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t Y O D 

Nedílnou součástí řešení matematických úloh, v jejichž 
zadání se vyskytují parametry, je diskuse úlohy. Pod-
stata diskuse úlohy je v tom, že vymezíme obor pravdi-
vosti příslušných výroků. S tím se setkáváme u úloh 
z různých oborů matematiky. V planimetrii jde přede-
vším o konstrukční úlohy zadané obecně, tedy 9 para-
metry, kde rozhodujeme, má-li úloha vůbec řešení, 
kolik řešení má a jaké jsou vlastnosti existujících řešení. 
Jde-li o úlohy důkazové, zpravidla od diskuse upouští-
me, protože se na první pohled zdá, že po provedení 
důkazu už není o čem diskutovat. Chci v této práci uká-
zat, že naopak úvahy, které navážeme na provedený dů-
kaz, mohou být někdy velmi zajímavé a nikoliv bez-
účelné. 

Za příklad poslouží tato známá úloha: 
Je dán trojúhelník ABC a kružnice jemu opsaná. 

Dokažte, že body souměrně sdružené s průsečíkem 
výšek [\ABC podle jeho stran leží na kružnici opsané. 

Na připojeném obrázku jsou body souměrně sdružené 
s průsečíkem výšek A ABC podle jeho stran označeny 
po řadě Alt Blt Cv Vlastní důkaz úlohy zde provádět 
nebudeme, ještě se později k němu vrátíme. Zatím pouze 
naznačíme okruh úvah, které mohou po provedení dů-
kazu následovat: 

Existují mezi trojúhelníky ¿\ABC a £\AlB1C1 nebo 
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mezi jejich prvky nějaké pozoruhodné metrické či polo-
hové vztahy a jaké ? 

Jak se změní tyto vztahy, půjde-li místo průsečíku 
výšek například o střed kružnice A ABC opsané či ve-
psané? 

Co když půjde o libovolný bod ležící uvnitř nebo vně 
trojúhelníku ABC ? 

Obr. 1 

Z takových a podobných úvah vznikla práce, kterou 
tu předkládám. Sleduji hned dva oíle. Předně choi pouká-
zat na některé vztahy, které se mi zdají být natolik 
zajímavé, že stojí za pozornost. Za druhé nabízím pří-
ležitost k vydatnému výoviku v přesném rýsování těm, 
kdož o to projeví zájem. Tomuto druhému oíli slouží 
cvičení uvedená za každou kapitolou. 

Tím je současné dán i dvojí možný přístup čtenáře 
k této práci a ovšem i rozsah nezbytných znalostí nut-
ných k úspěšnému teoretickému či praktickému využití. 
V prvním případě vystačí čtenář dobře se znalostí plani-
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metrie na úrovni střední školy. Jedinou výjimkou, i když 
podstatnou, je první kapitola, která předpokládá znalost 
nejzákladnějších pojmů z projektivní geometrie. Jde 
tu o větu Desarguesovu o trojúhelnících, o harmonické 
čtveřice bodů a přímek, o vlastnosti sdružených pólů 
a polár vzhledem ke kružnici. Postačující poučení o těch-
to pojmech a vztazích podává „Dodatek" za textem 
práce. 

Půjde-li čtenáři jenom o získání námětů vhodných 
k vydatnému výcviku v přesném rýsování, může první 
kapitolu i dodatek přijmout jako dané axióma a zamě-
řit pozornost převážně na kapitolu druhou a třetí. 
V tom případě vystačí při studiu se znalostmi plani-
metrie na úrovni základní školy. 

K vnější stránce textu chci ještě připomenout dvě 
úmyslné odchylky od běžně užívané či doporučené sym-
boliky. Rovnost dvou úhlů zapisuji všude prostě 

-ZABC = KLM nebo BAC = a, 

místo doporučeného způsobu 

\3iABC\ = \<£KLM\. 

To proto, že se takové rovnosti vyskytují v textu velmi 
často a přes jednoduchost zápisu nemůže nikde dojít 
k omylu. Neméně často se y textu mluví o binární relaci 
p nebo q, které na rozdíl od doporučených norem zapi-
suji malým znakem. Důvod k tomu pozná čtenář záhy 
sám, protože binární relace takto označené jsou vždy 
vázány na existenci daných bodů — v této souvislosti 
pojmenovaných póly — které je ovšem nutno psát vel-
kými znaky. Tak vzniká spojení „relace p podle P" 
nebo „relace q podle Q" a také relace,, p podle S" a po-
dobně. 
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Z obdobných důvodů používám v textu původníoh 
termínů „kružnice trojúhelníku uvnitř a vně vepsaná" 
místo „kružnice vepsaná a připsaná", jak doporučuje 
nová norma (Názvy a značky školské matematiky — 
SPN 1977). 
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K A P I T O L A 1 

A. V Y M E Z E N Í Z Á K L A D N Í C H 
POJMŮ A VZTAHŮ 

Předmětem našich úvah budou útvary v dvojrozměrném 
prostoru představovaném rovinou tr2. Tuto rovinu bu-
deme nadále pokládat za základní množinu bodů. V ní 
zvolme kružnici, nejlépe jednotkovou, k = (O; 1). Tím 
jsme základní množinu bodů rozložili na tři navzájem 
disjunktní podmnožiny K, K' a K", kde K je množina 
všech bodů na zvolené kružnici, K' množina všech bodů 
náležejících do vnitřní oblasti a K" množina všech bodů 
náležejících do vnější oblasti kružnice k. 

Uvažme nyní, že kterékoliv tři libovolně zvolené 
a navzájem různé prvky množiny K, například body 
X, Y a Z, jsou vrcholy trojúhelníku, protože žádné tři 
navzájem různé body na kružnici neleží v přímce. 
Označme množinu všech takto vytvořených trojúhelní-
ků Mt. 

V množině MT, která má zřejmě nekonečně mnoho 
prvků, definujme binární relaci p C [MT x MT) takto: 

Definice 1. Dvojice navzájem různých trojúhelníků 
AABC a A-^I-BÍC?! je prvkem relace p podle pólu P, když 
o jejich vrcholech platí současně: 

1. {A, B, C) C K A {Alt Bu C1} C K; 
2. přímky AAlt BBlt CC1 procházejí týmž bodem 

PeK. 

Úmluva. Vztah uvedený v definici 1 budeme zapisovat 
takto: 
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A ABC p ¿\A1B1C1 podle P, nebo 
[AABC, ¿s,AlB1C1] ep podle P, 

přičemž doložku „podle P" vynecháme, nebude-li ne-
bezpečí omylu. Je totiž možné, že příslušný pól nebude 
označen P, ale například S. Potom půjde o relaci p 
podle S. 

Z definice přímo vyplývají některé vlastnosti relace p: 
1. Relace p je symetrická, neboť podmínky uvedené 

v definici jsou splněny, i když zaměníme označení 
vrcholů A, B, C za At. Blt a naopak. (1.1) 

2. Relace p je zobrazením v množině MTt neboť dvojici 
bodů A B odpovídá dvojice Ax fé Blt takže je také 
AABC ťé A ^ M . (1.2) 

3. Toto zobrazení je středová kolineace se středem P, 
neboť trojúhelníky ABC a A1B1C1 leží tak, že přímky 
spojující sobě odpovídající vrcholy procházejí týmž 
bodem, tj. středem kolineace P. (1.3) 

Právě jsme v podstatě citovali větu dobře známou 
z projektivní geometrie jako větu Desargueaovu o troj-
úhelnících. Formulace věty Desarguesovy i důkaz její 
pravdivosti jsou uvedeny v Dodatku. Tam jsou z obr. 
D 8 zřejmé i vlastnosti středové kolineace, v niž odpo-
vídá trojúhelníku ABC trojúhelník KLM. 

Připomeňme si, že středová kolineace je dána středem, 
osou kolineace a dvojicí sobě odpovídajících bodů, které 
Iev:í na přímce jdoucí středem kolineace. Dále víme, že 
dvojice přímek sobě odpovídajících se protínají na ose 
kolineace. Je-li dán trojúhelník ABC, střed kolineace, 
osa kolineace a bod K odpovídající bodu A, snadno 
sestrojíme zbývající dva vrcholy A KLM. 

Například: přímky AC a KM se protínají na ose koli-
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neace h v bodě H a přímka 8M prochází bodem C. 
Přímka BC se s přímkou LM protne v bodě 0 rovněž na 
ose kolineace atd. 

Vedle vlastností vyplývajících ze středové kolineace 
má relace p ještě další důležitou vlastnost, jak hned 
dokážeme. 

Věta 1. Je-li dvojice trojúhelníků A ABC a A-^I-BI^I 
v relaci p podle P, potom bod P je středem kolineace 
a osou kolineace je polára bodu P vzhledem ke společné 
kruínici těmto trojúhelníkům opsané. 

Obr. 2 

Důkaz (obr. 2). Podle vzpomenuté věty Desarguesovy 
o trojúhelnících (1.3), procházejí-li přímky AAlt BB1 
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a GC1 týmž bodem P, leží body A0 = (BC O -BiCJ, 
B0 = (AC H ^ A ) a C0 = f) ^Mi) na téže přím-
ce, která je osou středové kolineace. 

Uvažovaná dvojioe trojúhelníků má však ještě navíc 
společnou kružnici opsanou £ a to znamená, že přímka 
p = AQBQ = 50C0 je nejenom osou kolineace, ale také 
polárou bodu P vzhledem ke kružnici k. Toto poslední 
tvrzení vlastně není třeba zvlášť dokazovat. Jeho prav-
divost vyplývá ze samotné konstrukce poláry bez 
použití tečen vedených z pólu k uvažované kružnici. 
Správnost konstrukce je dokázána v Dodatku. Zde je 
užitečné si ještě všimnout toho, že na obr. 2 se na poláře 

< — < — > 
protínají ještě další tři dvojice přímek, a to: [ABU AXE\, 
[BCv Bfi], [Ó2lt G^A], což je v dobrém Bouladu s dříve 
uvedeným tvrzením. 

Z toho všeho vyplývá, že relace p podle P je zvláštní 
případ středové kolineace podle středu P, kde vzor 
a obraz mají společnou kružnici opsanou. Tato zvlášt-

Obr. 3 
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nost spoěívá právě v tom, že sobě odpovídající dvojice 
bodů leží na této kružnici, což obecně o středové koli-
neaci neplatí. Je proto zcela na místě, že nadále nebudeme 
mluvit o středové kolineaci, ale o relaci p podle P. 

Za zmínku jistě stojí ještě případ vyobrazený na 
obr. 3. 

Zde pól P je vnitřní bod strany AB trojúhelníku ABC, 
takže je A = Bt A B = Av I v tomto případě jsou splně-
ny podmínky uvedené v definici 1, a proto i zde můžeme 
říci, že trojúhelníky A ABC a A^i-Si^i jsou v relaci p 
podle P. 

Na kartézském součinu (MT x MT) můžeme dále 
utvořit relaoi obdobnou relaci p podle P s tím rozdílem, 
že příslušným pólem bude bod Q ležící ve vnější oblasti 
kružnice k uvažovanému trojúhelníku opsané, tedy 
QeK'. 

Definice 2. Dvojice navzájem různých trojúhelníků 
ABC a A~B 2Ct je prvkem relace q podle pólu Q ležícího 
vně kružnice těmto trojúhelníkům opsané, když o jejich 
vrcholech platí současně: 

1. (A,B,G}C KA B2, Ca} C K; přičemž množi-
ny {Ji, B, C) a {A2, Bt, Ct} mají nanejvýá dva společné 
prvky. 

2. Přímky AA2, BB2 a CC2 prooházejí týmž bodem 
QeK'. 

Úmluva. Vztah uvedený v definici 2 budeme symbo-
licky vyjadřovat takto: 

A ABC q £\A2B2G2 podle Q, nebo 
[A ABC, /\A2B2C^ eq podle Q. 

Doložku „podle Q" i zde vynecháme, nebude-li ne-
bezpečí omylu, jako v případě relaoe p podle P. 
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Vlastnosti relace q, které vyplývají přímo z definice 2, 
jsou zcela analogické vlastnostem relace p uvedeným 
v (1.1), (1.2) a (1.3), takže je nemusíme znovu zdůvodňo-
vat. Podle toho je i relace q symetrická, jde o zobrazení 
v Mt, a to o středovou kolineaci se středem Q. Platí i věta 
obdobná větě 1. 

Víta 2. Je-li dvojice trojúhelníků, A ABC a l\AtB2Ct 
v relaci q podle Q, potom bod Q je středem kolineace a osou 
kolineace je polára bodu Q vzhledem ke společné kružnici 
těmto trojúhelníkům opsané. 

Důkaz (obr. 4). Přímky AA2, BB2 a CC2 mají společný 
bod Q, a proto se podle věty Desarguesovy protínají 
na jedné přímce odpovídající si strany A ABC a 
A A2B2C2. Tato přímka pak, protože body A, B, C, 
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A2, BT, Cg leží na téže kružnioi, je polárou bodu Q vzhle-
dem ke kružnici k. Také zde se na uvedené poláře protí-
nají dvojice přímek [AÉ, AFBFH, [BV, iž2(72], 0 A , 

a ovšem i dvojice \ABT, A^B], 

J e tedy relace q podle Q rovněž zvláštní případ stře-
dové kolineace, kde vzor a obraz mají společnou kruž-
nici opsanou. J e ovšem třeba mít stále na paměti, že 
složkami obou uvažovaných relací jsou trojúhelníky, 
nikoliv jejich prvky. Na rozdíl od relace p má relace q 

jednu zvláštnost, což konečně prozrazuje už odlišná 
formulace podmínky 1 v definici 2. Případy, kdy množi-
ny {A, B, C} a {A2, B2, C4} mají jeden nebo dva prvky 
společné, nastanou tehdy, jestliže pól Q leží na některé 
z tečen vedených ke kružnici k v jednom nebo dvou 
vrcholech A ABC, jak ukazují obr. 5—7. 

Na obr. 5 leží pól Q na tečně sestrojené ke kružnici k 
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opsané ¿\ABO v jeho vroholu A, takže je AT = A. Na 
obr. 6 je pól Q průsečíkem tečen vedených ke kružnici 
opsané &EFQ v jeho vrcholech E a F, takže je E = Et 
a současně F = Ft. Na obr. 7 je pól Q průsečíkem tečny 
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vedené ke kružnici opsané AÁBC V jeho vrcholu C 
s prodloužením jeho strany AB za bod B, takže je C = 
= C2, A = B2 a B == Aa. Všechny ty to tři zvláštní pří-
pady jsou v souladu s definicí 2 právě tak jako zcela 
zvláštní případ zobrazený na obr. 8. 

Obr. 8 

Zde je pól Q nevlastní bod roviny ar2l takže středová 
kolineace přechází v afinitu, nebol! přímky 
jsou tečnami kružnice opsané A K L M , který je pravo-
úhlý a body La M jsou krajní body jeho přepony. 

Z toho, co jsme zatím uvedli o vlastnostech relací 
p a q, je zřejmé, že tvar trojúhelníků v uvažovaných 
dvojicích je závislý na poloze pólů P nebo Q. Naskýtá se 
proto otázka, je-li možno tuto polohu určit konstruktiv-
n ě tak, aby uvažované dvojice trojúhelníků měly pře-
dem dané vlastnosti. Předpokládejme, že to možné je. 
Pak ovšem musí plati t t a to věta: 
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Víta 3. Je-li dán jeden z dvojice trojúhelníků A ABC p 
p /\A1B1C1 nebo A ABC q ¿\A2B2C2, potom, druhý troj-
úhelník je určen právě dvěma navzájem nezávislými prvky, 
přičemž póly P a Q dané polohou mají hodnotu dvou tako-
vých prvků. 

Důkaz. Věta obsahuje dvě tvrzení: 
a) Obecně platí, že trojúhelník je určen třemi navzá-

jem nezávislými prvky. Avšak dvojice trojúhelníků, 
které jsou v relaci p nebo q, mají vždy jeden prvek spo-
lečný, totiž velikost poloměru společné opsané kružnioe. 
Proto je druhý trojúhelník určen právě dvěma dalšími 
navzájem nezávislými prvky, jakmile první trojúhelník 
je dán. 

b) Pravdivost druhého tvrzení vyplývá z definic 1 a 2. 
Dané póly P nebo Q určují spolu a vrcholy daného troj-
úhelníku jednoznačně přímky AP, BP, CP, popřípadě 
AXP, BtP, CxPt nebo AQ, BQ, CQ, případně AtQ, BtQ, 
CtQ, a tím jsou rovněž jednoznačně určeny polohy bodů 
A, B, O, popřípadě Alt Blt Ct nebo A2, Bt, C2 na kruž-
nici le. 

Věnujme nyní pozornost velikostem vnitřních úhlů 
uvažovaných dvojic trojúhelníků. Lze předvídat, že 
existuje taková podmnožina množiny MT, jejíž prvky 
jsou v relaoi p nebo q s daným trojúhelníkem a přitom 
mají jeden úhel shodný, tj. předem dané velikosti. Dvě 
věty (věta 4 a 6), jejichž pravdivost dokážeme, nejenom 
potvrzují existenci takových podmnožin, ale udávají 
současně návod, jak lze sestrojit množinu všech pří-
slušných pólů P nebo Q. 

Věta 4. Má-li A ABC vnitřní úhly daných velikostí «, /?, 
y, a množina trojúhelníků, které jsou a ním v relaci p, vnitř-

16 



ní úhel ^¡iAyC^Bx dané velikosti y', potom množinou všech 
příslušných pólů P je oblouk kružnice mezi body A a B 
takový, že obvodový úhel příslušný k tomuio oblouku 
(--iiAPB = <p) má velikost: 

a) <p = y + y', je-li y + y' ^ 180° a oblouk AB leží 
v polorovině ABC, 

b) <p = 360° — (y + y'), je-li y + y' > 180° a oblouk 
AB leží v polorovině opačné k ABC (AB C ABC*). 

Obr. 9 

Důkaz, a) Předpokládejme nejdříve, že pól P leží v po-
lorovině ABC, a to bud uvnitř A ABC nebo vně (obr. 9). 

V obou případech vyplývá z vlastností obvodových 
úhlů: 

<ByAP = <BXAA! = šB&A, = y', (1.4) 
^ABXP = ^ABXB = <ACB = y. (1.5) 

Úhly ^BXAP a <^ABXP jsou vnitřní úhly &ABXP, 
jehož vnější úhel při vrcholu P je ~$APB. Je tedy veli-
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kost 3LAPB rovna součtu velikostí úhlů -¡¡iB^P 
a < A B J > , takže podle (1.4) a (1.5) je *£APB = y + y', 
což také znamená 

y + y ' < 1 8 0 ° . (1.6) 
Leží-li bod P na straně AB ¿\ABG, je ovšem 

y + y' = 180°. (1.7) 
Podle předpokladu mají úhly y a y' dané velikosti, 

takže jejich součet je stálý, a probíhá-li bod G oblouk 
AB kružnice A ABC opsané v polorovině ABC, pro-
bíhá pól P oblouk kružnice mezi body A a B takový, že 
příslušný obvodový úhel -$.APB má velikost <p = y + 
+ y', rovněž v polorovině ABC. Body tohoto oblouku 
bez krajních bodů A a B jsou prvky hledané množiny 
všech příslušných pólů P. 

