1. Podobně jako dřív je i zde graf funkce y = f(x) 
vyrýsován souvisle (plnou čarou) a graf funkcey = g(x) 
čárkovaně. 

56 



Naší úlohou je najít všechna taková x, pro která platí 

/(*) > g{*) , ' (4,4) 

což je v tomto případě jen stručný zápis nerovnosti (4,3). 
Při trošce geometrického citu snadno nacházíme, že oba 

grafy se protínají v bodech A [—1; 2] a B ; 2j . 

Vlevo od průsečíku A j e nerovnost (4,4) ovšem splněna, 
protože v intervalu (— oo;—1) je podle vět 1,10 a 1,11 
funkce f(x) klesající a g(x) rostoucí; skutečně je pro 
* < — 1 všude/(*) > / ( — 1 ) = 2 = g{—1) >£ (* ) . Dále je 

3 
nerovnost (4,4) splněna vpravo od bodu B, tedy pro x > y , 
j ak už čtenář vyšetří podobně jako prve snadno sám; 
i pro tato x j e stále čára y = f(x) nad čarou y = g(x). 

3 
Pro zbývající x, t j . pro —1 rg x ^ y , tomu tak není 
a proto všechna řešení nerovnosti (4,3) jsou taková 

3 
čísla pro která platí x < —1 nebo * > -*). Slůvko 

nebo m á zde svůj zvláštní význam, kterého si brzy všim-
neme. Dříve se však pokusme zapsat náš výsledek pomocí 
množinových pojmů. Našli jsme, že všechna čísla x, 
která řeší nerovnost (4,3), tvoří dva intervaly, totiž 

interval (— oo; —1) a interval í + ool. Množina 

*) Jiný možný postup řešení nerovnosti (4,3) je tento: užitím vět 
1,2 a 1,3 ji převedeme na ekvivalentní nerovnost tím, že všechny 
členy z pravé strany nerovnosti 4,3 převedeme na její levou stranu. 
Po jednoduchém počtu seznáte, že to vede k úloze ze cvičení 4,2. 
Pro sestrojení grafu příslušné funkce potřebujete však (při zacho-
vání měřítek z obr. 20) mnohem více místa. 
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všech řešení nerovnosti (4,3) je tedy sjednocením obou 
těchto intervalů, takže můžeme napsat : číslo x je řešením 
nerovnosti (4,3) tehdy a jen tehdy, je-li 

* e [ ( - o o ; - l ) U (-5-; +«>) ] . (4,5) 

Výhoda tohoto zápisu řešení nerovnosti (4,3) vysvitne 
nejlépe na některých hodně jednoduchých příkladech. 

/ 
1- y 

\y - / fx i 2 

y • qixi 
i ^̂ ^ i \ 1 1 i 

7 B/ 

\ X 

-1 0 1 

Obr. 21 

J e zřejmé, že například nerovnost \x\ < 1 j e řešena 
právě těmi x, pro která platí —1 < x < + 1 čili pro 
x e (—1; + 1 ) . Snadno to poznáme i z grafického vy-
jádření funkcí f(x) = \ x\ a g(x) = 1 na obr. 21, neboť 
právě v intervalu (—1; +1 ) je čárajy =f(x) pod čarou 

y = §ix)> tedy f(x) <g(x). Naproti tomu nerovnost 
> 1 čili f(x) > g(x) j e řešena právě těmi x, pro 

která j e 
x < —1 nebo * > 1, (4,6) 

což jsou čísla z intervalů 
( _ o o ; _ l ) a ( l ; + o o ) . (4,7) 
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Všimněte si, že oba tyto zápisy (4,6) a (4,7) maj í stejný 
matematický obsah (znamenají prostě totéž), i když 
v prvním z nich užíváme spojky nebo a v d ruhém spojky 
a. Každý však cítí, že v zápise (4,6) nelze'užít spojky a, 
protože čísla x, pro která je x < — 1 a x > 1, neexistují; 
průnik intervalů (4,7) je totiž množina prázdná, píšeme 
přece správně (— oo ; —1) fl (1; + oo) = 0 . V běžné 
řeči mívají však spojky a a nebo význam prot ichůdný; 
v gramatice čteme, že a spojuje skoro vždycky výrazy 
souřadné, spojka nebo spojuje nejčastěji dvě odporující 
si věty v souvětí odporová. Říkáme např íklad: „ P ů j d u 
na procházku, nebo (půjdu) do biografu." T u jde vždy 
o dvě možnosti, které se navzájem vylučují, odporuj í si. 
V matematice však právě spojka nebo znamená velmi 
často spojení souřadné. Víme už, že m j e prvkem sjedno-
cení množin A, B, je-li m e A nebo m e B; při tom tyto 
dvě možnosti se nevylučují, neodporují si, protože m 
může být docela dobře prvkem obou množin A, B sou-
časně. Podobně neostrá nerovnost a b, kterou čteme 
slovy „a j e menší nebo rovno b" připouští obě možnosti 
a < b i a = b. Ale věta, že „tř i body v rovině určují 
trojúhelník, nebo leží v př ímce" ukazuje, že i v matema-
tice někdy užíváme spojky nebo tak jako j inde v denním 
životě, když spojujeme dvě odporující si tvrzení. Pro 
tuto nejednotnost významu slovního vyjádření, která 
n á m v matematice často vadí, se nebudeme ovšem zlobit 
na jazykovědce. Uvědomíme si, že živý jazyk podléhá 
změnám, že na rozdíl od mrtvého jazyka (jako je latina) 
se vyvíjí a že tomu žádný jazykovědec nezabrání. Potře-
buje-li však matematika, aby její pojmy byly vymezeny 
jednoznačně, nezbývá matemat ikům nic j iného, než 
uchýlit se k vlastní symbolice a vyhnout se tak svrchu 
zmíněné „nedokonalosti" lidské řeči. V našich příkla-
dech j e touto symbolikou množinové vyjádření. Zápis 
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(4,5) mluví jasně a nenechává nikoho na pochybách 
v záležitosti řešení nerovnosti (4,3). Podobně ne zcela 
jasné zápisy (4,6) a (4,7) nahradíme snadno bezpečnou 
formulací, že právě pro x e [(— oo; —1) (J (1; + oo)] 
j e | > 1. 

