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PREDMLUVA

Berete-li tuto kniZku do ruky s nadgéjf, Ze jejim studiem
rozdirite obsah svych matematickych védomosti, Ze po-
znate nova, vim dosud neznidmi odvétvi matematiky,
budete asi zklaméni. Pfesto vdm toto studium miiZe pfi-
nést velky uzitek.

Nenf dobfe, spokojf-li se n€kdo v matematice pouhym
vyfeSenfm daného tikolu, i kdyZ se mu podaif feeni bez-
vadné a plné. Nikdy nemiize ¥kodit, kdyz hleda nové
zpsoby feSenf. Nejde tedy jen o matematické védomosti, jde
také o matematické dovednosti. Poznivat nové metody je
v matematice stejné dileZité jako studovat nové mate-
matické pojmy a celé obory.

Pokud jde o nerovnosti, mizeme k jejich fefenf pristu-
povat v podstaté dvojim zpisobem, bud aritmeticky,
nebo geometricky. V nékterych pitfpadech mé aritme-
tické fefenf mnoho prednostf; naproti tomu geometrické
fefenf je nékdy prehlednéjif a vede rychle k cfli. Je tedy
uZitetné znit obé& metody. ProtoZe aritmetické metody
feSenf nerovnost{ znate ze stfednf Zkoly, uvadim zde
pfedeviim metody geometrické, Nevyhneme se pfitom
oviem zopakovan{ nékterych pojmit a vét zndmych ze
Skoly (takové véty jsou v prvni kapitole uvedeny bez
diikazii) ; deelem prvnf kapltoly je postavit daliif vyklad
na pevny zaklad.



1. kapitola

PREDBEZNE POZNAMKY
POLOROVINA

Zopakujme si nejdifv nékteré véci, které zname ze $koly.
Pisludna tvrzenf si uvedeme vét§imou bez dikazi a olfs-
lujeme si je jako véty, abychom se na né mohli v dal$im
textu snadno odvolavat.

Predevifm poznamenavame, Ze slovo ¢&fslo znamena
viude v této knfice &slo redlné; piidavné jméno reilné
budeme pro struénost vynechavat. Cfsla budeme ozna-
¢ovat malymi pfsmeny latinské abecedy, tedy q, b, ¢, ...,
ky ...y @ ooy X, ¥, 2. Tak tomu je hned v prvnich vétach,
jejichZ obsah jisté snadno pochopite, zvlasté kdyz si pii-
slu¥nd ¢&fsla zndzornite jako body na ose &fselné, tj. na
piimce.

Symbol a < b oviem znamen4, Ze &fslo a je men3f nez
¢slo b; podobné ¢ > d znamena, Ze &fslo ¢ je vét¥f neZ
¢slo d. Je vam znémo, Ze jsou-li @, b dvé& pevné zvolend
¢sla, pak pro né plati pravé jeden ze vztaht

a<b a=5a>b (1,1)

Symboly >, < ptedstavujf tzv. ostré nerovnosti. Vedle
toho zavadime v matematice i neoséré nerovnosti; symbol
a < b znamen4, Ze &islo @ je mensf nebo rovno &islu 6.
Srozumitclnéj$f je, kdyz fckneme, Ze symbol a < b
znamend, Ze pro &fsla g, b platf bud prvni, nebo druhy
ze vztaht (1,1). N&kdy totiz nemiiZzeme piedem Fci, kte-
ry z obou uvedenych vztahti ¢ < b a a = b plati; vime
jen, Ze neplatf vztah tfet, e neplatf ¢ > &; to pravé
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zapisujeme stru¢né symbolem ¢ = . Podobné zipis
a = b znamend, Ze neplatf a <b, Ze tedy je bud
a > b, nebo @ = b. Neostré nerovnosti nebyly dffv tak
tasto uzfvany jako dnes, a proto star§f lidé na né nejsou
zvyklf; téZko pak chdpou napifklad spravnost zcela prav-
divého zapisu 4 = 4, a&koliv neffka nic jiného, nez Ze
tislo 4 nenf vét¥ nez 4.
Pristupme uZ k prvn{m vétim.

Véta L1, Je-lia <b, b <c, jetakéa <c.
Véta 1,2, Je-lia < b,jetakéa + ¢ <b + ¢ pro kaZdé c.
Véta 1,3. Fe-lia < b, jetaké a — ¢ << b — ¢ pro kaZdé c.

Obé poslednf véty si snadno zapamatujeme tfmto
heslem: smys! nerovnosti zdstane zachovan, pfi¢teme-li
(nebo odetteme-li) na kazdé jejf strané totéz &islo.

Véta 1,4. Fe-lia <b,c <d,jetakéa +c <b +d.

To se tasto vyjadfuje slovy, Ze nerovnosti stejného
smyslu je dovoleno séftat.

Véta 1,5. Fe-lia <bac >0, je také ac < be.

Aspoil zde si uvedme dikaz. Z predpokladu a < b
plyne podle véty 1,3, ze je 6 —a > 0. Soulin obou
kladnych &isel (b — a) . ¢ je oviem &fslo kladné, je tedy
(b —a).c>0 a podle véty 1,2 je pak bc > ac, jak
tvrdf nade véta.

_V&tu 1,5 si zapamatujeme slovy, %e smysl nerovnosti
zustane zachovdn, zndsobime-li obé jejl strany tymz
kladnym &fslem. Naproti tomu nasobenf zdpornjm &islem
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ma za nésledek obracenf smyslu nerovnosti, jak je pfesné
formulovano v dalsf vét¢, jejiz dikaz provedetc snadno
podle piedchazejfctho sami.

Véta 1,6. je-li a <b, ¢ <0, je ac > be.

Déleni nerovnosti néjakym &fslem d # 0 je uz v pod-
stat& obsaZeno ve vétach 1,5 a 1,6, protoze délit &fslem d
znamend totéZ jako ndsobit efslem ¢ = % Uvedeme to

uz stru¢né:

Véta 1,7, Jelia <b,d> 0, je % <

Véta 1,8. Fe-lia < b,d <0, je % >

Nékdy lze vyhodné pouZit této véty:

&l af o

Véta 19. Jeli 0 <b <a,je — < 5

Zde si stadf k dikazu uvédomit, ze —})— — % = aa 5 b
a Ze z danych pfedpoklada plync a—b> 0iab > 0.

Z analyucké geometrie si pfipomeneme nékteré tvary
rovnice pi{mky. Uzgcme jen pravouhlych kartézskych
soufadnic x, y v roviné, pfi¢emz se zdsadné smluvime na
tom, Ze soufadnicovou osu x budeme kreslit vodorovné;
z gcomctrického hlediska to nenf nutné, vime, Ze soufad-
nicové osy miZeme rizné otdéet okolo potitku do no-
vych poloh, ale v souvislosti s nefovnostmi se nafe vy-
jadfovan{ velmi zjednodudi, zvolfme-li osu ¥ vodorovnou
a osu y pak oviem svislou. (Viz obr. 1.) Kazda z téchto
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os soufadnicovych nenf nic jiného nez osa ¢&fselnd; obé
tyto osy majf spole¢ny potatek 0, totiz bod, jehoZ obé
soufadnice jsou rovny nule. Na vodorovné ose x vyna-
§ejme soufadnice obylejnym méfitkem tak, Ze ze dvou
bodt bude vlevo bod s men3f soufadnicf a vpravo bod
s vét¥f soufadnicf. Tak vlevo od podatku jsou na ose x vy-
znaéeny body, jejichZ soufadnice x je zdpornd, vpravo
od potatku jsou body s kladnou soutadnici x. Na svislé
ose » jsou podobné body s kladnou soufadnicf y zobra-
zeny nad po¢itkem a body se zapornou soufadnicf{ pod
pocatkem.

Mai-li bod 4 v této soustavé soufadnice x, », zapi§eme
to stru¢né symbolem A [x; y], nebo budeme hovofit jen
o bodu [x; ] atp. Je zfejmé, Ze body s kladnou soufadnicf
7 lezf nad osou x, kdezto body lezici pod osou x majf sou-
fadnici y zapornou. Podobné body leZici vpravo od osy y
majf soufadnici ¥ kladnou, body lezicf vlevo od osy y
majf soutadnici x zdpornou. Toto pohodlné uzivéanf slov
»vlevo, [ vpravo®, ,,nad* a ,,pod‘‘ je umoZnéno pravé
tim, Ze jsme osu x zvolili vodorovnou.

Zikladnfm tvarem rovnice piimky bude pro nds v této
kni*ce zndmy tvar smérnicovy

y=kx +yq, (1,2)

kde £ a ¢ jsou konstanty a x, y jsou proménné soutadnice
bézného bodu pifsluiné piimky. Nezapomeiime, Ze touto
rovnicf lze vyjadrit kazdou pimku v roviné s vyjimkou
pifmek rovnobéznych s osou y. Pfitom &fslo ¢ se nazyva
usek vytaty na3f pifmkou na ose y, nebot prisettk této
pffmky s osou y je bod [0; g], jak se snadno presvédiite
dosazenfm x = 0 do rovnice (1,2). Zvla§té tedy pifmka
prochdzejici poitkem a riznobéZna s osou y ma rovnici

y=kx: (1,3)
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Cislo k, vystupujic{ v rovnicfch (1,2) a (1,3), se nazyvé
smirnice pEisluiné p¥imky; ve $kole se dokazu_]e Ze je to
tangens smérového uhlu ¢ této piimky, tedy

k=1tgp; (1,4)

v obr. 1 je ndzorné vyznalen smérovy tihel ¢ pifmky m
a pHmky z.

-3 Obr. 1

Vodorovné pfimky, tj. pfimky rovnobézné s osou x,
jsou zfejmé charakterizovany tim, Ze jejich smérnice je
rovna nule, tedy £ = 0. Je-li k¥ # 0, pak uZ pifsluind
piimka nen{ vodorovnd; to se projevuje tim, Ze soutrad-
nice y bodu, ktery probiha tuto pifmku, se rizné méni;
bud roste, nebo klesi. Ale tim uZ jsme pfivedeni k ne-
rovnostem. Abychom si to px"csné vyjadfili (viz dale véty
1,10 a 1,11), uvédomfme si, Ze pro k # 0 je na pravé
strané rovnice (1,2) nebo (1, 3) Sfunkee linedrni (proménna
x je tu v prvn{ mocnin€). Znazornffe-li si graficky né-
jakou takovou funkci nebo tfeba i:jinou funkci (napf.
sin x, cos x, log x, atd.), vite, Ze nékdy s rostoucifm x roste



v urditém useku také y, tj. roste hodnota funkce; v tom
piipadé mluvime o funkci rostouct (v urditém useku).
JestliZe pfi rostoucim x klesd pifsluiné y, nazyva se ta-
kovad funkce klesajici (v uréitém useku). Pro linearn{
funkci dokdZeme snadno tyto dvé véty:

Véta 1,10. Fe-li k > O, je linedrnl funkce dand rovnict
(1,2) viude rostouct.

Dikaz. Zvolme x, < x, a oznatme

h=kx+q 9 =k +q.

ProtoZe je k > 0, je podle véty 1,5 také kx, < kx, a déle
podle véty 1,2 také kx, + g <kx, + g &ili y; <,.
Vzrostlo-li tedy x z x, na x,, vzrostlo také pfisluiné y z y,

na y,.

Vé&ta 1,11, Je-li k <O, je linedrni funkce dand rovnict
(1,2) vSude klesaytci.

Diikaz je stejny jako v pfedchazejicfm pipadég, jenom
se misto véty 1,5 uZije véty 1,6; pro », < x, vyjde pak
I > s

V obr. 1 jsou zndzornény oba  p¥{pady uvedené ve
vétich 1,10 a 1,11, PHmka m tam nakreslend m4 smé-
rovy thel ¢ ostry, je zde tedy podle vzorce (1,4) & > 0;
vskutku, roste-li x (tj. postupujeme-li po ose x zleva do-
Prava), zvétSuje se neustdle i soufadnice y pffslu§ného
bodu piimky m, funkce je rostoucf. Pf{mka n ma k£ < 0
a znazoriiuje na obr. 1 linedrnf funkci klesajici.

‘Nahradfme-li v rovnici (1,2) znamen{ rovnosti zna-
men{m nerovnosti, pfejde tato rovnice v nerovnost;
vznikd otazka, jaky geometricky vyznam ma takové ne-
rovnost, &ili které body majf tu v]astnost, Ze jejich sou-
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Fadnice «, y splitujf p¥sluinou nerovnost. Prozkoumdme
to hned podrobné.

Véta 1,12. Horni polorovina vytatd piimkou o rovnici (1,2)
je mnofina (tj. souhrn) vSech bodi [x ; y], jejichZ soutadnice
spliiugi nerovnost

| yZkx +gq (1,5)

a obrdcené kaZdy bod, jeho# soufadnice splituji tuto merovnost,
patit do zminéné horni poloroviny.

Dukaz je bezprostfednf. Je-li M [x ;] vnitinf bod
nadi horni poloviny, lezi pod nim na hrani¢ni pfimce m
jediny bod M, [x; y,], ktery ma stejné velkou soufad-
nici x jako bod M (viz obr. 2); je tedy y > y, a zdroveii

o = kx + ¢, nebot bod M, lez{ na pfimce m o rovnict
(1,2). Odtud vychdzf y > kx + ¢. Protoze body dané
hraniéni pffmky pocitime také k poloroviné jf vytaté,
musime i tyto body k na¥f poloroviné ptidat, a proto
musfme ve vzorci (1,5) pfipustit neostrou nerovnost.
Cely tento mySlenkovy postup lze obratit, ¢fmzZ je véta
1,12 dokdzana.

Viimnéte si, Ze celd tato ivaha spolivd na tom, Ze
svisla pffmka vedend bodem A protina hrani¢nf pfimku
m poloroviny pravé v jednom bodé M,; to je umozné-
no tim, Ze ptimka m o rovnici (1,2) neni rovnobéZna s
osou y. Jinak bychom ostatné nemohli mluvit o ,,horni*
poloroviné, vytaté touto pifmkou.

Pro dolnf polorovinu, uréenou pifmkou m, tj. pro po-
lorovinu opa¢nou k té, o nfZ hovoif véta 1,12, dokazete
uz obdobné sami tuto vétu:

Véta 1,13. Doint polorovina zgyrata ptimkou o rovnici (1,2)
Je mnoézna vech bodit [x; y], jejich? soufadnice splnujz ne-
rovnost
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ket g (1,6)

a obrdcené kaZdy bod, jehoZ soufadnice spliiuji tuto nerovnost,
pat¥t do zminéné dolnt poloroviny.

Svisl4 pfimka, kterou jsme nutné ve vétich 1,12 a 1,13
vynechaly, uréuje oviem také dvé poloroviny; jejich ana-
lytické vyjaddfenf najdete snadno sami a dostanete tento
vysledek:

7,

Obr. 2

Véta 1,14. Levd polorovina uréend hraniéni piimkou o rov-
nici x = ¢ (kde ¢ je konstanta) je mnoZina viech bodi, pro néZ
Je x < ¢, a pravd polorovina urlend touto piimkou je mnoZina
vSech bodii, pro néf je x = ¢ .

Analytické vyjadreni polorovin pomoci pfislu§nych
nerovnost{ budeme potfebovat i v piipadé, kdy hranién{
pifmka nenf uréena rovnicf ve smérnicovém tvaru, ale
kdy je uriena jakoukoli linedrnf rovnicf. Velmi jedno-
duché¢ pifpady ptimek rovnobéznych s osami soufadnic
viak uz pfitom vynechame, protoZe jsou zahrnuty ve
vétach 1,12 az 1,14, '
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Véta 1,15. Pfedpoklddejme, Ze v rovnici primky
ax +by +¢=0 (1,7)
jea >0, b > 0. Potom horni polorovina urlend touto [;fz'mkou
Je mnoZina viech bodi [x; y], pro néZ je
ax +by +¢=0, (1,8)

a dolni polorovina uréend touto primkou je mnofina viech bodi

[x; ¥], pro néZ je
ax +by +¢<0. (1,9)

Dukaz. Rovnici (1,7) pfepiSme na tvar y = kx + ¢
tim, Ze polozime k = — %, g=— %
rovina je pak podle véty 1,12 charakterizovdna nerov-
nost{ (1,5), tj. :

Horni polo-

ax ¢

)

v

J

¢ili (viz vétu 1,2)
— 49y 4 Lo 0
5 y 5 =0

Nisobenfm ¢&fslem & > 0 na obou stranach dostdvame uZ
odtud podle véty 1,5 Zddanou nerovnost (1,8). Z véty
1,13 dostavime uZitfm nerovnosti (1,6) stejnym zpui-
sobem nerovnost (1,9). Protoze myS$lenkovy postup lze
v obou téchto pripadech obritit, plyne z nerovnostf
(1,8) a (1,9) charakterizace ptisluSnych polorovin. Tfm
je véta 1,15 dokazana.