Je-li pól P vnitřní bod úsečky AB (viz obr. 3), potom 
je podle (1.7) y -f- y' = 180° a oblouk AB přechází 
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b) Umístíme-Ií pól P vně A ABC, například do poloro-
> 

viny ABC*, padnou do této poloroviny i všechny tři 
vrcholy A-^I-BI^I, a to tak, že (obr. 10) 

^ACXB < «MA-Bi = y'. (1.8) 

Protože je současně ^AC^B = 180° — <£ACB = 
= 180° — y, dostaneme po dosazení do (1.8) 

180° — y < y', neboli y + y' > 180°. 

V tětivových čtyřúhelnících a ACBBX je 

£AÍABÍ - ^PABt = 180° — = 
= 180° — / , 

^.AB^B = ^ABXP = 180° — <%ACB = 
= 180° — y. (1.9) 

Úhly $iPAB1 a ^.ABJ* jsou vnitřní úhly ¿\PABlt 
jehož vnější úhel při vrcholu P má velikost 

<£APB = ^PAB1 + ^AByP 

a po dosazení podle (1.9) 
<£APB = (180° — / ) + (180° — y) 

a po úpravě: 
APB = <p = 360° — (y + / ) . 

Také zde je podle předpokladu součet y -j- y' stálý, 
takže prvky hledané množiny všech pólů P dané vlast-
nosti tvoří oblouk kružnice mezi body A a B takový, že 
příslušný obvodový úhel má velikost q> = 360° — (y -f 
+ / ) • 

Velikosti úhlů ^BPC = <x + a' a <$.CPA = 0 + /?' 
se pak v tomto případě řídí částí a) důkazu. 
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Dokázali jsme pravdivost obou tvrzení věty 4 pro 
dvojici úhlů velikostí y, y'. Cyklickými záměnami dojde-
me k obdobným tvrzením pro dvojice <* a a', (} a /?'. 

Věta 6. Má-li A ABC vnitřní úhly velikostí af y 
a množina všech trojúhelníků, které jsou s nim v relaci q, 
vnitřní úhel <£A2C2Bt dané velikosti y', potom množinou 
všech pólů Q je oblouk kružnice mezi body A a B takový, že 
obvodový úhel příslušný k tomuto oblouku (-$.AQB = e) 
má velikost: 
e = |y — y'\, přičemž oblouk AQB leží 

> 
a) v polorovině ABC, když y — y' 0, _ 

> 
b) v polorovině ABC*, když y — y' < 0. 
Důkaz provedeme zvlášť pro polorovinu ABC a zvlášť 

pro ABC*. 
V polorovině ABC musíme rozlišovat čtyři různé polo-

hy pólu Q, z nichž tři jsou zobrazeny na obr. 11, 12 a 13, 
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Tečna t vedená ke kružnici opsané A ABC v bodě B 
rozděluje ABC na dvě části. Na obr. 11 leží pól Q v prů-
niku polorovin ABC fi tA, na obr. 12 na tečně t a na 
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Ve všech třech případech je 
•$AA2B = ACB = y (1.10) 

(jde o obvodové úhly) a také 
<A2BQ = ^A2G2B2 = / . (1.11) 

Tvrzení (1.11) ovšem musíme dokázat. 
V prvním případě jsou úhly -ifiA^BQ a A2CZB2 

obvodové úhly příslušné k oblouku AÍBÍ, 
v druhém případě je -$LA2BQ úsekový úhel příslušný 

k oblouku ATB2, takže je -^.AJBQ = -^A2G2B2, 
ve třetím případě pak je úhel <£A2BQ vedlejší 

k «í-íá^-Ba a ten má velikost 180° — y', neboť je proti-
lehlý k <$;A2C2B2 V tětivovém čtyřúhelníku A^BBTCT. 

Ve všech třech případech je <%AA2B vnější úhel troj-
úhelníku A2BQ při vrcholu A2. Označíme-li -£A2QB = 

Obr. 14 
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= e, potom je e = •Š.AAJi— -¿¡LAJiQ a podle (1.10) 
a (1.11) konečně 

e = y — y', neboli y = y' + e, (1.12) 

což znamená, že je větší než y'. 
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Leží-li pól Q na prodloužení strany AB za bod B, je 
y - y', neboli y — y' = 0. 

> 
V polorovině opačné k ABC jsou možné tři různé polo-

hy pólu Q zobrazené na obr. 14, 15 a 16. 
Na obr. 14 je Q e (ABC* f j tA*), na obr. 15 Qet, na 

obr. 16 je Qe(ABC* f j tA). Ve všech třech případech 
je v AAB2Q 

<AB2Q=y, (1.13) 
<£B2AQ = 180°— y'. (1.14) 

V prvním případě je <£AB2Q = <$.AB2B = <^ACB = 
= y (obvodové úhly), současně ^B2AQ = 180° — y', 
protože je ve čtyřúhelníku ABtC2At protilehlý 
k <£B2C2A2, 

v druhém případě je AB2Q úsekový úhel příslušný 
k oblouku AB, takže je AB2Q = <$:ACB = y, sou-
časně 'B2AQ = y' jako v případě prvním, 

ve třetím případě konečně je :AB2Q vedlejší 
k •$.AB2B a ten má velikost 180° — y, neboť je protilehlý 
k <£ACB v tětivovém čtyřúhelníku ACBB2 a obdobně 
<B2AQ je vedlejší k ^A2AB2 = <£A2C2B2 = y'. 

Označíme-li v AAB2Q $LAQB2 = e, bude ve všech 
třech případech 

e = 180° — [<£B2AQ + ^AB2Q] 
a podle (1.13) a (1.14) 

e - 180° — (180° — y' + y) = y' — y, neboli. 
y' = y + e, (1.15) 

což znamená, že y' je větší než y. 
Tím je dokázáno i tvrzení b) věty 5 a podle (1.12) 

a (1.15) je 
* = \Y-Y'\-
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I zde ovsem musíme vzít v úvahu cyklické záměny, 
podle nichž je <£BQC = |<x — a <$CQA = \p — 

Právě dokázané věty 4 a 5 mají pro naše další úvahy 
základní význam, a proto uspořádáme jejich obsah do 
tabulek: 

Velikosti úhlů: Poloha pólu P: Odkaz na 
obr. 17: 

y + y'< 180° PeABC I, II 

y + y' > 180° PeABG* III, IV 

y + y' = 180° PeAB V 
tab. 1 

Velikosti úhlů: Poloha pólu Q: Odkaz na 
obr. 17: 

y > y' QeABC I, III 

y < v' QeABC* II, IV 

y =y' QeAB VI 
tab. 2 

Římské číslice v tabulkách odkazují na obr. 17, kde 
jsou zobrazeny polohy oblouků zobrazujících množiny 
všech pólů P nebo Q pro různé vztahy mezi velikostmi 
úhlů y a y'. 
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Platí i věty obrácené k větám 4 a 5. Jejich důkazy 
jsou zařazeny do cvičení na konci kapitoly. 

K vlastnímu provádění konstrukcí je třeba připome-
nout ještě toto: 

Při sestrojování kruhových oblouků podle vět 4 a 5 
je vždy nutno pečlivě uvážit, ve které polorovině bude 
příslušný oblouk ležet. K tomu slouží uvedené tabulky 

Obr. 18 
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a cyklické záměny z nich vyplývající. Konstrukci si pak 
zpravidla usnadníme tím, že využijeme vlastností úse-
kových úhlů. Chceme-li například sestrojit množinu 
všech pólů P k dané dvojici úhlů y a y', je výhodné 
sestrojit v některém krajním bodě úsečky AB tečnu ke 
kružnici A ABC opsané (obr. 18). 

Tato tečna tvoří s úsečkou AB úsekový úhel velikosti 
y, načež graficky přičteme úhel velikosti y'. Kolmice 
na rameno součtu y + y ' vedená příslušným krajním 

bodem úsečky AB určuje spolu s osou úsečky AB střed 
hledaného oblouku. Máme-li sestrojit množinu všech 
pólů P s odpovídajícím obvodovým úhlem velikosti 
360° — (y + y ' ) , bude postup obdobný jako v předešlém 
případě (obr. 19), avšak volíme opačnou polorovinu 
a v ní sestrojíme úhel velikosti (y + y'). 

Zcela obdobně budeme postupovat při konstrukcích 
množin všech pólů Q. Zde se však může stát, že přesnost 
konstrukce bude ohrožena, zvláště když rozdíl y — y' 
bude mít příliš malou absolutní hodnotu. V tom případě 
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bude nutno použít známých konstrukcí na omezené ná-
kresně, konstrukcí přímek spojujících dva velmi blízko 
sebe ležící body na kružnici a podobně. Další možnosti 
takových pomocných konstrukcí nám poskytnou i úva-
hy zařazené do druhé části první kapitoly. 

Ukázali jsme již (věta 3), že k určení dvojice trojúhel-
níků z relací p nebo q, je-li jeden z trojúhelníků dán, 
postačí dva další navzájem nezávislé prvky. Mohou to 
tedy být například vedle velikosti poloměru společné 
opsané kružnice velikosti dvou vnitřních úhlů, pokud 
ovšem splňují nutnou podmínku 

a + 0 < 180° A í ' + J)'< 180°. 

Podle vět 4 a 5 můžeme předpokládat, že takto zadané 
úlohy budou mít vždy právě jedno řešení, protože pří-
slušné póly můžeme vždy určit jako průsečíky dvou kru-
hových oblouků s obvodovými úhly velikostí (a. + a') 
a (P + /?'). Logickou cestou dojdeme k závěru, že takto 
určeným bodem bude procházet i třetí oblouk geometric-
kého místa s obvodovým úhlem velikosti (y + y'). Správ-
nost této úvahy nyní dokážeme: 

Věta 6. Nechť dvojice trojúhelníků [A ABC, A 
ep mají vnitřní úhly velikostí po řadě a, fi, y a a.', ¡i', y', 

potom kruhové oblouky BPC, APC a APB určující polohu 
pólu P vzhledem k velikostem úhlů (a + a'), (/9 + fi'), 
(y + y'), mají vedle vrcholů /\ABC právě jeden další 
společný bod, totiž pól P. 

Důkaz provedeme sporem. 
a) Předpokládejme, že pól P je vnitřní bod /\ABC a že 

oblouky BPC, APC a APB neprocházejí jedním bodem 
(ol?r. 20). 
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Protože tyto oblouky podle věty 4 procházejí vždy po 
dvou týmž vrcholem A ABC, mohou mít právě ještě je-
den další společný bod. Označme tyto další průsečíky 
P 1> P3-

Obr. 20 

Podle předpokladu mají oblouky APXP^B, BPJP3C, 
CPSPXA vlastnosti hledaných množin podle věty 4. To 
znamená, že < A P X B má velikost (y -f y'), -ŠAPXC ve-
likost (/3 + Výpočtem zjistíme, že •$iCPxB má ve-
likost 

360° - (y + y') - (0 + p) = 180° - (0 + v) + 
+ 180° — {p' + y') = « + «'. 

Avšak tuto velikost mají úhly BPC, pokud podle 
předpokladu pól Px leží na oblouku CPB. Mimo ně žádný 
jiný bod roviny. Náš předpoklad byl tedy nesprávný 
a všechny tři oblouky procházejí jediným bodem. 

Zcela obdobný výsledek dostaneme pro pól P ležící 
vně A ABC, ovšem uvnitř kružnice A ABC opsané 
(obr. 21). 
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Jistě není nutné znovu opakovat celý myšlenkový 
pochod, stačí, uvedeme-li závěrečný výpočet: 

<BPyA = ^APXG + ^BPXG = (a + fi) + 
+ (*' + ?). 

neboli 

(180° — y) + (180° — y') = 360° — (y + ý). 

C 

Také zde procházejí všechny tři oblouky jediným 
bodem. 

Dříve než odvodíme obdobnou větu pro pól Q, doká-
žeme platnost užitečné pomocné věty. 

Víta 7. Nechtdvojice trojúhelníků [ A A B C , /\A2B2C2] 
e q má vnitřní úhly velikostí po řadě <x, (i, y a a', /S', y', 

a současně jeden vnitřní úhel A ABC je větší než jemu od-
povídající vnitřní úhel AA2B2G2, potom aspoň jeden, nej-
výše však dva další vnitřní úhly A ABC jsou menší než jim 
odpovídající úhly ¿\A2B2C2. 
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Důkaz, a) Především je vyloučen případ, kdy všechny 
tři úhly A ABC jsou větší než vnitřní úhly A AJi$t. 
V tom případě by platilo současně: 

a > a', p > p', y > y' 

a po sečtení těchto nerovnio 

« + P + Y > + P + / 
neboli 180° > 180°. 

b) Předpokládejme, že platí 

« > ď A P > P , 
odtud plyne a. + P > «' + P'> což můžeme psát také 
takto: 

180° — y > 180° — / , takže 
— y > — y', neboli y < y'. 

c) Zaměníme-li v předcházejícím textu znaménka 
„větší" za „menší" a naopak, dostaneme potvrzení 
platnosti druhé části tvrzení, že mohou dva úhly být 
menší a to — v souladu s výsledkem první části důka-
zu — nejvýše dva. 

Zde je na místě připomenout tabulku 2 uvedenou za 
větou 5. Užijeme-li věty 7, snadno provedeme cyklické 
záměny k tabulce 2 a tím určíme spolehlivě polohu pólu 
Q vzhledem k velikostem vnitřních úhlů trojúhelníků 
L\ABC a A-4tB2(7a z relace q. 

Yíta 8. Nechť dvojice trojúhelníků [ ¿\ABC, 
&AtBzC^\ eq má vnitřní úhly velikostí po řadě a, P, y 
a a', P', y'\ potom kruhové oblouky BQC, AQC a AQB 
určující polohu pólu Q vzhledem k velikostem úhlů |a — a'|, 
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\P — P'\, |y — y'\ mají vedle vrcholů ¡\ABC právě jeden 
další společný bod, totiž pól Q. 

Důkaz provedeme opět sporem. 

a) Předpokládejme nejdříve (obr. 22), že pól Q leží 
> » 

v průniku ABC* f) -&ACB. V tom případě je podle vět 
5 a 7 

ý > y => ŠiAQB = y' — y, 
«'<«=* <BQC = « — «'," 

P' <p => *AQC=p — p. 

Příslušné oblouky takto určené nechť se protínají 
v bodech ^ # $3- Podle věty 5 pak platí 

^AQfi = /? — p' A - íf l&C = <* — <*'• 
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Součet těchto dvou úhlů má velikost 

<£AQB = (a-«') + W — n = (cc + P) — 
— («' + n = (180° — y) — (180° — / ) = 

= / — y- __ 

Podle tohoto výsledku leží pól Q na oblouku AQ2Q3B, 
takže předpoklad Q± ^ Q2 ^ Qa je nesprávný a všechny 
tři oblouky procházejí týmž bodem Q. 

b) Umístíme-li pól Q do úhlu vrcholového k <£BAC, 
potom bude (obr. 23) 

y'>y => -%AQB = y' — y, 

«'>«=» -Š.BQC = «' — <*. 
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Oblouky takto určené se protnou v bodech Qx ^ Q2 já 
Q3. Další úvahy pak jsou shodné s úvahami z první 

části důkazu se stejným závěrem, že všechny tři oblouky 
procházejí týmž bodem, tj. pólem Q. Zde se na první 
pohled zdá, že důkaz ještě není úplný, protože jsme ne-

> 
vzali v úvahu polohy pólu Q v polorovině ABC. To však 
není nutné, protože cyklickými záměnami bychom 

> 
došli ke stejným závěrům pro poloroviny ACB* a BCA *, 
čímž je celá rovina až na vnitřek A ABC vyčerpána. 
Pól Q ovšem podle definice 2 v této části roviny ležet 
nemůže. 

Obr. 24 

Věty 6 a 8 mají jeden zajímavý důsledek. Uvážíme-li 
totiž, že relace p a q, jak jsme dříve ukázali, jsou sy-
metrické, můžeme v důkazech vět 6 a 8 zaměnit ozna-
čení vrcholů trojúhelníků z uvažovaných dvojic [ A A B C , 
AA&Cjepa, [&ABC, AA2B2C2]eq. Potom pólem 
P procházejí další tři oblouky, a to A^PBy, BlPC1 
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a CyPA^ s příslušnými obvodovými úhly velikostí 
(y + / ) , (P + P') a (« + «') (obr. 24). 

Obdobně pak pólem Q procházejí rovněž tři další 
oblouky A2QB2, B2QC2 a C2QA2 s příslušnými obvodový-
mi úhly velikostí \y — y'\, \P~P'\ a |<x — <*'| (obr. 25). 

Výčet vlastnosti relací p a q uzavřeme důkazem další 
věty, která se týká polohy vrcholů uvažovaných dvojic 
trojúhelníků na společné kružnici opsané. 

Věta 9. Méjme dvojice trojúhelníka [ A A B C , 
AA^CJep podle P a [AABC, AAtB2C2]eq podle 
Q takové, že ani pól P ani pól Q neleží na nékteré stráni 
A ABC nebo na jejím prodloužení, potom o vzdálenostech 
vrcholů uvažovaných trojúhelníků platí: 
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ABX BC1 CA1 

CB~' ~AČi ' ~BA[ = 1. 
AB, BCO CA, 
CB. AC* BA. 

= 1. 

Důkaz, a) Na obr. 26 je v trojúhelnících £±ABXP 
a A B A t P 

-$APB1 = ŠIBPAI (úhly vrcholové) 

3.ABJ* = 3.BAJ> (úhly obvodové), 

a proto A A B T P ~ A B A T P , takže je 

ABV _ AP 
BA1 ~ BP ' 

Obdobně je A B C T P ~ A C B X P a také 

BC, _ BP 
CBT CP 

(1 .16) 

(1.17) 
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a konečně ¿\CAXP ~ AACXP, takže 

ACX~1[P ( L 1 8 ) 

Vynásobíme-li nyní rovnosti (1.16), (1.17) a (1.18), 
dostaneme: 

ABX BCX CAL = AP BP CP 
BAX ' CBX ' AGX ~ BP' CP' AP' 

Na pravé straně se vykrátí velikosti úseček AP, BP, 
CP, takže výraz na levé straně se rovná 1. Po úpravě pak 
odtud dostaneme dokazovaný vztah: 

ABX BCX CAX = 1. 
CBX ACX BAX 

b) Na obr. 27 je v trojúhelnících &AB2Q a A B A T Q 

ŠAQBI = <ÍBQAT, 

c v 

Obr. 27 
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neboť jsou totožné, 
<AB2Q = <£BA2Q, 

protože 
<$IAB2Q = <£AB2B = 180°— -$.AA2B 

(úhel protilehlý ve čtyřúhelníku tětivovém A B 2 B A 2 ) . 

Protože úhel -$AA2B je vedlejší k -^BA2Q, je 
<AB2Q = <$LBA2Q. 

Trojúhelníky A A B 2 Q a ¿\BA2Q mají tedy dva úhly 
shodných velikostí, takže je A A B 2 Q ~ A B A 2 Q . 

