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ÚVOD 

Čitatelovi předkládáme knížku, ktorá sa svojim zamera-
ním mierne Ůši od ostatných publikácií edície MO. Spra-
covaná látka — Lobačevského geometria — nezapadá 
vůbec do rámca stredoškolskej výuky. Situácie, s ktorými 
čitatela oboznámime, budú sa niekedy pravděpodobně 
zdať až paradoxně. Právě v tejto paradoxnosti spočívala 
obtiaž pri odhalovaní neeuklidovskej geometrie a dnes v nej 
nachádzame nielen estetická krásu, ale aj skvělý cvičný ma-
teriál pre rozvitie abstraktného matematického myslenia. 
Aj spracovanie látky je svojrázne. Nevodíme čitateTa po 
hotovej budově, ale přizveme ho ako murára ku spolupráci 
na stavbě. Neservírujeme teda faktá, ale uvádzame problé-
my, z ktorých niektoré, hlavně v kapitole prvej neriešime 
vyčerpávajúcim spósobom, nakolko toto na stupni předpo-
kládaných vědomostí čitatela nie je možné. Ak sa čitatel, 
po prečítání knižočky bude vracať k naznačeným problé-
mom a v duchu s nami diskutovat (radšej nesúhlasíť ako 
súhlasiť), budeme považovať nami vytýčený ciel za spl-
něný. 

Při čítaní knižky je možné vypustiť druhů kapitolu, při-
padne aj prvú. V tom případe musí čitatel pri čítaní vy-
pustiť všetky poznámky, ktoré se vzťahujú k týmto kapito-
lám. Domnievame sa však, že najváčší úžitok prinesie kni-
žočka vtedy, ak sa čitatel oboznámi najprv s dodatkom A. 
a potom postupné knížku prečíta od prvej kapitoly tak, ako 
je napísaná. V případe, že sa čitatelovi táto tématika zapáčí, 
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doporučujeme mu k dalšiemu prehíbeniu vědomostí štu-
dovať tieto knižky. K prvej kapitole knižku prof. Katětova: 
Jaká je logická stavba matematiky (Cesta k vědění 1952). 
K druhej a tretej kapitole J. B. Pavlíček: Neeuklidovská 
geometrie (Praha — 1953). Hlbšie vniknutie do problema-
tiky vyžaduje znalost' tzv. projektívnej geometrie s ktorou 
sa čitatel móže zoznámiť vo výbornej knižke Karla Havlíč-
ka: Úvod do projektivní geometrie kuželoseček (SNTL, 
1956). 

Je nám milou povinnosťou poďakovať sa touto cestou pani 
Dr. I. Rohlíčkovej a pánu Dr. J. Fukovi, CSc, za velmi 
svědomité prečítanie rukopisu a za mnohé cenné pripo-
mienky, ktoré značné přispěli k zlepšeniu predkladanej 
publikácie. 

Autoři 

Túto knižku venujeme nášmu učitelovi profesorovi 
JOSEFOVI FILIPOVI 

k jeho životnému jubileu 



1. k a p i t o l a 

AXIOMATIZOVANÁ T E Ó R I A 
A JEJ M O D E L 

1.1. Pojem základný a pojem odvodený 

Začneme s príkladom zo života. Často se nám stane, že 
niekto nám, alebo my niekomu vysvětlujeme, či ozřejmu-
jeme nějaký pojem. Například pojem „aorta" vysvetlíme 
větou „je to hlavná tepna vedúca priamo zo srdca". Tak 
sme neznámy pojem aorta (označme ho symbolom A) 
objasnili použitím štyroch dalších pojmov: „hlavná tepna", 
„viesť", priamo" a „srdce" (označme ich v poradí symbol-
mi A1} A2, A3, A4). Schématický zápis takéhoto vysvetlova-
nia vyzerá nasledovne 

Vysvetlovanie je ukončené, ak ten, ktorému sme pojem A 
ozřejmovali pozná význam pojmov A1 — A4. Ak náhodou 
dotyčný nevie čo je to „hlavná tepna = A potom po-
kračujeme vo vysvětlovaní větou „je to najváčšia cieva, 
ktorou prúdi okysličená krv". Nových páť pojmov: „naj-
váčší = Au", „cieva = A12", „prúdiť = A13", „krv = Au" 
a „okysličený = A1B" rozšíri schemu (1) na tvar 

A 

Ý Ý 
A1 A2 

Ý Ý 
A i A 2 

(1) 
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A 

Ý Ý Ý Ý 
A1 A2 A3 A4 (2) 
I 

^ ^ ^ ^ 
^u A12 A13 A14 A15 

Dajme tomu, že osoba, ktorej sme pojem „aorta" vysvetTo-
vali pozná už význam pojmov An — A15 ako aj A2, Aa, A4. 
Vysvetlovanie je ukončené. 

Při systematickom vyučovaní, například v škole, postu-
pujeme při vysvětlovaní právě naopak. Začíname od jedno-
duchých, všeobecne známých pojmov a pomocou týchto 
zavádzame (učíme) pojmy čoraz zložitejšie. Zápis takéhoto 
postupu sa od schémy (2) odlišuje len změněnou orientá-
ciou šipiek. Presne určiť, či dokonca vymenovať všetky 
„všeobecne známe pojmy" je však v oboroch ako sú histó-
ria, medicína, právo atď. asi nemožné. No v exaktných di-
sciplínách je možné postupovat tak, že začíname vymeno-
vaním „všeobecne známých pojmov" a na týchto postupné 
staviame celú teóriu. Miesto označenia „pojem všeobecne 
známy" budeme užívať termín pojem základný-, niekedy sa 
tiež hovoří pojem primárný. Pojem definovaný pomocou 
pojmov základných nazveme pojmom odvodeným; niekedy 
sa tiež hovoří pojem sekundárný. Okrem pojmov základných 
a odvodených vystupujú v řeči exaktnej disciplíny ešte dva 
druhy slov. Sú to termíny převzaté z inej exaktnej disciplí-
ny, tieto nazveme pojmy doplňkové a konečne šlová typu 
„nech", „móžem nájsť", „v tom případe", atď., ktoré spolu 
s gramatickou stavbou slovenčiny nazveme prirodzeným 
jazykom. 

Každé slovo jazyka, ktorým hovoří presne budovaná 
exaktná disciplina patří do jednej a len jednej zo skupin: 

1.) pojmy základné, 
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2.) pojmy odvodené, 
3.) pojmy doplňkové, 
4.) prirodzený jazyk. 
Ilustrujme túto klasifikáciu na přiklade. 

Přiklad 1. Za základné pojmy planimetrie volíme tri 
termíny 

bod, priamka, ležať na. (3) 

V tvrdení: „Nech a, b sú dve rovnoběžné priamky a nech 
priamka c je róznobežná s priamkou a, potom priamka c je 
róznobežná aj s priamkou b" je 19 slov (symboly a, b> c 
nie sú šlová). Tieto patria v poradí skupinám: 4, 4, 3, 2 ,1 , 
4, 4, 1, 4, 2, 4, 1; 4, 1, 4, 2, 4, 4, 1. Pojmy „rovnoběžné" 
a „róznobežné" sa dajú definovať pomocou pojmov (3). 
Pojem „dve" patří do aritmetiky, ktorá vystupuje ako do-
plňková disciplína ku planimetrii. 

Úloha 1. Rovnako ako v příklade 1. převeďte slovný roz-
bor vety z planimetrie: Nech A, B, C sú tri body neležiace 
na priamke, potom existuje aspoň jedna priamka a rovno-
běžná s priamkou BC a obsahujúca bod A. 

1.2. Axiomatizovaná teória 

Hlbšie preskúmame termín „pojem základný". Je to asi 
taký pojem, o ktorom majů všetci ludia rovnakú představu. 
Tento názor, běžný a oprávněný v humánnych védách 
v matematike neobstojí. 

Kedpovieme, že pojem „srdce" je v medicíne všeobecne 
známy, máme na mysli fakt, že každý lekár pozná tvar, 
uloženie, funkciu a mnohé vlastnosti srdca. Presnejšie po-
vedané, lekár pozná vazby medzi telom a srdcom. Přitom 
ani najváčší odborník nepozná tieto vazby všetky, lebo je to 
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nemožné. V matematike úslovie „pojmy (3) sú všeobecne 
známe" precizujeme tak, že udáme všetky základné vazby 
medzi pojmami (3). Tieto vazby nazveme axiomy, niekedy 
tiež postuláty. Súhrn všetkých axiom menújeme axioma-
tická sústava. Súbor základných pojmov, odvodených poj-
mov, všetkých axiom a všetkých tvrdení z axiom vyplýva-
júcich nazveme axiomatizovaná teória. 

Axiomy sú také výroky o základných pojmoch, ktoré pře-
hlásíme za pravdivé. Přitom nás okolnost' názornosti axiom 
vóbec nezaujíma. V tejto knižke sa čitatel dozvie, že právě 
názornost' stála ako hlavná překážka pri poznaní neeukli-
dovskej geometrie. Existuje mnoho príkladov v histórii 
matematiky a fyziky, kde naše vrodené představy brzdili 
hlbšie preniknutie k podstatě veci. V nasledujúcom, hodné 
obšírnom přiklade sa pokúsime oboznámiť čitatela s jedno-
duchou, ale velmi dóležitou axiomatizovanou teóriou. 

Příklad 2. Axiomatizovaná teória (5 nech je daná a.) 
troma základnými pojmami 

chlapec, dievča, páčiť sa (4) 

a ďalej b.) skupinou piatich axiom: 
Existuje aspoň jedno dievča. 

52 Ak A, B sú dvaja chlapci, potom existuje aspoň jedno 
dievča c, ktoré sa páči aj chlapcovi A, aj chlapcovi B. 

53 Ak A, B sú dvaja rózni chlapci, potom existuje najviac 
jedno dievča c, ktoré sa páči aj chlapcovi A, aj chlap-
covi B. 

54 Ak a je dievča, potom existujú aspoň dvaja rózni 
chlapci B, C, ktorým (obidvom) sa dievča a páči. 

55 Ak a je dievča, potom existuje aspoň jeden chlapec B 
tak, že nie je pravda, že sa dievča a páči chlapcovi B. 

Na základe pojmov (4) a axiom 
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^3) S4, Sj (5) 

rozvinieme teóriu (3. Čitatelovi doporučujeme, aby niektoré 
z axiom rozobral podia vzoiu příkladu 1 a úlohy 1. 

Dohovor 1. S. Chlapcov budeme označovat' velkými 
latinskými písmenami A, B, C, X, aťd'., dievčatá malými 
a, b, c,y, atď. Symbolom Ch označíme množinu chlapcov, 
symbolom D množinu dievčat. Základný pojem „páčiť sa" 
označíme symbolom £ v nasledovnom zmysle: 

dievča y se páči chlapcovi X označíme X e y. 

Poznámka 1. S. Úslovie „dvaja chlapci A, B" nehovoří 
ešte, že chlapci A a B sú rózni. Fakt, že A je chlapec mó-
žeme zapísať tiež symbolicky A e Ch. Podobné a, b e D 
značí, že a, b sú dievčatá. 

Veta l .S. Ak A, B sú dvaja rózni chlapci, potom existuje 
jedno a len jedno dievča c, ktoré sa obidvom chlapcom 
páči. 

DSkaz. Existencia dievčaťa c vyplývá z S2, jeho jedno-
značnost' z S3. 

Dohovor 2.S. Dievča c z vety 1. S označíme tiež AB 
resp. BA. Upozorňujeme, že symbol AB je zavedený len 
ak A mB. 

Veta 2.S. Množina Ch má aspoň tri rózne prvky. 
Dokaž. Podia Sx existuje a e D, podia S4 existujú potom 

B, C e Ch tak, že B ^ C a B E a, C e a. Z axiomy S5 vy-
plývá existencia takého chlapca A, ktorému sa dievča 
a nepáči. Preto je A B, A í C a A, B, C sú tri rózne 
prvky množiny Ch. Veta je dokázaná. 

Úloha 2. V dókaze vety 2. S je nezmyselný pojem. Nájdi-
te ho a opravte dókaz! 

Definícia l .S. Povieme, že dievča a se nepáči chlapcovi 
B právě vtedy, ak nie je pravda, že dievča a sa chlapcovi B 
páči. Značíme B $ a. 
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Veta 3.S. Nech a, b e D a symbolom a n b označme 
množinu všetkých chlapcov X pre ktorých platí Xea 
a X e b. Potom nastáva jeden a len jeden z prípadov 

1.) a n b = 0, 
2.) a n b je jednoprvková, 
3.) a = b. 
Dokaž. Pretože případy 1.), 2.) sa navzájom vylučujú, 

třeba dokázat' dve tvrdenia: a n b je aspoň dvojprvková => 
^ a = b; a = b a n 6 je aspoň dvojprvková. Prvé tvr-
denie vyplývá z S3, druhé z S4. 

Definícia 2.S. Ak neexistuje chlapec, ktorému sa páčia 
dané dve rózne dievčatá a, 6, potom tieto dievčatá nazveme 
priaterkami. V opačnom případe hovoříme, že a, b sú ne-
priatelky. Teda dievčatá a i b sú priaterkami (resp. ne-
priatelkami) právě keď pre ne nastáva případ 1.) (resp. 2.) 
vety 3.S. 

Dohovor 3.S. Budeme hovoriť tiež, že „dievča a je 
(ne)priaterkou dievčaťa b" namiesto úslovia „dievčatá a, b 
sú (ne)priatelky". Podobné budeme hovoriť „dievča x má 
(ne)priatďku namiesto „existuje dievča, ktoré je (ne)pria-
telkou dievčaťa x". 

Veta 4.S. Každé dievča má aspoň dve rózne nepriaterky. 
Dokaž. Nech a je dievča a A,B,C chlapci z ddkazu vety 

2.S. Označme b = AB, c = AC. Zo vzťahov A $ a, 
A eb,A e c vyplývá í í a $ c*). Sporom dokážeme vzťah 
b c. Z b = c vyplývá C e b a preto množina a ( l i obsa-
huje aspoň dva prvky a to B a C, lebo B í C . Pódia vety 3.S 
je potom a = b čo je spor. Dievčatá b í c sú hladané dve 
nepriatelky dievčaťa a. Dókaz je převedený. 

Veta 5.S. Existujú tri rózne dievčatá tak, že každé dve 
z nich sú nepriatelky. 

Dokaž. Existencia dievčaťa (označme ho á) vyplývá z S^ 

*) Namiesto a ^ b, a $ c píšeme stručné b ^ a ^ c; podobné i cfalej. 
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Teraz stačí vziať dievčatá a, b, c z dókazu predošlej vety. 
Ddsledok. Množina D má aspoň tri rdzne prvky. 
Veta 6.S. Ku každému chlapcovi X existuje aspoň jedno 

dievča x, ktoré sa mu nepáči. 
Dokaž. Podia dósledku existujú dve rózne dievčatá a, b. 

Ak je X i a, alebo X f b, potom sme hotoví. Nech teda 
X ea, X e b. Podia S4 existujú chlapci A, B tak, že A í 

X =t= B, A e a, B e b. Potom je A B, lebo inak by 
vzhladom na vetu 3.S bolo a = b. Dievča x = AB sa 
chlapcovi X nepáči, lebo inak by bolo podia S3 a = x 
aj b = x. Tým je dókaz převedený. 

Veta 7.S. Každému chlapcovi X sa páčia aspoň dve 
rdzne dievčatá. 

Dokaž. Podia vety 6.S existuje dievča x tak, že X $ x. 
Podia axiomy S4 existujú B £ C ktorým sa x páči. Potom 
XB a XC sú hladané rózne dievčatá páčiace sa chlapcovi X. 

Axiomatizovaná teória S postavená na troch základných 
pojmoch a piatich axiomach v tomto stádiu obsahuje tri 
definované odvodené pojmy: nepáčiť sa, priatelky, ne-
priatelky a sedem tvrdení. Příklad 2. je skončený. 

Úloha 3. Dokážte vetu 8.S: Existujú traja chlapci A, B, 
C tak, že pře každé dievča x platí A ex, B EX =- C $ x. 

Úloha 4. Dokážte vetu 9.S: Ak existuje chlapec C, 
ktorému sa žiadna z nepriateliek a, b nepáči, potom existuje 
chlapec X, ktorému sa páčia aspoň tri rózne dievčatá. 

1.3. Modely axiomatizovanej teorie 

Při čítaní příkladu 2. sme si pod pojmami (4) mohli před-
stavovat to, čo oni označuj ú v skutočnosti. Rovnako dobré 
sme si ale pod uvedenými termínmi mohli představovat 
množstvo iných objektov, popřípadě sme na pojmy (4) 
mohli nazerať len ako na symboly — ako by to bolí šlová 
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z cudzieho, nám neznámeho jazyka. V takom případe ho-
voříme, že sme s teóriou Q pracovali abstraktně. Ak však 
sme pri čítaní příkladu 2. mali pod pojmami (4) na mysli 
konkrétné objekty (napr. „body", „priamky", vzťah „leží 
na" z planimetrie), potom hovoříme, že sme teóriu S mode-
lovali. Abstraktná teória aplikovaná na špeciálnu situáciu 
sa menuje modelom. Poslednú vetu budeme znovu ilustro-
vat' na příklade: udáme páť modelov teórie Q. Udať model 
teórie <3 značí: Udať množiny Ch a D a udať vzťah „páčiť 
sa" tak, aby boli splněné axiomy (5). 

Příklad 3. Každý z nasledujúcich modelov Si, S23 S3, S4, 
S5 je modelom abstraktnej teórie 6 . 
Sx : Ch je trojprvková, skládá sa z mien Orfeus, Rómeo, 
Tristan, D je trojprvková, skládá sa z mien Euridika, Julia, 
Izolda. Vzťah páčiť sa je definovaný takto: Euridika sa páči 
Romeovi a Tristanovi, Julia sa páči Orfeovi a Tristanovi, 
Izolda sa páči Orfeovi a Romeovi. Iné vztahy typu „páčiť 
sa" neexistujú. Vermi názorné je možné model Si popísať 
tabulkou, ktorú nazveme tabulka incidencie pre model Si. 
Čítanie v tabulke je očividné: dievča x sa páči chlapcovi Y, 
ak v štvorčeku, ktorý je v stípci x a riadku Y je číslo 1; ak 
v tomto štvorčeku je číslo 0, potom je Y 4 x. Poznamenaj-
me, že spósobom incidenčnej tabulky móžeme popísať len 
tie modely pre ktoré Ch a D majů konečný počet prvkov. 

Úloha 5. Overte, že model Si spíňa axiomy (5.) V modeli 
Si neexistujú priatelky. Tento fakt platí v každom modeli, 
kde D je trojprvková. Dokážte! 

S2: Ch je šesťprvková, skládá sa z písmien: a, e, i, o,u,y, 
D je desaťprvková, skládá sa zo slov: Bolyai, Descartes, 
Dupin, Euler, Gauss, Klein, Ludolf, Newton, Study, Syl-
vester. 

Vzťah páčiť sa je daný predpisom: slovo ( = dievča) 
z D sa páči písmenu ( = chlapcovi) z Ch právě vtedy, keď 
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E=EEEEE = = 

Iz
ol

da
 

Ju
lia

 

Eu
rid

ik
a 

Orfeus 0 1 1 

Ch Rómeo 1 0 1 

Tristan 1 1 0 

Tabulka incidencie pře model Sx 

toto slovo obsahuje dané písmeno. Například Newton sa 
páčí písmenu e aj písmenu o, nie však písmenu y. 

Model S2 je popísaný. Overte preň platnosť aspoň nie-
ktorých z axiom (5). 

Úloha 6. V řeči modelu S2 vyslovte vetu 7.S. 
Úloha 7. Napište tabulku incidencie pre model S2. V ře-

či tejto tabulky vyslovte axiomy S2, S3, S4 a S6. 
S3 : Ch je (nekonečná) množina všetkých bodov v rovi-

ně a, 

D je (nekonečná) množina všetkých priamok v rovi-
ně a. 
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Vztah páčiť sa je daný predpisom: priamka ( = diev-
ča) x E D sa páči bodu ( = chlapcovi) Y e Ch právě 
ked y leží na x. 

Model S3 je popísaný. Overte preň platnosť všetkých 
axiom (5). Ukážte, že termín priatelky či nepriatelky sa 
v tomto modeli kryje s termínom nesplývajúce rovnoběžky 
či roznobežky. 

S4: Nech h je pevne daná kružnica. Položíme: 
Ch je množina všetkých bodov ležiacich vnútri h, 
D je množina všetkých tetív kružnice h. 
Vzťah páčiť sa je rovnako ako v modeli S3 totožný 
s incidenciou. 

Model S4 je popísaný. Overte platnosť všetkých axiom (5). 
Úloha 8. Zistite či nasledujúci výrok V je pravdivý v mo-

deli a.) Si, b.) S2) c.) S3, d.) S4. 
V: Ak sa dievča p nepáči chlapcovi P, potom existuje 

najviac jedno dievča q, ktoré je priatelkou p a zároveň 
sa páči chlapcovi P. 

S s : Nech A je otvorená polrovina vyťatá danou priamkou 
h* v rovině. 
Ch je množina všetkých bodov polroviny A, 
D je množina jednak všetkých otvorených polpria-
mok so začiatkom na /z*, ležiacich v A a kolmých na 
h* a jednak všetkých otvorených polkružníc so stre-
dom na h* ležiacich v A. 

Vzťah páčiť sa je znovu incidenciou, tj. £ je e. Model S6 je 
popísaný. Overte platnosť axiom (5) a ukážte, že výrok V 
z úlohy 8. je v modeli S5 nepravdivý. Příklad 3. je ukonče-
ný-

Dalšie precvičenie modelov dáme do úloh. Prosíme čita-
teTa, aby všetky úlohy dókladne rozriešil skór, ako pristúpi 
k dalšiemu textu. 

Úloha 9. Dokážte, že existujú právě dva r&zne (čo do 
počtu prvkov množiny D) modely teórie <3 pře ktoré je 
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množina Ch štvorprvková. Pre tieto modely nájdite tabulky 
incidencie. 

Úloha 10. Nájdite model S8 (teórie (3) s čo najmenším 
počtom prvkov Ch tak, aby v ňom výrok V bol neprav-
divý. 

Úloha 11. Popíšeme model ÍTÍ operujúci na pojmoch (4). 
Zistite či ZTÍ je modelom teórie S . 

m: Nech je v rovině daný pevný bod S. Ch je množina 
všetkých bodov v rovině okrem bodu S. D je množina 
všetkých kružnic idúcich bodom 5. Relácia páčiť sa je relá-
ciou incidencie. 

Úloha 12. V modeli ITT pridajte ku množině D ďalšie 
prvky tak, aby vzniklý model S10 bol modelem teórie <5. 

V článku 1.3., ktorý právě končíme sme sa oboznámili 
s pojmom modelu abstraktnej teórie. Článok 1.4. bude věno-
vaný historickej vázbe modelu a teórie; možno ho pri čí-
taní vypustit'. 

1.4. Od modelu k axiomatizovanej teorii 

Každá vedecká teória vzniká v dósledku dlhodobého 
hromadenia poznatkov, ich porovnávania a triedenia. 
V procese tvorenia teórie nachádzame štyri významné 
obdobia: 

I. Je známy jeden, či viacero modelov budúcej teórie, 
zatial nie je známy súvis medzi modelmi. 

II. Známy je súvis medzi modelmi a niektoré z nich sa 
stávajú univerzálnymi tj. situácie všetkých modelov sú rie-
šené na univerzálnom modeli. 

III . Od univerzálneho modelu sa abstrakciou dochádza 
ku abstraktnej teorii, zatial intuitívnej tj. neaxiomatizova-
nej. 
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IV. Intuitivná teória sa stává axiomatizovanou, ked sa 
nájde vhodný axiomatický systém. 

