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P R E D S L O V 

Na jeseň roku 1966 usporiadal KV MO Východosloven-
ského kraja školenie pre úspěšných riešitelov MO kategorie 
B. Jedna z tém preberaných na tomto školení je predmetom 
tejto knihy. Jedná sa o známy Dirichletov „zásuvkový" 
princip. Úlohy a problémy preberané na tomto školení sme 
doplnili, sústavnejšie usporiadali a v tejto formě ich po-
dáváme. 

Táto brožúrka je v podstatě zbierkou príkladov a úloh. 
Ostatného textu je velmi málo. Přitom niet rozdielu medzi 
príkladom a úlohou. K niektorým úlohám sme připojili 
ihned do textu riešenie a nazvali príkladmi. Majů slúžiť 
ako návod na riešenie úloh, ktoré za príkladom nasledujú. 
K niektorým úlohám vzadu připojujeme návody na 
riešenie. 

Brožúrka je rozdelená do niekolkých kapitol. Sú podia 
nášho názoru odstupňované podia obtiažnosti. Sú však 
medzi sebou nezávislé, možno ich teda čítať v lubovolnom 
poradí. Formulácia principu, ktorý sa v celej knihe po-
užívá, možno nájsť na začiatku prvej a začiatku tretej kapi-
toly. 

Autoři 





1. kapitola 

D I R I C H L E T O V P R I N C Í P 

Pod menom „Dirichletov princip" sa obyčajne uvádza na-
sledujúce tvrdenie: 
(d) Ak je viac než n predmetov rozdelené do n skupin (n je 
prirodzené číslo), potom aspoň v jednej skupině sa na-
chádzajú aspoň dva predmety. 

V konkrétných situáciách tvrdenie (d) hovoří napr. toto: 
Profesor Kvantifikátor nemdže rozmiestniť svojich páť 

detí do štyroch izieb svojho bytu tak, aby v každej izbe 
bolo najviac jedno dieťa, tj. nutné musia aspoň v jednej 
izbe byť aspoň dve deti. 

Ak má profesor Kvantifikátor deváť fajok svojej zbierky 
v zásuvkách písacieho štola a stól má osem zásuviek, potom 
aspoň v jednej zásuvke je viac než jedna fajka. 

Tvrdenie (d) sa niekedy nazýva „zásuvkový princip". 
V literatúre sa střetneme i s označením „holubníkový 
princip". Autoři, ktorí dávajú tento názov tvrdeniu (d), majů 
na mysli holuby profesora Kvantifikátora (vo volnom čase 
sa venuje chovu ušlachtilých holubov). Má totiž n holub-
níkov, ale viac než n holubov. Potom aspoň v jednom 
holubníku musí mať dvoch, alebo viac holubov. 

Tvrdenie (d) nie je ťažké dokázať. 
Nech ki je počet predmetov v i-tej skupině (t = 1,2, . . . , 

n). Keby v každej skupině bol naviac jeden predmet (tj. 
žiaden, alebo iba jeden), čiže kt je menšie, alebo rovné 
jednej, pře i = 1,2, . . . , « , potom všetkých predmetov by 
bolo k-L + k2 + ... + kn < 1 + 1 + • • • + 1 = n. 
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Jedná sa teda o tvrdenie na pohlad velmi jednoduché, ale 
vhodným použitím móžeme dostať velmi silné výsledky. 
Obyčijne pomocou Dirichletovho principu dokazujeme 
existenciu takých objektov, ktoré nemožno (alebo je velmi 
ťažké) efektívne skonštruovať. 
Uveďme příklad. 

Příklad 1. Podia antropológie neexistujú ludia s váčším 
počtom vlasov, ako 500 000. Dokážeme, že v Prahe existujú 
dvaja ludia s rovnakým počtom vlasov. 

Riešenie. Najskór uvážime, že Praha má vyše milión 
obyvatelov. Obyvatelov Prahy rozdelíme do skupin tak, že 
do n-tej dáme všetkých obyvatelov Prahy, ktorí majů právě 
n vlasov (n = 0 ,1 , 2, . . . , 500 000). PodTa tvrdenia antro-
pológov, každý obyvatel Prahy padne do niektorej z tých 
skupin. Pretože Pražanov je viac ako skupin, aspoň v jednej 
skupině je viac ako jeden Pražan, tj. existujú dvaja obyva-
telia Prahy s rovnakým počtom vlasov. 

Uvedený příklad je typický tým, že efektívne nájsť 
dvoch Pražanov s rovnakým počtom vlasov je z pochopi-
telných dóvodov prakticky nemožné. 

Bezprostředné použitie Dirichletovho principu si možno 
overiť na nasledujúcich úlohách. 

Úloha 1. Súkromná knižnica má 1100 svázkov, pri-
Čom žiaden z nich nemá viac ako 1000 stráň. Dokážte, že 
v knižnici existujú dve knihy s rovnakým počtom stráň. 

Úloha 2. Na vysokú školu přijali do prvého ročníka 120 
poslucháčov, ktorí maturovali na 84 středných školách. 
Potom sa v prvom ročníku nájdu aspoň dvaja poslucháči, 
kteří sa poznaiú zo strednej školy. Dokážte! 

Úloha 3. Neporiadny študent mal v zásuvke ponožky 
piatich farieb (z každej farby aspoň dve). Koíko kusov 
ponožiek musí po tme vybrať, aby bol istý, že mezdi nimi 
budú dve rovnakej farby? 
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Úloha 4. Hádžeme dvoma kočkami. Kolkokrát třeba 
hodiť, aby sme mali zaručené, že dvakrát padol rovnaký 
súčet bodov na kockách ? 

Dirichletov princip možno formulovať i všeobecnejšie: 
(D) Ak je viac než mn predmetov rozdelených do n sku-

pin, potom aspoň v jednej skupině je viac ako m predmetov. 
Dokaž je rovnaký ako prv. Nech ki je počet predmetov 

v z-tej skupině (z = 1,2, . . n ) . Keby v každej skupině 
bolo najviac m predmetov, tj. ki <m pře i = 1 ,2, ...,«, 
potom všetkých predmetov by bolo ki + k2 + . . . + 
+ kn < m + ... + f f i = mn. 

Přiklad 2. Konferencie sa zúčastnilo 40 delegátov z 13 
krajin. Dokážte, že delegácia aspoň jednej krajiny mala viac 
ako troch členov! 

Riešenie. Rozdelíme delegátov do skupin podia krajin, 
tj. v každej skupině sú všetci delegáti istej krajiny. Kedže 
skupin je 13 a delegátov je viac ako 3.13 = 39, musia byť 
aspoň v jednej skupině viac ako traja delegáti. 

Úloha 5. Kolkokrát třeba hodiť troma kočkami, aby 
bolo zistené, že aspoň štyrikrát padol rovnaký súčet bodov 
na kockách? 

Úloha 6. Kolkokrát třeba hodiť dvoma kočkami, aby 
třikrát padla tá istá dvojica čísel ? Úlohu riešte a) v případe, 
že kočky sú rovnaké (t. j. dvojice (2,1) a (1,2) pokládáme 
za rovnaké); b) v případe, že kočky sú r6zne (napr. róznej 
farby; v tomto případe dvojice (2,1) a (1,2) považujeme za 
rózne). 

Predošlé příklady a úlohy sa dali riešiť bezprostředným 
použitím Dirichletovho principu. Stačilo vhodné zvoliť 
rozdelenie do skupin, čo obyčajne vyplynulo zo zadania 
úlohy. Často sa však stává, že k riešeniu nedojdeme takto 
bezprostredne, ale sme nútení využiť i iné okolnosti, ktoré 
vyplývajú zo zadania úlohy. 
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Přiklad 3. Daný je vypuklý štrnástisten s 9 vrcholmi. 
Dokážte, že existuje na ňom vrchol, z ktorého vychádza 
aspoň 5 hrán. 

Riešenie. Ako vieme, pře počet Í stien, počet v vrcholov 
a počet h hrán vypuklého mnohostena platí Eulerov vztah 

SJtV = h + 2. 

Teda náš 14-sten má 14 + 9 — 2 = 21 hrán. Rozdelme 
každú hranu napoly, dostaneme 42 polhrán. Tieto roz-
deíme do 9 skupin, podia toho, z ktorého vrcholu vychádza-
jú. Podra (D) v jednej skupině je viac ako 4 t. j. aspoň 
5 polhrán. Teda z jedneho vrcholu vychádza aspoň 5 pol-
hrán, čiže aj hrán. 

Úloha 7. Daný je vypuklý sedmisten so 6 vrcholmi. Do-
kážte, že právě jedna stená toho sedmistena je štvoruholník. 

Niekedy vedie k cidu použitie Dirichletovho principu 
niekolkokrát za sebou. 

Příklad 4. Konferencie sa zúčastnilo 70 delegátov, ktorí 
hovoria 11 róznymi jazykmi. Jedným jazykom hovoří 
najviac 15 debgátov. Organizíčný výbor rozhodol, že za 
oficiálny bude považovat' taký jazyk, ktorým hovoří najme-
nej 5 delegátov. Dokážte, že na konferencii boli aspoň 3 
oficiálně jazyky. 

Riešenie. Keďže delegátov je 70 a hovoria 11 jazykmi, 
iste jedným jazykom hovoří nie menej, ako 5 delegátov. 
Teda existuje jeden oficiálny jazyk, nazvime ho jazyk A. 
Jazykom A hovoří najviac 15 delegátov, t. zn., že ostatný-
mi 10 jazykmi hovoří aspoň 55 delegátov. Teda medzi tý-
mito 10 jazykmi sa musí nájsť jazyk (označme ho B), kto-
rým hovoří najmenej 5 delegátov. To je druhý oficiálny 
jazyk. Jazykom B hovoří najviac 15 delegátov, teda zbýva-
júcimi 9 jazykmi hovoří aspoň 40 delegátov. Zasa podia 
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Dirichletovho principu možno spomedzi týchto 9 jazykov 
vybrať jeden oficiálny. 
t Existenciu štyroch oficiálnych jazykov nie je možné do-
kázať (protipríkladom je například nasledovná situácia: 
tromí jazykmí hovoří po 15 delegátov, síedmími jazykmí 
hovoří po 3 delegátov a jedným jazykom hovoría 4 dele-
gáti). 

Iné podobné ukážky sú napr. v kapitole V. 
Uvedieme ešte niekolko róznych, připadne i náročnějších 

príkladov a úloh. 

Příklad 5. Třeba dokázat', že spomedzi lubovolne zvo-
lených 13 (reálných) čísel možno vybrať dve, označme 
ich x, y, také, že 

0 < < 2 - V 3 . 
1 + xy 

Riešenie. Označme dané čísla aly a2, ..., a13. Nech "15 

b2, . . . , ¿i® sú také čísla ležiace medzi — ^ a že ax = tg blt 

a2 = tg ¿2> • • • > ai3 = tg ¿13- (Také čísla určitě existujú. 
Spomeňte si, že funkcia y = tg x nadobúda v intervale 

IP y ) r e ^ n e hodnoty). Rozdelime interval 

T ' n a ^rovnakých častí. Podia (d) aspoň v jednej 

z týchto častí existujú dve z čísel ¿>x, b2, . . ¿ > 1 3 , nech sú to 
napr. a, /? (napr. a — ¿>3, (} — í>7, alebo podobné). Nech 
naviac a < jS (t. j. označili sme a menšie a /3 váčšie z nich). 

Potom 0 < fi — a Označme x = tga,y = tg(}. Teda 

x je niektoré z čísel au a2, ..a13) a ̂  tiež. 



( 71 TC \ 
— i rastúca, 

2 2 / 

a naše tvrdenie je dokázané. 
Úloha 8. Spomedzi n + 1 lubovolne zvolených čísel 

možno vždy vybrať dve tak, že ak ich označíme x, y, bude 
y — x n 0 < - f - : < tg — • 1 + xy ° n 

Dokážte! 
Úloha 9. Spomedzi lubovorne zvolených 11 čísel inter-

valu (1,100) sa vždy dajú vybrať dve tak, že ich podiel je 
menší než 1,6 a váčší než 1. Dokážte! 

Příklad 6. V záhradě tvaru obdížnika o rozmeroch 
20 m X 15 m musí byť menej než 26 stromov, ak má byť 
zachované pravidlo, že vzdialenosť dvoch stromov nie je 
menšia než 5 m. Dokážte! 

Riešenie. Připusťme, že by v záhradě bolo viac, než 25 
stromov. Rozdelíms záhradu na obdížniky rozmerov 
4 m x 3 m. Takých obdížnikov sa do našej záhrady vmestí 
právě 25.Teda podia (d) aspoň v jednom z týchto obdížnikov 
musia byť aspoň dva stromy. Keďže uhlopriečka obdížnika 
má dlžku 5 m, vzdialenosť týchto stromov je menšia 
než 5 m. 

Úloha 10. V záhradě o rozmeroch 35 m X 42 m je 
100 stromov. Dá sa v nej nájsť obdížnik o rozmeroch 
3 m X 5 m taký, aby na ňom rástli aspoň dva stromy ? 