Z podobnosti trojúhelníků pak plyne 

A B 2 AQ 

B A 2 - BQ ' 

Obdobně je A B C 2 Q ~ A C B 2 Q , odkud 
BC2 BQ 

GB2 GQ 

a konečně i L\CA2Q ~ AAC2Q a odtud 

GA2 CQ 

AC2 AQ 

(1.19) 

(1.20) 

( 1 . 2 1 ) 

Vynásobením (1.19), (1.20) a (1.21) a po obdobných 
úpravách jako v předešlé části důkazu dostáváme: 

AB* BGS C A T _ 

CB2 AC2 B A 

Podle předpokladu neleží pól P na žádné straně 
A ABC. V tom případě by bylo například A = BT A 
KB = AX, takže ABT — BAX = 0 a do dokazovaného 
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vztahu se dostává neurčitý výraz — a výraz pozbývá 

smyslu. Obdoba platí i pro pól Q. 

Dosud poznané vlastnosti relací p & q nás již dosta-
tečně vyzbrojují k řešení úloh. Zde několik příkladů: 

Příklad 1. Je dán A ABC s vnitřními úhly velikostí 
<x = 100°, 0 = 30°. Určete polohu pólů P a Q tak, aby 
AA^B^GÍ a /\AtB2C2 z relací p a q byly trojúhelníky 
rovnostranné. 

a) Rozbor. Podle zadání je y = 180° — (100° + 30°) = 
= 50°, 

a' =p' =y' = 60°. 
Dále platí: 

(X + OL = 100° + 60° = 160°, 
P + P' = 30° + 60° = 90°, 
y + y' = 50° + 60° = 110°. 

Všechny tři součty jsou menší než 180°, a proto pól P 
je vnitřní bod i\ABC. 

« — <*' = 100° — 60° = 4 0 ° => Q eBGA, 

P — P'= 60° —30° = 30° => QeACB*, 
y — y ' = 60° —50° = 10° => QeÁBC*. 

Podle toho leží pól Q v průniku BGA 0 ACB* Q 
H ABC*. 

b) Konstrukce. Nejdříve sestrojíme A ABC: Na kruž-
nici k = (O; 4) zvolíme bod A, v něm sestrojíme tečnu 
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ke kružnici k a úsekové úhly velikostí /? = 30° a y = 50°. 
Ramena úsekových úhlů určí na kružnici k body B a C. 
Potom sestrojíme příslušné oblouky zobrazující množiny 
hledaných pólů. Volíme oblouk APG, protože k němu 
příslušný obvodový úhel má velikost + = 90°, 
takže střed oblouku je středem úsečky AČ. 

Obr. 28 

Podle rozboru je výhodnější zvolit jako druhý oblouk 
APB s příslušným obvodovým úhlem velikosti y + y' = 
= 110°. Konstrukce je provedena na obr. 28. 

V druhé části úlohy (obr. 29) obdobným postupem 
určíme polohu pólu Q jako průsečíku oblouků BQC 
s obvodovým úhlem velikosti « — <*' = 40° a oblouku 
ČQA s obvodovým úhlem velikosti — = 30°. Tyto 
oblouky jsou výhodnější, protože rozdíl y' — y = 10° je 
příliš malý. V obou případech opět užijeme ke konstrukci 
příslušných úsekových úhlů. 
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c) Důkaz vyplývá z užitých vět a popisu konstrukce. 
d) Diskuse. Všechny tři trojúhelníky (A ABC, 

/\A1BíCl i /\A2B2G2) jsou určeny velikostmi dvou 
vnitřních úhlů a poloměru kružnice opsané, tedy jedno-
značně. Obě části úlohy proto mají po jednom řešení. 

Příklad 2. K danému rovnostrannému trojúhelníku 
ABC vepsanému do kružnice o poloměru r = 4,5 cm 
sestrojte trojúhelníky ¿\A1BlCí z relace p a AA2B2C2 
z relace q takové, aby byly pravoúhlé s jedním ostrým 
úhlem velikosti 60°. 

a) Rozbor. Podle podmínek úlohy může o velikostech 
vnitřních úhlů hledaných trojúhelníků platit: 

C. 

/ , // 
Obr. 29 

«' = 90°, p ' = 60°, ? = 90°, ý = 60°, 
<*' = 90°, y' = 60°, y' = 90°, 0' = 60°, 
P' = 90°, a ' = 60°, / = 90°, a ' - 60°. 
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Obě části úlohy proto budou mít po šesti řešeních, 
celkem dvanáct řešení. Zde provedeme pouze dvě z nich. 

Zvolme například a' = 90°, /?' = 60° = » / = 30°. 
b) Konstrukce (obr. 30). 
Je-li 0' = 60°, je P' = p, takže oblouk APC bude pro-

cházet středem opsané kružnice, neboť <£APC = 2. 
. <$ABC. Protože dále je y + / = 90°, je oblouk ÁPB 
obloukem Thaletovy kružnice nad průměrem AB. Tím 
se konstrukce pólu P značně zjednoduší. Dále pak 
postupujeme podle definice 1. 

Zvolíme-li stejné podmínky i pro sestrojení druhé 
části úlohy (obr. 31), dostaneme: 

<*' — * = 30°, p — p' = 0°,y — y' = 30°, 

takže podle věty 5 padne pól Q na přímku AC. Bude 
proto A2 = C a současně C2 = A. 
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Příklad 3. Je dán A ABC vepsaný do kružnice o polo-
měru r = 4,2 s vnitřními úhly < B A C = a. = 105° 
a -$ABC = 0 = 50°. Sestrojte trojúhelníky AA1B1C1 
a ¿\AiB2C2 z relací p a g takové, že 

a) A ^ M SÍ A B C A , 
b) A ^ A C J s A^-B(7. 

Rozbor (obr. 32). a) V prvním případě je především 
y = 180° — (a£ + /?) = 25°. Dále musí při přemístění 
platit: 

C\ = 4 => y' = « = 105°, 

At = B => ď = P = 50°, 

B, = C => P' = y = 26°. 
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Máme tedy: 

« + « ' = < * + /? = 155°, 

P + P' =P + y = 75°, 

y -f / = y + « = 130°. 

Obr. 32 

Všechny tři součty jsou menší než 180°, takže pól P 
je podle věty 4 vnitřní bod A ABC. Konstrukce se pro-
vede jako v předešlých úlohách. 

b) Ve druhém případě je « = ď, p = /?', y = y'. Zde 
dostáváme zajímavý výsledek, protože 

CL — <x' = 0 => pól Q leží na přímce BC, 

P—P'= 0 pól Q leží na přímce AC, 

y — y' — 0 => pól Q leží na přímce AB. 



Protože přímky AB, BC, AG mimo vrcholy A ABC 
již žádné další společné body nemají, zdálo by se, že 
úloha nemá řešení. Avšak podmínku -^AQB = BQG = 
= -$.CQA = 0° splňují tři nevlastní body roviny, takže 
je (obr. 33) 

GQx || AQ1 s BQs, BQt || AQ2 s CQ2; 

AQ31| BQt s CQ*. 

Obr. 33 

Příklad 4. Je dán pravoúhlý AABC S přeponou 
AB = 8 cm a úhlem <£CAB = 60°. Sestrojte AA1B1G1p 
p AABG, jehož strana AlB1 má velikost 7 cm a poloměr 
kružnice vepsané Q = 1,7 cm. 

Rozbor. Protože A ABC je pravoúhlý, má poloměr 
kružnice opsané oběma trojúhelníkům velikost poloviny 
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přepony, tj. 4 cm. ¿^A^BjC^ je určen třemi navzájem 
nezávislými prvky, tj. velikostmi poloměrů kružnice 
opsané a vepsané a strany A^B^ Při konstrukci budeme 
postupovat tak, že nejdříve sestrojíme zvlášť A ABC 
a zvlášť A ^ A C j , načež užitím věty 4 „vložíme" troj-
úhelník A^B-fii do kružnice opsané A ABC. 

Konstrukci AA1B1CÍ řešíme jako samostatnou úlohu. 
Předpokládejme, že existuje A A ' B ' C ^ AA1B1C1 (obr. 
36). 

Na kružnici opsané poloměrem r = 4 cm kolem středu 
O' umístíme tětivu A'B' = 7 cm. Označme M střed 
menšího oblouku Bude-li vrohol C' hledaného 
trojúhelníku probíhat větší oblouk A'B', bude střed S' 
kružnice vepsané trojúhelníku A'B'C' probíhat oblouk 
g1 kružnice opsané kolem bodu M poloměrem velikosti 
MA' = MB'. S důkazem správnosti této konstrukce 
se setkáme až ve druhé kapitole. Současně leží bod S' na 
rovnoběžce g2 se stranou A'B' vedené ve vzdálenosti 
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g = 1,7 om. V našem případě má tato pomocná kon-
strukce dvě řešení. 

Nyní již známe velikosti všech tří součtů a + a', 
/9 + P ' , y + y'> takže můžeme užitím věty 4 přemístit 
A A'B'C' do kružnice opsané A ABC (viz obr. 34). 

Příklad 5. K danému trojúhelníku ABC [.AB = 8, 
BC = 4, CA = 6] sestrojte ¿\AÍBLCL z dvojice [ A A B C , 
A^i-BjCY] e p podle P takový, že: 

a) ABX :CB1 = 3 : 4 , CAX : BAX = 4 : 7 a pól P je 
vnitřní bod A ABC. 

b) ABT \CBÍ = 9 : 16, BCX : ACX = 6 : 7 a pól P 
— 

leží v polorovině ABC*. 

Řešení. V obou případech nejdříve zjistíme velikosti 
poměrů, které v úlohách nejsou zadány. Použijeme věty 9. 

. ABT CAY 
a ) -čB7 q BA;-

AB± BC± 
; CB1 ' ACX

 Q ~~ 16 

3 4 , 7 BCX 

9 
AGL 

CAX 6 , 56 
= 2 7 = B A i 
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Je výhodné provést tyto výpočty ještě před vlastním 
provedením konstrukce, protože lze vypočteného poměru 
často použít k zajištění větší přesnosti. V daném případě 
je strana BC = 4 nejmenší a to, jak uvidíme dále, pů-
sobí při konstrukci určité potíže. 

Zde využijeme v obou případech známého vztahu, že 
osa úhlu v trojúhelníku dělí stranu trojúhelníku na dvě 
části, jejichž velikosti jsou v poměru velikostí přilehlých 
stran. V daném případě a) například máme sestrojit troj-
úhelník ABXC, jehož strany mají velikosti v poměru 

Rozdělíme proto úsečku AG v udaném poměru a dělicí 
bod označíme B0. Osa strany AG nechť protne opsanou 
kružnici v bodě [5] ležícím na větším oblouku ABC. 
Přímka [-B]-B0 pak protne menší oblouk kružnice mezi 
body i » Ó v hledaném bodě BV Že tomu tak skutečně 
je, snadno dokážeme, neboť jsou-li oblouky A[B] a C[B] 
shodné, jsou shodné i k nim příslušné obvodové úhly 
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•¿fiAB^E] a ^CB^B], Stejným způsobem sestrojíme 
i další bod, zde nejlépe bod C\, takže přímky BBT 
a CC1 se protnou v hledaném bodě P. 

V případě b) postupujeme obdobně s tím rozdílem, že 
oba body [B] a [C] leží na oblouku ABC (obr. 37). 

Je třeba ještě připomenout, že předcházející dvě úlohy 
> > 

mají více řešení, a to v polorovinách ABC*, CAB*, 

BCA*. Není-li však daný trojúhelník tupoúhlý, jako je 
tomu v našem případě b), jsou konstrukce tak obtížné, 
že nelze zaručit jejich přesnost, a nemají tedy praktický 
význam. 

Příklad 6. Jsou dány tři úsečky velikostí a, b, c. 
Úsečku c rozdělte na dvě části, jejichž velikosti jsou 
v poměru aa : b2. 
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Rozbor. Ke konstrukci užijeme věty 9. Bude-li totiž 
ABX = BCX = a A CBl = AC1 = b, bude podle věty 9 

ABX BC^_ CAX 

CBi 
a 
6" 

takže 

a odtud 

5.4 x 

a2 CA± 
b2' BAy  

CAt 6» 
B^! ~~ o8 

C A 
= 1. 

= 1 

Konstrukci provedeme podle obr. 38: 
Narýsujeme libovolnou kružnici k a na ní zvolíme bod 

B. Od bodu B naneseme po řadě tětivy BC\ = a, CXA — 
= b, ABX = a, B f i = b. Přímky BBX a CCX se protnou 
v bodě P. Potom přímka AP určí na kružnici k bod Ax 
a podle věty 9 platí 

BAX :,CA1 = a2 : b2, 
a i-
bi-
ci" 

Obr. 38 
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načež danou úsečku velikosti c rozdělíme v poměru 
BAX : CAX. 

Poznámka. Jsou-li dané úsečky a, b příliš veliké, je 
možno je zmenšit ve vhodném libovolně zvoleném po-
měru. 

Příklad 7. Do kružnice k = (O; 40) vepište A ABC 
[.AB = 45; <$ABC = 120°]. Na polopřímce OA určete 
bod M (OM = 80). Bodem M vedte přímku m ±OA. 
Do kružnice k pak vepište AA1B1C1 tak, aby se dvojice 
přímek (AB, l~3i), (BC, BfiJ a (CA, C ^ ) protínaly 
po dvou na přímce m. 

Rozbor. Protože přímka m nemá s kružnicí k žádný 
společný bod, budou podle věty 1 přímky AAlt BBt 
a CCi procházet bodem ležícím uvnitř kružnioe k a přím-
ka TO bude polárou tohoto bodu. Na obr. 39 je to bod P. 

B, ^ 

A 1 

A ó' B 
o 

m Obr. 39 
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Konstrukci bodu P provedeme tak, že nejdříve vede-
me středem O kružnice k kolmici na přímku m, tj. přím-
ku OM. Bod M je sdružený pól k hledanému pólu P. 
Ten pak sestrojíme například pomocí tečny vedené z bo-
du M ke kružnici k, jejíž dotykový bod leží na kolmici 
vedené pólem P na přímku OM. Potom nám polopřímky 
AP, BP a CP určí na kružnici k hledané vrcholy 
AAjBjC» 

Takto zadaná úloha má vždy jedno řešení, pokud přím-
ka m není tečnou kružnice k. To platí i v tom případě, že 
přímka m protne kružnici k. O tom nás přesvědčí řešení 
další úlohy. 

Příklad 8. Do kružnice k = (O; 40) vepište A ABC 
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(iOM = 15) a vedte jím přímku m _L OB. Potom vepište 
do kružnice k trojúhelník A2B2G2 tak, aby se dvojice 
přímek (AB, A^2), (BG, B2C2) a (CA, C^A2) protínaly 
po dvou na přímce m. 

Rozbor. Jde o obdobu úlohy z příkladu 7 s tím rozdílem, 
že daný bod M je sdruženým pólem pólu Q ležícího ve 
vnější oblasti kružnice k. 

Bod Q sestrojíme v tomto případě tak, že v průsečí-
cích přímky m s kružnicí k vedeme tečny k této kružnici 
a ty se protnou v hledaném bodě Q. Potom přímky QA, 
QB a QC určí na kružnici k vrcholy hledaného AA2B2G2 . 

Také takto zadaná úloha má právě jedno řešení, pokud 
přímka m není tečnou kružnice k. 

Na závěr je třeba ještě připomenout toto: 
Podle výsledku příkladu 4 zřejmě můžeme k danému 

trojúhelníku umístit do kružnice jemu opsané trojúhel-
ník podobný k libovolně zvolenému trojúhelníku tak, 
aby spolu s daným vytvořili dvojici z relace p nebo q. 

Ve cvičeních, která následují, jsou uvedeny ještě někte-
ré další úlohy jiného typu, než je ukázáno v příkladech. 
Vzhledem k shora uvedené připomínce je zde volba 
a možnost různých kombinací nevyčerpatelná. 

Cvičení 

1. Do kružnice k = (O; 3) vepište AABC [a = BC = 5,5; 
c = AB = 4]. Sestrojte AAlBlGl Z relace A ABC p 
p AA1B1C1 podle P[AP = 2,5; BP = 2]. 

2. Do kružnice o poloměru r = 32 mm vepište rovnoramenný 
AEFO, jehož základna EF má velikost 40 mm. Sestrojte 
AEtFtQi q AEFG podle pólu Q, je-li FQ = 40 mm, 
OQ = 75 mm. 
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8. Je dán A ABC [AB = 6; BC = 3,5; -ZABC = 60°]. Se-
strojte AAtBtCt z relace q podle pólu Q, který leží na 
prodloužení strany AB za bod B tak, že BQ = 2. 

4. Trojúhelník RZJT mé velikosti stran v poměru RU : UT : 
: TR = 4 : 5 : 6 . Určete polohu pólu Q tak, aby platilo 
ARVT SŽ AÍVř.TjA ARUTq ARtUtTt podle Q. 

5. Je dán A ABC [AB = 5; r = 3; vc = 4], kde r je velikost 
poloméru kružnice opsané a vc velikost výšky příslušné 
ke straně AB. Bod (případně Gt) půlí oblouk AB kruž-
nice A ABC opsané a vzdálenost pólii P (případně Q) od 
přímky AB má velikost d = ve. Sestrojte AA1B1C1 

z relace p podle P (případně AAtBtC, z relace q podle Q). 
6. Do kružnice o poloměru r = 3 cm vepište pravidelný pěti-

úhelník. Dva jeho sousední vrcholy označte A, B a zbý-
vající tři vrcholy <7„ Alt B1 v libovolném pořadí (půjde-li 
o relaci q, změňte indexy na A„ Bt). Utvořte všechny 
dvojice [A ABC, A ^ A O j G p , případně [A ABC, 
A-4frBjC,] tak, aby všechny možné obměny v pořadí 

vrcholů C, Au B, nebo C, A„ B% byly vyčerpány. Zapište 
všechna výsledná pořadí šesti bodů na opsané kružnici. 

7. Neleží-li pól P nebo Q na žádné straně A ABC ani na je-
jich prodloužení, neleží ani na žádné straně A^i-BiCl nebo 
AA,BtCt z relací p nebo q ani na jejich prodloužení. 
Dokažte 1 

8. Trojúhelník EFG je dán velikostmi stran, a to: EF = 
= 7 cm, FG = 5 cm, GE = 6 cm. Pól P leží na straně EF 
tak, že EP : FP = 3 : 2 . Sestrojte dvojici AE^F^G^ p 
p AEFG podle P, aniž narýsujete kružnici AEFG opsa-
nou. 

9. Základna rovnoramenného A ABC má velikost AB = 3 cm 
a jeho ramena AG = BG = 5 cm. Na prodloužení strany 
AB za bod B leží pól Q tak, že AQ : BQ = 7 : 5. Sestrojte 
dvojici [ AAtBtGlt AABCJeq podle Q, aniž narýsujete 
kružnici A ABC opsanou. 

10. Trojúhelníky A ABC p AAlBlG1 podle P mohou být na-
vzájem shodné nebo neshodné, avšak nemohou být podob-
né s poměrem podobnosti různým od 1. Odůvodněte! 