Ako příklad uvedieme vývoj teorie prirodzených čísel. 
Spósob prvých poctových výkonov ludstva je možné len 

tušiť, pretože spadá do doby, ktorá bola velmi skúpa na 
suveníry pre potomstvo. Je velmi dobré přijatelná téza, že 
člověk sa najprv naučil sčítať malé čísla (povedzme do 
páť). Vedel, že dva kone a tri kone je páť koňov, dva prsty 
a tri prsty je páť prstov, dvaja synovia a tri dcéry je páť 
detí. Je to prvé obdobie vývoja — existujú oddelené modely 
(kone, prsty, členovia rodiny). 

Neskór si 1'udia všimli, že spočítat' dva kone a tri kone 
móžeme pomocou prstov na rukách bez toho, že by bolo 
třeba vidieť skutočné kone. Prsty sa stávajú jedným z hlav-
ných univerzálnych modelov — sme v období II. 

Trvalo to isto nějaké tisícročie, pokial si ludia uvědomili, 
že ku sčítaniu dvoch a troch koňov netřeba ani prsty, že 
stačí vedieť: „dve a tri je páť" a tento fakt platí bez oWadu 
na predmet (model) na ktorý ho aplikujeme. Abstrakciou 
vzniká nový pojem, pojem mnohosti, prirodzené číslo — 
budúci primitivný pojem celej teorie prirodzených čísiel. 
No vzniklá teória je a dlho ostává teóriou intuitivnou. Fakty 
ako :• 2 + 3 = 5, a + b = b + a, . . . sú považované za 
samozřejmé, prirodzené á priorné. Samozřejmost' komu-
tatívnosti a + b = b + a však netkvie v „podstatě aritme-
tiky" (veď existujú aj nekomutativně operácie: rozdiel, po-
diel, mocnenie), ale v Tudskom vědomí, ktoré po dlhé tisíc-
ročia navyknuté brať komutatívnosť sčítania za pravdivú, 
zdogmatizovalo si túto do „samozřejmosti". Dokonca ešte 
v polovici minulého storočia, keď už axiomatika geometrie 
absolvovala dvetisícročnú púť a matematické myslenie do-
siahlo vysoký stupeň abstrakcie, žiaden z matematikov ne-
cítil potřebu axiomatizovať aritmetiku — tak silná bola 
fudská viera v „á priornosť" zákonov aritmetiky. 
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Až druhá polovica minulého storočia mení intuitívnu 
teóriu na axiomatizovanú. Hlavnú zásluhu na tomto čine 
majů traja matematici: H. Grassmann (1861), R. Dedekind 
(1888) a G. Peano (1891). Axiomatickú stavbu teorie pri-
rodzených čísiel tu uvádzať nemóžeme. Záujemcov odka-
zujeme na literatúru: K. Hruša: Elem. aritmetika (PV 
Praha, 1953). 

Ukázali sme na historický vzťah modelu a axiomatizova-
nej teórie. Logickým závislostiam medzi teóriou a modelmi 
venujeme článok 1.6. 

1.5. Sústava axiom axiomatizovanej teórie 

Vrátíme sa k axiomatizovanej teórii popísanej v článku 
1.2. Nech je daná sústava základných pojmov av . . a m 
a sústava axiom A w . . . , A n istej axiomatizovanej teórie <21. 
Počet základných pojmov je m, počet axiom n. V případe 
teórie (3 (příklad 2) je m = 3, n = 5. Vysvetlíme si tri 
najdóležitejšie vlastnosti sústavy axiom: bezospornost, nezá-
vislost a úplnost. 

Hovoříme, že skupina výrokov A1} . . . , An je sporná, ak 
je z nej možné logickou cestou vyvodit' dve navzájom si od-
porujúce tvrdenia. V opačnom případe danů skupinu vý-
rokov menujeme bezospornou. 

Přiklad 4. Ak k výrokom (5) přidáme doleuvedený vý-
rok S6, dostaneme spornú skupinu výrokov. 

S s : Existujú chlapci A í B tak, že pre každé dievča x 
platí A E x => B e x. 

Z S, a S, vyplývá, že existuje jediné dievča pre ktoré 
A EX a to dievča x = AB. Z výrokov (5) vyplývá veta 7.S., 
ktorá je v spore s právě dokázaným tvrdením. Teda skupina 
výrokov S15 . . . , S6 je sporná. 
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Hovoříme, že skupina výrokov A l s A„ je závislá, 
ak niektorý z nich je logickým dósledkom ostatných. 
V opačnom případe danů skupinu výrokov menujeme ne-
závislou. 

Přiklad 5. Akk výrokom (5) přidáme doleuvedený výrok 
S7, dostaneme závislú skupinu výrokov. 

S7: Ku každým dvom róznym chlapcom A, B existuje 
dievča x tak, že A e x a B $ x. 

Skutočne z (5) vyplývá veta 7.S. podia ktorej existujú 
dve rózne dievčatá a, b tak, že A e a, A e b. Pretože a í b, 
móže sa chlapcovi B páčit' najviac jedno z dievčat a, b 
a teda existuje x e D tak, že A e x a B $ x. Dokázali sme, že 
výrok S7 je dósledkom výrokov (5) a preto skupina výrokov 
S15 . . . , S5, S7 je závislá. 

Hovoříme, že sústava axiom A l s . . . , An je úplná vzhla-
dom na sústavu základných pojmov a15 . . . , am, ak každý 
výrok X vypovedajúci len o týchto pojmoch, připadne 
pojmoch skupin 2, 3, 4 klasifikácie v 1.1. strana 4., sa alebo 
dá na základe A1} . . . , An dokázať, alebo vyvrátit'. V opač-
nom případe sústavu axiom A l s . . . , An menujeme ne-
úplnou vzhladom na sústavu základných pojmov au ..., 
am. 

Příklad 6. Sústava axiom (5) je neúplnou vzhladom na 
sústavu základných pojmov (4), pretože výrok V (úloha 8. 
článok 1.3.) sa na základe axiom (5) nedá ani dokázať, ani 
vyvrátiť. Ku dókazu posledného tvrdenia použijeme mode-
lov. 

Predpokladajme, že platí 

S U . . . , S , . V . (6) 
Ak (6) platí v abstraktnej teorii, platí nutné aj v každom 
jej modeli, špeciálne v modeli S4, čo však nie je pravda. 
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Výrok V teda nie je možné dokázať z axiom S15 . . . , S6. 
Rovnako výrok V sa z axiom S l 3 . . . , S5 nedá ani vyvrátiť, 
pretože v modeli S3 je ako S l5 . . . , S5 tak aj V pravdivý. 
Pretože výrok V sá z axiom S u . . . , S6 nedá ani dokázať, 
ani vyvrátiť, hovoříme, že V je nezávislý na sústave axiom 
(5). Tento příklad si dobré přemyslíte, lebo je dóležitý. 

Poukázali sme na tri základné vlastnosti sústavy axiom: 
bezospornosť, nezávislost' a úplnosť. Bezospornosť je naj-
dóležitejšia vlastnosť axiomatickej sústavy vóbec. Zatial čo 
štúdium závislej, či neúplnej sústavy axiom zmysel má, je 
sporná axiomatická sústava bez zmyslu a jediné čo s óou 
možno múdreho urobit' je: zahodit' ju. 

Najmenej dóležitou z horeuvedených vlastností sústavy 
axiom je nazávislosť. Zo sústavy axiom, ktorá je závislá 
móžeme vytvoriť sústavu nezávislú spósobom veTmi jedno-
duchým: postupné vypúšťame tie axiomy, ktoré sú dó-
sledkom tých, čo v sústave ostali. Požiadavka nezávislosti 
axiom je požiadavkou estetiky a nezasahuje podstatu budo-
vanej teórie. Z povedaného vyplývá, že každú axiomatickú 
sústavu móžeme predpokladať nezávislou. 

Konečne pár slov o úplnosti sústavy axiom. Fakt, či daná 
sústava axiom Ax, . . . , An je, alebo nie je úplnou je pod-
statný, no má zmysel študovať teóriu postavenú ako na 
úplnom, tak aj na neúplnom axiomatickom systéme. V tejto 
súvislosti povieme niečo o příbuzných teóriách a o stupňo-
vom budovaní teórie. 

Představme si, že '21 a 93 sú dve rózne teórie, majúce 
spoločné niektoré (popřípadě aj všetky) základné pojmy 
clt . . . , Čt a niektoré axiomy C13 . . . , C r . Také teórie bu-
deme menovať příbuzné. Nech £ je teória určená systé-
mom základných pojmov cu ..., Ck a sústavou axiom 
C u . . . , C r . Potom každé tvrdenie teórie 6! je pravdivé aj 
v teórii '21, aj v teorii 93.Teóriu <21 resp. 93 získáme z teórie (É 
přidáním zvyšných základných pojmov a axiom. Popísané 
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stupňovité budovanie teorii má velký význam v praxi při 
konkrétnom rozpracovávaní příbuzných teorií. 

1.6. Axiomatizovaná teória a jej modely 

V tomto článku ukážeme na dóležitosť modelov. V pred-
chádzajúcom článku sme zaviedli pojmy bezospornosť, ne-
závislost' a úplnost' sústavy axiom a na príkladoch sme ilu-
strovali, ako na konkrétné) sústave možno poznat' jej spor-
nosť (přiklad 4.), závislost' (přiklad 5.) a neúplnost' (příklad 
6.). Otázka znie: Ako na konkrétnej sústave určíme jej a.) be-
zospornosť, b.) nezávislost? Kritérium úplnosti je obtiažne 
a preto ho vypustíme z úvah. Je zřejmé, že dokázat' spor-
nosť, či závislost' nejakej sústavy výrokov je jednoduchšie, 
ako dokázat' jej bezospornosť, či nezávislost. Čitatel' sa 
móže sám pokúsiť o riešenie problému skór, ako bude ďalej 
čítať. 

Kritérium bezospornosti sústavy výrokov. Sústava výro-
kov je bezospomá, ak existuje aspoň jeden jej model. 

Úskalie posledného tvrdenia spočívá v slově „model", 
ktorým tu operujeme intuitivné. Precízne vyjadrovanie 
však možné nie je, lebo tento pojem siaha velmi hlboko do 
logiky. Mierne upresnenie horného kritéria bezospornosti 
dáva nasledujúce tvrdenie. 

Nech A1} . . . , An je sústava výrokov a 93 axiomatizovaná 
teória, ktorej bezospornosť je dokázaná. Ak existuje model 
sústavy výrokov A u . . . , An v rámci teorie 93, potom je 
táto sústava výrokov bezosporná. 

Př ík lad 7. Máme dokázat' bezospornosť sústavy axiom 
(5). Podia uvedeného kritéria stačí nájsť model teórie &• 
V článku 1.3. bolo podaných modelov páť. Uvážme napr. 
model S3. Je to příklad modelovania teórie S v rámci ro-
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vinnej euklidovskej geometrie. Existenciu poslednej teórie 
dokázal Hilbert. 

Kritérium nezávislosti sústavy výrokov. Sústava výrokov 
A13 . . . , An je nezávislá, ak pre každé i = 1, ..., n existuje 
aspoň jeden model fli splňujúci výroky A15 . . . , An okrem 
výroku A h pričom pre Ai platí Aj. (Pozři dodatok A.) 

Příklad 8. Máme dokázat' nezávislost' sústavy axiom (5). 
Podia uvedeného kritéria třeba udať páť modelov, ktoré 
označíme QJ , Q 2 , (Q3, <J>4, G}5. V modeli (QI budú pravdivé 
výroky H Sx, S2, S3, S4, S5; v modeli <Z)2 budú pravdivé 
výroky Sw H S2, S3, S4, S 5 ; . . . Tu udáme modely Q15 0}2, 
(¡)4 a modely <£3 a (Qs přenecháme čitatelovi (pozři úlohu 
13.). 

(Qi: Nech Ch = D = 0. Potom zrejme platí Sx 
a platnost' S2, S3, S4, S s je zřejmá, lebo předpoklady sú ne-
pravdivé. (Dodatok A.) 

<J}2: Z modelu Si vypustíme prvok množiny D „Júlia". 
Platí—| S2, lebo chlapcom Orfeus a Tristan neexistuje diev-
ča, ktoré sa obidvom páči. Pravdivost' axiom S1} S3, S4 a S5 
je očividná. 

<S4: K modelu S2 do množiny D přidáme prvok „Čech" 
a ostatné prvky, ako aj reláciu e necháme bezo změny. 
Platí S4, lebo dievča „Čech" sa páči jedinému chlapcovi, 
chlapcovi „e". Pravdivosť zvyšných axiom sa overí jedno-
ducho. 

Úloha 13. Podia příkladu 8. udajte modely Q3 a G)s. 
Riešení je samozrejme nekonečne mnoho. 

Úloha 14. Ak ku axiomam S„ — S5 přidáme axiomu Sg: 
Existuje dievča x majúce najviac jednu nepriatelku, potom 
sústava výrokov S2, S3, S4, S5, S8 je sporná. Dokážte! 

Úloha 15. Dokážte, že sústava výrokov Sj, S2, S3, S4, 
S5, V je bezosporná. To isté dokážte pre sústavu výrokov 
Sj, S2, S3, S4, S5, ~~1 v. 
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Úloha 16. Napište výrok W, ak W je výrok: Ak sa 
dievča p nepáči chlapcovi P, potom existuje aspoň jedno 
dievča q tak, že q sa páči chlapcovi P a je priatelkou dievča-
i&p. Podobné napište aj výrok n V a snažte sa o maximálnu 
stručnost' zápisu. 

Úloha 17. Posúďte bezospornosť sústavy výrokov a.) S15 
S2» S3, S4, S5, W; b.) S1} S2, S3, S4, Ss, W; c.) S15 S2, S3, 
s4) s6, n v, W; d.) s13 s2) s3, s4, s5, v, w. 

Úloha 18. Dokážte následovně implikácie: S3, S4, H 
—1 S5 => D je jednoprvková =- V, W. 

Úloha 19. Posúďte, či sústava axiom S15 S2, S3J S4, S6, 
V, W je nezávislá. 
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2. kap i to l a 

H I S T O R I C K É P O Z N Á M K Y 

Celá druhá kapitola móže byť pri čítaní vypuštěná. Má-
loktorá vedecká problematika má tak dramatickú a poučnú 
históriu, ako právě objav neeuklidovskej geometrie. Podia 
toho, čo bolo povedané v článku 1. 4. budeme sledovat' vý-
voj geometrie od obdobia II. Prvá velká technická revo-
lúcia tj. obdobie VI.—IV. tisícročia pr. n. 1. dala spolu 
s mnohými inými poznatkami ludstvu aj množstvo znalostí 
geometrických. V povodí troch velkých riek Eufratu, 
Hindu a Nilu vznikli mnohé geometrické objavy vyvolané 
potřebami ovládat' přírodu. Tieto poznatky netvoria ešte 
systém, sú len súhrnom pravidiel o merani, zdelováných 
medzi generáciami často mystickým spósobom. Obdobie 
III . tj. obdobie tvorenia abstraktnej teorie patří helénskej 
kultúre. Od Tálesa Milétskeho (VI. stor. pr. n. 1.) cez 
Pytagora až po Euklida (III. stor. pr. n. 1.) urobila helénska 
geometria ohromný pokrok. Jej hlavná zásluha nespočívá 
v tom, že zhrnula a vylepšila všetky dovtedy známe fakty, 
ale predovšetkým v tom, že ich utriedila do systému, kto-
rého korunou sú Euklidové „Základy". Sú spracované 
v 13. knihách. Spósob, ktorým boli Základy napísané bol 
na vtedajšiu dobu vysoko pokrokový. Je to prvá učebnica 
vóbec, kde sa matéria vysvetluje deduktívnym spósobom 
od axiom. Je to prvý pokus o axiomatickú stavbu vedeckej 
disciplíny. Celé dve tisícročia stála táto kniha v střede 
záujmu matematikov a to nielen ako učebnica, ale aj ako 
živý stimulátor nových myšlienok. Z nej študovali takí ma-
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tematici a fyzici, ako Koperník, Galilei, Descartes, Pascal, 
Newton, Leibnitz, Lobačevskij a iní. Na velkosti tohto die-
la nič neuberá fakt, že bolo (z dnešného hladiska) dosť ne-
přesné a intuitivné. Principy deduktívnej stavby axiomati-
zovanej teorie, tak ako sme ju poznali v kapitole I., sú do 
dnešnej doby platné a užívané v mnohých exaktných di-
sciplínách. 

Jedným z vážných nedostatkov „Základov" je snaha de-
finovat' všetky pojmy včítane tých, ktoré sú pre danů teóriu 
základné. Tak napr. prvé dve definície z prvej knihy „Zá-
kladov" sú: 

1. Bod je to, čo nemá častí, 
2. čiara je dížka bez šířky. 
Dnes už vieme, že sa tu nejedná o definície, ale prinaj-

lepšom o akési objasnenie. Vada „definícií" je v tom, že 
šlová „časť, dížka, šířka" nie sú termíny. Nielen nedostatok 
základných pojmov je chybou „Základov". Aj axiomatický 
systém je nedokonalý, hlavně neúplný. 

Euklides uvádza nasledujúcich páť axiomov (menuje ich 
postuláty): 

1. Každý bod je možné spojit' s každým bodom priam-
kou. 

2. Každú časť priamky je možné neobmedzene predlžiť. 
3. Z Tubovolného středu je možné opísať kružnicu lubo-

vorného poloměru. 
4. Všetky pravé uhly sú navzájom rovné. 
5. Ak priamka, pretínajúca dve dalšie priamky tvoři s ni-

mi po jednej straně vnútorné prilahlé uhly o súčte 
menšem ako 2R, potom sa vždy obidve druhé priamky 
pretínajú na tejto straně. 

(Pozři příklad 2. v článku 1.2.). Na základe týchto axiom 
nie je možné napr. dokázat', že kružnica přetíná priamku 
idúcu jej vnútorným bodom. No Euklides takéto tvrdenie 
dokazuje, pričom v dokaze použije tvrdenie známe dnes 
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pod pojmom axióma spojitosti. Euklidov omyl spočívá 
v tom, že tvrdenie axiomy spojitosti považoval za samo-
zřejmé. 

„Základy" našli v dalších dvoch tisícročiach mnoho ko-
mentátorov a opravovatelov. Ústredným bodom týchto 
snáh bolo: dokázat piatu euklidovu axiomu. Jej jasnejšia 
formulácia je: Bodom A neležiacom na priamke a možno 
viesť s ňou jedinú rovnoběžku. (Pozři úlohu 8. čl. 1.3. vý-
rok V.) Uvedená axióma pútala pozornost' hlavně tým, že 
sa poměrně komplikovanou formuláciou odlišovala od pre-
došlých. Z množstva „dókazov" piatej axiomy uvedme 
aspoň niektorých autorov: Wallis, Bertrand, Cantor, Cla-
vius, Legendre, Lambert a mnoho iných. Mnohé z týchto 
„dókazov" boli velmi vtipné a často trvalo dosť dlho, 
pokiaT sa v nich našla chyba. V podstatě každý z autorov 
použil při „dókaze" tvrdenie ekvivalentně s piatou eukli-
dovou axiomou.*) Jedno zo základných tvrdení ekviva-
lentných s piatou euklidovou axiomou je: Súčet uhlov 
v trojuholníku je rovný TI. Dokázat toto tvrdenie znamená 
dokázať piatu euklidovu axiomu. Poměrně rýchlo sa poda-
řilo dokázat', že súčet uhlov v trojuholníku nemóže byť 
váčší, ako n. Odtial okamžité vyplývá, že súčet uhlov 
v štvoruholníku nemóže byť váčší ako 2 n. Tohoto faktu 
použili mnohí geometri, aby dokázali, že súčet uhlov 
v trojúholníku nemóže byť ani menší ako n, čo už implikuje 
piatu euklidovu axiomu. Kvóli ilustrácii uvedieme chybný 
dókaz, ktorý podal Clavius. (Obr. 1.) 

Nech A, B, C sú tri rózne body priamky a a A1} B1} Cx 
tri body ležiace v -jednej polrovine vyťatej priamkou a tak, 
že AAX = BBj = CCU AAX _L a, BB, _L a, CCX ± a. 
Nech b je priamka idúca bodmi Au B1, C1. Štvoruholník 

*) Výroky A, B menujeme ekvivalentně, ak A => B a B => A. (Pozři 
dodatok A.) 
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ABB1A1 (tzv. Saccheriho štvoruholník) má os súmernosti 
prechádzajúcu stredom úsečky AB (bude dokázané v dal-
šom texte). Platí teda <£ AA1B1 = BB^. Podobné 
<£ BBlC1 = <£ C C Í B J . Je teda súčet uhlov v štvoruhol-

A, e, c, B 

A B c " 

Obr. 1 

niku ACC1A1 rovný 2n, lebo < A^AC + <£ ACCX + 

+ CC1i41 + < C\AiA = y + y + < W + < 

<í A&B = 2 n. 
Claviusov omyl je v tom, že predpokladal za samozřejmé 

existenciu priamky b. Fakt, že body Ax, Bx, Cx ležia na 
priamke je ekvivalentný s piatou euklidovou axiomou. 

Prvý velký krok ku riešeniu problému podal taliansky 
jezuita Saccheri, ked v snahe o vyvrátenie hypotézy ostrého 
uhla (tj. že súčet úhlov v trojuholníku je menší ako ft) vy-
budoval dosť obsiahlu teóriu založenú na nasledovnej 
myšlienke. Uvažujeme štvoruholník ABB1Al (obr. 2.), 

pričom < AXAB = = a AAX = BBV Nech O 

je střed úsečky AB a nech o je priamka idúca bodom O, 
o _L AB. Označme Ox = o n A^B^ Útvary OAAfii 
a 0BBí01 sú symetrické podia o, teda <£ AA101 = 
= <£ BBfi1% Z horného předpokladu vyplývá ostrost' 
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uhlov <£ AAXBV BB1A1 a po dosť dlhých úvahách do-
chádza autor k „absurdným" tvrdeniam napr. dve nepretí-
najúce sa priamky ležiace v rovině, alebo majů jedinú spo-
ločnú kolmicu od ktoréj na obidve strany sa neobmedzene 

Obr. 2 

rozchádzajú, alebo nemajú spoločnú kolmicu a v jednom 
smere sa asymptoticky približujú. Geometrická stavba vy-
budovaná na uvedenej hypotéze Saccherim je přesná, až 
na konečný výsledok, ktorému pravděpodobně ani sám ne-
veril. Tvrdí: asymptoticky približujúce sa priamky majů 
v nevlastnom bode spoločnú kolmicu, teda hypotéza ostré-
ho uhla je nesprávná a tým je piaty euklidov postulát do-
kázaný. 

Úvahy Lamberta publikované pod názvom „Teória 
rovnoběžných priamok" v r. 1766 sú velmi blízké úvahám 
Saccheriho, no na rozdiel od neho pri svojich úvahách v sú-
vislosti s hypotézou ostrého uhla nedochádza k „protire-
čeniu" a nikde vo svojich prácach netvrdí, že „dokázal" 
piaty euklidov postulát. Jeho práce majů nesmiernu záslu-
hu na konečnom vyriešení pochybnosti o piatom euklido-
vom postuláte. 

Legendre, ktorý sa mimoriadne zaslúžil o rozvoj mecha-
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niky má tiež velký podiel pri výskume geometrie. Dlhý čas 
sa věnoval piatemu euklidovmu postulátu a publikoval nie-
kolko variantov jeho „dókazu". 