Z těchto příkladů už j e vidět užitečnost množinové 
symboliky; zároveň se ukazuje, že teorie množin není 
samoúčelná. A to jsme teprve v začátcích, k teorii mno-
žin jsme zde vlastně ani nepřičichli. V dalších příkla-
dech užijeme množinových pojmů už stručně bez obšír-
ných výkladů. 

P ř í k l a d 4,4. Máme-l i zjistit, pro která čísla x platí 
nerovnosti 

\2x — 11 < < 3* + 2, (4,8) 

zavedeme funkce 

f(x) = |2* —11, g(x) =|*|, h(x) = 3 * + 2 

a sestrojíme jejich grafy v obr. 22 ( č á r a j = f(x) j e vyrý-
sována plně, j = g(x) čárkovaně a y = h(x) tečkované). 
Nerovnost (4,8) pak zní 

/(*) < g(x) < h(x). (4,9) 

Soustředíme se nejdřív na nerovnost / (*) < g(x); meto-
dami n á m už známými poznáváme, že tato nerovnost je 

splněna právě pro * vyhovující nerovnostem < * < 1 , 

neboť čáry y = / (* ) a y = g(x) se protínají v bodech 

A ; -g-J a 2?[1; 1] a j e n v tomto úseku mezi body 5 

leží čára y = / ( * ) pod čarou y = g(x). Hledejme dále 
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čísla x, která řeší nerovnost g(x) < h(x). Čity y = g(x) 
ay = h(x) se protínají v bodě C y j a vpravo 

od tohoto bodu leží už všude čára y = h(x) n ad čarou 

y = 8(x)> Je tedy právě pro x > stále g(x) < h(x). 
Zapišme dosavadní výsledky množinově: 

Nerovnost / ( * ) < g(x) platí právě, pro x 1 j-

Nerovnost g(x) <h(x) platí právě pro x e ^ + ooj. 

Nerovnost (4,9) čili (4,8) j e tedy řešena právě těmi 
čísly x, která leží v obou právě vypsaných intervalech 
zároveň, tedy v jejich průniku. Snadno nacházíme, že j e 
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j e totiž l j C ^ + Máme tedy tento vý-

sledek: nerovnostem (4,8) vyhovují všechna čísla 

x 6 ("3~» l)> ti* *> P r o platí -g- < x < 1 
a žádná j iná. i -

Závěrem této kapitoly připojme ještě stručnou zmín-
ku o nerovnostech kvadratických. Analytická geometrie 
nám názorně pomáhá i zde. 

P ř í k l a d 4,5. Řešte 
nerovnost 

x2 +x — 2 > 0 . (4,10) 

V analytické geometrii se ve škole učí, že rovnice 

y = x2 + x — 2 J^čili y + = + j j představuje 

I 1 9 1 . . 
parabolu o vrcholu V\ ; její graf j e na obr. 
23. V naší úloze se ptáme po těch bodech této paraboly, 
které leží nad osou x. Osu x protíná naše parabola 
v bodech A [—2; 0], B [1; 0 , ] , j ak zjistíme řešením 
rovnice x2 + x — 2 = 0 . Protože vlevo od vrcholu V 
dává parabola funkci klesající a vpravo od vrcholu V 
funkci rostoucí, nacházíme ihned hledané řešení: nerov-
nost (4,10) je splněna pro body vlevo od bodu A a pro 
body vpravo od bodu B, tedy pro x < •—2 a pro x > 1. 
To je sjednocení dvou nekonečných intervalů, nerovnost 
(4,10) proto platí tehdy a jen tehdy, je-li 

* 6 [ ( - o o ; - 2 ) U (1; + « ) ] • (4,11) 
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Připojme ještě aritmetické řešení nerovnosti (4,10). 
Pro každé * je *a + x—2 = (* + 2 ) (* — 1). Tento 
součin má být kladný. To nastává b u d tehdy, když oba 
výrazy x + 2 a x — 1 jsou kladné, nebo tehdy, když 
jsou oba záporné. První možnost vede k nerovnostem 
* + 2 > 0, x — 1 > 0 , jež požadují , aby bylo zároveň 
x > —2 a x > 1; j de tedy o průnik intervalů 

( - 2 ; + c o ) O (1; + o o ) = (1; + o o ) . (4,12) 

První možnost dává tedy řešení x > 1. Druhá možnost 
nezávisle na první poskytuje další řešení x + 2 < 0, 
x — 1 < 0 a požaduje tudíž, aby bylo zároveň x < —2 
a * < 1; to j e průnik intervalů 

( _ 00; _ 2 ) n (— co; 1) = (— co; - 2 ) . (4,13) 
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Sjednocením těchto průn iků , zapsaných formulemi 
(4,12) a (4,13), vyče rpáme obě zmíněné možnosti a do-
s táváme opět řešení ve tvaru (4,11). J e vidět, že i v ari t-
met ickém řešení se vyplat í množinové myšlení p ro svou 
j ednoduchou přehlednost . 

Poznamene jme ještě pro úplnost, že některé kvadra-
tické trojčleny jsou buď stále kladné, nebo stále záporné . 
Pak j e řešení velmi snadné. Např ík l ad nerovnost 
x 2 + 2 x + 2 > 0 j e splněna p ro všechna čísla x, neboř 
pro každé x j e x2 + 2x + 2 = (x + 1)® + 1 ^ 1 > 0 ; 
pro každé a j e totiž a2 S; 0, j e tedy také (x + l ) 2 ^ 0. 
Geometr icky to znamená , že pa rabo la o rovnici j = x2 + 
+ 2x + 2 nepro t íná osu x, ale leží celá n a d ní. Narý-

sujte si j i , m á vrchol V [—1; 1]. 

C v i č e n í 

4.1. Řešte nerovnost: 
a) + |2 — x\ < 2; 
b) 212jc — 31 ^ * + 5; 
c) \x-2\ > \2x + 3|; 
d) 2x + 1 — 2\x + 1| + — 3| ^ ]*|. 

4.2. Řešte nerovnost 
5|x — 1| — 3|* — 2| + [x — 4| + * — 5 > 0 
a všimněte si souvislosti s přikladem 4,3. 