Úloha 11. Ak je na štvorci rozmerov 10 X 10 umiestené 
101 bodov, potom možno vybrať taký trojuholník o ploš-
nom obsahu 1 cm2, že na ňom sú aspoň dva spomedzi 
daných bodov. 
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Úloha 12. V záhradě o rozmeroch 80 m x 90 m rastie 
365 stromov. Dá sa nájsť časť záhrady tvaru obdížnika 
o rozmeroch 5 m x 8 m, na ktorej rastů aspoň 3 stromy? 

Úloha 13. Na obdížniku rozmerov 27 m x 36 m je 
umiestené 1945 bodov. Dokážte, že aspoň 7 z nkh možno 
naraz pokryť trojuholníkom plošného obsahu 3^n 2 . 

Úloha 14. Ak je v štvorci o straně 1 umiestené Iubovolne 
51 bodov, potom možno niektoré tri spomedzi nich pokryť 
kruhom o polomere 
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2. kapitola 

ÚLOHY Z T E Ó R I E Č Í S E L 

V teorii čísel možno použitím Dirichletovho principu nájsť 
často necčíkávané výsledky. Dirichlet sám s úspechom 
používal tento princip v teórii čísel a odtial1 má tento princip 
svoje meno. Je však velmi pravděpodobné, že bol niekto-
rými matematikmi využívaný i pred tým. Možno, že nie 
ták výrazné a vedome. 

Přiklad 7. Dané je 82 prirodzených čísel. Třeba doká-
zat!, že sa medzi nimi dajú nájsť dve také, že ich rozdiel je 
delitelný číslom 81. 

Riešenie. Rozdelíme dané čísla do 81 skupin, podia 
toho, aký zvyšok dávajú po delení číslom 81. Teda do 
prvej skupiny dáme tie, ktoré dávajú zvyšok 0 po delení 81, 
do druhej tie, ktoré dávajú zvyšok 1, do tretej tie, ktoré 
dávajú zvyšok 2, atď., až do osemdesiatej prvej dáme 
tie čísla, ktoré po delení číslom 81 dávajú zvyšok 80. 
Keďže skupin je menej ako čísel, aspoň v jednej skupině sa 
nachádzajú dve čísla. Teda medzi danými číslami sa dajú 
nájsť dve, ktoré po delení 81 dávajú rovnaký zvyšok. Ich 
rozdiel je delitelný číslom 81. 

Úloha 15. Ak je dané n + 1 prirodzených čísel, potom 
medzi nimi existujú dve, ktorých rozdiel je delitelný číslom 
n. Dokážte! 

Úloha 16. Ku každému prirodzenému číslu n existuje 
číslo zapísané v desiatkovej sústave v tvare 1 1 . . . 100.. .0, 
ktoré je delitelné číslom n. 
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Úloha 17. Ku každému prvočíslu p róznemu od 2,5 exi-
stuje číslo tvaru 111 . . . 1 (t. j. zapísané v desiatkovej 
sůstave iba pomocou cifry 1) delitelné p. 

Příklad 8. Je dané 67 prirodzených čísel. Dokážte, že 
možno spomedzi nich vybrať niekolko tak, aby ich súčet bol 
deliterný číslom 67. 

Riešenie. Označme dané čísla a1} a2> ..., a67. Utvořme 
čísla s1 = av s2 = ax + a2, sa = a1 + a2 + a3) . ..,s67 = 
= a1 + a2 + a3 + ... + a66 + a67. Ak je niektoré z čísel 
su s2, . . . , s67 delitelné číslom 67, úloha je riešená. Ak nie 
je, čísla Í15 s2, . . . , Í67 rozdelíme do 66 skupin a to tak, že 
do M-tej skupiny dáme tie, ktoré po delení číslom 67 dávajú 
zvyšok n (n = 1, 2, . . . , 66). Podia Dirichletovho principu 
aspoň v jednej skupině sa nájdu dve, označme ich jjt, sn, k < 
< h. Potom Sh — Sk je delitelné 67, pričom Sh— Sk = 
= ak + ! + ak + 2 + • • • + flft-

Úloha 18. Spomedzi n čísel sa dá vybrať niekolko tak, 
že ich súčet je delitelný n. Dokážte! 

Podobným obratom, ako příklad 7 a predošlú úlohu, je 
možné riešiť následuj úce úlohy. 

Úloha 19. Ignác Kvantifikátor (syn známého profesora 
Kvantifikátora) rieši po dobu troch mesiacov pred krajským 
kolom MO aspoň jednu úlohu denne. Přitom za kalendárny 
týždeň nerieši viac, ako 13 úloh. Dokážte, že sa dá nájšť 
niekolko po sebe idúcich dní v uvedenom období, za ktoré 
rieši právě 33 úloh! 

Úloha 20. Jeho priatelka v tom istom období rieši 
aspoň dve úlohy denne, ale za týždeň nie viac, ako 17. 
Dokážte, že buď existuje niekolko po sebe idúcich dní, za 
ktoré rieši právě 23 úloh, alebo niekolko po sebe idúcich 
dní, za ktoré rieši právě 46 úloh! 

Úloha 21. Nech p a q sú nesúdelitelné prirodzené čísla. 
Dokážte, že existuje prirodzené číslo n také, že číslo 
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1 + ? + ?2 + . . . + ?" je delitelné číslom/>! Ak 1 + q + 
+ q2 + ... + qn je delitelné číslom p a I je prirodzené 
číslo, potom aj číslo 1 + q -f q2 ... + qk (K+1)-1 je deli-
telné číslom p. Dokážte! 

Přiklad 9. Dokážte, že dekadický zápis niektorej moc-
niny čísla 37 končí skupinou cifier 00001! (Tu i v ďalšom, 
tým myslíme, že dané číslo má v dekadickom zápise okrem 
cifry 1 na mieste jednotiek ešte aspoň jednu cifru róznu 
od nuly. Teda napr. dekadický zápis čísla 1 nekončí skupi-
nou cifier 00001.) 

Riešenie. Vezmeme čísla 37, 372, 373, atd, až 37100 000. 
Ak niektoré z nich po vydelení číslom 100 000 dá zvyšok 1, 
sme hotoví, pretože jeho zápis v desiatkovej sústave končí 
00001. Ak žiadne nedává po delení 100 000 zvyšok 1, roz-
delíme ich na skupiny tak, že do w-tej skupiny dáme tie 
čísla 37fc, ktoré dávajú po delení 100 000 zvyšok n, pričom 
« = 0 , 2 , 3 , . . . , 9 9 998,99 999. Teda skupin je 99 999 
a čísel 100 000. Existujú dve čísla h, k také, že 37fc — 37ft je 
delitelné 100 000. Predpokladajme, že k > h. Keďže 
37* — 37" = 37ft (37*_A - 1) a 37 je nesúdelitdné s číslom 
100 000, je 37*-A — 1 delitelné číslom 100 000, čiže 
37*-ft dáva po delení číslo 100 000 zvyšok 1. 

Úloha 22. Nech číslo/) je nesúdelitďné s číslom 100 000. 
Dokážte, že dekadický zápis niektorej mocniny čísla p 
končí skupinou cifier 00001! Dokážte tiež, že pře každé n 
prirodzené existuje také prirodzené číslo k, že pk má deka-
dický zapiš končiaci skupinou n núl a cifrou 1! 

Úloha 23. Nech čísla p a q sú nesúdelitelné. Dokážte, že 
niektorá kladná mocnina čísla p dáva po delení číslom q 
zvyšok 1. 

Poznámka. Tzv. Malá veta Fermatova tvrdí, že tá 
mocnina číslap jep«-1. Jej dókaz je však podstatné zložitejší. 

Ak * je reálne číslo, znakom [x] označujeme tzv. celú 
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časť čísla x. Je to také celé číslo, že [x] < x < [x] + 1. 
Napr. [3] = 3, [ - 7 ] = - 7 , W 2 ] = 1, [ - 7 , 2 ] = - 8 a pod. 

Příklad 10. Dokážte, že existuje také prirodzené číslo 

< 100. Prirodzené čísla nie váčšie ako 10 000 rozdelme 
do tried tak, že do £-tej triedy, k = 1, 2, . . . , 100 dáme 

tie čísla, pře ktoré I \'x H 1 = k. Aspoň jedna z týchto 

tried obsahuje nie menej než 100 čísel (podia (D)). Příslušné 
k vyhovuje požiadavkám úlohy. 

Úloha 24. Dokážte, že existuje také prirodzené číslo k 
a) k < 6000, že rovnici [ v * log x] = k vyhovuje aspoň 

160 prirodzených čísel! 
b) k < 600, že rovnici [ V * log x\ = k vyhovuje aspoň 

1600 prirodzených čísel! 

Příklad 11. Nech x je iracionálně číslo. Ak k je Iubo-
volné prirodzené číslo, potom existujú také celé čísla m, n, 

že 0 < m + nx < Dokážte! 
k 

Riešenie. Uvažujme o číslach x1 = x — [x], x2 = 2x — 
- [2*], ...,xk = kx- [kx\, Xk+i = (k+ 1) x - [(A + 
+ 1) x]. Tieto všetky čísla sú kladné a menšie ako 1. Pře 
každé i = 1, 2, . . . , k, k + 1 je [ix] < ix < [ix] + 1. Pri-

fiVI 

tom nemóže byť xi = 0, pretože by bolo x = a keďže 

[z-*] je celé, bolo by x racionálně. Všetky čísla xv x2, .. 
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Xk+i sú navzájom rózne. Keby totiž bolo xt = xj pře i 

bolo by ix — [á ] = jx — [jx], odkiar x = — č o 
je spor. 1 — 1 

Interval <0,1) rozdělíme na k rovnakých častí, t. j. uva-

žujeme intervaly < 0,^), < < . . . , < 
Podra (d) aspoň do jedného z týchto intervalov padnú aspoň 
dve z čísel xls x2>- • .> Nech sú to čísla xt, xj a nech je 

xt < Xj. Potom je 0 < xj — xt < čiže 0 < jx — [jx\ — 

— (ix — [ůc]) < Ak položíme m — [ix] — [jx] a » = j — 

— i, bude 0 < m + nx < i . 
k 

Poznámka. Z přikladu 11 vyplývá, že medzi každými 
dvoma číslami a, b existuje číslo tvaru m + nx. Podrob-
nejšie: ak a < b a ak x je iracionálně číslo, potom existujú 
celé čísla m, n tak, že a < m + nx < b. 

Dokaž. Nájdeme prirodzené číslo k tak, aby bolo i < 
R 

<b — a. Podia příkladu 11 existujú celé čísla m0, n0 tak, že 

0 < m0 + n0 x < Nech h je najmenšie celé číslo, pře 

ktoré a < h(m0 + n0 x), teda h = r 1 + 1. Potom 
m0 + n0x J 

je aj h (m0 + n0x) < b. Keby totiž bolo h (m0 + n^x) b, 
bolo by (h — 1) (m0 + «o*) = h(m0 + n0x) — (m0 + n^c) ^ 

^ b — -r > a. Stačí teda zvoliť m = hm0, n = hn0 a bude k 
a < m + nx < b. 
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Úloha 25. Nech * ^ 0 je racionálně číslo, ktoré sa dá písať 

v tvare x = kde p je celé, q prirodzené a p, q sú nesú-

delitelné. Ak k je prirodzené číslo, k < q, potom existujú 

také celé čísla m, n že 0 < rit + nx < Dokážte! 
k 

Poznámka 1. Ak * je racionálně číslo, x ^ 0, x = ^ , 

kde p je celé a q prirodzené číslo a a, /? sú také čísla, že 

/3 — a < —, potom existujú celé čísla man tak, že a < 

< m + nx < fl. 
2. Ak k ^ q potom neexistujú také celé čísla m a n , aby 

0 < m + nx <4-
k 

Úloha 26. Dokážte tvrdenie v poznámke 1. 
Úloha 27. Dokážte tvrdenie v poznámke 2. 
Nasledujúci příklad a úlohy využívajú skor myšlienku 

dókazu Dirichletovho principu, než princip sám. Taká 
situácia sa často vyskytuje bez toho, že by sme si ju uvě-
domovali. Nie je to potřebné si uvědomovat', ale je vhodné 
nacvičit' sa pohotovo myšlienku tohoto typu využívat'. Je 
samozřejmé, že uvedené úlohy možno riešiť i priamo po-
užitím Dirichletovho principu, avšak za cenu váčšej ťažko-
pádnosti. 

Hovoříme, že prvočíslap, q nasledujú po sebe, akp < q 
a ak neexistuje také prvočíslo r, že p < r < q. Ak p, q sú 
prvočísla, ktoré nasledujú po sebe a q — p = 2, hovoříme, 
že py q je pár dvojičiek. 

