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UvVoD

Citatelovi predkladime knizku, ktor4 sa svojim zamera-
nim mierne lisi od ostatnych publikicii edicie MO. Spra-
covand litka — Lobalevského geometria — nezapadd
vObec do rdmca stredoskolskej vyuky. Situdcie, s ktorymi
Citatela oboznamime, budi sa nieckedy pravdepodobne
zdat aZ paradoxné. Prive v tejto paradoxnosti spocivala
obtiaZ pri odhalovani neeuklidovskej geometrie a dnes v nej
nachidzame nielen esteticki krasu, ale aj skvely cvi¢ny ma-
teridl pre rozvitie abstraktného matematického myslenia.
Aj spracovanie litky je svojrizne. Nevodime Citatela po
hotovej budove, ale prizveme ho ako murdra ku spolupraci
na stavbe. Neservirujeme teda faktd, ale uvidzame problé-
my, z ktorych niektoré, hlavne v kapitole prvej nerieS§ime
vy&erpédvajicim spdsobom, nakolko toto na stupni predpo-
kladanych vedomosti Citatela nie je moZné. Ak sa Citatel,
po preditini kniZolky bude vracat k nazna¢enym problé-
mom a v duchu s nami diskutovat (radSej nesithlasit ako
sthlasit), budeme povaZovat nami vytyCeny ciel za spl-
neny.

Pri ¢itani km'iky je moZné vypustit druht kapitolu, pri-
padne aj prvu. V tom pripade musi itatel pri ditani vy-
pustit vietky poznimky, ktoré se vztahuja k tymto kapito-
ldm. Domnievame sa vSak, %e najvidsi GZitok prinesie kni-
ioéka vtedy, ak sa Citatel oboznén'u najprv s dodatkom A.
a potom postupne kniZku predita od prvej kapitoly tak, ako
je napisand. V pripade, Ze sa Citatelovi tito tématika zap4di,
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doporu¢ujeme mu k daldiemu prehibeniu vedomosti $tu-
dovat tieto kniZky. K prvej kapitole kniZku prof. Katétova:
Jaki je logick4 stavba matematiky (Cesta k védéni 1952).
K druhej a tretej kapitole J. B. Pavli¢ek: Neeuklidovska
geometrie (Praha — 1953). Hibsie vniknutie do problema-
tiky Vyiadu1e znalost tzv. projektivnej geometrie s ktorou
sa Citatel mdZe zozndmit vo vybornej knizke Karla Havlic-
ka: Uvod do projektivni geometrie kuZelosedek (SNTL,
1956).

Je ndm milou povinnostou podakovat sa touto cestou pani
Dr. 1. Rohli¢kovej a panu Dr. J. Fukovi, CSc, za velmi
svedomité preéitanie rukopisu a za mnohé cenné pripo-
mienky, ktoré znafne prispeli k zlepSeniu predkladanej
publikdcie.

Autori

Tito knizku venujeme ndsmu ucitelovi profesorovi
JOSEFOVI FILIPOVI

k jeho Zivotnému jubileu




1. kapitola

AXIOMATIZOVANA TEORIA
A JEJ] MODEL

1.1. Pojem zikladny a pojem odvodeny

Za¢neme s prikladom zo Zivota. Casto se nim stane, %e
niekto ndm, alebo my nickomu vysvetlujeme, & ozrejmu-
jeme nejaky pojem. Napriklad pojem ,aorta® vysvetlime
vetou ,je to hlavna tepna vedica priamo zo srdca“. Tak
sme neznimy pojem aorta (ozna¢me ho symbolom A)
objasnili pouZitim §tyroch dalSich pojmov: ,,hlavnd tepna“,
»viest, priamo* a ,,srdce* (oznacme ich v poradi symbol-
mi Ay, Ay, A3, A,). Schématicky zapis takéhoto vysvetlova-
nia vyzera nasledovne

A

|
¥ Y Y Y ()
4, 4, 4, A,

Vysvetlovanie je ukonéené, ak ten, ktorému sme pojem A4
ozrejmovali poznd vyznam pojmov A; — A,. Ak nahodou
doty¢ny nevie o je to ,,hlavnd tepna = Al“, potom po-
kraCujeme vo vysvetlovani vetou ,je to na]vacsm c1eva,
ktorou prud1 okysliCend krv*‘. Novych pit polmov ,,na]-
vidsi = A, ,,cleva = A12 ) ,,prudlt = A,3%, kv =

a ,,0kysliceny = A,;* rozsiri schemu (1) na tvar



flll 4, A, 4, @
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Dajme tomu, Ze osoba, ktorej sme pojem ,,aorta‘* vysvetlo-
vali poznd uZ vyznam pojmov 4,;, — A,; ako aj 4,, Ay, 4,.
Vysvetlovanie je ukoncené.

Pri systematickom vyudovani, napriklad v Skole, postu-
pujeme pri vysvetfovani prave naopak. Zatiname od jedno-
duchych, vieobecne znimych pojmov a pomocou tychto
zavddzame (ufime) pojmy Coraz zloZitejSie. Zapis takéhoto
postupu sa od schémy (2) odliSuje len zmenenou orienta-
ciou Sipiek. Presne urit, & dokonca vymenovat vietky
»vieobecne znidme pojmy‘ je viak v oboroch ako si hist6-
ria, medicina, pravo atd. asi nemoZné. No v exaktnych di-
sciplinach je moZné postupovat tak, %e zaCiname vymeno-
vanim ,,vieobecne znidmych pojmov* a na tychto postupne
staviame celd teériu. Miesto oznacenia ,,pojem vseobecne
znidmy“ budeme uZivat termin pojem zdkladny; niekedy sa
tiez hovori pojem primdrny. Pojem definovany pomocou
pojmov zdkladnych nazveme pojmom odvodenym; niekedy
sa tieZ hovori pojem sekunddrny. Okrem pojmov zékladnych
a odvodenych vystupuju v redi exaktnej discipliny eSte dva
druhy slov. Su to terminy prevzaté z inej exaktnej discipli-
ny, tieto nazveme pojmy dopinkové a konelne slova typu
»nech’, ,,méZem ndjst*, ,,v tom pripade®, atd., ktoré spolu
s gramatickou stavbou slovenéiny nazveme prirodzenym
jazykom.

KaZdé slovo jazyka, ktorym hovorf presne budovand
exakmd disciplina patri do jednej a len jednej zo skupin:

1.) pojmy zikladné,



2.) pojmy odvodené,
3.) pojmy doplnkové,
4.) prirodzeny jazyk.
Ilustrujme tato klasifikidciu na priklade.

Priklad 1. Za zikladné pojmy planimetrie volime tri
terminy
bod, priamka, leZat na. 3)

V tvrdeni: ,,Nech a, b st dve rovnobeZné priamky a nech
priamka ¢ je roznobeZna s priamkou g, potom priamka c je
rdznobeZné aj s priamkou & je 19 slov (symboly a, b, ¢
nie s slovd). Tieto patria v poradi skupinam: 4, 4, 3, 2, 1,
4,4,1,4,2,4,1;4, 1, 4, 2, 4, 4, 1. Pojmy ,,rovnobeZné*
a ,,réznobeZné sa daji definovat pomocou pojmov (3).
Pojem ,,dve* patri do aritmetiky, ktora vystupuje ako do-
plnkovi disciplina ku planimetrii.

Uloha 1. Rovnako ako v priklade 1. prevedte slovny roz-
bor vety z planimetrie: Nech A4, B, C st tri body neleZiace
na priamke, potom existuje aspoii jedna priamka a rovno-
beZnd s priamkou BC a obsahujica bod A.

1.2. Axiomatizovani teéria

Hibsie preskaimame termin ,,pojem zikladny*. Je to asi
taky pojem, o ktorom maju vietci fudia rovnaku predstavu.
Tento nizor, beZny a oprdvneny v huminnych vedich
v matematike neobstoji.

Ked povieme, Ze pojem ,,srdce* je v medicine vieobecne
znamy, mime na mysli fakt, Ze kaZzdy lekir pozn4 tvar,
uloZenie, funkciu a mnohé vlastnosti srdca. Presnejsie po-
vedané, lekir poznd vizby medzi telom a srdcom. Pritom
ani najvicsi odbornik nepozna tieto vizby vietky, lebo je to
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nemozZné. V matematike uslovie ,,pojmy (3) s vieobecne
zname** precizujeme tak, Ze udame vserky zikladné vizby
medzi pojmami (3). Tieto vizby nazveme axiomy, nickedy
tieZ postuldry. Suhrn vietkych axiom menujeme axioma-
tickd stistava. Subor zikladnych pojmov, odvodenych poj-
mov, vietkych axiom a vsetkych tvrdeni z axiom vyplyva-
jucich nazveme axiomatizovand tedria.

Axiomy su také vyroky o zékladnych pojmoch, ktoré pre-
hldsime za pravdivé. Pritom nds okolnost nizornosti axiom
vobec nezaujima. V tejto kniZke sa Citatel dozvie, Ze prive
nazornost stala ako hlavnd prekazka pri poznani neeukli-
dovskej geometrie. Existuje mnoho prikladov v histérii
matematiky a fyziky, kde naSe vrodené predstavy brzdili
hlbsie preniknutie k podstate veci. V nasledujicom, hodne
obdirnom priklade sa pokusime oboznamit itatela s jedno-
duchou, ale velmi déleZitou axiomatizovanou tedriou.

Priklad 2. Axiomatizovand tedéria S nech je dand a.)
troma zakladnymi pojmami

chlapec, diev¢a, pacit sa 4)

a dalej b.) skupinou piatich axiom:
S, Existuje aspoti jedno diev¢a.
S, Ak A, B st dvaja chlapci, potom existuje aspofi jedno
dievca c, ktoré sa paci aj chlapcovi 4, aj chlapcovi B.
S; Ak A, B su dvaja rozni chlapci, potom existuje najviac
jedno dievca c, ktoré sa paci aj chlapcovi A4, aj chlap-
covi B.
S, Ak a je dievta, potom existuju aspofi dvaja rézni
chlapci B, C, ktorym (obidvom) sa dievéa a pacdi.
S; Ak a je diev€a, potom existuje aspofi jeden chlapec B
tak, Ze nie je pravda, Ze sa diev€a a p4ci chlapcovi B.
Na zdklade pojmov (4) a axiom
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rozvinieme teériu &. Citatelovi doporu¢ujeme, aby niektoré
z axiom rozobral podla vzoiu prikladu 1 a dlohy 1.

Dohovor 1. S. Chlapcov budeme oznacovat velkymi
latinskymi pismenami A4, B, C, X, atd., dievCatd malymi
a, b, ¢, y, atd. Symbolom Ch oznaime mnoZinu chlapcov,
symbolom D mnoZinu dievéat. Zakladny pojem ,,pacit sa“
ozna¢ime symbolom ¢ v nasledovnom zmysle:

dievéa y se padi chlapcovi X oznadime X ¢ y.

Poznimka 1. S. Uslovie ,,dvaja chlapci 4, B nehovori
eite, e chlapci 4 a B su rozni. Fakt, Ze A4 je chlapec mo-
Zeme zapisat tiez symbolicky 4 € Ch. Podobne a, be D
znadi, Ze a, b su dievéata.

Veta 1.S. Ak 4, B su dvaja rozni chlapci, potom existuje
jedno a len jedno diev€a c, ktoré sa obidvom chlapcom
paci.

Do6kaz. Existencia diev¢ata ¢ vyplyva z S,, jeho jedno-
znacnost z S,.

Dohovor 2.S. Dievea ¢ z vety 1. S oznacime tieZ AB
resp. BA. Upozorfiujeme, Ze symbol AB je zavedeny len
ak 4 = B.

Veta 2.8. MnoZina Ch ma asponi tri rzne prvky.

Dékaz. Podla S, existuje a € D, podla S, existuji potom
B,CeChtak,2¢ B = Ca Bea, Cea. Z axiomy S; vy-
plyva existencia takého chlapca A, ktorému sa dievca
a nepadi. Preto je A = B, A + Ca A4, B, C st tri rdzne
prvky mnoZiny Ch. Veta je dokdzana.

Uloha 2. V ddkaze vety 2. S je nezmyselny pojem. Najdi-
te ho a opravte dokaz!

Definicia 1.S. Povieme, Ze diev&a a se nepadi chlapcovi
B prave vtedy, ak nie je pravda, Ze diev¢a a sa chlapcovi B
padi. Znatime B ¢ a.



Veta 3.S. Nech a, b € D a symbolom a n b ozname
mnoZinu vSetkych chlapcov X pre ktorych plati X ea
a X ¢ b. Potom nastiva jeden a len jeden z pripadov

l)a nb=y,
2.)a n bje jednoprvkova,
3)a=b.

Dé&kaz. Pretoze pripady 1.), 2.) sa navzijom vylucuji,
treba dokdzat dve tvrdenia: a n b je aspofi dvojprvkova =
>a=b;a= b= a n bjeaspoi dvojprvkova. Prvé tvr-
denie vyplyva z S, druhé z S,.

Definicia 2.S. Ak neexistuje chlapec, ktorému sa pécia
dané dve rozne dievati a, b, potom tieto dievCata nazveme
priatelkami. V opanom pripade hovorime, Ze a, b su ne-
priatelky. Teda dievfatd a = b su priatelkami (resp. ne-
priatelkami) prave ked pre ne nastdva pripad 1.) (resp. 2.)
vety 3.S.

Dohovor 3.S. Budeme hovorit tieZ, Ze ,,diev€a a je
(ne)priatelkou diev¢ata b* namiesto uslovia ,,dievCata a, b
st (ne)priatelky*‘. Podobne budeme hovorit ,,diev¢a x ma
(ne)priatelku namiesto ,,existuje dievéa, ktoré je (ne)pria-
telkou dievdata x.

Veta 4.S. Ka%dé dieva md aspoii dve rézne nepriatelky.

Dékaz. Nech a je diev€a a 4, B, C chlapci z ddkazu vety
2.S. Oznaéme b= AB, ¢ = AC. Zo vztahov A ¢a,
Aeb, Aecvyplyvab % a # c*). Sporom dokiZeme vztah
b %= c. Z b = cvyplyva C ¢ b a preto mnoZina a n b obsa-
huje aspoii dva prvky ato Ba C,lebo B % C. Pddla vety 3.S
je potom a == b Co je spor. Diev€atd b = ¢ s hladané dve
nepriatelky dievlata a. Dékaz je prevedeny.

Veta 5.8. Existuju tri rézne dievlati tak, Ze kazdé dve
z nich su nepriatelky.

Dékaz. Existencia dievlata (oznaéme ho a) vyplyva z S;.

*) Namiesto a = b, @ &= ¢ piSeme struéne b == a ¥ ¢; podobne i dale;j.
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Teraz stali vziat diev¢ata g, b, ¢ z dokazu predoslej vety.

Désledok. MnoZina D mad aspoi tri rdzne prvky.

Veta 6.S. Ku kazdému chlapcovi X existuje aspoii jedno
dievéa x, ktoré sa mu nepadi.

Dékaz. Podla dosledku existuja dve rézne dievéata a, b.
Ak je X ¢ a, alebo X ¢ b, potom sme hotovi. Nech teda
X ea, Xeb. Podla S, existujii chlapci 4, B tak, Ze 4 *
£ X =B, Aca, Beb. Potom je A = B, lebo inak by
vzhladom na vetu 3.S bolo ¢ = b. Dievéa x = AB sa
chlapcovi X nepadi, lebo inak by bolo podla S; a = x
aj b = x. Tym je dokaz prevedeny.

Veta 7.S. KaZdému chlapcovi X sa pacia aspoi dve
r6zne dievlata.

Dé&kaz. Podla vety 6.S existuje dievéa x tak, Ze X § x.
PodIa axiomy S, existuju B % C ktorym sa x paci. Potom
XB a XC st hladané rozne dievcata paciace sa chlapcovi X.

Axiomatizovana teéria S postavend na troch zdkladnych
pojmoch a piatich axiomach v tomto $tddiu obsahuje tri
definované odvodené pojmy: nepélit sa, priatelky, ne-
priatelky a sedem tvrdeni. Priklad 2. je skonceny.

Uloha 3. Dokézte vetu 8.S : Existujt traja chlapci 4, B,
C tak, Ze pre kazdé diev¢a x plati A¢x, Bex = C¢ x.

Uloha 4. Doké¥te vetu 9.S: Ak existuje chlapec C,
ktorému sa Ziadna z nepriateliek a, b nepici, potom existuje
chlapec X, ktorému sa pacia aspon tri rdzne dievcata.

1.3. Modely axiomatizovanej tedrie

Pri ¢itani prikladu 2. sme si pod pojmami (4) mohli pred-
stavovat to, ¢o oni oznacuj v skutonosti. Rovnako dobre
sme si ale pod uvedenymi terminmi mohli predstavovat
mnoZstvo inych objektov, popripade sme na pojmy (4)
mohli nazerat len ako na symboly — ako by to boli slovd
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z cudzieho, ndm nezndmeho jazyka. V takom pripade ho-
vorime, Ze sme s tedriou & pracovali abstraktne. Ak vSak
sme pri Citani prikladu 2. mali pod pojmami (4) na mysli
konkrétne objekty (napr. ,,body*, ,,priamky*, vztah ,,leZi
na‘“ z planimetrie), potom hovorime, Ze sme teériu S mode-
lovali. Abstraktnd tedria aplikovani na 3pecidlnu situdciu
sa menuje modelom. Poslednti vetu budeme znovu ilustro-
vat na priklade: udidme pit modelov teérie S. Udat model
teérie S znadi: Udat mnoziny Ch a D a udat vztah ,,pacit
sa‘“ tak, aby boli splnené axiomy (5).

Priklad 3. KaZdy z nasledujtcich modelov S;, Sg; Sas Sy
S5 je modelom abstraktnej tedrie .
S, : Ch je trojprvkovi, sklada sa z mien Orfeus, Rémeo,
Tristan, D je trojprvkova, sklada sa z mien Euridika, Julia,
Izolda. Vztah picit sa je definovany takto: Euridika sa paci
Romeovi a Tristanovi, Julia sa paci Orfeovi a Tristanovi,
Izolda sa paci Orfeovi a Rémeovi. Iné vztahy typu ,,padit
sa* neexistuji. Velmi nizorne je moZné model S, popisat
tabulkou, ktord nazveme tabulka incidencie pre model S,.
Citanie v tabulke je o&ividné: diev€a x sa pati chlapcovi Y,
ak v Stvordéeku, ktory je v stlpci x a riadku Y je &islo 1; ak
v tomto $tvorceku je Cislo 0, potom je Y ¢ x. Poznamenaj-
me, Ze spdsobom inciden¢nej tabulky mézeme popisat len
tie modely pre ktoré Ch a D maji konelny pocet prvkov.

Uloha 5. Overte, %e model S, sp{iia axiomy (5.) V modeli
S, neexistuja priatelky. Tento fakt plati v kazdom modeli,
kde D je trojprvkova. DokazZte!

S,: Ch je Sestprvkova, sklada sa z pismien: a, ¢, 7, 0, %, y;
D je desatprvkovi, skladi sa zo slov: Bolyai, Descartes,
Dupin, Euler, Gauss, Klein, Ludolf, Newton, Study, Syl-
vester.

Vztah pacit sa je dany predpisom: slovo (= dieva)
z D sa paci pismenu (= chlapcovi) z Ch prave vtedy, ked
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——=P=
p g
H H Orfeus 0 1 1
Il
Ch Rémeo 1 0 1
I
Tristan 1 1 0

Tabulka incidencie pre model S,

toto slovo obsahuje dané pismeno. Napriklad Newton sa
péci pismenu e aj pismenu o, nie vSak pismenu y.
Model S, je popisany. Overte prefi platnost aspoil nie-
ktorych z axiom (5).
oha 6. V re¢i modelu S, vyslovte vetu 7.8S.
Uloha 7. Napiste tabulku incidencie pre model S,. V re-
&i tejto tabulky vyslovte axiomy S,, S35, S, a S;.
S3: Ch je (nekoneénd) mnoZina vietkych bodov v rovi-
ne a,
D je (nekone¢nd) mnoZina vietkych priamok v rovi-
ne a.
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Vztah palit sa je dany predpisom: priamka (= diev-
¢a) x € D sa paci bodu (= chlapcovi) Y € Ch prave
ked Y lezi na x.
Model S; je popisany. Overte prefi platnost vsetkych
axiom (5). Ukazte, Ze termin priatelky &i nepriatelky sa
v tomto modeli kryje s terminom nesplyvajiice rovnobesky
& réznobezky.
$,: Nech % je pevne dana kruZnica. PoloZime:
Ch je mnoZina vsetkych bodov leZiacich vautri 4,
D je mnoZina vSetkych tetiv kruZnice #.
Vztah pacit sa je rovnako ako v modeli S, totoZny
s incidenciou.
Model 5, je popisany. Overte platnost vietkych axiom (5).
Uloha 8. Zistite & nasledujtci vyrok V je pravdivy v mo-
deli a.) S, b.) S, €.) S5, d.) S,-
V: Ak sa dievéa p nepici chlapcovi P, potom existuje
najviac jedno dievca g, ktoré je priatelkou p a zdrovend
sa paci chlapcovi P.

Ss: Nech 4 je otvorena polrovina vytatd danou priamkou
A* v rovine.
Ch je mnoZina vSetkych bodov polroviny 4,
D je mnoZina jednak vSetkych otvorenych polpria-
mok so zaCiatkom na 4*, leZiacich v 4 a kolmych na
h* a jednak vSetkych otvorenych polkruZnic so stre-
dom na A* leziacich v A.

Vztah pacit sa je znovu incidenciou, tj. ¢ je €. Model S; je
popisany. Overte platnost axiom (5) a uka’te, Ze vyrok V
z tlohy 8. je v modeli S, nepravdivy. Priklad 3. je ukonce-
ny.

DalSie precvicenie modelov dime do Gloh. Prosime dita-
tela, aby vSetky ulohy dékladne rozriesil skor, ako pristipi
k dalSiemu textu.

Uloha 9. Dokazte, %e existuji priave dva rdzne (éo do
poctu prvkov mnoZiny D) modely teérie S pre ktoré je

14



mnoZina Ch §tvorprvkova. Pre tieto modely néjdite tabulky
incidencie.

Uloha 10. Nijdite model Sq (teérie ) s o najmensim
poctom prvkov Ch tak, aby v fiom vyrok V bol neprav-

divy.

‘%loha 11. PopisSeme model N operujici na pojmoch (4).
Zistite ¢i M je modelom tedrie &.

n: Nech je v rovine dany pevny bod S. Ch je mnoZina
vietkych bodov v rovine okrem bodu S. D je mnoZina
vSetkych kruZnic idicich bodom S. Reldcia pacit sa je rela-
ciou incidencie.

Uloha 12. V modeli M pridajte ku mno¥ine D dalSie
prvky tak, aby vznikly model S,, bol modelem tedrie &.

V ¢lanku 1.3., ktory prave kon¢ime sme sa obozndmili
s pojmom modelu abstraktnej teérie. Clanok 1.4. bude veno-
vany historickej vizbe modelu a tedrie; moZno ho pri Ci-
tani vypustit,

1.4. Od modelu k axiomatizovanej teérii

Kazdd vedeckd te6ria vznikia v désledku dlhodobého
hromadenia poznatkov, ich porovnivania a triedenia.
V procese tvorenmia tedrie nachidzame S5tyri vyznamné
obdobia:

I. Je znamy jeden, i viacero modelov budicej tedrie,
zatial nie je znamy sdvis medzi modelmi.

I1. Zndmy je stvis medzi modelmi a niektoré z nich sa
stivajui univerzalnymi tj. situdcie vSetkych modelov su rie-
Sené na univerzalnom modeli.