4.3. Geometricky znázorněte řešení nerovností 
a) — a\ < b; b) \x — a\ > b, je-li ovšem b > 0. 

4.4. Geometricky řešte soustavu nerovností 
2x + 3 ^ 3* + 1 á * + 5. 

4.5. Pro která * je *2 — 9* + 18 < 0? 
4.6. Dokažte: pro každé * je *2 -I- x + 1 > 0. 
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5. kapitola 

S O U S T A V Y N E R O V N O S T Í 
O D V O U N E Z N Á M Ý C H 

V této kapitole se soustředíme výlučně na úlohy z praxe. 
Pro přehlednost výkladu i obrázků jsou však v našich 
příkladech vhodně volena konkrétní čísla, aby myšlen-
kový postup řešení nebyl zastíněn zdlouhavými nume-
rickými výpočty. 

Příklad 5,1. V sériové výrobě dvou druhů výrobků 
A, B je výrobní náklad jednoho kusu výrobku A 1000,— 
Kčs a jednoho kusu výrobku B 3000,— Kčs. Prodejní 
cena jednoho kusu výrobku A je 3000,— Kčs a jednoho 
kusu výrobku B 4000,— Kčs. Velkosklad odkoupí nej-
výše 6000 kusů výrobku A a 4000 kusů výrobku B. 
Kapacita výroby je rovněž omezena, maximálně je 
možno vyrobit 8000 kusů obou výrobků A i B dohro-
mady. Úkolem je rozvrhnout za těchto podmínek vý-
robu tak, aby zisk výrobce byl co největší. 

Zřejmě máme stanovit počet kusů výrobků A i B, 
které máme vyrobit; jde tedy o dvě neznámé. Písme-
nem x označme hledaný počet kusů výrobku A, pís-
menem y podobně počet kusů výrobku B. Při řešení mu-
síme přihlédnout k tomu, kolik kusů za daných pod-
mínek vůbec vyrobit můžeme. Teprve potom, až to bu-
deme vědět, přistoupíme k hledání takového řešení, 
které je pro výrobce nejvýhodnější (optimální). Sleduj-
me tedy nejdřív jednotlivé podmínky dané úlohy. 

Při zvoleném označení dostáváme především 
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* ^ O , y ^ o , (5,1) 

neboť záporný počet výrobků nevyrábíme. Dále je 
zřejmé, že nemá smysl vyrábět víc kusů, než kolik jich 
prodáme. Zde je tento odbyt dán tím, že velkosklad pře-
vezme nejvýše 6000 kusů výrobku A a 4000 kusů vý-
robku B. To vede k nerovnostem 

x ^ 6000, y ^ 4000. (5,2) 

Protože na druhé straně nemůžeme vyrobit více než 
8000 kusů výrobků A i B dohromady, musíme počítat 
s nerovností 

x +y ^ 8000 (5,3) 

(Toto omezení plyne z povahy výroby. Může být způso-
beno různými okolnostmi, například tím, že stroje, jichž 
k výrobě užíváme, větší zatížení nesnesou; jejich opotře-
bení by mohlo být takové, že by už další výrobu nevy-
držely, nebo by vyráběly zmetky.) 

Zastavme se ted na chvíli u analytického vyjádření 
výrobních možností, zapsaného nerovnostmi (5,1) až 
(5,3) Znázorněme si je geometricky na obr. 24 dříve, 
než přistoupíme k otázce ceny a zisku. (Jednotlivé dílky 
měřítek na osách souřadných v obr. 24 neznamenají 
ovšem jednotky, ale tisíce.) Jde tu vesměs o lineární ne-
rovnosti, jejichž geometrický význam jsme poznali v ka-
pitole 1. Podle věty 1,14 první z nerovností (5,1) charak-
terizuje pravou polorovinu určenou hraniční přímkou 
o rovnici x = 0 (osouy) a první z nerovností (5,2) levou 
polorovinu určenou hraniční přímkou o rovnici x = 
= 6000. Z toho už plyne, že přípustné řešení musíme 
na obr. 24 hledat jen mezi takovými'body, které leží 
v pruhu ohraničeném zmíněnými dvěma rovnoběžkami 
o rovnicích x = 0 a x = 6000. Zbývající dvě nerovnosti 
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ze vztahů (5,1) a (5,2) znamenají podobně pruh ohra-
ničený dvěma rovnoběžkami o rovnicích y = 0 (tj. 
osa x) a y = 4 0 0 0 ; to plyne z vět 1,12 a 1,13, neboť 
zmíněný pruh je množinovým průnikem příslušných 
polorovin. Vcelku tedy vidíme, že omezení plánů vý-
roby, stanovené čtyřmi nerovnostmi (5,1) a (5,2),je geo-
metricky znázorněno body obdélníka OPQR, který je 
průnikem obou výše zmíněných pruhů; v úvahu přichá-
zejí ovšem jak vnitřní body tohoto obdélníka, tak i body 
hraniční, tj. body ležící na jeho obvodu (neboť nerov-
nosti (5,1) a (5,2) jsou neostré). Poslední nerovnost, totiž 
nerovnost (5,3), můžeme přepsat na tvar x -\-y — 
— 8000 použít pak věty 1,15, kde klademe a = 
= 6 = 1 > 0 ; jsou tedy splněny předpoklady věty 1,15 
a z ní plyne, že nerovnost (5,3) je zobrazena v obr. 24 
dolní polorovinou, určenou přímkou o rovnici x +y = 
= 8000. Tato přímka protíná obdélník OPQR v úsečce 
MJV, jejíž krajní body M [6000; 2000] a N [4000; 
4000] určíte snadným počtem. Polorovina, určená ne-
rovností (5,3), vytíná z obdélníka OPQR pětiúhelník 
OPMNR, který je na obr. 24 vyšrafován. Souřadnice 
bodů tohoto pětiúhelníka a jenom těchto bodů splňují 
všechny nerovnosti (5,1) až (5,3), jež naši výrobu ome-
zují; proto říkáme, že body tohoto pětiúhelníka (vnitřní 
i na hranici) znázorňují tzv. přípustné plány naší výroby. 
Tomu je třeba rozumět tak, že každý bod tohoto pěti-
úhelníka představuje jedno skutečně realizovatelné roz-
vržení naší výroby. 

Za zmínku stojí, že pětiúhelník OPMNR jakožto prů-
nik pěti polorovin určených nerovnostmi (5,1) až (5,3), 
je podle příkladu 3,7 množinou konvexní. 

Po této přípravě přistupme konečně k řešení naší 
úlohy, formulované na začátku příkladu 5,1. 