11. Upravte text úlohy 10 takto: Existuje dvojice [ A A B C , 
A ^ i ^ i C J e p podle P taková, že A ABC ~ A 

Ukažte na rozdíly v textu a uvažte, je-li takto upravený 
výrok pravdivý. 
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12. Rovnoramenný A K t L t M t ee základnou K,Lt = 4 cm je 
v relaci q podle pólu Q ležícího na přímce K,Lt s A K L M 
rovněž rovnoramenným se základnou KL. Sestrojte 
vrcholy M a M,. 

18. Trojúhelníky A ABC a AA1BlC1 mají společnou kružnici 
opsanou k = (O; 3,5), přičemž je AB = 5, lABC = 76°, 
A1B1 = 7 a velikost výšky příslušné ke straně .4,1?, je 
r , = 2,5. Umístěte tyto trojúhelníky do kružnice k tak, 
aby přímky AA l t procházely týmž bodem 
uvnitř společné kružnice opsané. 

14. Úlohu 13 řešte tak, aby společný bod přímek ÁÁlt hÉ1 

, byl vně kružnice opsané. Indexy se ovšem změní! 
15. K danému trojúhelníku RTU vepsanému do kružnice k = 

= (O; 3,8), jehož vnitřní úhly mají velikosti -Š.TRU = 
= 120°, -^UTR = 46°, sestrojte rovnostranný trojúhelník 
a) ARIT1U1 Z relace p podle P, 
b) A R » T t U x z relace q podle Q. 

16. Je dán rovnostranný A ABC. Sestrojte pravoúhlý rovno-
ramenný AAiBiCl Z relace q podle Q. 

17. Je dán A ABC s vnitřními úhly -$ABG = p = 40° a 
•ŽACB = y = 60° vepsaný do kružnice k = (O; 3,6). 
Narýsujte dvojici [ A^i-BjC,, A ABC] 6 p podle P tak, 
aby bylo •$.A1C1B1 = <x, •ÍAlBíCl = y. Jaký je vztah 
mezi těmito trojúhelníky? Zapište! 

18. Vyšetřete množinu všech pólů P určujícíoh dvojice troj-
úhelníků [ A ABC, AAjBfii] e p podle P takové, že vnitř-
ní úhly A ABC mají velikosti a. = 40° a /? = 65° a jim 
odpovídající vnitřní úhly AA1BlCl velikosti «' = 60°, 
P' < 90°. 

19. Vyšetřete množinu všech pólů Q určujících dvojice troj-
úhelníků [ A K L M , AKjLjM^eq podle Q, víte-li, že 
KL = 6,5; LM = 4 a KLM = 1 1 0 ° a současně je 
-$KtLtMt = 70" a K2LX S 6,5. 

20. Sestrojte dvojici [ A UHP, A UJIyF^ e p podle P vepsa-
nou do kružnice o poloměru r = 4 cm, jsou-li velikosti 
vnitřních úhlů <£ UHF = 120°, < UFH = 26°, -i U1H1Fl = 
= 109°, ^.FyUyHy = 25°. 

21. K trojúhelníku KMZ s vnitřními úhly velikostí -¿¡LKZM = 
= 30°, -$ZKM = 40° sestrojte AK1MlZ1 S vnitřním 
úhlem -$:KlMxZ1 = 130° z relace p podle pólu P, který 
půlí poloměr společné kružnice opsané. 
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22. Trojúhelník ABC je dán velikostmi stran: AB = 5 cm, 
BC = 3 cm, GA = 7 cm. Sestrojte všechny rovnoramenné 
ísA^B^Gi nebo AAtBtGt z relací p nebo q podle pólů P 

nebo Q ležících na přímce AB. 
28. Opakujte úlohu 22, avšak slova „podle pólů ležících na 

přímce AB" nahraďte slovy „takové, že A1B1 = AB nebo 
37»! - AB"-

24. Je dán AKiL1M1 vepsaný do kružnice o poloměru r = 3,5, 
jehož strany mají velikosti KlLí = 4 a LlMl = 3. Narý-
sujte A K L M , který je s daným trojúhelníkem v relaci 
p podle P a je pravoúhlý s odvěsnami, jejichž velikosti 
jsou v poměru 3 : 4. 

25. Do kružnice o poloměru r = 4 cm vepište dvojici [ A ABC, 
A 4 , B 2 C , ] e g podle Q tak, aby bylo A%Bt = BO = 6,8 
cm, Bt0t = 1/2 AG = 2,5 cm. 

26. Narýsujte dvojici [ AK^M» A KLM] e p podle P, kde 
r = 3, -$KLM = 60°, Jf.LMK = 46° a současně je 
KlLl || KL, LXMX || LM. 

27. Sestrojte dvojici [AEFQ, A í / A l e p podle P nebo 
[A EFG, AE,FtG,] e q podle Q, víte-li, že EF = 48 mm, 
•Š.EFG = <^ElF1Gl nebo -£EtFtGt = 60°, <£GEF = 
= 45° a E& J_ EF nebo EtGt i . EF. 

28. K danému A ABC, kde AB = 4,6; QABO = 110°, BC = 6, 
sestrojte AA1B1Cl Z relace p podle P pravoúhlý s přeponou 

nebo AAtBtOt rovněž pravoúhlý s přeponou B2C2. 
2». K danému trojúhelníku HJK [HJ = 7, JK = 6, KH = 

= 6,5] narýsujte AHlJlK1 Z relace p podle P, kde HlJí = 
= JxKi = 6, a AHtJtKt z relace q podle Q, kde i?2J, = 
= JtKt = 5. 

80. Je dán AA1B1Cl z relace p podle P [ ^ B , = 4,5; •$A1BlCl 
= 60° a poloměr opsané kružnice r = 3]. Narýsujte pří-
slušný AABO tak, aby bylo AB = 6,5 A AB || A^B^ 

81. Dokažte pravdivost vět obrácených k větám 4 a 5. 
82. Jsou dány velikosti některých vnitřních úhlů dvojice 

[ A A B C , A^i-BiOilep podle P. Určete polohu pólu P: 
a) a = 40°, p = 60°, «' = 60°, P' = 70°; 
b) ac = 30°, 0 - 70°, a.' = 150°, 0' = 20°; 
c)<x = 80°, a' = 110°. 

88. Jsou dány velikosti některýoh vnitřních úhlů dvojice 
[ AABC, AAtBtOť\. Určete polohu pólu Q: 
a) a = 80°, p = 60°, <*' = 50°, P' = 40°; 
b) « = 70°, p = 40°, a' = 90°, P' = 60°. 

66 



84. Je dán A K L M [KL = 6 cm, LM = 7 cm, <£KLM = 
= 60°] a přímka p _L KL, jejíž vzdálenost od vrcholu L 
je 4,5 cm. Opište kružnici A KLM a do ní vepište A K'L'M' 
tak, aby se dvojice stran KL a K'L', LM a L'M', MK 
a M'K' protnuly na dané přímce p. 

85. Do dané kružnice vepište pravoúhlý trojúhelník, jehož 
odvěsny mají velikosti v poměru 3 : 6 ! 

80. Vrcholy trojúhelníků ABO a A1B1Gl leží na společné 
kružnici opsané tak, že ABt : CBX = 3 : 4 , CAX : BAl = 
= 4 : 7 . Určete poměr BCr

l : ACX\ 
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B. S L O Ž E N É R E L A C E 

V první části této kapitoly jsme poznali základní vlast-
nosti relací p a Q. Protože v dvojicích 

[ A ABC, A ^ I - B I C J e p a [ AABC, AA2B2C2]EQ 

jsou první složky shodné, můžeme relace p a Q složit, 
a to ve dvou pořadích: 

A^IBI^P AABCQ AA2B2C2 

nebo 
AATBIC2 Q AABC P AAJBJC^ 

Tyto složené relace mezi AALB1CL a AAJB2C2 pak 
můžeme psát zjednodušeně: 

AA1B1C1P O Q AA2B2C2, 
AA2B2C2 QOP AA1B1C1 

nebo také 
[AAÍBJPU a A ^ c ^ E P O Q, 

[AA2B2C2, AA&CJEQ OP. 

Víme dále, že tvar jednotlivých složek v relacích p 
a Q závisí na poloze pólů P &Q. Můžeme proto v množině 
MT utvořit nekonečně mnoho složených relací p o Q 
nebo QOP tím, že budeme polohy pólů P a Q různě 
kombinovat. Tu se pak naskýtá otázka, existuje-li ta-
ková dvojice pólů P a Q, aby uvažované složené relace 
byly shodnosti 

AA-BA ^ AA^2C2, AA2B2C2 ES A^I-BA-
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Pokud takové dvojice pólů P a Q existují, budou relace 
p O q a q o p zobrazením v MT. Protože prvky mno-
žiny Mt jsou všechny trojúhelníky vepsané do dané 
kružnice ic, lze předpokládat, že uvažovaným zobraze-
ním bude identita, otáčení nebo středová či osová sou-
měrnost. 

Ukážeme, že v úvahu připadá právě osová souměr-
nost. 

Věta 10. Je-li daný A ABC první složkou v relacích 

[AABC, ¿sAxBxCx]ep& [AABC, 
A^a-BjCa] e g , 

potom trojúhelníky A ABC a /\AXBXCX jsou téhož smyslu 
a trojúhelníky A ABC a ¿\A2B2C2 opačného smyslu. 

Důkaz. Věta obsahuje dvě tvrzení. 
a) Na obr. 9 leží pól P uvnitř A ABC, z čehož plyne, 

že polopřímka AAX = AP odděluje body B a C, polo-
přímka BBX = BP body A a C, polopřímka CCX body 
A a, B. Leží tedy vrcholy A ABC a A-^i-BiCi na kružnici 
k v pořadí A C1BA1C Bx, takže trojúhelníky A ABC 
a AA1B1C1 jsou téhož smyslu. (1.22) 

> 
Na obr. 10 leží pól P v polorovině ABC*, takže polo-

přímka Čdx = ÓP odděluje body i a S . í j a Ax, A a Alr 
Bx a B, odkud plyne toto pořadí: A C B AXCX Bx, ne-
boli A ABC a ¿\AXBXCX jsou opět téhož smyslu. (1.23) 

Podle (1.22) a (1.23) jsou trojúhelníky [ A A B C , 
A -^ I -B A ] e p vždy téhož smyslu, neboť cyklické zá-
měny vedou k stejným závěrům. 

b) Na obr. 41 vlevo leží pól Q uvnitř ^ACB, takže 
polopřímka CC2 = CQ odděluje body A a B. Proto po-
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lopřímky QÁ = QA2 a QB = QB2 leží v opačných polo-
rovinách QCA a QGB. Jsou proto možná právě čtyři 
různá pořadí vrcholů A ABC a l\A2B2C2 na kružnici k: 

CA2ACJBB2, CAA2C2B2B, CA2AC2B2B, CAA2C2BB2. 

Ve všech čtyřech případech jsou A ABC a l\A2B2C2 
smyslu opačného. 

v 

(1.24) 

Obr. 41 

Na obr. 41 vpravo leží pól Q uvnitř úhlu vrcholového 
k ^cBAC. Zde polopřímka QA2 = QA odděluje body 
B a C, takže polopřímky QB2 = QB a, Qd2 E= QC leží 

> > 
v opačných polorovinách QAB a QAC. Odtud pak plyne 
jediné možné pořadí vrcholů na kružnici k: A B2 B A2 C 
C2, neboli A ABC a £\A2B2C2 jsou opačného smyslu 
jako v případě (1.24). (1.25) 
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Tím je pravdivost věty 10 dokázána. Jaký však je 
význam této věty? Je-li A ABC téhož smyslu jako 
l\AíB1C1 a opačného smyslu než ¿\A2B2C2, musí byt 
trojúhelníky l\AlBlC1 a AA2B2C2 smyslu opačného. 
Potom ovšem složená relace A^1BlC1 p O q /\A2B2C2 
v Mt nemůže být ani identitou, ani otáčením nebo stře-
dovou souměrností. Zbývá proto právě souměrnost 
osová. 

Nyní už jde jenom o to, existuje-li vůbec taková dvo-
jice pólů P a Q, aby bylo /\AlB1C1 ^ /\A2B2C2. 

Věta 11. Mějme dvojici trojúhelníků ¡\AyBfiy p o q 
i\A2B2C2 takovou, že je současně AA1B1C1 ^ &A2B2C2, 
potom přisluSné póly P aQ jsou sdružené póly vzhledem ke 
spóle6né kružnici těmto trojúhelníkům opsané a přímka 
PQ je osou souměrnosti uvažované dvojice trojúhelníků. 

Důkaz si zjednodušíme tím, že nejdříve dokážeme plat-
nost věty obrácené. 

Na obr. 42 jsou body P a Q sdružené póly vzhledem ke 
kružnici k. Přímka AP protíná kružnici k v bodě Alt 

přímka AQ v bodě A2. Dále je p J_ P§ polára bodu P 
vzhledem ke kružnici k a A0 průsečík přímky AAX 
s polárou p. 

Z vlastností sdružených pólů P a Q plyne 

(A A1P A0) = - 1 , neboli ^ : = - 1 . 

To znamená, že úsečka AAX je body P a A0 dělena 
harmonicky a také polopřímky QA, QAlt QP a QA0 tvoří 

61 



harmonickou čtveřinu. Současně je <$.PQA0 pravý, z če-
hož plyne, že polopřímky QP a QA0 jsou osami vedlej-
ších úhlů, z nichž jeden je AQAv Polopřímky QA 
a QAX jsou proto souměrně sdruženy podle osy 
a protože osa PQ prochází středem kružnice k, jsou podle 
ní souměrně sdruženy i body Ax a At. (1-26) 

Zobrazíme-li takto i zbývající dva vrcholy B a C 
libovolného A ABC, budou podle (1.26) podle osy PQ 
souměrně sdruženy i dvojice vrcholů [Bx, B2] a [Cx, Č7J. 
Tím jsme dokázali, že existuje aspoň jedna dvojice pólů 
P a Q, která splňuje větu 11. Zbývá proto dokázat, že 
vedle dvojice sdružených pólů P a Q žádná jiná taková 
dvojice již neexistuje. Že tomu tak skutečně je, to plyne 
z vět 6 a 8, protože dvojicemi úhlů [a, a'], [/?, /?'] a [y, y'] 
je určen právě jeden pól P a jeden pól Q. 
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Přímým důsledkem věty 11 je věta další: 

Víta 12. Je-li v množině, MT dána trojice trojúhelníků 
A-<4i ByGx p A ABC q A ^ A ^ taková, že je současné 
AAlBlCl ^ /\A2B2C2l potom existuje v množinéMT také 
&A'B'C, o nimž platí 

AA2B2Ctp A A ' B ' C ' q A ^ M A 
A A A'B'C' ^ A ABC. 

Obr. 43 

Důkaz (obr. 43). Podle věty 11 jsou polopřímky QÁ 
a QAX souměrně sdruženy podle^osy Protíná-li 
polopřímka QAX kružnici k (souměrnou podle téže osy) 
v bodě A', jsou i body A a A' souměrně sdruženy podle 
osy Na obr. 43 jsou vrcholy B, C, B', C' pro pře-
hlednost opět vynechány. Zřejmě se však i na ně vzta-
huje věta 11, takže také dvojice trojúhelníků A ABC 
a AA'B'C' je souměrně sdružena podle téže osy. V této 
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souměrnosti je bod P samodružný, takže jím procházejí 
dvojice přímek A2A' a A[A , B2B' a B^B, C2C' a Cfi. 
Rovněž bod Q je samodružný s obdobnými důsledky 
jako u bodu P. 

Věty 11 a 12, protože jejich pravdivost vyplývá 
z vlastností sdružených pólů, mají několik bezprostřed-
ních důsledků, jichž lze s výhodou využít při konstruk-
cích i řešení některých úloh. Uveďme aspoň ty nejdůle-
žitější: 

1. Osa souměrnosti PQ dvojic [ A - ^ i ^ A . AA2B2C2] e 
epoq i [ A A B C , AA'B'C'] epo q prochází středem 

společné kružnice opsané uvažované čtveřici trojúhel-
níků. 

2. V první části této kapitoly jsme se setkávali se 
situacemi, kdy bylo obtížné sestrojit oblouky množin 
všech pólů Q, když některý z rozdílů |<* — <*'|, |/? — /9'| 
nebo | y — y'\ byl příliš malý, takže pól Q padl daleko 
mimo nákresnu. V tom případě je snazší sestrojit nejdříve 
sdružený pól P užitím součtů <x + <*', /? + /?' nebo 
y + y' a potom teprve AA2B2C2 užitím osové souměr-
nosti. 

3. Jiné usnadnění konstrukcí poskytují známé vztahy 
mezi sdruženými póly: 
a) Platí OP.OQ = r2, kde OP a OQ jsou vzdálenosti 

sdružených pólů od středu kružnice opsané a r velikost 
jejího poloměru. To plyne z Euklidovy věty o odvěsně 
(viz obr. 44). 
Sestrojíme-li k dané kružnici k a pólu Q sdružený pól 
P užitím tečen, je -$.QTO pravý a v pravoúhlém 
AQTO platí 

ÓP.ÓQ = ÓT2 = r2. (1.27) 
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b) Mocnost pólu P ke kružnici k je ^ = AP.A^P = 
= PT2 = vkde v značí velikost poloviny tětivy kruž-
nice k vedené kolmo na přímku PQ v bodě P (obr. 
45). V pravoúhlém fcOPT je podle Pythagorovy věty 

^ = v2 = r2— OP2. (1.28) 
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c) Mocnost pólu Q ke kružnici k je QA.QA2 = QT8 = í2, 
kde t je velikost tečny vedené z pólu Q ke kružnici k 
(obr. 46). 
V pravoúhlém &OQT je 

^ = ť« = Ogi _ r«. (1.29) 

d) Podle (1.28) a (1.29) pak je 

— /"i = t2 — v1 = PQ*. (1.30) 

e) PA : PAX - QA : QAV 

Tento vztah plyne z /\AAXQ (obr. 42), kde PQ je 
osou ¿SiAQAi, a proto jeho strany AQ a AXQ mají 
velikosti v poměru 

AP:AJ>. (1.31) 

f) Vezmeme-li v úvahu ještě věty 1 a 2, vidíme podle 
obr. 47, 



že v trojúhelnících A ABC, &A'B'C, A ^ A 
a l\A2B2C2 se protínají odpovídající si strany na 
třech přímkách, a to: 
— na přímce PQ dvojice z A ABC a A A'B'C, 

AA1B1C1 a AA2B2C2, 
— na poláře p pólu P z A ABC a AA^Bfi^, ¿\A'B'C' 

a A A ^ C Z , 



— na poláře q pólu Q z A ABC a A A^B2C2, AA'B'C' 
a A^i-BA-

Z mnoha dalších složených relací, které lze v množině 
MT utvořit, stojí za zmínku ještě jedna, jejichž vlast-
ností využijeme v dalších kapitolách. 