Příklad 12. Ak je známe, že existuje právě 7 prvočísel 
nie menších než 1061 a nie váčších než 1097 a existujú 
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medzi nimi dve prvočísla/), q následujúce po sebe a také, že 
p — q = 18, třeba dokázať, že existujú aspoň dva páry 
dvojičiek medzi 1061 a 1097. ^ 

Riešenie. Označíme px, p2) p3, />4, p-, pM p7 prvočísla 
medzi 1061 a 1097 usporiadané podra velkosti. Teda 
1061 <p! < p2 < • • • <Pe <Pi < 1097. Podra zadania 
existuje také i (i je niektoré z čísel 1, 2 , , . . . , 6), žepi+l — 
— pt = 18. Ziaden z rozdielov pj+l — pj nemóže byť ne-
párny. Ale (p, - px) + (p3 - p2) + ... + (p7 - pe) < 
< 36. Kedže jeden z týchto rozdielov je 18, súčet piatich 
rozdielov nepřevyšuje 18. Ak medzi týmito rozdielmi je 
jeden váščí ale ba rovný 6, potom medzi zbývajúcimi 
štyrmi musia byť aspoň dva, ktoré sa rovnajú 2 (leljo ich 
súčet nepřevyšuje 12). Ale, ak by každý rozdiel bol menší 
ako 6, t. j. nepřevyšoval by 4 a neexistovali by dva rovnajúce 
sa dvom, potom by uvedené rozdiely museli byť 2 , 4 , 4 , 4 , 4 
(připadne v inom poradí). Máme teda jeden rozdiel 2, 
štyri rozdiely 4 a jeden rozdiel 18. Teda aspoň dva rozdiely 
4 musia ísť po sebe (Dirichletov princip), t. j. nastáva 
situácia p} <pf+i < pj+ 2, pričom p}+1 = p} + 4, p}+2 = 
= pj + 8. Ale to je spor, lebo p) nie je delitelné tromí, dáva 
teda po delení zvyšok 1 alebo 2, potom však buď pj + 4 
alebo pj + 8 je delitelné tromi, lebo dávajú zvyšok po-
stunne 2,0 alebo 0,1. 

Úloha 28. Medzi číslami 3 907 a 3 947 je 9 prvočísel 
a rozdiel dvoch z nich po sebe idúcich je 12. Dokážte, že 
medzi 3 907 a 3 947 sú aspoň 2 páre dvojičiek! 

Úloha 29. Ak medzi číslami a, b je k ^ 2 prvočísel, 
a <b a rozdiel dvoch z nich po sebe nasledujúcich je h, 

potom existuje medzi a a b aspoň ^2 (k ~ 1) ^ j 
párov dvojičiek. Dokážte! 

Takto získaný odhad je velmi slabý. Porovnajte ho napr. 
s tvrdením úlohy 28! 
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3. kapitola 

VAČŠINOU G E O M E T R I A 

Dirichletov princip v tej formě, ako sme ho formulovali 
v I. kapitole sa týkal iba prirodzených čísel, pretože sa 
v ňom jednalo o počet prvkov nejakej množiny (konečnej). 
Niekedy je však výhodné využívat iné veličiny na meranie 
„velkosti" množiny, ako počet jej prvkov (napr. ak je mno-
žina nekonečná). Móže to napr. byť dížka plošný obsah, 
objem, velkost' uhla a pod. V takých prípadoch „velkost" 
nemusí byť číslo prirodzené, ale lubovolné reálne číslo 
(napr. zlomok alebo aj iracionálně číslo). Pře také případy 
je výhodné formulovat' Dirichletov princip takto: 
(Dj) Ak au a2, ..., an sú lubuvolné reálne čísla, ktorých 

súčet je váčší, alebo sa rovná číslu b, potom aspoň jedno 

z nich je váčšie, alebo sa rovná číslu —. 
n 

Dokaž tohoto tvrdenia je úplné rovnaký ako dókaz 

Dirichletovho principu v I. kapitole. Keby bolo ai < — 

pře i= 1,2, . . . , « , potom by bolo ax + a2 + ... + a» < 

n n n 

Příklad 13. Třeba dokázať, že aspoň jeden vnútorný 
n — 2 

uhol vypuklého «-uholníka je váčší, alebo sa rovná n. 
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Riešenie. Súčet vnútorných uhlov vypuklého n-uholníka 
je (n — 2) 7i} preto podia (Dj) aspoň jeden z nich musí byť 

váčší, alebo sa rovná - TI. 
n 

Příklad 14. Poldavia má rozlohu 268 138 km2. Je v nej 
rozmiestnených 13 televíznych vysielačiek a retranslačných 
stanic. Nějaké miesto spíňa normu kvality příjmu, ak nie je 
vzdialené od najbližšej stanice ako 80 km. Dokážte, že 
Poldavia ešte nie je úplné televizifikovaná, t. j. existujú v nej 
miesta, ktoré nespíňajú normu kvality televízneho příjmu. 

Riešenie. Nech si je plošný obsah tej časti Poldavie, 
ktorej miesta sú vzdialené od z-tej stanice nie viac, ako 
80 km, z = 1, 2, . . . , 13. Ak by bolo každé miesto televizi-
fikované, potom by bolo + s2 + . . . + s13 ^ 268 138, 

268 138 
čiže podia (DJ aspoň pře jedno z by bolo í< S — ^ — = 

= 20 626 km2. Ale st < rc.802 km2 = 20 160 km2 pre kaž-
dé i = 1, 2, . . . , 13. (Nemusí byť nutné st = n. 802, pre-
tože časť kruhu o poloměre 80 km, v střede ktorého je z-ta 
stanica, móže siahať za hranice Poldavie.) 

Všimnite si, že z (Dj) ihned vyplývá (d) aj (D). 
Úloha 30. Dokážte (d) a (D) pomocou ( D J ! 
Nech je daná množina M bodov. Každý uhol ABC, 

kde A, B, C sú body množiny AI, nazveme uhlom určeným 
bodmi množiny AI. Připomínáme, že <£ ABC znamená 
uhol s vrcholom B a ramenami BA, BC, přitom, ak sa 
nerovná n, menší z dvoch možných. Napr. vnútorné uhly 
vypuklého mnohouholníka sú uhly určené vrcholmi tohto 
mnohouholníka (ale nie každý uhol určený vrcholmi vy-
puklého mnohouholníka je jeho vnútorný uhol). 

Úloha 31. Ak sú dané tri body v rovině, potom aspoň 

jeden uhol nimi určený je váčší, alebo sa rovná ^ n. 
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Poznámka. Všetky uhly určené vrcholmi rovnostran-

ného trojuholníka sa rovnajú n. Všetky uhly určené 
3 1 

vrcholmi pravidelného štvorstena sa rovnajú tiež y n. 

Přiklad 15. Ak sú dané štyri rózne body v rovině, potom 

aspoň jeden uhol nimi určený je váčší, alebo sa rovná n. 

Riešenie. Ak tri z daných bodov ležia na jednej priamke, 
je přiklad vyriešený, lebo potom jeden uhol nimi určený sa 
rovná n. Připusťme preto, že žiadne tri z daných bodov ne-
ležia na jednej priamke. Uvažujme o štvoruholníku, ktorý 
má vrcholy v daných bodoch. Rozoznávajme dva případy. 

a) Uvažovaný štvoruholník je vypuklý. Potom všetky 
vnútorné uhly tohoto štvoruholníka sú uhly určené danými 
štyrmi bodmi. Podia příkladu 13 aspoň jeden z nich musí 

byť váčší, alebo rovný ^ n. 

b) Uvažovaný štvoruholník nie je vypuklý. Potom jeden 
z jeho vrcholov leží vo vnútri trojuholníka určeného ostat-
nými tromi. (Obr. 1.) Označíme ten bod D a ostatné 
vrcholy A, B, C. Uvažujme o uhloch <£ ADB, < BDC, 

A 

B 

\ 
\ 
\ 
\ \ 
\ 

\ 
\ 

\ 

Obr. 1. 
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CD A. Ich súčet je 2 n. Teda zasa podia Dirichletovho 
principu (formulácia (Dj)) aspoň jeden je váčší, alebo sa 

, 2 1 
rovna y n > y n. 

Úloha 32. 5 bodov v rovině určuje aspoň jeden uhol 
3 

váčší alebo rovný y n. Dokážte! 

Úloha 33. 6 bodov v rovině určuje aspoň jeden uhol 
2 

váčší alebo rovný y n. Dokážte! 

Úloha 34. Ak je daných 7 bodov v rovině, potom aspoň 
2 

jeden uhol nimi určený je váčší ako y n. Dokážte! 

Problém. Úlohy 31—34 a příklad 15 vzbudzujú do-
mnienku, že platí tvrdenie: 

Ak je daných n + 1 bodov v rovině, (« S: 3) potom 

aspoň jeden uhol nimi určený je váčší W ^ 

Toto tvrdenie sa autorom nepodařilo ani dokázat', ani 
vyvrátiť. Bolo by zaujímavé dokázať toto tvrdenie pře 
niektoré ďalšie hodnoty n, napr. n — 7,8, atď. 

Analogicky ako (Dx) sa dajú dokázať nasledujúce obměny 
principu (Dj). 
(D2) Ak je dané n reálných čísel, ktorých súčet je váčší než 

číslo b, potom aspoň jedno z nich je váčšie než ^ . 

(Ds) Ak súčet n reálných čísel je menší alebo sa rovná číslu 

b, potom aspoň jedno z nich je menšie alebo sa rovná 

(D4) Ak je súčet n reálných čísel menší než b, potom aspoň 
jy 

jedno z nich je menšie než —. 
n 
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Úloha 35. Dokážte (D2), (D3), (D4) podobné, ako sme 
dokázali (Dj). 

I keď každé z tvrdení (D^, (D3), (D3) možno dokazovať 
podobné ako (Dj), všetky sa dajú z (D,) odvodiť (po-
dobné z každého tvrdenia (D2), (D3), (D4) ostatně). Na 
ukážku urobíme dokaž (Dg) pomocou (D,). 

Připusťme, že av a2, ..., an sú také čísla, že ax + a2 + 
+ ... + an > b. Označme b' = + a2 + ... a„, teda 

b' b 
V > b. Podia D, existuje také at, že at s — > —. 

n ti 
Přiklad 16. Dokážte, že do krabice tvaru valca výšky 

60 cm a priemeru základné 40 cm sa nevmestí 2630 stolnote-
nisových loptičiek priemeru 3,8 cm. 

Riešenie. Objem krabice je 75 412,5 cm3. Predpokladaj-
me, že by v tejto krabici bolo umiestených 2630 loptičiek. 
Potom súčet ich objemov nemóže převyšovat' 75 412,5 cm3. 
Podia (Dg) objem aspoň jednej z nich by musel byť menší 

75 412 5 

alebo sa rovnať < 28,69. Ale objem každej z nich 

je j (3,8)3 > 28,7. 
Příklad 17. Třeba dokázať, že v sade tvaru obdížnika 

o rozmeroch 100 m krát 300 m musí byť menej než 3851 
stromov, ak vzdialenosť lubovolných dvoch má byť váčšia 
než 4 m. 

Riešenie. Postupujeme podobné ako v příklade 6. 
Připusťme, že v sade je viac stromov než 3851. Sad roz-

delíme na rovnaké obdížniky o stranách a ^ j j . Bude 

ich 35 X 110 = 3850. Podia (d) aspoň v jednom z týchto 
obdížnikov sa musia nachádzať aspoň dva stromy. Keďže 
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uhlopriečka má dížku j / ( j ^ j + ^ y y ^ < 4 vzdiale-

nosť aspoň dvoch stromov je msnšia ako 4. 
Ak by sme sa pokúsili (vo funkcii hospodárného záhrad-

níka) rozmiestiť v sade z predošlého příkladu čím viac 
stromov tak, aby ich vzdialenosti boli aspoň 4 m, při 
žiadnom rozmiestení sa nám nepodaří umiestiť do sadu 
3000 stromov. Mali by sme sa teda pokúsiť dokázať, že sa 
nedá umiestiť do sadu menší počet stromov. Inými slovami, 
v riešení příkladu (ktoré je inak správné) sme použili po-
měrně slabú metodu. 

Keď použijeme vhodnejšiu, móžeme dostať lepší výsle-
dok. Prezradíme ho v nasledujúcom příklade. 

Příklad 18. V sade tvaru obdížnika o rozmeroch 
100 m X 300 m musí byť menej než 2516 stromov, ak 
vzdialenosť Iubovorných dvoch stromov má byť váčšia ako 
4 m. Dokážte! 