Protože výroba připouští nekonečně mnoho řešení, 
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znázorněných všemi body pětiúhelníka OPMNR, je 
nasnadě myšlenka vybrat z nich taková fešení, která 
jsou z určitého hlediska výhodná, případně nejvýhod-
nější. V našem příkladě jde o výrobu s maximálním ob-
chodním ziskem. 

Z daných podmínek úlohy bezprostředně plyne, že 
zisk z prodeje jednoho kusu výrobku A je 2000,— Kčs, 
neboť jej vyrábíme za 1000,— Kčs a prodáváme za 
3000,— Kčs. Podobně prodejem jednoho kusu výrobku 
B získá výrobce 1000,— Kčs. Celkový zisk při x kusech 
výrobku A a y kusech výrobku B je tedy v Kčs vyjádřen 
číslem u, kde je 

u = 2000* + lOOOj. (5,4) 
Naším úkolem je najít taková čísla x,y vyhovující nerov-
nostem (5,1) až (5,3), aby lineární funkce (5,4) dávala 
maximální možné u. To je matematická formulace 
úlohy našeho příkladu 5,1. Protože rovnice (5,4) zna-

y 

Obr. 24 
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mená geometricky přímku, je geometrické vyjádření to-
hoto úkolu následující: ze všech takových přímek o rov-
nici (5,4), které procházejí aspoň jedním (Vnitřním nebo 
hraničním) bodem pětiúhelníka OPMNR, najít v obr. 
24 tu, pro kterou je číslo u maximální. 

Při různých hodnotách u jsou ovšem všechny přímky 
o rovnicích (5,4) navzájem rovnoběžné (mají stejnou 
směrnici k = —2). V obr. 24 je jedna z nich označena s. 
Přitom číslo u je přímo úměrné úseku, který každá taková 
přímka vytíná na ose y. Musíme tedy ze všech těchto 
rovnoběžek s přímkou s najít tu, která má společný 
aspoň jeden bod s konvexním pětiúhelníkem OPMNR 
a která přitom vytíná maximální možný úsek na osej. 
Vzpomeneme-li si na větu 3,2, vidíme okamžitě, že hle-
daná přímka je jednou z opěrných přímek konvexního 
pětiúhelníka OPMNR, které jsou rovnoběžné s přím-
kou s. Jedna z těchto přímek prochází počátkem 0 
a dává minimální u = 0, takže nás nezajímá; v obr. 24 
je to přímka p. Druhá z nich, přímka q, prochází vrcho-
lem M [6000; 2000], jehož souřadnice dosazeny do rov-
nice (5,4) dávají u = 14 000 000,—• Kčs; její rovnice 
(bez krácení) zní 

2000A; + 1000J = 14 000 000 . 
To znamená, že souřadnice bodu M řeší naši úlohu. 
Geometrickou cestou jsme tedy našli toto optimální ře-
šení úlohy z příkladu 5,1: 

Maximálního zisku dosáhneme tehdy, když vyrobíme šest 
tisíc kusů výrobku A a dva tisíce kusů výrobku B; příslušný 
maximální zisk bude čtrnáct miliónů Kčs. 

Tím je příklad 5,1 v podstatě dokončen. Jeho obměna 
je cvičení 5,1, na němž si můžete zkontrolovat, zda jste 
věci řádně porozuměli. Zdůrazňujeme ještě, že celý úkol 
zde řeší právě opérná přímka q konvexního pětiúhelníka 
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OPMNR. Podobně je tomu i v dalších příkladech. 
Proto jsme o těchto pojmech mluvili v kapitole 3. Kdy-
bychom místo opěrné přímky q zvolili například přímku 
s ní rovnoběžnou procházející bodem N, dala by nám 
sice možnost nekonečně mnoha řešení (totiž všechny 
body úsečky NP, v níž tato přímka protíná pětiúhelník 
OPMNR), ale ošidili bychom výrobní podnik o dva 
milióny Kčs; přesvědčíte se o tom dosazením souřadnic 
bodu N do rovnice (5,4). Kdybychom na druhé straně 
chtěli zisk zvýšit řekněme na 16 000 00(7,— Kčs, nepo-
dařilo by se nám to, protože rovnice (5,4) by zde měla 
tvar 16 000 000 = 2000* + lOOOjy a představovala by 
přímku, která neprotíná pětiúhelník OPMNR; průnik 
přímky s pětiúhelníkem by tu byla množina prázdná. 
Tak bychom marně hledali řešení mimo podmínky pří-
pustných plánů. Důležité jsou tedy při těchto úlohách 
právě opěrné přímky příslušných množin. 

Funkce u, daná zde rovnicí (5,4), nazývá se v line-
árním programování odborně účelová funkce. Úkolem pak 
je najít takové řešení, které dává optimální hodnotu 
účelové funkce. Tím rozumíme maximální nebo mini-
mální hodnotu účelové funkce za příslušných podmínek, 
stanovených přípustnými plány. V příkladě 5,1 předsta-
vovala účelová funkce zisk. V jiných příkladech a v dal-
ších odvětvích hospodářství může účelová funkce mít 
nejrůznější význam. Nejde vždycky o maximální zisk. 
Někdy jde například o minimální náklady spojené s údrž-
bou provozu (viz příklad 5,3), jindy o nejrychlejší vý-
robu (např. při plnění plánů v dopravě) nebo optimální 
využití počtu pracovních sil apod. V dalším příkladě, 
jehož účelem je ukázat řešení o něco málo složitějšího 
úkolu než prve, zůstaneme však pro jedňoduchost u hle-
dání maximálního zisku. Výklad bude však už mnohem 
stručnější než dosud. 
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Příklad 5,2. Z barytu a cementu chceme vyrábět 
barytové desky a speciální tvárnice. Na 1000 desek 
spotřebujeme 51 (tun) cementu a l t barytu, na 1000 tvár-
nic 2 t cementu a 2 t barytu. Nákupní cena cementu je 
1000,—- Kčs za 1 t, nákupní cena barytu 6000,— Kčs 
za -l t. Pro výrobu máme k dispozici 45 t cementu a 20 t 
barytu. Barytové desky budeme prodávat po 16,— Kčs 
za kus, tvárnice po 17,— Kčs za kus. Ale odběr na trhu 
je omezen; víme, že prodáme nejvýše 8000 kusů desek 
a 9000 kusů tvárnic. Kapacita výroby je rovněž omezena, 
můžeme vyrobit nejvýše 12 000 desek i tvárnic dohro-
mady. Za těchto podmínek máme rozvrhnout výrobu 
tak, aby zisk výrobce byl co největší. 