Věta 13. Je-li dvojice [AABC, AA^C^ep, nebo 
dvojice [A.ABC, AA^B^^ eq, potom existuje v množině 
Mt takový A ABC, jehož vrchol A je soumémě sdružen 
s vrcholem A podle osy úsečky B1C1 nebo B2C2, vrchol B 
s vrcholem B podle osy úsečky nebo A2C2 a vrchol C 
8 vrcholem C podle osy úsečky AlBí nebo A2B2, přičemž 
přímky AXA, BXB a G-fl, nebo A2A, B%B a C2C procházejí 
tým£ bodem. 

Důkaz. Zde musíme nejdříve dokázat, že platí věta 
obrácená k větě 9. Předpokládejme proto, že o dvou 
trojúhelnících A ABC a AAlB1C1 se společnou kružnicí 
opsanou platí podle věty 9 

ABX BCi CAj _ 
CBX ' ACX ' BAt ~ 

a současně přímky AAlt BBt a CCX neprocházejí týmž 
bodem (obr. 48). (1.32) 

Nechť přímky AA1 a BB1 se protnou v nějakém bodě 
P'. Potom polopřímka CP' protne kružnici k v bodě 
C[ # Cv Podle věty 9 pak platí: 

ABX BC[ CA1 = 

CBt ' AC[ ' BA1 
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a podle předpokladu (1.32) také 
AB, BC, CA, = AB, BC, CA, 
CB, ' AC, ' BAl ~ CB, ' AC[ ' BAX ~ ' 

neboli C, = C, a také P = P', což je v rozporu s před-
pokladem (1.32), takže platí věta obrácená k větě 9, a to 
v celém rozsahu, protože v druhém tvrzení věty 9 jde 
o pouhou záměnu indexů. 

Obr. 48 Obr. 49 

Dále je na obr. 49 zobrazena trojice trojúhelníků 
A ABC, AA1B1C1 a A ABC podle věty 13. Z konstrukce 
vyplývá, že 

AB, = AC„ BC1 = BA,, CA, = ČB,\ 
CB, = CA„ AC, = AB„ BA, = BC,. (L33) 

Dosadíme-li podle (1.33) do výrazu 
AB, BC, CA, 
CBt ' ACX ' BAX 
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dostaneme 
AC, BA, CB, = 

CA, AB, BC, 
a po úpravě 

AB, BC, CA, _ l 

GB, AC, BA, 

což podle obrácení věty 9 znamená, že přímky AA„ 
BBX a CG, procházejí týmž bodem P, nebo přímky AA2, 
BB2 a CC2 bodem Q. Přitom nevylučujeme možnost, že 
bod P leží vně kružnice A ABC opsané, nebo naopak 
bod Q uvnitř. Podrobněji o tom pojednáme až ve třetí 
kapitole. / 

Zde zatím omezíme své úvahy na případ, kdy pól P 
leží uvnitř A ABC, takže všechny tři trojúhelníky, tj. 
A ABC, /\A,B,G, a A ABC, jsou téhož smyslu, protože 
dvojice vrcholů [A, A], [B, B] a [C, G] leží při kon-
strukci podle věty 13 na týchž obloucích opsané kruž-
nice omezených vrcholy /\A,B,GV V důsledku toho leží 
i pól P uvnitř A ABC. 

V tomto omezení budeme vztah mezi ¿\A,B,C, 
a A ABC zapisovat takto: 

A A,B,C,p A ABC podle P, nebo 

[AA,B,C„ AABČ] ep podle P 
a také 

AA,B,C, p A ABC podle P, nebo 

[MAOi, AABČ] ep podle P . 
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V relacích (AABCpAA^C^ a (&A1B1C1p A 
A ABC) je opět jedna složka společná, a proto je může-
me složit dvěma způsoby: 

A ABC p A ^ i S A p A ABC = A ABC pop A ABC 
podle P, 

A ABC p A ^ I - B A p A ABC = A ABC p o p A ABC 
podle P. 

Druhý zápis složené relace prozrazuje, že jde o symet-
rickou relaci, neboť věta 13 platí, i když zaměníme 
označení vrcholů A ABC za A, B, C. Vztah mezi veli-
kostmi vnitřních úhlů uvažované trojice trojúhelníků 
pak vyjadřuje věta 14. 

Věta 14. Má-li trojice trojúhelníků ze složené relace 

AABC p A^i-BjCj p A ABC podle P 

vnitřní úhly po řadí velikostí a., /?, y; a', /?', y'; a, P, y 
a příslušný pól je vnitřní bod A ABC, potom o velikostech 
těchto úhlů platí: 

a = 180° — (a + «'), P = 180° — (p + p% 
y = 180° — (y y'). 

Důkaz. Na obr. 49 je 

a = BAC = -^A^AB + A^AG. (1.34) 
Podle věty 13 je 

A Ji -- CXB => ^AXAB = -ZC&B - -ZC&P, 
AjC - B±C =» ^AXAČ -- -¡¡iBfi^C = -$BíClP. 
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Dosadíme-li tyto hodnoty do (1.34), bude 

a = <£BAC - ^GyByP + ^ByCyP = 180° — 

— <B1PC1 

a podle věty 4 
a = 180° — (« + «')• 

Zbývající dvě tvrzení věty 14 vyplývají z cyklických 
záměn. 

Právě dokázaná věta 14 má dva přímé důsledky: 
1. « + + a = 180°, p + p' + p = 180°, y + y' + 
+ y = 180°. (1.35) 
2. Vnitřní úhly v &ABC mají velikosti (viz obr. 49): 

•ZCPB, = <£BPCl = a = 180° — (« + <*'), 

ZAPC, = ^CPA, = 0 = 180° — (P + P'), 

<APB! = = y = 180° — (y + / ) , 

neboť například -^CPB, je vedlejší k <$BPC = « + «', 
takže 

3LCPB, = 180° — (<x + a') = a. (1.36) 

Možnosti vytváření dalších složených relací nejsou 
dvěma typy uvedenými v této kapitole ještě zdaleka 
vyčerpány. Protože však pro následující úvahy s těmito 
dvěma typy dobře vystačíme, uzavřeme kapitolu něko-
lika příklady a cvičeními. 

Příklad 1. Vyšetřete množinu všech vnějších pólů 
Q, jestliže s nimi sdružený pól P probíhá poláru pólu Q 
vzhledem ke kružnici k opsané danému /\ABC. 
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ŘeSení. Podle zadání sestrojíme libovolnou kružnici 
k = (O; r) a přímku h jdoucí středem O kružnice k 
(obr. 50). Na té části přímky h, která je uvnitř kružnice 
k, zvolíme bod P já O. Nechť bod P je jedním z dvojice 
sdružených pólů P a Q\ Vnější pól Q dostaneme tak, 
že v bodě P narýsujeme poláru q _L OP. Její průsečíky 

s kružnicí k označíme T, a T2 a v nich sestrojíme tečny 
ke kružnici k. Průsečík těchto tečen leží na přímce h 
a je vnějším pólem Q. Popsanou konstrukci nyní zopa-
kujeme pro bod Px =é P zvolený na přímce q uvnitř 
kružnice k. Bodem P, vedeme kolmici na přímku OP, 
a ta protne kružnici k v bodě T8. Tečna kružnice k 
v bodě Ta se protne s přímkou OP, v bodě Q, vně kruž-
nice k. 
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Trojúhelníky AOTxQ a A0TaQx jsou podle konstruk-
ce pravoúhlé. Platí proto podle věty Euklidovy: 

OP.OQ = OT\ = r8, 
OP^OQ,. = OT\ = ra, 

takže 
OP.OQ = OP1.OQ1 a také OP : 0PX = 

= 0 ^ : 0 ( 2 . (1.37) 

Trojúhelníky /\OPP1 a ¿\OQxQ mají ještě společný 
úhel ^POPj = -ZQiOQ, takže podle (1.37) a věty sus 
o podobnosti trojúhelníků jsou podobné. Protože 
AOPPi je pravoúhlý, je také AOQIQ pravoúhlý s pra-
vým úhlem při vrcholu Qv 

Dospěli jsme k závěru: 
Hledanou množinou všech pólů Q je oblouk Thaletovy 

kružnice sestrojené nad průměrem OQ, přičemž oblouk 
TJOTÍ není částí této množiny. 

Příklad 2. Je dán rovnostranný A K L M . Sestrojte 
čtveřici trojúhelníků podle věty 12 z relací p a q podle 
sdružených pólů P a Q tak, aby vnější pól Q ležel na 
přímce rovnoběžné se stranou KL daného trojúhelníku 
a přímky KK1 a LLX byly navzájem kolmé! 

a) Rozbor (obr. 51). Protože A KLM z hledané čtve-
řice je dán, jde o to, abychom správně určili podle pod-
mínek úlohy polohu aspoň jednoho z dvojice sdružených 
pólů. Víme, že oba póly leží na přímce h || KL jdoucí 
středem kružnice l\KLM opsané. Přímky KK1 a LL1 
procházejí pólem P. Protože mají být navzájem kolmé, 
bude < K P L = 90°. Zřejmě tedy leží pól P na Thaletově 
kružnici opsané nad průměrem KL a úloha bude mít 
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nanejvýš dvě řešení. Jakmile známe polohu pólu P, je 
hledaná čtveřice trojúhelníků jednoznačně určena a mů-
žeme ji sestrojit (obr. 51 vlevo). 

b) Konstrukce (obr. 51 vpravo). Podle zadání sestro-
jíme kružnici k a vepíšeme do ní rovnostranný trojúhel-

M 

nik KLM. Jejím středem 0 vedeme přímku h || KL a nad 
průměrem KL opíšeme oblouk Thaletovy kružnice. 
Jeho průsečíky s přímkou h označíme P a P'. Příslušné 
vnější póly Q a Q' ani sestrojovat nemusíme; využijeme 
souměrnosti hledaných útvarů podle osy h. Především 
narýsujeme A K'L'M' souměrně sdružený s A KLM 
podle osy h. Všechny ostatní vrcholy hledaných troj-
úhelníků ¿sK^LyM, a /\K2L2M2 určíme pomocí pólů 
P a P'. 
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c) Důkaz. Konstrukce je provedena podle věty 12 
a podle definic 1 a 2. Tím je její správnost prokázána. 

d) Diskuse. Již v rozboru jsme naznačili, že úloha může 
mít nanejvýš dvě řešení, protože přímka h a oblouk 
Thaletovy kružnice nad průměrem KL mohou mít na-
nejvýš dva společné body. Označme velikost úsečky 
KL = a. Potom poloměr Thaletovy kružnice má veli-

a 
kost —. Vzdálenost přímky h od středu úsečky KL je i' 
rovna třetině výšky rovnostranného trojúhelníku, tj. 

i . . ® yjj = 4 - . 1,73 . . . = 0,29 a, což je méně než-^-. 
O « O ¿i 

Thaletova kružnice proto protne přímku h právě ve 
dvou bodech, takže úloha má dvě a jenom dvě řešení. 
Obě dvě čtveřice trojúhelníků ovšem mají dvojici 
A K L M a AK'L 'M ' společnou. 

Příklad 3. Je dán A ABC [r = 4 cm; y = 60°; ve = 
= 5 cm; AC > BC]. Sestrojte dvojici ¿\A1BlC1p o q 
q AA2B2C2 podle sdružených pólů P a Q, jejichž vzdá-
lenost PQ = 6 cm a pól P je na ose *$.BAC uvnitř 

:B0C tak, aby daný trojúhelník byl střední složkou 
složené relace p O q. 

Řešeni. Tuto úlohu vyřešíme nejdříve algebraicky. 
Podle (1.27) je OP.OQ = ra a také OQ = OP + PQ. 
Po dosazení do prvního výrazu dostáváme kvadratic-

kou rovnici: ÓP.(ÓP + PQ) = r2 a po úpravě: OP2 + 
+ OP.PQ — r2 = 0. 

Tato rovnice má dva kořeny 
jr= -PQ ± |¡PQ* + 4r» 

g ' 

z nichž vyhovuje právě ten, který je kladný. 
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Příslušná pomocná konstrukce je provedena na obr. 52 
vlevo, kde APQM je pravoúhlý s pravým úhlem při 
vrcholu Q a kde QM = 2r = 8 cm, PQ = 6 cm. Dále 
je PQ' = PQ a podle Pythagorovy věty 

PM = 1/PQ* + 4r*. 

Protože Q'M = PM — PQ, je MN = \ (PM — 

— PQ) = OP. 
NJTIÍ provedeme vlastní konstrukci (obr. 52 vpravo): 
Opíšeme-li kolem středu 0 kružnici poloměrem OP, 

protne osu -¿fiBAC ve dvou bodech P1 a Pt, z nichž pod-
mínkám úlohy vyhovuje právě bod Plt protože leží 
uvnitř úhlu BOC. Další postup konstrukce je nasnadě. 

Příklad 4. Je dán A ABC [a = 6, r = 5, fi = 60°]. 
Sestrojte ¿\A1B1CÍ z relace &ABC p ¿\A1B1C1 podle 
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pólu P, jehož mocnost ke kružnici t\ABC opsané má 
hodnotu 16, a to tak, aby < .̂A1B1C1 měl velikost /?' = 
= 30°. 

a) Rozbor. Především vidíme, že velikost strany AC je 
dána velikostí poloměru r a příslušného obvodového 
úhlu ABG. Množinou všech pólů P bude oblouk kruž-
nice takový, že <£APG = /? + P' = 90°. 

Dále je podle (1.28) r2 = 16 + OP2. Dosadíme-li podle 
zadání r = 5, dostaneme velikost vzdálenosti pólu P 
od středu kružnice opsané OP = 3 (obr. 53). 

b) Konstrukce. Sestrojíme nejdříve kružnici opsanou, 
tětivu BC a -^ABC. Nad tětivou AC jako nad průměrem 
opíšeme oblouk Thaletovy kružnice a kolem středu O 
kružnici poloměrem OP = 3. 

B. 

1 

A 1 

Obr. 53 
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Oblouky, které jsou množinami všech pólů P daných 
vlastností, se protly ve dvou bodech a to jsou hledané 
póly. Další postup určuje definice 1. 

c) Důkaz vyplývá z rozboru a popisu konstrukce. 
d) Diskuse. Počet řešení jsme mohli stanovit ještě 

před provedením konstrukce výpočtem. Protože jde 
o průsečíky dvou kružnic, musí o jejich poloměrech 
a středné platit: 

fi + f i ^ ^ \ri — r2\. 
V daném případě je rx = 3, r2 = 4,3; c = 2,5. Tyto 

hodnoty splňují nerovnosti v uvedeném vztahu, takže 
úloha má právě dvě řešení. 

Přiklad 5. Do kružnice k = (O; 3) vepište rovnostran-
ný &ABC. Sestrojte dvojici [¡\A2B2C2 q A ABC] podle 
pólu Q, který leží na přímce rovnoběžné se stranou AB 
daného trojúhelníku a plátí-li o vzdálenosti pólu P 
sdruženého s daným pólem Q od středu opsané kružnice 

2 

OP = — r. Konstrukci však proveďte, aniž narýsujete 

pól P. 
a) Rozbor (obr. 54). Podle zadání dělí bod P průměr 

C 
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PM 3 
kružnice k v poměru p ^ = —, kde MN je prů-
měr rovnoběžný se stranou AB a bod P odděluje body 
M, 0. Podle věty o sdružených pólech dělí póly P a. Q 
průměr MN harmonicky, a proto ^ ^ => — • 

Tuto podmínku splňuje bod Q, o kterém platí 

QM = | ř = 4,5. 

b) Konstrukce. Vyplývá z rozboru. 

c) Důkaz. Je-li OP = r, je PM = KPN = 
5 5 

7 
= -5 r -

p j f 3 
Potom p = —, protože bod P odděluje body 

M &N. 

Dále máme = y A MN = 2r => QN = 2r + 
3 

+ QM. Dosadíme-Ii tuto hodnotu do = -y» bude 

QM * ATTU * 
= — a odtud Qií = — r. 2 r + Qilí 7 2 

2 
d) Diskuse. Ze zadání OP = — r nevyplývá, leží-li bod 

5 
P na úsečce OM nebo ON. To znamená, že úloha má 

PN 3 
ještě jedno řešení, kde = —. Jsou tedy dvě 
řešení shodná. 
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Přiklad 6. Zvolte libovolný tupoúhlý A ABC s tupým 
úhlem při vrcholu C a opište mu kružnici k. Potom narý-
sujte AAlB1G1 Z relace A ABC p AA^-LC, podle pólu 
P, který leží v polorovině ABC* a A ABC z relace 
AA&C, p A ABC podle jyěty 13. Přímky A,A, B,B 
a C,C se protínají v bodě P, který leží vně kružnice k. 
Zdůvodněte, proč tomu tak je! 

Obr. 55 

Řešení (obr. 55). Přímky uvedené v zadání procházejí 
bodem P podle věty 13. To nemusíme znovu zdůvodňo-
vat. Podstata úlohy tedy spočívá v tom, že máme doká-
zat, že jde o bod ležící ve vnější oblasti kružnice k, 
neboli že podle věty 10 jsou trojúhelníky AAyBfi , 
a A ABC opačného smyslu. 

Z konstrukce vyplývá: AAJ BlC1 A BB || A,C,. 
Mají proto lichoběžníky AAC,B, a BBC,A, společný 

vrchol C1!, takže přímky G,C a C\C oddělují body A a B 
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i body At a Bv Při konstrukci podle věty 13 nutně 
padne bod A do poloroviny CCXA * a bod B do polorovi-
ny CClB*i Tím se pořadí vrcholů A ABC oproti pořadí 
vrcholů A ABC změní, takže tyto trojúhelníky jsou 
opačného smyslu. Protože trojúhelníky A ABC a A 
AA1BlC1 jsou téhož smyslu, budou i trojúhelníky 
AA1B1C1 a A ABC smyslu opačného a to jsme právě 
potřebovali dokázat. 

Příklad 7. Je dán tětivový pětiúhelník ÁACxBB vepsa-
ný do kružnice k = (0; 4 cm) takový, že A A = 3 cm, 
ACt = 2 cm, C^B = 4,5 cm a BB = 4 cm. Na kružnici 
k určete body Aly C, Č a tak, aby platilo 

A ABC p AA^B^C^p AABČ podle P. 
Řešení (obr. 56). Podle věty 13 bude AXCX || BB 

a B1C1 || AA. Přímky AA1 a BBX se protnou v bodě P, 
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přímky AAX a BBX v bodě P. Potom přímka CXP protne 
kružnici k v bodě C a přímka C\P v bodě C. 

Příklad 8. Do kružnice k = (O; 4 cm) vepište A ABC 
s vnitřními úhly velikosti « = 57% 0 = 69° a A ABC 
s vnitřními úhly velikosti a = 36°, 0 = 78°, a to tak, aby 
tyto trojúhelníky byly v relaci A ABC p o p A ABC. 

Rozbor. Složená relace A ABC p o p A ABC vznikla 
z relací A ABC p A AXBXCX a &AXBXCX p AABC podle 
věty 13. Musíme proto nejdříve určit velikosti vnitřních 
úhlů společné složky AAXBXCX v hledané složené relaci. 
Užijeme při tom věty 14, podle které je: 

a = 180° — (a + «') a po dosazení 
36° = 180° —(57° + <*'), 

takže «*' = 87°. 