Véta 1,16, Predpoklddejme, Ze v roynici pFimky
ax —by +¢ =0 (1,10)



jea > 0,5 > 0. Potom horni polorovina urlerid touto p¥imkou
Je mnoZina vSech bodil [x; y], pro néZ je

ax—by +¢ =0, .(1,11)

a dolni polorovina urlend touto piimkou je mnoZina viech bodi

[x; »], pro néZ je
ax —by +¢=0. (1,12)

Diikaz je v podstaté stejny jako u véty 1,15. Pfepsanfm
rovnice (1,10) na smérnicovy tvar ted dostdvime y =
=kx + ¢, kde k = _‘;— g= % a odtud uzitfm vét 1,12
a 1,13 plynou opét nerovnosti (1,11) a (1,12).

Viimnéte si rozdflu mezi vétami 1,15 a 1,16. Vétu 1,16
nebudeme v dalifm potfebovat, je uvedena jen pro
dplnost vykladu.

Pro dalsf potfebu si pfipomeiime ze stfedni $koly je§té
vzorec pro rovnici pifmky, kter4 prochdzf danym bodem
(%15 7] a m4 smérnici £, totiZ

I—n=k(x—mxn); (1,13)

proménné soufadnice bé%ného bodu pifmky jsou zde
oznadeny ¥, y. Je-li pifmka uréena dvéma body [x;; 3]
a [x,; ,], je za pfedpokladu %, # x,

k=220, (1,14)

X — X

Pifklady k tomu znéte ze $koly, zde téchto vzorct po-
uZijte ve cvitenich 1,7 az 1,10.
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1,1.

1,2
1,3.

1,4.

1,5.

1,6.

1,7.

14

Cviéent

Které z vét 1,1 a2 1,4 zistanou v platnosti, kdy? je vyslo-
vime pro neostré nerovnosti misto pro ostré nerovnosti, tj.
kdyz nékteré nebo viechny symboly < nebo > v nich
nahradime symboly =< nebo =?

Zustane ostra nerovnost zachovana, nasobime-li kazdou jeji
stranu ¢islem nula?

Rozhodnéte, zda je spravna tato véta: Je-li ¢ < b, ¢ = 0,
je ac = be.

LezZi potatek v horni nebo v dolni polorovmé vytaté pfim-
kou o rovnici a) 2x + 3y + 2 =0, b) 3x—5y + 1 =0,
c) ax + by = 0, kde b # 0?

Najdéte analytické vyjédrem polorovin vytatych ptimkou,
danou tzv. tisekovou rovnici —;T +<~':~ = 1, kde ptedpokla-
dime p # 0, ¢ # 0. (Cisla p, ¢ uruji tseky vytaté danou
pfimkou na osich soufadnicovych.)

Jak se zméni véty 1,12 az 1,16, nahradime-li v nich viechny
neostré nerovnosti ostrymi nerovnostmi?

Ptimka ma smérovy uhel ¢ = 30° a proch4dzi bodem
A [1; 3]. Uréete nerovnost charakterizujici horni polorovinu
vytatou touto piimkou.

Uréete nerovnost charakterizujici dolni polorovinu vyfta-
tou pfimkou, ktera prochazi body [—4; 5] a [I; 2].
Ktera polorovina je uréena nerovnosti

a)3x +4—12=20,b)x—y+1=20,c)x—2=0.

. Rozhodnéte, zda linedrni funkce znazornéni ptimkou p

jerostouci nebo klesajici a napiite ptisluinou rovnici v téchto
piipadech: a) ptimka p prochazi body [0; 0] a [3; 1];
b) ptimka p ma smérovy thel ¢ = 135° a proch4zi bodem
[1; 0]; c) ptimka p prochazi body [—1; 2] a [5; 2].



2. kapitola

LOMENA CARA

Na¥e dosavadnf dvahy o linedrnich funkcich a nerov-
nostech se podstatné zpestif, pfibereme-li na pomoc
Jedté pojem absolutnf hodnoty redlného &fsla. Rozd{F se
tim také pasobnost téchto uvah, jak poznime i na prak-
tickych pifkladech.

Absolutnf hodnotu &fsla x znalime, jak vite, symbolem
x|; geometricky na ose &fselné znamend |x| vzdalenost
odu, pfifazeného &fslu x, od pocatku. Je tedy

|x]| =« prox = 0, (2,1)
|x| =—=«x,  prox <0.

Méni-li se x tak, Ze probfhd mnoZinu viech redlnych

tsel, je
> =l (2,2)

funkce, jejiz graf je na obr. 3 a skldda se ze dvou polo-
pfimek. Jejich rovnice dostaneme rozepsinim rovnice
(2,2) pomocf rovnic (2,1); ptitom oviem musime pelivé
vyznacdit obory funkeci, uréujici tyto poloptimky. Tento
rozpis rovnice (2,2) znf

Yy =x pro x = 0,

y=—x pro x < 0. (2,3)
Rozepsali jsme tedy rovnici (2,2) do dvou rovnic. Do-
stivime tak dvé linedrnf funkce, z nichz kazda je defino-
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vdna jenom na &dsti mnoZiny redlnych &isel. Podle vét
1,10 a 1,11 vidime, Ze jedna z nich je rostouct, druh4 kle-
sajfcf (ve svém defini¢nfm oboru). ProtoZe rovnice (2,3)
jsou tplné ekvivalentn{ s rovnic{ (2,2), maZeme ¥ci: ab-
solutn{ hodnota reilného &fsla je klesajicf v oboru za-
pornych &sel (pro x < 0) a rostoucf v oboru zbyvajicim
(pro x = 0), coZ je také dobfe patrno z obr. 3.

y

Obr. 3

Vsimnéme si pfitom, Ze v bodé x = 0 m4 tato funkce
nejmensdf ze viech hodnot, kterych viibec nabyva; funkce
| x| mé4 tedy v bodé x = 0 své minimum a toto minimum
je zde y = 0, jak plyne z rovnice (2,2).

Nepodcetiuyme tyto velmi jednoduché tvahy a vy-
sledky. V jinych o madlo slozitéj$ich pifpadech lomenych
¢ar nenf urlenf minima na prvni pohled tak snadné, jako
tomu bylo na obr. 3. Ale pravé uréenf minima &i maxima
funkce byva z hlediska praxe velmi dilezité. V dal¥ich
pfikladech pozndme, Ze nékdy takovd lomend ¢&ira
24dné minimum ani maximum nem4, jindy nabyv4 svého
minima ¢i maxima tfeba i v nekone&né mnoha bodech.

Neékteré jednoduché pipady funkef, jez vedou p#i gra-
fickém znazornénf k lomenym &ardm, které jsou slozeny
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z kone¢ného pottu useéek a polopfimek, se probfrajfna
stfednich $kolich. Uvedeme si zde takové i dalif pfi-
klady a pfihlédneme i k jejich uZitf v praxi.

Nw s

Obr. 4

Pifklad 2,1. Graf funkce dané rovnicf
y=|x—1| +2x—5 (2,4)

Je na obr. 4. Dojdeme k nému rozpisem rovnice (2,4)
na dvé linearn{ funkce podobné, jako jsme z rovnice (2,2)
dosli k rovnicim (2,3). Se zfetelem k definici absolutn{
hodnoty [viz rovnice (2,1)] je zde nutno rozlifovat dva
pifpady,atox —1 =0ax—1 < 0. Prox = 1 je pak
|x* —1|=x—1, pro x <1 je|x—1|=1—x%, coz
dosazeno pokazdé do rovnice (2,4) ddva po &astech dvé
rovnice téZe funkce ve tvaru '

A 17
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y=3x—6 prox = 1, (2,5)
y=x—4 pro x < 1,

Kazda z téchto rovnic pfedstavuje polopfimku a snadno
zjistite, Ze obé tyto polopfimky maji spoledny polate¢n{
bod*) [1; — 3]. Ob¢ polopifmky vytvoif pak lomenou
¢aru, ktera je grafem funkce (2,4). Z grafu je také patrno,
Ze tato funkce je viude rostoucf. Tfm se podstatné 1if od
funkce y = | x| z obr. 3. Viimnéme si, Ze tato okolnost
nen{ z rovnice (2,4) na prvnf pohlgd patrni, kdezto
obr. 4 nas o tom piesvéd¢f okamzité. Je tedy vidét, Ze
geometrie nam pri vySetfovan{ funkcf tohoto typu vy-
datné pomaha. Koneéné také poznivime, Ze nase funkce
(2,4) nenabyva nikde svého minima ani maxima; je to
u? disledek toho, Ze je viude rostouci. (Slovitko ,,v§ude*
zde znamena, Ze¢ proménnd x probthd celou mnoZinu
viech redlnych &isel.)

Pozndmka. Zjednodu§me si trochu néazvoslovi. Bod, ve
kterém se lomena &ara ,,Jame*, budeme nazyvat kritic-
kym bodem. Na obr. 3 to byl polatek, na obr. 4 bod
[1; — 3]. Kritickym je ten bod v tom smyslu, Ze v ném
vyraz vystupujici v rovnici zkoumané funkce v absolutn{
hodnoté prechazi ze zdpornych do kladnych hodnot.
V ptikladé 2,1 je to vyraz x — 1, nebot ten se vrovnici
(2,4) vyskytuje v absolutni hodnoté. Skuteéné pro x < 1
jex—1 <O(atedy |[x—1|=1—x) a prox=1je

*) Pocatedni bod ¢&ili poéatek polopfimky je jejim hrani¢nim bo-
dem; n&kdy k té polopfimce patfi, nékdy nikoli. V nalem prikladé
bod [1; —3] lezi na prvni z polopfimek (2,5), na druhé nikoli.
Presto Fikame, Ze obé tyto polopiimky maji spole¢ny potatedni
bod. Podobné terminologie se pro struénost uziva dile i u kraj-
nich boda uselek ¢&i intervalii. Podrobnéji je o tom psdno v kapi-
tole tfeti.
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x—12>0 (a tedy [x— 1| =x—1). Pfi vySetfovin{
pribéhu takové funkce je samoziejmé vyhodné stanovit
nejdifv viechny jeji kritické body; v dosavadnich pfi-
kladech méla kazda funkce jen jeden kriticky bod. V dal-
§ich piikladech pozndme funkce, které majf vic kritic-
kych bodu.

Pifklad 2,2, Lomend &ara zobrazujicf funkci
y=|22+1| +|2—x|—x—1 (2,6)

ma dva kritické body, totiZ body, pro kteréje2x +~1 =0
a 2 —x = 0. Rozdélime tedy celou mnozZinu reilnych
¢sel » na tfi dseky ¢ili intervaly podle toho, je-li x <
< —%ncbo——é—§x < 2, nebo 2 = x, a pribéh
funkce (2,6) budeme vydetfovat v kazdém tomto inter-
valu zvlAit,

Pro x < — % je 2x + 1< 0 a zroveit v dasledku
x<—-2— <2jex—2<0,t.2— x> 0; je zde
tedy [2x + 1| =—2x—1,|2 —x| =2 — x, coZ do-
sazeno do rovnice (2,6) davd po snadném vypoltu
prvn{ z rovnic (2,7).

Pro———é— Sx<2je2x +1=0ax—2 <0, takie

zde mime [2x + 1| =2x +1 a |2 —x| =2 —x, coZ
dosazeno do rovnice (2,6) dava druhou rovnici (2,7).

Konetné prox=2je2—x=<0a 2x + 1> 0 (ne-
7) atedy [2x + 1] =2x+1a|2—

— x| = x—2. Dosazenim do rovnice (2,6) vychdzf
tietf rovnice (2,7).

botjex = 2 > —
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Celkem jsme tim rozepsali rovnici (2,6) na trojici
téchto rovnic:

y =—4x pro x <——;—,
y =2 pro——%§x<2, (2,7)

y =2x—2 pro2 < «x.

1€
y
4
J
\—<
.‘ II;
i /i
A\ ;o
\\‘1 //
N \ /
\ / x
1% 0 7 2 3
/
/
1 /’
/
/
/
/
—z( Obr. 5

Tato trojice rovnic je oviem s rovnicf (2,6) ekvivalentnf,
Graf této funkce je na obr. 5; je to lomend 4ra skldda-
jict se ze tif &astf (dvé z nich jsou pelopifmky a jedna je
tsetka). Vechny tyto &4sti majf spolené hrani¢n{ ¢&i
krajnf body, a to pravé v kritickych bodech této lomené

20



Zary. Z grafu pozndvame, %e funkce (2,6) je pro x <

< — —- klesajfcf a pro x > 2 rostoucf, coz souhlasf s vétami

2
1,10 a 1,11 [viz prvnf a tfetf rovnici (2,7)]. V intervalu

— g =< x =< 2 na$e funkce nen{ ani rostouci, ani klesa-

jici, je tam konstantn{ a ve viech bodech tohoto intervalu
nabyvi minima, které je dino hodnotou y = 2. Méime
tedy pfiklad, kdy funkce nabyva svého minima v neko-
ne¢né mnoha bodech.

V dalifch piikladech se uZz budeme vyjadfovat strug-
néji neZ dosud.

Pifklad 2,3. Funkce
=|x + 1| +2|x|—4|x—2| (2,8)

Je zobrazena na obr. 6*) lomenou &arou, sklddajfcf se
ze &tyf &astl, z nichZ dvé jsou polopfimky a dvé usecky.
Kritické body nastavajf pro hodnoty x = —1, x =0,
x = 2. Rovnice (2,8) je ckv1valentnf se tvefici téchto
rovmic:

y=x—9 prox <—1,

y=3x—7 pro—1 =x< 0, (2,9)
y=Tx—7 pro0 = x <2,
y=—x+9 pro 2 < x.

Tyto rovnice dostaneme zndmym zplisobem z rovnic
(2 8), rozliffme-li jednotlivé intervaly mezi kritickymi
ody

) V obr. 6 je pro usporu mista v mé&fitkdch na osich soutadnico-
Vytlzlh zvolena krat$i jednotka miry neZ v obrizcich pfedchézeji-
cic
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Pro x <—1 je zlroveii x <0 a x <2 a tedy
x +1 <0, x —2 < 0; celkem tedy dosazujeme do rov-
nice (2,8) v tomto pifpadé |x + 1| = —x—1, |x| =
= —x, |x — 2| = 2 — x. Tak dojdeme k prvnf rovnici
2,9).

( Pl)'o—lgx <0 je také x <2 atedy x +1 =0,
x—2 <0dili|x + 1| =x+ 1,|x| = —x,|x—2| =
= 2 — x. To dava druhou rovnici (2,9).

\ y T
N

\\10
N\
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Pro 0 <x <2 je také x > —1 a tedy x +
x — 2 <0, coz znamend, Ze tfeti rovnici (2,9)
neme, dosadime-li do rovnic (2,8) vyrazy |x +
=x+1,|x|=x|x—2|=2—x. .

Koneiné pro ¥ = 2 je zdroveiix > 0ax > — 1, takZe
jelx +1| =x+1, |x|] =%, |x—2| = x— 2. Dosa-
dfme-li to do rovnice (2,8), dostdvime &tvrtou rovnici
(2,9).

Je vidét, Ze pro x < 2 je tato funkce stile rostoucf
aprox > 2stale klesajici. Pro x = 2 dostavidme jejf maxi-
mum y = 7, které je zobrazeno bodem [2; 7]. M4 tedy
tato funkce jediné maximum.

Vsimnéte si, Ze vySetfenfm pribéhu této funkce meto-
dami analytické geometrie jsme jejf maximum nasli po-
hodlné a bezpeéné a Ze jeho hledan{ jen na zdkladé rov-
nice (2,8) bez geometrického znazornén{ by asi bylo ob-
tiZn&j.

Ptiklad 2,4. Viimnéme si pomérné jednoduché
funkce

ol el 1
)=t o (2,10)

Kritické body zde jsou x = 0 a x = 1 a oba lez{ na ose x.
Snadnym rozborem podle pfedchézejicich vzori dosta-
vame rozpis rovnice (2,10) na tfi rovnice

y=—x prox <0,
y=0 pro0 =x <1, (2,11)
y=x—1 prol < x.

K tomuto rozpisu dojdete zase tim, Ze budete danou
funkci zkoumat v kazdém z vypsanych intervala zvl4st.
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Pritom musfte vzit v dvahu, Ze prox <0 jetaké x < 1
atedy |[x]| = —xa|x— 1] =1—x a podobné dil.

Graf této funkce je na obr. 7. V oboru x < 0 je funkce
klesajicf, v intervalu 0 =< x <1 je konstantnf a pro
x > 1 je rostouci. V nekoneéné mnoha bodech, totiZ pro
0 =< x < 1, nabyva tato funkce svého minima y = 0.

Pifklad 2,5. Na pifmce p je dina tsetka a délky 1
jednotka miry. Uloha znf: stanovit nejmensf vzdéilenost
v bodu X pohybujictho se po pi{mce p 3d usecky a.