Na první pohled je patrné, že k řešení tohoto úkolu 
nějaké kupecké počty nestačí. Ale užitím analytické geo-
metrie to vyřešíme snadno. 

Zřejmě je třeba stanovit, kolik barytových desek 
a tvárnic budeme vyrábět. Označme tyto neznámé hod-
noty zase písmeny x, y, ale v tisících kusech. Písmeno x 
neznamená tedy počet desek, ale počet tisíců těchto 
desek; podobněy značí počet tisíců tvárnic. Stejně jako 
v předcházejícím příkladě máme i zde 

Ar ^ 0, y ^ 0. (5,5) 

Odběr trhu omezuje naši výrobu nerovnostmi 

* ^ 8, y < 9. (5,6) 

neboť nemá smysl vyrábět víc kusů, než kolik jich pro-
dáme. Obdobné k předcházejícímu příkladu 5,1 je zde 
i omezení dané kapacitou výroby, jež vede k nerovnosti 

* + 7 ^ 12 . (5,7) 
Ale na rozdíl od předcházejícího příkladu přibudou zde 
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ještě další dvě lineární nerovnosti. Musíme totiž při-
hlédnout k zásobám cementu a barytu. Z podmínky, že 
na 1000 desek spotřebujeme 5 t cementu a na 1000 tvár-
nic 2 t cementu, vychází nerovnost 

5 * + 2 _ y ^ 4 5 , (5,8) 

neboť víc než 45 t cementu nemáme. Spotřeba barytu je 
podobně omezena nerovností 

x 20, (5,9) 
neboť na 1000 desek spotřebujeme 1 t barytu a na 1000 
tvárnic 2 t barytu, jehož zásoba je 20 t. 

Sedm nerovností (5,5) až (5,9) vymezuje přípustné 
plány naší výroby. Znázorníme-li si je geometricky na 
obr. 25, vidíme, že jde o průnik sedmi polorovin, což je 
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konvexní sedmiúhelník OABCDEF, který je na obr. 25 
vyšrafován. Dojdeme k němu stejnou úvahou jako k pěti-
úhelníku OPMNR v předcházejícím obr. 24. Strany 
tohoto sedmiúhelníka leží v hraničních přímkách polo-
rovin, určených nerovnostmi (5,5) až (5,9); jsou to osy x, 
y a pět přímek o rovnicích x = 8, y = 9, * +y = 12, 
5* + 2y = 45, x + 2\y = 20. K stanovení průniku 
těchto polorovin užijte tak jako v předcházejícím pří-
kladě zase vět 1,12 až 1,15 z první kapitoly a příkladu 
3,7 z třetí kapitoly. 

Sestavme nyní účelovou funkci, udávající zisk u. 
Snadno zjistíte, že při výrobě 1000 desek spotřebujeme 
cementu za 5000,— Kčs a barytu za 6000,— Kčs, celkem 
nás tedy výroba jednoho tisíce desek stojí 11 000,— Kčs. 
Protože desky prodáváme za 16 000,— Kčs, získáme při 
jejich výrobě 5000,— Kčs. Výroba tisíce tvárnic vynese 
podobně 3000,— Kčs, neboť cementu zde spotřebujeme 
za 2000,— Kčs, barytu za 12 000,— Kčs a prodáváme je 
za 17 000,— Kčs. Celkový zisk při x tisících desek a y 
tisících tvárnic je tedy dán rovnicí 

u = 5000* + 3000?. 

Tím je dána účelová funkce. Při různých hodnotách u 
jsou všechny tyto přímky spolu rovnoběžné, jejich 

5 
směrnice je k = — Jedna z nich, přímka s, od-
povídající hodnotě u = 15 000,— Kčs, je v obr. 25 za-
kreslena. Optimální řešení podává ovšem opěrná přímka 
q konvexního sedmiúhelníka O A BCDEF protínající jej 
v jediném bodě C a rovnoběžná s přímkou ze všech 
přímek, rovnoběžných s přímkou s, má totiž právě 
přímka q tu vlastnost, že její úseky na osách souřadných 
jsou maximální a že zároveň jejich průnik s uvedeným 
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sedmiúhelníkem není množina prázdná. Příslušné u pro 
přímku q stanovíme z podmínky, že tato přímka prochází 
bodem C. Protože bod C je průsečíkem přímek o rovni-
cích x -{-y = 12 a 5x + 2y = 45, dostaneme jeho sou-
řadnice řešením této soustavy dvou rovnic; vychází 
x = 7, y = 5. Dosazením těchto hodnot do rovnice 
pro a vychází u = 50 000, rovnice přímky q (bez krá-
cení) tedy zní 

50 000 = 5000* + 3OOO7. 

Bod C [7; 5] řeší tedy naši úlohu při zisku u = 50 000 
korun. Slovy vyjádřeno: 

Maximálního zisku 50 000,— Kčs. dosáhneme tím, že vy-
robíme 7000 kusů barytových desek a 5000 kusů tvárnic. 

Analytickou geometrií v rovině můžeme někdy řešit 
i úkoly o třech a více neznámých. Ukážeme si příklad 
na řešení systému lineárních nerovností o třech nezná-
mých. 

Příklad 5,3. K vybavení nové kanceláře je třeba 
koupit 20 psacích strojů. Pro tento nákup je k dispozici 
45 000,— Kčs. Jsou nabízeny tři typy strojů; typ A po 
2000,— Kčs za kus s roční údržbou v hodnotě 20,— Kčs 
pro každý stroj, typ B po 2250,— Kčs za kus s roční 
údržbou 16,—- Kčs pro každý stroj a typ C po 2500,— 
Kčs za kus s roční údržbou 10,— Kčs pro každý stroj. 
Vedení podniku se rozhodne koupit nejvýše 5 strojů 
typu A, protože nechce koupit mnoho nejlacinějších 
a tedy i nejméně kvalitních strojů. Jak se má nákup za-
řídit, aby celkové náklady na roční údržbu strojů byly 
co nejmenší ? 