III. Od univerzilneho modelu sa abstrakciou dochiddza
ku abstraktnej tedrii, zatial intuitivnej tj. neaxiomatizova-
nej.
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IV. Intuitivna tedria sa stdva axiomatizovanou, ked sa
ndjde vhodny axiomaticky systém.

Ako priklad uvedieme vyvoj teérie prirodzenych Cisel.

Sposob prvych poétovych vykonov [udstva je moZné len
tusit, pretoZze spada do doby, ktord bola velmi skiupa na
suveniry pre potomstvo. Je velmi dobre prijatelna téza, Ze
Clovek sa najprv naucil sCitat malé Cisla (povedzme do
pit). Vedel, Ze dva kone a tri kone je pit konov, dva prsty
a tri prsty je pat prstov, dvaja synovia a tri dcéry je pit
deti. Je to prvé obdobie vyvoja — existuji oddelené modely
(kone, prsty, Clenovia rodiny).

Neskor si Iudia v§imli, Ze spocitat dva kone a tri kone
moéZeme pomocou prstov na rukdch bez toho, Ze by bolo
treba vidiet skuto¢né kone. Prsty sa stivaji jednym z hlav-
nych univerzalnych modelov — sme v obdobi II.

Trvalo to isto nejaké tisicrolie, pokial si Iudia uvedomili,
Ze ku séitaniu dvoch a troch kofiov netreba ani prsty, Ze
stadi vediet: ,,dve a tri je pit‘ a tento fakt plati bez ohfadu
na predrnet (model) na ktory ho aplikujeme. Abstrakciou
vznikd novy po;em, pojem mnohosti, prirodzené dislo —
buduci prumuvny pojem cele) teérie prirodzenych disiel.
No vznikl4 teéria je a dlho ostdva teériou intuitivnou. Fakty
ako: 2+3=5,a+b=0>b+a, ... su povaZované za
samozrejmé, prirodzené i priorné. Samozrejmost komu-
tativnosti ¢ + b = b + a viak netkvie v ,,podstate aritme-
tiky* (ved existuju aj nekomutativne operacie: rozdiel, po-
diel, mocnenie), ale v Tudskom vedomi, ktoré po dlhé tisic-
rofia navyknuté brat komutativnost sCitania za pravdivd,
zdogmatizovalo si tuto do ,samozrejmosti®‘. Dokonca eSte
v polovici minulého storofia, ked uZ axiomatika geometrie
absolvovala dvetisicroénd pat a matematické myslenie do-
siahlo vysoky stupeil abstrakcie, Ziaden z matematikov ne-
citil potrebu axiomatizovat aritmetiku — tak silnd bola
Tudsk4 viera v ,,a priornost* zdkonov aritmetiky.
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A% druhi polovica minulého storofia meni intuitivnu
teériu na axiomatizovanii. Hlavna zasluhu na tomto Cine
maju traja matematici: H. Grassmann (1861), R. Dedekind
(1888) a G. Peano (1891). Axiomaticku stavbu tedrie pri-
rodzenych Cisiel tu uvidzat nemdZeme. Zaujemcov odka-
zujeme na literatdru: K. Hrusa: Elem. aritmetika (PV
Praha, 1953).

Uk4zali sme na historicky vztah modelu a axiomatizova-
nej teérie. Logickym zdvislostiam medzi tedriou 2 modelmi
venujeme ¢linok 1.6.

1.5. Sdstava axiom axiomatizovanej teérie

Vritime sa k axiomatizovanej teérii popisanej v &ldnku
1.2. Nech je dani ststava zakladnych pojmov a;, ..., am
asustava axiom A, .. ., Ay istej axiomatizovanej teérie .
Pocet zakladnych pojmov je m, pocet axiom #n. V pripade
teérie S (priklad 2) je m = 3, n = 5. Vysvetlime si tri
najdéleZitejSie vlastnosti sistavy axiom: bezospornost, nezd-
vislost a uplnost.

Hovorime, Ze skupina vyrokov A, ..., A, je spornd, ak
je z nej moZné logickou cestou vyvodit dve navzijom si od-
porujice tvrdenia. V opanom pripade danu skupinu vy-
rokov menujeme bezospornou.

Priklad 4. Ak k vyrokom (5) pridime doleuvedeny vy-
rok S;, dostaneme spornu skupinu vyrokov.

Sq: Existuja chlapci A = B tak, Ze pre kazdé dievéa x
plati Aex = Bex.

Z S; a Sy vyplyva, Ze existuje jediné dieva pre ktoré
A ¢ x ato dievéa x = AB. Z vyrokov (5) vyplyva veta 7.S.,
ktora je v spore s prave dokdzanym tvrdenim. Teda skupina
vyrokov S,, ..., Sg je spornd.
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Hovorime, Ze skupina vyrokov A,, ..., Ap je zdvisld,
ak niektory z nich je logickym désledkom ostatnych.
V opacnom pripade danud skupinu vyrokov menujeme 7e-
zduislou,

Priklad 5. Ak k vyrokom (5) pridime doleuvedeny vyrok
S,, dostaneme zdvisli skupinu vyrokov.

S,: Ku kazdym dvom r6znym chlapcom A, B existuje
dievCa x tak, Ze Aexa B ¢ x.

Skutocne z (5) vyplyva veta 7.S. podla ktorej existuja
dve rozne dievéatd a, b tak, 2e A e a, A € b. PretoZe a £ b,
mdZe sa chlapcovi B pidit najviac jedno z dievat a, b
a teda existuje x € D tak, Ze 4 £ x a B ¢ x. Dokazali sme, Ze
vyrok S, je dosledkom vyrokov (5) a preto skupina vyrokov
S, ..., 85 S, je zavisla.

Hovorime, Ze sustava axiom A,, ..., A, je #plnd vzhla-
dom na ststavu zdkladnych pojmov a, ..., am, ak kaZdy
vyrok X vypovedajici len o tychto pojmoch, pripadne
pojmoch skupin 2, 3, 4 klasifikdcie v 1.1. strana 4., sa alebo
d4 na zdklade A, ..., A, dokizat, alebo vyvratit. V opac-
nom pripade sustavu axiom A,, ..., A, menujeme ne-
tplnou vzhladom na sistavu zakladnych pojmov ay, ...,
am.

Priklad 6. Sustava axiom (5) je netplnou vzhladom na
sustavu zdkladnych pojmov (4), pretoZe vyrok V (uloha 8.
¢lanok 1.3.) sa na zdklade axiom (5) ned4 ani dokazat, ani
vyvratit. Ku dokazu posledného tvrdenia pouZijeme mode-
lov.

Predpokladajme, Ze plati

S, ...»8; = V. (6)
Ak (6) plati v abstraktnej teérii, plati nutne aj v kadom
jej modeli, Specidlne v modeli S,, €o vSak nie je pravda.
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Vyrok V teda nie je moZné dokdzat z axiom S, ..., S;.
Rovnako vyrok V sa z axiom S, ..., S; nedd ani vyvratit,
pretoZe v modeli S, je ako S, ... S tak aj V pravdivy.
PretoZe vyrok V sa z axiom Sl, ey S5 nedd ani dokdzat,
ani vyvratit, hovorime, Ze V je nezdvisly na sistave axiom
(5). Tento priklad si dobre premyslite, lebo je doleZity.

Poukazali sme na tri zdkladné vlastnosti sustavy axiom:
bezospornost, nezavislost a Uplnost. Bezospornost je naj-
délezitej$ia vlastnost axiomatickej ststavy vobec. Zatial ¢o
$tadium zdvislej, ¢i netplnej sistavy axiom zmysel md, je
spornd axiomatickd sdstava bez zmyslu a jediné o s fou
moZno mudreho urobit je: zahodit ju.

Najmenej déleZitou z horeuvedenych vlastmosti sdstavy
axiom je nazdvislost. Zo sdstavy axiom, ktora je zdvisla
moZeme vytvorit sustavu nezdvisha spdsobom vel'mi jedno-
duchym: postupne vypustame tie axiomy, ktoré su dé-
sledkom tych, o v sustave ostali. PoZiadavka nezdvislosti
axiom je poZiadavkou estetiky a nezasahuje podstatu budo-
vanej tedrie. Z povedaného vyplyva, Ze kazda axiomatickd
sustavu mdZeme predpokladat nezavislou.

Konecne pir slov o tiplnosti stistavy axiom. Fakt, ¢i dand
sustava axiom A, ..., A, je, alebo nie je Gplnou je pod-
statny, no mé zmysel $tudovat tedriu postavend ako na
uiplnom, tak aj na netiplnom axiomatickom systéme. V tejto
suvislosti povieme nieco o pribuznych teéridch a o stupsio-
vom budovani tedrie.

Predstavme si, %e 2 a B su dve rdzne tedrie, majice
spolo¢né niektoré (popripade aj vSetky) zikladné pojmy
€15 « . .5 Cx a niektoré axiomy C,, ..., C;. Také teérie bu-
deme menovat pribuzné. Nech € je teéria uréend systé-
mom zédkladnych pojmov ¢;, ...,¢x a sustavou axiom
C,, ..., C;. Potom kaZdé tvrdenie tedrie € je pravdivé aj
v tebrii U, aj v tedrii B.Tebriu Aresp. B ziskame z tedrie €
pridanim zvy$nych zédkladnych pojmov a axiom. Popisané
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stuptiovité budovanie teérii ma velky vyznam v praxi pri
konkrétnom rozpracovavani pribuznych teérii.

1.6. Axiomatizovana tedria a jej modely

V tomto Clanku ukaZeme na déleZitost modelov. V pred-
chiddzajicom clanku sme zaviedli pojmy bezospornost, ne-
zdvislost a uplnost sistavy axiom a na prikladoch sme ilu-
strovali, ako na konkrétnej sistave moZno poznat jej spor-
nost (priklad 4.), zdvislost (priklad 5.) a netplnost (priklad
6.). Otazka znie: Ako na konkrétnej sustave uréime jej a.) be-
zospornost, b.) nezdvislost? Kritérium dplnosti je obtiaZne
a preto ho vypustime z uvah. Je zrejmé, Ze dokazat spor-
nost, ¢i zavislost nejakej ststavy vyrokov je jednoduchsie,
ako dokizat jej bezospornost, & nezavislost. Citatel sa
moZe sim pokusit o rieSenie problému skor, ako bude dalej
Citat.

Kritérium bezospornosti sustavy vyrokov. Sistava vyro-
kov je bezospornd, ak existuje aspori jeden jej model.

Uskalie posledného tvrdenia spodiva v slove ,,model,
ktorym tu operujeme intuitivne. Precizne vyjadrovanie
viak moZné nie je, lebo tento pojem siaha velmi hlboko do
logiky. Mierne upresnenie horného kritéria bezospornosti
dava nasledujice tvrdenie.

Nech A, ..., A,je ststava vyrokov a B axiomatizovand
te6ria, ktorej bezospornost je dokdzand. Ak existuje model
sustavy vyrokov Ay, ..., A, v ramci teérie B, potom je
tito siistava vyrokov bezosporni.

Priklad 7. Mdme dokizat bezospornost sustavy axiom
(5). Podla uvedeného kritéria sta¢i najst model tedrie &.
V ¢lanku 1.3. bolo podanych modelov pit. UvaZme napr.
model S,. Je to priklad modelovania teérie & v rdmci ro-

20



vinnej euklidovskej geometrie. Existenciu poslednej teérie
dokazal Hilbert.

Kritérium nezavislosti sustavy vyrokov. Sistava vyrokov
A, ..., A, jenezdvisld, ak pre kazdéi = 1, ..., n existuje
aspori jeden model A, splitujici vyroky Ay, ..., An okrem
yyroku A, pricom pre Ai plari 7 A;. (Pozri dodatok A.)

Priklad 8. Mdme dokazat nezavislost sustavy axiom (5).
Podla uvedeného kritéria treba udat pat modelov, ktoré
oznadime @, Q,, Q3, Q, Q5. V modeli @, budi pravdivé
vyroky 1 S, Sy, Sa, Sy, S5 v modeli @, budd pravdivé
vyroky S;, 71 Ss, S5, S45 Ss3- . . Tu udime modely @,, @,
(J,).,)a modely @, a @ prenechime &itatelovi (pozri tilohu
13.).
®;:Nech Ch =D =¢. Potom zrejme plai 7 S,
a platnost S,, S, S, S; je zrejm4, lebo predpoklady su ne-
pravdivé. (Dodatok A.)

@,: Z modelu S, vypustime prvok mnoZiny D ,,Julia“.
Plati 7] S,, lebo chlapcom Orfeus a Tristan neexistuje diev-
¢a, ktoré sa obidvom péci. Pravdivost axiom S,, S, S, a S;
je ofividna.

@,: K modelu S, do mnoZiny D pridime prvok ,,Cech*
a ostatné prvky, ako aj reliciu ¢ nechame bezo zmeny.
Plati 77 S,, lebo dievéa ,,Cech® sa paci jedinému chlapcovi,
chlapcovi ,,e““. Pravdivost zvyS$nych axiom sa overi jedno-
ducho.

Uloha 13, Podla prikladu 8. udajte modely @, a Q.
Riedeni je samozrejme nekoneCne mnoho.

Uloha 14. Ak ku axiomam S, — S; priddme axiomu Sg:
Existuje diev¢a x majice najviac jednu nepriatelku, potom
ststava vyrokov S, S, S, S;, Sg je spornd. DokaZte!

Uloha 15. Doka’te, Ze ststava vyrokov S,, S,, Sg, Sy
S;, V je bezospornd. To isté dokaZte pre sustavu vyrokov
S1» Sz Sy, Sgs S, 11 V.
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Uloha 16. Napiste vyrok ] W, ak W je vyrok: Ak sa
diev¢a p nepaci chlapcovi P, potom existuje aspofl jedno
dievca g tak, Ze ¢ sa paci chlapcovi P a je priatelkou dieva-
ta p. Podobne napiste aj vyrok 7] V a snaZte sa 0 maximalnu
stru¢nost zapisu.

Uloha 17. Postdte bezospornost ststavy vyrokova.) S,,
$,, 855,55, W;b.)S,,S,85,,5,,S:, 1W;c)S,,S,,8S,,
S, S5 1V, W;d)S,,S,,8,,5,8;, V, W.

Uloha 18. Doki?te nasledovné implikicie: S;, Sy
71 Sz = D je jednoprvkova = V, W.

Uloha 19. Postdte, & stistava axiom S,, S;, S, Sy, Sss
VY, W je nezivisla.
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2. kapitola

HISTORICKE POZNAMKY

Cela druh4 kapitola méZe byt pri Citani vypustend. Ma-
loktora vedeckd problematika ma tak dramatickid a pou¢nd
histériu, ako prave objav neeuklidovskej geometrie. Podla
toho, ¢o bolo povedané v ¢lanku 1. 4. budeme sledovat vy-
voj geometrie od obdobia II. Prva velka technickd revo-
Iicia tj. obdobie VI.—IV. tisicroia pr. n. 1. dala spolu
s mnohymi inymi poznatkami [udstvu aj mnoZstvo znalosti
geometrickych. V povodi troch velkych riek Eufratu,
Hindu a Nilu vznikli mnohé geometrické objavy vyvolané
potrebami ovlddat prirodu. Tieto poznatky netvoria eSte
systém, sd len sthrnom pravidiel o merani, zdelovanych
medzi generdciami Casto mystickym sposobom. Obdobie
III. tj. obdobie tvorenia abstraktnej tedrie patri helénskej
kultire. Od Télesa Milétskeho (VI. stor. pr. n. 1) cez
Pytagora aZ po Euklida (III. stor. pr. n. 1.) urobila helénska
geometria ohromny pokrok. Jej hlavnd zisluha nespodiva
v tom, Ze zhrnula a vylepSila vietky dovtedy znime fakty,
ale predovietkym v tom, Ze ich utriedila do systému, kto-
rého korunou su Euklidove ,,Ziklady“. St spracované
v 13. knihidch. Spdsob, ktorym boli Ziklady napisané bol
na vtedajSiu dobu vysoko pokrokovy. Je to prva uéebnica
vdbec, kde sa matéria vysvetluje deduktivhym spdsobom
od axiom. Je to prvy pokus o axiomatickd stavbu vedeckej
discipliny. Celé dve tisicrolia stila tito kniha v strede
zdujmu matematikov a to nielen ako ucebnica, ale aj ako
Zivy stimuldtor novych myslienok. Z nej Studovali taki ma-
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tematici a fyzici, ako Kopernik, Galilei, Descartes, Pascal,
Newton, Leibnitz, Lobacevskij a ini. Na velkost tohto die-
la ni¢ neubera fakt, Ze bolo (z dneSného hladiska) dost ne-
presné a intuitivne. Principy deduktivnej stavby axiomati-
zovanej tedrie, tak ako sme ju poznali v kapitole 1., si do
dneSnej doby platné a uZivané v mnohych exaktnych di-
sciplinach.

Jednym z vaZnych nedostatkov ,,Zdkladov* je snaha de-
finovat vietky pojmy vcitane tych, ktoré su pre danu teériu
zakladné. Tak napr. prvé dve definicie z prvej knihy ,,Z4-
-kladov* sa:

1. Bod je to, o nema Casti,

2. &iara je diZka bez irky.

Dnes uz vieme, Ze sa tu nejednd o definicie, ale prinaj-
lepSom o akési objasnenie. Vada ,,definicii“ je v tom, Ze
slova ,,¢ast, df¥ka, $irka*“ nie sa terminy. Nielen nedostatok
zikladnych pojmov je chybou ,,Zikladov. Aj axiomaticky
systém je nedokonaly, hlavne netiplny.

Euklides uvadza nasledujicich pit axiomov (menuje ich
postulity):

1. Kazdy bod je moZné spojit s kaZdym bodom priam-

kou.

2. Kazda Cast priamky je moZné neobmedzene predlZit.

3. Z Tubovolného stredu je moZné opisat kruZnicu Iubo-
volného polomeru.

4. Vsetky pravé uhly sd navzdjom rovné.

5. Ak priamka, pretinajica dve dalSie priamky tvori s ni-
mi po jedne) strane vmitorné prilahlé uhly o sulte
mensSem ako 2R, potom sa vZdy obidve druhé priamky
pretinaju na tejto strane.

(Pozri priklad 2. v ¢lanku 1.2.). Na zdklade tychto axiom
nie je moZné napr. dokazat, Ze kruZnica pretina priamku
idicu jej vnatornym bodom. No Euklides takéto tvrdenie
dokazuje, priom v dokaze pouZije tvrdenie znime dnes
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pod pojmom axioma spojitosti. Euklidov omyl spoliva
v tom, Ze tvrdenie axiomy spojitosti povaZoval za samo-
zrejmé.

»Zaklady*“ nasli v dalSich dvoch tisicroiach mnoho ko-
mentitorov a opravovatelov. Ustrednym bodom tychto
snah bolo: dokdzat piatu euklidovu axiomu. Jej jasnejsia
formuldcia je: Bodom A neleZiacom na priamke ¢ moZno
viest s fiou jedind rovnobeZku. (Pozri dlohu 8. ¢l. 1.3. vy-
rok V.) Uvedena axioma putala pozornost hlavne tym, Ze
sa pomerne komplikovanou formuliciou odliSovala od pre-
doslych. Z mnoZstva ,,dbkazov* piatej axiomy uvedme
asponl nicktorych autorov: Wallis, Bertrand, Cantor, Cla-
vius, Legendre, Lambert a mnoho inych. Mnohé z tychto
»dOkazov* boli velmi vtipné a casto trvalo dost dlho,
pokial sa v nich nasla chyba. V podstate kazdy z autorov
poutil pri ,,dokaze* tvrdenie ekvivalentné s piatou eukli-
dovou axiomou.*) Jedno zo zikladnych tvrdeni ekviva-
lentnych s piatou euklidovou axiomou je: Sucet uhlov
v trojuholniku je rovny ». Dokazat toto tvrdenie znamend
dokazat piatu euklidovu axiomu. Pomerne rychlo sa poda-
rilo dokazat, Ze sucet uhlov v trojuholniku nemdZze byt
vadsi, ako ». Odtial okamZite vyplyva, Ze suCet uhlov
v $tvoruholniku neméZe byt vicsi ako 2 z. Tohoto faktu
pouZili mnohi geometri, aby dokazali, Ze sucet uhlov
v trojiholniku neméZe byt ani mensi ako z, o uZ implikuje
piatu euklidovu axiomu. Kvdli ilustricii uvedieme chybny
dbkaz, ktory podal Clavius. (Obr. 1.)

Nech A, B, C su tri rozne body priamky a a 4,, B,, G,
tri body leZiace v jednej polrovine vytatej priamkou a tak,
¢ AA, = BB, = CC,, AA, 1 a, BB, 1 a, CC, | a.
Nech b je priamka idica bodmi A4,, B;, C,. Stvoruholnfk

*) Vyroky A, B menujeme ekvivalentmé, ak A = B a B = A. (Pozri
dodatok A.)
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ABB, A, (tzv. Saccheriho $tvoruholnik) m4 os stiimernosti
prechddzajicu stredom useCky AB (bude dokizané v dal-
Som texte). Plat teda < A4,B, = < BB,A,. Podobne
< BB,C; = < CC,B,. Je teda stcet uhlov v $tvoruhol-

A, 5 C b
A B8 c ¢
Obr., 1

niku ACC,A4; rovny 2n, lebo < 4,AC + < ACC; +
1+ ¥ CC4, + ¥ C4,A4 =%+%+ 4 CB,B + &

X A,B\B=2n=.

Claviusov omyl je v tom, %e predpokladal za samozrejmé
existenciu priamky b. Fakt, Ze body 4,, B;, C, leZia na
priamke je ekvivalentny s piatou euklidovou axiomou.

Prvy velky krok ku rieSeniu problému podal taliansky
jezuita Saccheri, ked v snahe o vyvratenie hypotézy ostrého
uhla (tj. Ze stilet hlov v trojuholniku je mensi ako #) vy-
budoval dost obsiahlu te6riu zaloZenti na nasledovnej
myslienke. UvaZujeme Stvoruholnik ABB;A, (obr. 2.),

pridom < A,AB= < ABB, = % a A4, = BB,. Nech O

je stred useCky AB a nech o je priamka idica bodom O,
0 | AB. Oznalme O, =0 n A4,B,. Utvary 0OAA,0,
a OBB,0, st symetrické podla o, teda << AA4,0, =
= & BB,0,. Z horného predpokladu vyplyva ostrost
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uhlov < AA,B,, < BB, A, a po dost dlhych tvahich do-
chédza autor k ,,absurdnym* tvrdeniam napr. dve nepreti-
najuce sa priamky leZiace v rovine, alebo majt jedinu spo-
lo¢nu kolmicu od ktoréj na obidve strany sa neobmedzene

AN
A B

Obr. 2

rozchadzajd, alebo nemaji spolo¢ni kolmicu a v jednom
smere sa asymptoticky pribliZuju. Geometrickd stavba vy-
budovand na uvedenej hypotéze Saccherim je presna, aZ
na konedny vysledok, ktorému pravdepodobne ani sdm ne-
veril. Tvrdi: asymptoticky pribliZujice sa priamky maji
v nevlastnom bode spoloéni kolmicu, teda hypotéza ostré-
ho uhla je nesprdvna a tym je piaty euklidov postuldt do-
kdzany.