Riešenie. Předpokládá jme, že v sade je viac než 2515 
stromov a že vzdialenosť íubovolných dvoch je váčšia než 
4 m. Uvažujme o kruhoch, ktorých středy sú miesta, 
v ktorých sú zasadené stromy a ktorých poloměry sú rovna-
ké a to 2 m. Podia předpokladu žiadne dva z týchto kruhov 
nemajú spoločný bod (lebo vzdialenosť stromov je váčšia 
než 4 m). Všetky kruhy ležia vo vnútri obdížnika o rozme-
roch 2 + 100 + 2 m krát 2 + 300 + 2 m, pretože stromy 
rastů v sade a teda kruh móže siahať von najviac o 2 m. 
Plošný obsah tohoto obdížnika je 31 616 m2. Súčet ploš-
ných obsahov kruhov nemóže byť váčší než 31 616. Teda 
podia (D) aspoň jeden z nich má plošný obsah nie váčší než 

^2516^ < ^>5659 m2. Ale plošné obsahy týchto kruhov 

sú rovnaké a to n.22 < 12,5663. To je spor. 
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Samozrejme, ani výsledok tohoto příkladu nebude naj-
lepší možný. Je dobře možné, že maximálny počet stromov, 
ktoré sa dajú umiestiť pri zachovaní vzdialenosti 4 m do 
sadu, bude menší než 2515. 

Na prvý pohlad je jasné, že do sadu možno umiestiť 
1976 stromov. Umiestime ich tak, že sad rozdelíme na 
štvorce strany 4 m a do ich vrcholov nasadíme stromy. 

Bude ich ^ + x ^ + = 26 x 76 = 1976. 

a~4rr. 

pbvodné umiestenie sikovnejiie umiesŤenie 

Obr. 2. 

Ale pri šikovnejšom umiestení sa ich dá umiestiť viac. 
Dá sa umiestiť dokonca 2219 stromov. Umiestime ich 
podia schémy na obr. 2 (je tam 44 radov po 26 a 43 radov 
po 25 stromov). Teda maximálny počet stromov, ktoré 
možno v sade umiestiť je niekde medzi 2219 a 2515. Každé 
zúženie tohto intervalu znamená nový matematický výsle-
dok. Přitom zvýšenie dolnej hranice předpokládá umieste-
nie váčšieho počtu stromov do sadu a zníženie hornej 
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hranice předpokládá dokaž, že do sadu nemožno umiestiť 
viac než k stromov, pričom k je nějaké číslo menšie než 
2515. 

Úloha 36. Dokážte, že v obdížniku o rozmeroch 197 
krát 94 sa nedá umiestiť 24 000 bodov tak, aby každé dva 
malí vzdialenosť nie menšiu než 1! 

Úloha 37. Dokážte, že v obdížniku o rozmeroch a, b sa 
, , . ., . v 4 (a + e) (b + e) . , , , 

nedá umiestit viac nez — bodov tak, aby 

vzdialenosť lubovolných dvoch bola váčšia než e! 
Úloha 38. Dokážte, že v obdížniku o rozmeroch a, b 

sa nedá umiestiť viac než + (a + 6) J + 1 bodov 

tak, aby vzdialenosť lubovolných dvoch bola váčšia než e! 
Příklad 19. Jama kruhového tvaru priemeru 6 m je 

zakrytá 15 doskami (t. j. nie je vidieť ani kúsok jamy). Do-
kážte, že šířka aspoň jednej došky nie je menšia než 
40 cm! 

Riešenie. Zadanie úlohy možno presnejšie sformulovať 
takto. Daný je kruh priemeru 6 m, ktorý je pokrytý 15 ro-
vinnými pásmi pv p2, . . . , pi5. Nech šířky pásov sú hu 

• • •> í̂s- Máme dokázať, že aspoň pre jedno ht platí 
hi ^ 40 cm. 

Uvažujme o gulovej ploché priemeru 6 m, ktorej střed 
leží v střede daného kruhu. Cez každé dve priamky, ohra-
ničujúce pás pt, vedme roviny kolmé na rovinu daného 
kruhu. Tieto dve roviny vyrežú z gulovej plochy časť (je 
to časť gulovej plochy, ohraničujúcej gulovú vrstvu alebo 
gulový vrchlík). Jej plošný obsah je 6nhi alebo menší. 
Kedže pásy pokrývajú kruh, tieto časti gulovej plochy 
pokrývajú celú gulovú plochu. Plošný obsah celej gulovej 

15 15 
plochy je 36n. Teda 2 6 TI ht ž 36 n} odkial E ht s 6. 

í-i 1-1 
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Teda podia (Dj) aspoň pře jednu zo šírok hi je hi s ^ m = 
= 40 cm. 

tJloha 39. Kruh polomeni R je pokrytý n pásmi. Do-
kážte, šířku aspoň jedného pásu je váčšia alebo rovná 
2R 

n 
V nasledujúcich príkladoch a úlohách nech je v rovině 

daná priamka p a nech je zvolená jedna z polrovín, označme 
ju £>+, na ktoré p delí rovinu o. 

Všimnime si nasledujúcu zaujímavú situáciu. Zvolme 
lubovolne bod X v polrovine Q+ neležiaci na priamke p. 
Na priamke p existuje 5 úsečiek uv u2, u3, M4, U5 bez spo-
ločných bodov s týmito vlastnosťami. Ak zostrojíme kruž-
nice ki so stredom Si v g+ poloměru ui tak, aby ut bola jej 
tětivou, potom bod X leží vo vnútri každej kružnice ki pře 
i = 1 , 2 , 3 , 4, 5. 

Tieto úsečky možno zostrojiť takto (obr. 3). Bodom X 
vedieme rovnoběžku q s priamkou p. Nech q+ je jedna 
z polpriamok na ktoré delí X priamku q. Nech rx je pol-
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priamka s počiatkom X pretínajúca p a zvierajúca s q+ 

uhol 1°, ÍJ je polpriam^a s počiatkom X pretínajúca p 
a zvierajúca s q+ uhol 35°, r2 nech zviera uhol 36°, s2 uhol 
70°, r3 uhol 71°, s3 uhol 105°, r4 uhol 106°, j4 uhol 140°, 
r5 uhol 141°, Í5 uhol 175° (obr. 3). Nech Rx je priesečník 
r1 s p, S1 priesečník s2 s p, R2 priesečník r2 s p, S2 priesečník 
s2 s p, atď. 

Nech ux je úsečka RxSl} u2 úsečka R2S2. atď. Zrejme 
tieto úsečky nemijú spoločný bod. Ak zostrojíme kružnicu 
ki tak, že MÍ je jej tětiva a kružnica kt má poloměr ut, bod X 
leží nutné vo vnútri ki. Obvodový uhol na kružnici ki 
prislúchajúci tetive m má totiž 30°, kdežto trojuholník 
s vrcholom X a základnou m má při vrchole X uhol 
34°. 

Šesť úsečiek s týmito vlastnosťami zostrojiť nie je 
možné. 

Příklad 20. Nech je na priamke p dané 6 úsečiek uy 
až M6 bez spoločných bodov. Nech ki sú také kružnice so 
stredmi v polrovine g+ poloměru že m sú ich tětivy. 
Potom neexistuje bod, ktorý by ležal vo vnútri každej 
z týchto kružnic. 

Riešenie. Nech X je Iubovolný bod roviny Q. Dokáže-
me, že X neleží vnútri každej z daných kružnic, že leží 
mimo niektorej (t. j. aspoň jednej) z daných kružnic. 

Rozoznávajme tri případy. 
a) Bod X leží na p. Bod X leží vo vnútri kružnice kt 

právě vtedy, keď leží na úsečke ut. Keďže tieto úsečky ne-
majú spoločný bod, X bude ležať nanajvýš vo vnútri 
jednej z kružnic ki. 

b) Bod X leží v polrovine q~ opačnej k polrovine g+, ale 
nie na p. Potom X zasa leží vo vnútri nanajvýš jednej 
z daných kružnic, pretože časti příslušných kruhov ležiace 
v o~ nemajú dva a dva spoločný bod. 
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c) Nech X leží v polrovine Q+ a nie na priamke p. Pos-
pájame bod X s koncovými bodmi úsečiek m. Označme 
(it uhol pri vrchole X trojuholníka so základňou w< a s vrcho-
lom X. Kedže všetky základné ležia na jednej priamke, 
súčet uhlov ctí je menší než 180°, t. j. ax + a2 + a3 + 
+ a4 -f a5 + a6 < 180°. Teda podia (D^ aspoň jeden 
z uhlov a« je menší než 30°. Keďže obvodový uhol na 
kružnici ki zostrojený nad tětivou má 30°, bod X padne 
mimo tejto kružnice. 

Poznámka. Riešenie sa lahko upraví i pre případ, že 
niektoré z úsečiek ux až u6 majů spoločný koncový bod, ale 
okrem neho žiaden iný. 

Úloha 40. Nech je na priamke p dané n úsečiek uu u2, 
. . . , Un bzz spoločných bodov (alebo so spoločnými iba 
koncovými bodmi). Nech kt sú kružnice so stredmi ležia-
cimi v Q+ také, že ut sú ich tětivy a k nim prislúchajúce 
středové uhly sú a (všetky rovnaké). Ak n. a ^ 360°, potom 
neexistuje bod ležiaci vo vnútri týchto kružnic. Ak 
n.a < 360°, tak sa úsečky uv ..., un dajú zvoliť tak, že 
existuje bod ležiaci vo vnútri všetkých týchto kružnic. 

Úloha 41. Nech je na priamke p dané n úsečiek uv u2, 
. . , ,un b;z spoločných bodov (alebo so spoločnými iba 
koncovými bodmi). Nech ki sú kružnice so stredmi le-
žiacimi v £>+ také, že m sú ich tětivy a k nim prislúcha-
júce středové uhly sú n . 

n 
Ak S ai ^ 360°, potom neexistuje bod ležiaci vo vnútri 

í=i 
všetkých týchto kružnic. 

n 
Ak E en < 360°, tak sa úsečky ult . . . , un dajú zvoliť 

i - i 
tak, že existuje bod ležiaci vo vnútri všetkých týchto 
kružnic. 
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4. kapitola 

KÓDOVANIE 

Příklad 21. Dané sú dve cifry (napr. 1, 2). Kolko sa 
dá nájsť trojciferných čísel zostavených iba z týchto cifier 
takých, aby sa lubovofné dve čísla lišili aspoň na dvoch 
miestach ? 

Riešenie. Skúšaním sa nám podaří nájsť napr. tieto 
štyri čísli, ktoré majů uvedenú vlastnost' 111, 122,212,221. 
Každé dve sa líšia aspoň na dvoch miestach (napr. prvé 
dve na druhom a treťom mieste.) Iná štvorica je 222, 211, 
121, 112. I při viacerých pokusoch sa nám nepodaří nájsť 
páť takých čísel. Pokúsime sa dokázat', že skutočne viac 
ako 4 čísla s danými vlastnosťmi nájsť nemožno. 

Dvojciferné čísla, ktoré sa líšia na dvoch miestach možno 
zrejme nájsť iba dve, napr. 11 a 22 alebo 12 a 21. Pred-
pokladajme, že trojciferných by bolo viac ako 4. Rozdelíme 
ich na dve skupiny. Do prvej dáme tie, ktoré začínajú 
cifrou 1, do druhej tie, ktoré začínajú cifrou 2. Potom 
podh (D) aspoň v jednej z fý:hto skupin musia byť aspoň 
3 čísla. Tieto tri čísla sa medzi sebou líšia aspoň na dvoch 
miestach. Ale cifru na prvom mieste míjú rovnakú. Ak 
túto prvú cifru vynecháme, dostaneme 3 dvojciferné čísla, 
ktoré sa líšia medzi sebou na dvoch miestach. To však 
nie je možné. Teda existujú najviac 4 trojciferné čísla, 
ktoré sa vš^tky medzi sebou líšia aspoň na dvoch miestach. 

Úloha 42. Ukážte, že možno nájsť 8 štvorciferných (16 
páťcifernýrh) čísel zostavených z dvoch cifier tak, že Iubo-
vorné dve čísla sa líšia aspoň na dvoch miestach a viac než 
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8 štvorcifemých (16 páťciferných) čísel s touto vlastnosťou 
neexistuje. 

tíloha 43. Ukážte, že nemožno nájsť viac ako 2 n _ 1 

n-ciferných čísel zostavených z dvoch cifier tak, aby lubo-
vorné dve z nich sa lišili aspoň na dvoch miestach. Pokúste 
sa dať návod na zostrojenie 2 n _ 1 «-cifemých čísel s touto 
vlastnosťou (indukciou podia n). 

Uvedený příklad a úlohy majů zaujímavý význam. Dané 
dve cifry móžu znamenať dva signály, ktoré používá ně-
jaké zariadenie na prenášanie zpráv (telegraf a pod.). Napr. 
1 značí impulz + a 2 impulz —, alebo 1 značí bodku 
a 2 čiarku Morseovej abecedy a pod. 

Při prenášaní zpráv musíme pí směná našej obyčajnej 
abecedy zakódovat' (označit') pomocou signálov, ktoré naše 
zariadenie používá, napr. a bude dané ako 11111, b ako 
11112, c ako 11221 atď. Přitom, ako každé technické za-
riadenie, i náš telegraf sa móže dopustit' při svojej činnosti 
chyby. Mohlo by sa stať napr., že namiesto poslednej 
cifry 1 v označení písmena a přijmeme cifru 2 a rozlúštime 
namiesto písmena a písmeno b. Ak by sme zakódovali 
písmená tak, že čísla označujúce jednotlivé pismená sa 
budú líšiť aspoň na dvoch miestach, potom vždy možno 
zbidať, ak náš telegraf urobí jednu chybu. Ak by sme za-
kódovali písmená tak, že sa čísla označujúce písmená budú 
líšiť aspoň na troch miestach, potom dokonca móžeme 
jednu chybu i opraviť. Ak telegraf vyšle jednu cifru chybné, 
kódové označenie iba jedného písmena sa bude od vysla-
ného čísla líšiť iba na jednom mieste. 