Počet strojů typu A, B, C označme po řadě x, y, z. 
Hned z první věty textu úlohy vychází rovnice 

74 



x + j -i- z - 20. • (5,10) 

Protože stroje typu A jsou po 2000,— Kčs, je cena x 
kusů dána číslem 2000*. Nákupní cena strojů typu B je 
podobně dána číslem 2250}' a strojů typu C číslem 
2500^. Protože to dohromady nesmí přesáhnout 45 000 
korun, máme nerovnost 

2000* + 2250? + 2500z ^ 45 000. (5,11) 

Z rozhodnutí nenakoupit příliš mnoho nejlacinějších 
strojů (typu A) plyne 

x ^ 5 . # (5,12) 

Přidáme-li k tomu samozřejmý požadavek 
x ^ 0 , z ^ 0, (5,13) 

máme v podstatě vymezeny přípustné plány nákupu. 
Příslušná účelová funkce je zde 

u = 20* + 16\y + 10^ (5,14) 

a znamená, jak každý snadno zjistí, roční náklady údržby 
všech zakoupených strojů, vyjádřené v Kčs. 

Matematická formulace naší úlohy tedy zní: při pod-
mínkách (5,10) až (5,13) stanovit x,y, z ták, aby hod-
nota u, daná rovnicí (5,14), byla co nejmenší. 

Rovnice (5,10) dovoluje vyjádřit jednu neznámou 
pomocí ostatních, například 

* = 2 0 — ( * (5,15) 

což dosazeno do nerovnosti (5,11) a do poslední nerov-
nosti (5,13) dává podmínky 

500x + 250^ ^ 5000, 20 — * — v >_ 0. 
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Po jednoduchých úpravách dostáváme konečně spolu 
s prvními dvěma nerovnostmi (5,13) celkem pět násle-
dujících podmínek určujících přípustné plány nákupu: 

2x +y ^ 20, 
x +y < 20 , 

(5,16) 
* ^ 0 , 
y ^ 0 . 

Tyto nerovnosti už umíme znázornit užitím analytické 
geometrie v rovině, neboť jde o dvě proměnné x, y. 
Dostáváme tak pět polorovin, jejichž průnikem je zde 
trojúhelník MNP (v obr. 26 vyšrafovaný), který je obra-
zem přípustných plánů. Uvedené poloroviny i s jejich 
hraničními přímkami stanovíte už snadno sami na zá-
kladě vět 1,13 až 1,15 z kapitoly 1; pozor na to, že na 
rozdíl od předcházejících příkladů první nerovnost 
(5,16) zde dává horní polorovinu určenou přímkou 
o rovnici 2x + y = 20. 

Účelová funkce (5,14) přejde po dosazení z rovnice 
(5,15) ve tvar 

u = 10* + 6y + 200 
čili 

v = \0x+e>y, (5,17) 

kde klademe v = u — 200. Má-li být u minimální, musí 
být v zřejmě také minimální a obráceně. Číslo v je opět 
přímo úměrné úsekům, které na osách x, y vytínají jed-
notlivé navzájem rovnoběžné přímky o rovnicích (5,17). 
Jedna z nich, totiž přímka s, je na obr. 26 zakreslena. 
Naši úlohu tak jako dřív řeší opěrné přímky trojúhelníka 
MNP, které jsou rovnoběžné s přímkou s. Jedna z nich, 
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přímka p, dává maximální přípustnou hodnotu v, druhá, 
přímka q, minimální hodnotu v a tu právě hledáme. 
Přímka q prochází vrcholem M [5; 10], jehož souřad-
nice určíme řešením soustavy rovnic x = 5, 2x -\-y = 20. 
S použitím rovnice (5,15) dostáváme pak jako řešení 
naší úlohy hodnoty x = 5, y = 10, z = 5, které dosa-
zeny do účelové funkce (5,14) dávají u = 310. Řešení 
přikladu (5,3) tedy zní: Nakoupíme 5 strojů typu A, 
10 strojů typu B a 5 strojů typu G, čími dosáhneme minimální 
roční údržby 310,— Kčs. 



Připomeňme, že tuto úlohu je možno řešit přímo ve 
třech proměnných obdobně jako zde, ale samozřejmě 
užitím prostorové analytické geometrie. 

Prakticky důležitá je však tato poznámka: vztah úče-
lových funkcí u a v z rovnic (5,14) a (5,17) je třeba po-
zorně sledovat. Zde minimu u odpovídalo minimum v 
a maximu « odpovídalo maximum v. Někdy se však 
může stát (viz cvičení 5,4), že vyloučením třetí neznámé 
minimu jedné účelové funkce odpovídá qiaximum druhé 
a obráceně, že tedy úloha, směřující například k hledání 
jistého minima, se vyloučením některé neznámé převede 
na hledání maxima. Příklad ze cvičení 5,4 vám jistě ne-
bude dělat potíže; jen pro úplnost připomínám, že je 
vyřešen v Setzerově článku, uvedeném zde v seznamu 
literatury. 

Dále je nutno upozornit čtenáře ještě na jednu okol-
nost, kterou jsme zde dosud nenápadně přešli. Kdy-
bychom například nějak pozměnili volbu konkrétních 
čísel v textu našich příkladů, mohlo by se docela dobře 
stát, že řešením nebudou čísla celá, že v konečných vý-
sledcích by se vyskytly zlomky. Proč by např. souřadnice 
bodu M v posledním obr. 26 musela být při celkem ne-
patrných změnách daných údajů právě čísla celá? Ale 
kdyby vyšly zlomky, nemělo by to praktický efekt — 
nelze přece koupit 2 a půl psacího stroje. V takových 
případech řešíme však naši úlohu stejnou metodou jako 
zde, ale pouze s tím rozdílem, že místo bodu M najdeme 
v trojúhelníku MNP na obr. 26 takový bod s celočísel-
nými souřadnicemi, který je k opěrné přímce q nejblíž. 
Body s celočíselnými souřadnicemi se nazývají v mate-
matice odborně mřížové body a v souvislosti s lineárním 
programováním se o- nich dočtete bližší podrobnosti 
v knížce Fr. Veselého citované v uvedené literatuře. Mří-
žové body hrály také odedávna důležitou roli v teorii čísel. 
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Závěrem si řekněme, že úlohy z příkladů 5,1 až 5,3 
patří do tzv. lineárního programování. Lineárním progra-
mováním rozumíme úlohu najít n neznámých *1( *2, ..., 
xn vyhovujících m lineárním nerovnostem 

+ a2x2 + ... + a„*„ ^ A , 
+ ¿2*2 T- • • • + b*xH ^ B , 

wiixi + m2x2 + ... + mltxn ^ M, 
tak, aby bylo > 0, í , ž 0, . . . ,*„ ^ 0 a aby lineární 
funkce 

U = í*!*! + «2*2 + . . . + «„*„ 
nabývala maximální nebo minimální hodnoty. Přitom 
všechna písmena zde zapsaná znamenají ovšem reálná 
čísla. 