Uvahy Lamberta publikované pod nézvom ,,Tebria
rovnobeZnych priamok® v r. 1766 su velmi blizke ivahim
Saccheriho, no na rozdiel od neho pri svojich Gvahdich v si-
vislosti s hypotézou ostrého uhla nedochadza k ,,protire-
Ceniu* a nikde vo svojich pricach netvrdi, Ze ,,dokdzal*
piaty euklidov postuldt. Jeho prace maji nesmiernu zdslu-
hu na konecnom vyrieSeni pochybnosti o piatom euklido-
vom postuldte.

Legendre, ktory sa mimoriadne zasliZil o rozvoj mecha-
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niky m4 tieZ velky podiel pri vyskume geometrie. Dlhy Cas
sa venoval piatemu euklidovmu postuldtu a publikoval nie-
kolko variantov jeho ,,dokazu‘.

Mirne pokusy riedit problém rovnobeZiek siahaji aZ na
prelom 18. a 19. storocia. Upenlivost snahy $pickovych sve-
tovych matematikov krasne dokumentuje list madarského
matematika prof. Bolyaia svojmu synovi. Ked sa prof.
Bolyai dozvedel, Ze jeho syn, mlady talentovany matematik
sa venuje problému rovnobeZiek, aZ zufalo ho vystrihal,
aby zanechal tito myslienku na ktorej on ,,bezvysledne‘
stravil velkua Cast svojho Zivota. Syn neposlichol otcovej
rady a vdaka tomu stal sa jednym z troch objavitelov ne-
euklidovskej geometrie. Neriedko je problém, ktory po
mnoho rokov odoldva usiliu vedcov celého sveta, rieSeny
sucasne viacerymi vedcami. Tak aj dramaticky stboj geo-
metrov s rovnobeZkami je rieSeny nezévisle troma matema-
tikmi: nemcom Gaussom, rusom Lobacevskym a madarom
Bolyaiom.

Gauss problém piateho postuldtu vyrieSil uz koncom
18. storocia, no do konca svojho Zivota rieSenie nepubliko-
val. RieSenie sa neodvazil zverejnit a zdelil ho len stkrom-
ne v listoch priatefom.

Lobacevskij zacal vyskum teérie rovnobeZnych priamok
s pokusmi dokazat piaty euklidov postuldt v r. 1817 no uZ
v roku 1826 dava k dispozicii verejnosti svoju pricu o ne-
euklidovskej geometrii. Publikoval ju pod nazvom ,,0 zi-
kladoch geometrie* v r. 1829. Lobacevskij bol astroném
a preto je pochopitelné, %e sa snaZil overit, Ci v redlnom
svete, v svete v ktorom Zijeme, plad geometria euklidovsk4,
alebo neeuklidovski. Meral sucet uhlov v trojuholniku,
ktorého vrcholy tvorili nebeské telesd (napr. Zem, Slnko,
Sirius). Akokolvek presné boli jeho merania bola odchylka
(defekt) suctu uhlov v meranom trojuholniku od » mensia,
ako tolerancia pristrojov. Pre myslienky, ich aplikicie
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a popularizovanie, ktoré Lobacevskij odvazne konal menu-
jeme neeuklidovskd geometriu niekedy tieZ jeho menom.

Aké je teda rieSenie problému rovnobeZiek. Existuju dve
abstraktné teérie postavené na tych istych zikladnych poj-
moch a axiomach, priom v jednej z nich (oznadime ju €)
plati axioma E, zatial ¢o v druhej (oznacime ju £) plati
axioma L (pozri ¢lanok 3.1.). Axiomatizovana tedria opiera-
jaca sa o axiomy nehovoriace niC o rovnobeZzkach sa menuje
absolutnou geometriou. Vzhladom na to ¢o bolo povedané
v Clanku 1.5. su teda teérie € a £ pribuzné. Pri axiomatic-
kom Stidiu elementirnej geometrie postupujeme teda na-
sledovne: Vybudujeme geometriu absolutna (v nej plati
napr. tvrdenie: sicet uhlov v trojuholniku nie je vacsi
ako ) a aZ potom budujeme teériu £, alebo €. Ostava
dodat, Ze¢ definitivou stavbu elementdrnej geometrie s pre-
ciznou sustavou axiom podal nemecky matematik Hilbert
a Ze dnes je tato disciplina uzavretd. To vSak neznamenad, Ze
geometria je mftva disciplina. Prave naopak, vdaka Kleino-
vi, Cartanovi a mnohym dal§im matematikom sa geometria
vyvinula dnes do takého $tadia, Ze, zd4 sa, znovu nadobuda
to vediice postavenie v celej matematike, ktoré jej dal Eukli-
des v ,,Zdkladoch*“. Uvedme mena aspofi dvoch vynikaju-
cich Ceskych geometrov, ktori podstatne obohatili nase geo-
metrické poznatky. St to Eduard Cech a Viclav Hlavaty.

My sa vSak v dalSom texte vratime do zaciatku XIX. sto-
ro€ia a pokisime sa Citatela obozndmit hlbsSie s mySlenkami
neeuklidovskej geometrie.
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3. kapitola

MODELY LOBACEVSKEHO
PLANIMETRIE

3.1. Spdsob Stiidia Lobacevského planimetrie

V tejto kapitole zalneme vlastné §tudium Lobadevského
planimetrie. Poslednym terminom oznalujeme abstraktmu
geometrickd te6riu obdobni tej s ktorou sa Citatel oboznd-
mil na strednej $kole pod ndzvom rovinni geometria, ¢i
planimetria. Aby sme predisli nedorozumeniu, budeme tej
planimetrii, ktord sa uci na strednej $kole odteraz hovorit
Euklidovskd planimetria. Hlavny rozdiel medzi oboma
abstraktnymi teériami — Lobacevského planimetriou,
ktori oznaCime £ a Euklidovskou planimetriou, ktoru
oznacime € je v tom, Ze v tedrii £ plati vyrok L a v teérii €
plati vyrok E.

L: Ak P je bod neleZiaci na priamke g, potom existuja

aspoil dve rdzme priamky p, a p, idice bodom P
a nepretinajice priamku g.

E: Ak P je bod neleZiaci na priamke ¢, potom existuje
jedna a len jedna priamka p idiica bodom P a nepreti-
najica priamku gq.

Podla toho ¢o sme povedali v prvej kapitole, mal by nas
postup budovania teérie £ zacat vymenovanim zikladnych
pojmov a uplnej sustavy axiom. Potom by sme logickymi
uvahami tj. deduktivne mali vyvodzovat stile zloZitejSie
tvrdenia teérie £.

Existuji dva vaZne dovody, pre ktoré nebudeme postu-
povat uvedenym spdsobom. Axiomaticka stavba vyZaduje
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jednak daleko viac miesta, ako ddva tenka broZurka a dalej
(z hladiska metodického) nutne predpoklada, e Citatel bol
uZ asponi Ciastodne obozndmeny s axiomatickou stavbou
tedrie . Nakolko vSak axiomatizicia te6rie € sa, kvéli ni-
roCnosti latky, na strednej $kole neuci méZeme predpokla-
dat, Ze Citateova znalost teérie € je len intuitivna. To
znamend, Ze Citate] poznd vietky zakladné vztahy teérie &,
no nepoznd jej systém axiom. Pri intuitivhom 3$tudiu
(akejkolvek) abstraktnej teérie, dlohu sustavy axiom pre-
bera nie celkom jasne vymedzeny sabor faktov, ktoré prij-
mame za ,evidentné ,,a priorné“, CiZe ,,samozrejmé,
Tak napriklad v pripade teérie € za takéto evidentne prav-
divé tvrdenia povaZujeme vyroky:

U, : Dvoma réznymi bodmi prechddza jedna a len jedna

priamka.
U,: Existuje Stvoruholnik majtici vSetky Styri uhly pravé
(napr. $tvorec).

Na ziklade takychto evidentnych (avSak vyslovne nevyme-
novanych) tvrdeni odvodzujeme dalSie, menej zrejmé tvr-
denia teérie & — vetu Talesovu, Pytagorovu, sinovu,...

Opisané intuitivne budovanie tedrie & sa silno opiera
o nazornost (skisenost) a preto sa ndm zd4 prirodzenym.
Zikladné tvrdenie L teérie £ nielen Ze nie je ndzorné, ale
na$im geometrickym skisenostiam priam odporuje. Preto
je nemoZné budovat tedriu £ intuitivne. Nevedeli by sme
totiZ, ktoré fakty povaZovat za evidentné. Napriklad z ho-
reuvedenych vyrokov U,,U, evidentne pravdivych v teérii
G je v tedrii £ pravdivy vyrok U, avyrok U, je nepravdivy.
Vidime, Ze v tejto broZurke teériu £ nemdZeme budovat
ani axiomaticky, ani intuitivne. Ostdva jedind moZnost —
pouZit modelov. Tento spdsob ndm sice nedd abstraktna
teériu £, ale aj model teérie £ ndm poskytne velmi dobry
obraz tejto tedrie. Aby nase nové skusenosti boli bohatsie,
obozndmime Citatela dokonca s dvoma modelmi o ktorych
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sme sa zmienili uZ v kapitole prvej. Obidva modely budi
realizované v ramci teérie € tj. v euklidovskej rovine. Prvy
z modelov oznacime B, jeho autormi si Klein a Beltrami,
druhy oznacime ), jeho autorom je Poincaré. B a P su
najznimejSie modely teérie £. Model B je nazornejsi, ale
na modeli P je moZné lepsie ilustrovat meranie uhlov
a usecCiek.

Uloha 1. NapiSte vyroky 71 E, 7] La 7] U,.

Uloha 2. Overte platnost tvrdenia a) E= 7] L, b)
L =E.

Uloha 3. V axiomach S,, S,, S,, S,, S; tedrie S z pri-
kladu 2. kapitoly 1. nahradime vSetky terminy podla slov-
nika

| chlapec diev¢a priatelky nepriatelky | )
vy bod priamka rovmoberky roznobezky y o

a novoutvorené axiomy oznatime Si, S3, S3, S4, Ss, vznikla
tedriu &'. Podobne z vyrokov V a W (tiloha 1.8. a tloha
1.16.) vzniknd vyroky V' a W’. Aky je vztah medzi teériami
S a &' ? Aky je vztah medzi vyrokmi E, V' a W'?

Uloha 4. Najdite zavislost medzi vyrokmia)LaV’,b) L
aW'.

Uloha 5. Zistite, ktory z vyrokov E, L je pravdivy v kto-
rom z modelov: S';, Sy, 5’3, S'e> S'9s S's @ S’y Ciarka ma
vyznam popisany v ulohe 3.

Uloha 6. Dokate, %e v modeloch §'y a s plati La 7 E.

3.2. Model B (Beltrami — Klein)

V dalSom texte budeme pracovat v euklidovskej rovine
tj. v tedrii € a budeme tu modelovat teériu £. Tak vicSina
geometrickych pojmov nadobudne dva rdzne vyznamy,
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pretoZe sa vyskytnu ako v tedrii €, tak aj v modeli teérie £.
Napriklad body v zmysle £ budi len niektoré z bodov
v zmysle €. Bolo by zdlhavé pisat ,,bod v zmysle £, ,kol-
mica v zmysle “ a pod., preto budeme pisat struéne
»l-bod®, ,,e-kolmica* a pod. Termin, ktorého vyznam je
ten isty v zmysle £, ako v zmysle € budeme pisat ako dote-
raz bez predsymbolu 1-, ¢ e-. Napriklad ,,l-medzi‘
a ,e-medzi* je to isté, preto piSeme proste ,,medzi‘‘.

Podéme popis modelu B (pozri model S, z prikladu 1.2.).
Vsetky tivahy st prevddzané v e-rovine.

Dohovor 1. Nech je v e-rovine danid e-kruZnica A.
Oznalme symbolom 2 mnoZinu vSetkych vnudtornych
a symbolom u# mnoZinu vSetkych jej vonkajSich e-bodov.
Tito symbolika je zivdzna pre cely ¢lanok 3.2., 3.3. a 3.4.

Definicia 1. e-Bod X nazveme

1-bodom Xel
a-bodom} préave ked je {X Eh
i-bodom X e p.

MnoZinu 4 vietkych l-bodov nazveme l-rovinou, mnoZinu
vietkych a-bodov resp. i-bodov nazveme absolutom resp.
idedlom 1-roviny A.

Poznimka 1. V definicii 1. sme zaviedli 6 pojmov. Ku
pojmom l-bod a l-rovina, ktoré majia analogické pojmy
v & tedrii pristupuji pojmy a-bod, i-bod, absolut a idedl
I-roviny. Posledné styri pojmy v € teérii nemaja obdobu
a aj my by sme sa bez nich vedeli zaobist. Zavedenie uvede-
nych pojmov nidm znadne ulahdi vyjadrovanie.

Definicia 2. Nech U % V' st dva TubovoIné a-body.
Potom otvoreni e-tise¢ku UV nazveme l-priamkou.
Okrem 1-priamok takto popisanych Ziadne iné neexistuja.

Dohovor 2. I-Priamky budeme oznalovat dvojakym
spésobom a to alebo malym latinskym pismenom a, b,
¢, %, ... (tak znalime aj e-priamky), alebo dvojicou vel-
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kych latinskych pismien 4B, UX, YZ, ... pokial tieto
pismena oznacuju dva rdzne e-body, ktorych e-spojnica
pretina e-kruZnicu 4. Napriklad podla obrizku 3. je otvo-
rend e-tiseCka UV zirovedl l-priamkou a jej zdpis je UV,

alebo XU, alebo XY, alebo ZV, alebo 2 a pod. Ak x je
l-priamka, potom symbolom % oznalime e-priamku, pre
ktorti x < X a symbolom x’ mnoZinu x n A.

Uloha 7. Pozrite na obrazok 3. a napiSte vsetky tam na-
kreslene a) l-body, b) e-body, ktoré nie su a-bodmi, c)
i-body, d) I-priamky, €) c—pna.mky

Uloha 8. Dajte aspoll styri rozne zdpisy l-priamky
¢ n 4z obrazku 3.

Uloha 9. Nech X # Y sua e-body. Aky je rozdiel medzi
symbolom ,,e-priamka XY“ a ,,XY*“? Maja obidva sym-
boly vzdy zmysel ?

Uloha 10. Zapiste strulnejiie vyrazy z obrizku 3.:

a) XU n ¢, b) {U, V},c) MZ,d)a n OR.
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Uloha 11. Dok4zte, 7 vmodeli B je vyrok L z 3.1. prav-
divy.

v\}r tedrii € st dve rozne priamky bud rovnobéZné, alebo
roznobezné, UkdZeme, Ze v tedrii £ sa rovnobeZnost dd
eSte dalej klasifikovat.

Veta 1. Nech x, y st dve r6zne l-priamky. Potom nastava
jeden a len jeden z nasledujucich troch pripadov:

Lxny=06 2.xny=0ax ny %0,

3.xny=0ax" ny =0.

Dokaz. Namiesto I- priamok x, y uvaZujme e-priamky
X, y. Ak X, y sd e-rovnobezné,alebo ak ¥ n j je i-bod, po-
tom nastava pripad 3. Pripad 1. resp. 2. nastava prave ked
X n ¥ je I-bod resp. a-bod. Poznamenajme, Ze pre x £y
je mnoZina x’ n ¥’ bud prazdna, alebo jednoprvkova.

Definicia 3. 1-Priamky sa nazyvaji: l-rézmobesné, &i
I-réznobefky prave ked x ny % 0, l-rovnobeiné, &
1- rovnobegky prive ked x n y = @. I-RovnobeZky x, y sa
nazyvaju rosbegky resp. subeiky prive ked x' ny = 0
resp. x’ ny *0.

Poznimka 2. PretoZe termin e-rozbeZky neexistuje, staci
pisat rozbeZky namiesto I-rozbezky. Rovnako pre siibeZky.
Symbol || bude znacit vyluCne e-rovnobeZnost.

Nasledujuice dlohy 12 aZ 15 st venované niektorym fak-
tom platnym v teérii £, nie viak v teérii €.

Uloha 12. Nech je danych » navzdjom réznych I-pria-
mok a,, a,, . .., an. Potom vZdy existuje I-priamka x-rov-
nobeZna s kazdou z priamok ay, a,, . . ., @n.

Uloha 13. Nech a, b st l-rovnobezky. Potom vZdy exi-
stuje 1-priamka p l-rovnobeZnd s a a l-rovnobeZnd s b.

Uloha 14. Existujt tri I-rovnobezky a, b, ¢ tak, %e ¥iadna
l-priamka nepretina vietky tri.

Uloha 15. Nech a, b si I-rovnobezky. Uréite mnoZinu M
I-bodov X, ktorymi moZno viest 1-priamku x I-rovnobeZni
s b a l-rdznobeZnu s a.
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Uloha 16. (Konstrukéna.) Nech 4, B, C st rézne I-body,
pricom A je e-stred e-kruZnice 4. KonStruujte l-priamky
a, b, ¢ tak, aby kazdé dve z nich boli subeZzky a naviac
A ea, B eb, C cc. Prevedte diskusiu. RieSenie je zaloZené
na istom vtipe.

Zavedieme dalSie pojmy modelu B: polpriamka, polro-
vina, usecka, uhol, trojuholnik. Pripomefime, Ze v teérii &
sa pod pojmom ,,polpriamka‘“ rozumie ,,uzavreta polpriam-
ka* tj. polpriamka v¢itane jej zaCiatku. Rovnako aj polro-
vina, tiseCka a uhol sa v teérii € ber uzavreté.

Definicia 4. Nech 4, B sa dva rozne l-body I-priamky p
pre ktori p’ = {U, V}. Nech l-bod B leZi medzi 4 a U.
MnoZinu, ktora sa sklada z I-bodu A4 a vietkych l1-bodov X
leziacich medzi A a U nazveme l-polpriamkou AU, alebo
AB. Prienik I-polpriamok 4B a BA nazveme l-useckou AB.
Ak naviac I-bod C ¢ p, potom mnoZinu vietkych bodov X
pre ktoré plati: vmitro l-isecky XC nemd s I-priamkou
p Ziaden spolo¢ny I-bed sa nazyva 1-polrovinou ABC, alebo
pC. Prienik l-polrovin ABC a ACB nazveme l-uhlom
a ozna¢ime < BAC & < CAB. 1-Polpriamku MP nazy-
vame tieZ nulovy l-uhol, l-polrovinu tieZ l-priamy uhol.
Pojmy wvmiltrajfok, otvorenost & uzavretost 1-polpriamky,
l-Gsecky, I-polroviny a l-uhla st pouZité ako v tebrii €.
Tieto utvary sa predpokladaji uzavreté, pokial nie je vy-
slovne povedany opak.

Dohovor 3. O I-polpriamke A B budeme hovorit aj vtedy,
ked je B a-bodom, pripadne i-bodom. e-Bod 4 musi nutne
byt 1-bodom. Podobne o I-polrovine ABC hovorime aj v pri-
pade, Ze 4, B, C st Iubovolné e-body neleZiace na e-priam-
ke, ak len e-priamka 4B pretne 4. O 1-uhle BAC hovorime
aj v pripade, Ze B, C st Iubovolné e-body rézne od 1-bodu
A. Dokonca e-body B, C modZu s l-bodom A leZat na e-
priamke — potom je 1-uhol BAC bud nulovy, alebo priamy.
Pojem opaénej 1-polroviny pouZivame, ako v tedrii (.
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O l-asecke AB budeme hovorit aj v pripade 4 = B — na-
zveme ju nulovou.

Znovu pdr loh na precvicenie latky.

Uloha 17. Kolkoraki je vzidjomnd poloha dvoch rdznych
l-polpriamok AB a CD? Nijdite aspod 10 pripadov.

Uloha 18. Nech p, ¢ si dve l-réznobetky a ¢, < ¢
l-polpriamka nepretinajuca 1-priamku p. Narysujte mnoZi-
nu M tych l-bodov X pre ktoré plati: ka?da l-priamka x
iddca I-bodom X a nepretinajica l-priamku p nutne pretne
I-polpriamku g¢,.

3.3. Kolmost v modeli B

Odteraz aZ do odvolania predpokladime, Ze vietky
objekty st euklidovské a preto upustame od pisania pred-
symbolov e- ¢i I-; symboly S resp. r v dalSom znadia stred
resp. polomer kruZnice A.

Trochu neobvyklym spdsobom budeme definovat mno-
Zinu s, ktorej prvky znacime velkymi latinskymi pismena-
mi — ako body. Symbolmi = resp. # ozna¢ime mnoZinu
vietkych priamok resp. bodov. O zobrazeni hovorime v do-
datku A.

Definicia 5. Nech s je mnoZina dand zobrazenim
¢ : 7 — s s nasledujicimi dvoma vlastnostami:

(a) ku kaZdému X es existuje aspofi jedna priamka
y € rtak, Ze o (v) = X,

(b) pre IubovoIné priamky x + y plad o(x) = o(y) <>
< x||y. Potom mnoZinu s nazyvime mnofina smerov
a jej prvky nazyvame smery. Smer o(x) pre x € # nazyvame
smerom priamky x, alebo smerom incidentnym s priamkou x.

Nepresne, ale nizorne sa pod pojmom smer rozumie ,,ne-
kone¢ny bod priamky‘ ¢i ,,priesenik dvoch réznych rov-
nobeZiek*.
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Dohovor 4. Nech je x € z; namiesto o(x) piSeme tieZ
x 0 s, namiesto vztahu X = o(x) piSeme vzfah X e x.
Pre AezaX % Y s oznatime symbolom AX ti priam-
ku p € 7, pre ktori 4 € p aj X € p a symbolom XY oznali-

a

[

PN S/R

Obr. 4

me mnoZinu s. Pre kaZdy A e 7 definitoricky prehldsime
A ¢ s. Konecne vzdialenost (tj. e-vzdialenost) bodov 4, B
znacime ¢(AB).

Podame definiciu dvoch zobrazeni polarity:
p:aUs—aU {s}aP:avu {s} >z U s
Uvedomime si, Z¢ medzi symbolmi s a {s} je rozdiel —

pozri dodatok A.

Definicia 6a. Zobrazenie p: # U s >z U {s}, ktoré
kaZdému prvku X e U s priradi prvok p(X) ez U {s}
nazveme poldrnym zobrazenim bodov ak

1. pre X € s je p(X) priamka idica bodom S kolmo na X,

2.p(S) = (s} | |

3.pre Xe#, X 8 je p(X) priamka kolma na SX

iddca tym bodom Y polpriamky SX, pre ktory
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§(SY).&(SX) = 2. ™

Uloha 19. Dokézte, %e zobrazenie p je bijektivne tj. Ze
kaZdému prvku X mnoZiny 7 U s priradi jediny prvok
p(X) mnoZiny 7 < {s} a ku kaZdému prvku x mnoZiny

3

Obr. 5

7 U {s} existuje a pritom jediny prvok X e s U s tak, Ze
p(X) = x.

Tvrdenie dokdzané v ulohe 19. nds opraviiuje hovorit
o zobrazeni inverzmom ku p tj. o takom zobrazeni P:
mU {s} >%t U s, pre ktoré p[P(x)] =x pre vietky
xen U {s}aP[p(X)] = X pre vietky X e# U s. Poddme
presnt definiciu.

Definicia 6b. Zobrazenie P: z U {s} -7 U s dané pred-
pisom P(x) = X < p(X) = x pre vSetky x e 7 U {s} na-
zveme poldrnym zobrazenim priamok.

Zobrazenia P a p maju dost negeometrickd formu, pre-
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toZe s popisané predovsietkym rovnicou (7). Ndjdeme ich
geometrickejsie vyjadrenie.

Uloha 20. Pre kazdy bod X % S je p(X) L XS. Do-
kiZte. X € h prave ked X € p(X). Dokazte.