Á A 
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P = 180° — (/? + fi') a po dosazení 
78° = 180° — (69° + f}'), 

takže j}' = 33°. 
Konstrukce. Známe-li velikosti vnitřních úhlů 

AA^Bfii, sestrojíme dvojici A ABC p A A - B A užitím 
věty 4 a potom i trojúhelník ABC užitím věty 13. 

Konstrukce je provedena na obr. 57. 

Cvičení 

1. Je dána kružnice k = (O; 34 mm), její tětiva A,B, — 
= 45 m m a pól Q [QBt _L AtBt A QBt = 50 mm], Víte-li, 
že úsečka AtBt je stranou A A i B 2 C t ze složené relace 
A ^ i - B i O ^ A A B C q A ^ A C i . " kde AAlB1Cl 
Sí AAtBtCt, narýsujte: 
a) příslušný pól P a strany AB, AlBl, 
b) umístěte vrchol G tak, aby bylo (7, = C, a vrchol C 

ležel na menším oblouku AB kružnice opsané. 
2. Úsečka KL — 5,5 cm je stranou A KLM vepsaného do 

kružnice k = (O; 3,6) na níž leží bod Ař, [KMt = 6], který 
je vrcholem AK1LlMl Z relace A KLM p AK^M^. Déle 
je dán pól Q [KQ = 10, LQ = 5]. Narýsujte trojici troj-
úhelníků AK1LlM1 p ÁKLM q A K t L t M % podle sdruže-
ných pólů P a Q. 

8. Narýsujte dvojici A E F G , ňE2F2G2 [EF = 4,2; -ZGEF = 
= 42°; -ZQFE ' 100°; <£EtGtFt = -ÍGtEtFt = 40°]. 
Návod. Protože pól Q padne daleko mimo nákresnu, se-
strojte nejdříve ¿\ElFlGl podle sdruženého pólu P.] 

4. Leží-li pól Q na prodloužení strany AB trojúhelníku ABC 
za bod B, potom přímka obsahující stranu A^Bi trojúhel-
níku AXBÍGÍ ze složené relace A-^ i^ iC i P O q AAlB1Cl 
podle sdružených pólů P , Q prochází pólem Q. Dokažte! 

5. Nechť v složené relaci AK1LlMí p A KLM q AK,LtM, je 
AK1LlMl AK,LtMt a příslušný pól P leží na straně 

AB. Potom strana A,B, prochází pólem P . Dokažte 1 
6. Pravoúhlý A EFG s pravým úhlem při vrcholu F je ve-

psán do kružnice k = (O; 3) a současně je EF = 4. Sdru-
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žcné póly P a Q leží na přímce h jdoucí středem 0 tak, že 
h = E&, OP = 1. Narýsujte dvojici AE1FlG1 p O q 
AEtFtGt podle daných pólů, aniž sestrojíte pól Q. 

7. O dvojici trojúhelníků AKLLÍM1 \_KXLX = 8; Z^ilí, = 6; 
M l K l = 5,5] a AK^LÍM^ víme, že mají společnou kružnici 
opsanou, vrchol K , půlí menší oblouk LXMX a jsou nepřímo 
shodné ( AKxLXMX A K T L I M I ) . Umístěte tyto trojúhel-
níky tak, aby byly v relaci p o q podle pólu, jehož vzdále-
nost od vrcholu KX je D = 6,2. 

8. Je dán AOAQ, kde 0 je střed kružnice opsané A ABC, 
bod A jeho vrchol a bod Q vnější pól. Sestrojte sdružený 
vnitřní pól a provedte diskusi! 

0. V trojúhelníku ROP je R vrchol ARU Z, O střed kružnice 
A R U Z opsané a P vnitřní pól. Sestrojte sdružený vnější 

pól Q a provedte diskusi! 
10. Vrchol A daného A APQ je vrcholem AABC a vrcholy P 

a Q sdruženými póly z relace A A 1 B 1 C 1 p O q A-^t-BjC,. 
Sestrojte body Ax a As a provedte diskusi. 

11. Je dán A ALM. Sestrojte A ABC tak, aby přímka LM 
byla osou jeho strany BC a body L, M ležely na přímkách 
CA a CB. Provedte diskusi! 

12. Vrcholy AExEtE jsou vrcholy trojúhelníků AElFlCl sá 
^ AEiF,01 ze složené relace p O q. Sestrojte příslušné 
póly P a Q a provedte diskusi! 

18. Narýsujte AEFXGX [EFX = 3; FxGt = 3,5; ^EFxGt = 
= 100°] a kružnici jemu opsanou. Nechť E je vrchol 
AEFG, Fx vrchol AE1F1G1 a G, vrchol A E t F t G t ze slo-

žené relace p o q podle sdružených pólů P a Q. Určete 
polohu pólů P a Q tak, aby A EFG byl pravoúhlý rovno-
ramenný a E%GtFt měl velikost 130°. Předem stanovte 
počet řešení a potom některé narýsujte. 

14. Vyšetřete množinu všech vnitřních pólů P, jestliže s ním 
sdružený pól Q vzhledem k dané kružnici probíhá přímku 
q kolmou na přímku PQ jdoucí bodem Q. 

16. Do kružnice k = (O; 5) umístěte tětivu AAX = 9. Na této 
tětivě určete pól P takový, aby bylo AP.AXP = 16. 

16. Do kružnice k = (O; 4,5) umístěte tětivu KKZ = 7. Na 
přímce KKt určete pól Q tak, aby bylo QA . QAt — 25. 

17. V dané kružnici k = (O; 32 mm) leží vnitřní pól P ve vzdá-
lenosti OP = 20 mm od středu kružnice. Určete polohu 
sdruženého pólu Q. 
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18. V,dané kružnici k = (O; 42 mm) určete polohu póluPtak, aby 
k němu sdružený vnější pól byl od středu O vzdálen 73 mm. 

19. Narýsujte čtyřúhelník KLQP, kde ICL = 4 je strana 
A K L M , LQ = 8, KLQ = 135°, <ZLQP = 26° a body 

P, Q jsou sdružené póly vzhledem ke kružnici opsané 
A KLM. 
Potom určete polohu bodu M tak, aby trojúhelníky 
&KiL iM l t A-K,Z/,Afa ze složené relace p O q podle daných 
pólů P a Q byly pravoúhlé s přeponami K1Ml = KtMt. 

20. Je dána přímka h a na ní body P a Q [PQ = 8]. Vrchol Al 
[PAi = 2,7; QA x = 6,6] patří trojúhelníku z relace 
A ABC p podle P, kde AABC je rovnostranný. 
Sestrojte A ABC, AA1BlC1 a A^.JSjC, tak, aby body P 
a Q tvořily dvojici sdružených pólů vzhledem ke kružnici 
opsané A ABC. 

21. Na dané přímce h leží body P a Q [PQ = 7 cm]. Dále je 
dán bod K = Kt, který je společným vrcholem trojúhel-
níků z dvojice A KLM q A KtLtM, podle Q a PK = 
= 2,8 cm. Sestrojte trojici AKlLlMl p A KLM q 
q AKaLtMt tak, aby body P, Q tvořily dvojici sdružených 
pólů a současně bylo KXLX = L^M, = 4 cm. 

22. Vrcholy trojúhelníků A^i-BiC, ^ A A , B 2 C t ze složené 
relace p o q podle sdružených pólů P a Q leží na společné 
kružnici opsané tak, že tvoří vrcholy pravidelného šesti-
úhelníku. Přitom není žádný vrchol šestiúhelníku vyne-
chán. Příslušný A ABC má velikosti stran v poměru 
4 : 5 : 6 . Stanovte nejdříve počet řešení a potom některé 
narýsujte! 

28. Je dán A E F G [EF = 8,5; FQ = 6,4; GE = 5,2]. V slože-
né relaci AElF1G1 p A EFG q AEtF2Gt je A-EI-FI^I 
rovnostranný a AE tF tG a pravoúhlý rovnoramenný s pra-
vým úhlem při vrcholu E t . Sestrojte! 

24. Narýsujte trojici AK^xMj^p AKLM q AKiL%Mt podle 
P a Q tak, aby všechny tři trojúhelníky byly pravoúhlé 
rovnoramenné s pravými úhly při vrcholech K, Llt Mt. 

25. Na kružnici k = (O; 4) zvolte body A, A, C, C^BS B 
v tomto pořadí a potom sestrojte trojici AABG p 
p A-di-B,Ctp A ABC. _ _ _ 

26. Na kružnici k = (O; 4,5) zvolte body A, B, A, B^C,_G 
v uvedeném pořadí a potom sestrojte trojici A ABC p 
P A A f í & p AABG. 
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27. Je-li a.' = 37°48'12", /? = 79°32'56\ y = 103°14'42', y = 
= 12°46'27", udejte velikosti zbývajících vnitřních úhlů 
z trojice AABC p A AyBfi^ p A ABC. 

28. Jsou dány velikosti úhlů a = 56°24', fi' = 108°32', y = 
= 49°43'. Zvolte ještě velikost úhlu a' tak, aby trojice 
(a, P, y); (ať, /?', y')\ (a, ft y)_byly vnitřními úhly z relace 
A ABC p AA1B1Cl p A ABC. Můžeme tuto velikost <*' 
volit libovolně ? 

29. Vyšetřete množinu všech pólů Q sdružených s pólem P, 
který probíhá oblouk nad úsečkou AB s obvodovým 
úhlem -$.APB = y + y', jsou-li y a y' velikosti vnitřních 
úhlů trojúhelníků z relace A ABC p AA^B^CÍ podle P . 

30. Opakujte úlohu 29 pro množinu pólů P sdružených s pó-
lem Q, který probíhá oblouk nad úsečkou AB s příslušným 
obvodovým úhlem •£AQB - y — y'. 
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K A P I T O L A 2 

Z V L Á Š T N Í P O L O H Y P Ó L t P A Q 

A. S T Ř E D Y K R U Ž N I C U V N I T Ř A V N Ě 
V E P S A N Ý C H * ) 

V první kapitole jame ukázali, že pólem v relacích p nebo 
q může být libovolný bod vnitřní či vnější oblasti kruž-
nice opsané A ABC. A tu se naskýtá otázka, objeví-li se 
nějaké nové vztahy, jestliže pólem bude některý ze 
zvláštních bodů A ABC, například střed kružnice vepsa-
né, průsečík výšek, těžiště apod. 

Obrátíme nejdříve pozornost ke středům kružnic 
uvnitř a vně vepsaných, které budeme nadále značit 
obvyklými znaky S, Sa, Sb a Se. 

Zvláštní poloha středu kružnice A ABC vepsané S 
vede přímo k vyslovení první věty: 

Věta 15. Je-li dvojice [AABC, AA^fi^ep podle S, 
kde S je střed kružnice A ABC uvnitř vepsané, potom 
vrcholy &AlB1G1 půlí oblouky kružnice opsané A ABC 
ležící mezi jeho vrcholy. 

Důkaz. Je-li pól 8 středem kružnice A ABC uvnitř 
vepsané, potom leží na osách úhlů ŠLACB, -ýiBAC 
a -Š.CAB (obr. 58). 

Shodují se proto nejenom úhly •$lACC1 = •^:BCC1, ale 
i příslušné oblouky = BCV Z cyklických záměn 
vycházejí i další rovnosti: Bl. = CA! a vBl - ABj_. 

*) viz připomínky v úvodu I 
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Přímým důsledkem pak je i další věta: 

Věta 16. Je-li dvojice [AABC, A^ACJ ep podle S, 
potom osy stran l\ABC procházejí vrcholy AAxBfix. 

Důkaz. Označme O střed kružnice trojúhelníkům 

Jestliže se podle věty 15 sobě rovnají oblouky ACt = 
— B C p o t o m se rovnají i příslušné středové úhly 
AOCl = BOCj, takže přímka OC\ je osou úsečky AB, 
neboť A A O B je rovnoramenný. 

Z cyklických záměn plyne dále: 
Přímka OB1 je osou úsečky AC a přímka OAi osou 

úsečky BC. 

Větu 16 bychom mohli zřejmě vyslovit i takto: 

Je-li A ABC p /\A1BÍC1 podle S, potom osy úhlů 
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a osy stran A ABC se protínají na kružnici opsané ve 
vrcholech A^I-BICI-

Toho využijeme při konstrukcích, neboť: 
a) Máme-li sestrojenu kružnici trojúhelníku opsanou, 

snadno sestrojíme osy jeho vnitřních úhlů, protože kol-
mice vedené středem kružnice opsané na strany troj-
úhelníku určují na kružnici opsané body, jimiž prochá-
zejí osy jeho vnitřních úhlů. 

b) Máme-li naopak střed kružnice trojúhelníku uvnitř 
vepsané, můžeme sestrojit vrcholy ¿^A^Bfi, z relace p 
podle S, aniž sestrojíme kružnici trojúhelníku opsanou. 
Stačí sestrojit osy stran a vyhledat jejich průsečíky 
s osami vnitřních úhlů. 

Věta 17. Mají-li vnitřní úhly trojúhelníků, [ A A B C , 
A-^i-řřiCy e p podle S velikosti po řadé <x, f}, y a a', 0', y', 
potom platí: 

« ' = Y Ú 9 + y) = » o o — f - . 

P = y ( « + y) = 9 0 " — 

/ = -*-(« + /?) = 9 0 ° — g -

Důkaz. Z vlastností obvodových úhlů vyplývá (obr. 58): 

^CC.A, = ^ C A A , = -1 a, 

« í C C A = <CBB1 = i-0, 
přičemž je 

•ZGCJAÍ + ZCC& = <MiCi-Bi = y ' , 
oo 



neboli 

Současně je (<% -f- (i) = 180° — y, takže 

y (<* + £ ) = y (!80o — y) = 90° — Y • 

Zbývající dvě tvrzení jsou opět záležitostí cyklických 
záměn. 

Bezprostředním důsledkem věty 17 je: 

Věta 18. Jsou-li <*', /?', y' velikosti vnitřních úhlů troj-
úhelníku AXBJGÍ z relace p podle S, potom jsou všechny 
tyto tři úhly ostré. 

Důkaz je nasnadě, protože podle věty 17 je 

= 9 0 ° — -í-A/9' = 90° — A A / = 90° — 

a to jsou vesměs ostré úhly. 

Věta 19. Je-li dvojice [AABC, A ^ A C j ] e p podle S, 
potom vrcholy AA1B1Cl jsou po řadě středy kružnic opsa-
ných trojúhelníkům ¿\BSC, A OSA a A ASB. 

Důkaz. Na obr. 60 je v A S C f í vnitřní úhel -^G^B 
vnějším úhlem AGSB, kde 

<SCB = ^ G B = | - A &3BG = ^ B G = ^ , 
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takže 

•ŽC^B = -$SCB + <SBG = ^ (y + P)- (2-1) 

Dále je 
•ŽSBC, = -$SBA + -ZCiBA, (2.2) 

přičemž 

•ZSBA = y p A ^C.BA = A = ~ y. (2.3) 

Obr. 60 

Dosadíme-li podle (2.3) do (2.2), bude SBCx = 

(y + P) a podle (2.1) a (2.3) pak ^C^&B = -žC^S, což 
znamená, že &BSC, je rovnoramenný s rameny CXS 
a CXB a podle věty 15 také CXB = C ^ . 

Dokázali jsme, že CXB = Cf
1íSí = Cx-4, takže body B, 

S, A leží na kružnici opsané kolem středu C, poloměrem 
0,8 . Cyklickými záměnami dojdeme i k dalším dvěma 
tvrzením: 
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body C, S, B leží na kružnici opsané kolem středu A j 
poloměrem 

body O, S, A leží na kružnici opsané kolem středu By 
poloměrem BYS. 

Věta 20. Je-li dvojice [&ABC, A A ^ f i j e p podle S, 
potom jsou vrcholy /\ABC souměrně sdruženy se středem 
8 kružnice A ABC vepsané podle stran IsA^Bfi^ a to 
vrchol A podle strany 5 1 C 1 , vrchol B podle strany A1Cl 
a vrchol C podle strany A^B^ 

Důkaz (obr. 60). Jde o přímý důsledek věty 19, podle 
které je 

= C^A A B^S = BXA. 
Podle toho jsou trojúhelníky AA8CX a /\ASB1 rovno-

ramenné a souměrné podle osy Bfi^. Totéž platí o troj-
úhelnících ABSC 1 a A B S A X , ACSA 1 a ACSB^ kde 
v prvním případě je osou souměrnosti přímka A1C1, ve 
druhém přímka A^B^ — 

Tím jsme současně dokázali ještě jeden vztah, a proto-
že jde o vztah základní důležitosti, vyjádříme ho samo-
statnou větou. 

Věta 21. Je-li dvojice [AABC, A^Bfi^ ep podle S, 
potom osy AAlt BBX a CCl vnitřních úhlů A ABC obsahu-
jí výšky A^ÁCi příslušné po řadě ke stranám Bfi^, 
AtCt a A1B1, takže pól S je průsečíkem výšek /\AlB1C1. 

Důkaz byl již proveden, protože jsou-li přímky AYBU 
ByCx a CXAX po řadě osami úseček CS, AS a BS, jsou na 
ně kolmé, takže: 

CXC = CS ± A& A BtB = BS _L A& A AXA = 
= AS ± B,CV 
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To znamená, že přímky CXC, BXB a AXA skutečně 
obsahují výšky AAyBfi, a pól S je jejich průsečík. 

K zajímavému výsledku dospějeme, utvoříme-li k re-
lacLU±ABC, A-4ACj] ep podle S relaci [ A A & C , , 
AABC]ep podle S (viz větu 13). Tato nová relace je 
středovou souměrností podle středu O kružnice A ABC 
opsané. Příslušný důkaz je proveden v příkladech na 
konci této části druhé kapitoly. 

Obraťme nyní svou pozornost ke středům kružnic 
A ABC vně vepsaných. Zde je třeba si uvědomit, že 
středy kružnic libovolnému trojúhelníku vně vepsaných 
leží vždy vně jeho kružnice opsané. Půjde tedy v těchto 
případech vždy o relaci q podle Stt, nebo Sb či Sc. Tento 
obecně platný vztah dokážeme, aniž bychom vyslovovali 
zvláštní větu, a to sporem. 

Předpokládejme proto, že uvažovaný střed, například 

C / 

Obr. 61 
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Sa, leží na kružnici opsané nebo uvnitř. V prvním pří-
padě bude v tětivovém čtyřúhelníku ABSJJ (obr. 61) 
platit <$.BSaC = 180° — «, v druhém případě -$.BSaC > 
> 180° — OL, neboli 

•£BSaC S 180° — A. (2.4) 
Protože střed kružnice trojúhelníku vně vepsané leží 

na osách vnějších úhlů, v našem případě při vrcholech B 
a G, bude 

-£SaCB = i- (« + 0) A <£SaBC = i- (« + y), 

kde <x je velikost vnitřního úhlu při vrcholu A, p při 
vrcholu B a y při vrcholu G. 

V ABSaC potom platí: 
^BSaC = 180° — (<£SaCB + -$SaBC) = 

= 180° - [ i - (* + p) + -l (« + y)] = 90° - Y , 

takžá 
2. ¿CBSAC = 180° — A. (2 .5) 

Vidíme hned, že nemůže současně platit (2 .4) i (2 .5) , 
protože by potom bylo 2. $.BSaC = :BS0G, a proto 
předpoklad (2.4) je nesprávný. Nemůže tedy střed Sa 
a v důsledku cyklických záměn ani středy Sb a S„ ležet 
na kružnici opsané nebo dokonce uvnitř této kružnice. 