Márne pokusy riešiť problém rovnobežiek siahajú až na 
přelom 18. a 19. storočia. Úpenlivosť snahy špičkových svě-
tových matematikov krásné dokumentuje list maďarského 
matematika prof. Bolyaia svojmu synovi. Keď sa prof. 
Bolyai dozvěděl, že jeho syn, mladý talentovaný matematik 
sa venuje problému rovnobežiek, až zúfalo ho vystříhal, 
aby zanechal túto myšlienku na ktorej on „bezvýsledne" 
strávil velkú časť svojho života. Syn neposlúchol otcovej 
rady a vďaka tomu stal sa jedným z troch objavitelov ne-
euklidovskej geometrie. Neriedko je problém, ktorý po 
mnoho rokov odolává úsiliu vedcov celého světa, riešený 
súčasne viacerými vedcami. Tak aj dramatický súboj geo-
metrov s rovnoběžkami je riešený nezávisle troma matema-
tikmi: nemcom Gaussom, rusom Lobačevským a maďarom 
Bolyaiom. 

Gauss problém piateho postulátu vyriešil už koncom 
18. storočia, no do konca svojho života riešenie nepubliko-
val. Riešenie sa neodvážil zveřejnit' a zdelil ho len súkrom-
ne v listoch priatelom. 

Lobačevskij začal výskům teorie rovnoběžných priamok 
s pokusmi dokázat' piaty euklidov postulát v r. 1817 no už 
v roku 1826 dáva k dispozícii veřejnosti svoju prácu o ne-
euklidovskej geometrii. Publikoval ju pod názvom „O zá-
kladoch geometrie" v r. 1829. Lobačevskij bol astronóm 
a preto je pochopitelné, že sa snažil overiť, či v reálnom 
svete, v svete v ktorom žijeme, platí geometría euklidovská, 
alebo neeuklidovská. Meral súčet uhlov v trojuholníku, 
ktorého vrcholy tvořili nebeské telesá (napr. Zem, Slnko, 
Sírius). Akokolvek přesné boli jeho merania bola odchylka 
(defekt) súčtu uhlov v meranom trojuholníku od n menšia, 
ako tolerancia prístrojov. Pre myšlienky, ich aplikácie 

28 



a popularizovanie, ktoré Lobačevskij odvážné konal menu-
jeme neeuklidovskú geometriu niekedy tiež jeho menom. 

Aké je teda riešenie problému rovnobežiek. Existujú dve 
abstraktně teórie postavené na tých istých základných poj-
moch a axiomach, pričom v jednej z nich (označíme ju (£) 
platí axioma E, zatial čo v druhej (označíme ju £) platí 
axioma L (pozři článok 3.1.). Axiomatizovaná teória opiera-
júca sa o axiomy nehovoriace nič o rovnoběžkách sa menuje 
absolutnou geometriou. Vzhladom na to čo bolo povedané 
v článku 1.5. sú teda teórie (£ a £ příbuzné. Pri axiomatic-
kom štúdiu elementárnej geometrie postupujeme teda na-
sledovne: Vybudujeme geometriu absolutnu (v nej platí 
napr. tvrdenie: súčet uhlov v trojuholníku nie je váčší 
ako n) a až potom budujeme teóriu G, alebo (£. Ostává 
dodať, že definitívnu stavbu elementárnej geometrie s pre-
ciznou sústavou axiom podal nemecký matematik Hilbert 
a že dnes je táto disciplina uzavretá. To však neznamená, že 
geometría je mřtva disciplina. Právě naopak, vďaka Kleino-
vi, Cartanovi a mnohým dalším matematikom sa geometria 
vyvinula dnes do takého štádia, že, zdá sa, znovu nadobúda 
to vedúce postavenie v celej matematike, ktoré jej dal Eukli-
des v „Základoch". Uvedme mená aspoň dvoch vynikajú-
cich českých geometrov, ktorí podstatné obohatili naše geo-
metrické poznatky. Sú to Eduard Čech a Václav Hlavatý. 

My sa však v dalšom texte vrátíme do začiatku XIX. sto-
ročia a pokúsime sa cítatela oboznámiť hlbšie s myšlenkami 
neeuklidovskej geometrie. 
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3. kap i to l a 

MODELY L O B A Č E V S K É H O 
P L A N I M E T R I E 

3.1. Spdsob štúdia Lobačevského planimetrie 

V tejto kapitole začneme vlastné štúdium Lobačevského 
planimetrie. Posledným terminom označujeme abstraktnú 
geometrickú teóriu obdobnú tej s ktorou sa čitatel obozná-
mil na strednej škole pod názvom rovinná geometria, či 
planimetria. Aby sme predišli nedorozumeniu, budeme tej 
planimetrii, ktorá sa učí na strednej škole odteraz hovořit! 
Euklidovská planimetria. Hlavný rozdiel medzi oboma 
abstraktnými teóriami — Lobačevského planimetriou, 
ktorú označíme 2 a Euklidovskou planimetriou, ktorú 
označíme ® je v tom, že v teorii £ platí výrok L a v teórii (? 
platí výrok E. 

L: Ak P je bod neležiaci na priamke q, potom existujú 
aspoň dve rózne priamky pi a p2 idúce bodom P 
a nepretínajúce priamku q. 

E: Ak P je bod neležiaci na priamke q, potom existuje 
jedna a len jedna priainka p idúca bodom P a nepretí-
najúca priamku q. 

Podia toho čo sme povedali v prvej kapitole, mal by náš 
postup budovania teórie £ začať vymenovaním základných 
pojmov a úplnej sústavy axiom. Potom by sme logickými 
úvahami tj. deduktívne mali vyvodzovať stále zložitejšie 
tvrdenia teórie £. 

Existujú dva vážné dóvody, pre ktoré nebudeme postu-
povat uvedeným spósobom. Axiomatická stavba vyžaduje 
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jednak daleko viac miesta, ako dáva tenká brožurka a ďalej 
(z hladiska metodického) nutné předpokládá, že čitatel bol 
už aspoň čiastočne oboznámený s axiomatickou stavbou 
teórie (£. Nakolko však axiomatizácia teórie (S sa, kvóli ná-
ročnosti látky, na strednej škole neučí móžeme predpokla-
dať, že čitatelova znalost' teórie ® je len intuitivná. To 
znamená, že čitatel pozná všetky základné vzťahy teórie 
no nepozná jej systém axiom. Pri intuitívnom štúdiu 
(akejkolvek) abstraktnej teórie, úlohu sústavy axiom pre-
berá nie ceíkom jasné vymedzený súbor faktov, ktoré príj-
mame za „evidentné" „á priorné", čiže „samozřejmé". 
Tak například v případe teórie (£ za takéto evidentne prav-
divé tvrdenia považujeme výroky: 

U x : Dvoma róznymi bodmi prechádza jedna a len jedna 
priamka. 

U 2 : Existuje štvoruholník majúci všetky štyri uhly pravé 
(napr. štvorec). 

Na základe takýchto evidentných (avšak výslovné nevyme-
novaných) tvrdení odvodzujeme dalšie, menej zřejmé tvr-
denia teórie (£ — vetu Talesovu, Pytagorovu, sinovu,. . . 

Opísané intuitivné budovanie teórie ® sa silno opiera 
o názornost' (skúsenosť) a preto sa nám zdá prirodzeným. 
Základné tvrdenie L teórie £ nielen že nie je názorné, ale 
našim geometrickým skúsenostiam priam odporuje. Preto 
je nemožné budovat' teóriu £ intuitivné. Nevedeli by sme 
totiž, ktoré fakty považovat za evidentné. Například z ho-
reuvedených výrokov U 1 9U 2 evidentne pravdivých v teórii 
(ř je v teórii £ pravdivý výrok Ux a výrok U 2 je nepravdivý. 
Vidíme, že v tejto brožúrke teóriu £ nemóžeme budovať 
ani axiomaticky, ani intuitivné. Ostává jediná možnost' — 
použit modelov. Tento spósob nám sice nedá abstraktnú 
teóriu £, ale aj model teórie £ nám poskytne velmi dobrý 
obraz tejto teórie. Aby naše nové skúsenosti boli bohatšie, 
oboznámime čitatela dokonca s dvoma modelmi o ktorých 
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sme sa zmienili už v kapitole prvej. Obidva modely budú 
realizované v rámci teorie (ř tj. v euklidovskej rovině. Prvý 
z modelov označíme B, jeho autormi sú Klein a Beltrami, 
druhý označíme p , jeho autorom je Poincaré. B a p sú 
najznámejšie modely teorie £. Model B je názornější, ale 
na modeli p je možné lepšie ilustrovat' meranie uhlov 
a úsečiek. 

Úloha 1. Napište výroky —| E, | L a ~1 U2 . 
Úloha 2. Overte platnost' tvrdenia a) E => —1 L, b) 

H L . E. 
Úloha 3. V axiomach S15 S2, S3, S4, S6 teorie S z pří-

kladu 2. kapitoly 1. nahradíme všetky termíny podia slov-
níka 

| chlapec dievča priatelky nepriatelky , v 
Ý bod priamka rovnoběžky róznobežky y 

a novoutvorené axiomy označíme Si, S2, S3, S4, S5, vzniklú 
teóriu S ' . Podobné z výrokov V a W (úloha 1.8. a úloha 
1.16.) vzniknú výroky V' a W'. Aký je vzťah medzi teóriami 
6 a 6 ' ? Aký je vzťah medzi výrokmi E, V ' a W' ? 

Úloha 4. Nájdite závislost' medzi výrokmi a) L a V', b) L 
a W'. 

Úloha 5. Zistite, ktorý z výrokov E, L je pravdivý v kto-
rom z modelov: S'i, S'2, S'3, S'e> S'7, S'8 a S'9. Čiarka má 
význam popísaný v úlohe 3. 

Úloha 6. Dokážte, že v modeloch S'4 a S's platí L a —| E. 

3.2. Model B (Beltrami — Klein) 

V dalšom texte budeme pracovať v euklidovskej rovině 
tj. v teórii S a budeme tu modelovať teóriu £. Tak váčšina 
geometrických pojmov nadobudne dva rózne významy, 

32 



pretože sa vyskytnú ako v teórii G, tak aj v modeli teórie £. 
Například body v zmysle £ budú len niektoré z bodov 
v zmysle (£. Bolo by zdlhavé písať „bod v zmysle £" , „kol-
mica v zmysle (£" a pod., preto budeme písať stručné 
„1-bod", „e-kolmica" a pod. Termín, ktorého význam je 
ten istý v zmysle £, ako v zmysle Ot budeme písať ako dote-
raz bez predsymbolu 1-, či e-. Například „1-medzi" 
a „e-medzi" je to isté, preto píšeme proste „medzi". 

Podáme popis modelu B (pozři model S2 z příkladu 1.2.). 
Všetky úvahy sú prevádzané v e-rovine. 

Dohovor 1. Nech je v e-rovine daná e-kružnica h. 
Označme symbolom A množinu všetkých vnútorných 
a symbolom (jl množinu všetkých jej vonkajších e-bodov. 
Táto symbolika je závazná pre celý článok 3.2., 3.3. a 3.4. 

DefiLnícia 1. e-Bod X nazveme 

Množinu A všetkých 1-bodov nazveme 1 -rovinou, množinu 
všetkých a-bodov resp. i-bodov nazveme absolutom resp. 
ideálom l-roviny A. 

Poznámka 1. V definícii 1. sme zaviedli 6 pojmov. Ku 
pojmom 1-bod a 1-rovina, ktoré majů analogické pojmy 
v <£ teórii pristupujú pojmy a-bod, i-bod, absolut a ideál 
l-roviny. Posledné štyri pojmy v (£ teórii nemajú obdobu 
a aj my by sme sa bez nich vedeli zaobísť. Zavedenie uvede-
ných pojmov nám značné ulahčí vyjadrovanie. 

Defmícia 2. Nech U ^ V sú dva Iubovolné a-body. 
Potom otvorenú e-úsečku UV nazveme 1-priamkou. 
Okrem 1-priamok takto popísaných žiadne iné neexistujú. 

Dohovor 2.1-Priamky budeme označovat dvojakým 
spdsobom a to alebo malým latinským písmenom a, b, 
c, x, ... (tak značíme aj e-priamky), alebo dvojicou vel-

i právě keď je 
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kých latinských písmien AB, UX, YZ, . . . pokial tieto 
písmená označujú dva rózne e-body, ktorých e-spojnica 
přetíná e-kružnicu h. Například podia obrázku 3. je otvo-
rená e-úsečka UV zároveň 1-priamkou a jej zápis je UV, 

Obr. 3 

alebo XU, alebo XY, alebo ZV, alebo a a pod. Ak x je 
1-priamka, potom symbolom x označíme e-priamku, pře 
ktorú x <= x a symbolom x' množinu x n h. 

Úloha 7. Pozrite na obrázok 3. a napište všetky tam na-
kreslené a) 1-body, b) e-body, ktoré nie sú a-bodmi, c) 
i-body, d) 1-priamky, e) e-priamky. 

Úloha 8. Dajte aspoň štyri rózne zápisy 1-priamky 
č ň h obrázku 3. 

Úloha 9. Nech X í Y sú e-body. Aký je rozdiel medzi 
symbolom „e-priamka XY" a „XY"? Majů obidva sym-
boly vždy zmysel ? 

Úloha 10. Zapište stručnejšie výrazy z obrázku 3.: 
a) XU n c, b) { U , V), c) MZ, d) a n QR. 
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tJloha 11. Dokážte, že vmodeli B je výrok L z 3.1. prav-
divý. 

V teórii (£ sú dve rózne priamky buď rovnoběžné, alebo 
róznobežné. Ukážeme, že v teórii £ sa rovnobežnosť dá 
ešte ďalej klasifikovat'. 

Veta 1. Nech x,y sú dve rózne 1-priamky. Potom nastáva 
jeden a len jeden z nasledujúcich troch pripadov: 

1. * n y í 0, 2. x n y = % a x' n y' í 0, 
3. x n y = 0 a x' n y' = 0. 
Dókaz. Namiesto 1- priamok x, y uvažujme e-priamky 

x, y. Ak x, y sú e-rovnobežné, alebo ak x D y j e i-bod, po-
tom nastáva případ 3. Případ 1. resp. 2. nastáva právě ked 
x n y je 1-bod resp. a-bod. Poznamenajme, že pre x 
je množina x' n y' buď prázdna, alebo jednoprvková. 

Definícia 3.1-Priamky sa nazývajú: l-róznobežné, či 
1 -róznobežky právě keď x n jy í 0, l-rovnobežné, či 
1- rovnoběžky právě keď x n y ^ 0. 1-Rovnobežky x, y sa 
nazývajú rozbežky resp. súbežky právě keď x' n y' = 0 
resp. x' n y' í 0. 

Poznámka 2. Pretože termín e-rozbežky neexistuje, stačí 
písať rozbežky namiesto 1-rozbežky. Rovnako pre súbežky. 
Symbol 11 bude značit' výlučné e-rovnobežnosť. 

Nasledujúce úlohy 12 až 15 sú věnované niektorým fak-
tom platným v teórii £, nie však v teórii (£. 

Úloha 12. Nech je daných n navzájom róznych 1-pria-
mok 'au a2, . . . , an. Potom vždy existuje 1-priamka x-rov-
nobežná s každou z priamok a1} a2, ..., aa. 

Úloha 13. Nech a, b sú 1-rovnobežky. Potom vždy exi-
stuje 1-priamka p 1-rovnobežná s a a 1-rovnobežná s b. 

Úloha 14. Existujú tri 1-rovnobežky a, b, c tak, že žiadna 
1-priamka nepretína všetky tri. 

Úloha 15. Nech a, b sú 1-rovnobežky. Určité množinu M 
1-bodov X, ktorými možno viesť 1-priamku x 1-rovnobežnú 
s b a 1-róznobežnú s a. 
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Úloha 16. (Konštrukčná.) Nech A, B, Csú rózne 1-hody, 
pričom A je e-stred e-kružnice h. Konstruujte 1-priamky 
a, b, c tak, aby každé dve z nich boli súbežky a naviac 
A € a, B eb,C ec. Prevedte diskusiu. Riešenie je založené 
na istom vtipe. 

Zavedieme dalšie pojmy modelu B: polpriamka, polro-
vina, úsečka, uhol, trojuholník. Připomeňme, že v teórii (£ 
sa pod pojmom „polpriamka" rozumie „uzavretá polpriam-
ka" tj. polpriamka včítane jej začiatku. Rovnako aj polro-
vina, úsečka a uhol sa v teórii (£ berú uzavreté. 

Definicia 4. Nech A, B sú dva rózne 1-body 1-priamky p 
pře ktorú p' = {U, V}. Nech 1-bod B leží medzi A a U. 
Množinu, ktorá sa skládá z 1-bodu A a všetkých 1-bodov X 
ležiacich medzi A a U nazveme 1 -polpriamkou AU, alebo 
AB. Prienik 1-polpriamok AB a BA nazveme 1 -úsečkou AB. 
Ak naviac 1-bod C £ p, potom množinu všetkých bodov X 
pře ktoré platí: vnútro 1-úsečky XC nemá s 1-priamkou 
p žiaden spoločný 1-bcd sa nazýva 1 -polrovinou ABC, alebo 
pC. Prienik 1-polrovín ABC a ACB nazveme 1 -uhlom 
a označíme < BAC či <£ CAB. 1-Polpriamku MP nazý-
vame tiež nulový \-uhol, 1-polrovinu tiež 1 -priamy uhol. 
Pojmy vnútrajšok, otvorenosť či uzavretost 1-polpriamky, 
1-úsečky, 1-polroviny a 1-uhla sú použité ako v teórii (ř. 
Tieto útvary sa predpokladajú uzavreté, pokial nie je vý-
slovné povedaný opak. 

Dohovor 3.01-polpriamke AB budeme hovoriť aj vtedy, 
ked je B a-bodom, připadne i-bodom. e-Bod A musí nutné 
byť 1-bodom. Podobné o 1-polrovine/íBC hovoříme aj v pří-
pade, že A, B, C sú rubovolné e-body neležiace na e-priam-
ke, ak len e-priamka AB přetne h. 01-uhle BAC hovoříme 
aj v případe, že B, C sú TubovoTné e-body rózne od 1-bodu 
A. Dokonca e-body B, C móžu s 1-bodom A ležať na e-
priamke — potom je 1-uhol BAC buď nulový, alebo priamy. 
Pojem opačnej 1-polroviny používáme, ako v teórii <S. 
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01-úsečke AB budeme hovoriť aj v případe A = B — na-
zveme ju nulovou. 

Znovu pár úloh na precvičenie látky. 
Úloha 17. Kolkoraká je vzájomná poloha dvoch rSznych 

1-polpriamok AB a CD ? Nájdite aspoň 10 prípadov. 
Úloha 18. Nech p, q sú dve 1-róznobežky a qi c q 

1-polpriamka nepretínajúca 1-priamku p. Narýsujte množi-
nu M tých 1-bodov X pre ktoré platí: každá 1-priamka * 
idúca 1-bodom X a nepretínajúca 1-priamku p nutné přetne 
1-polpriamku qv 

3.3. Kolmost' v modeli B 

Odteraz až do odvolania předpokládáme, že všetky 
objekty sú euklidovské a preto upúšťame od písania pred-
symbolov e- či 1-; symboly 5 resp. r v ďalšom značia střed 
resp. poloměr kružnice h. 

Trochu neobvyklým spósobom budeme definovat' mno-
žinu s, ktorej prvky značíme velkými latinskými písmena-
mi — ako body. Symbolmi H resp. A označíme množinu 
všetkých priamok resp. bodov. O zobrazení hovoříme v do-
datku A. 

Definícia 5. Nech s je množina daná zobrazením 
u : i - > s s nasledujúcimi dvoma vlastnosťami: 

(a) ku každému X e s existuje aspoň jedna priamka 
y e 7t tak, že a (y) = X, 

(b) pre lubovolné priamky x platí cr(jc) = a(y) o 
o x [ | y. Potom množinu s nazýváme množina smerov 
a jej prvky nazývame směry. Smer a(x) pre x eň nazývame 
smerom priamky x, alebo smerom incidentným s priamkou x. 

Nepresne, ale názorné sa pod pojmom smer rozumie „ne-
konečný bod priamky" či „priesečník dvoch róznych rov-
nobežiek". 
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Dohovor 4. Nech je x en; namiesto a(x) píšeme tiež 
x (l s, namiesto vztahu X = a(x) píšeme vzťah X ex. 
Pře AeňaX^Yes označíme symbolom AX tú priam-
ku peň, pře ktorú A ep a) X epa symbolom XY označí-

Q 

Obr. 4 

me množinu s. Pře každý A eň definitoricky přehlásíme 
A 4 s. Konečne vzdialenosť (tj. e-vzdialenosť) bodov A, B 
značíme e(AB). 

Podáme definíciu dvoch zobrazení polarity: 

p:j iU s —>šř u { s } a P : ň u { s } ^ j i u s. 
Uvedomíme si, že medzi symbolmi s a {s} je rozdiel — 
pozři dodatok A. 

Definícia 6a. Zobrazenie p : A U s -> ŤŤ u {s}, ktoré 
každému prvku X e j u s přiřadí prvok p(-SQ e ň U {s} 
nazveme polárným zobrazením bodov ak 

1. pre X e s je p(X) priamka idúca bodom 5 kolmo na X, 
2. p(S) = {s}, 
3. pre X e fc, X í 5 je p(AT) priamka kolmá n? SX 

idúca tým bodom Y polpriamky SX, pre ktorý 
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e{SY).e(SX) = r2. (7) 

Úloha 19. Dokážte, že zobrazenie p je bijektívne tj. že 
každému prvku X množiny ň U s přiřadí jediný prvok 
p(-X) množiny ň <= {s} a ku každému prvku x množiny 

n u {s} existuje a přitom jediný prvok X eň u s tak, že 

Tvrdenie dokázané v úlohe 19. nás oprávňuje hovoriť 
o zobrazeni inverznom ku p tj. o takom zobrazení P: 
Ň U {s} —> TI U s, pre ktoré p[P(x)] = x pre všetky 
x eň u {s} a P[p(X)] = X pre všetky X e A U s. Podáme 
presnú definiciu. 

Defmícia 6b. Zobrazenie P: TI u {s} -»• Ň U s dané pred-
pisom P(x) = X o p(X) = x pre všetky x eň u {s} na-
zveme polárným zobrazením priamok. 

Zobrazenia P a p majů dosť negeometrickú formu, pre-
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tože sú popísané predovšetkým rovnicou (7). Nájdeme ich 
geometrickejšie vyjadrenie. 

Úloha 20. Pře každý bod X í 5 je p(X) 1 XS. Do-
kážte. X e h právě ked X e p(X). Dokážte. 

Obr. 6 

Úloha 21. Nech X e h, potom p(X) je dotyčnica ku h 
v bode X. Nech x je dotyčnica ku A, potom P(x) je dotykový 
bod x a h . Dokážte. 

Úloha 22. Nech M je vonkajší bod kružnice h a nech 
Aí1} M2 SÚ dotykové body dotyčníc vedených z bodu M ku 
h. Potom p(AÍ) = M1M2. Dokážte. 

Konstrukčně vieme už velmi dobře nájsť p(X) resp. P(JC) 
pre X neležiace vo vnútri h resp. pre x majúce s h aspoň 
jeden bod spoločný. Úlohu doriešime úplné, najprv však 
dokážeme dóležitú vetu. 