Obr. 6

Uloha 21. Nech X € 4, potom p(X) je dotyénica ku A
v bode X. Nech x je dotyCnica ku 4, potom P(x) je dotykovy
bod x a . DokazZte.

Uloha 22. Nech M je vonkaj$i bod kruZnice % a nech
M, M, su dotykové body doty¢nic vedenych z bodu M ku
h. Potom p(M) = M1M2. DokaZte.

Kons$trukéne vieme uz velmi dobre najst p(X ) resp. P(x)
pre X neleZiace vo vnutri 4 resp. pre x majice s /4 aspofi
jeden bod spoloény. Ulohu dorielime Gplne, najprv viak
dokdZeme ddlezitu vetu.

Veta 2. (Zdkladnd vlastnost polarity ) Nech Xje bodresp.
smer a y priamka. Potom plati

X ey <« P(y) e p(X).



Dokaz. Nech napred S = X ¢h, S¢ v, X ¢ (obr. 6.).
Oznalme U = XS n p(X), V resp. W prieseénik kolmice
vedenej z bodu S na y s y resp. p(X). Existencia tychto bo-
dov vyplyva z tdlohy 20. a hornych predpokladov. PretoZe

Obr. 7

X ¢ h, je tieZ (Gloha 20.) X ¢ p(X) a preto X = W. Z Té-
lesovej vety vyplyvd, Ze body U, V leZia na kruZnici & opi-
sanej nad useckou XW ako priemerom. Podla vety o moc-
nosti bodu ku kruZnici (dodatok D) a definicie 6a. je
r2 = ¢(SU).e(SX) = (SV).e(SW), tiez y | SW. Preto
je p(W) = y, teda W = P(y), ¢iZe P(y) € p(X). Implikidciu
X ey = P(y) € p(x) sme dokazali pre ,,vSeobecny* pripad.
»sopecialne® pripady prenechame Citatelovi — nasledujica
uloha. DokaZeme eSte opatni nnphkacm Ak totiZ plati
X ey = P(y) € p(X), potom je tiez P(y) € p(X) =

~ PIo(X)] < I3 1. X <.
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Uloha 23. Dokoncite dokaz vety 2.

Uloha 24. Pomocou vety 2. je mo¥né podat konstrukciu
polary p(M) aj v pripade, Zze M leZi vo vnutri 4 a kon-
Strukciu polu P(m) priamky m pre ktora A nm = ¢.
Nijdite tiuto kons§trukciu.

Dokoncili sme pripravné price. Odteraz budeme pisat
zase predsymboly e- a I-. Symbol | znaéi vylucne e-kol-
most.

Definicia 7. 1-Priamky m, n nazveme 1-kolmé prave ked
P(m) e n, alebo (o je s tymto vztahom ekvivalentné)
P(n) e m. Znatime m T n. Povieme Ze velkost Il-uhla
114
5

Uloha 25. Nech m T 7 sa l-priamky. Potom, m 7 su
rdznobezky. DokaZte.

Uloha 26. Kolko spolonych I-kolmic maji dve 1-priam-
kym £n?

Uloha 27. DokaZte, %e neexistuje 1-$tvoruholnik, ktoré-

ho vietky $tyri l-uhly maju velkost % (Pozri vyrok U,
z Clanku 3.1.).

l-priamok m, 7 je

Priklad 1. Pre l-priamky p T ¢ plati p | ¢ prive ked
aspoi jedna z nich prechddza l1-bodom S. DokaZte.

RieSenie. Nech p je l-priamka neiddca l-bodom S.
Z podmienky p T g vyplyva P(p) € ¢. Zo vsetkych e-pria-
mok x idicich bodom P(p) jedine jedna je e-kolma na p a to
t, ktora prechddza S, tedazp | g, S¢p vyplyva S€ g.
Nech naopak S € g potom P(¢) ep tj. p | g.

Uloha 28. Co vieme povedat z euklidovského hladiska
o l-priamkich p, g, ak ich jedina spolo¢né l-kolmica pre-
chiadza bodom S.

Uloha 29. Nech m, n s stibezky, priom ka#d4 z nich je
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rozbeZnd s l-priamkou g¢. Zistite vzdjomnud polohu I-pria-
mok a, b definovanych vztahmim T a T ¢ T b T n

3.4. Miera visecky v modeli B

1-Mieru (I-df#ku) 1-tsetky AB budeme definovat spdso-
bom s ktorym sa Citatel doteraz pravdepodobne nestretol.
Této definicia viak nie je vymyslend, ale zikonite odvodena
spdsobom s ktorym (Citatela obozndmit nemdZeme. VyZa-
duje hlbsie vedomosti z geometrie. Za¢neme definiciou.
Definicia 8. Nech ABje l-tisecka a U, V a-body l-priam-

ky AB. Cislo
A(AB) =|log, ——iéj 8 Zg% (8)

kde &(XY) je e-miera (e-diZka) e-use¢ky XY, nazveme
l-mierou (1-diZkou) 1-usecka AB.

Poznamka 3. PretoZe A je 1-bod a V je a-bod je nutne
A = V, teda ¢(AV) je kladné. Rovnako Cisla e(BU), £(AU),
¢(BV) su kladné, preto vyraz (8) ma zmysel. Fakt, Ze po-
uZity logaritmus ma ziklad 2 je nepodstatny. Tento zaklad
volime hlavne kvoli zjednoduSeniu niktorych konstrukcii.
Vo vicSine literatiry sa vo vzorci (8) berie tzv. prirodzeny
logaritmus, ktorého ziklad je dislo e = 2,71. ... Vyznam
tejto volby vystapi pri hibSom, hlavne analytickom Stadiu
l-geometrie.

Dohovor 5. V dalSom texte symbol log znadi vidy log,.

Veta 3. Nech 4, B, C su l-body leZiace na l-priamke p,
potom plati:

I. (AB) = 0 pricom }(AB) =0+« A =B,
I1. A(AB) = A(BA),

II1. (AB) 4+ A(BC) = A(AC), pricom rovnost nastiva

prive ked I-bod B patri 1-asecke AC. (Obr. 8.)
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Dékaz. Prva Cast tvrdenia I. je evidentnd. Rovnost
AMAB) = 0 plati prave vtedy, ak vyraz v (8) z ktorého sa
berie logaritmus je rovny 1 tj.

e(AV).e(BU) = «(AU).e(BV).

@ ¥4 8 ¢ L4
@ L&+ ¢ & v _
Obr. 8

Je zrejmé, Ze posledna rovnost je splnend prive ked
A = B. Tym je dokdzané tvrdenie I. Zimenou l-bodov A4,
B v (8) zmeni sa vyraz stojaci v absolutnej hodnote len ¢o
do znamienka, teda II. plati. K dékazu III. vySetrime dva
pripady: 1. 1-Bod B lezi medzi 1-bodmi 4 a C, 2. 1-Bod C
leZi medzi lI-bodmi A a B. Pripad splynutia ktorychkolvek
z l-bodov 4, B, C je trividlny. V oboch pripadoch mdZeme
bez ujmy na vSeobecnosti predpokladat, Ze I-bod A leZi
medzi U a B. V pripade 1. je

. H(AV).e(BU)

KAB) + ABC) = log [y i +

«BYV).e(CU) _ 1 AV).(BU). «(BY).«(CU) _

§BU).e(CV) «AU).«(BV).«BU).«CV)
(AV).(CU)

(Boli sme opravneni vypustit absolutné hodnoty ?)
V pripade 2. pouZijeme uZ dokizaného vziahu pri vymene-

+ log
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nych l-bodoch B, C, teda A(AC)-+ ACB)= A(4B),
odkial A(AB) + A(BC) = A(AC)+ XCB) + AMBC) <
< MAC), lebo X(CB) = A(BC)> 0 podla 1., II.

Uloha 30. Urdite mnoZinu l-bodov X, pre ktoré plati
AMSX) = a. Ako treba volit ¢islo a, aby do tejto mnoZiny
patril aspofi jeden I-bod M pre ktory 2 «(SM) =r; r je
I-polomer e-kruZnice A.

Uloha 31. Nech 4 jel-bod, U je a-bod. Na I-polpriamke
AU ndjdite I-bod X tak, aby A(A4X) = 1. Dokézte existen-
ciu a jednoznacnost I-bodu X a popiste jeho euklidovsku
kon$trukciu.

Uloha 32. Nech A = B st l-body a U, V a-body l-priam-
ky AB volené tak, Ze A lezi medzi U a B. Ozname
&AU) = a, ¢(BV) =105, (AV)= v, ¢(BU)= u. Nech
u + v a M je I-bod 1-usecky AB pre ktory x = ¢(AM) =

Va ®_. (J/ub — J/av). Dokatte, ze M existuje.

Ijloha 33. DokaZte, e 1-bod M z tlohy 32. je l-stred
l-ase¢ky AB tj. A(AM) = A(BM).

Veta 4. Nech 4 % B st l-body a U, V a-body I-priamky
AB. 1-Stred 1-usecky AB ndjdeme touto konStrukciou:

1. Ak je &(UA) = ¢(BV) potom M zostrojime ako
e-stred e-tuseCky AB.

2.Ak je &UA) + ¢BV) potom volime pomocné
e-kruZnice %, a %, tak, 2¢ UV je e-priemer k,, A ck,,
B €k, a k, pretne k, v e-bodoch P, Q.

Nech Z je e-priese¢nik e-priamok AB a PQ. Nech T je
dotykovy e-bod e-dotyCnice vedenej e-bodom Z ku k,
(resp. ku k), potom hladany I-stred M leZi na e-kruZnici
z e-stredu Z iddcej e-bodom T. (Obr. 9.)

Dékaz. Nech symboly: a, b, d, u, v znadia to o v dlo-
hach 32. a 33. Pripad 1. je zrejmy z e-sumernosti obrizku
podIa e-priamky iducej I-bodom S e-kolmo na AB. V pri-
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pade 2. si najprv uvedomime, Ze spojnica e-stredov
e-kruZnic k,, k, nie je e-kolmd na e-priamku AB, preto
e-bod Z existuje. Mocnost e-bodu Z ku %, a k&, je td ista,
teda &(ZA).e(ZB) = ¢(ZU).e(ZV). Oznaéme (za predpo-

///_\
. - AUZ'
Q

Obr. 9

Kladu, e U leZi medzi A a Z) ¢(UZ) = 2, potom horn4 rov-
nost sa dd pisat v tvare (z + a)-(z + u) = z-(z2 + a + v)
odkiafl

Z= iuu— (podIa predpokladu # + v).

v

Z vety o mocnosti e-bodu ku e-kruZnici vyplyva
d\? d\?
(ZT) = (z + 7) — (7) — 2.(z + d).



Tvrdenie vety bude dokdzané, ak ukiZeme, Ze pre I-bod M
popisany v texte vety plati £(AM) = x, kde x bolo zadané
v ulohe 32. Treba teda dokaizat, Ze

]/z-(z +d)—(a+2)==x
au

Vyraz na lavej strane upravime. Za z dosadime o’ 2

d dosadime ¢ + v. Po dprave dostaneme
-(Vauv.Ya+v—u—av)= Zl/i—vu' (Jub — Vav).

Pozndmka 4. Z tlohy 31. vyplyva zaujimavy fakt, ktory
v e-rovine neplati. V l-rovine je a priori dand jednotkova
df¥ka. Tento ,zdanlivo pozitivny fakt nesie mnoZstvo
obtiaZi. Napr. delenie l-usetky na n zhodnych casti je
dloha v e-rovine jednoduchd, zatial ¢o v l-rovine znafne
obtiaZna. Tym pidom je obtiaZzne napr. zostrojit ,,l-me-
ritko*; konStruovat meritko s vyznaCenim napr. desatin
eSte nevieme, Citatela eSte naulime prendsat l-Gselky
v l-rovine.

Uloha 34. Nech p, ¢ st l-priamky pre ktoré S ep,
? |lg. Nech Z je e-priese¢nik e-priamok P,Q,, P,(Q,, kde
p'={P, P}, ¢ ={0;, Q}. Nech R =S je l-bod
I-priamky p a M, N 1- body na ¢ také, Ze Z € SM, Z € RN,
potom A(SR) = A(MN). Dokézte.

Dohovor 6. Nech A4 je 1-bod, p 1-priamka, g I-kolmica
zAkupapng=P. 1-Bod P nazveme l-priemetom
I-bodu A do l-priamky p, Cislo A(AP) nazveme l-vzdiale-
nosfou 1-bodu A od l-priamky p a oznalime tie} A(Ap).

Uloha 35. (Pozri dékaz Claviusa v kap. 2.) Dokazte, Ze
v modeli B nasledujice tvrdenie neplati: Nech 4, B, C st
I-body leZiace v jednej l-polrovine vytatej I-priamkou p.

v—Uu

47



Nech A(Ap) = A(Bp) = A(Cp), potom C leZi na l-priamke
AB.

Prend$at 1-aseCky naucime Citatela v nasledujucich ulo-
hich. Ich zvladnutie predpokladd znalost Pappovej vety,
ktoru si Citatel mdZe naStudovat v dodatku F.

A

\

Obr. 10

Uloha 36. Nech p, ¢ st sibeky a U ich spoloény a-bod.
Nech A4, B €p a C € ¢q. Njjdite vietky I-body X € ¢ tak,
%e J(AB) — A(CX).

Uloha 37. Nech p, ¢ sa r6zne l-priamky, 4, B ep,
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C € g. Nijdite vSetky l-body X e ¢ tak, Ze A(4B)=
= ACX).

Uloha 38. Na l-priamke p su dané tri -body 4, B, C,
A = C. Néjdite 1-bod X leZiaci na 1-polpriamke CA4 tak,
2e A(AB) = A(CX).

Obr. 11

Uloha 39. Nech P = R st a-body, S e-stred e-kruZnice
h. Nech 2 a je euklidovskd miera e-uhla < PSR. Nijdite
I-body A, B na l-polpriamkach SP, SR tak, aby l-trojuhol-
nik 4ABS bol l-rovnostranny. Urite rieSitelnost. Rieste vy-
poctom. (Obr. 11.)

Uloha 40. Overte vypoftom nasledovn(i konStrukciu

1-bodu 4 (za predpokladu0 < 2a < %

(Oznalenie volime ako v predoslej tilohe — pozri obr. 11.)
e-RovnobeZka s SR vedend a-bodom Q pretne & v a-bode
Q' % Q; e-tiseCku QQ’ prenesieme na e-polpriamku OS.
Ozna¢me L ten e-bod e-polpriamky QS pre ktory £(QQ’) =

= ¢(QL). Z podmienky 0 <2a < %

) z predoslej dlohy.

vyplyva, Ze L le2f
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medzi P a S. e-Bod K zostrojime ako vrchol e-pravouhlého
trojuholnika KQL s preponou QL a vySkou SK. Na
e-polpriamke SB ndjdeme e-bod M pre ktory &(SK) =
= ¢(SM). Potom AM | BS.

3.5. Model D (Poincaré)

Symbolické predpony 1- a e- pouZivame rovnako ako
v pripade modelu B na ktory sa budeme odvolavat. Cita-
tefovi doporucujeme pozriet model S; z prikladu 1.3. Zno-
Vu pracujeme v pevnej e-rovine.

Dohovor 7. Nech je v e-rovine dand pevnd priamka 4*
vytinajica v e-rovine dve otvorené e-polroviny, ktoré
(uvaZované ako mnoZiny e-bodov) oznafime A a u. Nech H
je bod neleZiaci v uvaZovanej e-rovine. Oznalme b = A* U
U {H}. Bod H budeme definitoricky povaZovat za a-bod.
Pre kaZdd e-priamku p poloZime definitoricky p | A* <
< H e p. Této symbolika je zdviznd pre cely Clanok 3.5.
az 3.7.

Definicia 9. Pojmy 1-bod, a-bod, i-bod, 1-rovina, abolut
a idedl 1-roviny A su dané definiciou 1.

Definicia 10. Nech p je e-kruZnica resp. e-priamka
e-kolma na e-priamku /#*. Potom mnoZinu l-bodov 1 n p
nazveme l-priamkou (prvého resp. druhého druhu).*)

Dohovor 8. Podobne ako v modeli B aj tu budeme
l-priamky oznacovat bud malymi latinskymi pismenami,
alebo dvojicou velkych latinskych pismien, pokial oni zna-
Cia dva e-body nie stumerné podla A*. Pruh aj Ciarka maja
vyznam ako v dohovore 2. ¢l. 3.2. Podla obrizku 12. je teda
P e-priamka obsahujica naviac e-bod H, p otvorena e-pol-

*) Hovorime, Ze e-kruZnica k so stredom S je e-kolm4 na e-priamku
p,ak S p.
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priamka, p’ = {H, P}, a je e-kruZnica, a < a, a je otvorend
e-polkruZnica, ' = {V, U}. Ak a je l-priamka prvého dru-
hu, potom e-stred e-kruZnice a oznacime S(a).

Uloha 41. Nech X, Y su dva rézne e-body. Potom exi-

p

b
—_——

A

)a
Sth P \V S U So
po @ Nz

/

Obr. 12

stuje l-priamka x tak, e X € z a Y € z. DokéZte. Existuje
jedina x ? Plati obdobné tvrdenie v modeli B ?

Uloha 42. Pri oznaleni obrazku 12. uréite &o znalf a)
b neb)b ncc) Sp),d) SaS).

Uloha 43. Kolkoprvkova je mnoZina p’, ak p je l-priam-
ka? Co znadi tvrdenie H € p'?

Uloha 44. Plati tvrdenie vety 1. z &énku 3. 2. aj pre
model p? Plad vyrok L z 3. 1. aj pre model p?
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Definicia 11. Pojmy l-réznobezky, I-rovnobezky, rozbez-
ky a subezky (a gramatické obmeny tychto terminov) si
dané definiciou 3. ¢lanku 3. 2. Symbol || oznaluje, ako aj
v modeli B vyluéne e-rovnobeZnost.

Obr. 13a Obr. 13b

Uloha 45. Vyrieite tlohy 12.—14. &lénku 3. 2. v rdmci
modelu p.

Dohovor 9. Povieme, %e 1-bod A leZi medzi I-bodmi B
a Cak

1. 1-body A, B, C leZia na jednej I-priamke m a

2. e-bod A leZi medzi e-bodmi B a C v zmysle € v pri-

pade, Ze m je druhého druhu; e-Gsec¢ka 4S(m) pretne
e-priamku BC v pripade, Ze m je prvého druhu.

Dodajme este, Ze dohovor plati aj vtedy, ak nihodou
B € n*, pripadne C € i*. Pre a-bod H dodefinujme: Ak AB
1e l-pnamka druhého druhu (4 % B l-body) a (4B)' =
= {H, P}, potom povieme, Ze 1-bod A leZi medzi a-bodmi
H a P a naviac 1-bod A leZi medzi l-bodom B a a-bodom H
prive vtedy, ked A neleZzi medzi B a P. Netreba pisat
»l-medzi“ a ,,e-medzi, lebo z textu bude vidy jasné &i
ide o l-body, alebo e-body. ObtiaZe s pojmom ,,medzi*
v modeli B neboli.

Definicia 12. Pojmy l-polpriamka, 1-useéka, 1-polrovina,
1-uhol, nulovy a priamy l-uhol, ako aj vnutrajSok, orvorenost
a uzavretost tychto Utvarov si dané definiciou 4. ¢linku
3.2.
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Uloha 46. Nech a, bsti dve rozne l-priamky. Uréite po-
det n 1-priamok subeZnych s a aj b.

Uloha 47. Kolko réznych (z hladiska e-roviny) a) 1-pol-
priamok, b) l-polrovin existuje v modeli p? Nadrtnite
obrézky.

Obr. 14

Velmi doleZzitym geometrickym pojmom je konvexnost.
Pripomenieme ¢itatelovi, Ze mnoZina M sa nazyva kon-
vexnd, ak spolu s ka?dymi dvoma bodmi 4, B obsahuje
celd useku AB. Na obrdzku 14. je nakreslend nekonvexni
mnoZina v euklidovskej rovine. Kruh, vnitrajSok §tvorca,
¢i polpriamka sa priklady konvexnej mnoZiny.

Skor ako budete Citat dalej, pokuste sa zistit, ¢i aj 1-pol-
priamka v modeli P je konvexna mnoZina.

Odpoved na poslednu otazku je problematickd, pretoZe
pojem ,konvexnd mnoZina*® bol hore zavedeny nie dost
presne. Ku zavedeniu pojmu konvexity je totiz nevyhnutné
urdit pojem usecka a z horného textu nijako nevyplyva &i sa
jedna o e-usecku, alebo I-useCku. Podla toho ktory z tychto
terminov v hornej definicii pouZijeme, budeme hovorit
o e-konvexite (tomu vyhovuje napriklad obr. 14.) a 1-kon-
vexite. Teda l-priamka prvého druhu je I-konvexnd, ale nie
je e-konvexna.

Definicia 13. Povieme, ¢ mnoZina M e-bodov je e-kon-
vexnd, ak z faktu A € M, B € M vyplyva, Ze e-tiseCka AB
patri do M. Analogicky definujeme l-konvexiru, ak v hornej
definicii vSetky predsymboly e- nahradime predsym-
bolmi I-.
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Veta 5. I-Polrovina, l-polpriamka, I-uhol a I-isecka, ako
aj vnitrajsky tychto Gtvarov st l-konvexné. Prienik dvoch
l-konvexnych mnoZin je mnoZina l-konvexnd.

Dokaz. Nech p je ]-priamkaa Q ¢ pl-bod. Nech X £ Y

Obr. 15

su I-body l-polroviny pQ a ¢ I-priamka X Y. Bez ohladu na
to &i e-Utvary p, ¢ su e-priamky, e-kruZnice, plati, Ze v pri-
pade ked sa p a g pretnu, nem6Zu byt e-body X, Y e-utva-
rom p oddelené. 1-Konvexita 1-polpriamky a l-usecky je
trividlna.

Nech st dalej M a N konvexné mnoZiny a nech l-body
X = Y nileZia mnoZine M n N. PretoZe l-iseCka XY
podfa definicie 1-konvexity nalezi do M aj N, néleZi celd
tiezdo M n N.

Z l-konvexity l-polroviny vyplyva podla posledného aj
l-konvexita 1-uhla a veta je dokazana.

Uloha 48. V modeli D nédjdite priklad mnoZiny M,
ktord a) je aj l-konvexnd, aj e-konvexnd, b} je 1-konvexna
a nie je e-konvexnd, c) je e-konvexnd a nie je I-konvexna,
d) nie je ani e-konvexn4 ani l-konvexna.

Uloha 49. 1-Konvexnt mno¥inu N < 1 nazyvame l-kon-
vexnym obalom danef mnoZiny M < 1ak 1. M < N a2, pre
kaZdd l-konvexnd mnoZinu N, plati M = N, = N = N,.

54



I-Konvexny obal mnoZiny M znadime 1-K(M). Urdite
I-konvexny obal 1-K(M) mnoziny M skladajicej sa z I-pol-
priamok AB a AC, pricom A, B, C st tri I-body neleZiace
na l-priamke.

Obr. 16

Uloha 50. Nech m je e-priamka majica neprizdny
prienik s A. Urcite I-konvexny obal mnoZiny m n A. Pre-
vedte diskusiu.

Uloha 51. Nech p je I-priamka a Q ¢ p I-bod. Pomocou
l-uhla popiste mnoZinu M tych l-bodov X, pre ktoré si
l-priamky QX a p l-rovnobezkami. Je M l-konvexn4 ?