Tím jsme dokázali, že relace podle pólů Sa, Sb a Sc mají 
vlastnosti relací q podle Q zavedené definicí 2. Současně 
musíme vzít v úvahu, že střed kružnice trojúhelníku vně 
vepsané je průsečíkem osy jednoho vnitřního úhlu 
a os dvou vnějších úhlů. Půjde-li proto například o relaci 
q podle Sa, musíme vrcholy příslušného trojúhelníku 
značit AltBt a C2, protože vrchol Ax leží spolu se středem 
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S kružnice uvnitř vepsané na přímce ASa, takže dvojice 
[A ABC, A-^I-BICJ e p podle S a [/\ABC, A A&Cje 
eq podle Sa mají jeden vrchol společný, tj. vrchol Ax. 

Je proto logické, že tomuto vrcholu ponecháme index 1. 

Pro relaci p podle S jsme odvodili věty 15 až 21. 
Ověřme nyní, platí-li obdobné věty i pro relace q podle 
Sa, Si, a $c! 

Věta 22. Mějme dvojici [A ABC, A^ i52C2] eq podle 
Sa. Potom vrcholy A^4I52C2 půlí oblouky kružnice opsané 
¿\ABC mezi jeho vrcholy. 

Důkaz (obr. 62). Polopřímky CCÍ a CSa jsou osy 
vedlejších úhlů, takže CC1 _[_ CSa, neboli ^C^Sa = 
= 90°. Protože <í:C2CCí je vedlejší úhel k ^.CfiS,,, je jeho 
velikost rovněž 90° a podle Thaletovy věty přímka C\C2 
prochází středem O kružnice A ABC opsané. Podle věty 

C2 

Obr. 62 
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16 je přímka OGx = 0C2 osou strany AB A ABC, a proto 
oblouky AC2 a BG2 jsou shodné. Obdobně je i AB2 = 
= CB2 a BA, = CAX, takže i přímka BXB2 prochází 
středem O. 

Právě dokázaného vztahu využijeme s výhodou při 
konstrukcích tam, kde bude snazší místo ¿±AXB2C2 
sestrojit ¿\AXBXCX nebo naopak. Připomeňme už jenom, 
že věta 22 je obdobou věty 15 a její důsledky obdobou 
věty 16, což znamená, že osy stran A ABC procházejí 
vrcholy /\AXB2C2. Rozdíly mezi A ^ I ^ A a /\A1B2G2 
z relací p a g podle 8 a Sa nebo Sb či Sc se projeví, 
budeme-li hledat věty analogické k větám 17 a 18. 

Nejdříve dokážeme platnost věty obdobné větě 17. 

Vfita 23. Má-li dvojice [AABC, &AxB2C^\&q podle 
Sa velikosti vnitřních úhlů po řadě a, /?, y a a.', /?', y', potom 
o těchto velikostech platí: 

»' = 90 o + y ' = | . 

Důkaz (obr. 62). Především uvažme, že :AXB2C2 = 
= $:AxBtCx — 90°, protože <£(7aB2CX je obvodový 
úhel nad průměrem CXC2 podle důsledků věty 21. V těti-
vovém čtyřúhelníku AxBiCxB1 pak je ^:AXB2CX = 180° — 

— ^.CXBXAX. Víme, že -$CXBXAX má velikost 90° 
ti 

takže ^AXB2C2 = 180° — ( 9 0 ° ~ y ) — 9 0 ° = y ' 

y 
Obdobně dostaneme velikost = a ko-

¿t 
nečně i <C 2 A X B 2 = 180° " ( y + y ) = 9 0 ° + y " 
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Cyklickými záměnami dojdeme k velikostem vnitř-
ních úhlů v ¿\A iB lC t z relace q podle Sb, kde 

a v ¿\A2B2G1 Z relace q podle Sc, kde 

« ' ~ f / T - A . / - 90- + ^ - . 

Tím je věta 23 dokázána a zároveň poznáváme, jak se 
liší od věty 17, což se projeví v jejích důsledcích: 

Věta 24. Je-li A ABC společná první složka v relacích 
q podle Sa, Sb a Sc, potom druhé složky, tj. trojúhelníky 
¿\AXB2C2, AA2BxC2 a AA2B2C1 jsou trojúhelníky tupo-
úhlé s tupým úhlem při vrcholu, jehož index je 1. 

Důkaz je opět nasnadě, neboC úhly 

= 90° + /?' = 90° + A , 90° + f = y' 

jsou vesměs tupé, takže všechny ostatní úhly jsou 
ostré. 

Nyní snadno rozšíříme platnost věty 19 na trojúhel-
níky z relací q podle Sa, Sb a Se. 

Věta 25. Je-li dvojice [AABC, A-¿I-BICI] e p podle S, 
potom vrcholy AA1B1C1 jsou po řadě středy kružnic opsa-
ných čtyřúhelníkům BSCSa, CSASb a A8B8e, kde Stt, Sb 
a Sc jsou středy kružnic A ABC vně vepsaných. 
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Důkaz (obr. 63). Musíme dokázat, že například střed 
SA leží na kružnici jdouoí body B, 0 & S. Polopřímky BS 
a BSA jsou osy vedlejších úhlů ^ABC a <£GBU, kde U 
je bod na prodloužení úsečky AB za bod B. ¿\SBSA je 
proto pravoúhlý s přeponou SSA. Přímka SSA při tom 
obsahuje bod AU který je podle věty 19 středem kruž-
nice opsané A B S C . Nutně je i středem přepony SSA 

a bod SA leží rovněž na kružnici opsané A BSG. Vše další 
opět plyne z cyklickýoh záměn. 

Důsledkem věty 25 je důležitý vztah mezi trojúhelní-
ky ¿\AÍB1G1 Z relace p podle S a AA-^B^G^ Z relace q 
podle SA, pokud mají společnou první složku A ABC. 

Věta 26. Je-li dvojice [ A A B C , A ^ A C J e p podle S 
a středy kružnic A ABC vně vepsaných SA, SB a SE, potom 
trojúhelníky ¿\A-Jifi-L a &SjSb3c jsou podobné s pomě-
rem podobnosti k — 2 a jejich strany jsou rovnoběžné 
(A,B, U SJ3B, B.G, || STS, a CXAX [| SJ9A). 
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Důkaz (obr. 64). Jde o přímý důsledek věty 25, neboť: 
Je-li 

ŠAj, = Ajfa , potom ŠŠ~a = 2.ŠAlt 

ŠČj^ = OjŠc, potom SSe = 2.ŠČlt 

lehlosti « = 2. Odtud potom plyne rovnoběžnost jejich 
stran. Obdobně platí A^i-S^i ~ ASJ53b , AB1SC1 ~ 
~ /\SbSSc při stejném poměru stejnolehlosti x = 2. 

Věta 27. Je-li A ABC první složkou a t\A1BiC1 druhou 
složkou v relaci p podle S a současné trojúhelníky AA^Bfi^, 
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AB1C2Az a ACXA2B2 druhými složkami v relacích q podle 
pólů SA, SB a 8E, potom společná kružnice opsaná tímto 
trojúhelníkům je Feuerbachovou kružnicí trojúhelníku 
SASBSE. 

Důkaz (obr. 64). Víme, že Feuerbachova kružnice, ji-
nak také zvaná kružnice devíti bodů, obsahuje paty 
výšek, středy stran a středy úseků výšek mezi vrcholem 
a průsečíkem výšek. 

Podle věty 21 je střed 8 průsečíkem výšek &A1B1C1. 
Z toho plyne, že přímka obsahující body A, S, AX a SA je 
kolmá na přímku 51C'1, a protože tato přímka je podle 
věty 26 rovnoběžná s přímkou SBSC, je AS„ _L SBSC 

a úsečka AS„ je výškou trojúhelníku SASBSE příslušnou 
ke straně 8BSC. Další dvě výšky pak jsou analogicky 
úsečky BSB a CSC. Tím je důkaz věty 27 proveden, proto-
že stačilo dokázat, že kružnice opsaná /\ABC prochází 
patami výšek /\SASB8C, a proto je jeho Feuerbachovou 
kružnicí. Zbývajících šest bodů na této kružnici lze 
snadno identifikovat: 

Podle věty 25 je SAX = AXSA, SBT = B^8B a SC1 = 
= CISC. Jinými slovy: Vrcholy ¿\A1BÍGL jsou po řadě 
středy úseček 88A, SSB a SSE. 

Jsou tedy body ALT BX a C1 po řadě středy úseků vý-
šek ASASBSC mezi průsečíkem výšek S a jeho vrcholy. 

Dále víme podle věty 22, že přímky A1A2, B±B2 

a CXC2 procházejí středem kružnice A ABC opsané. 
Proto jsou A-4I-BICI, AAHB2C2 souměrně sdruženy 
podle tohoto středu, takže podle věty 26 platí: 

A2B21| SBSA A B2C21| SCSB A C2A21| SASC. 

Jsou proto úsečky A^B.^ B2C2 a C'2A2 středními příčka-
mi A8ASB8C, neboli body A2, Ě2 a C2 středy jeho stran. 
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Ukážeme ještě, že platí věty obdobné větám 20 a 21. 

Věta 28. Je-li dvojice [AABC, AA^C^eq podle Sa, 
potom přímky A ,8a, B2Sa a C^Sa obsahují výšky trojúhel-
níku A,B2G2, přičemž pól Sa je průsečíkem těchto výšek. 

Důkaz (obr. 64). Protože přímka G,G2 proohází stře-
dem O kružnice A ABC opsané, je ^.G^A-fi, = 90°, 
neboli 

G^A, ± A & . (2.6) 

Podle věty 26 je současně A,C, X Sa8c, takže podle 
(2.6) je také C2A, X SaSc. Je proto v AA,B2C2 výška 
příslušná ke straně C2A, částí přímky Sa8c. Obdobně 
také výška příslušná ke straně B^A, je částí přímky 
8aSb, přičemž průsečík přímek SaSe a SJSt,, tj. pól Sa, je 
průsečíkem výšek AA ,B2C2. 

Věta 28 je tedy obdobou věty 21. 

Věta 29. Je-li dvojice [ A ABC, AA,B2C2]eq podle Sa, 
potom vrcholy A ABC jsou souměrně sdruženy s pólem Sa 
podle stran AA1B2G2, a to: Vrchol A podle strany B2C2, 
vrchol B podle strany A,C2 a vrchol C podle strany A,B2. 

Důkaz (obr. 64). Jde o přímý důsledek předešlé věty. 
Je-li totiž C2A, X 8aB = SaS0 a současně podle věty 25 
A,B = A,Sa, potom jsou body Saa. B souměrně sdruženy 
podle přímky G2AV Dále víme, že úsečka SaA je výškou 
ASaSJSc příslušnou ke straně SbSc a úsečka B2G2 je 
střední příčkou téhož trojúhelníku (viz věta 27). Je tedy 
také přímka B2C2 osou souměrnosti bodů A a 8a. 

Zřejmě věta 29 je obdobou věty 20. 

Existují ještě některé další vztahy, kterých lze s vý-
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hodou využít při konstrukcích. Některé z nich uvedeme 
v následujících příkladech, jimiž tuto ěást kapitoly 
Uzavřeme. 

Příklad 1. Rozhodněte, zda je pravdivé toto tvrzení: 
Existuje aspoň jedna trojice trojúhelníků A ABC, 
A^i-BíCí a AA1B2C2 takových, že o nich platí [ A A B C , 
A^x-Bi^] e p podle 8 a současně [ A ABC, A^i-B2C2] e 
e q podle 8a, přičemž 

AA1B1CÍ ^ AAS2C2. 

Řešení. Takové trojúhelníky neexistují, neboť podle 
věty 18 je l\AlBíCl ostroúhlý a podle věty 24 AA^Bfi^ 
tupoúhlý. Proto nemůže být l\A1BlC1 ^ A A X B $ 2 . 

Přiklad 2. Je dána kružnice k — (O; 3,5 cm) a na ní 
body A, B, Bx takové, že AB = 4 cm, ^BABx = 90°. 
Určete na kružnici k body C, A1 a Cx, aby trojúhelníky 
AABC a A^í-BiCi byly v relaci p podle S. 

Rozbor. Předpokládejme, že existuje aspoň jedno ře-
šení. Potom je střed menšího oblouku AB již vrcholem 
Cj hledaného A-^í-Si^i a pól 8 je průsečík přímky BBX 
s kružnicí opsanou kolem bodu C1 poloměrem CjÁ 

Můžeme však usuzovat také takto: Daný bod je 
středem oblouku AC, takže BXA = ByC. Tím je určen 
A ABC a další postup je nasnadě. 

Konstrukce je provedena na obr. 65 prvním způsobem. 
Máme-li střed 8, potom přímky .45 a CXS protínají 
kružnici k v bodech i ^ C . 

Důkaz správnosti vyplývá z pravdivosti použitých 
v ě t 
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Diskuse. Protože přímka BBx a kružnice opsaná kolem 
bodu C, poloměrem C,A mají jeden bod společný, tj. bod 
B, mohou mít právě jeden další společný bod, takže 
úloha má nejvýše jedno řešení. Nutná podmínka ovšem 

> 

je, aby bod B, ležel v polorovině ABC, tj. na větším 
oblouku AB tak, že AB, < BB,. Tato podmínka je zde 
splněna, a proto úloha má právě jedno řešení. 

Příklad 3. Zvolte body A, B, S„ tak, aby neležely 
v přímce. Nechť body A a B jsou vrcholy A ABC a bod 
Sa středem kružnice A ABC vně vepsané proti vrcholu 
A. Sestrojte dvojici [A ABC, lsA1B2C2\ eq podle Sa, 
aniž narýsujete kružnici A ABC opsanou! 

Řešení. Kružnice vně vepsaná se dotýká přímky AB. 
Můžeme ji proto sestrojit, protože máme její střed Sa. 
Přímky BC a AC pak jsou rovněž tečnami téže kružnice 
vně vepsané a jejich průsečík je vrchol C A ABC. Podle 
věty 22 je vrchol A, hledaného A ^ I - B A průsečík přím-
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ky ASa s osou strany BC, vrchol Bz průsečík přímky 
BSa s osou strany AC a vrchol C2 průsečík přímky CSa 
s osou strany AB trojúhelníku ABC. 

Diskuse. Úloha bude mít řešení právě tehdy, když 
pata kolmice vedené bodem Sa na přímku AB padne na 
prodloužení úsečky AB za bod B. Kdyby padla dovnitř 
úsečky AB, ležel by střed Sa proti vrcholu C, což není 

možné. Kdyby padla dokonce na prodloužení úsečky 
AB za bod A, ležel by bod Sa proti vrcholu B, což rovněž 
není možné. Další postup konstrukce už je závislý je-
nom na existenci tečen ke kružnici vepsané vedených 
body A a B. Protože přímka AB je tečnou této kružnice 
a ani jeden z bodů A nebo B není bodem dotyku, existují 
právě dvě další tečny, a to AÓ a Bd, protože tečna AB 
je společná. Jde už jenom o to, nejsou-li některé z uve-
dených tečen navzájem rovnoběžné, a to být nemohou, 
protože by pak dotykový bod musel ležet mezi body 
A a B. Bude-li tedy splněna shora uvedená podmínka 
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o poloze bodu S„ vzhledem k úsečce AB, bude mít tato 
úloha vždy právě jedno řešení. 

Příklad 4. Je dán ASASBSC = = 10, SBSC = 9, 
S„SA = 7], Sestrojte A ABC tak, aby body SA, SB a 8E 

byly středy kružnic trojúhelníku ABC vně vepsaných. 

Řešení. Užijeme věty 27. Sestrojíme Feuerbachovu 
kružnici v trojúhelníku &SASBSC. To se dá provést dvě-
ma způsoby. Nejjednodušší konstrukce spočívá v tom, 
že narýsujeme výšky tohoto trojúhelníku, jejichž paty 
jsou vrcholy hledaného A ABC. Tato konstrukce je pro-
vedena na obr. 67. 

Můžeme ovšem volit i zdlouhavější postup. Vyhledá-
me středy stran a potom Feuerbachova kružnice jimi 
prochází a protne strany A S A S B S E v hledaných vrcholech 
A ABC. 

Protože v každém trojúhelníku lze sestrojit právě 
jednu Feuerbachovu kružnici, má tato úloha právě jedno 
řešení. 

s c 

Obr. 67 
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Příklad 6. K danému trojúhelníku ABC sestrojte 
AA^ByCi z relace [ A ABC, AA^Bfi^ e p podle S 
a A ABC z relace [ A ^ i - B A . A AB(J\ep podle S. Do-
kažte, že pól S je středem kružnice A ABC opsané 
a relace p je středovou souměrností. 

C 

Obr. 68 
Řešeni. Popsaná konstrukce je provedena na obr. 68. 
Podle věty 14 mají vnitřní úhly A ABC velikosti 

5 = 180° — (<x + «'), P = 180° — (p + p'), 
y = 180° — (y + y ' ) • (2.7) 

Dále je podle věty 17 a' = 90° — - J , p' = 90° — - A , 

Y' = 90°— Dosadíme-li tyto hodnoty do (2.7), do-¿t 
staneme po úpravě: 

a = 90° - - J ,P = 90° - A , y = 90° — • 

107 



Jsou tedy vnitřní úhly trojúhelníků AALB1C1 a A ABC 
shodné, a protože jde o trojúhelníky vepsané do téže 
kružnice, jsou tyto trojúhelníky shodné. Současně pak 
podle věty 13 procházejí přímky AXA, B,B a CXC týmž 
bodem, takže jde o středovou souměrnost se středem 
S = 0. 

Příklad 6. Je dána dvojice [AABC, A ^ A C J e p 
p podle S a středy kružnio A ABC vně vepsaných SA, 
SB, SE. 

Dokažte, že 

AA^C, ~ ASJSTSO ~ ASABC ~ AASBC ~ AABSC . 

Řešeni. První část tvrzení dokazovat nemusíme, vy-
plývá z věty 26. 

Podle věty 27 jsou vrcholy A ABC patami výšek 
v ASASBSC. Jsou proto trojúhelníky ASAASB a A S B C S E 

podobné, protože oba jsou pravoúhlé a mají jeden další 
úhel, totiž ^.SASBSC, společný. Velikosti jejich stran 
jsou tedy úměrné a platí: 

SASB : SBA = SCSB : SBC, 
neboli 

SASB :SBSC = SBA :SBC. (2 .8) 

Také trojúhelníky ASAST ,SC a A A S B C mají společný 
-%SaSbSc. Podle (2.8) jsou jejich strany co do velikosti 
úměrné, takže podle věty sus o podobnosti trojúhelníků 
je ASASBSA ~ A A S „ C . 