Obr. 7

Je ziejmé, Ze v riznych polohich pohybujictho se
bodu X miuZe se jeho vzdalenost v od tusetky a rizné
ménit; abychom vyjadfili tuto zavislost &fsla v na poloze
bodu X, zvolime pfimku p za osu &fselnou a umistime
na nf usedku a do intervalu 0 < x < 1, tj. zvolime sou-
stavu soufadnic na pifmce p tak, Ze jeden krajni bod
use¢ky a mé soufadnici x = 0 (je to politek) a druhy je
bod o soufadnici x = 1. Snadno si to predstavite pravé
na obr. 7, ztotoZnfte-li tam pf{mku p s osou x. Soufadnici
béZného bodu X piHmky p oznatme opét x.
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A nynf ziejmé platf:

Je-li bod x nalevo od po&atku, je x << 0 a jeho vzda-
lenost od usetky a je rovna jeho vzdélenosti od tohoto
potatku, takZe mame

v=—x prox <0, (2,12)
(UZfvidme zndmého vzorelku
v =% — % (2,13)

pro vzdélenost dvou bodli na ose x, z nichZ jeden ma
soufadnici », a druhy x,; v najem pfipadé je x, = 0,
¥ =x <0)

Je-li dale bod X na tselce q, je v = 0, coZ analyticky
vystiZeno znf

v=20 pro0 = x = 1. (2,14)

Je-li kone¥né bod X napravo od dsetky q, je jeho vzda-
lenost od této usetky rovna jeho vzdalenosti od bodu
o soufadnici 1, je tedy

v=x—1 prox > l. (2,15)

(Je zde totif » = |x — 1|, oviem bod leZicf napravo
od bodu * = 1 m4 soufadnici ¥ > 1, takZe tedy mime
x—1>0¢li|x—1| =x—1.)

Rovnice (2,12), (2,14) a (2,15) jsou ekvivalentnf rov-
nicfm (2,11) z predchazejictho pikladu — zdména
oznalen{ v za y zde nehraje Zddnou roli. ProtoZe rovnice
(2,11) jsou zase ekvivalentn{ rovnici (2,10), mlzZeme
Fefenf tlohy naeho prtkladu 2,5 zapsat jedinou formulf

|| .
7 . 7

2

v =

L
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graf této zavislosti vidfme tedy zase na obr. 7, nana¥(-
me-li tam ve sméru osy y hledanou vzdalenost .

Pravé podany ptiklad ukazuje, Ze vySetfovani rov-
nice lomené ¢ary nenf samoiicelné, protoze to lze uzit
pfi jinych pfirozenych zavislostech, v nafem piipadé
pro stanoveni vzdalenosti bodu od uselky. Existujf
oviem i aplikace v jinych oblastech (viz cvid. 2,5 az
2,7); zde si ukdZeme priklad z ekonomie.

Pifklad 2,6. U téZe silnice jsou po fadé za sebou
ttyfi obce A4, B, C, D. Jejich vzdalenosti jsou AB =
= 8 km, BC = 5 km, CD = 10 km. Ptitom B lezf mezi
A4 a C, Cleif mezi B a D, U silnice se maji postavit
garaze pro autobusy (depo), které ze zdravotnich di-
vodi musf byt vzdaleny aspor 1 km od kazdé obce.
Garaze budou vybavovat denné 2 linky z obce 4, 3 lin-
ky z obce B, 2 linky z obce C a 5 linek z obce D za stej-
nych podminek (tj. se stejnym po&tem vozli na kazdé
lince). Uloha znf: najit pfi silnici misto G pro gardze
tak, aby autobusy projezdily cestou z G na jednotlivé
vychoz{ stanice co nejméné kilometrd, tj. aby jejich
neproduktivn{ drdha (kdy nevezou cestujicf) byla co
nejkrat§f.

Silnici, i kdyZ nenf{ pf{fmodar4, zndzornéme osou x,
potatek volme v obci B (obr. 8). Potom mé4 obec 4
na této &iselné ose souradnici —8, obec C soutadnici 5
a obec D soufadnici 15. Nezndmou soufadnici hleda-
nych garda?f G oznatme x. Abychom vyjadfili vzdale-
nost gardZ{ od jednotlivych obcf, uZijeme opét vzorce
(2,13). Vzdélenost gard?{ od jednotlivych obcf 4, B,
C, D je pak v kilometrech d4dna vyrazy

GA = |x + 8|, GB= |x|, GC = |x—5|, GD = |x—15|.
Pfitom 2 linky, vedené denné z gardi{ do obce 4 bez
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cestujfcfch, znamenajf zfejmé 2|x + 8| kin neproduk-
tivn{ drdhy. Pro ostatn{ obce dostivime podobné ne-
produktivn{ kilometry ve tvarech 3|x|, 2|x —5| a
5|x — 15|. Celkovd neproduktivni cesta, jejfz velikost
v kilometrech oznadime y, je ddna soudtem

y =2|x +8| +3]x| +2|x—5] +5[x—15]. (2,16)

50

‘A s & D x
08 50 456 10 15 20

Obr. 8

Tak dochdzfme pfi tak jednoduché praktické uloze
k rovnici lomené &ary, kterd ma 4 kritické body. Postu-
pem, ktery jsme se uZ nautili v pfedchdzejicich pifkla-
dech, snadno pfi troice trpélivosti vypotitime, Ze rov-
nice (2,16) je ekvivalentni témto péti rovnicim:
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=—12x + 69 pro x <—8,

= —8x 4+ 101 pro —8 =x <0,

= —2x + 101 pro 0=x <5, (2,17)
= 2¢x + 8l pro 5 =Zx <15,

= 12x — 69 pro 15 < «.

Pifsluiny graf je narysovdn v obr. 8; k tomu je tfeba
poznamenat, Ze pro nedostatek mista je nutno volit
v tomto obrizku na ose y men3f méritko neZ na ose x.
I tak je z obrdzku ihned patrno, ze maje funkce (2,16)
ma minimum v bodé x = 5; diikaz spo¢iva oviem v tom,
¥e pro x < 5 je tato funkce klesajicf (srovnej prvn{ tfi
rovnice (2,17) s vétou 1,11) a pro x > 5 rostouct (srov-
nej poslednf dvé rovmice (2,17) s vétou 1,10). Jejf
minimaln{ hodnota y = 91 se pro ¥ =5 vypoéte bud
z rovnice (2,16), nebo ze &tvrté rovnice (2,17).

Tim neni oviem je$té dloha z pifkladu 2,6 vyfefena.
Nezapometime, Ze gardZze musf{ byt vzdileny od ka?dé
obce aspoti 1 km, kde?to nalezené minimum lezf pravé
v obci C. Je nasnadé hledat tedy misto pro garaze
v okolf bodu C tak, %e vzdélenost gard%f od bodu C
(o soufadnici x =5) bude 1 km; to vede k bodim
o soufadnicich x =4 a x = 6 na ose x a snadnym dosa-
zenim do rovnice (2,16) nebo do pifsluinych rovnic
(2,17) vypotitame, Ze pokazdé vychaz{ y = 93 km a Ze
pro x vzdalenéjf od bodu C, tedy pro |x — 5| > 1, je
uZ pifsluiné y vidycky vétdf nez 93 km.

Uloha piikladu 2,6 mé tedy dvé rovnocennd fedenf:
garaZe G je nutno vystavét ve vzdalenosti 1 km od obce
C, lhostejno na které strané od obce C, bud mezi obcemi
B, C, nebo mezi obcemi C, D. )

K tomuto pikladu pfipojujeme nékolik poznamek.
Predevifm je nutno zduraznit vedoucf tlohu matema-

AR
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tiky pfi FeSenf ekonomickych otdzek. V nafem, i kdyz
velmi jednoduchém piikladé, je to velmi‘'ndzorné pa-
trné. Kdybychom tuto tlohu fedili jen povrchnim od-
hadem zaloZenym na neodivodnéném tufeni, ptiklo-
nili bychom se moZnid k navrhu postavit garaZe co
nejbliz k obci D, protoze z nf vyjizdf denné nejvic
linek. V na3f soustavé soufadnic by to znamenalo stavét
gardze v bodé o soufadnici ¥ = 14; rovnice (1,16)
davd viak pro x = 14 hodnotu y = 113. To by zna-
menalo hodnotu o 20 km vét¥f nez v pfipadé stavby ga-
réZz{ v bodech x = 4 nebo x = 6, jez jsme prve naili.
Autobusy by tedy projezdily denné zbytetné o 20 km
vice, nez je nezbytné nutno. PH celoroénfm provozu by
to znamenalo znaénou polozku figurujic{ v rubrice,
které by sludel nadpis ,,zbyte¢na vyddn{“.

Utelem pravé podaného pifkladu je pfedeviim uka-
zat uZitenost tivah, které jsme provadéli pred tim. Je
samoziejmé, Ze viude v praxi (i v autobusové dopravé)
se vyskytujf ulohy mnohem sloZitéjsf, v nichZ vystupuje
vic initeld nez 12 autobusovych linek denné jako
v nafem pifkladé. Obvykle matematickou formulaci
pifsluiného ekonomického &i jiného problému nelze
zapsat jedinou formulf, jako tomu bylo u rovnice (2,16)
v nafem pifkladé. Nékteré, oviem zase jednoduché pii-
klady toho druhu si uvedeme v kapitole 5. Ale roste-li
polet podminek, je pak i poletn{ fefen{ piislu§né mate-
matické ulohy slozitési. V takovych pi{padech ndm
pomdaha i strojovd technika, tedy samotinné potitale
a strojnf poéetnf stanice. Tfm se v§ak nemiZeme v této
kniZce zabyvat; spokojime se zde jen privé podanym
upozornénim na tyto moznosti.

Zastavme se konelné je§té u toho, Ze tloha z pifkla-
du 2,6 m4 po matematické strince dvé rovnocenni
fefenf x =4 a x = 6, pfestoZe rovnice (2,16) svadf
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k domnénce, Ze jde o tlohu linearni. Ale rozpis rovnice
(2,16) do rovnic (2,17) ukazuje, %e jde o funkci po
tastech linedrni; to je vidét i z grafu na obr. 8, ktéry se
sklada z nékolika polopffmek a dselek. Nenf tedy nic
divného, Ze ve dvou riznych bodech nabyva tato funkce
téZze minimdln{ hodnoty. Jde viak o nahodu, pfi ne-
patrné ‘obméné dané ulohy se miiZe stat, Ze vyjde jediné
fefeni (viz cvicenf 2,5).

V Zivoté se Castéji setkavame s jevy, jejichZ grafem
je lomend &ara. Nasledujicf bézny pi{ped ndm zarovei
poskytuje pifleZitost sestavit rovnici lomené &ary, zni-
me-li jejf jednotlivé &4sti.

Piiklad 2,7. Sestrojme graf znizorfiujic{ mnoZstv{
vody ve vané o objemu 450 litrd, zaéne-li voda rovno-
mérné ptitékat kohoutem v 1 hodinu a ddva-li kohout
15 litrd vody za minutu.

Predpoklida se oviem, Ze pfed otevienim kohoutu
je vana prazdna. Oznaéime-li x ¢as méfeny v hodinich
a y mnoZstvi vody ve vané méfené v litrech, znamen to,
Ze pro x <1 je y = 0. Snadno se spotita, Ze celd vana
se pak naplnf za 30 minut; v ¢asovém rozmez{ 1 < x <

< % bude tedy y = 900 (x — 1), nebot voda pfi-

téka stilou rychlostf 900 litrd za hodinu, takie y je
pifmo umérné &fslu x — 1 (v ¢ase x = 1 je je§té y = 0).
Pro x = % nebude uz vody ve vané pfibyvat (vana
bude plnd) a pak bude stile y = 450; pfitékajicf voda
bude bud z vany pietékat, nebo odtékat pojistnym
otvorem. Hledanou zdvislost miZeme tedy po &astech
rozepsat ve tfi rovnice
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y=20 pro x <1,
3

»=900(x—1) pro 1l < x < 5 . (2,18)

y =450 pro —g— =x
Graficky je to zndzornéno opét lomenou &arou na obr. 9,
kde na osu x nand$fme hodiny a na osu y litry; méfitka
na obou osach volime nezavisle na sobé¢.

y
500

400
3001
200

100

-1 0 17 % 2 3

Obr. 9
Abychom rovnice (2,18) zapsali jedinou formulf,
uvazme, Ze kritické body na3f lomené ¢ary zde nasta-

vajf pro hodnoty x =1 a x = takze podle pred-

7)
chazejicich pifklada lze o&ek4vat, Ze na%e funkce
. . - 3 g
vznikne kombinaci vyraza |x — 1| a x— 5| aze

nadto musfme je$té pfipustit moZnost, Ze by k tomu
mohla pfistoupit obylejnd linedrn{ funkce. Zkusme
tedy, je-li hledana funkce tvaru

31



y—alx—1|+b x——g— e +d (2,19
kde a, b, ¢, d jsou dosud nezndma &fsla. Uréfme je na
zdklad€ toho, Ze na nalf lomené Cife znime 4 body,
totiz potatek [0; 0], body [1; 0] a %; 450] a napf.
bod [2; 450]. Dosazenfm soufadnic pot4tku do rovnice
(2,19) vychaz{ po jednoduchém poétu

3 by
a + '—2—‘ b + d = 0,

dosazenfm bodu [1; 0] podobné
% b+c+d=0,

dale dosazenim bodu l—g—, 4-50] dostavame
1 3

5 a- bl ¢+ d=450
a konetné& dosazenf [2; 450] vede k rovnici
a—|—ib+20+d=450.

2

Tak jsme dostali soustavu 4 linedrnich rovnic pro 4
neznamé a, b, ¢, d, o niZ se snadno pfesvédéite, Ze ma
jediné Fefenf*)

*) Neznate-li vhodné&j§i zptisob, feite tuto soustavu tak, Ze z né-
které rovnice vypoditate jednu neznamou pormoci ostatnich a vy-
sledek dosadite do zbyvajicich tii rovnic; tak redukujete ulohu na
FeSeni soustavy t¥i rovnic o tfech neznamych a podobné& pokralu-
jete dale.
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a =450, b =—450, ¢ =0, d = 225.
Nage funkce (2,19) tedy znf

y =450 |x — 1| — 450 x——g—l + 225

nebo po lipravé
y =450 [x — 1] —225 |2x — 3| + 225.

Provedte si zkousku tak, Ze tuto rovnici rozepfiete zpét
v rovnice (2,18) zpasobem, ktery jste poznali v pred-
chézejicich pifkladech.

BudiZ je§t¢ piipomenuto, Ze nékteré funkce tohoto
druhu jsou svou praktickou povahou omezeny jen na
urlity, nikoli nekoneény interval nezavisle proménné x,
takZe jejich grafem nenf{ nekonelné dlouhid lomend
¢ara, ale jen jeji &4st, skladajlcf se z né&kolika dsedek.
Piklad je ve cvidenf 2,7.

Cviéeni

2,1. Pro které body [x; y] je y = |x]?
2,2, Pro které body [x; y] je y < |%]|?
2,). Narysujte graf funkce

_Jx=1] E3! 1
)y =" g tr T

b)) y=2x+ 1+ |x—3|—2|x + 1].

2,4. Porovnejte navzdjem grafy funkci

1
a))'-=7(x+lx|), b) y = x + |x|.

2,5. U ptimé silnice stoji tfi obce 4, B, C. Jejich vzdalenosti jsou
AB = 6 km, BC = 8 km, B lefi mezi 4 a C. U silnice se
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2,6.

2,7.

34

maji postavit autobusové gardle, které ze zdravotnich db-
vodl maji byt vzddleny aspori 1 km od ka?dé obce. GardZe
budou vybavovat denné 3 linky z obce 4, 2 linky z obce
B a 4 linky z obce C za stejnych podminek. Kde je tfeba
postavit garaZe, aby autobusy projezdily cestou z nich na
své vychozi stanice co nejméné kilometra (&ili aby mély co
nejkrat$i neproduktivni drahu)?

Nadrz ma objem 10 m® V &ase x = 0 hodin zaéne do ni
ptitékat ptivodem voda rovnomérnoy rychlosti » m? za
hodinu (v > 0). Sestrojte graf znizorfujici mnoistvi vody
v nadri v jednotlivych okamZicich.

Pfi osmihodinové pracovni dobé ¢ini mzda 4,— Kés za
hodinu. Za praci pfestas se plati 5,— K& za hodinu. Se-
strojte grafl znédzoriiujici zdvislost denni mzdy y na odpra-
cované dobé¢ x, pracuje-li se nejvy$e 16 hodin za den.



3. kapitola

MNOZINY

Alkoliv teorie mnozin pronikla uZ ddvno celou mate-
matikou, pfece nai stiedoskol§tf studenti nemajf &asto
potfebnou pfedstavu o tom, co znamena slovo mnozZina.
Neékteff pojem mnoZiny mylné spojujf s pojmem ,,ne-
konené mnoho, jinf jej zamériuji s pojmem ,,geomet-
rického mista boda“ (jako by se jinde neZ v geometrii
mnoziny neuplatiiovaly) a téméf viem je slovo mno-
Zina jakymsi samoilelnym trikem, jimZ matematikové
osliiujf svét.

Presvédeime se, Ze tomu tak nenf, Ze totiZ i v jedno-
duchych dvahidch mnoZinové pojetf velmi zprestiuje
vyjadfovani a pifsluiné pojmy.