3.6. Miera uhla v modeli p

V modeli B sme sice poznali kolmost, ale inak l-mieru
(velkost) 1-uhla sme vedeli urcit len v tom velmi Special-
nom pripade, ked jeho l-vrchol splynul s e-stredom e-kruz-
nice ~£.V modeli P budeme vediet uréit 1-mieru lubovolné-
ho l-uhla. Citatel si precita teraz Cast B z dodatku, kde je
definovany pojem e-polodotyénice e-kruhového oblika.

Definicia 14. Nech je dany l-uhol <t PV Q. Symbolom
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Py resp. ¢, oznacime e-polpriamku, ktord je: 1. e-polodo-
tyénicou v e-bode V e-kruhového oblika VP resp. V'Q, ak
je l-priamka VP resp. VQ prvého druhu, 2. totoZnd s e-pol-
priamkou VP resp. VQ, ak je l-priamka VP resp. VQ

Obr. 17.

druhého druhu. 1-Mieru l-uhla <¢ PVQ oznaime 4 (<
< PVQ) a definujeme predpisom

A(xPVQ) = e( 1 q0)

pri¢om toto Cislo (pisané v stupfiovej miere) volime vidy
v intervale [0°, 180°]. Obr. 17.

Poznimka 5. Zatial o v e-rovine méZeme definovat aj
mieru e-uhla dvoch e-rovnobeZiek (ako nulu), nie je toto
v l-rovine vbbec moZné. V l-rovine sa o miere dvoch
I-priamok da hovorit iba vtedy, ak s tieto bud totoZné,
alebo l-réznobeZné.

Dohovor 10. Nech a, b st dve 1-priamky pretinajtce sa
v I-bode V. Nech q,, b, st e-dotyCnice v bode V e-kruZnic
v poradi a, b6 — pripadne a, = a, alebo b, = b, ak su a,
alebo b e-polpriamky. 1-Mierou 1- uhla 1-priamok a, b ro-
zumieme mensie z Cisiel e (<X a'y, b'y), ¢ (X @'y, 67'1), PO
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pripade {islo —:12— 7, ak e (X a'y, b)) = ¢e(<xa'y,b"y). Pritom

a'y je jedna (ktoridkolvek) z e-polpriamok so zaciatkom vo
V aleziaca v a, a b';, b"’; s opalné e-polpriamky na ktoré
e-bod V deli e-priamku &,. Ackolvek pojem ,,l-uhol
l-priamok a, b zavedeny nebol a je teda bez zmyslu, je
»l-miera I-uhla 1-rdznobeZiek a, b* pojem majiici zmysel.
Posledny termin oznacuje Cislo, ktoré znacime A (<t a, b).
Kone¢ne poloZime 4 (<X a,a) = 0°.

Priklad 2. Nech a je I-priamka a M 1-bod. Potom existu-
je a to jedina 1- priamka m l-kolm4 na a idica 1-bodom M.
1-Priamky a, m st l-rdznobezky. Dokazte.

Rie§enie. Nech najprv je a prvého druhu, M ¢a.
Existuje jediny e-bod N leZiaci na e-polpriamke S(a)M
tak, Ze Cislo ¢[S(a)M]-e [S(a)N] je rovné druhej mocnine
e-polomeru e-kruZnice a. PretoZe e-body M £ N su
1-bodmi, neméZu byt e-stimerné ku #* a teda existuje jedind
I-priamka m = MN. Bez ohladu na to, &i m je prvého,
alebo druhého druhu je tito jedinou hladanou l-kolmicou
na a.V pripade, Ze a je druhého druhu, @' = {4, H} je m
dand podmienkou S(m) = A znovu jedinou I-kolmicou
na a. Pripad M €a, ktory sme doteraz neuvaZovali je
zrejmy.

Poznamka 6. Pojmy 1-priemer 1-bodu A do 1-priamky p,
ako aj l-vzdialenost 1-bodu A od l-priamky p zavidzame
rovnako ako v dohovore 6. ¢l. 3.4.

Uloha 52. Pokiste sa definovat pojmy ,,l-os I-uhla®
a ,l-os dvoch l-roznobeZiek*. Definicie v dalSom texte
uZivame.

Uloha 53. Ak o,, 0, su l-osi I-rdznobeZiek a, b, ¢o moZno
povedat o 1 (< 0y, 0,)?

Uloha 54. Nech 1-body A4, B, C neleZia na l-priamke.
Prienik l-polrovin ABC, BCA a CAB nazyvame I-troj-
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uholnikom ABC a l-uhly < BAC, < ABC, < ACB
l-uhlami 1-trojuholnika ABC. Znalime ich ako v e-geo-
metrii < a, <X f, < y. Narysujte l-trojuholnik ABC
a uhlomerom zistite Cislo A (<xa) + A (<X B)+ 2 (<L y)
v oblikovej miere.

b
-1 B
Al A
-~/ ¥
~NE
b
c
/ a
//
P Q R
Obr. 18

Uloha 55. Na obrazku 18. je nakresleny I-trojuholnik
ABC, pri¢om S(b) = P, S(c) = R a AP aj BC su l-priam-
ky druhého druhu. Dalej je Q e-stred e-tiseky PR. S pre-
snostou na 1’ urCite I-sticet uhlov l-trojuholnika tj. Cislo
A(xa)+ A(B) + A(Z )

Uloha 56. Na obrazku 19. je dany I-trojuholnik, pri¢om
BC je l-priamka druhého druhu a 2 (< BCA) = 90°.
Dokézte, Zze potom A (<X a) + A (<X f) < 90°. Ku dékazu
pouzite pomocnil e-kruZnicu % idicu e-bodmi 4, B, U,
kde U < (BC)'.

Veta 6. Neexistuje I-trojuholnik ABC tak, aby A (< a) =
= 2(XB) = 2(Xy) = 60°.

Dékaz. Predpokladajme, Ze ABC je l-trojuholnik, kto-
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rého vietky tri l-uhly maju l-mieru rovnua 60°. Nech q, b, ¢
st l-priamky v poradi BC, AC, AB a predpokladajme naj-
prv, Ze vietky tri su prvého druhu. Ozna¢me este U, V, W
e-stredy a u, v, w e-velkosti e-polomerov e-kruZnic v po-

Obr. 19

radi a, b, c. PretoZe e-body U, V, W sa rozne, leZi nutne
jeden z nich medzi ostatnymi dvoma. Nech (pozri obrdzok
20.) napriklad W lezi medzi Ua V. Potom jee (X VAW )=
=A(Xa)=160° e(XUBW)=A(xp)=60° e(<
X VCU) = 180° — A (< ACB) = 120°. Posledna relécia
vyplyva tieZ z opacnej orienticie trojic VCA a UCB (pozri
dodatok C). Na kazdy z e-trojuholnikov VAW, WBU
a UCV pouzijeme kosinovu vetu. Pri oznaCeni ¢ (UV) =
=r,e(UW)= ¢, ¢ (VW) = p plati

rP=u+ v 4+ ww

Pr=1v"+4 w? —ow 9)

=14 w? —uw

a zrejme tieZ r = p + ¢. Ak od prvej z uvedenych rovnic
od¢itame druhu a tretiu, obdrZime
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2pg=r*—p* — @ =wv + uw + vw — 2 w2

Stvorec pravej strany poslednej rovnice je teda rovmny
$tvorndsobku sudinu disiel p? a ¢2 tj. Cislu 4 (22 + w? —

Obr, 20

— vw).(#? + w? — uw). Tato reldcia sa di4 upravit na
tvar

odkial

3(uv —uw —ow)> =0

uv
ut+o’

(10)

w =

Po dosadeni zo vztahu (10) do druhe;j a tretej rovnice sdsta-
vy (9) obdrZime rovnosti

v U
Py 7y q= u—_F?T. (ll)

Ukaézali sme, Ze ak I-trojuholnik ABC, ktorého vietky uhly
maji l-mieru rovnd 60° existuje, pricom jeho l-strany su
e-kruZnice, potom platia vztahy (9), (10) a (11). Teraz
ukdZeme, Ze zo vztahov (9), (10) a (11) vyplyva, Ze popisany
I-trojuholnik neexistuje. Stati teda ukdzat ¢ (WQC) = w.
Oznatme ¢ (WC) = x a ¢ (X CVU) = ¢. PodIa kosinovej
vety je

p=

60



x2 = v% 4 p? — 2upcosp pre e-trojuholnik CVW-a
u? = 9% 4 r2 — 2vrcosp pre e-trojuholnik CVU.

/Zd—

Py o
B
It
U v
Obr. 21

Po vylu€eni clena cosp z obidvoch rovnic dostaneme po
aprave rovnicu

g _ g2 9 2 P _
x v r—{—u - ?q.

Poslednu rovnicu upravime postupne pomocou (11), (9)

a (10):
uo? vl uv

x = u-tv + utv (u + v)?

L
(u+ o)

+ 2) — u] = ( i )2= /8

EY)

re = uy —

(uz—l—vz—l—uv):uv—(ui—vv)z[(u-l-

Tym je dokaz prevedeny pre pripad, Ze a, b, ¢ sa l-priamky
prvého druhu. Ostdva vysetrit eSte pripad, ked jedna a len
jedna z tychto 1-priamok je druhého druhu. To prenecha-
vame Citatelovi (uloha 57).

61



Uloha 57. Nech pre l-trojuholnik ABC, ked 1-priamka
AC je druhého druhu, plati (<X a) = A(<XB)=A(<X
< y) = @. Potom nutne ¢ < 60°. Poznamenajme, Ze tloha
tvrdi viac, ako bolo poZadované v dékaze poslednej vety.

3

g U oWy v
Obr. 22

Uloha 58. Vypottom znovu dokéZte platnost tvrdenia

vysloveného v dlohe 56.
Uloha 59. Na obrazku 21. je nakresleny l-stvoruholmk

“ABCD, pri¢om l-miery l-uhlov < a,< §,<x y su . (Taky

I-§tvoruholnik menujeme I-trojpravouholnik). Da.lc; je
AB l-priamka druhého druhu s absolur.nym bodom
Ueh* a S(AD) = SBC)= U, S(CD) =V je a-bod

l-priamky AD. Dokézte 2 (<X 6) < 7!

Uloha 60. Je dany 1-$estuholnik 4,4,4,4,4;A4, nasle-
dovnych vlastnosti:
1. V§Ctky jeho l-Strany AIAZ’ AzAa, A3A4, A4A5, ASAG’
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AgA, st l-priamky prvého druhu, pricom l-miera I-uhlov
pri I-vrcholoch A4,, A,, A, a 4; je 120°,

2. Ak oznatime S(4; A;,,) =Uiprei=1,2,3,4,5,
potomjee (Ui ) =uprei=1,...,5.

a q

U M v S U
Obr. 23

3. A(X 4,4,40) = 1 (& 45464,) = -

Urdite mnoZinu hodn6t, ktoré moZe Cislo ¢ nadobudat
(v uhlovej miere).

Uloha 61. Na obrizku 22. je nakresleny 1-Sestuholnik
A,A,A4;,A4,A4;4, ktorého 5 1-uhlov je pravych (tj. ich miery
s1190°). Pri oznaceni obrizku je Uy = S(A4; 4 . 1),e(U14y) =
=uprei=1,2,3,4a A,4; je l-priamka druhého druhu
s a-bodom U, € h*. Oznacme efte ¢ (U;4,) = v. Urlite
mnoZinu hodndt, ktoré nadobuda C¢islo A(<X ¢), kde
X ¢ = < A,A;4s. Ako by podobna situicia vyzerala
v e-rovine ? Je nakresleny l-Sestuholnik l-konvexny ?

Uloha 62, Nech p, ¢ st I-réznobezky z ktorych kazd4 je
sibe’ni s l-priamkou a. Ozname U =p' na, V =
=q nd,A=p n ¢ R =a n r,kde r je I-kolmica ve-
dend ]-bodom A ku a. Ak aspofi jedna z I-priamok p, ¢, a
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je druhého druhu, potom A(<x UAR)= A(< VAR).
DokéZte!

Veta 7. Nech I-bod A4 nelezi na l-priamke a. Nech
p * ¢ su stubezky s l-priamkou a vedené l-bodom A.

Obr. 24

Oznalme a' np'=U, @' n ¢ =V. Nech R je pita
I-kolmice r vedenej 1-bodom A ku a. Potom A (< UAR) =
= A(< VAR). (Obr. 24.)

Dékaz. Pre $pecidlne pripady — kedy niektord z I-pria-
mok a, p, ¢ je druhého druhy, bolo tvrdenie vety dokizané
v ulohe 62. V pripade, %e 1-kolmica r je I-priamkou druhého
druhu vyplyva tvrdenie vety okamZite z e-simernosti
voli r. Nech a, p, g, r si1 vSetko l-priamky prvého druhu
a oznalme: M = S(p), L = S(r), N = 8(9), T = S(a),
W e-kolmy priemet e-bodu A4 na 4%, u=¢(TU) =
= ¢(TV) = ¢(TR), m = ¢(TM), 1 =¢(TL), n= a(TN),
w=e(TW), v =¢(AW). Nech A leZi zvonka e-kruZni
ce a. Aplikujme Pytagorovu vetu na e-trojuholnik M WA
(MW) 4+ (AW) = (MU [e(TW) — e(TM))2 + 22 =
= e¥(MU) &iZe (w — m)* 4+ v = (m + u)% Podobne z e-
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trojuholnikov LWA a NWA ziskame (w — I)? 4+ 22 =
= e%(LA) = e(LR) = ¢¥TL) — e TR) = I? — u*a(w —
— n)? 4+ v?* = (n — u)®.. Ak vyludime z poslednych troch
rovnic v, dostaneme rovmice (m + u)® — (w — m)® =
=P —u — (w—I1?=(n— u)?— (w— n)? Cize 2um +
+ 2mu + u? = 2wl — w? = 2wn+ u? — 2nu; dalej z tych-
to rovnic vylidime w a dostaneme rovnost

2m+nu—Im—In — mu=0,
ktorej je moZné dat tvar
+um  (I—wn

m+ u n—u

Posledni rovnost moZno upfavit' na tvar
— (= mP + (P + (P — )

m-+ u
_ —m =D+ m—ur+ F—u) ™
n-—u

Na e-trojuholniky MAL a NAL aplikujeme kosinovu vetu,
priom oznadime /2 — 1 cose(Xx MAL) = x a |[B — w2
cos (X NAL) = y:
(m+ w4 (12— u?) — 2(m + wx = (I — m)?,
m—upP+—u®)—2n—uwy={n—172
Porovnanim poslednych dvoch vztahov s rovnostou (*) do-
staneme

x=y
teda (X MAL) = (X NAL),
alebo A(X UAR) = X(X VAR)



&o sme chceli dokazat. Poznamenajme, Ze v pripade, ked 4
leZi vo vnutri e-kruZnice a bude poradie a-bodov iné, na-
priklad U, M, T, W, N, V, L. Na celom ddkaze sa zmenia
len niektoré znamienka a preto toto prenechiavame Citatelo-
vi. Takychto pripadov je viac.

3.7. Miera tsecky v modeli D

Zatneme definiciou l-miery (dizky) l-use¢ky, ktord je
¢asfou l-priamky druhého druhu. UkéZeme niekoIko jej
zdkladnych vlastnosti a pomocou tychto podame definiciu
I-miery [ubovolnej 1-asecky.

Definicia 15a. Nech 4, B su I-body leZiace na I-priamke
druhého druhu p. Oznaéme P ten a-bod l-priamky p, ktory
leZi na h*. 1-Mieru (digku) 1-uselky AB definujeme pred-
pisom (

e(AP)
MAB) = |loge(AP) — loge(BP)| = (BP) ‘.(12)

Veta 8. Nech 4, B, C su 1-body leZiace na l-priamke

druhého druhu p. Potom plati
L.LMAB) 2 0a A(AB)=0< A4 =B,
I1. A(4AB) = A(BA),

III. 2(AB) + A(BC) = MAC), priom rovnost nastiva
préve ked 1-bod B patri 1-tisetke AC.

Dékaz. Tvrdenia I. a II. st zrejmé. DokdZeme tvrdenie
III. Do znimeho vztahu |u + v|=<|u| + |v| dosadime
u = loge( AP) — loge(BP), v = loge( BP) — loge(CP) a ziska-
me Ziadand nerovnost. Rovnost |# + 9| = |u| + |v| na-
stane prave vtedy, ked jebudu=0a v = 0 tj. (AP) =
2 ¢(BP) z ¢(CP),alebou < 0av =0tj. (4AP) = ¢(BP) =
< ¢(CP), ¢o sme chceli dokdzat.

Uloha 63. Dani je l-polpriamka druhého druhu 4AM

log
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a nezdporné Cislo ¢. Uréite kolko navzdjom réznych l-bo-
dov X hovie rovnici A(A4X) = c.

Uloha 64. Na l-prlamke druhého druhu p je dany 1-bod
A. Urcite mnozZinu vSetkych l-bodov X e€p pre ktoré
A(AX)=1.

b
P | A:A-v A Al . Ai 14
21 0 1 2
Obr. 25

Poznimka 7. DiZka 1 je na rozdiel od @ pevne dand —
neda sa volit.

Uloha 65. Na l-priamke druhého druhu p je dany 1-bod
A. Od tohoto bodu ako zaciatku vyneste na p l-mierku ce-
lo¢iselnych hodnét.

Zatial vieme (euklidovskou konStrukciou = pravitkom
a kruzitkom) vyniest na l-priamku prvého druhu celodisel-
nu I-mierku. Teraz sa naucime vynasat do takejto l-mierky
hodnoty polovi¢né, §tvrtinové, osminove, ...

Priklad 3. Nech 4 = B su l-body néleZiace l-priamke
druhého druhu p. Najdite I-stred S 1-tsecky AB, tj. 1-bod
S € p pre ktory A(AS) = A(BS). (Obr. 26.)

Rie¥enie. Predovietkym je nutné ukazat, Ze 1-bod S leZi
medzi I-bodmi 4 a B. Predpokladajme opak. Nech napri-
klad l-bod A4 leZi medzi S a B. Potom podla vety 8.
(vlastnost III.) )e MAS) + XAB) = A(SB) odkml’ vzhla-
dom na rovnost A(AS) = A(BS)je A(AB)=0t.A=B
o je spor s predpokladom. Rovnako dokiZeme, Ze nie je
moZné, aby B leZal medzi S a A. Preto nutne S leZ{ medzi
A a B. (Pripady A = S & B = S st zrejme nemoZné.)
Pre 1-bod S potom plati
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«4P) &(SP)
e(SP) ¢(BP)

Z dodkazu vety 8. vzhladom na to, Ze S leZi medzi 4 a B
vyplyva, Ze Cisla v hornych =hsolutnych hodnotich su

log log

>
<

@®

Obr. 26

obidve stucasne bud kladné, alebo zidporné. KaZzdopadne je
moZné absolutné hodnoty v hornej rovnici vypustit. Potom
je hornd rovnica ekvivalentna s rovnicou

(AP) _ SP)
«SP) _ «BP) Y

Z posledného vztahu vyplyva jednak jednoznacnost I-stre-
du S a s prihliadnutim ku mocnosti bodu (pozri dodatok
D) ku kruZnici tieZ kon3trukcia:

Nech % je Iubovolnd e-kruZnica idica l-bodmi 4 a B,
T je dotykovy e-bod e-dotyCnice vedenej a-bodom P
(Pep’, P = H) ku k. Potom z vety o mocnosti bodu ku

KkruZnici je
&(AP)-¢(BP) = ¢(TP)
odkial okamZite plynie (13).

. o(AP)-«(BP) = £(SP). (13)
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Uloha 66. Do l-mierky z tlohy 65 dokreslite 1-body
odpovedajtiice hodnotdm — 0,5 a 1,25. (Obr. 27.)

Uloha 67. Nech p, ¢ st dve rozne l-priamky druhého
druhu a 4 = B l-body na p a C je I-bod na 4. a) Popite

Obr. 27

konstrukcie vietkych l-bodov D € g pre ktoré je A(AB) =
= A(CD). b) Popiste konstrukcie vsetkych 1-bodov E € p
pre ktoré¢ B %= E a A(AB) = MAE).

Definicia 15b. Nech 4, B st 1-body leZiace na l-priamke
prvého druhu p. Nech Z = S(p) je a-bod a ozname
X AS(P)Z) = @, (X BS(P)Z) = . 1-Mieru (1-dizku)
l-usecky AB definujeme predpisom

V4

NAB) = |log tg% — log tg-¥-| = | log . (14)

Poznimka 8. Definicia 15b pouZiva a-bod Z, pricom
nie je okamZite zrejmé ¢i vztah (14) nezdvisi od jeho polohy.
Keby (14) od polohy bodu Z zavisel bola by tito definicia
zl4. Prenechdvame (itatelovi, aby sa presved(il, Ze zmenou
a-bodu Z sa Cislo A(4B) nemeni.
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Priklad 4. Nech A4, B su 1-body leZiace na l-priamke
prvého druhu p a C je I-bod leZiaci na I-priamke druhého
druhu g¢. PopiSte konStrukciu vietkych takych l-bodov
D € g, pre ktoré A(AB) = ACD).

P D
9
B
c
A
D,
E A
U P Q Vv
Obr. 28

Riesenie. (Obr. 29.) Ozna¢me p' = {U,V}. Nech r * ¢
je takd ]-priamka druhého druhu, ktorej a-bod R %= H ni-
leZi vnatraj$ku e-polpriamky UV. Ukdzeme najprv, Ze pre
priese¢niky e-priamok UA a UB s r, ktoré oznacime v po-
radi E a F plati

MAB) = AMEF).
Z vety o stredovom a obvodovom e-uhle vyplyva (<t
X AUV = % e (X AS@)V) =T (ak v definicii 15b
vystupujici a-bod Z volime napriklad totoZny s V) a rov-
nako je & (& BUV) = % Podla (14) a (12) je potom
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4

g — -
MAB) = | log i — | 1og AER) : «(UR)

“o(FR) - «(UR) |~

zg7
- «ER) |
= |log (FR) |~ MEF).
r
F q
.

E

B/ A c
P
h Q M

Obr. 29

Zvysok konStrukcie je zrejmy podla obrizku 29; je opako-
vanim dlohy 67.

Uloha 68. Nech 4 = B st l-body l-priamky prvého
druhu p. PopiSte konStrukciu oboch l-bodov X €p pre
ktoré je 24(XA) = A(AB).

Uloha 69. Dok4Zte nasledovnti kontrukciu l-stredu S
l-useCky AB, ak AB je 1-priamka prvého druhu, oznafend
p. Nech p’' = {U, V} a nech M je prieseénik e-priamok
UA, VB. S je priesecnik l-priamky p a e-kolmice vedenej
1-bodom M ku e-priamke A*.

Nauéili sme sa I-dIZky prenasat z l-priamky prvého dru-
hu na ]-priamku druhého druhu a naopak. Tym pidom

71



vietko, ¢o sme vedeli doteraz previest pre l-priamku dru-
hého druhu, vieme vykonat uZ aj pre l-priamku prvého
druhu.

Doteraz sme o I-krunici nehovorili. V ramci modelu B

e

T q

\A q
v

Obr. 30

by bola tloha hodne obtiaZna. V modeli D 1-kruZnicu za-
vedieme a podime aj jej konStrukciu.

Definicia 16. Nech S je I-bod a r kladné ¢islo. MnoZinu
vietkych 1-bodov X pre ktoré A(XS) = r nazveme 1-kruz-
nicou a oznaCime k(S, r); 1-bod S nazveme l-stredom
a &islo r 1-polomerom 1-kruZnice k(S, r).