V našich jednoduchých příkladech jsme měli dvě ne-
bo tři neznámé, a proto jsme je mohli řešit analytickou geo-
metrií ; tohoto způsobu řešení se v praxi při malém počtu 
neznámých skutečně užívá. Snadno si však domyslíte, že 
u velkých technických, hospodářských nebo organizač-
ních problémů přesahuje počet neznámých *l5 *a ..., xn 
několik desítek i více. Často je dokonce potřeba najít 
řešení rychle (např. v dopravě). V tom případě nelze 
uplatnit zdlouhavé počtářské nebo geometrické metody 
a je nutno vzít na pomoc stroje, hlavně samočinné počí-
tače, jejichž rozvoji právě vděčíme za široké užití lineár-
ního programování. 

Gvičeníj 

5,1. Ve výrobě jsou dva druhy výrobků A, B. Zisk výroby na 
jednom kusu výrobku A je 1000,— Kčs a na jednom kusu 
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výrobku B 2000,— Kčs. Odběratelé koupí nejvýše 2000 kusů 
výrobku A a 3000 kusů výrobku B. Celkem je možno vyrobit 
nejvýše 4000 kusů obou výrobků A i B dohromady. Kolik 
kusů obou výrobků máme vyrobit, aby zisk výrobce byl co 
nej větší? 

5.2. Řešte znovu úkol z příkladu 5,2 za předpokladu, že máme 
k dispozici 48 t cementu (místo původních 45 t) a že ostatní 
údaje zůstanou nezměněny. 

5.3. Řešte úlohu z přikladu 5,3 za předpokladu, že nebudeme 
trvat na maximálním počtu pěti strojů typu A [tj., že vy-
necháme nerovnost (5,12)]. 

5.4. Vedoucí prodejny m í uskladnit 3 druhy lahví vína, a to: 

Velikolt láhve Nákupní cena Prodejní cena Ziik 

1,0 1 28,— Kčs 38,— Kčs 10,— Kčs 
0,7 1 20,— Kčs 28,— Kčs 8 ,—Kčs 
0,5 1 12,40 Kčs 21,— Kčs 8,60 Kčs 

Chce skladovat 1400 1 vína, ale ne více než 2000 lahví. 
Přitom má být alespoň 450 lahví litrových, alespoň 450 
lahví po 0,7 1 a alespoň 500 lahví půllitrových. Celková 
nákupní cena se může pohybovat mezi 36 000 až 39 600 Kčs. 
Jak nákup provede, aby jeho zisk byl co největší? 
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V Ý S L E D K Y C V I Č E N Í 

1. kapitola 

1,1. Věta 1,1 má tyto obdoby: Je-li a ^ b, b ^ c, je a ^ c. Je-li 
a ^ b, b < c, je a < c. — Věty 1,2 a 1,3 přejdou v tyto tvary: 
Je-li ii ^ í , je a + c á i + « a také a — c ^ b — c. Věta 1,4 
zde zní: Je-li a íá b, c ^ d, je a + c á b + d. Je-li a b, c < d, 
je a + c < b + d. 1,2. Přejde v rovnici 0 = 0 . 1,3. Tvrzení je 
správné. Kdyby bylo ae > bc, bylo by buď zároveň c > 0 i a — 
— b > 0, nebo zároveň c < 0 i a — b < 0, což obojí odporuje 
předpokladům. 1,4. a) V horní polorovině, b) V dolní polorovině, 
c) V obou polorovinách zároveň. 1,5. Je-li q > 0, je horni polo-

x y 
rovina charakterizována nerovností — -) 1 a dolní polo-

P <t ~ 
x y r i 

rovina nerovností 1 1. Je-li q < 0, je homí poloro-
ť 1 x y 

vina charakterizována nerovností — -| sí 1, dolní polorovi-* 7 P í 
na nerovností 1 S: 1. 1,6. Každá ostrá nerovnost tu 

P <1 
charakterizuje vnitřek příslušné poloroviny, tj. všechny body polo-
roviny s výjimkou těch, které leží na její hraniční přímce. 1,7. * — 
—_)>y3 + 31/3 — 1 Ž O ; užitím vzorců (1,13) a (1,4) určíme nej-
dříve rovnici hraniční přímky a pak postupujeme podle některé 
z vět 1,12 až 1,16. 1,8. 3x + 5y— 13 á 0; viz návod ve cvičení 
1,7, jen místo vzorce (1,4) užijeme vzorce (1,14). 1,9. a) Horní 
polorovina vyťatá přímkou, která prochází body [0; 3] a [4; 0]. 
b) Dolní polorovina vyťatá přímkou, která prochází bodem [0; 1] 
a má směrový úhel <p = 45°. c) Levá polorovina, jejíž hraniční 
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přímka prochází bodem [2; 0] a je rovnoběžná s osou y. 1 , 1 0 . 
* „ 1 

a) y = — ; funkce je rostoucí, neboť směrnice je k = — i> 0. 

b) y = 1 — x; funkce je klesající, neboť směrnice je k = —1 < 0. 
c) y = 2, funkce není ani rostoucí, ani klesající. 