Veta 2. (Základná vlastnost polarity J. N e c h a j e bod resp. 
směr a y priamka. Potom platí 
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Dókaz. Nech napřed S $ X $ h, S é y, X $ s (obr. 6.). 
Označme U = XS n p ^ ) , V resp. l^priesečník kolmice 
vedenej z bodu 5 na jy s y resp. p(X). Existencia týchto bo-
dov vyplývá z úlohy 20. a horných predpokladov. Pretože 

X$h, je tiež (úloha 20.) X $ p(X) a preto X m W. Z Tá-
lesovej vety vyplývá, že body U, V ležia na kružnici k opí-
sanej nad úsečkou XW ako priemerom. Podia vety o moc-
nosti bodu ku knižnici (dodatok D) a definície 6a. je 
r2 = e(SU).e(SX) = <SF).£(SIF), tiež y ± SW. Preto 
je p ( W ) = y, teda W = P(j) , čiže P(y) e p(A> Implikáciu 
X_e y => P(y) e p(*) sme dokázali pře „všeobecný" případ. 
„Špeciálne" případy přenecháme čitatelovi — nasledujúca 
úloha. Dokážeme ešte opačnú implikáciu. Ak totiž platí 
X e y P(jv) e p(JQ, potom je tiež P(j>) e p(X) => 

Obr. 7 

P I p W l e p t P W l t j . X e y . 
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Úloha 23. Dokončite dókaz vety 2. 
Úloha 24. Pomocou vety 2. je možné podať konštrukciu 

poláry p(Aí) aj v případe, že M leží vo vnútri h a kon-
štrukciu pólu P(m) priamky m pre ktorú h n m = 0. 
Nájdite túto konštrukciu. 

Dokončili sme přípravné práce. Odteraz budeme písať 
zase predsymboly e- a 1-. Symbol _L značí výlučné e-kol-
mosť. 

Definícia 7.1-Priamky m, n nazveme 1 -kolmé právě keď 
P(Ťw) e w, alebo (čo je s týmto vzťahom ekvivalentné) 
P(ň) e m. Značíme m~\ n. Povieme že veTkosť 1-uhla 

1-priamok m, n je 

Úloha 25. Nech m T n sú 1-priamky. Potom, m n sú 
róznobežky. Dokážte. 

Úloha 26. Kolko spoločných 1-kolmíc majů dve 1-priam-
ky m i n ? 

Úloha 27. Dokážte, že neexistuje 1-štvoruholník, ktoré-
7Z ho všetky štyri 1-uhly majů vďkosť (Pozři výrok U 2 
A 

z článku 3.1.). 

Příklad 1. Pre 1-priamky p j q platí p _L q právě keď 
aspoň jedna z nich prechádza 1-bodom S. Dokážte. 

Rieíenie. Nech p je 1-priamka neidúca 1-bodom S. 
Z podmienky pT q vyplývá P(p) e q. Zo všetkých e-pria-
mok x idúcich bodom P(p) jedine jedna je e-kolmá na p a to 
tá, ktorá prechádza 5, teda z p _L q, S $ p vyplývá ¿ e g . 
Nech naopak S e q potom P(g) ept).p _L q. 

Úloha 28. Čo vieme povedať z euklidovského hladiska 
o 1-priamkách p, q, ak ich jediná spoločná 1-kolmica pre-
chádza bodom 5. 

Úloha 29. Nech m, n sú súbežky, pričom každá z nich je 
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rozbežná s 1-priamkou q. Zistite vzájomnú polohu 1-pria-
mok a, b definovaných vzťahmi m j a j q j b j n. 

3.4. Miera úsečky v modeli B 

1-Mieru (1-dížku) 1-úsečky AB budeme definovat' spóso-
bom s ktorým sa čitater doteraz pravděpodobně nestretol. 
Táto definícia však nie je vymyšlená, ale zákonité odvodená 
spósobom s ktorým čitatela oboznámiť nemóžeme. Vyža-
duje hlbšie vědomosti z geometrie. Začneme definiciou. 

Definícia 8. Nech / í5 je 1-úsečka a U, Fa-body 1-priam-
ky AB. Číslo 

log2 X (AB) = 
e(AU).e(BV) (8) 

kde e(XY) je e-miera (e-dížka) e-úsečky XY, nazveme 
l-mierou (1 -dlžkou) \-úsečka AB. 

Poznámka 3. Pretože A je 1-bod a V je a-bod je nutné 
A í F, teda e(A V) je kladné. Rovnako čísla e(BU), e(A U), 
e(BV) sú kladné, preto výraz (8) má zmysel. Fakt, že po-
užitý logaritmus má základ 2 je nepodstatný. Tento základ 
volíme hlavně kvóli zjednodušeniu niktorých konštrukcií. 
Vo váčšine literatúry sa vo vzorci (8) berie tzv. prirodzený 
logaritmus, ktorého základ je číslo e = 2,71. . . . Význam 
tejto volby vystúpi pri hlbšom, hlavně analytickom štúdiu 
1-geometrie. 

Dohovor 5. V ďalšom texte symbol log značí vždy log2. 
Veta 3. Nechal, B, Csú 1-body ležiace na 1-priamke p, 

potom platí: 
I. KAB) ž 0 pričom Á(AB) = 0 o A = B, 

II. X(AB) = ?(BA), 
III . X(AB) + X(BC) ž Á(AC), pričom rovnoslV nastáva 

právě keď 1-bod B patří 1-úsečke AC. (Obr. 8.) 
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Dokaž. Prvá časť tvrdenia I. je evidentná. Rovnosť 
X(AB) = 0 platí právě vtedy, ak výraz v (8) z ktorého sa 
berie logaritmus je rovný 1 tj. 

e(A V). e(B U) = s(A U). e(B V). 

© U * f £ 

U V 

Obr. 8 

Je zřejmé, že posledná rovnosť je splněná právě ked 
A = B. Tým je dokázané tvrdenie I. Záměnou 1-bodov A, 
B v (8) změní sa výraz stojaci v absolutnej hodnotě len čo 
do znamienka, teda II. platí. K dókazu III . vyšetříme dva 
případy: 1.I-Bod B leží medzi 1-bodmi A a C, 2.1-Bod C 
leží medzi 1-bodmi A a B. Případ splynutia ktorýchkolvek 
z 1-bodov A, B, C je triviálny. V oboch prípadoch móžeme 
bez ujmy na všeobecnosti predpokladať, že 1-bod A leží 
medzi U a B. V případe 1. je 

+ log <BV).e(CU) = lQse(AV).e(BU).s(BV).e(CU) _ 
'e(BU).e(CV) 6 e(AU). s(B V). e(B U). e(CV) 

(Boli sme oprávnění vypustiť absolutné hodnoty ?) 
V případe 2. použijeme už dokázaného vzťahu pri vymene-
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ných 1-bodoch B, C, teda X(AC) + X(CB) = X(AB), 
odkial X(AB) + X(BC) = X{AC) + X{CB) + X(BC) < 
< X(AC), lebo X(CB) = X(BC) > 0 podl'a I., II . 

Úloha 30. Určité množinu 1-bodov X, pře ktoré platí 
X(SX) = a. Ako třeba voliť číslo a, aby do tejto množiny 
patřil aspoň jeden 1-bod M pře ktorý 2 e(SAf) = r ; r je 
1-polomer e-kružnice h. 

Úloha 31. Nech A je 1-bod, U je a-bod. Na 1-polpriamke 
AUnájdite 1-bod X tak, aby X(AX) = 1. Dokážte existen-
ciu a jednoznačnost 1-bodu X a popište jeho euklidovskú 
konštrukciu. 

Úloha 32. N e c h ^ 1-body a U, Fa-body 1-priam-
ky AB volené tak, že A leží medzi U a B. Označme 
e(AU) = a, e(BV) = b, e(AV) = v, E(BU) = U. Nech 
u + v a M je 1-bod 1-úsečky AB pre ktorý x = E(AAF) = 

= — Va®)- Dokážte, že M existuje. 

Úloha 33. Dokážte, že 1-bod M z úlohy 32. je 1-stred 
1-úsečky AB tj. X(AM) = X(BM). 

Veta 4. Nech A í B sú 1-body a U, V a-body 1-priamky 
AB. 1-Stred 1-úsečky AB nájdeme touto konštrukciou: 

1. Ak je e(UA) = e{BV) potom M zostrojíme ako 
e-stred e-úsečky AB. 

2. Ak je E(UA) + e(BV) potom volíme pomocné 
e-kružnice k1 a k2 tak, že UV je e-priemer ku A ek2, 
B e k2 a ki přetne k2 v e-bodoch P, Q. 

Nech Z je e-priesečnik e-priamok AB a PQ. Nech T je 
dotykový e-bod e-dotyčnice vedenej e-bodom Z ku k2 
(resp. ku kj), potom hladaný 1-stred M leží na e-kružnici 
z e-stredu Z idúcej e-bodom T. (Obr. 9.) 

Dokaž. Nech symboly: a, b, d, u, v značia to čo v úlo-
hách 32. a 33. Případ 1. je zřejmý z e-súmernosti obrázku 
podia e-priamky idúcej 1-bodom 5 e-kolmo na AB. V prí-
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pade 2. si najprv uvedomíme, že spojnica e-stredov 
e-kružníc ku k2 nie je e-kolmá na e-priamku AB, preto 
e-bod Z existuje. Mocnosť e-bodu Z ku a k2 je tá istá, 
teda e{ZA).e(ZB) = e(ZU).e(ZV). Označme (za předpo-

kladu, že U leží medzi A a Z) e( UZ) = z, potom horná rov-
nosť sa dá písať v tvare (z -(- á)-(z + u) = z • (z + a + v) 
odkial 

au 

z = — (podia předpokladu u 4= v). 

Z vety o mocnosti e-bodu ku e-kružnici vyplývá 

s\ZT) =[z + 4)2 - (4)2 = *••(* + <*)• 
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Tvrdenie vety bude dokázané, ak ukážeme, že pře 1-bod M 
popísaný v texte vety platí e(AM) = x, kde x bolo zadané 
v úlohe 32. Třeba teda dokázat', že 

]/*•(* + d) — (a + z) = x. 

Výraz na lávej straně upravíme. Za z dosadíme z a 

d dosadíme a + v. Po úpravě dostaneme 

— (1lauv. V a 4- v — u — av) = . (Vub — ]!av)• 
v — u r v — u ' ' 

Poznámka 4. Z úlohy 31. vyplývá zaujimavý fakt, ktorý 
v e-rovine neplatí. V 1-rovine je á priori daná jednotková 
dížka. Tento ,zdanlivo pozitivny fakt nesie množstvo 
obtiaží. Napr. delenie 1-úsečky na n zhodných častí je 
úloha v e-rovine jednoduchá, zatial čo v 1-rovine značné 
obtiažna. Tým pádom je obtiažne napr. zostrojiť „1-me-
rítko"; konštruovať měřítko s vyznačením napr. desatín 
ešte nevieme. Čitatela ešte naučíme prenášať 1-úsečky 
v 1-rovine. 

Úloha 34. Nech p, q sú 1-priamky pre ktoré S ep, 
p\\q. Nech Z je e-priesečník e-priamok P^Qi, P2Q2, kde 
P' = {Pi, P*}, q' = {Qi, !22}. Nech RrnS^ je 1-bod 
1-priamky p a M, N 1- body na q také, že Z e SM, Z e RN, 
potom k(SR) = A(MN). Dokážte. 

Dohovor 6. Nech A je 1-bod, p 1-priamka, q 1-kolmica 
z A ku p & p n q = P- 1-Bod P nazveme \-priemetom 
l-bodu A do 1-priamky p, číslo A(AP) nazveme 1-vzdiale-
nosíou l-bodu A od 1-priamky p a označíme tiež A(Ap). 

Úloha 35. (Pozři dókaz Claviusa v kap. 2.) Dokážte, že 
v modeli B nasledujúce tvrdenie neplatí: Nech A, B, C sú 
1-body ležiace v jednej 1-polrovine vytatej 1-priamkou p. 
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Nech X(Ap) = A(Bp) = X(Cp), potom C leží na 1-priamke 
AB. 

Prenášať 1-úsečky naučíme čitatela v nasledujúcich úlo-
hách. Ich zvládnutie předpokládá znalost' Pappovej vety, 
ktorú si čitatel móže naštudovať v dodatku F. 

Úloha 36. Nech p, q sú súbežky a U ich spoločný a-bod. 
Nech A, B ep a C e q. Nájdite všetky 1-body X e q tak, 
že Á(AB) = Á(CX). 

Úloha 37. Nech p, q sú rózne 1-priamky, A, B ep, 
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C e q. Nájdite všetky 1-body X e q tak, že Á(AB) = 
=J(CX). 

Úloha 38. Na 1-priamke p sú dané tri 1-body A, B, C, 
A í C. Nájdite 1-bod X ležiaci na 1-polpriamke CA tak, 
že KAB) = X(CX). 

Úloha 39. Nech P R sú a-body, 5 e-stred e-kružnice 
h. Nech 2 a je euklidovská miera e-uhla <£ PSR. Nájdite 
1-body A, B na 1-polpriamkach SP, SR tak, aby 1-trojuhol-
nik ABS bol 1-rovnostranný. Určité riešitelnosť. Riešte vý-
počtom. (Obr. 11.) 

Úloha 40. Overte výpočtom nasledovnú konštrukciu 

1-bodu A ^za předpokladu 0 < 2 a < z predošlej úlohy. 

(Označenie volíme ako v predošlej úlohe — pozři obr. 11.) 
e-Rovnobežka s SR vedená a-bodom Q přetne h v a-bode 
Q m Q; e-úsečku QQ' prenesieme na e-polpriamku QS. 
Označme L ten e-bod e-polpriamky QS pře ktorý e(QQ') = 

7t 
= e(QL). Z podmienky 0 <2 a < vyplývá, že L leží 

Obr. 11 
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medzi P a S. e-Bod K zostrojíme ako vrchol e-pravouhlého 
trojuholníka KQL s přeponou QL a výškou SK. Na 
e-polpriamke SB nájdeme e-bod M pre ktorý e(SK) = 
= e(SAÍ). Potom AM _L BS. 

3.5. Model p (Poincaré) 

Symbolické předpony 1- a e- používáme rovnako ako 
v případe modelu B na ktorý sa budeme odvolávať. Čita-
telovi doporučujeme pozrieť model S5 z příkladu 1.3. Zno-
vu pracujeme v pevnej e-rovine. 

Dohovor 7. Nech je v e-rovine daná pevná priamka h* 
vytínajúca v e-rovine dve otvorené e-polroviny, ktoré 
(uvažované ako množiny e-bodov) označíme X a /i. Nech H 
je bod neležiaci v uvažovanej e-rovine. Označme h = h* U 
U {H}. Bod H budeme definitoricky považovat za a-bod. 
Pre každú e-priamku p položíme definitoricky p ± h* o 
oHep. Táto symbolika je závazná pre celý článok 3.5. 
až 3.7. 

Definicia 9. Pojmy 1 -bod, a-bod, i-bod, l-rovina, abolut 
a ideál l-roviny X sú dané definíciou 1. 

Definicia 10. Nech p je e-kružnica resp. e-priamka 
e-kolmá na e-priamku h*. Potom množinu 1-bodov X n p 
nazveme l-priamkou (prvého resp. druhého druhu).*) 

Dohovor 8. Podobné ako v modeli B aj tu budeme 
1-priamky označovat' bud malými latinskými písmenami, 
alebo dvojicou velkých latinských písmien, pokial oni zna-
čia dva e-body nie súmerné podia h*. Pruh aj čiarka majů 
význam ako v dohovore 2. čl. 3.2. Podia obrázku 12. je teda 
p e-priamka obsahujúca naviac e-bod H, p otvorená e-pol-

*) Hovoříme, že e-kružnica k so stredom 5 je e-kolmá na e-priamku 
p, ak 5 e p. 
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priamka, p' = {H, P), á je e-kružnica, a <= a, a je otvorená 
e-polkružnica, a' = {V, U}. Ak a je 1-priamka prvého dru-
hu, potom e-stred e-kružnice á označíme S{a). 

Úloha 41. Nech X, Y sú dva rózne e-body. Potom exi-

b 
p 

\ a 

/ T N 
r- \ />• 

S(b) p 
p 

Iv S«j) UNl/ SfC) 

— K - y 

^ / i 

Obr. 12 

stuje 1-priamka x tak, že X e x a Y e x. Dokážte. Existuje 
jediná * ? Platí obdobné tvrdenie v modeli B ? 

Úloha 42. Pri označení obrázku 12. určité čo značí a) 
b n č, b) b n č, c) S(p), d) S(a)S(c). 

Úloha 43. Kolkoprvková je množina p\ ak p je 1-priam-
ka ? Čo značí tvrdenie H e p' ? 

Úloha 44. Platí tvrdenie vety 1. z článku 3. 2. aj pre 
model p ? Platí výrok L z 3. 1. aj pre model p ? 
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Definícia 11. Pojmy 1 -róznobežky, 1-rovnoběžky, rozbež-
ky a súbežky (a gramatické obměny týchto termínov) sú 
dané deňniciou 3. článku 3. 2. Symbol || označuje, ako aj 
v modeli B výlučné e-rovnobežnosť. 

Úloha 45. Vyriešte úlohy 12.—14. článku 3. 2. v rámci 
modelu p. 

Dohovor 9. Povieme, že 1-bod A leži medzi 1-bodmi B 
a Cak 

1.1-body A, B, C ležia na jednej 1-priamke m a 
2. e-bod A leží medzi e-bodmi B a C v zmysle (£ v pří-

pade, že w je druhého druhu; e-úsečka AS(m) přetne 
e-priamku BC v případe, že m je prvého druhu. 

Dodajme ešte, že dohovor platí aj vtedy, ak náhodou 
B e h*, připadne C e h*. Pre a-bod H dodefinujme: Ak AB 
je 1-priamka druhého druhu (A ^ B 1-body) a (AB)' = 
= {H, P}, potom povieme, že 1-bod A leží medzi a-bodmi 
H&Pa naviac 1-bod A leží medzi 1-bodom B a a-bodom H 
právě vtedy, keď A neleží medzi B a P. Netřeba písať 
,4-medzi" a „e-medzi", lebo z textu bude vždy jasné či 
ide o 1-body, alebo e-body. Obtiaže s pojmom „medzi" 
v modeli B neboli. 

Definícia 12. Pojmy 1 -polpriamka, 1 -úsečka, \-polrovina, 
1 -uhol, nulový a priamy l-uhol, ako aj vnútrajšok, otvorenosť 
a uzavretosť týchto útvarov sú dané definíciou 4. článku 

Obr. 13a Obr. 13b 

3.2. 
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Úloha 46. Nech a, b sú dve rózne 1-priamky. Určité po-
čet n 1-priamok súbežných s a aj b. 

Úloha 47. Kolko róznych (z hladiska e-roviny) a) 1-pol-
priamok, b) 1-polrovín existuje v modeli p ? Načrtnite 
obrázky. 

Velmi dóležitým geometr ický pojmom je konvexnosť. 
Pripomenieme čitatelovi, že množina M sa nazýva kon-
vexná, ak spolu s každými dvoma bodmi A, B obsahuje 
celú úsečku AB. Na obrázku 14. je nakreslená nekonvexná 
množina v euklidovskej rovině. Kruh, vnútrajšok štvorca, 
či polpriamka sú příklady konvexnej množiny. 

Sk&r ako budete čítať dalej, pokúste sa zistiť, či aj 1-pol-
priamka v modeli p je konvexná množina. 

Odpoved na poslednú otázku je problematická, pretože 
pojem „konvexná množina" bol hoře zavedený nie dosť 
presne. Ku zavedeniu pojmu konvexity je totiž nevyhnutné 
určiť pojem úsečka a z horného textu nijako nevyplývá či sa 
jedná o e-úsečku, alebo 1-úsečku. Podia toho ktorý z týchto 
termínov v hornej definícii použijeme, budeme hovoriť 
o e-kotivexite (tomu vyhovuje například obr. 14.) a l-kon-
vexite. Teda 1-priamka prvého druhu je 1-konvexná, ale nie 
je e-konvexná. 

Definícia 13. Povieme, že množina M e-bodov je e-kon-
vexná, ak z faktu A e M, B e M vyplývá, že e-úsečka AB 
patří do M. Analogicky definujeme 1 -konvexitu, ak v hornej 
definícii všetky predsymboly e- nahradíme predsym-
bolmi 1-. 

Obr. 14 
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Veta 5.1-Polrovina, 1-polpriamka, 1-uhol a 1-úsečka, ako 
aj vnútrajšky týchto útvarov sú 1-konvexné. Prienik dvoch 
1-konvexných množin je množina 1-konvexná. 

Dokaž. Nech/> je 1-priamka a Q $ p 1-bod. Nech X í Y 

sú 1-body 1-polroviny pQ a q 1-priamka XY. Bez ohladu na 
to či e-útvary p, q sú e-priamky, e-kružnice, platí, že v pří-
pade ked sa p a q pretnú, nemóžu byť e-body X, Y e-útva-
rom p oddelené. 1-Konvexita 1-polpriamky a 1-úsečky je 
triviálna. 

Nech sú ďalej M a N konvexně množiny a nech 1-body 
X ^ V náležia množině M n N. Pretože 1-úsečka XY 
podia definície 1-konvexity náleží do M aj N, náleží celá 
tiež do M n N. 

Z 1-konvexity 1-polroviny vyplývá podia posledného aj 
1-konvexita 1-uhla a veta je dokázaná. 

Úloha 48. V modeli p nájdite přiklad množiny M, 
ktorá a) je aj 1-konvexná, aj e-konvexná, b) je 1-konvexná 
a nie je e-konvexná, c) je e-konvexná a nie je 1-konvexná, 
d) nie je ani e-konvexná ani 1-konvexná. 

Úloha 49.1-Konvexnú množinu N <= X nazývame \-koti-
vexným obalom danej množiny M <= A ak 1. M <= N a 2. pre 
každú 1-konvexnú množinu platí M c N 1 = > N c N 1 . 

p 
m 

M 

Obr. 15 
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1-Konvexný obal množiny M značíme l-K(M). Určité 
1-konvexný obal l-K(M) množiny M skladajúcej sa z 1-pol-
priamok AB a AC, pričom A, B, C sú tri 1-body neležiace 
na 1-priamke. 

Obr. 16 

Úloha 50. Nech m je e-priamka majúca neprázdný 
prienik s h Určité 1-konvexný obal množiny m n A. Pře-
veďte diskusiu. 

Úloha 51. Nech p je 1-priamka a Q$p 1-bod. Pomocou 
1-uhla popište množinu M tých 1-bodov X, pre ktoré sú 
1-priamky QX a p 1-rovnobežkami. Je M 1-konvexná ? 

3.6. Miera uhla v modeli p 

V modeli B sme sice poznali kolmosť, ale inak 1-mieru 
(velkosť) 1-uhla sme vedeli určiť len v tom velmi špeciál-
nom případe, keď jeho 1-vrchol splynul s e-stredom e-kruž-
nice A.V modeli p budeme vedieť tirčiť 1-mieru Iubovolné-
ho 1-uhla. Čitater si prečíta teraz časť B z dodatku, kde je 
definovaný pojem t-polodotyčnice t-kruhového oblúka. 

Definícia 14. Nech je daný 1-uhol < PVQ. Symbolom 
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px resp. qt označíme e-polpriamku, ktorá je: 1. e-polodo-
tyčnicou v e-bode V e-kruhového oblúka VP resp. VQ, ak 
je 1-príamka VP resp. VQ prvého druhu, 2. totožná s e-pol-
priamkou VP resp. VQ, ak je 1-priamka VP resp. VQ 

Obr. 17. 

druhého druhu. 1-Mieru 1-uhla <$ PVQ označíme A (<£ 
PVQ) a definujeme predpisom 

H<PVQ) = e(^Pl, qL) 

pričom toto číslo (písané v stupňovej miere) volíme vždy 
v intervale [0°, 180°]. Obr. 17. 