Slovemm mnofina rozumime v dalifm textu souhrn

(soubor, mnozstvf, ...) néjakych véc{ (pfedméta,
objektt, ...), které nazyvame proky (elementy) urlité

mnoziny. MnoZina je didna, dovedeme-li o kazdém ob-
Jjektu rozhodnout, je-li jejim prvkem, &i nikoli.

Poznamenejme, Ze misto slova mnoZina se pivodné
v teské literatufe uzivalo slovo mnozstvf. Ceit{ mate-
matikové zavedli slovo mnoZina, jez se zfetelnéji sklo-
fuje a jeZ nelze dobie zaméiovat ani se slovem pocet,
Jjako je tomu nékdy v pifpadé slova mnoZstvi.

I kdyZ budeme v nafem textu potifebovat jen mno-
Ziny ¢fsel a mnoZiny bod v roving, uvedme struéné
i nékolik pitkladi jinych mnoZin.

MnoZina viech sedadel v Nérodnfm divadle; jejimi
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prvky jsou sedadla. Napifklad ka?dé sedadlo v p¥zemf
Nirodnfho divadla je prvkem této mnoZiny. Ale Zidle,
na které sedite doma pfi studiu, nenf prvkem uvedené
mnoziny.

Mnozina viech dnes Zijicich ob&anti na$f republiky
ma za své prvky lidi. Ale nepatff k nf viichni lidé. Na-
piklad spisovatel Karel Capek neni prvkem této mno-
ziny, protoZe uZ nenf naZivu. Dne¥nf ministersky pfed-
seda Velké Britdnie rovnéz nenf prvkem této mnoziny,
tiebaZe je Ziv; nenf totiZ oblanem nk%eho stitu. Prvky
této mnoziny jsou tedy Zijic{ obfané na¥eho stitu.

Organizaci spojenych nirodd (OSN) miZeme ché-
pat jako mnoZinu stitl, jejfmiZz prvky jsou &lenské
staity OSN. Nagf'iklad CSSR je prvkem této mnotziny,
naproti tomu Svycarsko nikoli, protoZe nenf &lenem
OSN.

F Viechny dosavadn{ pifklady mnozin mély tu vlast-
nost, Ze polet prvka kazdé této mnoziny lze vyjadrit
urlitym pfirozenym c&fslem, tedy &islem celym klad-
nym. Proto fikdme, Ze jsou to mnoZiny konetné; majf
totiz koneny pocet prvki. Ale v matematice se vysky-
tuji také mnoZiny s nekoneinym po&tem prvkd, &ili
mnoziny nekoneéné.

Nejjednodu$fm pifkladem nekoneéné mnoZiny je

mnozina viech pfirozenych &fsel. Jejfmi prvky jsou
tedy &sla 1, 2, 3, 4, ..., atd. Napitklad &islo 100 je

prvkem této mnoZiny, ¢fslo 3 /2" nikoli, protoze

to nejsou celd kladna &fsla. RovnéZ sedadlo v Nérodnim
divadle nenf prvkem této mnoZiny, protoze sedadlo nent
&slo (zvlasté pak ne celé kladné); 'nic nevadf, e na
takovém sedadle &fslo muzZe byt napsino, pfesto toto
¢slo je pojmové néco jiného neZz zminéné sedadlo.
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Jiny pitklad nekoneiné mnoZiny, tentokrite z geo-
metrie, Je mnoZina viech bodu leZ{cich uvnitt kruZnice,
tedy vnitiek kruhu. Prvky této mnoziny jsou tedy body.

Z dosavadnich pitkladu je zfejmé, Z¢ mnoZiny mohou
byt vytvofeny nejriznéjiimi prvky. Zde byly prvky
mnoZ#in tak nesourodé objekty jako sedadla, lidé, staty,
¢isla a body. V matematice se jevi uéelné zavadét i ta-
kovou mnoZinu, kterd vibec Zidné prvky nemé.

MnoZina, kterd neobsahuje zidny prvek, se nazyvd
mnoZina prdzdnd a oznaluje se symbolem . MnoZinu
priazdnou politime mezi mnoZiny kone¢né.

Vyplati se zavést jednoduchou symboliku pro rtizné
vztahy mezi mnoZinami, pf{padné jejich prvky. Pro
vztah ,,byti prvkem mnoZiny®, uZfvd se viude ve svété
znak €. Zapis

aeM (3,1)

tedy znamend, Ze a je prvkem mnoZiny M, Ze a patif
k mnoZiné M, pi{padné do mnoziny M, Ze a leif v mno-
Ziné M atp. Je vidét, Ze celkem jednoduchou véc musime
Hci nékolika slovy. To je vada fefi, kterd muazZe vést
1 k nedorozumén{. Naproti tomu vztah (3,1) ¥k totéz
uzitfm jediného symbolu €. Chceme-li vyjadfit, Ze néco
nenf prvkem urcité mnoziny, zapffeme to tak, Ze sym-
bol € prosté pieSkrtneme, Ze tedy napffeme ¢ . Oznadf-
me-li tedy naptiklad mnoZinu viech pfirozenych é&fsel,
o niZ jsme pifed chvili mluvili, znakem P, jsou pravdivé

tyto zapisy:
100€eP, % ¢P.

Cteme to takto: &fslo 100 je prvkem mnoziny P, &fslo

% nen{ prvkem mnoZiny P. Jinak fefeno: &islo 100 je

pfirozené &fslo (tj. celé kladné),. Efslo —g— nikoli.
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Z ¢fselnych mnoZin (tj. z mnoZin, jejichZ prvky jsou
realnd &fsla) nds budou v této knfice zajimat hlavné
intervaly. Snad jste si v8imli, Ze jsme nékolikrat uZili
tohoto slova uZ difve; ted si vymezime pifesné jeho
obsah.

Mysleme si, Ze jsou ddna dvé redlnd &fsla a, b, pifi-
temz je a << b. Uzavienym intervalem od a do b pak rozu-
mime mnoZinu viech takovych realnych ¢&fsel x, pro
ktera platf

a=x=bh (3,2)

Pro tento uzavfeny interval zavadime symbol (a; b).
Podobné otevienym intervalem od a do b rozumime
mnozinu viech takovych redlnych &fsel x, pro kterd

platf '
a <x <b. (3,3).

Pro tento otevieny interval zavidfme symbol (az; b).
Je vidét, Ze uzavieny interval vznikd z otevfeného
tim, Ze k nému pfidime jeho krajnf body. Zapsdno
na$f symbolikou to vypada takto:
a€(a; b), be(a; b), a¢ (a; b), b¢ (a; b).
Zavedme struéné dal3{ intervaly,

Polouzavienym intervalem {a; b) rozumfme mnoZinu
viech takovych redlnych é&fsel x, pro kterd platf

a<x <b. (3,4)

Polouzavienym intervalem (a; b) rozumifme mnoZinu
viech takovych redlnych &fsel x, pro kterd platf

a <x=b (3,5)

Pro polouzaviené intervaly se pouZfvd nékdy také
nazvu polooteviené intervaly.
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Kazdy z téchto intervali je oviem na ose &éfselné
zobrazen useCkou s krajnfmi body g, b; proto f{kdme,
ze &sla a, b jsou krajni body prisluiného intervalu, Vech-
na ostatni &fsla tohoto intervalu nazyvame pak jeho
vnitinimi body. Rovnéz délku této dseky, zobrazujicf
nas interval na ose ¢iselné, prohldsime za délku piislus-
ného intervalu.

Mezi intervaly poéitime také intervaly majfci neko-
ne¢nou délku; na ose ¢fselné se zobrazujf polopfimkami.
MnoZinu viech takovych redlnych ¢éfsel x, pro néz
platf a < x, nazyvame polouzavienym intervalem
(a; + o0); symbol oo neni oviem &fslo, ale znamend
odeddvna pojem nekonelna; nerovnost ¢ = x nahra-
zujeme tedy i zdpisem a < x < + . Podobné polo-
uzavieny interval (— co; @) je mnoZinaviech takovych
&fsel x, pro kterd platf — o0 < x =< g, &ili prosté x < a.
Stejné otevienym intervalem (a; + o) rozumime
mnoZinu viech &fsel x spliiujict podminku a<x < 4 o
eili a < x; symbol (— o0} a) znamena otevfen}’r inter-

&ili x < a. Mnozinu viech realnych &sel viibec potitime
rovnéZ mezi oteviené intervaly a oznalujeme ji symbo-
lem (— o0; + o0).

Intervaly ndm poslouZf jako konkrétn{ pifklady mno-
Zin, na nichZ se naudfme zachdzet s dal§fmi mnoZino-
vymi po_]my Jsou to tyto pOme podmnoZina, sjedno-
cenf mnoZin a prinik mnoZin. Budou ndm uZitené
v dalsfch kapitolach.

Rikime, ¢ mnoZina A je podmno¥inou mnoZiny B,
kdyZ kazdy prvek mnoZiny A je zdroveri prvkem mno-
Ziny B. Symbolicky to pffeme ve tvaru

ACB nebo BDA.
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Pro nafe intervaly zfejmé napifklad platt
(a; b) C (a; b).

Misto slova podmnoZina uZfvame téZ né&kdy slov ,,&4st
mnoziny‘, ale vzhledem k vysledku ve cvidenf 3,7 to
nenf zcela vystiZné.

Rekneme-li, Ze kazdy prvek jedné mnoziny je zroveri
prvkem druhé mnoZiny, je to logicky totéz, jako kdy%
fekneme, Ze v prvnf mnoziné neexistuje prvek, ktery
nenf prvkem druhé mnoziny. Z toho dtivodu pokl4dd4dme
prdzdnou mnoZinu za podmnozZinu kazdé mnoZiny
a pffeme tedy pro kaidou mnoZinu A vztah

g CA’ (3,6)

Nékteré jednoduché mnoZinové vztahy jsou ve cvi-
¢enf 3,7 a 3,8 a ve cvitenf 3,13 az 3,16. Jde v nich
vlastné jen o zfskdnf nadvyku na mnoZinovou symboliku;
proto nema smysl uvadét jejich FeSenf v seznamu vy-
sledkid cvien{. Zde si viimnéme aspoil jednoho pipadu:

Piiklad 3,1. JestliZe pro dvé€ mnoZiny A, B platf
zaroveil oba vztahy A C B i B C A, pak jsou obé tyto
mnoZiny totoZné (stejné, shodné) a pffeme A = B,

To je totiz zfejmé, nebot z pfedpokladi AC B
i B C A plyne, Ze kazdy prvek kterékoli z téchto mno-
Zin je zaroveni prvkem druhé z nich, a proto se obé tyto
mnoziny sklddajf z tychz prvka. Novinkou je tu pro
ttenafe jen to, Ze pro takové dvé mnoZiny zaviddime
symbol rovnosti A = B, vieobecné znidmy z jinych
partif matematiky.

Pristupme k dalifm pojmim. .

Sjednocenim dvou mnozin A, B rozumime mnozinu C,
Jjejimiz prvky jsou viechny prvky mnoZiny A i viechny
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prvky mnoZiny B a Z4ddné jiné; symbolicky to zapisu-
Jeme pomocf znaku () takto:

C—AUB.

Tento zapis tedy znamen4, Ze je me C tehdy a jen tehdy,
platf-li me A, nebo me B, pfitemz se nevyluduje pifpad,
Ze m je zaroveii prvkem obou mnozZin A, B

Pifklad 3,2. Je-li A =(0; 2), B =(1; 3), je
A B =(0; 3).

Véc je sice zfejm4, ale rozepime to napoprvé po-
drobné. MnoZina A je interval, ktery obsahuje viechna
Usla x, jez spltujf nerovnosti 0 < x < 2. Podobné in-
terval B obsahuje viechna takova &fsla y, pro kterd platf
1 =<y < 3. Viechna &sla obou téchto intervali jsou
tedy ¢&fsla z, splitujicf nerovnosti 0 < z < 3. Proto je
0; 3) =(0; 2) Y(1; 3).

Pitklad 3,3. Ktera &sla x jsou prvky sjednocenf C
intervalll (1; 2) a (4; 6)?

Zde je € = (1;2)  (4; 6). Jeho prvky nelze oviem
charakterizovat _]cdmou nerovnost{, nebot oba dané
intervaly se ani nepfekryvajf, ani se nestykajf Hledana
¢sla xe € jsou tedy &fsla, kterd splfiujf bud nerovnosti
1 < x £ 2, nebo nerovnosti 4 < x < 6. Zndzornéte si
mnoZinu € na ose &fselné; ; jejf obraz se sklada ze dvou
od sebe oddélenych tsezek.

Dalif piiklady tohoto druhu najdete ve cvident.

Pozndmka. Konstrukci sjednoceni mnozin A, B lze si
predstavit tak, %e k prvkim mnoZiny A ,,pfidime‘
Jje§té viechny prvky mnoziny B (pokud oviem jiZ nejsou
prvky mnoziny A). Z toho divodu se difve pro sjedno-
cen{ mnoZin uZfvalo ndzvu soufet mnoZin a mluvilo se
o mnoZinovém sou¢tu, Pro odlifeni tohoto pojmu od
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souttu &fsel bylo ucelné zavést samostatny nazev sjed-
nocen{ mnoZin, ktery se plné vzil.

Vedle sjednocenf{ mnoZin ma stejnou dileZitost dalsf
zdkladnf{ pojem, totiZ prinik mnoZin.

Prinikem dvou mnoZin A, B rozumime mnozinu D,
jejimiz prvky jsou viechny spole¢né prvky mnoZin
A, B a Zidné jiné; jinymi slovy feleno: prinik D je
mnozina tvofend spolenymi prvky mnozZin A, B ¢ili
viemi témi prvky mnozZiny A, které leZ{ zaroveli v mno-
Ziné B. Zapisujeme to uzitim symbolulﬂ takto:

D=Aqn B.

Tento z4pis tedy znamena, Ze je ne D tehdy a jen tehdy,
plati-li zaroven vztahy neA a neB.

Piiklad 3,4. Je-lli A =70; 2), B =(l; 3), je
AN B =(1;2).

Prvky mnozZiny A jsou totiz &fsla spliujic{ nerovnosti
0 <x =2 a prvky mnoZiny B jsou &sla x splfiujici
nerovnosti 1 < » < 3. Cfsla patifcf jak do mnoZiny A,
tak do mnoZiny B spliuji tedy viechny zde vypsané
podminky zarovefi, coZz v disledku nerovnostf 0 <1 <
<2<3dival =x <2,

VEimnéte si pfitom rozdflu mezi pitklady 3,2 a 3,4.

Pi#fklad 3,5. Pranikem intervald (1; 2) a (4; 6) je
mnoZina prazdna.

Neexistuje totiz &fslo x, pro které by zéroveri platily
nerovnosti 1 < x <2 a4 < x < 6. Pranik obou zkou-
manych intervalli nema tedy Zadny prvek, proto piieme

(L;2)N (4;6) = 2.

Z dosavadnich prikladi je jist€ zfejmé, co znamenajf
slova sjednocenf ¢&i prinik dvou mnoZin. V matema-
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tice rozlifujeme oviem tyto pojmy i pro pif{pady, kdy
jde o vice neZ dvé mnoZiny. Sjednoceni libovolného
podtu &i systému mnoZin je prosté souhrn viech jejich
prvki viibec. Prinik téchto mnozin je zasé souhrn viech
takovych prvka, které le#f ve viech téchto danych
mnozinich zaroven.

Vedle ¢selnych mnozin (pfesnéji intervald a jejich
skupin), jeZ jsme si dosud uvedli, budou nim v posledn{
kapitole uZite¢né i nékteré vvahy o mnoZinich bodu
v roviné; mnoziny se totiZ uplatfiuji vyhodné i v geo-
metrii roviny. Nékteré z téchto mnoZin zndte. Zakladn{
vyznam ma pro nas polorovina, jak lze uz vidét z 1.
kapitoly. Kazd4 polorovina ma duileZitou vlastnost, Ze
totiz usetka, kterd spojuje dva libovolné body téie
poloroviny, v nf leZf celd; ffkime to stru¢né slovy, Ze
polorovina je konvexnf{ vtvar. Tuto vlastnost majf 1 jiné
mnoziny bodl v roviné, proto si pfisluiny pojem zave-
deme obecné. Vyhneme se viak mnoziné prazdné;
kazdou mnoZinu, kterd nenf prazdnd, nazveme ne-
priazdnou.

Konvexni mnozinou bodid rozumfme takovou neprazd-
nou mnoZinu, kterd ma tuto vlastnost: jsou-li P, Q dva
rizné body této mnoZiny, pak kaidy bod X usecky
PQ je rovnéz bodem této mnozZiny. Pfitom mnoZinu,
kterd md jen jeden prvek, pokliddme také za mnoZinu
konvexnf.