Při týchto úlohách je potřebné zistiť, kolko písmen mož-
no zakódovať pomocou čísel (kódových označení) n-cifer-
ných, kde n je dané prirodzené číslo. Ide o to, či budeme 
mtť k dispozícii dosť čísel na zakódovanie. Nemusíme totiž 
kódovať (a teda prenášiť) ibi písmená abecedy, ale aj iné 
údaje alebo znaky, ktorých móže byť lubovolný počet. 
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Ďalej Je zřejmé, že je nepodstatné či používáme cifry 
a čísla, alebo iné znaky a ich skupiny. 

Příklad 22. Třeba dokázať, že nemožno zostrojiť viac 
než 4 páťciferné čísla (stále iba pomocou dvoch cifier 1, 2) 
tak, aby sa lubovolné dve z nich lišili aspoň na troch 
miestach. Přitom štyri také čísla je možné zostrojiť, napr. 
11111, 22211, 11222, 22122. 

Riešenie. Predpokladajme, že máme aspoň 5 páťci-
femých čísel, ktoré sa líšia medzi sebou aspoň na troch 
miestach. Rozdelíme ich na dve skupiny. V prvej skupině 
budú tie, ktoré začínajú cifrou 1, v druhej tie, ktoré začí-
najú cifrou 2. Podra (D) aspoň v jednej z týchto skupin 
budú aspoň tri čísla. Ak vynecháme z nich prvú cifru (tá 
je pře všetky rovnaká), dostaneme 3 štvorciferné čísla, 
ktoré sa líšia aspoň na troch miestach. Ukážeme, že takáto 
situácia nie je možná. Nech A, B, C sú tieto tri čísla. 
Čísla A a B sa líšia aspoň na troch miestach a čísla B, C 
tiež aspoň na troch miestach. Odtial vyplývá, že existujú 
aspoň dve miesta, na ktorých sa zároveň líši A od B a B 
od C. Keďže sú k dispozícii iba dve cifry, toto nie je 
možné. 

Úloha 44. Dokážte, že nemožno zostrojiť viac než 8 
šesťciferných čísel pomocou cifier 1, 2 tak, aby sa ¡libo-
volné dve z nich lišili aspoň na troch miestach. Zostrojte 
8 taVých čísel! 

Úloha 45. Dokážte, že nemožno zostrojiť viac než 16 
sedemciferných čísel pomocou dvoch cifier tak, aby sa 
Tubovorné dve z nich lišili aspoň na troch miestach! 

Příklad 23. Třeba dokázať, že nemožno nájsť viac než 
28 osemciferných čísel zostavených z cifier 1, 2 tak, aby sa 
každé dve lišili aspoň na troch miestach. 

Riešenie. Predpokladajme, že takých čísel máme 29, 
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nech sú to Av A2, ..A29, A2g. Nech Gi je množina, 
ktorá pozostáva z čísla Ai a všetkých tých osemciferných 
čísel, ktoré sa líšia od Ai právě na jednom mieste pře 
i = 1, 2, . . . , 29. Ziadne dve rózne Gi nemajú spoločné 
prvky, pretože At sa od Aj (z # / ) líši aspoň na troch 
miestach. Všetkých osemciferných čísel je 28 = 256, teda 

256 
podra (D3) aspoň jedna množina Gt má'najviac < 9 

prvkov. Ale zrejme všetky množiny majů po 9 prvkov. 
Úloha 46. Podia vzoru příkladu 22. znovu riešte úlohu 

45! 

Úloha 47. Dokážte, že nemožno nájsť viac než 

w-ciferných čísel zostavených z dvoch cifier tak, abyfsa 
každé dve lišili aspoň na troch miestach! 

Příklad 24. Dokážte, že nemožno nájsť viac než 4 šesť-
ciferné čísla zostavené z dvoch cifier tak, aby sa rubovolné 
dve lišili aspoň na štyroch miestach! 

Riešenie. Predpokladajme, že máme aspoň 5 šesťcifer-
ných čísel, ktoré sa líšia medzi sebou aspoň na štyroch 
miestach. Rozdelíme ich na dve skupiny. V prvej skupině 
budú tie, ktoré začínajú cifrou 1, v druhej tie, ktoré za-
čínajú cifrou 2. Podia (D) aspoň v jednej z týchto skupin 
budú aspoň tri čísla. Ak vynecháme z nich prvú cifru 
(tá je pře všetky tri rovnaká), dostaneme tri páťciferné 
čísla, ktoré sa líšia aspoň na štyroch miestach. Ukážeme, 
že táto situácia nie je možná. Nech A, B, C sú tieto páť-
ciferné čísla. Čísla A a B sa líšia aspoň na štyroch miestach 
a čísla B a C tiež aspoň na štyroch miestach. Odtial vyplývá, 
že existujú aspoň tri miesta, na ktorých sa zároveň A líši 
od B a zároveň B od C. Ale A od C sa tiež líši aspoň na 
štyroch miestach. Preto musí byť aspoň jedno miesto, na 
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ktorom sa aj A líši od B, aj B od C a zároveň A od C. 
Kedže sú k dispozícii iba dve cifry, toto nie je možné. 

Poznámka. Všimnite si, že riešenie přikladu 24 sa temer 
zhoduje s riešenim příkladu 22. 

Úloha 48. Dokážte, že nemožno zostrojiť viac než 8 
sedemciferných čísel z dvoch cifier tak, aby sa každé dve 
lišili aspoň na štyroch miestach! Zostrojte 8 takých čísel! 

Úloha 49. Dokážte, že nemožno zostrojiť viac než 16 
osemcifemých čísel z dvoch cifier tak, aby sa každé dve 
lišili aspoň na štyroch miestach! Zostrojte 16 takých 
čišel! 

Úloha 50. Dokážte, že nemožno zostrojiť viac než 2n~l 

n-ciferných čísel z dvoch cifier tak, aby sa každé dve lišili 
aspoň na štyroch miestach! 

Příklad 25. Pomocou štyroch cifier (napr. 1, 2, 3, 4) 
nemožno zostrojiť viac než 16 takých trojcifemých čísel, 
aby sa každé dve lišili aspoň na dvoch miestach. Třeba 
dokázať toto tvrdenie a ukázať, že 16 takých čísel sa dá 
zostrojiť. 

Riešenie. Připusťme, že máme viac než 16 takých čísel. 
Rozdelíme ich na 4 skupiny podra toho, aká je prvá cifra. 
Podra (D) aspoň v jednej z nich bude najmenej 5 čísel. Ak 
z nich vyškrtneme prvú cifru, dostaneme 5 (alebo viac) 
dvojciferných čísel, ktoré sa líšia na obidvoch miestach. 
Tieto dvojciferné čísla zasa rozdelíme do 4 skupin podra 
prvej cifry. Keďže ich je viac než 4, v jednej skupině by 
museli byť aspoň dve. Teda dve z našich čísel by mali 
rovnakú prvú cifru. To je spor s tým, že čísla sa líšia na 
oboch miestach. 

Nasledujúce čísla sú trojciferné, každé dve sa líšia najme-
nej na dvoch miestach a sú zostrojené pomocou štyroch 
cifier: 111, 122, 133, 144, 221, 232, 243, 214, 331, 342, 
313, 324, 441, 412, 423, 434. 
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V nasledujúcich úlohách budeme stále hovořit' o cifrách 
a w-ciferných číslach i ked cifier bude viac než 10. Móžeme 
mať přitom na mysli iné než dekadické (desatinné) číselné 
sústavy. Ešte lepšia možnost' je vidieť pod ciframi signály 
(znaky) a pod n-cifemými číslami «-členné skupiny signá-
lov (zakódované zprávy) a pod. 

Úloha 51. Pomocou k cifier nemožno zostrojiť viac než 
k2 trojciferných čísel tak, aby sa Iubovorné dve z nich lišili 
aspoň na dvoch miestach. Dokážte! 

Udáme teraz návod na zostrojenie k2 trojciferných čísiel 
pomocou k cifier, z ktorých Iubovorné dve sa líšia najmenej 
na dvoch miestach. 

"k-1 

o o 
o 

Obr. 4 

Nech cifry sú cv c2, ..., c* (žiadna z cifier nie je nula, 
připadne čísla tvaru 001, 023 a pod. považujeme tiež za 
trojcifemé). Napišme si cifry clf c2, . . . , c* do kruhu (obr. 
4). Zostrojíme k skupin trojciferných čísel tak, že v každej 
skupině bude k čísel. Prvá skupina bude mať na prvom 
mieste cifru cv Budú ju tvoriť čísla CjC^, c^c^ c^c^ 

cxckck. Druhá skupina bude mať na prvom mieste 
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cifru c2• Budú ju tvoriť čísla c2c2cv c2czc2, c2c4c3, c2csc4, 
. . . , c2CkCk-i, c^c^k. Túto skupinu zostrojíme z prvej tak, 
že v z-tom čísle prvej skupiny prvú cifru, (t. j. cx) nahradíme 
cifrou c2, druhů cifru nahradíme nasledujúcou cifrou 
podia poradia na obr. 4, t. j. ak i < k, miesto ct píšeme 
CÍ+1, ak i = k, miesto Ck píšeme c1. Cifry na třetích miestach 
nemeníme. Tretiu skupinu zostrojíme z druhej podobné 
ako druhů sme zostrojili z prvej. Na prvom mieste bude 
cifra c3. Cifru na druhom mieste zase nahradíme cifrou 
nasledujúcou v poradí podia obr. 4. Cifry na třetích mies-
tach nemeníme. Teda tretiu skupinu budú tvoriť čísla 
c3c3cv c3c4c2, c3c5c3, ..., c3CkCk-2, c3clck-x, c3c2ck. Podobné 
zostrojíme ďalšie skupiny čísel začínajúce postupné ciframi 
c4, c5, atď. až Ck. Napr. skupina k-ta bude pozostávať 
z cifier CkCkCv CkCiC2, CkC2c3, . . . , CkCk-tCk-i, CkCk-iCk. 

Overenie, že každé dve z takto zostrojených k2 troj-
ciferných čísel sa líšia aspoň na dvoch miestach, přene-
cháváme čitatelovi. Ak by vám to robilo potiaže, je užitočné 
zostrojiť si ich pre k = 5,6 připadne viac. 

Úloha 52. Pomocou k cifier nemožno zostrojiť viac než 
k3 štvorciferných čísel tak, aby sa lubovolné dve z nich 
lišili aspoň na dvoch miestach. Dokážte! 

Úloha 53. Pomocou k cifier nemožno zostrojiť viac než 
¿n-i «-ciferných čísel tak, aby sa lubovolné dve z nich 
lišili aspoň na dvoch miestach. Dokážte! 

Příklad 26. Třeba dokázať, že nemožno pomocou k ci-
ka 

fier zostrojiť viac než ^ ^ páťciferných čísel, z ktorej 

každé dve by sa lišili aspoň na troch miestach. 
Riešenie. Připusťme, že máme m páťciferných čísel, 

z ktorých každé dve sa líšia aspoň na troch miestach, ďalej 
ks 

že používáme iba k cifier a že m > ^ Nech sú to 
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čísla A1} A . . . , Am. Uvažujme o množinách Gv G2, 
..., Gm, pričom každá množina Gi pozostáva z čísla At 
a zo všeď ých páťcifemých čísel, ktoré sa od Ai líšia právě 
na jednom mieste. Žiadne dve z týchto množin nemajú 
spoločné body (lebo čísla At od A] sa líšia aspoň na troch 
miestach). Nech U je počet prvkov množiny Gt. Teda 
m 
E h < ks, pretože k5 je počet všetkých páťcifemých čísel. 

1=1 
k2 k5 

Teda podia (D,) aspoň pre jedno i je U < — < = 

= 5k - 4. (5k - 4) 
To však nie je možné, pretože každá množina Gt má právě 

5k — 4 členov. 
Úloha 54. Dokážte, že pomocou k cifier nemožno 

zostrojiť viac než ^ ^ ^yj «-cifemých čísel, 

z ktorých každé dve sa líšia aspoň na troch miestach! 
Úloha 55. Dokážte, že pomocou k cifier nemožno 

kn 

zostrojiť viac než a) , 

kn 

b) 
(1 + n(k - 1) + (2) (.k - l)2 + (3) (k - O3) 

n-ciferných čísel, z ktorých lubovolné dve by sa lišili 
a) aspoň na piatich, b) aspoň na siedmich miestach! 