Veta 9. Ka¥da l-kruZnica je e-kruZnicou, ktorej vietky
e-body su I-bodmi. Kazda e-kruZnica, leZiaca celd v l-ro-
vine 4 je aj I-kruZnicou,

Dékaz. Obrizok 30. Nech je dand l-kruZnica k(S,r)
a nech 4 = B s jej I-body leZiace na l-priamke p = SH.
Nech m je e-kruZnica zostrojend nad 4B ako e-priemerom.
Ak X € &(S, r) je 1-bod rdzny od A aj B, potom |-priamka
g = SX je prvého druhu, pretoZe jedina l-priamka druhé-
ho druhu iddca 1-bodom § je p a X € p. Oznaéme ¢’ =
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= {U, V}. Podla prikladu 4. e-priamka AX prechidza bud
a-bodom U, alebo a-bodom V, pretoZe podla definicie 16.
je A(SX)= (SA)= A(SB). e-Priamka BX potom pre-
chidza druhym z a-bodov U, V. Podla Taletovej vety

(vzhladom ku e-kruZnici ¢) je &< AXB) = g a teda

X e m. Ak naopak X e m, A = X = B, potom konitruuje-
me a-body U, V ako prieseéniky A* s e-priamkami v po-
radi AX, BX a l-priamku ¢ z podmienky ¢' = {U, V}.
Oznaéme S’ prieseCnik l-priamky ¢ a p = AB. Potom
podla prikladu 4. je A(AS") = A(XS") = A(BS’). PretoZe
S aj § su l-stredy l-useCky AB, je S= 8" ateda X e
€ k(S,r). Z dokdzanych vztahov X €k > Xema Xe
em=Xek vyplyvam < k a k < m, CiZe £k = m. Tak
sme ukazali, Ze kaZda l-kruZnica je e-kruZnicou.

Nech dalej je m e-kruZnica leZiaca celd v 1. Z predo§lého
vyplyva, Ze m = k(S, r), kde (S, r) je l-kruznica, pri¢om
urcenie l-objektov S, r je patrné z obrazku 30.

Poznamka 9. Vzhladom na tvrdenie vety 9. nie je prilis
nutné rozliSovat medzi pojmami l-kruZnica a e-kruZnica.
Ak napiSeme len ,,kruZnica £ (a z kontextu je zrejmé, Ze
k < 1), potom je pasa re€ jasna. Ak vSak napiSeme ,,kruz-
nica (S, r)*, potom vdbec nie je jasné, i S a r si1 e-objek-
ty, alebo 1-objekty. e-Stred a I-stred tej istej ,,kruZnice* si
vZdy dva rézne I-body.

Uloha 70. Udajte konstrukciu l-kruZnice %(S,r), ak
poznite: a) tri jej 1-body, b) jeden jej I-bod, a jej I-stred S.

Uloha 71. Uka¥te, %e v l-rovine neplati Talesova veta.

Uloha 72. Doké¥te, %e v l-rovine neplati Pytagorova veta.
Dokaz prevedte pre l-trojuholnik nakresleny na obrazku
32. Obrizok je e-sumerny podla e-priamky CW, e-priamky
AU, h* sli e-kolmé a ¢ (< UCV) = 90°.

V l-rovine existuja dve stibeZky vedené 1-bodom ku da-
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nej l-priamke. Vznikd prirodzend otézka: aki je miera ich
I- uhla, alebo presnejsie, na ¢om toto Cislo zavisi. RieSeniu
tejto otazky venujeme ulohy 74., 75. a vetu 10., ktora po-
déva vyCerpdvajicu odpoved na polozenu otézku

Uloha 73. Nech 4 je 1-bod leZiaci mimo l-prlamky a, R
pita l-kolmice r vedenej z A ku a, Ued’. Cislo d =
= A(AR) vyjadrite pomocou ¢&isla ¢ = A(<x UAR) v pri-
pade, Ze r je druhého druhu.

Uloha 74. Predosli ulohu rieste v pripade, e r je prvé-
ho, ale a druhého druhu.

Uloha 75. Ulohu 73. rieste v pripade, Ze a aj r st prvého
druhu a l-priamka p = AU je druhého druhu.

Veta 10. Nech R je I-kolmy priemet I-bodu A na 1-priam-
ku a neprechadzajiicu 1-bodom A4. Nech U € a’, potom pre
islad = 1 (AR) a ¢ = A (<X UAR) plati vztah

d = log cotg % (15)

Dékaz. Predpokladajme, Ze l-priamky a, r = AR,
p = AU su prvého druhu, pricom U leZi medzi T = S(a)
a P = S(r). Z vety 7. je zrejymé, Ze uvedena volba nie je na
ujmu vieobecnosti. Ozna¢me este Q = S(p), (< PAQ) =
=a, &< RPA)=p, &< TPR)=y. Pomocou Cisiel
a, B, ¥ vyjadrime postupne skoro vietky e-miery e-uhlov
z obrazku 35. Z ¢(PA) = ¢(PR) vyplyva e(<): RAP) =

= (< ARP) = % £ 532 e(% TRP) = vyplyva

(< RTU) = —’2’—_ » a odtial zase e(< TRU) = <

U2 j _3._
T—i—T.Preto;es({RUP)— 2" 3
as( URP)=%—%. PretoZe je e(< APQ) = n —

% TUR) =
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—(B+v)iee(xPOA) =B+ y — aatedae(x UAQ)=
= (% AUQ) = —’2’— + 97877 Ronetne teda o(<

2
5 UAP) = % — Wae@:mm: et
PouZijeme sinovi vetu na e-trojuholniky AUR a AUP
a dostaneme
sine(X URA) _ sine(<X RAU)

(AU) | RO

sine(x UPA) _ sine(x UAP)
eAU) o PU)

. (3 B+y
in (2 - £47)
a-+y

sin ———

2
sin(B+7)

. a+B+7y\ "’
m(?“___ﬁ_—)
V e-trojuholniku RUP podla sinovej vety plati

§RU) & PU)

3 —_ b
stny N
‘"‘(T 2)

&o po porovnani hornych vztahov dé reliciu medzi «, §, y

. (3 B+
s (TR———Z—)
a+y

sin —x—"—
2

odkial

e(RU) = s(AU) =

= s‘(PU)




sin{ — — _y_)
sin (B + ) 4 2
A E _a+ g+ siny )
s (7 —2 )
Pri oznadeni a = 20,8 + y = 29, y = 2 vy mbdZeme hor-

ny vztah upravit takto (overte zmysel nasledujacich zlom-
kov)

V— V2 -
(coso +- sino)  sin20 2 (cosy — siny)
sm(w+o) T sn2y T cos(p+o)

alebo
COSp COSG — Sing sin @
sinycosc + cosysing
__ sinpcosp  cosy — siny
T sinypcosy ~ coso + simp °
alebo
l—1gotgo g0 1—1ngy
gyt+uyo gy " l+ige’
odkial
gy
1go=—>",
& Igeo
Je teda
bty
¥ go
d=log—— = lg— log cotg o = log cotg a.
Y gy

Ak uvaZime, Ze ¢ = A(X UAR) = ¢ (< PAQ) = a, je
(15) dokdzané pre ten pripad, e a, r, p si prvého druhu.
Ostédvajice pripady si dokdzané v tlohich 73., 74., 75.
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Definicia 17. Nech 1-bod A neleZi na l-priamke a, pre
ktora @’ = {U, V}. Potom l-mieru l-uhla UAV, 1j. &islo
A (< UAV) menujeme velkostou uhla 1-rovnobeznosti 1-bodu
A a l-priamky a. Struéne, ale nepresne sa hovori o uhle
rovnobeZnosti,

Poznimka 10. Veta 10. hovori, Ze ,,uhol rovnobeZnosti
zavisi len od dlzky d = 4 (4R) a to podla (15)*. Toto vy-
znalné tvrdenie nesie ndzov Lobacevského. Miesto A(AR)
pise sa Casto, podla Lobacevského IT (4, R).
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RIESENIA ULOH

Kapitola 1.

1.4,4,3,1,2,1,4,4,4,3,1, 2,4, 1, 4, 2, 1. Pojem ,,ne-
lezat na* nie je zidkladny, ale definovany, rovmako ako
s;obsahovat*.

2. Termin ,,nepalit sa“ nebol zavedeny a preto nema
zmysel. Kvdli stru¢nosti dalsieho vyjadrovania je vhodné
ho zaviest, pozri definiciu 1.S.V dokaze treba slova ,kto-
rému sa diev¢a a nepac¢i‘‘ nahradit slovami ,,Ze nie je prav-
da, Ze dievca a se chlapcovi 4 paci“.

3. Nech 4, B, C su chlapci popisani v dokaze vety 2.S.
Nech existuje dievéa x tak, Ze v ilohe uvedend implikdcia
nie je pravdiva, tz. A ¢ x, Bex, Cex. Potom zo vztahov
a = BC, x = BC vyplyva podla S, a = x. Vztah Aex
implikuje potom reliciu A4 ¢ a &o je spor s faktom dokaza-
nym v dokaze vety 2.S.

4. Hladany X definujeme predpisom {X}=a n &.
Dievéatd a, b, XC st navzijom rdzne a kazdé sa padi
chlapcovi X.

5. Prva &ast (lohy je jednoduchd, druhi je dosledkom
vety 5.S.

6. Kazdé z pismien mnoZiny Ch sa nachidza aspoil vo
dvoch rdéznych slovich mnoZiny D.

7. V redi uvedenej tabulky incidencie maji axiomy S, —
— §; tento tvar:

S,: Ku kaZdym dvom riadkom existuje aspoii jeden
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stlpec tak, %e oba riadky vo §tvoréeku tohoto stipca
maja 1.

S,;: Ku ka’dym dvom riadkom existuje najviac jeden
stipec tak, Ze obidva riadky vo Stvordeku tohoto
stipca maju 1.

S,: V kadom stlpci st aspori dve rézne &isla 1.

S,: V ka¥dom stlpci existuje asposi jedno &islo 0.

D

(]
g g
w | B < | § 2
Rlalaal|lo|¥lalz|a|a
all1| 1|00 1)0]0]0]O0]|O0
el O] 1|0}l 1T]OoO]1T]O0O|1]0/|1
i |1 ]0]1]0]O0 0o 0|0} O

Ch

o|l1]|]O0O]J]O]O]|]O]O|1]|1]0]|O0
u| 0|01 ¢1y1]]0(1]|]0]1(|0O
y|1 0[]0 ;0[O0 ;0([O0,0(1]1

Tabulka incidencie modelu S,.

8. Vyrok V je a) pravdivy, b) nepravdivy — pre p =
= Descartec a P = pismeno # si ¢; = Study, ¢, = Lu-
dolf, ¢, = Dupin, ¢) pravdivy, d) nepravdivy.

9. Nech Ch = {4, B, C, D}. Potom mnoZina D podla
S, obsahuje 6 prvkov a to: 4B, AC, AD, BC, BD, CD;
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podla S, D iné prvky obsahovat neméZe. MnoZina D je te-
da maximdlne 6 prvkovd, no moéZe obsahovat aj menej
prvkov, ak niektoré z diev€at hore uvedenych budi totozné.
PretoZe podla ddsledku vety 5.8 je D aspoii trojprvkova ne-
existuje diev¢a paciace sa vSetkym Styrom chlapcom. UvaZi-
me dva ostdvajuce pripady.

1. Nech existuje diev&a a padiace sa trom réznym z chlap-
cov A, B, C, D. Bez ujmy na vieobecnosti méZeme pred-
pokladat, %e si to B, C, D. Potom dievEence b = 4B,
¢ = AC, d = AD su navzijom rdzne, pretoZe z b = ¢ by
vyplyvalo 4 ¢ BC = a, o je spor s horeuvedenym faktom
existencie troch rdznych dievcat.

I1. Nech neexistuje diev€a x piciace sa trom rdznym
z chlapcov 4, B, C, D. Potom diev&ence p = 4B, ¢ = AC,
r = AD, s = BC, t = BD, u = CD st popir rozne.

Existuja dva modely hfadanych vlastnosti. Oznaéme ich
S¢ a S;. Ich incidenéné tabulky pri hornom znadeni st

D
a b ‘ c | d
A 0 1 1 1
B 1 1 0 0
Ch
C 1 0 1 0
D 1 0 0 1

Tabulka incidencie modelu Sq.
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D
P q r s t u
A 1 1 1 0 0 0
B 1 0 0 1 1 0
Ch
Cc 0 1 0 1 0 1
D 0 0 1 0 1 1

Tabulka incidencie modelu S,.

10. Nech b, ¢ s dve rozne priatelky diev¢ata a pre ktoré
AcbajAecad¢a. Podla axiomy S, existuja chlapci B, C,
D, E tak, Zze Beb, Cec, Dea, Eca, pri¢om B A *+C
a D % C. Sua teda 4, B, C, D, E navzijom rézne body
a preto model teérie S v ktorom je vyrok V nepravdivy mé
minimalne 5 bodov. Nech teda Ch = {4, B, C, D, E}.
Potom D obsahuje okrem ¢ = DE, b = AB, c = AC eite
diev&ence AD, AE, BC, BD, BE, CD a CE. Spomedzi
tychto desiatich dievéat moZu niektoré splyndt. Lahko sa
presvedCime, Ze s diev€atom a nemdZe splynut Ziadne iné
dieva; podobne s dievéatmi b, ¢, AD aj AE nembZe
Ziadne iné dieva splynif. MéZe teda byt BC = BD
(= CD), alebo BC = BE (= CE), prifom zrejme mbZe
nastat len jeden z pripadov. Oba pripady sa odlifuji len
oznaCenim a preto ich moZno pocitat za jeden. Existuju
preto dva modely, ktoré oznafime Sg a S, a zaddme ta-
bulkou
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D
a | b | c |AD|AE|BC|BD|CE|(BE|CD
A| O 1 1 1 1 0 0 0 0
B | O 1 0|00 1 1 1 0
Ch cjojlof{1/0f[0]|1]0O0 0|1
D 1 0 0 1 0 0 1 0 1
E T 0 0 0 1 0 0 1 0
Tabulka incidencie modelu S,.
D
, a b c AD | AE | BC | CE | BE
A 0 1 1 1 1 0 0 0
B 0 1 0 0 0 1 0 1
Ch clojo|l1]|o]o|1|1]o
D 1 0 0 1 0 1 0 0
E 1 0 0 0 1 0 1 1

Tabulka incidencie modelu S,.

11. Model 1 nie je modelom teérie &, lebo nespitia

axiomu S, pre body 4 = B, pre ktoré S € AB.

12. MnoZinu D roziirime o vietky priamky idice bo-
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dom S a obdrZime model S;,. Toto nie je jednoznadné.
Mohli sme ziskat iny poZadovany model, keby sme ku D
z M pridali vietky dvojice (4, B) bodov z roviny takych, Ze
A * B a AB je priamka idica bodom S.

13. Napriklad: @,: Ch mnoZina vSetkych bodov na
priamke p, D mnoZina vSetkych polpriamok na p, ¢ je €;
alebo: K modelu S, do mnoZziny D pridime prvok ,,Lie*;
@;: Ch je mnoZina vSetkych bodov na kruZnici k, D obsa-
huje jediny prvok a to kruZnicu k.

14.Z S, vyplyva S,, teda z S,, S,, S,, S; a S; vyplyva
veta 4.5, ktora je v spore s Sg.

15. Prvé tvrdenie vyplyva z existencie modelu S, & S,
druhé z existencie modelu S, ¢i S, alebo S;.

16. Vyrok 1 W 2znie: Existuju aspofi jeden P e Ch
a asponi jedna p € D tak, Ze P ¢ p a pritom pre kaZdé x € D
plati Pex = x je nepriatelkou p. Vyrok 71 V znie:
Existujd PeCh, peD, ¢q, €D a ¢,€D tak, Ze P¢p,
Pe g, Pe gy g, = gy 2 gy 8j g, st priatelkami p.

17. VSetky Styri sGstavy st bezosporné, pretoZe existuji
ich modely. a) S, alebo S,;; b) S, alebo S¢ (pozri tilohu 9);
©) S4, alebo S;; d) S,, alebo S, (pozri tlohu 9).

18. Podla 7} S; existuje p € D tak, Ze pre kaZdého chlap-
ca X plati X ¢p. Nech g € D. Podla S, existuji chlapci
A = Btak,2e Ae q, Be q. Podla S; je potom ¢ = AB =
= p tz. D = {p}. Dokdzanid je prvd implikicia. Druhd
implikicia vyplyva z logického rozboru vyrokov V a W
(pozri dodatok A). Obidva uvedené vyroky maju Struktiru
P - Q, pri¢om Cast P = ,,diev¢a p sa nepaci chlapcovi P*
je spolocnd pre V aj W. PretoZe D je jednoprvkova, plati
P e p pre kazdé P e Ch a kaZdé (totiZ ono jediné) p € D,
teda P je nepravdivy a preto vyrok P = @ je pravdivy.

19. V dlohe 17d) bolo dokizané, Ze uvedend ststava vy-
rokov je bezosporn4, teda méZeme hovorit o stistave axiom.
Podédme modely R;, R,, Rs, Ry Rs, Rg R; také, Ze R
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(i=1,...,7) vyhovuje vietkym axiomom S, ...,S;,
V,Ws nasledulucmn vymmkarm v modeli R;, narmesto
Sl plati vyrok 71 S; pre i=1,...,5, v modeli Ry na-
miesto V plati 7] V, v modeli R, ‘narmiesto W plati 77 W.
Modely st napriklad tieto (rieSeni je mnoho): R, = @,
(pozri priklad 8. &linku 1.6.). R,: D je dvojprvkovi, skladd
sa z dvoch rovnobeZnych réznych priamok a, & a Ch je
mnoZina vietkych bodov na g, aj b; ¢ je €. R;: Ku mnoZine
D v modeli S; pridime eSte jeden prvok a to mnoZinu
vietkych bodov roviny okrem jedného, pevne zvoleného;
¢ je €. Ry: Model popiSeme tabulkou incidencie

D
a b ¢ u v w
A 1 0 0 0 1 1
Ch B 0 1 0 1 0 1
C 0 0 1 1 1 0

Tabulka incidencie modelu R,.

R;: MnoZina D je jednoprvkovd a Ch dvojprvkovi, teda
D = {a}, Ch ={B, C}, pricom Bea a) Cea. Rg =

= S4-R7 = Sl'

Kapitola 3

1. 7 E: Existuje aspoti jeden bod P a aspo1i jedna priam-
ka p tak, e P ¢ p a mnoZina priamok x nepretinajucich p
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a prechadzajicich bodom P je bud prizdna, alebo aspott
dvojprvkova.

1 L: Existuje aspoii jeden bod P a aspon jedna priam-
ka p tak, Ze P ¢ p a horeuvedend mnoZina priamok x je
bud prédzdna, alebo jednoprvkova.

71 U,: Ziadny Stvoruholnik nemd vietky Styri uhly pra-
vé.
2. Tvrdenie a) je pravdivé, tvrdenie b) nie je pravdivé,
pretoZe v pripade existencie bodu P a priamky p tak, Ze
P ¢ p a mnoZina priamok x (z dlohy 1) je prazdnma, je
71 L pravdivy a E nepravdivy.

3. Obidve tedrie G a &' st ekvivalentné. Odlisujua sa len
v jazyku, ktorym hovoria; ka?dé tvrdenie T tedrie S sa dd
preloZit podla (s) do tvrdenia T’ teérie &', a pritom T’ je
pravdivé prave vtedy, ked aj T je pravdivé. Medzi vyrokmi
E, V' a W’ plati ekvivalencia: E < (V' a W),

43) V=1L tz. L="1V'; b) TW="L tz
L-W.

5. Vyrok E je pravdivy len v modeloch S’3, S';. Vyrok
L je pravdivy len v modeli S's.

6. Pravdivost L overime lahko, ostatok podla tlohy 2.

7.a)R, O, X;b)M,R, 0, X, Y, Z;c) M, Y, Z; d) a,
byc;e)a, b, ¢, u.

8. C,C,, 07,20, C\Z, c.

9. Symbol ,, XY znadi ,l-priamka XY*“. Symbol
»e-priamka X Y* ma zmysel vidy, lebo podla predpokladu
je X = Y. Symbol ,,XY*“ ma zmysel prive vtedy, ak
e-priamka XY je senicou e-kruZnice 4.

10. a) Z; b) a’; c) symbol nemd zmysel, lebo ani symbol
MZ nema zmysel; d) ¢ tj. mnoZina prizdna.

11. Ozna¢me ¢’ = {Q,, Q,}. Potom hladané 1-priamky
su p, = PO, a p, = PQ,. )

12. MnoZ%ina {a’y, ..., a'n} ma naviac 2n prvkov. Nech
U, V su také dva jej prvky tz. a-body, Ze jeden z oblikov
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UV e-kruZnice & neobsahuje Ziadne iné a-body mnoZiny
{d'ys ..., a'n}. Potom napriklad x = UV.

13. Nech A €a’ a Beb' su rozne; potom napriklad
p = AB. _

14. Nech 4, B, C, su tri navzdjom r6zne a-body. Potom
napriklad @ = BC, b = AC, ¢ = AB. Dékaz dalej pomo-
cou vety Paschove;j.

15. Ozname o' = {4,, 4,},b’ = {B,, B,}. Budeme uva-
Zovat dva pripady. Nech najprv a, b s subezky a nech na-
priklad A4, = B,. Potom M je mnoZina l-bodov leZiacich
vautri e- polroviny B,B,A4,. Za l-priamku x moZno volit
bud XB,, alebo taku l-priamku, pre ktoru X je e-rovnobez-
né s b. Ak naopak X € x, kde x je 1-rdznobezka s g a l-rov-
nobe?ka s b, potom e-usecka x leZi vnitri e-polroviny
B,B,A, a teda aj I-bod X tu leZi. Nech su dalej a, b roz-
beZky, tz. a-body A4,, 4, B,, B, su navzijom rdzne.
Vhodnou voIbou indexov dosiahneme, aby 4,B, a 4,B,
boli I-réznobeZzky a spoloény 1-bod oznacime Q. Potom M
je zjednotenie mnoZin vnutornych l-bodov e-polroviny
B;0A, a vnuatornych 1-bodov e-polroviny B,0A,. Dékaz
sa dd previest podobne ako v predchddzajucom pripade.

16. Nad e-tseckou BC ako priemerom zostrojime e-kruz-
nicu k. Nech U ek n h Potom e-uhol BUC je pravy
a preto a-body V' a W, V = U = W v ktorych. e-priamky
UC a UB pretnt e-kruZnicu £ su diametrilne v 4. Teda
a=VW,b= UW,c = UV. RieSenia st dve, jedno, Ziad-
ne prive ked mnoZina 2 n % je dvojprvkova, jednoprvkova,
prazdna.

17. Vzijomna poloha je devitnastorakd, ak neprizerime
ku symetrii. Bez ujmy na vieobecnosti mézeme B a D po-
vaZovat za a-body. Nech je p l-priamka 4B a ¢ I-priamka
CD a p, resp. ¢, l-polpriamka 4B resp. CD. Uvazime Styri
pripady:

1. p = ¢. Nastdva tychto pit pripadov pre vzijomnua polo-
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hu l-polpriamok AB, CD: 1. AB < CD, 2. CD < AB,
3.B=D,A=C,tz. AB n CD = {A},4. AB n CD je
l-asetka AC, A = C, 5. AB n CD je prazdna mnoZina.
2. p, ¢ su subeZky so spolo¢nym a-bodom U. Potom nasté-
vaju Styri pripady: 1. B=D=U, 2. B=U %D,
3.BU=D,4B=x=U=D.

3. p, ¢ st rozbezky. Potom nastava jediny pripad.