Z piedchézejicich vykladid vychazi tento nejjedno-
dus¥f pifklad:

Pitklad 3,6. Polorovina je konvexnf mnozina.
Je dileZité uvédomit si také aspoil jeden pifklad
mnoZiny, kterd nenf konvexni. V obr. 10 je znidzornéno

mezikruz{. To oviem nenf konvexn{ mnoZina, nebot
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v mezikruZf 1ze zvolit body P, Q tak, Ze usetka PQ v ném
celd neleif; 1ze na nf pak najit bod X, ktery danému
mezikruZ{ nepatf. :

Pro prinik konvexnfch mnozZin platf daleZitd, i kdyz
jednoduché a snadno srozumitelni véta:

Véta 3,1. Neprdzdny prinik konvexnich mnofin je zase
konvexnt mnoZina.

Dtikaz: Dané konvexn{ mnoZiny, jichz muzZe byt
i nekone¢né mnoho, majf spoledny aspoil jeden bod,
nebot predpokladédme, Ze jejich prinikem nenf mnoZi-
na prazdna. Obsahuje-li tento prunik privé jeden bod,
je véta dokdzana, nebot jednobodovou mnoZinu pokl4-
ddme za konvexnf{ mnozinu uZ podle definice. Zbyva
tedy dokazat vétu 3,1 pro pifpad, Ze zkoumany prinik
obsahuje aspofi dva ruzné body. Zvolme libovolné dva
takové body P, Q tohoto priniku. Pak oviem podle de-
finice priniku mnozin lezf body P, Q v kaZdé z danych
konvexnich mnoZin a v kaZdé z nich le#f tedy i celd
usetka PQ (nebot jde o konvexni mnoziny). To zna-
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men4, Ze Gsetka PQ cela lez{ i v priniku danych mno-
Zin (nebot lez{ v kazdém z nich) a ua$ pranik je tedy
konvexni mnoZina. Tfm je véta 3,1 dokaedna.

Piiklad 3,7. Neprdzdny prinik libovolného systému
polorovin je konvexn{ mnoZina.

To je okamZity disledek véty 3,1 a pifkladu 3,6. Nej-
bé&%né&j¥fm pipadem toho druhu je trojihelnfk, ktery je
vidycky pranikem t¥{ polorovin (obr. 11). Obracené

2

Obr. 11

viak prinikem tf{ polorovin nemus{ byt vidycky troj-
Ghelntk, jak ukazuje obr. 12, ale pfesto je to i v tomto
pifpadé konvexnf{ mnoZina. RovnéZ mnohoihelnfky,
které lze vytvofit jako prinik koneiného podtu polo-
rovin, jsou konvexnf mnozZiny a jsou zahrnuty v pii-
kladu 3,7; nazyvajf se konvexni mnohoihelniky a pravé ty
budeme v posledni kapitole potfebovat. Extrémnfm
pifpadem pitkladu 3,7 je kruh, ktery lze vidycky vy-
tvofit jako priunik nekone¢né mnoha polorovin; kazda
takova polorovina md za hrani¢nf pifmku te¢nu kruhu
a obsahuje jeho stfed. Je tedy kruh rovnéZ konvexnf
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mnoZinou. Podrobnosti o tom se doltete v pifsluiné
literatufe uvedené vzadu, médme zde na mysli hlavné
knfzku Vy${novu.*)

Upozortiuji jeité, Ze ve cvienf 3,21, jeZ na tento p¥i-
klad 3,7 navazuje, rozumime oviem slovy ,,bod troj-
dhelnfka® bod pfisluiné mnoZiny, totiz bod lezic{ v pra-
niku t¥{ polorovin. Je to tedy bod leZfcf uvnit# trojiihel-
nfka nebo na jeho obvodu.

\

‘\ \ ) \ \\\\\
\\\\\x\\\\
L

N
)

Obr. 12

U konvexnich mnoZin je je§té jeden dileZity pojem,
totiz pojem opérné pfimky. V§imnéme si kruhu, k né-
muz polftdme i jeho hranici, totiZz kruznici £ v obr. 13
a pfiblizujme k nému pifmku g, kterd neni se¢nou ani
te¢nou kruZnice k. Posunujeme pifmku a do poloh 4/,
a’y ..., atd. tak, aby viechny tyto pi{mky byly stile

*) Nebudete-li si moci tuto éi jinou knizku koupit, mtZete si ji
vypujéit v knihovnach, hlavné v odbornych a$kolnich knihovnach.
Knizky této nafi edice jsou obvykle dost brzy vyprodané; snaZivy
z4jemce se tedy nespoléh4 jen na kniZni trh, ale v pfipadé potfeby
se obraci ke knihovndm; je dobie si na to zvyknout uZ v mladi.
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spolu rovnobézné. V jistém okamiiku piejde pifmka a
do polohy pfimky p, kterd ma s kruZnicf £ a tfm 1 s ce-
lym kruhem jeden bod spoleény. Pfimka ¢ je zde zfejmé
te¢nou kruZnice k. Z predstavy, Ze cely kruh se o tuto
pifmku opird, je pro pifmku p odvozen ndzev opérnd
pfimka zminéného kruhu. Kdybychom pi{mku a posu-
nuli dile az do polohy setny & kruznice k&, rozdélf

Obr. 13

ptimka & dany kruh ve dvé &asti a nemtiZzeme uZ tedy
pro ni uzit ndzvu opé€rna pifmka; body naleho kruhu
Jsou uzZ rozloZeny po obou stranich pifmky b, tj. body
kruhu le?f v tomto pffpadé v obou polorovmach vyta-
tych pfimkou b. Na zdkladé tohoto pozorovan{ vyslovime
definici opérné prl’mky mnoziny bodi takto:

Necht je v roviné dédna néjakd neprdzdni mnoZina
bodil, ozna¢me ji M. Pifmka p se nazyva opérnd piimka
této mnoziny M, kdyZ m4 tyto dvé vlastnosti:

1. pifmka p obsahuje aspoti jeden bod mnoziny M;

2. mnozZina M leZf celd jen v jedné poloroving vytaté
pfimkou p

Tato definice opérné pifmky se hodf pro kaZdou ne-
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prdzdnou mnoZinu bodl v rovinég, tedy i pro mnoZinu,
ktera nenf konvexnf. Nas viak zde zajfmajf hlavn& kon-
vexn{ mnoZiny.

Na obr. 14 je konvexnf pétiihelnftk s opérnou pfm-
kou p. Chceme tfm ukdzat, Ze opérnd pifmka miZe mit
s piHslu$nou mnoZinou, kterd se o ni opfra, i nekonetné
mnoho bodua spoleénych. Obr. 15 zase ukazuje, Ze né-

kterym bodem mnoziny M, kterou je zde trojihelnfk
ABC, muze prochazet vice a dokonce nekoneéné mnoho
opérnych pffmek mnoziny M; v tomto obrdzku jsou to
viechny pfimky vedené napf. bodem A4, jez neprotfnajf
proté&j§f stranu BC v jejich vnitinich bodech. Jsou to
viechny ty piimky vedené bodem A, které lezf ve vnéj-
§fch dhlech tohoto t-ojuhelnfka pfi vrcholu 4.

Pro konvexnf mnoZiny uZ z ndzorné pfedstavy vychézi
celkem tato snadno srozumitelnd véta:

Véta 3,2. Fe-li M mnoZina bodid v rovind a s néjakd piimka
té%e roviny, pak existujl nejuySe dvé opérné pfimky mnofiny M,
jeZ jsou rovnobéiné s pFimkou s.
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Dutkaz zde nepoddvdme pro nedostatek mfsta. Najdete
ho ve zminéné uz Vysinové knfice a dozvite se tam, Ze
tato véta plati i v pfipadé, Ze M nenf kanvexn{ mnozi-
nou. Ale pro konvexn{ mnoZiny je tato véta zvlast na-
zornd, jak ukazujf uz obr. 14, 15, 16, kde jsou vidycky
dvé rovnobéiné opérné pifmky piisluiné mnoZiny ozna-

Ceny p, g.

Obr. 15 Obr. 16

Je viak potfeba rozumét dobfe obsahu véty 3,2.
Mluvf se tam o tom, Ze potet pfislu¥nych opérnych pii-
mek je nejvyse 2. Tuto moZnost ukazujf pravé obr. 14,
15, 16. Musfme oviem pot&ftat s tim, Ze tento potet mizZe
byt mensf, tedy 1 nebo i 0. Napf. v obr. 12 je jedna
opérnd pi{mka pifslu§né mnoZiny oznafena p a pritom
je zfejmé, Ze tato mnoZina uZ nemé Zadnou dal3( opér-
nou pimku rovnobéinou s pi{fmkou p. Na obr. 17 je
vyznalena Srafovinim mnoZina M, ohranitenid dvéma
rovnobéznymi pffmkami @, 5. Pro tuto mnoZinu ne-
existuje Zadnd opérna pifmka rovnobéind s piimkou s,
Jjakmile pfimka s nenf rovnobéZné s pf{mkamu g, b.
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V nékterych ulohach z linedrntho programovant, jez
pozname v kapitole 5, uZijeme véty 3,2 pro konvexnf
mnohouhelnfky. V tom pipadé existuji oviem vidycky
dvé opérné piimky rovnobézné s danym smérem.

31

3,2.

3,3.

3,4.
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Obr. 17

Cvident

Vyjadiete nerovnostmi, kterd ¢isla x leZi v inter alech
(05 1) a (05 1).

Které z téchto zapist jsou spravné a které nikoli:

a) 0€(0; 1); b) 0€(0; 3);

¢) Y2 €(0;2); d) sin xe(—1; +1);

9 me@3); Do e 0 1);

) ne 223 22

nel——; —|-

& 71077

Pro 2 < b vypottéte délku d intervala (a; b), (a; b), (a; b),
(a; b).

Jsou-li x, y dva prvky téhoZ intervalu § krajnimi body a4, b,
x +

je tislo také prvkem tohoto intervalu. DokaZte to!



3,5.

3,6.

3,7.

3,8.

3,9.

3,10.

3,11.

3,12.

3,13.

Pro a <b je ¢&islo

prvkem kazdého intervalu
s krajnimi body a, 5. Doka?te to a viimnéte si rozdilu proti
pfedchézejicimu cviéeni.

Je interval mnoZina konetnid nebo nekoneéna? DokaZte
ptislusné tvrzeni!

Pro kaZdou mnoZinu A plati AC A (tj. kazd4d mnoZina je
podmnozinou sama sebe).

Jsou-li A, B, C takové tfi mnoZiny, %e plati AC B, BC C
pak plati také AC C. (Slovy: Je-li A podmnoZinou mno-
Ziny B a B podmnozinou mnoZiny C, je také A podmnoZi-
nou mnoziny €. MuZeme pak tedy psit AC BC C.)

Presvédéte se, Ze pro a < b plati

a) (a; 6) C(a; b) C (a; + ©) C(— ©; + ©);
b) (a; b) C{a; b) C (— o0; b);

c) (a; b) C (a; b).

Proa<d < ¥ < b plati

a) (a'; b) C (a5 b);

b) (d's &) C (a3 b)-

Uréete sjednoceni intervala A, B, je-li

a) A= (0;1), B={(1;2);

b) A= (0;2), B ={(1;2);

c) A={(1;5), B =(2;3);

d) A= (3;4), B=(4;5).

Nerovnostmi charakterizujte é&isla x, tvofici sjednoceni in-
tervall

a) (—1;0) a (0; 1); b) (0; 2) a (1; 3);

¢) (a; + ) a (a3 b).

Dokaste: Je-li C = A (J B, je AC C.
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3,14,

3,15.

3,16.
3,17.

3,18.

3,19.

3,20.

3,21.
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Pro katdou mnotinu A platia) A = A {J A;)

b) A=A 2. ‘
Jelli D=A()B, je DC Ai DC B. (Prinik mnoZin
je podmnoZinou kazdé z nich.)

Pro ka%dou mnozinu A plati A = A () A.

Stanovte pranik intervali

a) (0;2) a (1;3);

b) (0;2) a (15 3);

c) (0;2) a (1;3). -

Stanovte sjednoceni € i prinik D t¥{ intervala

a) (052), (1;3) a (2;4);

b) (0; 3), (1;4) a (2;5).

Je dédno nekoneén& mnoho intervala A, = (n; n + 1), kde
n=0, +1, +2, 4£3,..., &ili n probih4 mnoZinu viech
celych &isel. Stanovte sjednoceni viech téchto intervala A,.

/

1
Je dano nekoneiné mnoho intervali a) B, = \0; —n—> ,
1
b) B, = (0; —> s kden =1,2,3, ... (n probih4 mnoZinu
n
viech pfirozenych &isel). Stanovte prinik viech intervalii
B, a viech intervalu B,
Rozhodnéte, zda jsou spravna tato tvrzeni:

a) prusetik vyiek kazdého trojuhelnika je bodem tohoto
trojuhelnika;

b) prisetik os vnitfnich Ghlu ka2dého trojihelnika je bo-
dem tohoto trojihelnika.



4. kapitola

RESENI NEROVNOSTI

Uzitf analytické geometrie si ukdZeme na jednoduchych
dlohdch z feSenf nerovnost{. Zprvu je asi stejné snadné
i feSenf aritmetické, tfm lépe viak na téchto jedno-
duchych pifkladech pochopime metodu geometrickou.

Priklad 4,1. Pro kterd &fsla x je

_|’2‘_| >3 —x? 4,1)
Vyraz na kaZd¢ strané této nerovnosti pfedstavuje né-
Jjakou funkci proménné x, coz zapfSeme ve tvaru

|*]

f@) =150, gx) =3—=x.

Snadno sestrojime grafy funkef y = f(x) a y = g(x) ve
zvolené soustavé soufadnic (viz obr. 18). Graf funkce
f(x), majicf rovnici y = —lg‘—, je lomen4 &ara s kritickym
bodem v potatku a dovedeme jej snadno sestrojit podle
vykladu v kapitole 2. V obr. 18 je vyrysovan plnou ¢arou.
Jedté snazi¥f je graf funkce g(x), nebot je to linedrn{
funkce o rovnici y = 3 — x; tento graf je v obr. 18 vy-
rysovan tarkovanou (prerufovanou) &farou. Ponévadi
jde vesmé&s o ptimky (pffp. polopifmky), zjistime takika
pouh}’rm pohledem na obr, 18, Ze oba tyto grafy se pro-
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tthaj{ v bod& 4 [2; 1]. Ale my hleddme takové x, pro
které je podle (4,1) f(x) > g(x¥). Snadnym rozborem
zjistime uZitfm véty 1,10 a véty 1,11, Ze pro x > 2
(vpravo od pruseéfku obou grafit) je f(x) funkce rostouct
a g(x) klesajici. Je tedy pro x > 2stéle f(x) > f(2) =1
a g(x) < g(2) =1 ¢&ili celkem f(x) > g(x). Podobné
vidime, Ze pro x < 2 je f(x) < g(x). Danou nerovnost
te¥f tedy viechna &fsla x > 2 a Z4dna jina.

1.
\\ y
\\ 4
AN
3‘\
N
2 N y=lwo
] \A -
N\,
N \\ X
3 2 10 1T 2 34 5
\
\\y.gm
N\,

\
Obr. 18

Napi¥me to je§té ve tvaru mnoZinovém podle kapito-
ly 3. Nerovnost (4,1) je feSena pravé t€mi &fsly «, pro kte-
rd platf x € (2; + ).

Pirtklad 4,2. Reste nerovnost
v 1| — |2+ 8]x— 1| —2|x— 2| <x+ 2. (42)
PoloZme podobné jako prve .
f#) =lx+1]— x| +3|s—1]|—2]x—2],
g(x) =x 4+ 2,
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Graf funkce f(x) je lomena ¢ira se &tyfmi kritickymi
body pro hodnoty x = —1, x =0,x =1ax =2 Na
obr, 19 je vytaZzena plnou tarou. Graf funkce g(x) je
piimka, vyrysovani na obr. 19 irkované, Oba grafy
se protfnaj{ v bodé¢ 4 [—2; 0] a pak maji pro x = 2
spole¢nou celou polopifmku poéinajici v bodé B [2 - 4].
Podobné jako v pfedchédzejicim pifkladé vidime, Ze ne-

y=foo
7/
//
¢ 3,2\
/. )
S y =g
7/ -2

Obr. 19

rovnost (4,2), tj. nerovnost f(x) < g(x), je splnéna
pouze pro x € (—2; +2) ¢&ili pro &fsla x spliiujici nerov-
nosti —2 < x < +2, nebot jen v tomto useku je ¢ira
» = f(x) pod €arou y = g(x).

Zkuste vyfefit nerovnost (4,2) aritmeticky a porov-
nejte pak vyhody i nevyhody aritmetického fefenf proti
geometrickému,

V daljf dloze bude pro zaéatcénfka dilezita formulace
vysledku.
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Pifklad 4,3. ReSte nerovnost
o Blr—1—x+ 1) —3[x—2| + [z —4 >
> (11—3x—5]x—1]). (4,3)

Postup fe§enf nenf uZ pro nas novy. Pismeny f, g oznal-
me funkce dané rovnicemi

Obr. 20

d
y=glx,/
,I

4,8 2 10
4

/
4

S = 5 Blr—1]—x +1) —3|x—2|+ |x — 4]

2(%) = % (11 — 8% —5 |x— 1),

Jejich grafy jsou na obr. 20; jsou to lomené &4ry. Kri-
tické body funkce y = f(x) dostdvdme pro x = 1, x =2
a x =4, funkce y = g(x) mé jediny kriticky bod pro
x = 1. Podobné jako difv je i zde graf funkce y = f(x)
vyrysovan souvisle (plnou ¢arou) a graf funkce y = g(x)
tarkované.
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Na¥f dlohou je najft viechna takova x, pro ktera platf

Sx) > &(#), ‘ (4,4)

coZ je v tomto pf{padé jen strugny z4pis nerovnosti (4,3).
Pii tro¥ce geometrického citu snadno nachizime, Ze oba

grafy se protinajl v bodech 4 [—1; 2] a B [—g—; 2].