Zřejmé odhad získaný v úlohe 54 nie je najlepší. V příkla-
de 22 a úlohe 44 sme získali lepšie odhady. Ovšem, aj 
metody boli zložitejšie. 

Všeobecná úloha: kolko je maximálně n-ciferných čísiel 
napísaných pomocou k cifier s vlastnosťou, že každé dve sa 
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líšia aspoň na h miestach, je pře prax (konkrétné pře kyber-
netiku) velmi dóležitá. Dodnes nie je úplné vyriešená, 
i keďriešenie pře niektoré konkrétné (a malé) hodnoty para-
metrov k, n, h je známe (niektoré sme vyriešili v pred-
chádzajúcej kapitole). 
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5. kapitola 

E Š T E KOMBINATORICKÁ TÉMA 

Dirichletov princip formulovaný v tvare (D) je svojou pova-
hou kombinatorický, preto možno očakávať, že bude vhod-
ný na riešenie úloh kombinatorického charakteru. Úlohy 
takého typu boli uvedené v predchádzajúcej kapitole. Ako 
ukážeme v nasledujúcich úlohách, (D) vedie k dělu v mno-
hých prípadoch, keď nemáme k dispozícii prakticky žiadne 
iné prostriedky. 

Příklad 27. Je dané 6 priamok v priestore, z ktorých 
žiadne dve nie sú rovnoběžné a žiadne tri neprechádzajú 
tým istým bodom. Potom sa dajú nájsť tri z nich tak, že 
ležia v jednej rovině, alebo tri, ktoré sú navzájom mimo-
bežné. 

Riešenie. Označme dané priamky px, p2, p3, />4, p5, p6. 
Priamky pv p2, p3, p4, p6 rozdelíme do dvoch skupin. Do 
prvej dáme tie, ktoré sa s priamkou pe pretinajú a do 
druhej tie, ktoré sú s p6 mimobežné. Podia (D) aspoň jedna 
z týchto skupin obsahuje tri priamky. Nech sú to napr. 
i>i> Pi> P3 ( n a ich označení zrejme nezáleží). 

Povedzme, že sú to priamky prvej skupiny. Teda p6 
přetíná plt p2, p3. Ak sa žiadne dve z priamok ply p2, p3 ne-
pretínajú máme tri priamky, ktoré sú navzájom mimo-
bežné. Ak sa dve z nich pretinajú a přidáme k nim priamku 
p6, máme tri priamky, ktoré ležia v jednej rovině (nepre-
tínajú sa v jednom bode, to je podmienka úlohy). 

Ak sú p1} p2, p3 z druhej skupiny, uvažujeme podobné. 

39 



Teraz je priamka p9 mimobežná s každou z nich. Ak sa 
každé dve z priamok p1} />2, p3 přetínájú, máme tri priamky 
v jednej rovině. Ak sa dve z nich nepretínajú, přidáme 
k nim p6 a máme tri priamky navzájom mimobežné. 

Úloha 56. V šachovom turnaji, ktorého sa zúčastňuje 
6 hráčov, sa vždy nájde trojica hráčov, ktorí medzi sebou 
hráli už každý s každým, alebo trojica, v ktorej žiaden so 
žiadnym ešte nehrál. Dokážte! 

Úloha 57. Máme v rovině 6 bodov, z ktorých žiadne tri 
neležia na priamke, pospájaných navzájom modrými alebo 
červenými úsečkami (t. j. niektoré dva sú spojené modrou, 
niektoré dva červenou úsečkou, ale každé dva sú spojené). 
Dokážte, že potom na tejto schéme sa dá nájsť aspoň jeden 
jednofarebný trojuholník, ktorého vrcholy sú niektoré 
z daných bodov. 

Příklad 28. 17 vedcov si navzájom dopisuje (každý 
s každým), přitom v celej korešpondencii sa vyskytujú iba 
tri témy. Dokážte, že existujú traja z nich, ktorí si medzi 
sebou dopisujú na rovnakú tému. 

Riešenie. Vyberme jedného z vedcov (lubovorne) 
a ostatných 16 rozdelme do troch skupin tak, že do každej 
skupiny dáme všetkých tých, ktorí si s týmto zvoleným 
píšu na tú istú tému. Podia (D) aspoň v jednej skupině sa 
nájdu šiesti. Teda máme šesť vedcov, ktorí si so zvoleným 
píšu na rovnakú tému. Nazvime ju témou č. 1. Ak si spo-
medzi týchto šiestich dvaja píšu na tému č. 1, přidáme 
k nim zvoleného a máme troch, ktorí si píšu na tému č. 1. 
V op.čnom případe máme 6 vedcov, ktorí si medzi sebou 
píšu iba na tému č. 2 a tému č. 3. 

Medzi týmito šiestimi si zvolme jedného. Zbývajúcich 
piatich rozdelíme na dve skupiny. Skupinu tých, čo si 
so zvoleným píšu na tému č. 2 a skupinu tých, čo si píšu na 
tému č. 3. Podia (D) aspoň v jednej skupině sa nájdu traja. 
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Tito traja si bud! všetci píšu na rovnakú tému a riešenie je 
hotové, alebo sa nájdu dvaja, ktorí si píšu na tému rovnakú 
so zvoleným. Potom máme znovu troch, ktorí si píšu na 
rovnakú tému. 

Úloha 58. V priestore je dané 17 priamok. Dokážte, že 
sa medzi nimi dajú nájsť tri, ktoré sú buď všetky navzájom 
rovnoběžné, alebo všetky navzájom róznobežné, alebo na-
vzájom mimobežné. 

Úloha 59. V škole, ktorá má 17 tried, sa hrá futbalový 
medzitriedny turnaj systémom „každý s každým". Turnaj 
probieha počas troch dní. Dokážte, že existujú tri triedy, 
ktoré všetky zápasy medzi sebou zohrajú v ten istý deň. 

Úloha 60. V rovině je dané 17 bodov navzájom pospá-
janých úsečkami farby čiernej, červenej a modrej, přitom 
žiadne tri neležia na jednej priamke a každé dva sú spojené. 
Dokážte, že v tejto schéme existuje jednofarebný troj-
uholník s vrcholmi vybranými spomedzi daných 17 bodov. 

Skúsený riešitel si určité všimol, že příklad 27 a úlohy 
56 a 57 sa riešia rovnako. Podobné příklad 28 a úlohy 58 
až 60 znamenajú len rózne modifikácie rovnakého problé-
mu. Takéto úlohy možeme riešiť spoločne, t. j. všetky 
naraz, ak sa postavíme na dosť všeobecné, abstraktné sta-
novisko. V matematike sa často postupuje tak, že úlohy, 
ktoré majů v jadre spoločnú myšlienku, sa snažia mate-
matici riešiť naraz. Na to zavádzajú nové abstraktné pojmy. 
Úlohy, o ktoiých sme hovořili, možno úspěšně riešiť 
pomocou pojmu graf. 

Pod grafom rozumieme nejakú množinu, ktorej prvky 
voláme vrcholmi grafu, pričom niektoré dvojice vrcholov 
grafu sú v istom vzťahu (relácii). Napr. taký graf može 
predstavovať istý okamžik šachového turnaja. Jeho vrcholy 
budú hráči (účastníci turnaja). Niektoré dvojice hráčov už 
zápas odohrali. Vzťah, o ktorý tu pojde spočívá v tom, že 
dvaja hráči odohrali zápas. Ak dvojica vrcholov grafu je 
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v danom vztahu, hovoříme, že tie dva vrcholy sú spojené 
hranou (v tom grafe). 

Graf obyčajne znázorňujeme tak, že vrcholy grafu sú 
body v rovině (vyznačené napr. krúžkom) a ak sú dané dva 
vrcholy spojené hranou (sú vo vztahu), tak příslušné body 
jednoducho spojíme úsečkami alebo inými čiarami. Přitom 
sa móže stať, že tieto čiary sa pretínajú aj v iných bodoch, 
než sú vrcholy grafu. Preto třeba pri náčrtoch vrcholy 

Obr. 5. 

starostlivo vyznačit'. Na obr. 5 je znázorněný graf šachové-
ho turnaj a v istom okamžiku. Z neho možno vyčítat", že 
hráč č. 2 a hráč č. 5 už zohrali medzi sebou zápas, kdežto 
hráči č. 4 a č. 6 nie. 

Úplným grafom nazývame taký graf, ktorého každé dva 
vrcholy sú spojené hranou. Taký je napr. graf šachového 
turnaja po jeho skončení. Všetky zápasy sú už odohrané, 
teda každá dvojica hráčov už svoj zápas odohrala, t. j. 
každé dva body na príslušnom grafe sú spojené hranou. 

V ďalšom sa budeme zaoberať váčšinou úplnými grafmi. 
Aby sme zachytili na úplnom grafe také- případy, ako je 
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šachový turnaj, ktorý ešte neskončil (t. j. nie všetky zápasy 
sú odohrané), budeme používat' dva druhy vzťahov. Dva 
vrcholy grafu (hráči) budú v prvom vzťahu, ak už odohrali 
zápas a budú v druhom vzťahu, ak ešte zápas neodohrali. 
Při znázorňovaní takých grafov používáme viac farieb. 
Napr. ak dvaja hráči zápas odohrali, tak vrcholy ktoré 
ich predstavujú spojíme modrou, ak neodohrali, spojíme 
ich červenou čiarou. Vo všeobecnosti hovoříme, že graf je 
sfarbený dvomi farbami (je dvojfarebný), ak v ňom vystu-
pujú dva rózne vztahy. 

Uveďme niekolko príkladov. Dvojfarebný graf móže byť 
napr. nějaká množina bodov v rovině pospájaných úsečka-
mi dvoch farieb. V tomto příklade dva vztahy sú naozaj 
dané dvomi farbími. Alebo graf znázorňujúci příklad 27. 
Jeho vrcholy budú představovat' dané priamky. Dva vrcholy 
budú spojené červenou úsečkou, ak dané priamky sú 
róznobežné a budú spojené modrou úsečkou, ak dané 
priamky sú mimobežné. 

Je samozřejmé, že sa nemusíme obmedziť iba na dva 
vztahy (dve farby). Budeme sa zaoberať i viacfarebnými 
grafmi. Napr. graf znázorňujúci příklad 28. je trojfarebný. 
Vrcholmi budú naši vědci. Dva vrcholy spojíme čiernou 
farbou, ak si příslušní vědci dopisujú na prvú tému, spo-
jíme červenou, ak si píšu na druhů tému a spojíme modrou, 
ak si píšu na tretiu tému. Podobné úlohu 58. možno zná-
zornit' trojfarebným grafom. Vrcholy budú dané priamky. 
Dva vrcholy spojíme napr. čiernou hranou, ak sú priamky 
rovnoběžné, červenou, ak sú róznobežné a modrou, ak 
sú mimobežné. 

Je už iste jasné, ako vyzerajú viacfarebné grafy. Ak bude-
me hovořit' o k-farebnom grafe, budeme mať na mysli graf, 
v ktorom nevystupuje viac ako k farieb. 

V ďilšom slovom n-graf budeme označovať úplný graf, 
ktorý má n vrcholov. 

43 



Aby sme mohli sformulovať naše úlohy, ešte povieme, 
čo je to podgraf. Graf H nazývame podgrafom grafu G, 
ak každý vrchol grafu H je aj vrcholom grafu G a ak dva 
vrcholy grafu H sú spojené hranou právě vtedy, keď sú 
spojené hranou v grafe G a ak sú spojené, tak hranou rovna-
kej farby ako v G. Napr. H1 na obr. 6 je podgraf grafu G 
(příslušné rovnako označené vrcholy považujme za totožné, 
kreslíme ich znovu len kv61i prehladnosti), ale H2 nie je 
podgraf grafu G. 

Teraz je zřejmé, že příklad 27. a úlohy 56. a 57. možno 
sformulovať takto: 

V každom dvojfarebnom 6-grafe existuje aspoň jeden 
jednofarebný úplný podgraf s tromi vrcholmi (krátko: 
existuje jednofarebný trojuholník). 

Podobné abstraktná formulácia příkladu 28. a úloh 58.— 
60. móže znieť: 

V každom trojfarebnom 17-grafe existuje aspoň jeden 
jednofarebný trojuholník. 

Úloha 61. Dokážte tieto dve tvrdenia! 

Příklad 29. Dokážte, že v každom štvorfarebnom 66-
grafe existuje jednofarebný trojuholník! 
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Riešenie. Vyberieme si jeden vrchol 66-grafu lubo-
volne. Zbývajúcich 65 vrcholov rozdelime do štyroch sku-
pin podra farby hrany spájajúcej tieto vrcholy s vybraným. 
V aspoň jednej skupině musí podia (D) byť 17 vrcholov. 
Ak sú dva z nich medzi sebou spojené hranou tej istej 
farby ako s vybraným vrcholom, potom máme jedno-
farebný trojuholník. V opačnom případe máme 17 vrcho-
lov pospájaných medzi sebou iba tromi farbami. Podia 
úlohy 61. medzi nimi existujú tri pospájané iba jednou 
farbou. 