Poznámka 5. Zatial čo v e-rovine móžeme definovat aj 
mieru e-uhla dvoch e-rovnobežiek (ako nulu), nie je toto 
v 1-rovine vóbec možné. V 1-rovine sa o miere dvoch 
1-priamok dá hovoriť iba vtedy, ak sú tieto bud totožné, 
alebo 1-róznobežné. 

Dohovor 10. Nech a, b sú dve 1-priamky pretínajúce sa 
v 1-bode V. Nech a}, b1 sú e-dotyčnice v bode V e-kružníc 
v poradí a , b — připadne = á, alebo bt = b, ak sú a, 
alebo b e-polpriamky. 1 -Mierou 1- uhla \-priamok a, b ro-
zumieme menšie z čisiel e ( < a\, b\)} e (<í a x, b'\), po 
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případe číslo n, ak e (< a\, b\) = e(<): a\, b"^). Přitom 

a\ je jedna (ktorákolVek) z e-polpriamok so začiatkom vo 
V a ležiaca v a , a b\, b'\ sú opačné e-polpriamky na ktoré 
e-bod V delí e-priamku bv Ačkolvek pojem „1-uhol 
1-priamok a, b" zavedený nebol a je teda bez zmyslu, je 
„1-miera 1-uhla 1-róznobežiek a, b" pojem majúci zmysel. 
Posledný termín označuje číslo, ktoré značíme A (<£ a, b). 
Konečne položíme X (<£ a, a) = 0°. 

Přiklad 2. Nech a je 1-priamka a M 1-bod. Potom existu-
je a to jediná 1- priamka m 1-kolmá na a idúca 1-bodom M. 
1-Priamky a, m sú 1-róznobežky. Dokážte. 

Riešenie. Nech najprv je a prvého druhu, M $ a. 
Existuje jediný e-bod N ležiaci na e-polpriamke S(a)M 
tak, že číslo fi[\S(a)Aí]-e [5(a)N] je rovné druhej mocnině 
e-polomeru e-kružnice a. Pretože e-body M í N sú 
1-bodmi, nemóžu byť e-súmerné ku h* a teda existuje jediná 
1-priamka m = MN. Bez ohladu na to, či m je prvého, 
alebo druhého druhu je táto jedinou hladanou 1-kolmicou 
na a.V případe, že a je druhého druhu, á = {A, H} je m 
daná podmienkou S(m) = A znovu jedinou 1-kolmicou 
na a. Případ M e a, ktorý sme doteraz neuvažovali je 
zřejmý. 

Poznámka 6. Pojmy 1-priemet l-bodu A do l-priamky p, 
akó aj 1 -vzdialenosť l-bodu A od l-priamky p zavádzame 
rovnako ako v dohovore 6. čl. 3.4. 

Úloha 52. Pokúste sa definovat' pojmy „1-os 1-uhla" 
a „1-os dvoch 1-róznobežiek". Definície v dalšom texte 
užíváme. 

Úloha 53. Ak oly o2 sú 1-osi l-r6znobežiek a, b, čo možno 
povedať o X ( < ou o2) ? 

Úloha 54. Nech 1-body A, B, C neležia na 1-priamke. 
Prienik 1-polrovín ABC, BCA a CAB nazývame l-troj-
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uholníkom ABC a 1-uhly BAC, <£ ABC, <£ ACB 
\-uhlami l-trojuholnika ABC. Značíme ich ako v e-geo-
metrii <: «, <;: (i, <;: y. Narýsujte 1-trojuholník ABC 
a uhlomerom zistite číslo A (<T a) + X ( / S ) + A (<£ y) 
v oblúkovej miere. 

Úloha 55. Na obrázku 18. je nakreslený 1-trojuholník 
ABC, pričom S(b) = P, S(c) = R a ^ P aj 5 C sú 1-priam-
ky druhého druhu. Ďalej je Q e-stred e-úsečky PR. S pre-
snosťou na 1' určité 1-súčet uhlov 1-trojuholníka tj. číslo 
A«a) + A«j8) + y). 

Úloha 56. Na obrázku 19. je daný 1-trojuholník, pričom 
BC je 1-priamka druhého druhu a X (BCA) = 90°. 
Dokážte, že potom X ( a ) + X ( < /?) < 90°. Ku dókazu 
použité pomocnú e-kružnicu k idúcu e-bodmi A, B, U, 
kde U e (BC)'. 

Veta 6. Neexistuje 1-trojuholnik ABC tak, aby X ( < a) = 
= = X(^y) = 60°. 

Dokaž. Predpokladajme, že ABC je 1-trojuholník, kto-

P Q R 

Obr. 18 
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rého všetky tri 1-uhly majů 1-mieru rovnú 60°. Nech a, b, c 
sú 1-priamky v poradí BC, AC, AB a predpokladajme naj-
prv, že všetky tri sú prvého druhu. Označme ešte U, V, W 
e-stredy a «, v, w e-velkosti e-polomerov e-kružníc v po-

radí a, b, c. Pretože e-body U, V, W sú rózne, leží nutné 
jeden z nich medzi ostatnými dvoma. Nech (pozři obrázok 
20.) například W leží medzi U a V. Potom je e (< VAW)= 
= A ( < a ) = 60°, e « UBW)= A(</5) = 60°, 
< VCU) = 180° - X (<£ ACB) = 120°. Posledná relácia 
vyplývá tiež z opačnéj orientácie trojíc VCA a UCB (pozři 
dodatok C). Na každý z e-trojuholníkov VAW, WBU 
a UCV použijeme kosínovu vetu. Pri označení e (UV) = 
= r, e (UW) = q, e (VW) = p platí 

r2 = u2 + v2 + uv 
p2 = v2 + z«2 — vw (9) 
q2 = u2 + w2 — uw 

a zrejme tiež r = p + <?. Ak od prvej z uvedených rovnic 
odčítáme druhů a tretiu, obdržíme 
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2 pq uv + uw + vw — 2 w2. 

Štvorec právej strany poslednej rovnice je teda rovný 
štvornásobku súčinu čísiel p2 a q2 tj. číslu 4 (v2 + w2 — 

— vw).(u2 + w2 — uw). Táto relácia sa dá upravit' na 
tvar 

3 (uv — uw — vw)2 = 0 
odkial 

uv 
» = — ¡ - - . (10) 

M + V ' 

Po dosadeni zo vztahu (10) do druhej a tretej rovnice sústa-
vy (9) obdržíme rovnosti 

u + v" q = u + v ( 1 1 ) 

Ukázali sme, že ak 1-trojuholnik ABC, ktorého všetky uhly 
majů 1-mieru rovnú 60° existuje, pričom jeho 1-strany sú 
e-kružnice, potom platia vztahy (9), (10) a (11). Teraz 
ukážeme, že zo vzťahov (9), (10) a (11) vyplývá, že popísaný 
1-trojuholník neexistuje. Stačí teda ukázat' e (WC) = w. 
Označme e (WC) = x a e (<£ CVU) = <p. Podia kosínovej 
vety je 
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x2 = v2 + p2 — 2vpcos<p pre e-trojuholník CVW'a 
u2 = v2 + r2 — 2vrcos/p pře e-trojuholník CVU. 

Po vylúčení člena cos<p z obidvoch rovnic dostaneme po 
úpravě rovnicu 

x2 = v2 + u2 — pq. r r 

Poslednú rovnicu upravíme postupné pomocou (11), (9) 
a (10): 

uv2 . vu2 uv . 
x = —I ; 7—I—Ň5- r2 = uv — 

u + v u + v (u + v)2 

- -VTW{ui + v 2 + u v ) = --[¿TW[(M + 

+ v)2 — uv] = ( ) = zo2. 
\u + v/ 

Tým je dókaz převedený pre případ, že a, b, c sú 1-priamky 
prvého druhu. Ostává vyšetriť ešte případ, keď jedna a len 
jedna z týchto 1-priamok je druhého dnihu. To přenechá-
váme čitatelovi (úloha 57). 
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Úloha 57. Nech pře 1-trojuholník ABC, keď 1-priamka 
AC je druhého druhu, platí A ( « ) = A (<£ /S) = A (<ř 
-Ž y) = <P- Potom nutné <p < 60°. Poznamenajme, že úloha 
tvrdí viac, ako bolo požadované v dókaze poslednej vety. 

a; 

•"A 
i ^ í ) \ i \ . \\ * 

Obr. 22 

Úloha 58. Výpočtom znovu dokážte platnost' tvrdenia 
vysloveného v úlohe 56. 

Úloha 59. Na obrázku 21. je nakreslený 1-štvoruholník 
7t 

ABCD, pričom 1-míery 1-uhlov a, <;: fi, y sú (Taký 

1-štvoruholník menujeme 1-trojpravouholník). Ďalej je 
AB 1-priamka druhého druhu s absolutným bodom 
U e h* a S(AD) = S(BC) = U, S(CD) = V je a-bod 

1-priamky AD. Dokážte A ( ó ) < ! 

Úloha 60. Je daný 1-šesťuholník A1A2A3A4A5A6 nasle-
dovných vlastností: 

1. Všetky jeho 1-strany A1A2, A2A3, A3A4, AáA5, A5A6, 
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A^Ax sú 1-priamky prvého druhu, pričom 1-miera 1-uhlov 
pri 1-vrcholoch A2, A3, A4 a As je 120°. 

2. Ak označíme S(Ai Aí + 1) = Ui pre i = 1, 2, 3, 4, 5, 
potom je e {U\ A\) = u pre i = 1, . . . , 5. 

Obr. 23 

3. A (<£ A2A1AE) = A (<£ = 
Určité množinu hodnot, ktoré móže číslo <p nadobúdať 
(v uhlovej miere). 

Úloha 61. Na obrázku 22. je nakreslený 1-šesťuholník 
A íA2A3A iAbAM ktorého 5 1-uhlov je pravých (tj. ich miery 
sú 90°). Pri označení obrázku je U\ = S(AI A1 + 1),E(UIAÍ) = 
= u pre i = 1, 2, 3, 4 a AXA6 je 1-priamka druhého druhu 
s a-bodom Ux e h*. Označme ešte £ (UxAg) = v. Určité 
množinu hodnót, ktoré nadobúda číslo X (<£ 93), kde 
< (p = <$ A4A5A6. Ako by podobná situácia vyzerala 
v e-rovine ? Je nakreslený 1-šesťuholník 1-konvexný ? 

Úloha 62. Nech p, q sú 1-róznobežky z ktorých každá je 
súbežná s 1-priamkou a. Označme U = p' na', V = 
= q' n a', A = p n q,R = a n r, kde r je 1-kolmica ve-
dená 1-bodom A ku a. Ak aspoň jedna z 1-priamok p, q, a 
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je druhého druhu, potom A(<£ UAR) = A(<£ VAR). 
Dokážte! 

Veta 7. Nech 1-bod A neleží na 1-priamke a. Nech 
p £ q sú súbežky s 1-priamkou a vedené 1-bodom A. 

Obr. 24 

Označme a' n p' = U, a' n q' = V. Nech R je pata 
1-kolmice r vedenej 1-bodom A ku a. Potom A (<£ UAR) = 
= VAR). (Obr. 24.) 

Dokaž. Pře špeciálne případy — kedy níektorá z 1-pria-
mok a, p, q je druhého druhu, bolo tvrdenie vety dokázané 
v úlohe 62. V případe, že 1-kolmica r je 1-priamkou druhého 
druhu vyplývá tvrdenie vety okamžité z e-súmernosti 
voči r. Nech a, p, q, r sú všetko 1-priamky prvého druhu 
a označme: M = S(p), L = S(r), N = S(q), T = S(a), 
W e-kolmý priemet e-bodu A na h*, u = e (TU) = 
= E(TV) = e(TR), m = E(TM), 1 = E(TL), n = E(TN), 
W = E(TW), V = E(AW). Nech A leží zvonka e-kružni-
ce a. Aplikujme Pytagorovu vetu na e-trojuholník MWA. 
B\MW) + e2(A W) = E\MU)tj. [E(TW) - S(TM}]2 + V2 = 
= e2(MU) čiže (W — m)2 + v2 = (m + u)2. Podobné z e-
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trojuholníkov LWA a NWA získáme (w - /)2 + v2 = 
= e2(LA) = e\LR) = e2(TL) - e2(TR) = l2 - u2 a (0 -
— w)2 + i)2 = (n — u)2. Ak vylúčime z posledných troch 
rovnic v, dostaneme rovnice (m + u)2 — (w — ni)2 = 
= l2 — u2 — (w — I)2 = (n — u)2 — (w — n)2 čiže 2wm + 
+ 2mu + u2 = 2wl — u2 = 2vm + u2 — 2nu; dalej z tých-
to rovnic vylúčime w a dostaneme rovnost 

2mn + nu — Im — In — mu = 0, 

ktorej je možné dať tvar 

(/ + u)m _ (/ — u)n 
m + u n — u 

Poslednú rovnost možno upravit' na tvar 

- ( / - m)2 + (m + u)2 + (/2 - u2) 
m ; u 

= - i n - l)2 + (« - u)2 + (/2 - u2) (*) 
n — u 

Na e-trojuholníky MAL a NAL aplikujeme kósínovu vetu, 
pričom označíme ]//2 — u2 cose( <£ MAL) = x a ]//2 — w2 

coí e(<£ A M L ) = jy: 

(wí + m)2 + (/2 - u2) - 2(m + u)x = (/ - wi)2, 
(« - u)2 + (/2 - w2) - 2(n - % = (n - l)2. 

Porovnáním posledných dvoch vzťahov s rovnosťou (*) do-
staneme 

x=y 

teda e( < MAL) = e( <í NAL), 

alebo A(<£ UAR) = A(<£ VAR) 
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čo sme chceli dokázať. Poznamenajme, že v případe, keď A 
leží vo vnútri e-kružnice a bude poradíe a-bodov íné, na-
příklad U, M, T, W, N, V, L. Na celom dókaze sa zmenia 
len niektoré znamienka a preto toto přenecháváme čitatelo-
vi. Takýchto prípadov je viac. 

3.7. Miera úsečky v modeli p 

Začneme definíciou 1-miery (dížky) 1-úsečky, ktorá je 
časťou 1-priamky druhého druhu. Ukážeme niekolko jej 
základných vlastností a pomocou týchto podáme definíciu 
1-miery Tubovolnej 1-úsečky. 

Definícia 15a. Nechví, B sú 1-body ležiace na 1-priamke 
druhého druhu p. Označme P ten a-bod 1-priamky p, ktorý 
leží na h*. \-Mieru (dlžku) l-úsečky AB definujeme pred-
pisom 

)(AB) = | logs(AP) - loge(BP) \ = log <BP) .(12) 

Veta 8. Nech A, B, C sú 1-body ležiace na 1-priamke 
druhého druhu p. Potom platí 

I. Á(AB) ž 0 a Á(AB) = 0 o A = B} 
II. Á(AB) = Á(BA), 

III . Á(AB) + X(BC) S A(AC), pričom rovnosť nastáva 
právě keď 1-bod B patří 1-úsečke AC. 

Dokaž. Tvrdenia I. a II. sú zřejmé. Dokážeme tvrdenie 
III . Do známého vztahu \u + v\ S|m| + \v\ dosadíme 
u = loge(AP) — loge(BP), v = loge(BP) — loge(CP) a získá-
me žiadanú nerovnosť. Rovnosť \u + v\ = \u\ + \v\ na-
stane právě vtedy, keď je buď w > 0 a zj 0 tj. e(AP) ž 
ž e(BP) ž e(CP), alebo u á O a a á O t j . e(AP) á e(BP) á 
^ e(CP), čo sme chceli dokázať. 

Úloha 63. Daná je 1-polpriamka druhého druhu AM 
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a nezáporné číslo c. Určité kolko navzájom róznych 1-bo-
dov X hovie rovnici X(AX) = c. 

Úloha 64. Na 1-priamke druhého druhu/) je daný 1-bod 
A. Určité množinu všetkých 1-bodov X e p pre ktoré 
X(AX) = 1. 

h' 
A, A., A A, A, p 
-2-1 0 1 2 

Obr. 25 

Poznámka 7. DÍžka 1 je na rozdiel od @ pevne daná — 
nedá sa voliť. 

Úloha 65. Na 1-priamke druhého druhu p je daný 1-bod 
A. Od tohoto bodu ako začiatku vyneste na p 1-mierku ce-
ločíselných hodnot. 

Zatial vieme (euklidovskou konštrukciou = pravítkom 
a kružitkom) vyniesť na 1-priamku prvého druhu celočísel-
nú 1-mierku. Teraz sa naučíme vynášať do takejto 1-mierky 
hodnoty polovičně, štvrtinové, osminové, . . . 

Přiklad 3. Nech A í B sú 1-body náležiace 1-priamke 
druhého druhu p. Nájdite I-stred S 1-úsečky AB, tj. 1-bod 
5 ep pre ktorý = Á(BS). (Obr. 26.) 

Rlešenie. Predovšetkým je nutné ukázat', že 1-bod 5 leží 
medzi 1-bodmi A a B. Predpokladajme opak. Nech napří-
klad 1-bod A leží medzi S a B. Potom podia vety 8. 
(vlastnosť III.) je Á(AS) + 2(AB) = A(SB) odkial'vzhla-
dom na rovnost' = Á(BS) je Á(AB) = 0 tj. A = B 
čo je spor s predpokladom. Rovnako dokážeme, že nie je 
možné, aby B ležal medzi S a A. Preto nutné 5 leží medzi 
A a B. (Případy A = S či B = S sú zrejme nemožné.) 
Pre 1-bod 5 potom platí 

67 



, <AP) 
logTsP) 

log 
<SP) 
S(BP) 

Z dókazu vety 8. vzhladom na to, že 5 leží medzi A a B 
vyplývá, že čísla v horných absolutných hodnotách sú 

P 
Obr. 26 

obidve súčasne bud kladné, alebo záporné. Každopádně je 
možné absolutné hodnoty v hornej rovnici vypustit'. Potom 
je horná rovnica ekvivalentná s rovnicou 

W ) = W P J * ^ P ) ' £ ( 5 P ) = £ 2 ( 5 P ) - ( 1 3 ) 

Z posledného vzťahu vyplývá jednak jednoznačnost 1-stre-
du 5 a s prihliadnutím ku mocnosti bodu (pozři dodatok 
D) ku kružnici tiež konštrukcia: 

Nech k je Tubovolná e-kružnica idúca 1-bodmi A a B, 
T je dotykový e-bod e-dotyčnice vedenej a-bodom P 
(P sp', P ^ H) ku k. Potom z vety o mocnosti bodu ku 
kružnici je 

e(AP)-e(BP) = E\TP) 

odkial okamžité plynie (13). 
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Úloha 66. Do 1-mierky z úlohy 65 dokreslite 1-body 
odpovedajúce hodnotám — 0,5 a 1,25. (Obr. 27.) 

Úloha 67. Nech p, q sú dve rózne 1-priamky druhého 
druhu a A 0 B 1-body na p a C je 1-bod na q. a) Popište 

konštrukcie všetkých 1-bodov D e q pre ktoré je X(AB) = 
= A(CD). b) Popište konštrukcie všetkých 1-bodov E e p 
pre ktoré B 0 E a X(AB) = X(AE). 

Defínícia 15b. Nech A, B sú 1-body ležiace na 1-priamke 
prvého druhu p. Nech Z 0 S(p) je a-bod a označme 
e( <t AS(p)Z) = <p, e(<í BS(p)Z) = y>. \-Mieru (\-dlžku) 
l-iísečky AB definujeme predpisom 

Poznámka 8. Deíinícia 15b používá a-bod Z, pričom 
nie je okamžité zřejmé či vzťah (14) nezávisí od jeho polohy. 
Keby (14) od polohy bodu Z závisel bola by táto deíinícia 
zlá. Přenecháváme čitatelovi, aby sa presvedčil, že změnou 
a-bodu Z sa číslo A(AB) nemení. 

Obr. 27 
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Přiklad 4. Nech A, B sú 1-body ležiace na 1-priamke 
prvého druhu p a C je 1-bod ležiaci na 1-priamke druhého 
druhu q. Popište konštrukciu všetkých takých 1-bodov 

Obr. 28 

Riešenie. (Obr. 29.) Označme p' = {U, V}. Nech r í { 
je taká 1-priamka druhého druhu, ktorej a-bod R 3= H ná-
leží vnútrajšku e-polpriamky UV. Ukážeme najprv, že pre 
priesečníky e-priamok UA a UB s r, ktoré označíme v po-
radí Ea F platí 

X(AB) = X(EF). 

Z vety o stredovom a obvodovom e-uhle vyplývá e ( < 

<ZAUV) = ^-e(<Z AS(p)V) = -^- (ak v definícii 15b 

vystupujúci a-bod Z volíme například totožný s V) a rov-

nako je e (<£ BUV) = Podfa (14) a (12) je potom 
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k(AB) - log 
r g f 

w 
t g f 

log e(ER) : e(UR) 
e(FR) : e(C7/ř) 

log e(ER) = A(£F). 

Obr. 29 

Zvyšok konštrukcie je zřejmý podia obrázku 29; je opako-
váním úlohy 67. 

Úloha 68. Nech A í B sú 1-body 1-priamky prvého 
druhu p. Popište konštrukciu oboch 1-bodov X e p pre 
ktoré je 2Á(XA) = Á(AB). 

Úloha 69. Dokážte nasledovnú konštrukciu 1-stredu 5 
1-úsečky AB, ak AB je 1-priamka prvého druhu, označená 
p. Nech p' — {U, V} a nech M je priesečník e-priamok 
UA, VB. S je priesečník 1-priamky p a e-kolmice vedenej 
1-bodom M ku e-priamke h*. 

Naučili sme sa 1-dížky prenášať z 1-priamky prvého dru-
hu na 1-priamku druhého druhu a naopak. Tým pádom 
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všetko, čo sme vedeli doteraz previesť pre 1-priamku dru-
hého druhu, vieme vykonat' už aj pre 1-priamku prvého 
druhu. 

Doteraz sme o 1-kružnici nehovořili. V rámci modelu B 

Obr. 30 

by bola úloha hodné obtiažna. V modeli p 1-kružnicu za-
vedieme a podáme aj jej konštrukciu. 

Definícia 16. Nech S je 1-bod a r kladné číslo. Množinu 
všetkých 1-bodov X pre ktoré X(XS) = r nazveme l-kruž-
nicou a označíme k(S, r); 1-bod 5 nazveme 1 -stredom 
a číslo r 1 -polomerom 1-kružnice k(S, r). 

Veta 9. Každá 1-kružnica je e-kružnicou, ktorej všetky 
e-body sú 1-bodmi. Každá e-kružnica, ležiaca celá v 1-ro-
vine A je aj 1-kružnicou. 

Dokaž. Obrázok 30. Nech je daná 1-kružnica k(S, r) 
a nech A ^ B sú jej 1-body ležiace na 1-priamke p = SH. 
Nech m je e-kružnica zostrojená nad AB ako e-priemerom. 
Ak X e k(S, r) je 1-bod rózny od A aj B, potom 1-priamka 
q = SX je prvého druhu, pretože jediná 1-priamka druhé-
ho druhu idúca 1-bodom S je p a X ep. Označme q =• 
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= {U, V}. Podia příkladu 4. e-priamka AX prechádza bud 
a-bodom U, alebo a-bodom V, pretože podia definície 16. 
je ¿(SX) = A(SA) = Á(SB). e-Priamka BX potom pre-
chádza druhým z a-bodov U, V. Podia Táletovej vety 
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(vzhladom ku e-kružnici q) je s( <ř AXB) = — a teda 

X e m. Ak naopak X em, A 0 X í B, potom konstruuje-
me a-body U, V ako priesečníky h* s e-priamkami v po-
radí AX, BX a 1-priamku q z podmienky q' = {U, V}. 
Označme S' priesečník 1-priamky q a p = AB. Potom 
podia příkladu 4. je A(ií5') = A(XS') = X(BS'). Pretože 
S' aj 5 sú 1-stredy 1-úsečky AB, je 5 = S' a teda X e 
e k(S, r). Z dokázaných vzťahov X ek ^ X em a X e 
e m => X e k vyplývá m <= k a k <= m, čiže k = m. Tak 
sme ukázali, že každá 1-kružnica je e-kružnicou. 