Vlevo od priisetfku A4 je nerovnost (4,4) oviem splnéna,
protoZe v intervalu (— oo; — 1) je podle vét 1,10 a 1,11
funkce f(x) klesajicf a g(x) rostoucf; skutetné je pro
x<—Iviude f(x) >f(—1) =2 =g (—1)> g(x). Dale je
3

nerovnost (4,4) splnéna vpravo od bodu B, tedy pro x > -,

jak uZ &tendb vySeti podobné jako prve snadno sam;
1 pro tato x je stdle ¢ara y = f(x) nad &arou y = g(x).

Pro zbyvajicf x, tj. pro —1 < x < - -, tomu tak nenf
a proto viechna fefenf nerovnosti (4,3) jsou takovd
Usla x, pro kterd platf x < —1 nebo x > —2—*). Slavko

nebo ma zde sviij zvla$tnf vyznam, kterého si brzy viim-
neme. Difve se viak pokusme zapsat na§ vysledek pomoc{
mnozinovych pojmii. Nadli jsme, Ze viechna é&fsla x,
kterd fe$i nerovnost (4,3), tvoif dva intervaly, totiZ
interval (— o0; —1) a interval [ g—; + oo]. MnoZina
*) Jiny moZny postup fefeni nerovnosti (4,3) je tento: uZitim vét
1,2 a 1,3 ji pfevedeme na ekvivalentni nerovnost tim, %e viechny
&leny z pravé strany nerovnosti 4,3 pfevedeme na jeji levou stranu.
Po jednoduchém poltu seznaite, Ze to vede k tloze ze cvideni 4,2.
Pro sestrojeni grafu pfisluiné funkce potiebujete viak (pti zacho-
vani métitek z obr. 20) mnohem vice mista.
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viech fefenf nerovnosti (4,3) je tedy sjednocenfm obou
téchto intervald, takZe mitZeme napsat: &fslo x je Fefenfm
nerovnosti (4,3) tehdy a jen tehdy, je-li

se[(—ws—n U (55 +o)| @)

Vyhada tohoto z4pisu fefenf nerovnosti (4,3) vysvitne
nejlépe na nékterych hodné jednoduchych prikladech.

1.
y
y = fx) 2
y = gix} A 1 B8 _
H } 4
-1 0 1
Obr. 21

Je zfejmé, Ze napifklad nerovnost |x| < 1 je FeSena
pravé témi x, pro kterd platf —1 < x < + 1 ¢ili pro

€ (—1; +1). Snadno to pozndme i z grafického vy-
jadfenf funkcf f(x) =|x| a g(¥) = 1 na obr. 21, nebot
pravé v intervalu (—1; +1) je &¢4ra y = f(x) pod &arou
y =g(x), tedy f(x) <g(x). Naproti tomu nerovnost
|| > 1 ¢&li f(x) > g(x) je FeSena pravé témi x, pro
kterd je

¥x <—I1 nebox >1, (4,6)
coz jsou &fsla z intervalld )
(—ow0;—1) a (I; +oo). (4,7)
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Viimnéte si, e oba tyto z4pisy (4,6) a (4,7) majf stejny
matematicky obsah (znamenajf prosté totéz), i kdyz
v prvnfm z nich uZfvime spojky nebo a v druhém spojky
a. Kazdy viak citf, Ze v zapise (4,6) nelze'uZit spojky a,
protoze ¢&fsla x, pro kterd je x < — 1 a x > 1, neexistujf;
prunik intervala (4,7) je totiZ mnoZina prazdnd, pfSeme
piece spravné (— o ; —1) ) (1; 4+ o) = 2.V béZné
fe¢i mivajf vSak spojky a a nebo vyznam protichtidny;
v gramatice ¢teme, Ze a spojuje skoro vidycky vyrazy
soufadné, spojka nebo spojuje nejlastéji dvé odporujict
si véty v souvétl odporova. Rikime napitklad: ,,Pajdu
na prochézku, nebo (pijdu) do biografu.” Tu jde vidy
o dvé mozZnosti, které se navzijem vyluéujf, odporujf si.
V matematice viak prdvé spojka mebo znamend velmi
¢asto spojeni soufadné. Vime uz, Ze m je prvkem sjedno-
cenf mnozin A, B, je-lim € A nebo m € B; pfitom tyto
dvé moznosti se nevyludujf, neodporujf si, protoZe m
mize byt docela dobfe prvkem obou mnoZin A, B sou-
¢asné. Podobné neostrd nerovnost a < b, kterou ¢teme
slovy ,,a je men$f nebo rovno 5* pfipousti obé moznosti
a <bia=>~ Ale véta, 2e ,tfi body v rovin& urlujf
trojdhelntk, nebo lezf v pt{mce ukazuje, Z¢ i v matema-
tice nékdy uZfvame spojky nebo tak jako jinde v dennim
Zivoté, kdyZ spojujeme dvé odporujici si tvrzenf. Pro
tuto nejednotnost vyznamu slovnfho vyjadfenf, kterd
nam v matematice ¢asto vadf, se nebudeme oviem zlobit
na jazykovédce. Uvédomime si, Ze Zivy jazyk podléhd
zménam, e na rozdfl od mrtvého jazyka (jako je latina)
se vyvijf a Ze tomu Z4dny jazykovédec nezabrani. Potre-
buje-li viak matematika, aby jejf pojmy byly vymezeny
jednoznalné, nezbyvd matematikim nic jiného, nez
uchylit se k vlastn{ symbolice a vyhnout se tak svrchu
zminéné ,,nedokonalosti lidské fe¢i. V nafich piikla-
dech je touto symbolikou mnoZinové vyjddfeni. Z4pis
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(4,5) mluvi jasn& a nenechdvd nikoho na pochybich
v zaleZitosti FeSenf nerovnosti (4,3). Podobné ne zcela
jasné zdpisy (4,6) a (4,7) nahradime snadno bezpe¢nou
formulact, Ze pravé pro x € [(— o; —1) U (1; + )]
jelx|> 1.

Z téchto pifkladd uz je vidét uZiteCnost mnoZinové
symboliky; z4roveni se ukazuje, Ze teorie mnoZin nenf
samoucelnd. A to jsme teprve v zalétcich, k teorii mno-
Zin jsme zde vlastné ani nepficichli. V dalifch piikla-
dech uZijeme mnozZinovych pojmil uz seuéné bez obsfr-
nych vykladd.

Pifklad 4,4. Méme-li zjistit, pro kterd ¢fsla x plati
nerovnosti
|2x — 1] < |*] < 3x + 2, (4,8)
zavedeme funkce
S(x) = [22—1], g(x) = |x], h(x) = 3% +2

a sestrojfme jejich grafy v obr. 22 (¢4ra y = f(x) je vyry-
sovdna plné, y = g(x) ¢arkované a y = A(x) teCkovangé).
Nerovnost (4,8) pak znf

S(%) < g(x) < h(x). (4,9)

Soustfedfme se nejdifv na nerovnost f(x) < g(x); meto-
dami ndm uZ zndmymi pozndvéme, Ze tato nerovnost je

splnéna pravé pro x vyhovujfcf nerovnostem —;- <x <l
nebot &¢iry y = f(x) a y = g(x) se protinajf v bodech
A [%, %] a B[1;1] ajenv tomto tiseku mezi body 4, B
lezf ¢ara y = f(x) pod &arou y = g(x). Hledejme déle
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Usla x, kterd te¥f nerovnost g(x) < h(x). Cary y = g(x)

a y = h(x) se protinajf v bodé C[— a vpravo

257

od tohoto bodu lezi uz viude &ara y = k(%) nad &arou
. - 1

y = g(x), je tedy pravé pro x > — 5 stile g(x) < h(x).

Zapi$me dosavadn{ vysledky mnoZinové:

N\
~ ;s
\\y= gtx) .':
4 §
\\\
NS
NG
2 A7
’_;."......._......._1 Obr. 22

Nerovnost f(x) < g(x) platf pravé. pro x e(—:l)’—; 1].

Nerovnost g(x) < k(x) platf prdvé pro xe [— %; + oo].

Nerovnost (4,9) ¢&ili (4,8) je tedy FeSena privé témi
tisly x, kterd lez{ v obou pravé vypsanych intervalech
zéroveti, tedy v jejich priniku. Snadno nachdzime, Ze je
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[s)0=2s +=)= (1)

je totiz (%, 1] C (—— %; +oo]. Méme tedy tento vy-
sledek: nerovnostem (4,8) vyhovujf viechna ¢&fsla
x € [%, l], tj. ¢isla x, pro kterd platf —;’— <x <l
a ?adna jina. -

Zavérem této kapitoly pfipojme jesté stru¢nou zmin-

ku o nerovnostech kvadratickych. Analytickd geometrie
nim nizorné pomaha i zde.

Pifklad 4,5. Reste nerovnost
¥ +x—2>0. (4,10)
V analytické geometrii se ve §kole uéf, Ze rovnice

=524+ x—2 [(‘.ili ¥+ Z (x + ] J pfedstavuje

parabolu o vrcholu V — ] jejf graf je na obr.

2 s
23. V na$f uloze se ptame po téch bodech této paraboly,
které lezf nad osou x. Osu x protind na$e parabola
v bodech 4 [—2; 0], B [1; 0,], jak zjistime Ffe§enfm
rovnice x* +x —2 =0. Protoze vlevo od vrcholu V
déva parabola funkci klesajicf a vpravo od vrcholu V
funkci rostouct, nachizfme ihned hledané fefeni: nerov-
nost (4,10) je splnéna pro body vlevo od bodu 4 a pro
body vpravo od bodu B, tedy prox < —2 a pro x > 1.
To je sjednocen{ dvou nekoneénych intetvall, nerovnost
(4,10) proto platf tehdy a jen tehdy, je-li

% € [(—w;—2) U (1; +0)]. (4,11)

62



Ptipojme je§té aritmetické fe¥enf nerovnosti (4,10).
Pro kazdé x je x* +x—2 = (x + 2) (x — 1). Tento
soutin ma byt kladny. To nastavd bud tehdy, kdy% oba
vyrazy x + 2 a x — 1 jsou kladné, nebo tehdy, kdyz
jsou oba zdporné. Prvnf mozZnost vede k nerovnostem
x+2>0 x—1 >0, jeZ poZadujf, aby bylo zirovet
x > —2 a x > 1; jde tedy o priinik intervala

(—2; + o) N (15 +») =(1; +0). (412)

]

iy

!

|

i 13

i

i

i 2

1
A X

3 - -1 2

LA

v
Obr. 23 -3

Prvnf moznost diavé tedy fefenf x > 1. Druhd moZnost
nezavisle na prvn{ poskytuje daldf feSenf x + 2 < 0,
x — 1 < 0 a pozaduje tudfz, aby bylo zaroveii x << —2
a x < 1; to je prinik intervala

(—o;—2) N (—oo; 1) =(—o;—2). (413)
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Sjednocenfm téchto priniki, zapsanych formulemi
(4,12) a (4,13), vyerpame obé zm{néné moZnosti a do-
stivame opét reSenf ve tvaru (4,11). Je vidét, Ze i v arit-
metickém felenf se vyplatf mnoZinové myslenf{ pro svou
jednoduchou piehlednost.

Poznamenejme jeité pro tuplnost, Ze nékteré kvadra-
tické troj¢leny jsou bud stile kladné, nebo stile ziporné.
Pak je fefenf velmi snadné. Napifklad nerovrost
x* + 2x + 2 > 0 je splnéna pro viechna ¢fsla x, nebot
pro kazdé x je x* + 2x +2 =(x + 1)%4+ 1 =1 > 0;
pro kaZzdé a je totiZ 4 = 0, je tedy také (x + 1)2 = 0.
Geometricky to znamena, Ze parabola o rovniciy = x2 4
+ 2x + 2 neprotind osu x, ale le?{ celd nad ni. Nary-
sujte si ji, ma vrchol V [—1; 1].

Cvilenf

4,1. Reite nerovnost:
a) |¥ + |2 —x| < 2;
b) 2|12x — 3| = x + 5;
c) |x—2| > |2x + 3|;
d) 2x + 1 —2|x + 1| + |[x— 3| < |«|
4,2. Reite nerovnost
S5lx—1| —3|x—2[+ |x—4] +x—~5>0
a viimnéte si souvislosti s ptikladem 4,3.
4,3. Geometricky znazornéte feleni nerovnosti
a) |x—a| < b; b) |[x —a| > b, je-li oviem b > 0.
4,4. Geometricky Feste soustavu nerovnosti
2x +3 =3 +1=x+5. o
4,5. Pro kterd x je x2 —9x + 18 < 0?
4,6. DokaZte: pro kazdé s je x2 +x + 1 > 0.



5. kapitola

SOUSTAVY NEROVNOSTI
O DVOU NEZNAMYCH

V této kapitole se soustiedime vylu¢né na ilohy z praxe.
Pro piehlednost vykladu i obrazki jsou viak v naSich
piikladech vhodné volena konkrétni ¢fsla, aby myslen-
kovy postup Fefeni nebyl zastinén zdlouhavymi nume-
rickymi vypolty.

Piiklad 5,1. V sériové vyrobé€ dvou druhi vyrobkd
A, B je vyrobnf naklad jednoho kusu vyrobku A 1000,—
K¢&s a jednoho kusu vyrobku B 3000,— K¢é&s. Prodejn{
cena jednoho kusu vyrobku A je 3000,— K¢&s a jednoho
kusu vyrobku B 4000,— K¢s. Velkosklad odkoupf nej-
vySe 6000 kusi vyrobku A a 4000 kusi vyrobku B.
Kapacita vyroby je rovnéZ omezena, maximilné je
mozno vyrobit 8000 kusi obou vyrobkd A i B dohro-
mady. Ukolem je rozvrhnout za téchto podminek vy-
robu tak, aby zisk vyrobce byl co nejvétsi.

Ziejmé mame stanovit pofet kusi vyrobkid A i B,
které mime vyrobit; jde tedy o dvé nezndmé. Pisme-
nem x oznaéme hledany pocet kusi vyrobku A, pfs-
menem y podobné poéet kusi vyrobku B. Pfi fefenf mu-
sime pfihlédnout k tomu, kolik kusd za danych pod-
minek viibec vyrobit maZeme. Teprve potom, aZ to bu-
deme védeét, pristoupime k hledanf takového Fesen,
které je pro vyrobce nejvyhodnéjif (optimélnf). Sleduj-
me tedy nejdfiv jednotlivé podminky dané iilohy.

Pri zvoleném oznadenf dostivame predevifm
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xgo, )’20, (5,1)

nebot zdporny potet vyrobkl nevyribime. Daile je
ziejmé, Ze nemd smysl vyrabét vic kusi, neZ kolik jich
prodime. Zde je tento odbyt dan tfm, Ze velkosklad pre-
vezme nejvye 6000 kust vyrobku A a 4000 kust vy-
robku B. To vede k nerovnostem

x < 6000, y < 4000 . (5,2)

ProtoZe na druhé stran& nemiZeme Vrobit vice neZ
8000 kust vyrobkii A i B dohromady, musfme pocitat

s nerovnost{
% +y = 8000 (5,3)

(Toto omezenf plyne z povahy vyroby. MiZe byt zpiiso-
beno riiznymi okolnostmi, naptiklad tim, Ze stroje, chhz
k vyrobé uZfvame, vét¥{ zatfZenf nesnesou; jejich opotie-
beni by mohlo b)’lt takové, Ze by uz dals( vyrobu nevy-
drzely, nebo by vyrdbély zmetky.)