4. p, g su rdznobezky. Potom nastdva devit pripadov:
Lppng=q np=0,2.png9=0, ¢ np={C}h
3qnp=0png={4}, 4p ng=0, Céq n
Np£0,5qnp=0, Aépy n¢g*0,6.p, nq =
={4} ={CL,7.p n ¢ ={C}*{4},8.4=C,9.p, n
Ng%x0, A¢ps n g, Cé¢p, n ¢, Pripady symetrické
si1, podla naseho Cislovania: 1.1 a 1.2, 2.2 a 2.3, 4.2 2 4.3,
4.4 a 4.5, 4.6 a 4.7. Po od¢itani symetrickych pripadov
ostdva 14 réznych vzdjomnych pol6h dvoch réznych 1-pol-
priamok. ‘

18. Pozri obrdzok 4. na ktorom je M vysrafovand. Do M
patria otvorené 1-useCky AB, a AB, aj 1-bod A, nie viak
l-polpriamky B,Q a B,Q. Pre X ¢ M je bud XP,, alebo
XP, l-priamka nepretinajica ani p, ani l-polpriamku
¢; = AQ. Ak naopak X € M a napriklad X je 1-bod 1-pol-
roviny AQB,, potom kaZda e-priamka x idica 1-bodom X
a nepretinajuca I-polpriamku ¢, pretne, podla Paschovej
vety aj e-useCku OB, aj 1-usecku B, 4, tito viak nie v bo-
de A. Preto e-priamka x pretne aj e-useCku P, P, v jej
vattornom bode.
19. Jednoznaénost zobrazenia p je zrejma. Nechx e 7 U

U {s}.Potom 1. pre x = {s} iddcu bodom § existuje jediny
smer X €s kolmy na x, 2. pre x = {s} existuyje v U s
jediny prvok X (a to bod §) pre ktory p(X) = x, 3. pre
x # {s} neidiicu bodom § oznalme Y pitu kolmice vede-
nej z S ku x. Na polpriamke SY existuje jediny bod X
splfiajici rovnicu (SX) &(SY) = r%.
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20. Prvé tvrdenie vyplyva zo simernosti podla priamky
XS (aj v tom pripade ked X je smer). Druhé tvrdenie je
zrejmé, ak uvaZime tri pripady podla definicie 5.

21. PretoZe X € h < e2(XS) = r2, je prvé tvrdenie zrej-
mé. Druhé tvrdenie je dosledkom predchidzajaceho tvr-
denia.

22, Oznatme N = MM, n SM (obrizok 5). Z pravo-
uhlého trojuholnika SM, M podla euklidovej vety vyplyva
&(SN).e(SM) = ¥(SM,) = r? lebo M\N | SM.

23. Diskutujme jednotlivé pripady. Ak X = S, potom
Sey=>P(»)esep(S). Ak X =S a y = XS, potom
P(y) je smer kolmy na y a p(X) priamka (podla ulohy 20)
kolma na y. Teda P(y) € p(X). Ak konecne je S £ X e A,
S €y, potom pre body V a W (definované, ako v dokaze
vety 2) plati &(SV).e(SW) = ¢(SX) = r?, lebo bud je
X =V = W, alebo je SXW pravouhly trojuholnik, v kto-
rom sme uZili euklidovu vetu.

24. Nech M lezi vnutri h. Nech x = y st priamky iduce
bodom M. Potom x, y pretinaju % a vieme konStruovat
body P(x), P(y). Z vety 2. vyplyva p(M) = P(x)P(y)
Obdobne (obr. 7) ak m je priamka pre ktorim n 2 = 0,
zvolime X = Y na m. Znovu podla ulohy 22. zostrojime
priamky p(X) a p(Y), potom z vety 2. vyplyva P(m) =
= p(X) n p(Y). Na obrazku 7 je volené Y na p(X), kvoli
strudnosti konStrukcie.

25.Z m T n je podla definicie P(7) € m, P(n) je i-bod
a preto existuji e-doty¢nice z P(71) ku 4; dotykové a-body
U, V leZia v opaCnych polrovinach vytatych e-priamkou i,
preto m a n sa pretnu v I-bode.

26. Jedint, ak m je rozbeiné s n, inak Ziadnu. Z poZia-
davky m T x T n totiZ vyplyva x = P(m)P(n), ak toto mi
zmysel.

27. DokiZeme sporom. Ak ABCD je 1-§tvoruholnik pre
ktory ABT BCT CD T DA T AB, potom rozbezky



AB a CD maju dve spolo¢né rozne 1-kolmice a to AD a BC,
¢o je v spore s tvrdenim predchiddzajicej dlohy.

28. e-Tetivy p, g s e-rovnobezné, pretoZe podla pred-
chidzajuceho prikladu z Sem, p T m T ¢ vyplyva
pLml g tedapl|lg.

29. a, b s rozbezky, lebo a, b maji spolo¢ny i-bod resp.
smer P(q).

30. Nech U je a-bod. Na }-polpriamke SU najdeme vset-
ky 1-body X hladanej mnoZiny. Oznaéme x = ¢(SX), po-
tom e(SU) = e(SV)=raeXU)=r — x,e(XV)=17r +
+ x, kde V = U je a-bod l-priamky SU. Podla (8) je

. . r(r+ x)
a—l(SX)—lag—r(r_x),
odkial
_r+x . 22—
L R e s E

Na l-polpriamke SU existuje a to jediny 1-bod X hladanej
mnoZiny. Ak teda U prebehne celé %, potom X prebehne
vietky body e-kruZnice so stredom S a polomerom x.
Hladan4 mnoZina je teda e-kruZnicou.

1-Bod M pre ktory 2 ¢(SM) = r leZi na horepopisanej

L 4. ked plati

e-kruZnici prave vtedy, ked je x = 3

21 1 wen—3 ditea—log3
2+1 2 =% = 108 2.

31. Oznaéme V' =+ U a-bod l-priamky AU ae (AU) = u,
e (AV) = v, ¢ (AX) = x, potom

u(lv+ x) _u(v+x)
vu—2x)""" ovm—1x)

1 =1(A4X)=log
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teda

0<x—L <u
T ut2v0 )

Odtial vyplyva existencia a jednoznaénost 1-bodu X.

Konstrukciu l-bodu X prevedieme napr. pomocou vety
o mocnosti bodu ku kruZnici — pozri dodatok D. Zostroji-
me pomocny e-bod W neleZiaci na e-priamke AU tak,
aby ¢ (AW) = u 4 2 v. Nech Y je e-priese¢nik e-priamky
AW s e-kruZnicou k opisanou e-trojuholniku UVW.
Z mocnosti 4 ku % je

(AU). (AV) = £(AW).e(AY), tize e(AY) = +”Zv

e-Di¥ku ¢ (AY) prenesieme na 1-polpriamku AU. Pozna-
menajme, Ze vo vhodnom pripade méZeme e-kruZnicu 4
pouzit v ulohe e-kruZnice .

32. Existenciu 1-bodu M dokdZeme, ak dokiZeme plat-
nost vztahov

0 < Vcw (Jub — Jav) <u— a.

Oznatme ¢ (UV)=d tj. d=a + v = b + u. Zo zrejmej
nerovnosti d < u + v za predpokladu #« — v > 0 vyplyva
du—v) <u*— o4 Cize wb=u(d—u) <v(d—9v)=
— va, alebo |/ub — Jav < 0. Podobne zo vztahuu — v <
< 0 doké¥eme |/ub — |/av> 0, teda prva z poZado-
vanych nerovnosti je dokizani. Z dokizaného vztahu
/bu < Jav (stile za predpokladu v < u) dostivame po-

stupne o
— v
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v+a<u-+ ]/El/%
uv + au <Vabu'v-}-u2

z Coho vyplyva aj druhd z poZadovanych nerovnosti. Ana-
logicky pre pripad # < v.

33. Rovnost x = |/av ll%:—v—av— budeme postupne

u
upravovat. Roziirime zlomok &islom d. Citatela mdZeme
upravit nasledovne

d (Jou — Vav) = Vbu (a + v) — Vav (u + ) =
= (Juw — Jab) (J/bo — | au).

Menovatela upravime takto

d (@ —u) = (Jbv + Vau) (b — Jau).
Potom takto upravenej rovnost moZno dat tvar (ak Vau =
# |/bv)

a dalej

x (Jbv + Jau) = v Jau — a|/bv-

(@+ x))bo = (v — x) Jau.
Po umocneni poslednej rovnosti prideme ku vztfahu

vi@+x) u(v—x)
alw—=x) bla+x

Logaritmovanim poslednej rovnosti ddjdeme kone¢ne ku
vztahu
A(AM) = A (BM).

34. Nech ¢ (ZS) : € (ZM) = c. Z e-rovnolahlosti podla’
stredu Z a koeficientu ¢ vyplyva &(SP)) = ¢ (SP,) =
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— c.e(MQ,) = c.c(MQy), ¢ (RP,) = c.e(NQ,), e(RPy) =
= c.e (NQ,). Vyjadrime A (SR) a A (MN) podl’a (8) a po-
uzijeme hornych vztahov.

35. Stadi njjst jediny konkrétny pripad pre ktory uvede-
na veta neplatl. Volime preto p prechédzajicu 1-bodom §
a l-priemety A’, B’, C’' 1-bodov v poradi 4, B, C do p tak,
aby S = B’ a tento l-bod bol l-stredom l-usecky A'C’.
Podla predoslej tlohy je ¢ (A4") = ¢ (CC") — ¢ (BB'), no
podla prikladu 1. je 44’ || BB’ || CC’ 1 p, teda l-body
A, B, C nelezia na l-priamke. Poznamenajme, Ze uvedena
veta je nepravdiva pre [ubovolnu volbu objektov p, 4, B, C.

36. Nech V resp. W je a-bod 1-priamky p resp. g rdzny
od U (pozri obr. 10). Ak 4 = B potom X = C je jediné
rieSenie. Nech A4 % B. Oznaéme G = AC n VW, F =
= BC n VW, potom podla Pappovej vety si X, = ¢ n

n AF, X, = q n BG hladané 1-body. V pripade, Ze
AC || VW bude e-bod G nahradeny e-smerom VW, CiZe
AC. Podobne, pre BC || VIV. :

37. Ak p, ¢ su subeZky je to iloha 36. V opaénom pripa-
de zostrojime pomocni l-priamku r subeZni s p a ¢ a na
nej Tubovolny I-bod R. Dvojnasobnym pouzitim tlohy 36
dostaneme najprv l-body Y, Y, na r a konecne X, X,
na q tak, 2e 1(4AB) = A(RY,) = 1 (RY, = A(CX)) =
= 1(CX,).

38. 1-Uselku AB prenesieme na pomocnu subeZku ¢
s I-priamkou p a pouZijeme ulohy 36.

39. Nech U = V st a-body hladanej l-priamky AB,
C je l-stred l-useCky AB, Q = P je a-bod l-priamky PS.
Bez ujmy na vieobecnosti méZeme predpokladat e-polo-
mer r e-kruZnice /4 rovny 1. Nech ¢ (SA) =4d,0 <d < 1.
PretoZe zrejme ¢ (SB)=d je C e-stred e-iseCky AB,
tez e (AU) = ¢ (BV), e (AV) = ¢ (BU). Podla vztahu (8)
je teda
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e(PS).e(AQ) _, 1+d
(AP):(SQ) ~ *T1—d’

e(BU).c(AV) _, (a+dsinay?
c(A0).c(BV) g(a—dsina)’

A(SA) = log

2(AB) = log

kde
a=&(UC)= |/e2(US) — 2 (CS) = |1 — d2cos?a.

Po dosadeni hornych vyrazov do Ziadanej rovnosti 1 (S4)=
= A(A4B) dostaneme

l1+d 1—d%os2a+2adsina
1—d 1 —d%o0s2a—2adsina’

¢o moZno upravit na tvar
dtcos?2a+ 2d2(1 —2cos*a) —3 + 4cos2a=0. (¥

V tejto kvadratickej — vzhladom na d? rovnmici, ur¢ime
najprv diskriminant
%D =(2cos*a— 12— cos?2a.(4cos?a — 3) =
=4(cosPa —4cosba+ 6costa—4costa+ 1)=
=4(cos?a— 1 =458 a.
Potom je (predpokladiame cos 2 a + 0)

2c¢costa—1—2sinta
2 =
(@12 cos?2a :

UkéiZeme, %e znamienko + v uvedenom zlomku nemoéZe
byt. Je totiZ
2¢osta—1+2sinta
cos?2a
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_ 2(cos®a -+ sin*a) — 4 cosasin®a — 1

o cost2a
1 —sin®2a
~ cos?2a

=1,

&o odporuje predpokladu 0 << d < 1 tj. d2 < 1. Je preto
nutne

d2_2(cos4a—sin4a)—l 2cos2a—1

cos?2 a o cos?2 a

Ostdva urlit podmienky riesitelnosti, tj. zistit pre ktoré
aje0 <d? <1, dize
2cos 2a—1

0<—cos22a < 1.

Ekvivalentnou dpravou poslednej reldcie nachddzame
1 <2cos2a <cos?2a+ 1.
Lav4 nerovnost je ekvivalentna s nerovnostou

4

—l—<cos2atj.2a< 3>

2

prava nerovnost zase s nerovnostou

0 <cos®2a—2cos2a + 1= (cos2a — 1)?*tj.2a # 0.
K uplnému rieSeniu treba eSte vySetrit pripad cos 2 a = 0.
T
4
md tvar d2 — 1 =0,&o je v spore s predpokladom 0 <d < 1.
Odpoved. Uloha m4 rieSenie a to jediné prave ked je

Vtedy 2 a = %, a = ——arovnica (*), z ktorej urujeme d

0<2a<%—.
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1-Body A4, B su dané vztahmi

2(SA)= A (SB) = log -t % 4 J2cos2a—T
. 1—d cos2a

40. Z kon3trukcie a-bodu Q' vyplyva, Ze e-uhol <t PQQ’
méi mieru 2a a preto ¢ (QQ) = e(QP)cos2a=
=2rcos2a=2cos2a. Podla Euklidovej vety je
e2(SK)=¢(SL).e(SQ)=[¢(QQ)—r]lr=2cos2a —
— la teda ¢ (SM) = V2 cos2a — 1. Konefne z e-troj-
uholnika AMS vyplyva ¢ (SM) = ¢ (AS) cos 2 a tj.
J2cos2a—1 = dcos 2 a, &ize

V2cos 2a—1

d= cos2a

¢o sme mali dokdzat.

41. Nech o je e-os e-tiseCky XY. Ak je o || %, 0 = h*,
potom x = XY je l-priamka druhého druhu a to jedini;
ak je o n A* jediny bod, potom je to S(x) a x je znovu je-
dind. Ak o0 = k*, potom existuje nekone¢ne mnoho hlada-
nych l-priamok x. V B modeli x nemusi existovat.

42, a) {B}, b) {B, B,}, kde B, je e-bod sumerne zdruZeny
s B podIa /*; c) nemd zmysel; d) 1-priamku prvého druhu,
ktora je fastou e-kruZnice o e-priemere S(a)S(c).

43. Dvojprvkovi. H € p’ prave ked p je druhého druhu
tj. p je e-priamka.

44, Plati. Plati.

45. 12. Nech RS je uzavreté e—ﬁseéka na h* neobsahu-
1uca %iaden z a-bodova’; U ... U a'y. Potom l-pnamka x
je dand napr. reldciou x’ = {R, S}. 13. a 14. rieSime rovna-
ko ako v modeli B.

46. Ak su a, b subeiky, potom 7 je nckonelne velké,
inak je n = 4.
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47. a) Tri druhy l-polpriamok.
b) Tri druhy I-polrovin.

48. a) 1-Polrovina na pravom, Ci lavom obrizku 13b;
b) l-polrovina na strednom obrizku 13b; c) e-obdlZnik
leZiaci cely v 4; d) dvojica roznych 1-bodov.

49. Je to 1-uhol <r BAC.

50. Ak je m e-kolmd na #*, potom m n 1 je l-priamka
druhého druhu a ti je l-konvexnd. Teda 1-K(m n 1) =
=mn A Ak)emllh*t) mn potoml—K(m na =
= 1-K(m) je td uzavreta e-polrovma vytatd e-priamkou m,
ktord celd nilezi do A. Nech konefne m n h* = {M}
a I-priamka p = MH nie je Castou m, tj. m nie je e-kolmé
na A* (obrazok) Potom I-K(m n 1) je mnoZina obsahujica
vietky vnutorné l-body e-uhla s vrcholom M a ramenami
P> m n 1 a tieZ vietky 1-body m n A. Posledné tvrdenie
dokaZzeme. Nech X je 1-bod leZiaci vnutri e-uhla s ramena-
mip,m n A Nech Y e€m jel-bod v ktorom 1-priamka XH
pretme m. Nech R € m je l-bod vnutrajsku e-useCky Y M.
Potom l-priamka x = RX pretina m okrem l-bodu R este
v istom l-bode Q a X je l-bod l-ase¢ky RQ. ZvySok je
zrejmy. Obrazok 15.

51. Nech ¢, % ¢, su subeZky vedené l-bodom Q ku p.
Potom M sa skladd z dvoch l-uhlov a, 8 takto definova-
nych: Ak P € p je 1-bod, potom a je prienikom l-polrovin
¢:P a opalnej ku ¢,P a f je prienikom I-polrovin ¢,P
a opacnej ku g¢; P. Dokaz lahko prevedieme v reci geo-
metrie &. Poznamenajme, Ze l-uhly e,  budeme aj v mo-
deli p menovat vrcholovymi. MnoZina M zrejme nie je
I-konvexnd v Ziadnom pripade. Obrézok 16.

52. Nech je dany 1-uhol < AVB. 1-Polpriamku VM na-
zveme l-osou l-uhla < AVB prive ked 1 (< AVM) =
= A(< MVB). Nech a, b st l-réznobezky s priesenikom
V. I-Priamku 0 = VM nazveme l-osou l-réznobesiek a, b
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prave ked A (<X a, 0) = A (<X b, 0). Z euklidovskej plani-
metrie tak vieme, Ze oba terminy existujd, Ze prvy je jedno-
znaény, druhy dvojznacny.

53. Z e-geometrie vyplyva, %Ze A (<o, 0,) = %, po-

dobne ako v tedrii €.

54, Cislo musi byt mensie ako 180°.

55. 174°, 18’; A(<x a) = 45°% A(<X B) = 69°%18', A (<
X y) = 60°.

56. e-Stred e-kruZnice ozname O a oznalme dalej
V = 8(4B) a W ten priesecnik & n A*, ktory je rozny
od U. PretoZze VB je kolmé na dotyCnicuv B ku B4, je
A(X B) = e (<X BVU). Podobne ukiZeme, Ze A (< a) =
= ¢ (<X VAU). Pri oznaCeni obrazku 19. je E e-stred toho
e-kruhového oblika AB na k, ktory neobsahuje e-bod U.
e-Body E a F e-diametralne voci & leZia v roznych e-pol-
rovindch vytatych e-priamkou BW. PretoZe e-body U a E
leZia v tej istej e-polrovine a O € BW, je otvorena e-pol-
priamka OF celd zvonku e-polroviny BWE a teda e-bod
V, leZiaci na e-polpriamke OF neleZi v e-polrovine BWU
a teda neleZi ani na e-useCke WU. Preto je e-bod V' von-
kaj$im e-bodom e-kruZnice k. e-Body U, V a F lezia v tej
istej e-polrovine ABO a preto je ¢(<X BUA)=¢e(<X
<X BFA) > ¢(< BVA). Z e-trojuholnika VAU vyplyva
90° = e (< VAU) + e (X AVU) 4 ¢ (X AUB) > e (X
Xa)+ e(XAVU)+ e (X AVB)=¢e(x a) + £ (X P).

57. Nech W je a-bod e-priamky AC = b a U resp. V
e-stredy kruZnic BC = 3, AB = ¢ a u, v ich e-polomery.
a-Body U, V, W st oCividne navzijom rozne a naviac W
lezi medzi U a V. Keby lezal napriklad a-bod U medzi

W a V, bolo by nutme 1(<y) > 90°> A(< a) a teda
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A(X a) = A(< y) v spore s predpokladom. UvaZme teraz
reldciu

e(UV)=e(UW)+ e (VW) = u cosp + v cos ¢ =

= (u + ) cos ¢.
Kosinova veta v e-trojuholniku UBV d4 vztah

(u + v)?cos? o = u? 4 v — 2 v cos g,

o
u? 4 o?
— 2 2. 2
(cos@lr,s = i :i:(l(lu_*_—};)lzw + o) = < (@ + ) .
Druhy pripad, cosp = — 1, vedie k evidentne nemoZnému

faktu ¢ = 180° a ostdva preto

o BT 1 w—op _ 1
Tt or 2 2 (u + v)? 2°

CiZe ¢ < 60°.
Rovnost nastdva priave vtedy, ked u = v tj. A = C, lebo
e (AW) = v sinp a ¢ (CW) = u sin ¢. PretoZe je tento pri-
pad nemoZny, je ¢ < 60°, Co sme chceli dokizat.

58. Pri znadeni obrazku 19. oznaéme este u = ¢ (AU),
v=c(AV)=ecBV)w=c(UV).Z e-trojuholnika VUB

vyplyva cosl(<): /3) =cos ¢ (X BVU) = — t) sin? A (X
IB) = w . PodIa kosinovej vety ap11kovane1 na
e—troluholnik VAU obdrzime cosd (¥ a) = cose (X

2 2 __ 2
<):VAU)=u+2va G. sin? A (X a) =

v
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252 __ 2 2 __ 9p2)2
Lo (’;u;::’ “P  Pretoe 4 (& @) + 4 (&
<€ P <90° < cos[A(Xa)y+ A(<XP)] > 0« cos A(<
< a)cos A (<X f) — sin (<X a) sin (X B) > O, stadi doki-
zat posledny z uvedenych vyrokov. Zo vztahu 4 = C vy-
plyva 2 = u? + w? tj. (u® — v® 4 @?)? > 0, odkial po-
stupne obdrZime: #* — 2 #* (v — w?) 4 (v® — w?)® >
>0, wt + 2u? (02 — w?) + (02 — w?)?® > 412 (22 —
—u?), 0 > 4 u? — 4u2u® — (4 + 02 — w??, w?
(u2 + 02 _ w2)2 > (92 — wZ) [4 u24v2 — (uZ + .vﬂ —_ w2)2]’

w 2 u2_+_vz._.w2 2 v —
(?)( 2uv )> PR

2092 2 2 . 7p2\2

A O W o A (3 ) ot A (3 0)>
> sin? 1 (< B) sin® A (<X a). PretoZe je cos A (<X a) > 0aj
cos A (<X f) > 0, mdZeme rovnicu odmocnit a tym je do-
kaz prevedeny.

59. Pri oznaleni obrdzku budeme druhy a-bod e-kruZ-
nice AD oznaCovat W. Teda VW su e-diametréilne e-body
v e-kruZnici AD a preto ¢ (<X VDW) = 90°. Zrejme je
A(X 0) = ¢ (< UDV) < ¢ (< VDW) = 90°, & sme
chceli dok4zat.

60. PretoZe zo zadania vyplyva, Ze e-trojuholniky
U141, Uiy, pre i = 1,2, 3, 4, sirovnostranné a S(4,4,) =
= U;, mbZeme pre trojuholnik U,A4,U; pisat

QuP =12+ u?— 2uvcos ¢,

kde v = ¢ (U,;4g). Pre v plat ¢ (U,4;) < v < e (U,U;) +
+utiul)f3 —v<3uleboe (X Ud;Us) = 90° a teda
e (Usd;) = &2 (UsUs) — €2 (Usds).