Nech ďalej je m e-kružnica ležiaca celá v A. Z predošlého 
vyplývá, že m = k(S, r), kde k(S, r) je 1-kružnica, pričom 
určenie 1-objektov S,r je patrné z obrázku 30. 

Poznámka 9. Vzhladom na tvrdenie vety 9. nie je příliš 
nutné rozlišovat' medzi pojmami 1-kružnica a e-kružnica. 
Ak napíšeme len „kružnica k" (a z kontextu je zřejmé, že 
k c A), potom je naša řeč jasná. Ak však napíšeme „kruž-
nica k(S, r)", potom vóbec nie je jasné, či 5 a r sú e-objek-
ty, alebo 1-objekty. e-Stred a 1-stred tej istej „kružnice" sú 
vždy dva rózne 1-body. 

Úloha 70. Udajte konštrukciu 1-kružnice k(S, r), ak 
poznáte: a) tri jej 1-body, b) jeden jej 1-bod, a jej 1-stred 5. 

Úloha 71. Ukážte, že v 1-rovine neplatí Talesova veta. 
Úloha 72. Dokážte, že v 1-rovine neplatí Pytagorova veta. 

Dókaz převeďte pre 1-trojuholník nakreslený na obrázku 
32. Obrázok je e-súmerný podia e-priamky CW, e-priamky 
AU, h* sú e-kolmé ae(<f UCV) = 90°. 

V 1-rovine existujú dve súbežky vedené 1-bodom ku da-
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nej 1-priamke. Vzniká prirodzená otázka: aká je miera ich 
1- uhla, alebo presnejšie, na čom toto číslo závisí. Riešeniu 
tejto otázky venujeme úlohy 74., 75. a vetu 10., ktorá po-
dává vyčerpávajúcu odpoved na položenú otázku. 

Úloha 73. Nech/ l je 1-bod ležiaci mimo 1-priamky a, R 
pata 1-kolmice r vedenej z A ku a, U e a'. Číslo d = 
= Á(AR) vyjadrite pomocou čísla 9? = Á( UAR) v pří-
pade, že r je druhého druhu. 

Úloha 74. Predošlú úlohu riešte v případe, že r je prvé-
ho, ale a druhého druhu. 

Úloha 75. Úlohu 73. riešte v případe, že a aj r sú prvého 
druhu a 1-priamka p = AU je druhého druhu. 

Veta 10. Nech R je 1-kolmý priemet 1-bodu A na 1-priam-
ku a neprechádzajúcu 1-bodom A. Nech U e a', potom pre 
čísla d = X (AR) a <p = A (<£ UAR) platí vzťah 

d = log cotg -y . (15) 

Dókaz. Predpokladajme, že 1-priamky a, r = AR, 
p = AU sú prvého druhu, pričom U leží medzi T = S(a) 
a P = S(r). Z vety 7. je zřejmé, že uvedená volba nie je na 
ujmu všeobecnosti. Označme ešte Q = S(p), e(<£ PAQ) = 
= a, E(< RPA) = p, e( <c TPR) = y. Pomocou čísiel 
CL, p, y vyjádříme postupné skoro všetky e-miery e-uhlov 
z obrázku 35. Z e(PA) = e(PR) vyplývá e( <í RAP) = 

= £(<t ARP) = _ z TRP) = ~ vyplývá 

e(-£RTU)= — y a odtial zase TRU) = e(<$ 

<£ TUR) = -J- + Preto je RUP) 

a URP) = Pretože je ^ P Q ) = n -
4 2 
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-(P + y),jee«PQA) = P + y - a a t edae ( -£ UAQ) = 

= E(<^AUQ)= ~ + , Konečne teda 

< U A P ) = ^ - a + a E«RAU) = ^ ? - . 

Použijeme sinovú vetu na e-trojuholníky AUR a AUP 
a dostaneme 

sinej<): URA) sine« RAU) 
e(AU) ~ e(R U) 

a 
sine( <£ ř/P^) _ sine( <t UAP) 

e(AU) E(PU) 
odkial 

, 3 /3 + y 
szm ( - ¡ -

• / 3 + y \ 
b* - 2 / 

</?[/) i : — = e(AU) = 
. a -f- y 

szm 

= <PÍ7) 

2 
(/3 + y) 

. {TI a + p + y \ 
STN (T 2 ) 

V e-trojuholníku RUP podl'a sinovej vety platí 
E(RU) e(PU) 
sin y 

sin 
( t - Í ) 
i o v dá re 

• / 3 P + y\ 
m n 2 ) 

• a + y 
sin — 

čo po porovnaní horných v?ťahov dá reládu medzi a, /?, y : 
3 _ p + y 

75 



" ( Ť - i ) sin (P + y)  
a + P + y \ siny . (TI a + p+y\ 

S m { - 2 2 ) 

Při označení a = 2 <r, p + y = 2 g, y = 2y> móžeme hor-
ný vzťah upraviť takto (overte zmysel nasledujúcich zlom-
kov) 

^ (cosg + sino) . . ~ (cosy> — sinw) 2 y sin 2 q 2 
sin (y> + o) sin 2 yi cos (g + a) ' 

alebo 
cos Q cos a — sin g sin a _ 
sin f cos o + cos y> sin a 
sin q cos q cos y) — sin y> 

alebo 

odkial 

Je teda 

sin rp cos ip ' cos g + sing ' 

1 — tg g tg o _ tg g 1 — tg v 
tg y>+ tg o tg y> 1 + tg g ' 

tg V tg o = 
tg Q 

tgl+JL 
j i 2 . tgg . , a = log = log —— = log cotg o = log cotg a. 

t g | ** . 

Ak uvážíme, že <p = X (<£ UAR) = e(^PAQ) = a, je 
(15) dokázané pře ten případ, že a, r, p sú prvého druhu. 
Ostávajúce případy sú dokázané v úlohách 73., 74., 75. 
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Definicia 17. Nech 1-bod A neleží na 1-priamke a, pře 
ktorú á = {U, V}. Potom 1-mieru 1-uhla UAV, tj. číslo 
A (<£ UAV) menujemevelkosiou uhla 1-rovnobešnostil-bodu 
A a l-priamky a. Stručné, ale nepresne sa hovoří o uhle 
rovnobežnosti. 

Poznámka 10. Veta 10. hovoří, že „uhol rovnobežnosti 
závisí len od dížky d = X (AR) a to podia (15)". Toto vý-
značné tvrdenie nesie názov Lobačevského. Miesto X(AR) 
píše sa často, podia Lobačevského II (A, R). 
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R I E Š E N I A Ú L O H 

Kapitola 1. 

1. 4, 4, 3, 1, 2, 1, 4, 4, 4, 3, 1, 2, 4, 1, 4, 2, 1. Pojem „ne-
ležať na" nie je záWadný, ale definovaný, rovnako ako 
„obsahovat". 

2. Termín „nepáčiť sa" nebol zavedený a preto nemá 
zmysel. Kvóli stručnosti ďalšieho vyjadrovania je vhodné 
ho zaviesť, pozři definíciu l.S.V dókaze třeba šlová „kto-
rému sa dievča a nepáči" nahradit' slovami „že nie je prav-
da, že dievča a se chlapcovi A páči". 

3. Nech A, B, C sú chlapci popísani v dókaze vety 2.S. 
Nech existuje dievča x tak, že v úlohe uvedená implikácia 
nie je pravdivá, tz. A ex, B ex, C EX. Potom zo vzťahov 
a = BC, x = BC vyplývá podia S3 a = x. Vztah A s x 
implikuje potom reláciu A e a čo je spor s faktom dokáza-
ným v dókaze vety 2.S. 

4. Hladaný X definujeme predpisom {X} = a b. 
Dievčatá a, b, XC sú navzájom rózne a každé sa páči 
chlapcovi X. 

5. Prvá časť úlohy je jednoduchá, druhá je dósledkom 
vety 5.S. 

6. Každé z písmien množiny Ch sa nachádza aspoň vo 
dvoch róznych slovách množiny D. 

7. V řeči uvedenej tabulky incidencie majů axiomy S2 — 
— S5 tento tvar: 

S2 : Ku každým dvom riadkom existuje aspoň jeden 
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štipec tak, že oba riadky vo štvorčeku tohoto stípca 
majů 1. 

S3: Ku každým dvom riadkom existuje najviac jeden 
stípec tak, že obidva riadky vo štvorčeku tohoto 
stípca majů 1. 

S4: V každom stípci sú aspoň dve rózne čísla 1. 
S5: V každom stípci existuje aspoň jedno číslo 0. 

D 

B
ol

ya
i 

D
es

ca
rte

s 

D
up

in
 

E
ul

er
 

G
au

ss
 

K
le

in
 

Lu
do

lf 

c o % 
<u 
z St

ud
y 

Sy
lv

es
te

r 

a 1 1 0 0 1 0 0 0 0 0 

e 0 1 0 1 0 1 0 1 0 1 

Ch 
i 1 0 1 0 0 1 0 0 0 0 

Ch 
0 1 0 0 0 0 0 1 1 0 0 

u 0 0 1 1 1 0 1 0 1 0 

y 1 0 0 0 0 0 0 0 1 1 

Tabulka incidencie modelu S2. 

8. Výrok V je a) pravdivý, b) nepravdivý — pře p = 
= Descartec a P = písmeno u sú = Study, q2 = Lu-
dolf, q3 = Dupin, c) pravdivý, d) nepravdivý. 

9. Nech Ch = {A, B, C, D}. Potom množina D podia 
S2 obsahuje 6 prvkov a to: AB, AC, AD, BC, BD, CD; 
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podia S4 D iné prvky obsahovat nemóže. Množina D je te-
da maximálně 6 prvková, no móže obsahovat aj menej 
prvkov, ak niektoré z dievčat hore uvedených budú totožné. 
Pretože podia dósledku vety 5.S je D aspoň trojprvková ne-
existuje dievča páčiace sa všetkým štyrom chlapcom. Uváží-
me dva ostávajúce případy. 

I. Nech existuje dievča a páčiace sa trom róznym z chlap-
cov A, B, C, D. Bez ujmy na všeobecnosti móžeme pred-
pokladať, že sú to B, C, D. Potom dievčence b = AB, 
c = AC, d = AD sú navzájom rózne, pretože z b = c by 
vyplývalo A e BC = a, čo je spor s horeuvedeným faktom 
existencie troch róznych dievčat. 

II . Nech neexistuje dievča x páčiace sa trom róznym 
z chlapcov A, B, C, D. Potom dievčencep = AB, q = AC, 
r = AD, s = BC, t = BD, u = CD sú popár rózne. 

Existujú dva modely hladaných vlastností. Označme ich 
S6 a S7. Ich incidenčně tabulky pri hornom značení sú 

D 

a b c d 

A 0 1 1 1 

Ch 
B 1 1 0 0 

Ch 
C 1 0 1 0 

D 1 0 0 1 

Tabulka incidencie modelu S6 . 
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D 

P 9 r 5 t u 

A 1 1 1 0 0 0 

Ch 
B 1 0 0 1 1 0 

Ch 
C 0 1 0 1 0 1 

D 0 0 1 0 1 1 

Tabulka incidencie modelu 5. 

10. Nech b, c sú dve rózne priatelky dievčaťa a pře ktoré 
AebajAecaAfa. Podia axiomyS4 existujúchlapciB, C, 
D, E tak, že Beb, Cec, De a, Eea, pričom B í A ^ C 
a D í C. Sú teda A, B, C, D, E navzájom rózne body 
a preto model teórie S v ktorom je výrok V nepravdivý má 
minimálně 5 bodov. Nech teda Ch = {A, B, C, D, E}. 
Potom D obsahuje okrem a = DE, b = AB, c = AC ešte 
dievčence AD, AE, BC, BD, BE, CD a CE. Spomedzi 
týchto desiatich dievčat možu niektoré splynúť. Eahko sa 
presvedčime, že s dievčaťom a nemóže splynúť žiadne iné 
dievča; podobné s dievčatmi b, c, AD aj AE nemóže 
žiadne iné dievča splynúť. Móže teda byť BC = BD 
o CD), alebo BC = BE (= CE), pričom zrejme móže 
nastať len jeden z prípadov. Oba případy sa odlišujú len 
označením a preto ich možno počítat' za jeden. Existujú 
preto dva modely, ktoré označíme S8 a S9 a zadáme ta-
bulkou 
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0 

a b c AD AE BC BD CE BE CD 

A 0 1 1 1 1 0 0 0 0 0 

B 0 1 0 0 0 1 1 0 1 0 

Ch C 0 0 1 0 0 1 0 1 0 1 

D 1 0 0 1 0 0 1 0 0 1 

E 1 0 0 0 1 0 0 1 1 0 

Tabulka incidencie modelu S8. 

D 

a b c AD AE BC CE BE 

A 0 1 1 1 1 0 0 0 

B 0 1 0 0 0 1 0 1 

Ch C 0 0 1 0 0 1 1 0 

D 1 0 0 1 0 1 0 0 

E 1 0 0 0 1 0 1 1 

Tabulka incidencie modelu Sg. 

11. Model TTt nie je modelom teórie 6 , lebo nespíňa 
axiomu S2 pře body A B, pře ktoré 5 e AB. 

12. Množinu D rozšíříme o všetky priamky idúce bo-
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dom S a obdržíme model Si0. Toto nie je jednoznačné. 
Mohli sme získat iný požadovaný model, keby sme ku D 
z ITC přidali všetky dvojice (A, B) bodov z roviny takých, že 
A 0 B a AB je priamka idúca bodom S. 

13. Například: (J33: Ch množina všetkých bodov na 
priamke p, D množina všetkých polpriamok na p, e je e; 
alebo: K modelu S2 do množiny D přidáme prvok „Lie"; 
C35: Ch je množina všetkých bodov na kružnici k, D obsa-
huje jediný prvok a to kružnicu k. 

14. Z S8 vyplývá S15 teda z S2, S3, S4, S5 a S8 vyplývá 
veta 4.S, ktorá je v spore s S8. 

15. Prvé tvrdenie vyplývá z existencie modelu Si či S3, 
druhé z existencie modelu S2 či S4, alebo S5. 

16. Výrok W znie: Existujú aspoň jeden P e Ch 
a aspoň jedna p e D tak, že P $ p a přitom pře každé x e D 
platí Pex =- x je nepriatelkou p. Výrok —1 V znie: 
Existujú P e Ch, p e D, ^ e D a q2e D tak, že P tp, 
P e qv P e q2, qx 0 q2 a qx aj q2 sú priatelkami p. 

17. Všetky štyri sústavy sú bezosporné, pretože existujú 
ich modely, a) S3, alebo S4; b) Si, alebo S6 (pozři úlohu 9); 
c) S4, alebo S5; d) S3, alebo S7 (pozři úlohu 9). 

18. PodTa H S5 existuje p e D tak, že pre každého chlap-
ca X platí X e p. Nech q e D. Podia S4 existujú chlapci 
A 0 B tak, žeAe q, B e q. Podia S3 je potom q = AB = 
= p tz. D = {p}. Dokázaná je prvá implikácia. Druhá 
implikácia vyplývá z logického rozboru výrokov V a W 
(pozři dodatok A). Obidva uvedené výroky majů štruktúru 
P => Q, pričom část P = „dievča p sa nepáči chlapcovi P" 
je spoločná pre V aj W. Pretože D je jednoprvková, platí 
P e p pre každé P e C h a každé (totiž ono jediné) p e D, 
teda P je nepravdivý a preto výrok P => Q je pravdivý. 

19. V úlohe 17d) bolo dokázané, že uvedená sústava vý-
rokov je bezosporná, teda móžeme hovoriť o sústave axiom. 
Podáme modely R13 R2, R3, R4, R5, R8, R7 také, že R 
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(i = 1, . . . , 7) vyhovuje všetkým axiomom S l s . . . , S5, 
V, W s nasledujúcimi výnimkami: v modeli Ri, namiesto 
Si platí výrok Si pře i = 1, . . . , 5, v modeli H6 na-
miesto V platí V, v modeli R7 namiesto W platí H W. 
Modely sú například tieto (riešení je mnoho): Rj = <D1 
(pozři příklad 8. článku 1.6.). R2: D je dvojprvková, skládá 
sa z dvoch rovnoběžných róznych priamok a, b a Ch je 
množina všetkých bodov na a, aj b ; e je e. R3: Ku množině 
D v modeli S3 přidáme ešte jeden prvok a to množinu 
všetkých bodov roviny okrem jedného, pevne zvoleného; 
s je e. R4: Model popíšeme tabulkou incidencie 

D 

a b c u v w 

A 1 0 0 0 1 1 

Ch B 0 1 0 1 0 1 

C 0 0 1 1 1 0 

Tabulka incidencie modelu R, 

R s : Množina D je jednoprvková a Ch dvojprvková, teda 
D = {a}, Ch e= {B, C}, pričom B e a aj C e a. Re = 
= S4.R7 = Si-

Kapitola 3 

1. —1 E: Existuje aspoň jeden bod P a aspoň jedna priam-
ka p tak, že P $p a množina priamok x nepretínajúcich p 
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a prechádzajúcich bodom P je buď prázdna, alebo aspoň 
dvojprvková. 

L: Existuje aspoň jeden bod P a aspoň jedna priam-
ka p tak, že P $p a horeuvedená množina priamok x je 
bud prázdna, alebo jednoprvková. 

—| U 2 : Žiadny štvoruholník nemá všetky štyri uhly pra-
vé. 

2. Tvrdenie a) je pravdivé, tvrdenie b) nie je pravdivé, 
pretože v případe existencie bodu P a priamky p tak, že 
P$p a množina priamok x (z úlohy 1) je prázdna, je 
~| L pravdivý a E nepravdivý. 

3. Obidve teorie G a G' sú ekvivalentně. Odlišujú sa len 
v jazyku, ktorým hovoria; každé tvrdenie T teorie G sa dá 
přeložit' podia (s) do tvrdenia T' teorie G', a přitom T' je 
pravdivé právě vtedy, ked aj T je pravdivé. Medzi výrokmi 
E, V' a W' platí ekvivalencia: E o (V' a W'). 

4. a) V ' » " | L tz. L O V ; b) "1 W' => L tz. 
L - W'. 

5. Výrok E je pravdivý len v modeloch S'3, S'7. Výrok 
L je pravdivý len v modeli S'8-

6. Pravdivost' L overíme Iahko, ostatok podia úlohy 2. 
7. a) R,Q, X; b) Aí, R, Q, X, Y, Z ; c) M, Y, Z ; d) a, 

b, c\ e) a, b, č, u. 
8. Q Q , QZ, ZQ, CXZ, c. 
9. Symbol >yXY" značí „1-priamka XY". Symbol 

„e-priamka X Y " má zmysel vždy, lebo podia předpokladu 
je X i Y. Symbol >yXY" má zmysel právě vtedy, ak 
e-priamka XY je sečnicou e-kružnice h. 

10. a) Z ; b) a'; c) symbol nemá zmysel, lebo ani symbol 
MZ nemá zmysel; d) 0 tj. množina prázdna. 

11. Označme q' = {Q1} Q2}. Potom hladané 1-priamky 
sú px = PQ1 ap2 = PQ2. 

12. Množina {a'u ..., a'n} má naviac 2n prvkov. Nech 
U, V sú také dva jej prvky tz. a-body, že jeden z oblúkov 
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UV e-kružnice h neobsahuje žiadne iné a-body množiny 
{a'15 . . . , «'„}. Potom například x = UV. 

13. Nech A e a' a Bet' sú rózne; potom například 
p = AB. 

14. Nech A, B, C, sú tri navzájom rózne a-body. Potom 
například a = BC, b = AC, c = AB. Dókaz ďalej pomo-
cou vety Paschovej. 

15. Označme a' = {Au A2}, b' = {Bly B2}. Budeme uva-
žovať dva případy. Nech najprv a, b sú súbežky a nech na-
příklad Ax = Bv Potom M je množina 1-bodov ležiacich 
vnútri e- polroviny BXB2A2. Za 1-priamku x možno voliť 
bud! XB2, alebo takú 1-priamku, pre ktorú x je e-rovnobež-
né s b. Ak naopak X e x, kde x je 1-róznobežka s a a 1-rov-
nobežka s b, potom e-úsečka * leží vnútri e-polroviny 
B1B2A2 a teda aj 1-bod X tu leží. Nech sú ďalej a, b roz-
bežky, tz. a-body Ax, A2, Bx, B2 sú navzájom rozne. 
Vhodnou volbou indexov dosiahneme, aby AXB2 a A2BX 
boli 1-róznobežky a spoločný 1-bod označíme Q. Potom M 
je zjednotenie množin vnútorných 1-bodov e-polroviny 
B1QA1 a vnútorných 1-bodov e-polroviny B2QA2. Ddkaz 
sa dá previesť podobné ako v predchádzajúcom případe. 

16. Nad e-úsečkou BC ako priemerom zostrojíme e-kruž-
nicu k. Nech U e k n h. Potom e-uhol BUC je pravý 
a preto a-body V a W, V 0 U í l F v ktorých e-priamky 
UC a UB pretnú e-kružnicu h sú diametrálne v h. Teda 
a = VW, b = UW, c = UV. Riešenia sú dve, jedno, žiad-
ne právě keď množina k n h je dvojprvková, jednoprvková, 
prázdna. 

17. Vzájomná poloha je devátnástoraká, ak neprizeráme 
ku symetrii. Bez ujmy na všeobecnosti móžeme B a D po-
važovat za a-body. Nech je p 1-priamka AB a q 1-priamka 
CD a pi resp. qx 1-polpriamka AB resp. CD. Uvážime štyri 
případy: 
1 ,p = q. Nastáva týchto patprípadov pre vzájomnú polo-
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hu 1-polpriamok AB, CD: 1. AB CD, 2. CD <= AB, 
3.B m D, A = C, tz. AB n CD = {A}, 4. AB n CD je 
1-úsečka AC, A í C, 5. AB n CD je prázdna množina. 
2. p, q sú súbežky so spoločným a-bodom U. Potom nastá-
vajú štyri případy: 1. B =D = U, 2. B = U m D, 
3. B 3= U = D, 4. B í U i D. 
3. p, q sú rozbežky. Potom nastáva jediný případ. 
4. p, q sú róznobežky. Potom nastáva deváť prípadov: 
l . Pi n q = ?! n P = 0, 2. px n q = d), ?x n p = { C } . 
3. n p = 0, A n q = {A}, 4. p j n ? = Ci ?! n 
í i í í f l , 5 . ? , n p = 0, / I é pí r> q i 0, 6. />i n ?i = 

= {A} * {C),l.Pl n ?i = { C } í {A}, 8. A = C,9.p1 n 
n q! n C ^ />! n ?!• Případy symetrické 

sú, podia našeho číslovania: 1.1 a 1.2, 2.2 a 2.3, 4.2 a 4.3, 
4.4 a 4.5, 4.6 a 4.7. Po odčítaní symetrických prípadov 
ostává 14 róznych vzájomných polóh dvoch róznych 1-pol-
priamok. 