Zastavme se ted na chvili u analytického vyjadieni
vyrobnich mozZnosti, zapsaného nerovnostmi (5,1) aZ
(5, 3) Znazornéme si je gcometricky na obr. 24 dfive,
nez pfistoupime k otdzce ceny a zisku. (Jednotlivé dflky
méfftek na osich soufadnych v obr. 24 neznamenajf
oviem jednotky, ale tisice.) Jde tu vesmés o linedrn{ ne-
rovnosti, jejichz geometrick}’f vyznam jsme poznali v ka-
pitole 1. Podle véty 1,14 prvnf z nerovnostf (5,1) charak-
terizuje pravou polorovmu uréenou hrani¢n{ pifmkou
o rovnici ¥ = 0 (osou ) a prvnf z nerovnost{ (5,2) levou
polorovinu ur&enou hraniénf pi¥fmkou o rovnici ¥ =
= 6000, Z toho uz plyne, Ze pripustné feSenf musfme
na obr. 24 hledat jen mezi takovymi‘body, které lezf
v pruhu ohrani¢eném zminénymi dvéma rovnobézkami
o rovnicich x = 0 a x = 6000. Zbyvajicf{ dvé nerovnosti
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ze vztaha (5,1) a (5,2) znamenajf podobné pruh ohra-
ni¢eny dvéma rovnobézkami o rovnicich y =0 (tj.
osa x) a y = 4000; to plyne z vét 1,12 a 1,13, nebot
zminény pruh je mnoZinovym prinikem pifsluinych
polorovin. Vcelku tedy vidime, Ze omezen{ plind vy-
roby, stanovené étyfmi nerovnostmi (5,1) a (5,2), je geo-
metricky znazornéno body obdélntka OPQR, ktery je
prinikem obou vyse zminénych pruhl; v ivahu pficha-
zej{ oviem jak vnitinf body tohoto obdélnika, tak i body
hraniéni, tj. body leZicf na jeho obvodu (nebot nerov-
nosti (5,1) a (5,2) jsou neostré). Posledn{ nerovnost, totiZ
nerovnost (5,3), miZeme pfepsat na tvar x +y —
— 8000 = 0 a pouiit pak véty 1,15, kde klademe a =
=b =1 > 0; jsou tedy splnény predpoklady véty 1,15
a z nf plyne, Ze nerovnost (5,3) je zobrazena v obr. 24
dolnf polorovinou, uréenou pifmkou o rovnici ¥ 4y =
= 8000. Tato piimka protind obdélnik OPQR v usedce
M N, jejiz krajnf body A [6000; 2000] a N [4000;
4000] ureite snadnym poltem. Polorovina, uréend ne-
rovnost{ (5,3), vytind z obdélntka OPQR pétidhelnik
OPM NR, ktery je na obr. 24 vySrafovin. Soufadnice
boda tohoto pétiihelnfka a jenom téchto boda spliiujf
viechny nerovnosti (5,1) az (5,3), jeZ nadi vyrobu ome-
zujf; proto ifkime, Ze body tohoto pétidhelnfka (vnitinf
i na hranici) znazortujf tzv. pfipusiné pliny na¥f vyroby.
Tomu je tfeba rozumét tak, Ze kazdy bod tohoto péti-
dhelnfka predstavuje jedno skuteéné realizovatelné roz-
vrzen{ na$f vyroby.

Za zminku stojf, Ze pétiithelnik OPMN R jakoZto prii-
nik péti polorovin uréenych nerovnostmi (5,1) az (5,3),
je podle pifkladu 3,7 mnoZinou konvexnf.

Po této piHpravé pristupme konené k feSenf na¥f
ulohy, formulované na zaéatku piikladu 5,1.

Protoze vyroba pfipoust! nekoneiné mnoho Ffefen,
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zndzornénych viemi body pétithelntka OPAM NR, je
nasnadé myslenka vybrat z nich takova Yefenf, kterd
jsou z urlitého hlediska vyhodnd, pi{padné nejvyhod-
néj¥i. V nafem piikladé€ jde o vyrobu s maximalnim ob-
chodnfm ziskem.

\ x = 6000

Obr. 24

Z danych- podminek ulohy bezprostfedné plyne, Ze
zisk z prodeje jednoho kusu vyrobku A je 2000,— K&,
nebot jej vyrabime za 1000,— Ks a proddvime za
3000,— K¢&s. Podobné prodejem jednoho kusu vyrobku
B ziskd vyrobce 1000,— K&s. Celkovy zisk pfi x kusech
vyrobku A a y kusech vyrobku B je tedy v Kés vyjadien

dslem u, kde je '
u = 2000x + 1000y. (5,4)

Nasfm vkolem je najit takova &fsla x, y vyhovujicf nerov-
nostem (5,1) az (5,3), aby line4rn{ funkce (5,4) davala
maximalni moZné u. To je matematickd formulace
ulohy nafeho pifkladu 5,1. ProtoZe rovnice (5,4) zna-
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mena geometricky pH{mku, je geometrické vyjddien{ to-
hoto tikolu nasledujici: ze vSech takovych pffmek o rov-
nici (5,4), které prochézeji asponi jednim (vnitfnfm nebo
hrani¢nim) bodem pétiihelnika O PM N R, najit v obr.
24 tu, pro kterou je &fslo # maximdlni.

Pfi riznych hodnotéich u jsou oviem viechny pifmky
o rovnicich (5,4) navzijem rovnobéiné (maji stejnou
smérnici £ = —2). V obr. 24 je jedna z nich oznadena s.
Pritom ¢&fslo u je pifmo umérné dseku, ktery kazda takova
pifmka vytind na ose y. Musfme tedy ze viech téchto
rovnobézek s pfimkou s najit tu, kterd ma spoletny
aspoil jeden bod s konvexnim pétidhelnfkem OPM NR
a ktera pfitom vytina maximaln{ moZny usek na ose .
Vzpomeneme-li si na vétu 3,2, vidime okamZité, Ze hle-
dani pifmka je jednou z opérnych pf{mek konvexnfho
pétithelntka OPM NR, které jsou rovnobéiné s pifm-
kou s. Jedna z téchto piimek prochdzi politkem O
a davd minimdln{ ¥ = 0, takZe nis nezajimi; v obr. 24
je to pfimka p. Druhd z nich, pfimka ¢, prochézf vrcho-
lem M [6000; 2000], jehoZ soufadnice dosazeny do rov-
nice (5,4) davajf u = 14 000 000,— K¢&s; jejf rovnice
(bez kracenf) znf

2000x -+ 1000y = 14 000 000 .

To znamend, Ze soufadnice bodu M fe3f na$i dlohu.
Geometrickou cestou jsme tedy nali toto optimalnf fe-
$enf dlohy z pifkladu 5,1:

Maximdlniho zisku dosdhneme tehdy, kdyZ vyrobime Sest
tistc kusi vyrobku A a dva tisice kusi vyrobku B; piislusiny
maximdini zisk bude &trndct miliond Kis.

Tim je pitklad 5,1 v podstaté dokon&en. Jeho obména
je cvieni 5,1, na némz si maZete zkontrolovat, zda jste
véci fadné porozuméli. Zdiraziujeme jesté, Ze cely kol
zde Fedl pravé opérnd pfimka ¢ konvexnfho pétitihelnika

69



OPMMNR. Podobné je tomu i v dalich piikladech.
Proto jsme o téchto pojmech mluvili v kapitole 3. Kdy-
bychom misto opérné pifmky ¢ zvolili napriklad primku
s ni rovnobéZnou prochézejicf bodem N, dala by nim
sice moZnost nekonelné mnoha Fefenf (totiZ viechny
body dsecky NP, v nfZ tato pfimka protind pétitihelnik
OPMMNR), ale osidili bychom vyrobni{ podnik o dva
miliény Kés; presvédiite se o tom dosazenfm soufadnic
bodu N do rovnice (5,4). Kdybychom na druhé strané
chtéli zisk zvysit teknéme na 16 000 000— K¢&s, nepo-
dafilo by se ndm to, protoze rovnice (5,4) by zde méla
tvar 16 000 000 = 2000x + 1000y a piedstavovala by
pifmku, kterd neprotfnid pétidhelntk OPMNR; prinik
pifmky s pétidhelnfkem by tu byla mnoZina prazdnd.
Tak bychom marné hledali fe§eni mimo podminky p¥i-
pustnych pland. DileZité jsou tedy pii téchto dlohdch
pravé opérné pifmky pifsluinych mnoZin.

Funkce u, dand zde rovnici (5,4), nazyvd se v line-
arnim programovan{ odborné déelovd funkce. Ukolem pak
je najit takové fedeni, které diva optiméln{ hodnotu
ucelové funkce. Tim rozumime maximalni nebo mini-
malnf hodnotu tuéelové funkce za pislu§nych podminek,
stanovenych pifpustnymi pldny. V prikladé 5,1 predsta-
vovala uéelova funkce zisk. V jinych ptikladech a v dal-
$fch odvétvich hospodafstvi mize uéelova funkce mit
nejruznéj§f vyznam. Nejde vidycky o maximalni zisk.
Nékdy jde napifklad o minimalni ndklady spojené s udrz-
bou provozu (viz pifklad 5,3), jindy o nejrychlej§i vy-
robu (napf. pfi plnénf plini v dopravé) nebo optimaln{
vyuzitf poétu pracovnich sil apod. V dalsim ptiklade¢,
jehoz téelem je ukdzat Fefeni o néco imdlo sloZitéjtho
ukolu neZ prve, ziistaneme viak pro jedfoduchost u hle-
dédn{ maximalniho zisku. Vyklad bude viak u? mnohem
stru¢néj$f nez dosud.
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Pitklad 5,2. Z barytu a cementu chceme vyrdbét
barytové desky a specidln{ tvdrnice. Na 1000 desek
spotfebujeme 5 t (tun) cementu a 1 t barytu, na 1000 tvar-
nic 2 t cementu a 2 t barytu. Nakupnf cena cementu je
1000,— Ké&s za 1 t, ndkupni cena barytu 6000,— Ké&s
za 1 t. Pro vyrobu mame k dispozici 45 t cementu a 20 t
barytu. Barytové desky budeme proddvat po 16,— K¢&s
za kus, tvdrnice po 17,— Ké&s za kus. Ale odbér na trhu
je omczen; vime, Ze proddme nejvySe 8000 kush desek
a 9000 kusu tvarnic. Kapacita vyroby je rovnéZz omezena,
muzZeme vyrobit nejvySe 12 000 desek i tvarnic dohro-
mady. Za téchto podminek méme rozvrhnout vyrobu
tak, aby zisk vyrobce byl co nejvétsi.

Na prvnf pohled je patrné, Ze k Fefenf tohoto kolu
néjaké kupecké poéty nesta&i, Ale uZitim analytické geo-
metrie to vyfeiime snadno.

Ztejmé je tieba stanovit, kolik barytovych desek
a tvarnic budeme vyrabét. Ozname tyto neznamé hod-
noty zase pfsmeny x, y, ale v tisicich kusech. Pismeno x
neznamena tedy pocet desek, ale podlet tisici téchto
desek; podobné y znadi polet tisicii tvarnic. Stejné jako
v predchédzejicim pfikladé mame i zde

x =0, »=0. (5,5)
Odbér trhu omezuje na$i vyrobu nerovnostmi

nebot nema smysl vyrabét vic kusl, nez kolik jich pro-
dame. Obdobné k predchdzejicimu pifkladu 5,1 je zde
i omezenf dané kapacitou vyroby, jez vede k nerovnosti

x +y =12, (5,7)
Ale na rozdil od pfedchazejiciho pf{kladu piibudou zde

71



jesté daldf dvé linedrni nerovnosti. Musime totiz prl-
hlédnout k zisobam cementu a barytu. Z podminky, Ze
na 1000 desek spotfebujeme 5 t cementu a na 1000 tvar-
nic 2 t cementu, vychdz{ nerovnost

5% + 2 < 45, (5,8)

|

N

\\

x
\ \
\5 xey =12
x»2y=45

Obr. 25

nebot vic nez 45 t cementu neméme. Spotieba barytu je
podobné omezena nerovnost{

nebot na 1000 desek spotfebujeme 1 t barytu a na 1000
tvarnic 2 t barytu, jehoZ zdsoba je 20 t.

Sedm nerovnost{ (5,5) aZ (5,9) vymezuje pi{pustné
plany na¥f vyroby. Zndzornime-li si je geometricky na
obr. 25, vidime, Ze jde o prinik sedmi polorovin, coZ je
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konvexnf sedmivhelnfk 0 ABCDEF, ktery je na obr, 25
vysrafovan. Dojdeme k nému stejnou tivahou jako k péti-
dhelntku OPMNR v predchazejicim obr. 24. Strany
tohoto sedmithelnfka lezf v hrani¢nfch pffmkach polo-
rovin, uréenych nerovnostmi (5,5) aZ (5,9) ; jsou to osy x,
y a pét pifmek o rovnicich x =8,y =9, x +y =12,
S5x + 2y =45, x 42y =20. K stanovenf priniku
téchto polorovin uZijte tak jako v pfedchézejicim pii-
kladé zase vét 1,12 az 1,15 z prvnf kapitoly a piikladu
3,7 z tietf kapitoly.

Sestavme nyni ulelovou funkci, udavajicf zisk u.
Snadno zjistite, Ze pfi vyrobé 1000 desek spotiebujeme
cementu za 5000,— Ké&s a barytu za 6000,— K¢&s, celkem
nas tedy vyroba jednoho tisice desek stojf 11 000,— Kés.
Protoze desky prodavime za 16 000,— Ké&s, zfskdme pti
jejich vyrobé 5000,— Ké&s. Vyroba tisice tvarnic vynese
podobné 3000,— K¢&s, nebot cementu zde spotiebujeme
za 2000,— K¢&s, barytu za 12 000,— K¢&s a proddvame je
za 17 000,— K¢s. Celkovy zisk pii x tisfcich desek a y
tistcich tvérnic je tedy din rovnici

u = 5000x 4- 3000y .

Tim je dina déelova funkce. PFi riznych hodnotich u
jsou viechny tvto pfimky spolu rovnobéiné, jejich

smérnice je k£ = — ;— Jedna z nich, pfH{mka s, od-

povidajicf hodnoté u = 15 000,— Kd&s, je v obr. 25 za-
kreslena. Optimaln{ fefenf podava oviem opérna pfimka
g konvexnfho sedmiihelnika 04 BCD EF protinajicf jej
v jediném bodé C a rovnobéina s pfimkou s; ze viech
pHmek, rovnobéZnych s pifmkou s, ma totiz pravé
piimka ¢ tu vlastnost, Ze jejf tiseky na osach soufadnych
Jsou maximdlnf a Ze zdroven jejich prinik s uvedenym
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sedmiihelnikem neni mnozina prazdna. Piislu§né 4 pro
pifmku ¢ stanovime z podminky, Ze tato pffmka prochazi
bodem C. ProtoZe bod C je pruselikem pifmek o rovni-
cich x +y =12 a 5x + 2y = 45, dostaneme jeho sou-
fadnice fefenfm této soustavy dvou rovnic; vychazi
x =17, y =5. Dosazenim téchto hodnot do rovnice
pro 2 vychazi ¥ = 50 000, rovnice pifmky ¢ (bez kra-
cenf) tedy znf
50 000 -= 5000x + 3000y.

Bod C [7; 5] Fe¥i tedy nasi ulohu "pFi zisku z = 50 000
korun. Slovy vyjadieno:

Maximdlntho zisku 50 000,— K¢s.dosdhneme tim, fe vy-
robime 7000 kusi barytovych desek a 5000 kusi tvdrnic.

Analytickou geometrii v roviné miizeme nékdy fesit
1 dkoly o tfech a vice neznamych. UkaZeme si pitklad
na fefenf systému linedrnich nerovnostf o tfech nezna-
mych.

Priklad 5,3. K vybaveni nové kanceldfe je tfeba
koupit 20 psacich strojia. Pro tento ndkup je k dispozici
45 000,— K¢s. Jsou nabizeny tfi typy stroju; typ A po
2000,— K¢&s za kus s ro¢ni ddrzbou v hodnoté 20,— Kés
pro kazdy stroj, typ B po 2250,— Ké&s za kus s roénf
udrzbou 16,— Ké&s pro kazdy stroj a typ C po 2500,—
K¢&s za kus s roénf ddrzbou 10,— K¢&s pro kazdy stroj.
Vedeni podniku se rozhodne koupit nejvySe 5 stroju
typu A, protoze nechce koupit mnoho ncjlacinéjéfch
a tedy i nejméné kvalitnich Stl‘O_]u jak se ma nakup za-
dit, aby celkové néklady na ro¢ni didrzbu stroja byly
co nc_]mcnﬁi"'

Pocet Stl‘O_]u typu A, B, C oznatme po Fadé x, y, z
Hned z prvni véty textu ulohy vychdaz{ rovnice
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x +y +2z =20, . (3,10)

Protoze stroje typu A jsou po 2000,— K¢s, je cena
kust ddna &fslem 2000x. Nakupnf cena stroji typu B je
podobné dana &islem 2250y a stroji typu G slem
2500z. Protoze to dohromady nesmi presdéhnout 45 000
korun, mdme nerovnost

2000x + 2250y + 2500z =< 45000.  (5,11)
Z rozhodnutf nenakoupit pfili§ mnoho nejlacmcﬁfch
stroji (typu A) plyne
x <5 (5,12)
Priddme-li k tomu samoziejmy pozadavek
x=0, y=0, 220, (5,13)

mame v podstaté vymezeny pripustné plany ndkupu.
Pifslu$na ucelova funkce je zde

u = 20x + 16y + 10z (5,14)

a znamend, jak kaZdy snadno zjisti, ro¢n{ ndklady udrzby
viech zakoupenych stroju, vyjadrené v Kds.
Matematicka formulace nasi ulohy tedy znf: pti pod-
minkach (5,10) az (5,13) stanovit x, y, z tak, aby hod-
nota u, dana rovnicf (5,14), byla co nejmensf.
Rovnice (5,10) dovoluje vyjidfit jednu nezndmou
pomoci ostatnich, napiklad

72 =20— (x +y), (5,15)

coz dosazeno do nerovnosti (5,11) a do poslednf nerov-
nosti (5,13) dava podminky

500x 4 250y = 5000, 20 —x—y = 0.
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Po jednoduchych upravich dostivime konelné spolu
s prvnimi dvéma nerovnostmi (5,13) celkem pét nésle-
dujicich podmifnek uréujicich ptipustné plany ndkupu:

2x +y = 20,

x+y=20,
x<35, (5,16)
x=0,
y=0. -

Tyto nerovnosti uz umime znazornit uzitfm analytické
geometrie v roviné, nebof jde o dvé proménné x, .
Dostdvame tak pét polorovin, jejichz prinikem je zde
trojuhelnik M NP (v obr. 26 vysrafovany), ktery je obra-
zem priipustnych pland. Uvedené poloroviny i s jejich
hrani¢nfmi pifmkami stanovite uZ snadno sami na za-
kladé vét 1,13 aZz 1,15 z kapitoly 1; pozor na to, Ze na
rozdil od predchézejicich pifkladd prvni nerovnost
(5,16) zde davd hornf polorovinu urlenou pifmkou
o rovnici 2x + y = 20.