Dostdvame
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2 — 3 u

7 Jkdeu )3 <v <3u,

cos g =

, D .
alebo po oznaéem —=2xje

S P = —5—— kdeV_<x<3

Poslednd funkcia je na intervale x > 0 rastdca, lebo sa dd
pisat ako sucet rasticich funkeii % a— %— Extrémnych
hodnét nadobuda cos tp v koncovych bodoch, preto
(32-3 32_3
0= 2V <cosp < 23——-1,
0° <@ < 90°
61. PredovSetkym je ¢ (UiUiyy) = u prrei =1,2,3,4.
_ ) - _
e(UW) = @12+ F1DuaeWd) = %]/2,

kde W je e-stred e-useCky U,U,. Podla Pytagorovej vety
je potom &% (Uy4,) = & (U, W) + &2 (WA,) = 13 42 a tiez
e(UV) =3 |2 u + u. Nakolko ¢ (U;4,) < ¢ (U 4,) <
< & (U,V) je po dosadeni 13 2 < 22 < (3 |2 + 1)2 2.
V e-trojuholniku U,A4,U, pouZijeme kosinovu vetu:

(3 V2u2=ut+ v* —2uvcos 4 (X ¢),
lebo i (X ¢) = (< U,4,U,). Oznaéme este 77:— = x. Po-
tom 18 =1+ x2—2xcos 1 (< @), kde 13 < 22 < (3|2 +
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4+ 1)2 = 19 4 6]/2. Teda &islo 4 (< ¢) méZe nadobidat
prave tie hodnoty, pre ktoré

x2 — 17
2x

Pre x > 0 je funkcia cos A (<X ¢) rastica, pretoZe sa d4 pisat
ako poloviény sucet dvoch rastiicich (na intervale x > 0)

funkeif: xa — 1—x7 Teda

cos A (X p)= ,kdel/ﬁ<x<l+3l/§-

2 13—-17  x2—17 _19+6)2—17
——= —< =1
/13 2)/13 2x 2(1+3}2)
alebo

3

2
—W <cosA(x o) <1,

teda
0 < A(x ) <1234

s presnostou na 1’.
V e-rovine neexistuje Sestuholnik s piatimi pravymi uhlami.
Utvar je l1-konvexny.

62. PretoZe p, ¢ si l-réznobezky, mdZe najviac jedma
z nich byt druhého druhu. UvaZime dva pripady: (Obr. 23).

A. je druhého druhu, tj. ¢’ 5 H a preto je bud U = H,
alebo V = H. Bez ujmy na vseobecnosti volme druhy
pripad. Potom nutne je ¢ druhého a p prvého druhu.
Ozname A (X UAR) =y, A (X HAR) = ¢, M = S (p\
PretoZe je ¢ (UM) = ¢ (AM), je tiez ¢ (x AUM) =
=¢ (< UAM) a preto ¢ = .

B. a je prvého druhu a nech p je druhého druhu.
Oznaéme N a-bod l-priamky ¢ rézny od V a dokdZeme, Ze
S(r) = N. e-Trojuholnik VAN je e-pravouhly a plata
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v fiom euklidove vety, Specidlne &* (NA) = ¢ (NU).e (NV).
Posledny vyraz je mocnostou e-bodu N ku e-kruZnici g,
preto ¢ (NA) je dotykova e-vzdialenost e-bodu N od
e-kruZnice 7. Teda e-kruZnica k, [N,e(NA)] je e-kolma na
e-kruXnicu g, Rk, a preto &, n A =r. Z e-rovnora-
menného trojuholnika ANS(q) vyplyva 1(< UAR) =
=¢e(<x ANS(q)) = ¢ (< NAS(¢)) = A (<X VAR), Co sme
chceli dokazat.

63. Bez ujmy na vSeobecnosti mdZeme predpokladat
M e h. Oznaéme P =AM n h* a uviZme dva moZné

pripady:
M = ]
2 M=P
V prvom z nich je vyraz log Eﬁp)) nezdporny a v druhom

nekladny. Rovnica ¢ = A(4X) ma potom podla (12)
v oboch pripadoch jediné rieSenie x a to:

l.e(XP) = 2°¢(AP),

2.6 (XP) = 2"C¢ (AP).

64. Ozna¢me P € p’, P = H. Podla (12) je potom

_ _ | o £(AP)
1=1(4X) = }log - (XP)
teda

& (4p) edP) _ i
log - (xpy = £ 1~ F(xp) ~ 2
Hladanid mnoZina je dvojprvkova a skladd sa z l-bodov
X, X, charakterizovanych vztahmi ¢ (AP) = 2-¢ (X,P)
a2-¢ (AP) = ¢ (X,P). Inak povedané X je e-stred e-tisec-
ky AP, A je e-stred e-uiseCky PX,.

65. Hladand l-mierka je patrnd z obrazku 25. Plat

e(AP)=2¢e(AP)=4.c(AP) = 8¢ (A.\P) = 16 £ (4.,P).
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VSeobecne ¢ (PA;) = 21 e (PA) pre lubovolné celé i, j, ak
Ay je 1-bod prlslucha)ua hodnote i na l-mierke. Dodajme,
Ze existuji dve orienticie. Zdmena A; — A charakterizuje
prechod od jednej ku druhe;.

66. RieSenie patrné z priloZzeného obrazku je zaloZené na
konstrukcii I-stredu — pozri priklad 3.

67. Obidve konStrukcie su patrné z obrizku 28. Oznac-
mePep,0Qeq,P £ H £ Q; Uresp. V je prieseCnik £*
a e-priamky AC resp. BC. Potom podla ulohy 64 existuja
prava dva rozne l-body D,, D, a prave jeden l-bod E,
pri¢om a) D, je priese¢nik e-priamok UB a g, D, je priesec-
nik e-priamok AV a g, b) Ak A leZi medzi B a P potom
E je prieseCnik e-priamok UD, a p. Dokaz tvrdenia je
jednoduchy. Z e-rovnobeZnosti e-priamok p, g vyplyva
€(CQ) : e (D,Q) = ¢ (AP) : e (BP) = & (DyQ) : ¢ (CO) =
= ¢ (EP) : ¢ (AP)avzhladom na (12) potom A (CD,) =
= A(AB) = 1(CD,) = 1 (AE), im je ddkaz prevedeny.
Dodajme, Ze v pripade e-rovnobeZnosti e-priamok 4* a AC
resp. #* a BC bude s k* e-rovnobeZna aj BD, aj ED,
resp. AD,. Nepresne povedané, a-bod U resp. V' ,,unikne
do nekonecna“.

68. Nech ¢ je l1-priamka druhého druhu idica 1-bodom
A. Nech p’ = {U, V}. PrieseCnik e-priamky UB s l-priam-
kou ¢ oznaéme C. Ak Y je I-stred 1-asecky AC (priklad 3),
potom hladané 1-body X,, X, st priese¢niky l-priamky p
s e-priamkami UY a V'Y,

69. PodTla prikladu 4 (obrazok 29) je 1 (SA) = A (SM) =
= A(SB).

70. a) Zostrojime e-kruZnicu iddcu danymi troma bodmi.
b) Nech p je 1-priamka druhého druhu idica l-bodom S.
Ak X ep,mstro;imel -bod Yeptak,Ze X = Y, 21 (XS) =
= 4(YS). V opatnom pripade vedieme l-pnamku g bod-
mi § a X (td je nume prvého druhu) a pomocou
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a-bodov U, V € ¢’ kon$truujeme I-body 4, B ako na
obrazku 30.

71. V situdcii nakreslenej na obrazku 31 je l-bod C vo-
leny tak, Ze e-priamka S,C je e-rovnobeZna s k*, S, je
e-stred kruZnice k. Ozna¢me l-priamky AC =ba BC =a
(su urcite prvého druhu) a oznaCme eSte U = S(a),

B
3 c
KN a
. g
U v
Obr. 31

V = S§(b). Potom ¢ (< US,V)=90° a preto je (<
< UCV) <90° a preto tiez A (£ ACB) = ¢ (X UCV) <
< 90°. AB je zrejme l-priemer kruZnice k.

72. Pri oznaceni ¢ (UA) = ¢ (UC)= ¢ (VC) = ¢(VB) =

~uae(WA)=e(WB)=viee (UW) = Vué—ae2(AW) -

) ,
= & (AU) + & (UW) tj. 02 = u? + -’% = % @, od-

kial v=ul/%. Dalej je cos e (X AUV) = 0; cos e (X

¢ CUP) = ]/_lé; cos e (X BWV)= —cose (X AWV) =

= ip=1: VE. PodIa (14) a znameho vztahu zg 12‘_ =

)2
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1 — cos
V 1 + 05 potom;el(AC)—|log;g__e({AUV)__

— log tg—— € (q CUV)| = |log 1 — log (J2 — 1)| =

= log (JJ2 + 1), A(AB) = |log tg%s (£ AWV) — log

1 . V341 2
tg7e(%(_BWV)I = ‘log 7z — log 75+ 1
= log (1/3——2}_1)— = log 2 + }/3) ateda 22 (4C) +

+ 22(BC) = 2 log? (/2 + 1) a tiez 22 (4AB) = log® (2 +
+ 3). Pozadovand roznost 42 (AC) + 4% (BC) # A2(A4B)

vyplyva z nerovnosti 2 Jog? (V§ +.1) <log® (2 + ]/3_),
ktoré je ekvivalentné s nerovnosfou (}/2 + 1)z < 2 +_V3-
Trpezlivym vypo&tom (binomicky rozvoj dokézeme (J/2 +

+ 1) < (2 + |/3)", odkial vzhladom na vztah |2 < %

je (J2 + nz(< )2+ 1)¥<2 + /3 ateda )2 log (J2 +
+ 1) < log (2 + |/3) &0 sme chceli dokézat.
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73. l-priamku AU oznalme p, S(p) = War n b* = Q;
obr. 33. Nech 4 je zvonka a tj. ¢ (AQ) > & (RQ). Nech T
je e-stred e-Gseky AU. Potom WT je e-vyska v e-troj-
uholniku AUW a e-trojuholniky AQU a WTU st po-
dobné, lebo (<X AQU)=e(Xx WTU)=90° a e(<
X AUQ) = ¢ (x TUW). Preto je ¢ (X UAQ) = ¢ (<X

{UWT)——l—e({ U‘WA)——I—A({ UAR) = 2. Z e
trojuholnika AQU vyplyva

_ £(4Q) _ £(40)
corg T (0Q) T = (RQ)’

odkial

d= logcotg%‘.

N

N
aq .
h

U o %

Obr. 33

Skoro rovnakym spdsobom dokiZeme tento vztah aj v pri-
pade, Ze A4 je vnitri 5 tj. € (AQ) < ¢ (RQO).

74. Situicia bola popisand v ulohe 62 (pripad A). Podla
(14) je
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zg%e({MUR)
d= A(AR) = |log -
18 5 £(X MUA)

2
2

log log cotg

s

75. Oznaéme S(r) = P, ¢ (< APR) = B,¢ (X RPU) =
= y a priesecnik e-priamok AU a PR nech je Q. PretoZe
e-priamky RQ, UQ su dotyCnice e-kruZnice g, je ¢ (RQ) =
= ¢ (QU) a teda (obr. 34)

Obr. 34
_e(QU) 1 |
8y = e(UP)  cos(B+y) cosy
lebo
e(QU) = e(RQ) = & (RP) — ¢(QP) = ¢ (AP) — £ (QP) =
¢ (UP) ¢ (UP)

~cos(Bty)  cosy
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Potom plati

Y Y
cos — — sin =
cos y 2 2
cos(B+y)= =
1 +siny —I—sm%
a preto
Y ¥
1_cos—z— sin
s L 1 sin
phty 1@y P2t )
2 14+cos(B+y) cosl—sml 2
S R 3
cos——}—sm;

diZe
w Bt
2 —] Cotg &;—_—y_.
[
2
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Podla (14), vzhlTadom na rovnost A(<x RAQ)=¢ (<
X APU) je
gL 8
A(AR) = |log b log cotg =
tg 7

log cotg % ’ .
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DODATOK

A. Logika a mnoZiny

Vyrokom nazyvame taka gramatickﬁ vetu (Ci niekolko
viet), ktorama zmysel a nieco tvrdi ¢i popiera. MdZe byt za-
pisand slovne, alebo formulou, pripadne oboma. Priklady:
»Pre diZky a, b, ¢ stran pravouhleho trojuholnika s prepo-
nou ¢ plati a® 4 &% = c**; ,(x + y)? = x* — 2 xy, pre
vietky parne Cisla x, y“ — sd vyroky, prvy z nich je
(v e-rovine) pravdivy, druhy je nepravdivy. Naopak veta
»Dunaj je mudre velkomesto* je bezo zmyslu.

Vyroky oznaCujeme ,,tuénymi* velkymi literami: A, B,
E, L, U, apod. Nech A, B si2 vyroky, potom symbol
71 A znadi vyrok: nie je pravda Ze plati A;

A - B znali vyrok:

ak plati A, potom plati aj B; (implikdcia)

A < B znadi vyrok:

A plati prave viedy ked aj B; (ekvivalencia)

Vyrok A < B je pravdivy v dvoch pripadoch: bud
A aj B st pravdivé, alebo A aj B si nepravdivé. Ak jeden
z vyrokov A, B je pravdivy a druhy nepravdivy, potom
vyrok A < B je nepravdivy, CiZe vyrok 7] A < B je
pravdivy.

Vyrok A = B je nepravdivy jedine v tom pripade, ak je
A pravdivy a B nepravdivy; vo vietkych ostatnych pripa-
doch je pravdivy. Z pravdy nie je moZné dokizat nepravdu.
Ale pozor! Vyrok A = B je pravdivy aj v tom pripade, ak
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predpoklad, tj. vyrok A, je nepravdivy a zéver, tj. vyrok B,
je pravdivy. Je totizZto dobre moZné z nepravdy dokazat
pravdu. Napriklad z vyroku (zjavme vadného) 2 = 10
obdrZime postupne povolenymi tpravami: [2 = 10] =
=>2—6=10—6] = [—4=4] = [(—4?2=47)] =
= [16 = 16]. Dobre si poslednu tdvahu premyslite, je ¢a-
stym zdrojom logickych chyb.

Citatelovi prospeje, ak si dobre rozmysli nasledujﬁcc
vztahy platné medzi lubovolnymi vyrokmi A

a) vyrok A < B je pravdivy prdve vtedy, ked )e pravdivy

aj vyrok A = B, aj vyrok B = A;
b) Vyrok A = B je pravdivy prave vtedy, ked je pravdivy
aj vyrok 7] B- A;
c) Vyrok 71 (71 A) je pravdivy prave vtedy, ked aj vyrok
A, tj. plati 71 (7] A) = A,

Predpokladédme, Ze Citatelovi pojem mnoZiny nie je cel-
kom neznimy. K zipisu mnoZin pouZivame svorkové
zatvorky { }.

Ak a, b, C, Q, st akékolvek objekty, potom mnoZinu,
ktora sa skladd prive z tychto Styroch objektov, znalime
{a, b, C, Q,}. Teda symbol {X} oznaCuje mnoZinu, ktord
obsahuje jediny prvok — objekt X. Napriklad ak p je
priamka (iseCka, kruZnica, apod.) potom na p Casto hladime
ako na mnoZinu bodov X pre ktoré X € p. AvSak symbolom
{p} oznaCujeme mnoZinu, ktord obsahuje jediny prvok
a to priamku (usecku, kruZnicu a pod.) . Bod X € p nie je
prvkom mnoZiny {p}, CiZe X ¢ {p}.

Symbolom ¢ oznalujeme prdzdnu mnoZinu, tj. mnoZinu,
ktora neobsahuje Ziadny prvok.

Ak M, N si dve (nie nutne rézne) mnoZiny, potom
symbolom M U N oznaéujeme ich zjednorenie tj. mnoZinu
tych X, pre ktoré plati bud X € M, alebo X € N;

M n N oznaCujeme ich prienik tj. mnoZinu tych X, pre
ktoré plati aj X e M, aj X e N;
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M < N oznatujeme vyrok: M je podmnofina mnoZiny N,
tj. virok X eM = X e N;

p: M — N oznalujeme zobrazenie p z mnoZiny M do
mnoZiny N tj. predpis, podla ktorého kazdému
prvku X € M je moZné a to jednoznacne priradit
prvok mnoZiny N. Tento prvok oznacujeme
potom p(X).

Poznamenajme, Ze v texte tejto kniZoCky sa zobrazenie
vyskytuje v €linku 3.3, pri¢om tri tam vystupujice zobra-

zenia sd znadené o, p a P.

B. Polodoty¢nica (v e-rovine).

Nech T je koncovy bod kruhového oblika a, leZiaceho
na kruznici &(S, r). Nech 7 je doty¢nica ku kruZnici % ve-
dend v bode T. Zvolme bod P € a tak, aby stredovy uhol
< TSP prislichajici obliku TP < a bol uhlom ostrym.
Potom polpriamku ¢z, = TQ, kde Q = ¢ n PS, nazveme
polodotyémicou obliika a v bode T. Pri tejto definicii je ne-

podstatné, ¢i koncovy bod T sam k obliku a nileZi, alebo
nendleZi.

C. Poznimka o uhloch (v e-rovine),

Nech < AVBa < CVD su dva pravé uhly so spoloénym
vrcholom V. Nech naviac AV = BV = CV = DV. Uhly
X AVB a < CVD nazveme suhlasne orientované, ak
otoCenie okolo bodu V, ktoré prevedie bod C do bodu A4
prevedie aj bod D do bodu B. V opaénom pripade povieme,
Ze uhly < AVB a < CVD su opaCne orientované. Ak
velkost uhla <t AVC oznadime a, potom velkost uhla
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< BVD je rovna a v pripade, Ze <X AVBa < CVD su su-
hlasne orientované a 180° — a v pripade, Ze < AVB
a < CVD su nesuhlasne orientované.

D. Mocnost bodu ke kruZnici (v e-rovine).

Nech je dané kruZnica k(S, r) a bod M. Cislo MS? — r
nazveme mocnost bodu M ku kruZnici &(S, 7). Plati nasle-
dujica -

Veta o mocnosti bodu ku kruZnici.

Nech P % Q sa prieseéniky priamky p s kruZnicou
k(S, r) a nech M je bod priamky p. Potom ¢islo MP* MQ
je rovné

a) mocnosti bodu M ku kruZnici (S, r) prave ked M

leZi zvonka, alebo na kruZnici %,

b) zdpornej hodnote mocnosti bodu M ku kruZnici

k(S, r) prave ked M lezi vnutri, alebo na kruZnici k.

V pripade a) je mocnost bodu M ku % rovna tieZ Cislu
MT?, kde T je dotykovy bod (ktorejkolvek) dotyénice ve-
denej bodom M ku &. Mocnost bodu M ku % je rovna nule
prave ked M € £ a islu — r2 prave ked M = S.

Dékaz. Pripady S = M a M € & st evidentné. Nech teda
S £ Mek, S €p. Nech 4, B st priesecniky priamky SM
s kruZnicou k4. Bez ujmy na vSeobecnosti méZeme predpo-
kladat také znaCenie bodov A4, B, P a Q, Ze body M, 4, P
a § lezia v jednej polrovine vytatej priamkou BQ. PretoZe
velkosti uhlov < PQA, < PBA su rovnaké podla vety
o obvodovom uhle, su trojuholniky MPB a MAQ podob-
né. Preto je MP : MB = MA : MQ, odkial
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MP.MQ = MA.MB = (MS — r).(MS + r)| =
= |MS?— 72|,

Cislo v poslednej absoltitnej hodnote je mocnost M ku k;
toto Cislo je zrejme kladné ak M leZi zvonka a ziporné ak
M lezi vnutri k. Posledné tvrdenie vety: MT? = MS — r*
je okamzite zrejmé podla Pytagorovej vety. Veta o moc-
nosti je dokdzana.

E. Poznamka ku kruZnici (v e-rovine).

DokéZeme nasledovnu vetu.

Veta. Nech M je vonkajsi bod kruznice k(S,r) a nech Q
je vanutorny bod kruZnice % leZiaci na polpriamke SM.
Nech kone¢ne T je jeden z prieseCnikov kolmice vedenej
bodom Q ku MS s kurZnicou k. Potom priamka MT je
doty¢nicou ku kruZnici £ prave vtedy, ak plati SQ.SM =
= ST=

Dokaz. Ak posledna rovnica plati, potom podIa euklidovej
vety o strane je uhol STM pravy a teda MT | TS je do-
ty¢nicou ku % s dotykovym bodom 7. Ak naopak je MT
doty¢nicou, potom znovu podla euklidovej vety o strane pla-
ti horny vztah.

F. Veta Pappova (v e-rovine).

Nech su dané dve rézne priamky p a p’ a nech a, b, ¢, d,
su priamky, vzajomne roznobezné so spoloénym priese¢ni-
kom V ¢ p U p'. PrieseCniky priamok a, b, ¢, d s priamkou
p resp. p’ oznacme v poradi 4, B, C, D resp. A’,B',C’, D’.
Potom plati:
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AC BC A'C’ B(C

AD " BD  AD' " B'D"”
Dé6kaz. Nech v je vzdialenost bodu V od priamky p
a ozname a, f, y, ¢ velkosti uhlov ' AVD, BVC, AVC,
BVD v poradi. Obsah trojuholnika AVD méZeme vy-
jadrit dvoma rdéznymi spdsobmi. Tak dostaneme rovnost

AD.v = 2 AV .DV sin a. Podobné rovnosti napiSeme pre
trojuholniky BVC, AV C, BV D. Potom

AC BC _ AC.v BC.v _
AD ' BD  AD.v " BD.v

_AV.CVsiny A BV.CVsinf _ siny  sinp
~ AV.DVsina° BV.DVsinoc  sina ~ sino’

Rovnakd vpravu prevedieme aj pre pravu (Ciarkovani)
stranu dokazovane) rovnosti. PretoZe vysledok v obidvoch
upravach je ten isty rovnaju sa aj obidva upravované vy-
razy. Veta je dokdzani. Poznamenajme, Ze poloha priamok
p, p' mdze byt bud rovnobeZna, alebo réznobeZna. V po-
slednom pripade méZe napriklad bod A splynut s A’, teda
A=A =p np.
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ZAVER

Citatel, ktory sa prehiyzol aZ ku tomuto zédveru ma4 iste
mnoho otdzok: pre¢o je miera Il-tiseCky v modeli B ¢i
v modeli D definované takym cudnym zpdsobom, ako je to
s mierou l-uhla v modeli B, Ci existuje Lobacevského geo-
metria aj v priestore, akd je vlastne axiomatickd sustava
euklidovskd a akid Lobacevského, ¢i existuje okrem eukli-
dovskej a Lobacevského planimetrie aj ind planimetria
atd. atd.... '

Ako sme uZ v uvode povedali nebolo ciefom knizky dat
uceleny pohlad na neeuklidovski geometriu, ale obozné-
mit Citatela s niektorymi myslienkami a otvorit mu cestu
do niektorych dalsich oblasti matematiky. Zodpovedanie
uvedenych (a mnohych dalsich) otdzok nutne predpoklada
podstatne hlbsie nacretie do Struktiry elementarnej geo-
metrie. Vstupnou brinou do Struktiry syntetickej geo-
metrie bolo objavenie tzv. projektivnej geometrie, ktori je
streSnou tedriou nielen v geometrii euklidovskej a Loba-
cevského, ale aj mnohym dal§im (eliptickd, afinna, uni-
moduldrna...).

Verime, 7e kriasna téma projektivnej geometrie najde
autorov, ktori by ju v tejto edicii spristupnili naSim mladym
Citatelom.

Autors
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