18. Pozři obrázok 4. na ktorom je M vyšrafovaná. Do M 
patria otvorené 1-úsečky ABX a AB2 aj 1-bod A, nie však 
1-polpriamky BtQ a B2Q. Pre X # M je buď XPV alebo 
XP2 1-priamka nepretínajúca ani p, ani 1-polpriamku 
?! = AQ. Ak naopak í e l i a například X je 1-bod 1-pol-
roviny AQB 1} potom každá e-priamka x idúca 1-bodom X 
a nepretínajúca 1-polpriamku ?j přetne, podia Paschovej 
vety aj e-úsečku QB1} aj 1-úsečku BXA, túto však nie v bo-
de A. Preto e-priamka x přetne aj e-úsečku PxP2 v jej 
vnútornom bode. 

19. Jednoznačnosť zobrazenia p je zřejmá. Nech x e ň u 
U {s}. Potom 1. pre x 3= {s} idúcu bodom 5 existuje jediný 
smer X e s kolmý na x, 2. pre jc = {s} existuje v ň U s 
jediný prvok X (a to bod S) pre ktorý p(Ji) = x, 3. pre 
x ^ {s} neidúcu bodom 5 označme Y patu kolmice vede-
nej z S ku x. Na polpriamke SY existuje jediný bod X 
splňajúci rovnicu e(SX) e(SY) = r2. 
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20. Prvé tvrdenie vyplývá zo súmernosti podia priamky 
XS (aj v tom případe ked X je směr). Druhé tvrdenie je 
zřejmé, ak uvážíme tri případy podia definície 5. 

21. Pretože X eh o e\XS) = r2, je prvé tvrdenie zřej-
mé. Druhé tvrdenie je dósledkom predchádzajúceho tvr-
denia. 

22. Označme N = n SM (obrázok 5). Z pravo-
úhlého trojuholníka SMXM podia euklidovej vety vyplývá 
e(SN).e(SM) = E^SMJ = r2, lebo MtN _L SM. 

23. Diskutujme jednotlivé případy. Ak X = S, potom 
S e y => P(y) e s e p(S). Ak X £ 5 a y = XS, potom 
P(3>) je smer kolmý na y a p(JQ priamka (podia úlohy 20) 
kolmá na y. Teda PQy) e Ak konečne je 5 i X e h, 
S By, potom pre body V a W (definované, ako v důkaze 
vety 2) platí £(5F).£(51F) = E\SX) = r2, lebo buď je 
X = V = W, alebo je SXW pravoúhlý trojuholnik, v kto-
rom sme užili euklidovu vetu. 

24. Nech M leží vnútri h. Nech i í ^ s ú priamky idúce 
bodom Aí. Potom x, y pretínajú h a vieme konstruovat' 
body P(JC), P(Y). Z vety 2. vyplývá p ( M ) = P(x)P(y). 
Obdobné (obr. 7) ak m je priamka pre ktorú m n h = 0, 
zvolíme X Y na M. Znovu podia úlohy 22. zostrojíme 
priamky p(X) a p(V), potom z vety 2. vyplývá P(m) = 
= P{X) n p(V). Na obrázku 7 je volené Y na p(X), kvůli 
stručnosti konštrukcie. 

25. Z m T n je podia definície P(ň) e m, P(ň) je i-bod 
a preto existujú e-dotyčnice z P(ň) ku h; dotykové a-body 
U, V ležia v opačných polrovinách vyťatých e-priamkou m, 
preto m a n sa pretnú v 1-bode. 

26. Jedinú, ak M je rozbežné s n, inak žiadnu. Z požia-
davky M T x T n totiž vyplývá x = P(wj)P(k), ak toto má 
zmysel. 

27. Dokážeme sporom. Ak ABCD je 1-štvoruholník pre 
ktorý ABJ BCj CD J DAj AB, potom rozbežky 
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AB a CD majů dve spoločné rózne 1-kolmice a to AD a BC, 
čo je v spore s tvrdením predchádzajúcej úlohy. 

28. e-Tetivy p, q sú e-rovnobežné, pretože podia pred-
chádzajúceho příkladu z Sem, p~\~ m~T q vyplývá 
p _L m _L q, t edap \ \ q. 

29. a, b sú rozbežky, lebo a, b majů spoločný i-bod resp. 
směr P(<?). 

30. Nech U je a-bod. Na 1-polpriamke SU nájdeme všet-
ky 1-body X hladanej množiny. Označme x = E(SX), po-
tom e(SU) = e(SV) = r a e(XU) = r - x, e(XV) = r + 
+ x, kde V 0 U je a-bod 1-priamky SU. Podia (8) je 

odkial 
r + x . 2 a — 1 2» = , ti. x = r —-— < r. r — x ' ' 2 a + 1 

Na 1-polpriamke SU existuje a to jediný 1-bod X hladanej 
množiny. Ak teda U prebehne celé h, potom X prebehne 
všetky body e-kružnice so stredom S a polomerom x. 
Hladaná množina je teda e-kružnicou. 

1-Bod M pre ktorý 2 e(SM) = r leží na horepopísanej 
x 

e-kružnici právě vtedy, keď je x = tj. ked platí 

2 a — 1 1 
2 a + x = y > čiže 2a = 3, čiže a = log 3. 

31. Označme V í U a-bod 1-priamky AU as (AU) = u, 
e (A V) = v, p (AX) = x, potom 

1 = A (AX) = log + % 2 = ^ ± 4 v (u — x) v (u — x) 
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teda 

O <x = uv 
u + 2v < u. 

Odtiar vyplývá existencia a jednoznačnost 1-bodu X. 
Konštrukciu 1-bodu X prevedieme napr. pomocou vety 

o mocnosti bodu ku kružnici — pozři dodatok D. Zostrojí-
me pomocný e-bod W neležiaci na e-priamke AU tak, 
aby e ( A W ) = u + 2 v. Nech Y je e-priesečnik e-priamky 
AW s e-kružnicou k opí sánou e-trojuholníku UVW. 
Z mocnosti A ku k je 

e(A U). £ (A V) = e(A W). e(A Y), čiže e(A Y) = u™2v • 

e-DÍžku £ (A Y) prenesieme na 1-polpriamku A U. Pozná-
menajme, že vo vhodnom případe móžeme e-kružnicu h 
použiť v úlohe e-kružnice k. 

32. Existenciu 1-bodu Aí dokážeme» ak dokážeme plat-
nost vzťahov 

0 < ^ a V (1/m& — Vo®) <u — a. 
v — u ' 

Označme £ (UV) = d tj. d = a + v = b + u. Zo zrejmej 
nerovnosti d < u + v za předpokladu u — v > 0 vyplývá 
d(u — v) < u2 — v2, čiže ub = u(d — u) < v (d — v) = 
= va, alebo ]tub — \/av < 0. Podobné zo vzťahu u — v < 
< 0 dokážeme ]/ub — ]/av > 0, teda prvá z požado-
vaných nerovností je dokázaná. Z dokázaného vzťahu 
]/bu < ]/av (stále za předpokladu v < u) dostáváme po-
stupné 

d-u<y^b ] / | 

90 



v + a < u + y ab 

uv + au < \abuv + u2 

z čoho vyplývá aj druhá z požadovaných nerovností. Ana-
logicky pre případ u < v. 

33. Rovnost x = ^av ^ U ( l e m e postupné 

upravovat. Rozšíříme zlomok číslom d. Čitatela móžeme 
upravit nasledovne 

d (]/bu — j/au) = Mbu {a + v) - ]/av (u + b) = 
= (1Im-fab). au). 

Menovatera upravíme takto 

d(v-u) = (1Ibv + y ^ ) Qjbo - \m). 

Potom takto upravenej rovnosti možno dať tvar (ak ]/au 

* V*») _ _ _ _ 
x (ybv + ]/au) = v yau — a ]/bv 

a dalej 
(a + x) ]/bv = (v — x) yau. 

Po umocnění poslednej rovnosti prídeme ku vztahu 

v (a + x) __ u (v — x) 
a (v — x) b (a + x) ' 

Logaritmováním poslednej rovnosti dojdeme konečne ku 
vztahu 

X (AM) = 1 (BM). 

34. Nech s (ZS ) : s (ZAí) = c. Z e-rovnolahlosti podia 
středu Z a koeficientu c vyplývá e (SP{) = e (SP2) = 
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= C.E(MQ1) = C.E(MQ2), e (RPJ = c.e(NQJ, e(RP2) = 
= c.e (NQ2). Vyjádříme A (SR) a A (MN) podia (8) a po-
užijeme horných vzťahov. 

35. Stačí nájsť jediný konkrétny případ pre ktorý uvede-
ná veta neplatí. Volíme preto p prechádzajúcu 1-bodom 5 
a 1-priemety A', B', C' 1-bodov v poradí A, B, C do p tak, 
aby S ^ B' a tento 1-bod bol 1-stredom 1-úsečky A'C'. 
Podia predošlej úlohy je £ (AA') = e (CC') - e (BB')} no 
podia příkladu 1. je AA' i BB' || CC' _L p, teda 1-body 
A, B, C neležia na 1-priamke. Poznamenajme, že uvedená 
veta je nepravdivá pre lubovolnú volbu objektov/), A, B, C. 

36. Nech V resp. W je a-bod 1-priamky p resp. q rózny 
od U (pozři obr. 10). Ak A = B potom X = C je jediné 
riešenie. Nech A m B. Označme G = AC n VW, F = 
= BC n VW, potom podia Pappovej vety sú Xl = q n 
n AF, X2 = q n BG hladané 1-body. V případe, že 

AC || VW bude e-bod G nahradený e-smerom VW, čiže 
AC. Podobné, pre BC 11 VW. 

37. Akp, q sú súbežky je to úloha 36. V opačnom přípa-
de zostrojíme pomocnú 1-priamku r súbežnú s p a q a na 
nej lubovolný 1-bod R. Dvojnásobným použitím úlohy 36 
dostaneme najprv 1-body Y1} Y2 na r a konečne X1} X2 
na q tak, že A (AB) = A (RY^ = A (RY2) = A (CXJ = 
= A (CX2). 

38.1-Úsečku AB .prenesieme na pomocnú súbežku q 
s 1-priamkou p a použijeme úlohy 36. 

39. Nech U =f= V sú a-body hladanej 1-priamky AB, 
C je 1-stred 1-úsečky AB, Q ^ P je a-bod 1-priamky PS. 
Bez ujmy na všeobecnosti móžeme predpokladať e-polo-
mer r e-kružnice h rovný 1. Nech e (SA) = d, 0 < d < 1. 
Pretože zrejme e (SB) = d je C e-stred e-úsečky AB, 
tiež e (AU) = e (BV), e(AV) = e (BU). Podia vztahu (8) 
je teda 
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X(SA) = log 

A (AB) = log 

kde 
a = e(UC) = Ve2 (US) - e2 (CS) = ]/l - d2cos2a. 

Po dosadení horných výrazov do žiadanej rovnosti A ( S A ) = 
= A (AB) dostaneme 

1 + d _ 1 — d2cos 2 a + 2 ad sin a 
1 — d 1 — d2cos 2 a — 2 ad sin a' 

čo možno upraviť na tvar 

d4 cos2 2 a + 2 d2 (1 — 2 cos4 a) — 3 + 4 cos2 a = 0. (*) 

V tejto kvadratickej — vzhladom na d2 rovnici, určíme 
najprv diskriminant 

(2 cos4 a — l)2 — cos2 2 a.(A cos2 a - 3) = 

= 4 (cos8 a — 4 cos8 a + 6 c o í 4 a — 4 cos2 a + 1) = 
= 4 (cos2 a — l)4 = 4 í ím 8 a. 

Potom je (předpokládáme cos 2 a ^ 0) 

Ukážeme, že znamienko + v uvedenom zlomku nemóže 
byť. Je totiž 

2 cos4 a — 1 + 2 sin4 a _ 
coí2 2 a 

(¿2)l .2 = 
2 cos4 a — 1 — 2 íin4 a 

cos2 2 a 
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2 (cos2 a + sin2 a) — 4 cos2 a sin2 a — 1 
cos2 2 a 

1 - siM2 2 a 
cos2 2 a = 1, 

čo odporuje předpokladu 0 < d < 1 tj. d2 < 1. Je preto 
nutne 

2 (cos1 a — sin4 a) — 1 _ 2 cos 2 a — 1 
d2 = 

cos2 2 a cos2 2 a 

Ostává určiť podmienky riešiternosti, tj. zistiť pre ktoré 
a je 0 < d2 < 1 , čiže 

2 cos 2 a — 1 0 < < 1. cosJ 2 a 

Ekvivalentnou úpravou poslednej relácie nachádzame 

1 < 2 cos 2 a < cos2 2 a + 1. 

Eavá nerovnosť je ekvivalentná s nerovnosťou 

1 . . 71 

< cos 2 a tj. 2 a < - y , 

pravá nerovnost zase s nerovnosťou 
0 < cos2 2 a — 2 cos 2 a + 1 = (cos 2 a — l)2 tj. 2 a 0. 
K úplnému riešeniu třeba ešte vyšetriť případ cos 2 a = 0. 

7T 7Z 
V t e d y 2 a = y , a = ^ a r o v n i c a (*), z ktorej určujeme d 
má tvar d2 — 1 = 0, čo je v spore s predpokladom 0 <d < 1. 
Odpověď. Úloha má riešenie a to jediné právě keď je 

0 < 2 a < j-. 
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1-Body A, B sú dané vzťahmi 

A (SA) = A (SB) = log d = pcos2a~\ 
i — d cos 2 a 

40. Z konštrukcie a-bodu Q' vyplývá, že e-uhol <í PQQ' 
má mieru 2 a a preto e (QQ) = e (QP) cos 2 a = 
= 2 r cos 2 a = 2 cos 2 a. Podia Euklidovej vety je 
£2 (SK) = £ (SL). E (SQ) = [E (QQ') - r]r = 2cos2a-
— 1 a teda e (<SAÍ) = |/2 cos 2 a — 1. Konečne z e-troj-
uholníka AMS vyplývá E (SM) — E (AS) cos 2 a tj. 
]/2cos2a- 1 = d cos 2 a, čiže 

_ |/2 cos 2 a — 1 a — ^ , cos 2 a 

čo sme malí dokázat. 
41. Nech o je e-os e-úsečky XY. Ak je o || h*, o 0 h*, 

potom x = XY je 1-priamka druhého druhu a to jediná; 
ak je o n h* jediný bod, potom je to S(x) a x je znovu je-
diná. Ak o = h*, potom existuje nekonečne mnoho hlada-
ných 1-priamok x. V B modeli x nemusí existovat. 

42. a) {5}, b) {B, fij, kde Bx je e-bod súmerne zdražený 
s B podia h*~, c) nemá zmysel; d) 1-priamku prvého druhu, 
ktorá je častou e-kružnice o e-priemere S(a)S(c). 

43. Dvojprvková. H e p ' právě k e d p je druhého druhu 
tj. p je e-priamka. 

44. Platí. Platí. 
45. 12. Nech RS je uzavretá e-úsečka na h* neobsahu-

júca žiaden z a-bodov a\ U . . . U a'n. Potom 1-priamka jc 
je daná napr. reláciou x' = {R, S}. 13. a 14. riešime rovna-
ko ako v modeli B. 

46. Ak sú a, b súbežky, potom n je nekonečne velké, 
inak je n = 4. 
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47. a) Tri druhy 1-polpriamok. 
b) Tri druhy 1-polrovín. 

48. a) 1-Polrovina na pravom, či lavom obrázku 13b; 
b) 1-polrovina na stxednom obrázku 13b; c) e-obdížnik 
ležiaci celý v A; d) dvojica róznych 1-bodov. 

49. Je to 1-uhol <£ BAC. 
50. Ak je m e-kolmá na h*, potom m n A je 1-priamka 

druhého druhu a tá je 1-konvexná. Teda 1-K(w (i A) = 
= tn n A. Ak je m || h* tj. m n A, potom 1-K(m n A) = 
= l-K(w) je tá uzavretá e-polrovina vyťatá e-priamkou m, 
ktorá celá náleží do A. Nech konečne m n h* = {M} 
a 1-priamka p = MH nie je časťou tn, tj. m nie je e-kolmé 
na h* (obrázok). Potom 1-K(m n A) je množina obsahujúca 
všetky vnútorné 1-body e-uhla s vrcholom M a ramenami 
p, tn n A a tiež všetky 1-body m n A. Posledné tvrdenie 
dokážeme. Nech X je 1-bod ležiaci vnútri e-uhla s ramena-
mi p, m n A. Nech Y e m je 1-bod v ktorom 1-priamka XH 
přetne tn. Nech R e m je 1-bod vnútrajšku e-úsečky YM. 
Potom 1-priamka x = RX přetíná m okrem 1-bodu R ešte 
v istom 1-bode Q a X je 1-bod 1-úsečky RQ. Zvyšok je 
zřejmý. Obrázok 15. 

51. Nech qx i q2 sú súbežky vedené 1-bodom Q ku p. 
Potom M sa skládá z dvoch 1-uhlov a, f$ takto definova-
ných : Ak P e p je 1-bod, potom a je prienikom 1-polrovín 
qxP a opačnej ku q2P a /? je prienikom 1-polrovín q2P 
a opačnej ku qx P. Dókaz lahko prevedieme v řeči geo-
metrie <5. Poznamenajme, že 1-uhly a, budeme aj v mo-
deli p menovať vrcholovými. Množina M zrejme nie je 
1-konvexná v žiadnom případe. Obrázok 16. 

52. Nech je daný 1-uhol <£ A VB. 1-Polpriamku VM na-
zveme 1 -osou l-uhla A VB právě keď A (<r AVM) = 
= A MVB). Nech a, b sú 1-róznobežky s priesečníkom 
V. 1-Priamku o = VM nazveme 1-osou \-rdznobežiek a, b 
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právě keď X (<£ a, ó) = X ( b , ó). Z euklidovskej plani-
metrie tak vieme, že oba termíny existujú, že prvý je jedno-
značný, druhý dvojznačný. 

7t 
53. Z e-geometrie vyplývá, že X (<£ o1} o2) = —, po-

dobne ako v teórii (ř. 
54. Číslo musí byť menšie ako 180°. 
55. 174°, 18'; X (<£ a) = 45°, X (<$ 0) = 69°,18', A (<£ 

<£ y) = 60°. 

56. e-Stred e-kružnice označme O a označme ďalej 
V = S(AB) a W ten priesečník k n h*, ktorý je rózny 
od U. Pretože VB je kolmé na dotyčnicu v £ ku BA, je 
X « p) = e (< BVU). Podobné ukážeme, že X « a) = 
= e(<í V AU). Pri označení obrázku 19. je E e-stred toho 
e-kruhového oblúka AB na k, ktorý neobsahuje e-bod U. 
e-Body E a F e-diametrálne voči k ležia v róznych e-pol-
rovinách vyťatých e-priamkou B W. Pretože e-body U a E 
ležia v tej istej e-polrovine a Os BW, je otvorená e-pol-
priamka OF celá zvonku e-polroviny BWE a teda e-bod 
V, ležiaci na e-polpriamke OF neleží v e-polrovine BWU 
a teda neleží ani na e-úsečke WU. Preto je e-bod V von-
kajším e-bodom e-kružnice k. e-Body U, V a F ležia v tej 
istej e-polrovine ABO a preto je e (<$ BUA) = e (< 
< BFA) > E{<Í.BVA). Z e-trojuholníka V AU vyplývá 
90° = e ( < VAU) + E(<£AVU)+ E«AUB)> 
< A) + E AVU) + £ « AVB) = E a) + e « /3). 

57. Nech W je a-bod e-priamky AC = b a U resp. V 
e-stredy kružnic BC = a, AB = Č a u, v ich e-polomery. 
a-Body U, V, W sú očividné navzájom rózne a naviac IV 
leží medzi U a V. Keby ležal například a-bod U medzi 
W a V, bolo by nutné X ( y ) > 90° > X ( a ) a teda 
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A (<í a) A (<í y) v spore s predpokladom. Uvážme teraz 
reláciu 

e (UV) = E (UW) + £ (VW) = u cos<p + vcos<p = 
= (m + v) cos q>. 

Kosinová veta v e-trojuholníku UBV dá vzťah 

(w + v)2 cos2 <p = u2 + v2 — 2 uv cos <p, 

Druhý případ, cos<p = — 1, vedie k evidentne nemožnému 
faktu q> = 180° a ostává preto 

čiže <p ^ 60°. 
Rovnosť nastáva právě vtedy, ked u = v tj. A = C, lebo 
e(AW) = v sin tp a e (CW) = u sin q>. Pretože je tento pří-
pad nemožný, je q> < 60°, čo sme chceli dokázať. 

58. Pri značení obrázku 19. označme ešte u = e (AU), 
v = E (AV) = E (BV), w = E (UV). Z e-trojuholníka VUB 

w 
vyplývá cos A (<£ 0) = cos E (<£ BVU) = — tj. sin2 A (<$ 

J}2 — w2 ® 
< (i) = — ^ — • Podia kosínovej vety aplikovanej na 

e-trojuholník V A U obdržíme cos A a) = cos e (<£ 

odkial 
w2 -f- v 2 

(cos<p\,2 

C05(p ~ (u + v)2 ~ 2 + 2(u + v)2 = 2 ' 
w2 + z>2 _ 1 (u — v)2 ^ 1 

< VAU) = 
u2 v2 — ey2 

tj. sin2 A (<£ a) = 
2 Mf 
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4 « V — (m2 + ®2 — z"2)1 

. Pretože 1 ( i a) + 2 (•$ 4 M2®2 

< /S) < 90° o cos [A « a) + A « 0)] > 0 o cos A « 
< a) coí A ( < /9) — sim (<í a) sin (<£ /?) > O, stačí doká-
zat posledný z uvedených výrokov. Zo vztahu A 0 C vy-
plývá v2 =/= m2 + a;2 tj. (m2 — z»2 + zo2)2 > 0, odkial po-
stupné obdržíme: w4 — 2 w2 (v2 — zt>2) + (»2 — zu2)2 > 
> 0, w4 + 2 u2 (v2 - a>2) + (o2 - w2)2 > 4 u2 (iv2 -
— w2)j 0 > 4 w2©2 — 4 u2w2 — (u2 + v2 — w2)2, w2 

(u2 + v2 — w2)2 > (iv2 — w2) [4 u2v2 — (u2 + z;2 — a»2)2], 
M2 -f- V2 — W2 ~ V2 — ÍP2 

> «Ví2 A ( / S ) jí'«2 A ( a ) . Pretože je cos A ( < a) > 0 aj 
cos A ( < j8) > 0, mdžeme rovnicu odmocnit a tým je dó-
kaz převedený. 

59. Při označení obrázku budeme druhý a-bod e-kruž-
nice AD označovat W. Teda VW sú e-diametrálne e-body 
v e-kružnici AĎ a preto e(<$ VDW) = 90°. Zrejme je 
A d) = e (<£ UDV) < e (< VDW) = 90°, čo sme 
chceli dokázat. 

60. Pretože zo zadania vyplývá, že e-trojuholníky 
UiAi+1Ui+1 pre i = 1,2,3,4, súrovnostranné a S(AxA8) = 
= U3) mdžeme pre trojuholník U3A6U5 písať 

kde v = e (U3Ae). Pre v platí e (U3A5) < v < e (U3U5) + 
+ u tj. u ]/3 — v < 3 u, lebo e ( < U3A5U5) = 90° a teda 
e2(U3As) = e2(U3U5)-e2(UbAb). 
Dostáváme 

v ) ' \ 2 uv 
4 tt2©2 — (m2 + ©2 — K)2)1 

4 M2©2 

|2 
cos2 A (<£ /3) cos2 A (<£ a) > 

(2 w)2 = ®2 + M2 — 2 WZ> COS <J9, 
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v2 — 3 u2 i/— 
cos a> = — = , kde u V3 < v < 3 u, 2 uv ' 

alebo po označení — = x je u 

x2 — 3 M-
cos q> = —Y~x—> ^de |/3 < * < 3. 