2. kapitola 

2,1. Všechny body, které leží současně v horních polorovinách 
vyťatých přímkami * — y = 0a.x+y = 0, tedy v pravém úhlu, 
jehož ramena jsou polopřímky o rovnicích (2,3). 2,2. Všechny 
body s výjimkou bodů ležících v pravém úhlu, jehož ramena jsou 
polopřímky o rovnicích (2,3). 2,3. Výsledek ve formě rozepsání 
dané funkce na jednodivé polopřímky a úsečky .zní: a) Pro x < 0 
je y = *, pro 0 á * < l j e > = 0 a pro * ^ 1 je y = x — 1. 
b) Pro * < —1 je y = 3x + 6, pro —1 á * < 3 je y = —x + 2 
a pro x je y = x — 4. 2,4. Pro JC sS 0 je v obou případech 

y = 0; pro * > 0 je a) y = b) y = 2*. 2,5. Garáže je třeba 
postavit mezi obcemi B a C v e vzdálenosti 1 km od B; minimum 
neproduktivní dráhy je potom 51 km. Volíme-li při grafickém zná-
zorněni podle vzoru příkladu 2,6 počátek v obci B, j e obdo-
bou vztahu (2,16) rovnice.? = 3|x + 6| + 2\x\ + 4|x — 8], 2,6. 

Značí-li y množství vody v nádrži měřené v m3 , jo_y -- \xi — 

v I 10 
y\* r 
9* 

i * — 8 ; 

+ 5. 2,7. Jde o graf funkce y = 2 

H— 4 v intervalu 0 ^ x ^ 16; graf se skládá ze dvou 

úseček se společným krajním bodem [8; 32], nanišíme-Ii na osu 
x hodiny a na osu y mzdu. 
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3. kapitola 

3,1. 0 g j i ž 1 a 0 < * < 1. 3,2. Správné jsoi} případy a), c), 
d) , f)> g) nesprávné jsou b), e). 3,3. Pokaždé j e d = A — a. 
3,4. Podle nerovností (3,2) j e a á » š í , í š ; š í ; odtud plyne 

x y 
a g s j b. Pro ostatní intervaly stačí nerovnosti (3,2) 

2 a + b 
nahradit nerovnostmi (3,3) až (3,5). 3,5. Zřejmě je a < — < 

< b. Na rozdíl od předpokladů ve cvičení 3,4 nemusí zde čísla 
a, b být prvky zkoumaného intervalu, neboť tento interval nemusí 
být uzavřený. 3,6. Interval s krajními body a < b obsahuje podle 

a + b 
cvičení 3,5 aspoň jeden prvek = •; ze stejného důvodu 

a + c. a + c 
obsahuje i prvek c2 = — , dále prvek c3 = —— , . . . 

a td . ; obsahuje tedy nekonečně mnoho prvků clt c2, ..., cn, c n + 1 , ..., 

kde je cn+1 = — " pro n = 1, 2, 3, . . . atd. J e tedy každý 

takový interval množina nekonečná. T ím spíš intervaly nekonečné 
délky jsou množiny nekonečné. 3,11. a) (0; 2). b) (0; 2). c) (1; 5). 
d) (3; 5). 3,12. a) — I < * < 0 a 0 < * < 1 čili 0 * |*| < 1. 
b) c) a < x < + oo. 3,17. a) (1; 2). b) (1; 2). 
c ) ( l ; 2 ) . 3,18.a) C = (0;4) , D = 0 . b ) C = (O;5>, D = (2;3) . 
3,19. (—oo; + oo). 3,20. a) Průnikem intervalů B , je množina 
obsahující jediný prvek, totiž číslo 0. b) Průnikem intervalů B'n 

je množina prázdná. 3,21. a) Tvrzení není správné, neboť u tupo-
úhlého trojúhelníka neleží průsečík jeho výšek v průniku polo-
rovin trojúhelník vytvářejících, b) Tvrzení je správné. Průsečík 
os vnitřních úhlů je střed kružnice trojúhelníku vepsané; jí ohrani-
čený kruh leží v každé ze tří polorovin vytvářejících tento troj-
úhelník a tedy tím spíše její střed leží v průniku těchto polorovin. 
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4. kapitola 

4,1. a) Nerovnost nemá řešení, b) * ^ — nebo * ¡> -í-í-
5 _ 3 

čili *6 oo; y + oojj. c) — 5 < * < — ý čili 

—5; i - j . d) x ^ nebo * § 1 čili — 0 0 ' 

3 \ 1 1 " 3 
— j U (1; +oo) . 4,2. x< —1 nebo * > - - , množi-

nově zapsáno formulí (4,5). 4,3. P o l o ž t e f ( x ) = — a\ ,g(x) = b. 
Vychází: a) a — b < x < a + b čili XE (a — b; a + b). b) x < 
< a — b nebo * > a + b čili *6 [ (—oo ;a — b) y (a + b; + oo)]. 

4,4. Jediné řešení x = 2. Jde o tři př ímkyy = 2x + 3 , y = 3x + 1, 
y = * + 5, procházející bodem [2; 7], jež mimo tento bod nespl-
ňují požadované nerovnosti. 4,5. 3 < * < 6 čili x e (3; 6). J d e 

9 ( 9 V 
o ty body parabolyy H = \x I , které leží pod osou x; 

4 l 2 ) 
[9 9 | 

— ; — I. 4,6. Jde o parabolu o rov-
3 ( 1 V f 1 3 1 

i > — = I * + y I > která má vrchol VI —; I a. pro-
mel 

chází body j4[0; 1] a B[—1; + 1 ] ; všechny její body leží nad 

5. kapitola. 

5,1. 1000 kusů výrobku A a 3000 kusů výrobku B při zisku 
7 000 000,— Kčs. 5,2. 8000 barytových desek a 4000 tvárnic 
při zisku 52 000,— Kčs. (Místo sedmiúhelníka v obr. 25 máme 
zde konvexní šestiúhelník při stejném počtu sedmi nerovností, 
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neboť tři hraniční přímky potřebných polorovin tu procházejí 
jedním bodem.) 5,3. 10 strojů typu A, žádný stroj typu B a 10 
strojů typu C při minimální roční údržbě 300,—' Kčs. 5,4. 620 
lahví litrových, 450 lahví po 0,7 1 a 930 lahví půllitrových při zisku 
17 798,— Kčs a nákupní ceně 37 892,— Kčs. 
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str. 254—256). Upozorňuji na dvě tiskové chyby v tomto článku: 
Na str. 194 má druhá z nerovností (4) správně znít .v + y JS 3 
a druhá z nerovností (5) má správně znít 3* + 6y + ^ 12. 

V uvedené literatuře najde čtenář další prohloubení a rozveden í 
našeho pojednání. Některé příklady jsem přímo z uvedené lite-
ratury převzal, za některé děkuji VI. Borovanskému, jiné jsem čerpal 
ze své pedagogické i přednáškové činnosti. 
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