Úloha 62. Dokážte, že v každom pátfarebnom 327-grafe 
existuje jednofarebný trojuholník! 

Úloha 63. Ak v každom ¿-farebnom m-grafe existuje 
jednofarebný trojuholník, potom v každom (k + l)-fareb-
nom {km + m — k + l)-grafe existuje jednofarebný troj-
uholník. Dokážte! 

Je jasné, že v každom dvojfarebnom 7-grafe, 8-grafe 
atď. existuje jednofarebný trijuholník (z čoho to vyplývá ?). 
Móžeme očakávať, že ich bude viac ako v 6-grafe. Nevieme 
však, ani kolko jednofarebných troiuholníkov minimálně 
musí byť v dvojfarebnom 6-grafe. Túto otázku rozriešime 
pomocou nasledujúceho příkladu. 

Příklad 30. Ak v úplnom grafe sfarbenom dvomi far-
bami existuje takých 5 vrcholov A, B, C, D, E, že jedno-
farebný trojuholník s vrcholmi A, B, C je inej farby ako 
hrana spájajúca body D, E, potom v tomto grafe okrem 
trojuholníka A, B, C existuje ešte aspoň jeden iný jedno-
farebný trojuholník. Dokážte! 

Riešenie. Nech je troiuholník ABC biely a hrana DE 
čierna. Z hrán DA, DB, DC musia byť podra (d) aspoň dve 
jednej farby. Keby boli biele, už máme druhý jedno-
farebný troiuholník (biely). Podobné, buď dve z hrán 
EA, EB, EC sú čierne, alebo máme biely trojuholník. 
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Uvažujme případ, keď nemáme (další) biely trojuholník. 
Potom z uvedených hrán sú aspoň štyri čieme. Z jedného 
z vrcholov A, B, C podra (d) vychádzajú teda aspoň dve 
čierne. Tieto dve čierne hrany spolu s hranou DE dajú 
čierny trojuholník. 

Příklad 31. V dvojfarebnom 6-grafe existujú aspoň dva 
jednofarebné trojuholníky. 

Riešenie. Vieme, že v dvojfarebnom 6-grafe existuje 
aspoň jeden jednofarebný trojuholník. Označme vrcholy 
6-grafu A, B, C, D, E, F tak, že A, B, C sú vrcholy tohoto 
jednofarebného trojuholníka (povedzme bieleho). Ak sú 
všetky hrany spájajúce body D, E, F tiež biele, máme dva 
biele trojuholníky v našom 6-grafe. Ak je niektorá z nich 
čierna, podra příkladu 30 existuje v našom grafe ešte další 
jednofarebný trojuholník. 

tJloha 64. Zostrojte dvojfarebný 6-graf, v ktorom ne-
existujú tri jednofarebné trojuholníky. 

Příklad 32. V každom dvojfarebnom 7-grafe existujú 
aspoň 4 jednofarebné trojuholníky. 

Riešenie. V 7-grafe existujú aspoň dva (pozři příklad 
31) jednofarebné trojuholníky. Vynecháme z daného 
7-grafu vrchol jedného jednofarebného trojuholníka, i všet-
ky hrany, ktoré vychádzajú z tohto vrchola. Dostaneme 
6-graf, v ktorom podra příkladu 31 existujú aspoň dva 
jednofarebné trojuholníky. Keď teraz vrátíme vynechaný 
vrchol a hrany, zistíme, že v našom 7-grafe sú aspoň tri 
jednofarebné trojuholníky. Aspoň dva z týchto musia mať 
spoločný vrchol, pretože tri trojuholníky majů 9 vrcholov 
a na grafe máme k dispozícii iba 7 bodov. Teraz vynechaj-
me tento vrchol a všetky hrany z neho idúce. Tým dosta-
neme 6-graf, ktorý má aspoň o dva jednofarebné troj-
uholníky menej ako daný 7-graf. Podra příkladu 31 v ňom 
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existujú aspoň dva jednofarebné trojuholníky, teda v pó-
vodnom 7-grafe sú aspoň štyri. 

Úloha 65. Dokážte, že v dvojfarebnom a) 8-grafe; b) 
9-grafe; c) 10-grafe; d) 11-grafe existuje aspoň a) 7 ; b) 11; 
c) 16; d) 22 jednofarebných trojuholnikov. 

Přiklad 33. Třeba dokázať, že v dvojfarebnom «-grafe 
1 19 

(n ^ 10) existuje aspoň «2 — ^ n + 61 jednofareb-
ných trojuholnikov. 

Riešenie. Tvrdenie dokážeme indukciou podia «. 
1) Pře « = 10 tvrdenie vyplývá z úlohy 65. 
2) Předpokládá jme, že v dvojfarebnom «-grafe je aspoň 

1 19 
2 » 2 — « + 61 jednofarebných trojuholnikov. Doká-
žeme, že v dvojfarebnom (w + l)-grafe je najmenej 
1 19 
-z (n + l)2 — (k + 1) + 61 jednofarebných trojuhol-
Z ¿t 
nikov. 

Vezmime Iubovolný dvojfarebný (« + l)-graf. Je v ňom 
aspoň tolko jednofarebných trojuholnikov, ako v dvoj-
farebnom «-grafe, teda podia indukčného předpokladu 
aspoň y «2 — y « + 61. Tieto majů dohromady 3 ^ w2— 

19 \ r 3 / 1 
—— n + 61J vrcholov. Teda aspoň ^ q r y ' \2n* ~ 

1 9 - A I 

- -jn + 61 

ný vrchol. Pre 

)] trojuholnikov musí mať podia (D) spoloč-

caždé n je 
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odkial postupné 
raa - 39n + 386 > 0, 

a teda 

To znamená, že aspoň n-9 trojuholníkov má spoločný 
vrchol. Ked tento vynecháme, dostaneme n-graf, ktorý má 
o w-9 trojuholníkov menej, než náš (n + l)-graf. Teda 
podfa indukčného předpokladu v (n + l)-grafe je aspoň 

jednofarebných trojuholníkov. 

Příklad 34. Třeba dokázat', že v dvojfarebnom 24-grafe 
existuje aspoň jeden jednofarebný 4-graf. 
!• Riešenie. Zvolíme si vrchol A na 24-grafe. Podia (D) 
existuje aspoň 12 vrcholov, ktoré sú s vrcholom A spojené 
hranami rovnakej farby, nech je to napr. biela farba. Zpo-
medzi týchto 12 vrcholov zvolme vrchol B. Tento je spo-
jený podia (D) aspoň so šiestimi zpomedzi týchto dvanástich 
hranami rovnakej farby. Táto može byť a) biela, b) čierna. 

Ak týchto 6 vrcholov je spojené navzájom hranami rovna-
kej farby, je příklad doriešený, lebo tam existuje dokonca 
jednofarebrý 6-graf. Predpokladajme, že týchto 6 vrcholov 
nie je pospájaných hranami rovnakej farby. 

«2 - y n + 61 + (n - 9) = 

i (« + 1)» - ^ (« + 1) + 61 
1 
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Ak nastane prípada), sme hotoví, pretože 4-graf s vrchol-
mi A, B, ku ktoiým sú přidané dva vrcholy zpomedzi 
posledných 6-tich spojené bielou hranou, je jednofarebný 
a to biely. 

Ak nastane případ b), použijeme skutočnosť, že v dvojfa-
rebnom 6-grafe existuje jednofarebný trojuholník. Medzi 
poslednými 6-timi vrcholmi existujú 3 pospájané jednou 
farbou. Ak je biela, přidáme k nim vrchol A a dostaneme 
biely 4-graf. Ak je čierna, přidáme k nim vrchol B a dosta-
neme čierny 4-graf. 

Úloha 66. Dokážte, že v dvojfarebnom 24-grafe existu-
jú aspoň dva jednofarebné 4-grafy! 

Úloha 67. Dokážte, že v dvojfarebnom 192-grafe existu-
je aspoň jeden jednofarebný 5-graf! 

Poznámka. Je známe, že v dvojfarebnom 18-grafe 
určité existuje jednofarebný 4-graf, ale v 17-grafe už ne-
musí existovat!. Teda najmenšie číslo n také, že v dvoj-
farebnom ra-grafe už určité existuje jednofarebný 4-graf je 
18. Najmenšie číslo n také, aby v dvojfarebnom «-grafe 
určité existoval jednofarebný 5-graf dodnes nie je známe. 
Vieme, že je menšie ako 70. 

Podobné nie je známe, či tvrdenie příkladu 29 možno 
dokázať pře 65-graf, t. j. či v každom štvorfarebnom 65-
grafe existuje jednofarebný trojuholník. 
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6. kapitola 

NÁVOD NA R I E Š E N I E N I E K T O R Ý C H 
ÚLOH 

V tejto časti uvedieme riešenie niektorých úloh. Podrob-
nosť riešenia závisí od toho, ako sa nám zdá daná úloha 
obtiažna. V niektorých prípadoch uvedieme úplné riešenie 
a v niektorých len krátký návod. 

Čísla udávajú číslo úlohy podia číslovania v kapitolách 
I až V. 

3. Aspoň 6. Rozdelíme ich do skupin podia farby. Podia 
d aspoň v jednej skupině budú aspoň dve, teda nájdu sa 
dve rovnakej farby. Keby vybral 5, mohlo by sa stať, že 
každá bude inej farby. 

4. Všetky možné súčty sú: 1 + 1 = 2 ,1 + 2 = 3, . . 
6 + 6 = 12, t. j. 11 róznych súčtov. Stačí tedahodiť 12krát. 

5. Všetky možné súčty sú 1 + 1 + 1 = 3 ,1 + 1 + 2 = 
= 4, . . . , 6 + 6 + 6 = 18, t. j. 16 róznych súčtov. Stačí 
hodiť 49 krát. 

7. Na základe Eulerovho vztahu (pozři přiklad 3) má 
daný sedemsten 7 — 2 + 6 = 11 hrán. Nech z-ta stená je 
Mj-uholník. Súčet nx + n2 + ... + n7 = 22 = dvojnásob-
ku počtu hrán. Podia D aspoň jedno m s 4. Keďže každá 
stená je aspoň trojuholník, tak nutné právě jedna je štvor-
uholník. 

9. Označme av a2, . . . , a u dané čísla. Móžeme pred-
pokladať 1 < ax < a2 < ... < an < 100. Označme bi = 
= log au i = 1, 2, . . . , 11 (desiatkový logaritmus). Zrejme 
platí 0 < ¿>j < b2 < ... < bn < 2. Rozdelíme interval 
(0,2) na desať rovnako velkých častí. PodIa(d)aspoňvjednej 
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Časti budú dve čísla, nech sú to b{> bj, i ^j. Platí teda 
2 CL 2 

| bi — bj | < yq, t. j. log -J- < — a odtial vyplývá tvr-

denie. 
10. Ano, použité (d)! 
11. Rozderte štvorec na pravoúhlé trojuholníky o stra-

nách dížky 1, 2, a /5 ! 

14. Štvorec rozdelíme na 25 štvorcov o straně Aspoň 

v jednom sa nachádzajú tri body. Poloměr kružnice opísa-

nej § tvorců o straně = <YA = T 

16. Uvažujte n + 1 čísel 1, 11, 111, . . . , 1 1 . . . 11 a po-
užité úlohu 15! 

17. Podia úlohy 16 existuje číslo tvaru 1 1 . . . 1100.. .00 
delitelné číslom p. Ale 1 1 . . . 1100.. .00 = 1 1 . . . 11 x 
X 100.. .00. Druhý súčinitel nie je delitelný číslom/), lebo 
je podia předpokladu rózny od 2,5. 

19. Označme al5 a2, . . . , a33 počet úloh, ktoré Ignác 
vyrieši prvý, druhý, . . . , tridsiaty třetí deň. Takou istou 
úvahou ako v riešení příkladu 7 možno dokázať, že existuje 
niekolko po sebe idúcoch dní, keď počet riešených úloh je 
delitelný číslom 33. Ale 33 dní je menej ako 5 kalendár-
nych týždňov, teda počet riešených úloh je menší ako 
5.13 = 65 a teda rovná sa 33. 

20. Riešenie rovnaké ako u příkladu 8. 
21. Podia úlohy 15, medzi číslami a< = 1 + q + q2 + 

+ ... + q1, i = 1, 2, . . . , / • + 1, existujú dve, ktorých 
rozdiel je delitelný číslom p. Nech sú to čísla at, a), i < j. 
Aleaj - at = q<+1 + ... + tf = ^ ( l + q + ... + 
+ Kedže/» a q sú nesúdelitelné, p delí 1 + q + q2 

+ . . . + q}-*-\ 
Druhé tvrdenie vyplývá z rovnosti 1 + q + q2 + ... + 
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+ qkn+k-1 = (1 . . . qn) ^«+1(1 + . . . + g») 
•f . . . + qOc-^) (n+V (1 + . . . + g"). 