Posledná funkcia je na intervale x > 0 rastúca, lebo sa dá 
x 3 

písať ako súčet rastúcich funkcií y a ^¡7. Extrémnych 

hodnót nadobúda cos <p v koncových bodoch, preto 
(1/3)2 - 3 32 — 3 

= 2~j/I <C0S<P < 2 7 3 _ = 

tj. 

0° < p < 90°. 

61. Predovšetkým je e ( IWi+i) = u ]/2 pře i = 1,2,3,4. 

£ ( t W = (2 1/2 + i -1 /2 ) « a £ (HM4) = ^ 1 / 2 , 
kde W je e-stred e-úsečky ř/3ř/4 . Podia Pytagorovej vety 
je potom £2 ( t / ^ 4 ) = £2 (UXW) + £2 = 13 w2 a tiež 
£(ř7jF) = 3 1/2« + m. Nakolko £ ( ř / ^ ) < < 
< e {UyV) je po dosadení 13 u2 < z>2 < (3 1/2 + l)2 w2. 
V e-trojuholníku f / x / l 5 í / 4 použijeme kosinovu vetu: 

(3 1/2 m)2 = w2 + v2 - 2 uv cos A ( 9 9 ) , 

lebo A (<£ 9?) = £ ( U ^ ^ U t ) . Označme ešte — = x. Po-
tí 

tom 1 8 = l + x2 — 2 x cos A q>), kde 13 < x2 <(3][2 + 
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+ l)2 = 19 + 61/2. Teda číslo / ( < £ ? ) móže nadobůdať 
právě tie hodnoty, pre ktoré 

cos X « tp) = 1 ? , kde 1/13 < x < 1 + 3 

Pre x > 0 je funkcia cos X (<í: <p) rastúca, pretože sa dá písať 
ako polovičný súčet dvoch rastúcich (na intervale x > 0) 

17 
funkcií: x a . Teda x 

2 _ 13 - 17 x2 - 17 19 + 6 1 / 2 - 17 __ 
1/13 ~ 21/13 < 2 x < 2 (1 + 3 1/2) ~ ' 

alebo 
2 

— - y = " < COÍ A ( <£ 93) < 1 , 

teda 
0 < < 123°,41' 

s presnosťou na 1'. 
V e-rovine neexistuje šesťuholnik s piatimi pravými uhlami. 
Útvar je 1-konvexný. 

62. Pretože p, q sú 1-róznobežky, móže najviac jedna 
z nich byť druhého druhu. Uvážime dva případy: (Obr. 23). 

A. je druhého druhu, tj. a a H a preto je buď U = H, 
alebo V = H. Bez ujmy na všeobecnosti volme druhý 
případ. Potom nutné je q druhého a p prvého druhu. 
Označme X ( < UAR) = y>, X ( < HAR) = Aí = S(j>^ 
Pretože je e (UM) = e (AM), je tiež e (<£ AUM) = 
= e (<£ UAM) a preto 9•> = y>. 

B. a je prvého druhu a nech p je druhého druhu. 
Označme N a-bod 1-priamky q rózny od F a dokážeme, že 
S(r) = N. e-Trojuholník VAN je e-pravouhlý a platia 
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v ňom euklidove vety, špeciálne e2 (NA) = e (NU). e (NV). 
Posledný výraz je mocnosťou e-bodu N ku e-kružnici a, 
preto e (NA) je dotyková e-vzdialenosť e-bodu N od 
e-kružnice a• Teda e-kružnica ky [N,e(NA)] je e-kolmá na 
e-kružnicu 5, R e kx a preto kx n A = r. Z e-rovnora-
menného trojuholníka ANS(g) vyplývá A (<£ UAR) = 
= e (<£ ANS(q)) = e ( < NAS(q)) = A ( < VAR), čo sme 
chceli dokázat'. 

63. Bez ujmy na všeobecnosti mdžeme predpokladať 
Meh. Označme P = AM n h* a uvážme dva možné 
případy: 

1. M = H, 
2. M = P. 

£ (XP) 
V prvom z nich je výraz log £ ^ p y nezáporný a v druhom 
nekladný. Rovnica c = A (/IX) má potom podia (12) 
v oboch prípadoch jediné riešenie x a to: 

1. e (XP) = 2 c - e (AP), 
2. e (XP) = 2- c -£ (Í4P). 
64. Označme P ep',P ^ H. Podia (12) je potom 

£(AP) 
(XP) 

1 = JL(AX)= log-

teda 

/0J? £ (XP) = ± 1 =* e (XP) • 

Hladaná množina je dvojprvková a skládá sa z 1-bodov 
Xv X2 charakterizovaných vzťahmi e (AP) = 2 • e (XtP) 
a 2 • e (AP) = £ (X2P). Inak povedané je e-stred e-úseč-
ky AP, A je e-stred e-úsečky PX2. 

65. Hladaná 1-mierka je patrná z obrázku 25. Platí 
£ (A2P) = 2 £ (AXP) = 4 . £ (AP) = 8e ( i ^ P ) = 16 £ (A.2P). 
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Všeobecne e (PA{) = 21-' e (PAj) pre lubovolné celé i, j, ak 
A i je 1-bod prislúchajúci hodnotě i na 1-mierke. Dodajme, 
že existujú dve orientácie. Záměna A i -> charakterizuje 
přechod od jednej ku druhej. 

66. Riešenie patrné z přiloženého obrázku je založené na 
konštrukcii 1-stredu — pozři přiklad 3. 

67. Obidve konštrukcie sú patrné z obrázku 28. Označ-
me P e />', Q e P =£// £ Q; £7 resp. V je priesečnik h* 
a e-priamky AC resp. BC. Potom podia úlohy 64 existujú 
práva dva rózne 1-body D1} D2 a právě jeden 1-bod E, 
pričom a) Dt je priesečnik e-priamok UB a q, D2 je prieseč-
nik e-priamok A V a q, b) Ak A leží medzi B a P potom 
E je priesečnik e-priamok UD2 a p. Dokaž tvrdenia je 
jednoduchý. Z e-rovnobežnosti e-priamok p, q vyplývá 
e (CQ) : e (AQ) = e (AP) : e (BP) = e (D2Q) : e (CQ) = 
= £ (EP) : £ (AP) a vzhladom na (12) potom A (CDJ = 
= A (AB) = A (CD2) = A (AE), čím je dokaž převedený. 
Dodajme, že v případe e-rovnobežnosti e-priamok h* a AC 
resp. h* a BC bude s h* e-rovnobežná aj BDX aj ED2 
resp. AD2. Nepresne povedané, a-bod U resp. V „unikne 
do nekonečna". 

68. Nech q je 1-priamka druhého druhu idúca 1-bodom 
A. Nech/)' = {U, V}. Priesečnik e-priamky UB s 1-priam-
kou q označme C. Ak Y je 1-stred 1-úsečky AC (příklad 3), 
potom hladané 1-body Xu X2 sú priesečníky 1-priamky p 
s e-priamkami UY a VY. 

69. Podia příkladu 4 (obrázok 29) je A (SA) = A (SAÍ) = 
= A (,SB). 

70. a) Zostrojíme e-kružnicu idúcu danými troma bodmi. 
b) Nech p je 1-priamka druhého druhu idúca 1-bodom S. 
Ak X e />, zistrojíme 1-bod Y e p tak, že X Y, A (XS) = 
= A ( Y S ) . V opačnom případe vedieme 1-priamku q bod-
mi 5 a X (tá je nutné prvého druhu) a pomocou 
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a-bodov U, V e q' konštruujeme 1-body A, B ako na 
obrázku 30. 

71. V situácii nakreslenej na obrázku 31 je 1-bod C vo-
lený tak, že e-priamka SXC je e-rovnobežná s h*, je 
e-stred kružnice k. Označme 1-priamky AC = b a BC = a 
(sú určité prvého druhu) a označme ešte U = S(a), 

Obr. 31 

V = S(b). Potom e ( < Í / ^ F ) = 90° a preto je 
< UCV) < 90° a preto tiež l (< ACB) = e ( < ř /CF) < 
< 90°. yífi je zrejme 1-priemer kružnice k. 

72. Pri označení e (UA) = e (UC) = e (VC) = e (VB) = 
= uae(WA) = e(WB) = vjee(UlV) = -^-ae2(AW) = 

2 ' 

= £2 (AU) -f £2 (UW) tj. v2 = u2 + -2- = — M2, od-

kial v = u | / y . Ďalej je cos e (<í AUV) = 0; cos e 

< CUV) = ^-;cos E(^BWV)=-cose(^AWV) = 

= - : v = 1 : ]/3. Podfa (14) a známého vzťahu tg-^- = 
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y COS X potom je X (AC) - \logtg-je«AUV)-
1 + COS X 

log tg s (<£ CUV)\ = Ilog 1 - log Cl/2 1)1 = 

= log 0 / 2 + 1), X (.AB) = Ilog tg\e(<$ AWV) - log 

tg^-e« BWV)\ log 1 / 3 + 1 
— log 

]>2 

= log 

]/2 y 3 + 1 

I 1)2 = log (2 + y3) a teda A2 ( A C ) + 

+ X2 (BC) = 2 log2 (V2 + 1) a tiež X2 (AB) = log2 (2 + 
+ 3). Požadovaná róznosť X2 (AC) + X2 (BC) ^ A2 (AB) 
vyplývá z nerovnosti 2 log2 (]/2 + .1) < log2 (2 + ^3), 
ktorá je ekvivalentná s nerovnosťou (y2 + 1)^ < 2 +J/3-
Trpezlivým výpočtom (binomický rozvoj dokážeme (y2 + 

+ l)10 < (2 + V3)V odkial vzhíadom na vzťah \2 < 

je QJ2 + l)Va ( < ]/2 + 1)T < 2 + y j a teda y i /og (1/2 + 
+ 1) < log (2 + ]/3) čo sme chceli dokázat. 

A 

f S 
3 

íf t 
U W V 

Obr. 32 
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73.1-priamku AUoznačme/», S(p) = War n h* = Q; 
obr. 33. Nech A je zvonka a tj. e (AQ) > e (RQ). Nech T 
je e-stred e-úsečky AU. Potom WT je e-výška v e-troj-
uholníku AUW a e-trojuholníky AQU a WTU sú po-
dobné, lebo e ( < AQU) = E ( < WTU) = 9 0 ° a e « 

AUQ) = E (<$. TUW). Preto je £ ( < UAQ) = 

< t / r r ) = |6(<í C7Wi4) = y A« UAR) = 

trojuholníka /4QÍ7 vyplývá 

Z e-

<P cotg y 
e ( í 7 Q ) e ( i ? Q ) 

odkial 

/Of y 

Skoro rovnakým spósobom dokážeme tento vzťah aj v pří-
pade, že A je vnútri A tj. E (AQ) < E (RQ). 

74. Situácia bola popísaná v úlohe 62 (případ A). Podia 
(14) je 
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d = A (AR) = 

log 

log 
tg^-e(^MUR) 

tg 

tg-e(^MUA) 

log cotg 

75. Označme S(r) = P, e ( < APR) = P,e(< RPU) = 
= y a priesečník e-priamok AU a PR nech je Q. Pretože 
e-priamky RQ, UQ sú dotyčnice e-kružnice g, je £ (RQ) = 
= £ (QU) a teda (obr. 34) 

tgy = 
1 1 E(QU) _ 

£ (UP) cos(0 + y) cosy 
lebo 

£ (QU) = £ (RQ) = £ (RP) - £ (QP) = £ (AP) - £ (QP) = 
= E(UP) _ £(t/P) 

cos (P + y) cos y 
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Potom platí 

a preto 

y • y 

1 + siny y . y 
cos ý + sin Ý 

y • y 
c o s " 2 « « y 

y • y 
tr*P + V _ l -co»(<8 + y) cos^ + sin-^  
1 8 2 l + « « 0 9 + y) y . y 2 

cos — SÍM y 
y . y 

Obr. 35 
číže 

č + y 

cotg P + Y 

tg 
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Podia (14), vzhladom na rovnost' X(-^RAQ) = 
< APU) je 

t g l ± l . 
X (AR) = I log -— = log cotg P + 7 

V í 

log cotg y 



D O D A T O K 

A. Logika a množiny 

Výrokom nazývame takú gramatickú vetu (či niekolko 
viet),ktorámázmysel a niečo tvrdí či popiera. Móže byť za-
písaná slovné, alebo formulou, připadne oboma. Příklady: 
„Pře dížky a, b, c stráň pravoúhlého trojuholníka s přepo-
nou c platí a2 + b2 = c2"; „(x + yf = x2 — 2 xy, pre 
všetky párne čísla x, y" — sú výroky, prvý z nich je 
(v e-rovine) pravdivý, druhý je nepravdivý. Naopak veta 
„Dunaj je múdre velkomesto" je bezo zmyslu. 

Výroky označujeme „tučnými" velkými literami: A, B, 
E, L, U, apod. Nech A, B sú výroky, potom symbol 
~~1 A značí výrok: nie je pravda že platí A ; 
A => B značí výrok: 
ak platí A, potom platí aj B ; (implikácía) 
A o B značí výrok: 
A platí právě vtedy ked aj B; (ekvívalencía) 

Výrok A o B je pravdivý v dvoch prípadoch: buď 
A aj B sú pravdivé, alebo A aj B sú nepravdivé. Ak jeden 
z výrokov A, B je pravdivý a druhý nepravdivý, potom 
výrok A o B je nepravdivý, čiže výrok "] A o B je 
pravdivý. 

Výrok A => B je nepravdivý jedine v tom případe, ak je 
A pravdivý a B nepravdivý; vo všetkých ostatných prípa-
doch je pravdivý. Z pravdy nie je možné dokázat' nepravdu. 
Ale pozor! Výrok A => B je pravdivý aj v tom případe, ak 
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předpoklad, tj. výrok A, je nepravdivý a závěr, tj. výrok B, 
je pravdivý. Je totižto dobře možné z nepravdy dokázat' 
pravdu. Například z výroku (zjavne vadného) 2 = 10 
obdržíme postupné povolenými úpravami: [2 = 10] => 
=> [2 - 6 = 10 - 6] ~ [ - 4 = 4] => [ ( - 4 f = 42] 
=> [16 = 16]. Dobře si poslednú úvahu premyslite, je ča-
stým zdrojom logických chýb. 

Čitatelovi prospeje, ak si dobré rozmyslí nasledujúce 
vzťahy platné medzi lubovolnými výrokmi A, B: 

a) výrok A o B je pravdivý právě vtedy, ked je pravdivý 
aj výrok A => B, aj výrok B => A ; 

b) Výrok A => B je pravdivý právě vtedy, ked je pravdivý 
aj výrok H B => ~~| A ; 

c) Výrok —1 (—1 A) je pravdivý právě vtedy, ked aj výrok 
A, tj. platí n ( 1 A) = A. 

Předpokládáme, že čitatelovi pojem množiny nie je cel-
kom neznámy. K zápisu množin používáme svorkové 
zátvorky { }. 

Ak a, b, C, <2i sú akékolvek objekty, potom množinu, 
ktorá sa skládá právě z týchto štyroch objektov, značíme 
{a, b, C, Qj}. Teda symbol {X} označuje množinu, ktorá 
obsahuje jediný prvok — objekt X. Například ak p je 
priamka (úsečka, kružnica, apod.) potom na p často hladíme 
ako na množinu bodov X pre ktoré X e p. Avšak symbolom 
{p} označujeme množinu, ktorá obsahuje jediný prvok 
a to priamku (úsečku, kružnicu a pod.) p. Bod X e p nie je 
prvkom množiny {/>}, čiže X $ {/>}. 

Symbolom 0 označujeme prázdnu množinu, tj. množinu, 
ktorá neobsahuje žiadny prvok. 

Ak M, N sú dve (nie nutné rózne) množiny, potom 
symbolom M U N označujeme ich zjednotenie tj. množinu 
tých X, pre ktoré platí buď Z e M , alebo Z e N ; 
M n N označujeme ich prienik tj. množinu tých X, pre 

ktoré platí aj X e M, aj X e N ; 
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M c N označujeme výrok: M je podmnožina množiny N, 
tj. výrok X e M ^ e N ; 

p : M N označujeme zobrazenie p z množiny M do 
množiny N tj. předpis, podia ktorého každému 
prvku X e M je možné a to jednoznačne priradiť 
prvok množiny N. Tento prvok označujeme 
potom p(X). 

Poznamenajme, že v texte tejto knižočky sa zobrazenie 
vyskytuje v článku 3.3, pričom tri tam vystupujúce zobra-
zenia sú značené o, p a P. 

B. Polodotyčnica (v e-rovine). 

Nech T je koncový bod kruhového oblúka a, ležiaceho 
na kružnici k(S, r). Nech t je dotyčnica ku kružnici k ve-
dená v bode T. Zvolme bod P e a tak, aby středový uhol 
< TSP prislúchajúci oblúku TP <=• a bol uhlom ostrým. 
Potom polpriamku tx = TQ, kde Q = t n PS, nazveme 
polodotyčnicou oblúka a v bode T. Pri tejto definícii je ne-
podstatné, či koncový bod T sám k oblúku a náleží, alebo 
nenáleží. 

C. Poznámka o uhloch (v e-rovine). 

Nech A VB a < CVD sú dva pravé uhly so spoločným 
vrcholom V. Nech naviac AV = BV = CV = DV. Uhly 
< A VB a <£ CVD nazveme súhlasne orientované, ak 
otočenie okolo bodu V, ktoré prevedie bod C do bodu A 
prevedie aj bod D do bodu B. V opačnom případe povieme, 
že uhly <£ A VB a < CVD sú opačné orientované. Ak 
velkost uhla <£ A VC označíme a, potom velkost uhla 
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BVD je rovná a v případe, že <5: A VB a CVD sú sú-
hlasne orientované a 180°—a v případe, že <): ví VB 
a CFZ) sú nesúhlasne orientované. 

D. Mocnost bodu ke kružnici (v e-rovine). 

Nech je daná kružnica k(S, r) a bod Aí. Číslo MS2 — r2 

nazveme mocnost' bodu Aí ku kružnici k(S, r). Platí násle-
dujúca 

Veta o mocnosti bodu ku kružnici. 

Nech P í Q sú priesečníky priamky p s kružnicou 
k(S, r) a nech Aí je bod priamky p. Potom číslo MP MQ 
je rovné 

a) mocnosti bodu Aí ku kružnici k(S, r) právě ked Aí 
leží zvonka, alebo na kružnici k, 

b) zápornej hodnotě mocnosti bodu Aí ku kružnici 
k(S, r) právě ked Aí leží vnútri, alebo na kružnici k. 

V případe a) je mocnost' bodu Aí ku k rovná tiež číslu 
MT2, kde T je dotykový bod (ktorejkolvek) dotyčnice ve-
denej bodom Aí ku k. Mocnost' bodu Aí ku k je rovná nule 
právě ked Mek a číslu — r2 právě ked M = S. 

Ddkaz. Případy S = A í a A í e & s ú evidentně. Nech teda 
S í Aí e k, S e p. Nech A, B sú priesečníky priamky SM 
s kružnicou k. Bez ujmy na všeobecnosti móžeme předpo-
kládat také značenie bodov A, B, P a Q, že body Aí, A, P 
a 5 ležia v jednej polrovine vyťatej priamkou BQ. Pretože 
velkosti uhlov <r PQA, í PBA sú rovnaké podia vety 
o obvodovom uhle, sú trojuholníky MPB a MAQ podob-
né. Preto je MP : MB = MA : MQ, odkial 

113 



MP.MQ = MA.MB = |(AíS - r ) . (MS + r)| = 
= |AÍS2 - r2|. 

Číslo v poslednej absolútnej hodnotě je mocnost' M ku k\ 
toto číslo je zrejme kladné ak M leží zvonka a záporné ak 
M leží vnútrí k. Posledné tvrdenie vety: MT2 = MS — r2 

je okamžité zřejmé podra Pytagorovej vety. Veta o moc-
nosti je dokázaná. 

E. Poznámka ku kružnici (v e-rovine). 

Dokážeme nasledovnú vetu. 
Veta. Nech M je vonkajší bod kružnice k(S,r) a nech Q 

je vnútorný bod kružnice k ležiaci na polpriamke SM. 
Nech konečne T je jeden z priesečníkov kolmice vedenej 
bodom Q ku MS s kuržnicou k. Potom priamka MT je 
dotyčnicou ku kružnici k právě vtedy, ak platí SQ.SM = 
= ST2. 
- Dókaz. Ak posledná rovnica platí, potom podra euklidovej 
vety o straně je uhol STM pravý a teda MT _L TS je do-
tyčnicou ku k s dotykovým bodom T. Ak naopak je MT 
dotyčnicou, potom znovu podia euklidovej vety o straně pla-
tí horný vztah. 

F. Veta Pappova (v e-rovine). 

Nech sú dané dve rózne priamky p a p' a nech a, b, c, d, 
sú priamky, vzájomne róznobežné so spoločným prieseční-
kom V $p u p'. Priesečníky priamok a, b,c,ds priamkou 
p resp. p' označme v poradí A, B, C, D resp. A', B\ C', D'. 
Potom platí: 
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AC BC _ A'C' . B'C' 
AD'BD~ A'D' '' B'D'' 

Dokaž. Nech v je vzdialenosť bodu V od priamky p 
a označme a, (¡, y, o velkosti uhlov AVD, BVC, AVC, 
BVD v poradí. Obsah trojuholníka AVD móžeme vy-
jádřit' dvoma róznymi spósobmi. Tak dostaneme rovnosť 
AD.v = 2 AV.DVsin a. Podobné rovnosti napíšeme pre 
trojuholníky BVC, AVC, BVD. Potom 

AC . BC_ AC.v _ BC.v _ 
AD BD ~ AD.v ' BD.v ~ 

_ AV.CV siny BV .CV sin 0 _ siny . sin P 
AV.DV sin a ' BV.DVsina sin a ' sin a' 

Rovnakú úpravu prevedieme aj pre pravú (čiarkovanú) 
stranu dokazovanej rovnosti. Pretože výsledok v obidvoch 
úpravách je ten istý rovnajú sa aj obidva upravované vý-
razy. Veta je dokázaná. Poznamenajme, že poloha priamok 
p, p' móže byť buď rovnoběžná, alebo róznobežná. V po-
slednom případe može například bod A splynúť s A', teda 
A=A'=p n p'. 
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Z Á V Ě R 

Čitatel, ktorý sa prehiýzol až ku tomuto závěru má iste 
mnoho otázok: prečo je miera 1-úsečky v modeli B či 
v modeli p definovaná takým cudným zpósobom, ako je to 
s mierou 1-uhla v modeli B, či existuje Lobačevského geo-
metria aj v priestore, aká je vlastně axiomatická sústava 
euklidovská a aká Lobačevského, či existuje okrem eukli-
dovskej a Lobačevského planimetrie aj iná planimetria 
atď. a tď. . . . 

Ako sme už v úvode povedali nebolo cidom knižky dat 
ucelený pohlad na neeuklidovskú geometriu, ale obozná-
miť čitatela s niektoiými myšlienkami a otvoriť mu cestu 
do niektoiých dalších oblastí matematiky. Zodpovedanie 
uvedených (a mnohých dalších) otázok nutné předpokládá 
podstatné hlbšie načretie do štruktúry elementárnej geo-
metrie. Vstupnou bránou do štruktúry syntetickej geo-
metrie bolo objavenie tzv. projektívnej geometrie, ktorá je 
strešnou teóriou nielen v geometrii eukhdovskej a Loba-
čevského, ale aj mnohým dalším (eliptická, afinná, uni-
modulárna...). 

Veríme, že krásna téma projektívnej geometrie najde 
autorov, ktorí by ju v tejto edícii spristupnili našim mladým 
čitaterom. 

Autoři 
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