Utelova funkce (5,14) piejde po dosazen{ z rovnice
(5,15) ve tvar

u = 10x + 6y + 200
&ili
» — 10x + 6, (5,17)

kde klademe v = u — 200. Ma-li byt ¥ minimalni, mus{
byt v ziejmé také minimaln{ a obracené. Cislo v je opét
primo dmérné dsekiim, které na osich x, y vytinaji jed-
notlivé navzijem rovnobézné pifmky o rovnicich (5,17).
Jedna z nich, totiz pfimka s, je na obr. 26 zakreslena.
Naii vlohu tak jako difv fe§f opérné ptimky trojuhelnika
M NP, které jsou rovnobéiné s piimkou s. Jedna z nich,
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pifmka p, ddva maximaln{ pHpustnou hodnotu v, druha,
pifmka ¢, minimaln{ hodnotu v a tu priavé hledime.
Pifmka ¢ prochaz{ vrcholem M [5; 10], jehoZ soufad-
nice uréfme fefenfm soustavy rovnic x = 5,2x +y = 20,
S pouzitim rovnice (5,15) dostivdme pak jako FeSenf
na$f ilohy hodnoty ¥ =5, y =10, z = 5, které_dosa-
zeny do ulelové funkce (5,14) davajf u = 310. Refenf
pitkladu (5,3) tedy znf: Nakoupime 5 stroji typu A,
10 strogit typu B a 5 stroji typu G, ¢mZ dosdhneme minimdint
roénf ddrZby 310,— Kés.

\
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Pripomenime, Ze tuto ulohu je moZno fedit pifimo ve
ttech proménnych obdobné jako zde, ale samoziejmé
uZitim prostorové analytické geometrie.

Prakticky dileZitd je viak tato poznamka: vztah uce-
lovych funkci # a v z rovnic (5,14) a (5,17) je tieba po-
zorné sledovat. Zde minimu z odpovidalo minimum »
a maximu # odpovidalo maximum ». Nékdy se viak
muzZe stat (viz cvienf 5,4), Ze vylouZenim tietf neznimé
minimu jedné ucelové funkce odpovida paximum druhé
a obracené, Ze tedy uloha, sméfujicf napriklad k hledani
Jjistého minima, se vylou¢enim nékteré neznimé prcvede
na hleddnf maxima. Pfiklad ze cvigenf 5,4 vim sttc ne-
bude délat potiZe; jen pro uplnost prlpomfném ze je
vyfeSen v Sctzerové ¢lanku, uvedeném zde v seznamu
literatury. ~

Déle je nutno upozornit &tendfe je§té na jednu okol-
nost, kterou jsme zde dosud nenapadné preli. Kdy-
bychom napifklad néjak pozménili volbu konkrétnich
tisel v textu naSich pitklad, mohlo by se docela dobre
stdt, Ze fefenim nebudou &fsla cel4, Ze v kone¢nych vy-
sledcich by se vyskytly zlomky. Pro¢ by napf. souradnice
bodu M v poslednfm obr. 26 musela byt pfi celkem ne-
patrnych zméndch danych tdaji pravé ¢&isla cela? Ale
kdyby vysly zlomky, nemélo by to prakticky efekt —
nelze prece koupit 2 a pil psactho stroje. V takovych
pifpadech fe$fme viak na$i ulohu stejnou metodou jako
zde, ale pouze s tim rozdflem, Ze misto bodu M najdeme
v trojuhelnfku M NP na obr. 26 takovy bod s celo&isel-
nymi soufadnicemi, ktery je k opérné pifmce ¢ nejblfz.
Body s celofselnymi souradnicemi se nazyvaji v mate-
matice odborné m#fové body a v souvistosti s linedrnim
programovanim se o nich doétete blizst podrobnosti
v knfZce Fr. Veselého citované v uvedené literature. MH-
Zové body hraly také odeddvna ditleZitou roli v teorii ¢fsel.
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Zivérem si Feknéme, Ze ulohy z pikladu 5,1 aZ 5,3
patif do tzv. linedrntho programovdni. Linedrnim progra-
movanim rozumime ulohu najit » nezndmych x,, x,, ...,
x, vyhovujicich m linedrnfm nerovnostem

MX, + Xy + ... +ax, = A4,
byxy, +byx, + ... +bxy £ B,

mx;, + myxy + ..oFmx, S M,

tak, aby bylox; = 0, x, = 0, ..., x, = 0 a aby linearni
funkce
U = o% + agXy + ..o F X,

nabyvala maximailni nebo minimaln{ hodnoty. Pfitom
viechna pfsmena zde zapsand znamenaji oviem reilna
&sla.

V nasich jednoduchych pifkladech jsme méli dvé ne-
bo tfi neznamé, a proto jsme je mohli fefit analytickou geo-
metrif ; tohoto zpusobu Fefenf se v praxi pf malém poctu
neznamych skuteéné uzfva. Snadno si viak domyslite, Ze
u velkych technickych, hospodaiskych nebo organizag-
nich problému presahuje podet nezndmych xy, %, ..., x,
nékolik desftek i vice. Casto je dokonce potfeba najft
feSenf rychle (napf. v dopravé). V tom pifpadé nelze
uplatnit zdlouhavé poltaiské nebo geometrické metody
a je nutno vzft na pomoc stroje, hlavné samocinné potf-
tace, jejichZ rozvoji praveé vdééfme za Siroké uzitf linear-
nfho programovanf.

Cvilenij

§5,1. Ve vyrobé jsou dva druhy vyrobka A, B. Zisk vyroby na
jednom kusu vyrobku A je 1000,— K& a na jednom kusu
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S5,2.

5,3.

5,4.

vyrobku B 2000,— K¢&s. Odbératelé koupi nejvyse 2000 kusa
vyrobku A a 3000 kusi vyrobku B. Celkem je moZno vyrobit
nejvyse 4000 kusti obou vyrobki A i B dohromady. Kolik
kusii obou vyrobki mame vyrobit, aby zisk vyrobce byl co
nejvesi?

Reite znovu tkol z ptikladu 5,2 za predpokladu, %e mame
k dispozici 48 t cementu (misto pivodnich 45 t) a Ze ostatni
ddaje zistanou nezménény.

Rejte dlohu z ptikladu 5,3 za predpokladn, e nebudeme
trvat na maximidlnim poétu péti stroji typu A [tj., Ze vy-
nechime nerovnost (5,12)].

Vedouci prodejny mi uskladnit 3 druhy lahvi vina, a to:

!

E Velikost l4hve ; Nakupni cena Prodejni cena Zisk
|E [
1,01 28,— Kés 38,— K& 10,— Ké&s
0,71 20,— K& | 28,— Ké&s 8,— K&
| 0,51 12,40 K& | 21,— Kés 8,60 K¢és

Chce skladovat 1400 ! vina, ale ne vice mez 2000 lahvi.
Pfitom mai byt alespoti 450 lahvi litrovych, alespoii 450
lahvi po 0,7 1 a alespofi 500 lahvi pillitrovych. Celkova
nikupni cena se miZe pohybovat mezi 36 000 aZ 39 600 K&s.
Jak nakup provede, aby jeho zisk byl co nejvetsi?



VYSLEDKY CVICENI

1. kapitola

1,1. Véta 1,1 ma tyto obdoby: Je-lia £ b, b < ¢, je a < c. Je-li
a<b b<eg jea<c — Véty 1,2 a 1,3 pfejdou v tyto tvary:
Jeiea<b jeat+cSb+cataké a—c=b—c¢c Véta 14
zde zni: Jelia < b, c<d,jea+c<b+d Jelia=<bh ¢<d,
jea+c¢<b+d 1,2 Piejde v rovnici 0 = 0. 1,3. Tvrzeni je
spravné. Kdyby bylo ac > b¢, bylo by bud ziroveti ¢ > 0 i a —
— b >0, nebo zroveri ¢ <0 i a— b <0, coZ oboji odporuje
ptedpokladim. 1,4.2a) V horni poloroviné. b) V dolni poloroviné.
¢) V obou polorovinich zirovett. 1,5. Je-li ¢ > 0, je horni polo-

x
rovina charakterizovdna nerovnosti — + 2 =1 a dolni polo-
q

rovina nerovnosti % + 2 = 1. Jeli ¢4 < 0, je horni poloro-
q
vina charakterizovdna nerovnosti % + 2 < 1, dolni polorovi-
q
na nerovnosti % + 2 =1. 1,6, Kazdi ostrA nerovnost tu
q
charakterizuje vnitfek p¥islu$né poloroviny, tj. viechny body polo-
roviny 8 vyjimkou t&ch, které lezi na jeji hrani¢ni pfimce. 1,7.x —
—yl/?o + 3V3 — 1 £ 0; uZitim vzorci (1,13) a (1,4) uréime nej-
dfive rovnici hrani¢ni pfimky a pak postupujeme podle nékteré
z vét 1,12 az 1,16. 1,8. 3x + 59y — 13 < 0; viz navod ve cviéeni
1,7, jen misto vzorce (1,4) uZijeme vzorce (1,14). 1,9. a) Horni
polorovina vytatd pfimkou, kterd prochazi body [0; 3] a [4; 0].
b) Dolni polorovina vytatd pfimkou, kterd prochizi bodem [0; 1}
a ma smérovy thel ¢ = 45°. ¢) Leva polorovina, jejiz hrani¢ni
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piimka prochazi bodem [2; 0] a je rovnobé2na s osou y. 1,10.
1
a)y = % ; funkce je rostouci, nebof smérnice je k = 3 > 0.

b) » = 1 — x; funkce je klesajici, nebot smémice je £ = —1 < 0.
c) y = 2, funkce neni ani rostouci, ani klesajici.

2. kapitola

2,1. Viechny body, které lezi souéasné v hornich polorovinach
vytatych pfimkami x —y = 0 a ¥ + y = 0, tedy v pravém uhlu,
jehoZ ramena jsou polopfimky o rovnicich (2,3). 2,2. Viechny
body s vyjimkou bodu leZicich v pravém ftihlu, jehoZ ramena jsou
poloptimky o rovnicich (2,3). 2,3. Vysledek ve formé rozepsan{
dané funkce na jednotlivé polopiimky a tise¢ky zni: a) Pro x < 0
jey=x,pro 0=x<ljey=0aprox=1jey=x—1
b)Prox<<—ljey=3x+6pro—1 =x<3jey=—x+2
aprox =3 jey=x—4. 2,4. Pro x =0 je v obou ptipadech
»=20; pro x>0 je a) y = x, b) y = 2x. 2,5. GaraZc je ticba
postavit mezi obcemi B a C ve vzdalenosti 1 km od B; minimum
neproduktivni drdhy je potom 51 km. Volime-li pii grafickém zna-
zornéni podle vzoru piikladu 2,6 po&itek v obci B, je obdo-
bou vztahu (2,16) rovnice y = 3|x -+ 6| + 2|x| + 4]x — 8|, 2,6.

v |

Znati-li y mnoZstvi vody v nadr%i méfené v m3, jey =: 7 ;‘xl —
v | ix —8
vy x— —| + 5. 2,7. Jde o graf funkce y = % -+

9
+ Tx — 4 v intervalu 0 < x < 16; graf se skldda ze dvou

usetek se spoleénym krajnim bodem [8; 32], nana3ime-li na osu
x hodiny a na osu y mzdu.
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3. kapitola

31.0=x=<1a0<x<1. 32 Spriavné jsoy piipady a), c),
d), f), g) nespravné jsou b), e). 3,3. Pokazdé je d = b —a.
3,4. Podle nerovnosti (3,2) jea <x < b, a <y < b; odtud plyne

a =< *+r

=< b. Pro ostatni intervaly staéi nerovnosti (3,2)
a+ b

nahradit nerovnostmi (3,3) a2z (3,5). 3,5. Zfejmé jea <

< b. Na rozdil od piedpokladi ve cvideni 3,4 nemusi zde éisla
a, b byt prvky zkoumaného intervalu, nebot tento interval nemusi
byt uzavieny. 3,6. Interval s krajnimi body a < 4 obsahuje podle

b
cviteni 3,5 aspoi jeden prvek ¢; = i —2|- ; ze stejného duavodu
obsahuje i prvek ¢, = — ; A dale prvek cq = fi;i,

atd. ; obsahuje tedy nekonetné mnoho prvkii ¢y, €5, - . ., €ay Cpygy - - +»
a-;c,, pron=1,2,3,... atd. Je tedy kazdy
takovy interval mnoZina nekoneéna. Tim spi§ intervaly nekoneéné
délky jsou mnoZiny nekoneéné. 3,11.a) (0; 2). b) (0; 2). c) (1; 5).
d) (3;5). 312 a) —I<x<0a0<x<1¢ili0=#]|x]<L
b) 0=x<3 c)a<x< + o 317. a) (1; 2). b) (1; 2).
c){1;2). 3,18.a) C=(0;4), D = 2.b) C=(0;5), D = (2;3).
3,19. (—®; + o). 3,20. a) Prinikem intervald B, je mnoZina
obsahujici jediny prvek, toti¥ &islo 0. b) Prunikem intervald B,
je mnozina prazdna. 3,21. a) Tvrzeni neni spravné, nebot u tupo-
dblého trojihelnika nelefi priselik jeho vySek v priniku polo-
rovin trojthelnik vytvaiejicich. b) Tvrzeni je spravné. Pruseéfk
os vnitfnich hli je stfed kruZnice trojiihelniku vepsané; ji ohrani-
&eny kruh leZi v ka?dé ze tii polorovin vytvafejicich tento troj-
uhelnik a tedy tim spiSe jeji stfed le2i v priniku téchto polorovin.

kde je ¢,y =
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-4. kapitola

| 11

4,1. a) Nerovnost nema fefeni. b) x =< 5 nebo x = <
1\,,/1 1

i ; ' < r<— L &

énxe[[ /U\3 +00]J c) x 3 &ili
1 3 )

xe[—S; ——3—] d) xg—?nebo x =1 ¢l xel[—-co;

3\ o3
Y U +oo)]. 42. x < —1 nebo x > 5 mnoZi-
nové zapsano formuli (4,5). 4,3. PoloZte f° (x) |x —al,g(x) =b.
Vychdzi: a) a—b<x<a+b ¢&ili xe(a—b; a+b). b) x<
<a—bnebox > a + b tili x€[(—w;a—b){J (a + b; + 0)].

4,4. Jediné feleni x = 2. Jde o tki pfimky y = 2x -;- 3y=3+1,
» = x + 5, prochazejici bodem [2; 7], je mimo tento bod nespl-
fuji poZadované nerovnosti. 4,5. 3 < x < 6 ¢&ili x&€(3; 6). Jde

9 9)?
o ty body paraboly y + T = [x— ?] , které leZi pod osou x;

9 9
vrchol paraboly je bod V [—; — l 4,6. Jde o parabolu orov-

2

nici 3 =lx+ Ly kterA m4 vrchol V 1.3
y—-— = | » kterd ma vee 5 | 2P
chizi body A[0; 1] a B[—I1; +1]; viechny jeji body lezi nad

osou x.

5. kapitola
5,1, 1000 kusti vyrobku A a 3000 kusi vyrobku B pfi zisku
7 000 000,— Kés. 5,2. 8000 barytovych desek a 4000 tvirnic

ph zisku 52 000,— Kés. (Misto sedmiiihelnika v obr. 25 mime
zde konvexni 3estiihelnik pfi stejném poétu sedmi nerovnosti,
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nebot tfH hrani¢ni piimky potfebnych polorovin tu prochizeji
jednim bodem.) §,3. 10 stroji typu A, Zadny stroj typu B a 10
stroju typu C pii minimalni ro&ni Gdrzbé 300,— Ké&s. 5,4. 620
lahvi litrovych, 450 lahvi po 0,7 1 a 930 lahvi pullitrovych pfi zisku
17 798,— Kis a ndkupni cené 37 892,— Kés.
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