22. Uvažujme čísla 1, p, p\ .. .,p100 00°. Podia úlohy 15 
existujú i < j < 100 000 také, že 100 000 delí číslo 
pi — pi = pi(p)-i — 1). Kedže p a 100 000 sú nesúde-
lítelné, potom 100 000 delí pi-' — 1 a teda dekadický 
zápis tohoto čísla končí požadovanou skupinou cifier. 

23. Úloha je zovšeobecnením úlohy 22. 
24. Pře x prirodzené, x < 1 000 000 je 0 < [ V * log *] < 

< 6 000 (0 < [ V * l o g * ] < 600). Podia (D) existuje 
k < 6 000 (k < 600) také, že daná rovnica má aspoň 160 
(1600) riešení. 

25. Pozorné si prezrite riešenie přikladu 11a poznámku! 
29. Ak označíme prvočísla medzi a, b ako pu p2, ..., Pk, 

tak (p2 - pj + (p3 - p2) + ... + (pk - pt-0 <b-a. 
Ak * je počet párov dvojičiek, máme b — a^2x + h + 
+ (k - x - 2)4 = Ak - 8 + h - 2x a teda * 2: [2(k—2)— 

b — a — h 1 

2 J-
31. Rozoznávame dva případy. Ak dané tri body ležia na 

priamke, tak jeden uhol nimi určený je n. Ak body neležia 
na priamke, potom uvažujeme vnútorné uhly trojuholníka, 
ktorý určujú. Keďže ich súčet je n, podia (Dj) dostáváme 
tvrdenie. 

32. Označíme dané body AV A2, ..., AS. Ak tri z nich 
ležia na priamke, tak je úloha riešená. Ak žiadne tri z nich 
neležia na priamke, budeme rozoznávať tri případy. 

a) Body A2, A3, A4, AS tvoria vrcholy vypuklého 
páťuholníka. Tvrdenie plynie podia příkladu 13. 

b) Body A4, AS ležia vnútri trojuholníka ATA2AN (v pří-
pade potřeby body přeznačíme). Keďže <£ AxAaA2 + 
+ <Í A2A4A3 + <Í A3A4A1 — 2TI, podia D aspoň jeden 

2 
z nich je váčší alebo sa rovná TI. 
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c) Bod A5 leží vnútri vypuklého štvoruholnika AXA%A%AX 
(v případe potřeby body přeznačíme). Potom bod As leží 
vnútri právě jedného z trojuholníkov A1A2A3, A^A^A^ 

33. Ak tri z nich ležia na priamke, úloha je riešená. Ak 
dané body tvoria vypuklý šesťuholník, tvrdenie vyplývá 
podTa příkladu 13. V ostatných prípadoch nájdeme troj-
uholník a bod v jeho vnútri (porovnaj riešenie úlohy 32). 

34. Rovnako ako úlohy 32 a 33. Diskusia je však zlo-
žitejšia. 

36. Pozři nasledujúcu úlohu! 
37. Predpokladajme, že máme umiestené n bodov 

v obdížniku o rozmeroch a, b tak, že vzdialenosť Iubo-
voTných dvoch je váčšia než e. Okolo každého bodu opíšeme 

£ 

kružnicu o polomere —. Máme teda n kruhov, ktoré ležia 

vnútri obdížnika o rozmeroch a + e, b + e a žiadne dva 

z nich nemajú spoločný bod. Keby n > + g) + £)? 
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tak aspoň jeden z uvedených kruhov by mal plošný obsah 
(a + c) (& + e) ne* (a + e) (b + e) _ _ . 

^ « ^ 4 (a + e) (b + e) ~ 4 ' C° 'C 

spor. e 
38. Rozdelíme obdlžnik na štvorce o straně A OD-

V 2 
diarniky o stranách nie váčších. Všetkých ich bude 

+ + + v < < + > > + ' • 

Kružnica opísaná každému z nich má priemer nie váčší 
než e. 

39. Označíme šířky pásov h1} h2, . . h n . Uvažujme 
0 gulovej ploché poloměru R, ktorej střed leží v střede 
daného kruhu. Rovnako ako v riešení příkladu 19 utvo-
říme časti guTovej plochy. Plošný obsah i-tej časti bude 
menší alebo rovný 2n Rht. Plošný obsah celej gulovej plo-• 
chy je 4TT R2, teda E 2n Rht s 4n R2 a podia (Dx) existuje 

•'-i 

1 také, že hi s —. 
n 

40. a 41. Rovnako, ako příklad 20. 
42. Dokážeme len časť, týkijúcu sa štvorciferných čísel. 

Napr. nasledovných osem čísel má požadované vlastnosti: 
1111, 1122, 2211, 2222, 1212, 2121, 1221, 2112. Pred-
pokladajme, že existuje deváť štvorciferných čísel tak, že 
Tubovolné dve sa líšia aspoň na dvoch miestach. Rozdelíme 
ich do dvoch skupin podia toho, či začínajú cifrou 1 alebo 
2. Aspoň jedna skupina obsahuje aspoň páť čísel. Vy-
nechajme z nich prvú cifru, ktorá je u všetkých rovnaká. 
Dostaneme páť trojciferných čísel, z ktorých lubovolné dve 
sa líšia aspoň na dvoch miestach. To je však spor s prí-
kladom 21. 
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43. Dokazujeme matematickou indukciou. Indukčný 
krok sa robí podobné, ako sme previedli riešenie úlohy 42 
pomocou příkladu 21. 

Udáme návod na konštrukciu. Dokážeme dokonca 
nasledujúce silnejšie tvrdenie. 

Pře každé n ^ 2 existujú dve skupiny An, Bn w-ciferných 
čísel, utvořených pomocou cifier 1, 2 s nasledovnými 
vlastnosťami: 

a) každá zo skupin An, Bn má právě 2"_ 1 prvkov, 
b) lubovolné dve čísla, ktoré buď obidve patria do sku-

piny An, alebo obidve patria do skupiny Bn, sa líšia aspoň 
na dvoch miestach, 

c) lubovolné dve čísla, jedno zo skupiny An, druhé zo 
skupiny Bn, sa líšia aspoň na jednom mieste. 

Pře n = 2 je tvrdenie pravdivé, nech napr. skupina A2 
obsahuje čísla 11, 22, skupina B2 čísla 12, 21. Predpokla-
dajme, že tvrdenie platí pře n. Zostrojíme skupiny An+1, 
Bn+i s uvedenými vlastnosťimi. 

Do skupiny An+i dáme čísla, ktoré vzniknú z čísel sku-
piny An pripísaním na koniec cifry 1 a z čísel skupiny Bn 
pripísaním na koniec cifry 2. Podobné, do skupiny Bn+1 
dáme čísla, ktoré vznikli pripísaním na koniec cifry 2 ku 
číslam skupiny An a cifry 1 ku číslam skupiny Bn. Teda 
napr. B 3 obsahuje čísla 112, 222, 121, 211. Podmienky 
a), b), c) sa overia bezprostredne. 

44. Predpokladajme, že je možné zostrojiť 9 čísel s uvede-
nými vlastnosťami. Rozdelíme ich do dvoch skupin, podia 
toho, či začínajú cifrou 1 alebo 2. Podia (D) aspoň jedna 
skupina obsahuje aspoň 5 čísel. Vynecháním prvej cifry, 
ktorá je u všeťkých rovnaká, dostaneme 5 páťciferných 
čísel, z ktorých lubovolné dve sa líšia aspoň na troch 
miestach. To je však spor s príkladom 22. 

47. Predpokladajme, že máme k > f ^ 1 čísel s uve-
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děnými vlastnosťami. Označíme ich Av A2, . A u . Nech 
Gi je množina všetkých tých n-ciferných čísel, ktoré sa 
od Ai líšia najviac na jednom mieste. Všetkých «-ciferných 
čísel je 2n. Dve rózne Gt nemajú spoločný prvok. Nech ki je 

k 
počet čísel v množině G{. Potom S kt < 2", teda aspoň 

2» 1 - 1 
jedno kt < -=- < n + 1. Ale to je spor, lebo každá G< má k 
právě n + 1 prvkov. 

4 8 - 5 0 . Pozři úlohy 42, 43! 
51. Predpokladajme, že je možné zostrojiť k2 + 1 čísel 

s uvedenými vlastnosťami. Rozdelíme ich do k skupin 
podia prvej cifry. Aspoň jedna skupina obsahuje k + 1 
čísel. Tieto všetky majů rovnakú prvú cifru. Rozdelíme 
ich znovu do k skupin podia druhej cifry. Aspoň v jednej 
skupině budú dve čísla. Tieto čísla majů rovnakú prvú 
a druhů cifru, čo nie je možné, lebo podia předpokladu sa 
líšia aspoň na dvoch miestach. 

kn 

54. Predpokladajme, že je možné zostrojiť h > ^ ^ 

čísel s uvedenými vlastnosťami. Označíme ich A u A2, 
. . . , AA. Nech GÍ je množina tých čísel, ktoré sa od čísla 
At líšia najviac na jednom mieste. Ak di je počet prvkov 

h 
množiny Gi, nutné 2 di < kn. Stačí použit' (D3) a fakt, že 

di = n(k - 1) + l."1 

55. Postupujeme podobné ako v riešení úlohy 54, ale 
do Gt dáme tie čísla, ktoré sa od At líšia najviac na a) dvoch 
miestach, b) troch miestach. 

56—57. Pozři příklad 27! 
5 8 - 6 0 . Pozři příklad 28! 
62. Rovnako ako příklad 29. Nepoužijeme však úlohu 61, 

ale příklad 29. 
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63. Matematickou indukciou. 
64. Na obr. 8. Vyznačená je len jedna farba. 
65. a) Podia příkladu 32 v dvojfarebnom 8-grafe existujú 

aspoň 4 jednofarebné trojuholníky. Aspoň dva z nich majů 
spoločný vrchol. Ak ho vynecháme, dostaneme dvojfarebný 
7-graf, ktorý má aspoň o dva jednofarebné trojuholníky 
menej, ako náš 8-graf. Kedže má aspoň 4 jednofarebné 
trojuholníky, tak náš 8-graf má aspoň 6 jednofarebných 

Obr. 8. 

trojuholníkov. Tieto majů spolu 18 vrcholov, tedy aspoň 
jeden vrchol nášho 8-grafu je spoločný aspoň trom jedno-
farebným trojuholníkom. Ak ho vynecháme, dostaneme 
7-graf, ktorý má aspoň o tri jednofarebné trojuholníky 
menej, ako 8-graf. Znovu použijeme příklad 32, tedy 8-graf 
má aspoň 7 jednofarebných trojuholníkov. 

d) Podia c) v 11-grafe existuje aspoň 16 jednofarebných 
trojuholníkov. Tieto majů spolu 48 vrcholov, teda aspoň 
jeden vrchol 11-grafu je spoločný piatim jednofarebným 
trojuholníkom. Keď ho vynecháme dostaneme 10-graf, 
ktorý má aspoň o 5 jednofarebných trojuholníkov menej, 
ako 11-graf. Postupujeme ďalej rovnako, ako v případe a). 

66. Postupujeme rovnako ako v riešení příkladu 34. Ak 
uvedených 6 vrcholov je spojené jednou farbou, alebo 
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všetky hrany okrem jednej sú rovnakej farby, je úloha 
riešená. 

Predpokladajme teda, že existujú aspoň dve hrany biele. 
V případe a) stačí ku každej z bielych hrán pridať vrcholy A 
a B a máme dva biele 4-grafy. 

Ak nastane případ b), postupujeme nasledovne. V danom 
6-grafe existujú aspoň dva jednofarebné trojuholníky (pozři 
příklad 31!). K bielemu (ak existuje) přidáme vrchol A, 
k čiernemu (ak existuje), přidáme vrchol B. V každom 
případe máme dva jednofarebné 4-grafy. 

67. Podobné ako příklad 34, ale zostrojíme tri vrcholy 
A, B, C. 

98 



OBSAH 

Predslov 3 

I. Dirichletov princip 5 

II. Úlohy z teórie čísel 12 

III. Váčšinou geometría 19 

IV. Kódovanie 30 

V. Este kombinatorická téma 39 

VI. Návod na riešenie niektorých úloh 50 



Š K O L A M L A D Ý C H M A T E M A T I K Ů 

Dirichletov 
princip 
L. B U K O V S K Ý - I. K L U VÁNEK 

Pro účastníky matematické olympiády 
vydává ÚV Matematické olympiády 
v nakladatelství Mladá fronta 
Řidl akademik Josef Novák 
Obálku navrhl Jaroslav Příbramský 
Odpovědný redaktor Milan Daneš 
Publikace číslo 2904 
Edice Škola mladých matematiků, svazek 25 
Vytiskl Mlr, novinářské závody, n. p., 
závod 6, Praha 2, Legerova 22 
2,60 AA, 2,71 VA. 60 stran 
Náklad 6000 výtisků. 1. vydáni 
Praha 1970. 507/21/8.5 

23-027-70 03-2 Cena brož. výt. Kčs 6 , -





ta m m +  • 


		webmaster@dml.cz
	2016-06-29T17:15:18+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