Cyklickými záměnami dojdeme k dalším dvěma vzta-
hům: 

ASBSCSA ~ A BSCA a A SJ3J3B~ A CSAB. 
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Příklad 7. Má-li A ABC vnitřní úhly velikostí a > 
> fí > y, potom vrcholy trojúhelníků AA1B2C2, 
AA 2B 1C 2 , AA 2 B 2 C t z relací q podle Sa, Sb a Šc leží na 
společné kružnici opsané tak, že platí: 

bod A2 odděluje body Sb, A, 
bod B2 odděluje body S„, B, 
bod C2 odděluje body Sa, C. 
Dokažte a vypište všechny obměny pro různé vzá-

jemné velikosti vnitřních úhlů A ABC. 

Řešení. Dokážeme každé ze tří tvrzení zvlášť. 
a) Bod A2 odděluje body Sb, A: 
Především víme, že tečna kružnice A ABC opsané 

sestrojená v bodě A tvoří se stranou AB úhel velikosti y 
(úsekový úhel). Podle výsledku příkladu 6 je 

&SbAC ~ ABlAlCl 
a také 

<SbAC = ^ A f i , = i - 0? + y) (2.9) 

podle věty 17. 
Podle předpoklade je /S > y tedy i /? + fi > y -f /?, 

neboli 

+ <21°) 

Máme proto podle (2.9) a (2.10) f} > -^SbAC a přímka 
$,,.4 protne kružnici opsanou A ABC mezi body A a Sb. 

(2.11) 
b) Bod B2 odděluje body Sa, B: 
Tečna v bodě B tvoří se stranou BC "úsekový úhel 

velikosti <*. Současně je <£SaBC = <$.A1B1C1 = — 

(« + y). 
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Podle předpokladu je a > y a odtud <x > (a + y), 

neboli <£SaBC < <* a bod B2 padne mezi body Sa, B. 
(2.12) 

c) Bod C2 odděluje body Sa, C: 
Také tečna kružnice opsané [\ABC vedená v bodě C 

tvoří se stranou AG úhel velikosti P a <£SbCA = 

[Podle předpokladu je « > /? a odtud (<* + P) = 
Zt 

— SbCA < p, takže přímka SbC protne kružnici 
opsanou A ABC až za bodem C, čili Ct odděluje body 
Sa a C. (2.13) 

Shrneme-li (2.11), (2.12) a (2.13), je důkaz úplný. 
Požadované obměny zapíšeme do tabulky: 

Předpoklad: Tvrzeni o pořadí bodů na přímkách 
SaA, 8aB, SttC 

a> P >y SaB2B sac2c SbA2A 

* > y > P s*czc SaB^B SJ-tA 

0 > *> y SbAtA sbc2c SqBÍB 

P > y > ot sbctc SbA2A scb2b (obr. 64) 

y > a > P SCA2A AcBtB SaC9C 

y > P > CL ScBfB ScAtA SbCtC 
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Příklad 8. Je dána dvojice [&ABC, A ^ A ^ I ] ep 
p podle S. Aniž narýsujete středy kružnic A ABC vně 
vepsaných, sestrojte trojúhelníky AA^B^C^ A A J i f i i 
a A>427?2C1 Z relací q podle SA, SB a SC a potom dokažte, 
že 

a) tětivový šestiúhelník A1C2BLA2CLBI má každé 
dvě protější strany rovnoběžné, 

b) trojúhelníky A A 1 B 1 C 1 a /\A2B2C\ jsou v relaci 
p podle S = O, kde O je střed kružnice J\ABC opsané. 

Řešení (obr. 64). Při konstrukci užijeme poznatku, že 
přímky AXA2, BXB2 a GYC2 procházejí středem 0 (viz 
např. důkaz věty 22). Odtud také vyplývá, že čtyřúhel-
níky AXQ 2A2C\, C2B1C1B2 a BXA 2B2A1 jsou obdélníky, 
takže je 

A,C21| A2C\ A C2BX || CXB2 A B,A21| B2AX. 

Tím je důkaz a) proveden, 
Druhý důkaz vyplývá z věty 26, neboť, jsou-li úsečky 

AXBX a SBS„ rovnoběžné, jsou rovnoběžné i úsečky 
AXBX a C2C, protože úsečka C2C je částí úsečky SBSA. To 
však znamená, že čtyřúhelník AXCC2B a obdobně i čtyř-
úhelníky BXA2ACX a C1B2BA1 jsou lichoběžníky vepsané 
do kružnice, a proto rovnoramenné. Z toho plyne 

AXC = C2BL A BXA2 = ACX A C1B2 = BAV 

To znamená, že podle věty 13 jsou trojúhelníky 
AA1BLC1 a A A2B2C2 V relaci p podle S = 0. 

Cvičení 

1. Sestrojte libovolný trojúhelník a opište mu kružnici. 
Potom bez použití kružítka sestrojte vrcholy trojúhelníku 
z relace p podle S. 
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2. K libovolně zvolenému trojúhelníku EFG sestrojte troj-
úhelník EXFXGX z relace p podle S, aniž narýsujete kruž-
nici A EFG opsanou. 

3. Velikosti vnitřních úhlů daného A ABC jsou v poměru 
<x : 0 : y = 5 : 6 : 7. 
a) Určete velikosti těchto úhlů a velikosti vnitřních úhlů 

AA X B X C X z relace p podle S. 
b) Jaký je poměr velikostí vnitřních úhlů AAlBlC1 ? 
c) Udejte obecný vzorec pro přímé stanovení poměru veli-

kostí vnitřních úhlů druhé složky z relace p podle S. 
4. Velikosti vnitřních úhlů druhé složky z relace p podle S 

jsou ve stejném poměru jako velikosti vnějších úhlů 
první složky. Dokažte! 

5. Velikosti vnitřních úhlů v AAXBXCX z relace p podle S 
jsou OL' = 67°48', P' = 78°36'. Určete velikosti vnitřních 
úhlů A ABC. 

6. Odvodte vzorec pro výpočet velikostí úhlů -$lASB, 
•ZBSC a -$.CSA v trojúhelníku ABC se středem S kruž-
nice uvnitř vepsané, jsou-li velikosti vnitřních úhlů AABC 
po řadě tx, P, y. 

7. Výsledku úlohy 6 užijte při řešení této úlohy: Sestrojte 
A EFG [EF = 7; -Š.EQF = 40°; Q = 2], kde g je velikost 
poloměru kružnice uvnitř vepsané. 

8. Sestrojte trojúhelník, je-li dána velikost poloměru kružnice 
opsané r = 3,5, velikost poloměru kružnice uvnitř vepsa-
né Q = 1,5 a velikost jednoho vnitřního úhlu a = 70°. 

9. Je dána.kružnice k — (O; 36), na ní vrchol A A ABC 
a vTchol Ax AAtBiCi z relace [ A ABC, AAxBxCx]Gp 
podle 8. Sestrojte oba trojúhelníky, víte-li, že AB — 42. 

10. Do kružnice k = (O; 28) vepište dvojicí [ A K L M , 
AKXLXMX] e p podle S, víte-li, že KL = 42, LXMX = 30. 

11. Je dán A A B x O x [ABX = 3; AOx = 4; <£BXAC1 = 120°]. 
Narýsujte [ A ABC, AAyB^C^ep podle S. 

12. Do kružnice opsané danému A EFG vepište A KLM tak, 
aby bylo KE _L LM, LF J. KM a MG ± LK. 

13. Je dán A ABC a kružnice jemu opsaná. Bez použití kru-
žítka sestrojte střed kružnice vně vepsané proti vrcholu A. 

14. K danému AABC sestrojte druhou složku AAtBxOt z rela-
ce q podle St, aniž narýsujete bod St,. 

16. Velikosti vnitřních úhlů AAJB%CX z relace AABC q 
q AAtBtCx podle St jsou v poměru 2 : 3 : 13. Určete 
velikosti vnitřních úhlů A AB& a jejich poměr. 
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16. Je-li první složkou v relacích q podle Sa, S], a Sa trojúhel-
ník rovnoramenný, potom právě jedna ze tří druhých 
složek je opět rovnoramenný trojúhelník. Dokažte a uved-
te, který. 

17. Zvolte libovolný trojúhelník ABAX a na jeho straně AAl 
určete bod S takový, aby úsečka AB byla stranou první 
složky AABO a bod At vrcholem druhé složky AAlB1Cl 
z relace p podle S. Provedte diskusi vzhledem k velikosti 
stran zvoleného trojúhelníku. 

18. Zvolte libovolný trojúhelník EFG a opište mu kružnici. 
K sestrojení středů kružnice uvnitř vepsané a vně vepsané 
proti vrcholu E stačí narýsovat jedinou přímku a jedinou 
kružnici. Provedte! 

19. Narýsujte ostroúhlý trojúhelník HJK a sestrojte průsečík 
jeho výšek. Potom narýsujte kružnice: 

= (H; HV), kt = (J; JV) a t , = (K-, KV). Tyto kruž-
nice se po dvou protínají na kružnici opsané A HJK. 
Odůvodněte! 

20. Narýsujte různostranný tětivový čtyřúhelník ABGD, je-
hož vnitřní úhly při vrcholech A a C jsou pravé. Střed 
kružnice opsané označte M. Ukažte, že body A, B, C, D 
a M je jednoznačně určena dvojice [ A ACE, AA X C X E^\ 
a dvojice [ A ACE, A •¿¡¡CjAf] z relací p podle B a q podle 
D, kde B a D jsou středy kružnic uvnitř a vně vepsaných. 
Narýsujte a odůvodněte! 

21. Sestrojte ostroúhlý různostranný trojúhelník EFG a prů-
sečík jeho výšek označte V. Paty výšek jsou po řadě E0, 
Fo, G„. Trojúhelníku E„FaG0 opište kružnici. Tato kruž-
nice má se stranami A EFG ještě další tři společné body, 
a to středy stran. Narýsujte a odůvodněte! 

22. Opakujte úlohu 21 pro různostranný tupoúhlý trojúhel-
ník! 

23. Známe-li AB = 7 velikost strany A ABC a velikost úhlu 
20° = -$.ASaB, kde Sa je střed kružnice vně vepsané 
A ABC proti vrcholu A, potom můžeme řešit tyto úlohy: 
a) Určit velikosti úhlů y a y' v dvojici [ A ABC, AA^B^CJ] 

G p podle S. 
b) Narýsovat množinu všech středů Sa. 
c) Vypočítat velikosti všech dalších úhlů v trojúhelnících 

z relací p podle S a q podle Sa, je-li známa ještě velikost 
dalšího úhlu, například a. = 80°. 
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24. Jak se změní řešení úlohy 23, bude-li místo daného 
úhlu -ŠASaB známa velikost ^AS C B = 20° í 

25. Trojúhelník A^B^t z relace AABC q A ^ .B I C , podle Sb 
má velikosti vnitřních úhlů v poměru 2 : 0 : 4 . Vypočítejte 
velikosti vnitřních úhlů dvojice [ & A B C , AAxBfi^e 
e p podle S: 

26. Zvolte tři body A, B , a Cv které neleží v přímce..Jaká 
musí být vzájemná poloha těchto tří bodů, aby jednoznač-
ně určovaly A ABC, AAlB1Cl z relace p podle S, jakož 
i trojúhelníky z relaoí q podle Sa, Sb a Se ? 

27. Je dán AC^Sf, [ C , ^ = 7; SaSb = 10; C,S6 = 9]. Sestroj-
te příslušný AABC, víte-li, že C1 je vrchol AA,B1Cl z re-
lace p podle S a body Sa, Sb st ředy kružnic A ABC vně 
vepsaných. 

28. Je dán A ABC [ A Š = 7,2; BČ _= J5.7; <£ČBA = 70°] 
z trojice AABC p AA1B1Clp A ABC podle S. Narýsujte 
tuto trojici! 

29. Na dané kružnici k = (O; 3,8) zvolte tři navzájem různé 

body A,-Bu C a sestrojte trojici trojúhelníků A ABC p 
p AA^BIGÍP AABČ podle SI 

80. Sestrojte A ^ B C z relace A A B C p o p AABC podle S, 
je-li dán A-4,B,(7a s tupým úhlem při vrcholu At. 

31. Vyšetřete množinu všech pólů Q sdružených s póly S, když 
vrchol C daného trojúhelníku ABC probíhá kružnici tomu-
to trojúhelníku opsanou. Patří do této množiny střed Sa 
kružnice vně vepsané t 
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B. P R Ů S E Č Í K V Ý Š E K 

Tuto část druhé kapitoly věnujeme dvojicím trojúhel-
níků z relací p nebo q utvořeným podle průsečíku výšek 
daného A ABC, který budeme nadále značit vždy zna-
kem V. 

Musíme ovšem přes toto jednotné značení rozlišovat 
mezi trojúhelníky ostroúhlými a tupoúhlými, neboť 
u ostroúhlých půjde vždy o relaci p podle V, u tupo-
úhlých o relaci q podle V. Trojúhelníky pravoúhlé zde 
nepřipadají v úvahu, protože podle definic 1 a 2 nemo-
hou póly P ani Q ležet na kružnici trojúhelníku opsané. 

Pro zkoumání vlastností relací p nebo q podle V má 
základní význam věta, jejíž platnost ted dokážeme: 

Věta 30. Je-li A ABC první složkou a A A1B1C1 nebo 
AA2B2C2 druhou složkou v relaci p nebo q podle V, je pól 
V středem kružnice 
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a) uvnitř vepsané A-^AC^, když AABjp je ostroúhlý, 
b) vně vepsané /\A2B2G2, když /\ABG je tupoúhlý. 

Důkaz provedeme pro každý typ trojúhelníku zvlášť, 
a) Nechť tedy /\ABG je ostroúhlý (obr. 69). 
Především je CC\ ± AB A BBX _L AC, a proto 

<í:AAÍG1 = •¿¡:ACC1 = 90° — -ZAA^ = ABBx = 
= 90° — <*, takže <£AA íB l = -^AAfi^ čili 

přímka AAt je osou úhlu B1A1C1. (2.14) 

Z cyklických záměn pak plyne: 

Pól V, kterým přímky A A „ BBr a CG1 procházejí, 
je podle (2.14), (2.15) a (2.16) středem kružnice uvnitř 
vepsané AA^BxGx, takže je [ A^ I -B I^, A A B C ] e p 
podle S. 

přímka BBX je osou •^.A1B1C1, (2.15) 

přímka CCÍ je osou (2.16) 
i > 

B. z 
Obr. 70 
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b) Nechť A ABC je tupoúhlý s tupým úhlem při vrcho-
lu A (obr. 70). 

Označme O střed kružnice A ABC opsané a průsečíky 
přímek BO a CO s touto kružnicí po řadě Bx a Cx; dále 
pak paty výšek A ABC na stranách AB a AC po řadě 
C0 a B0. 

Protože přímky BBX a CCX procházejí středem O, je 
čtyřúhelník BCBXCX obdélník, a proto 

-ZGfiB = ^ B C . (2.17) 
Podle Thaletovy věty jsou trojúhelníky ¿sB1B2B 

a ACjC^C pravoúhlé, takže je 

BxB2 J_ BV A CB0 _L BV => B,B21| CB0, 
ClOt±CVABC0±CV=>C1Ct\\BC0. (2.18) 

Podle (2.18) jsou čtyřúhelníky B^AC a CXC2AB 
lichoběžníky, a protože jsou vepsány do kružnice, jsou 
rovnoramenné; odtud dostáváme přímo: 

AC2 - BCi - CBX = AB2 =» -^AA^B2 = 
= ^AA2C2> (2.19) 

a také 
<$AA2B2 = <^BCC1 A <AA2C2 = •$CBC1. 

Současně je AA2 _L BC, tedy podle (2.19) také 
A2B2 JL CCy a A2C2 ± BBX (2.20) 

Přímky BBt a CC1 procházejí středem O, a proto podle 
(2.20) jsou body a Cx středy oblouků A2C2 a A2B2, 
neboli: polopřímky B2B1 a C2CX jsou osami vnitřních 
úhlů /\A2B2C2. 

Protože je současně BtB2 J_ BV a C1C2 _L CV, jsou 
přímky BV a CV osami vnějších úhlů AASB2C2. 
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Dokázali jsme, že [ /\A 2B2C2, AABC]eq podle S„ = 
= V. 

Význam právě dokázané věty 30 spočívá v tom, že 
vlastnosti relace p podle V nebo q podle V můžeme 
zkoumat na základě již známých vlastností relace p 
nebo q podle S, S„, Sb či Sc. Toho dále využijeme. 

Věta 31. Je-li dvojice [AABC, AA1BlC1]ep podle V 
nebo dvojice [AABC, AAi,B2C2]eq podle V, potom 
vrcholy &ABC půli oblouky kružnice A ABC opsané mezi 
vrcholy A - ^ I - B Á nebo ¿\A2B2C2. 

Důkaz. Užijeme-li věty 30 a podle ní zaměníme 
indexy u vrcholů trojúhelníků podle vět 15 a 22, dosta-
neme přímo tvrzení obsažená ve větě 31. 

Tato věta pak má zajímavý důsledek: 
Utvořme k danému A ABC trojúhelník A^fi x z rela-

ce p podle V a k němu l\ABC z relace p podle V. Snadno 
zjistíme, že složená relace p o p podle V je identitou, 
neboť V = V. 

Pohleďme například na obr. 69. Podle vět 13 a 31 je 
CXA = BrA A CXA = ByA, takže A = A a obdobně 
i B = B a C = Č, neboli A ABC = A ABC. 

Věta 32. Je-li dvojice [AABC, A¿ACJep podle V 
nebo dvojice [AABC, AA2B2C2]eq podle V, potom osy 
stran trojúhelníků ¿\AlB1Ct nebo /\A2B2C2 procházejí 
vrcholy A.ABC. 

Důkaz. Také zde stačí provést záměnu indexů ve větě 
16, popřípadě 22. 
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Věta 33. Je-li dvojice ostroúhlých trojúhelníků £±ABC 
a A-^í-BjCj v relaci p podle V, platí o velikostech vnitřních 
úhlů <*, ji, y, A ABC a «', y' A ^ M : 

<*' - 180° — 2a, fi' = 180° — 2/?, / = 180° — 2y. 

Důkaz. Jestliže podle věty 30 je A ABC v relaci p 
podle S s A^I-BJCJ., potom podle věty 17 je 

« = 9 0 ° a po úpravě <x' = 180° — 2«, 
Ji 

p = 90° — 4 - a po úpravě = 180° — 2p, 

y = 9 0 ° — \ a po úpravě y - 180° — 2y. 

Víta 34. Je-li tupoúhlý A ABC první složkou v relaci 
p podle V s úhly velikostí a > 90°, P, y a ¿\A2B2C2 dru-
hou složkou v této relaci s vnitřními úhly velikosti a , /?' a y', 
potom platí: 

«' = 2« — 180°, p' = 2p, y' = 2y. 

Důkaz. Užijeme opět vět 30 a 23, podle kterých je: 
t 

a = 90° + a po úpravě a = 2<x — 180°, 
¿2 

P = 4 " a P° ú P r a v ě F - 2P> ¿i 
t y 

y = a po úpravě y = 2y. ¿t 

Víta 35. Je-li A ABC první složkou a /\A1B1C1 nebo 
AA2B2C2 druhou složkou v relaci p nebo q podle V, potom 
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vrcholy £\ABC jsou po řadě středy kružnic opsaných troj-
úhelníkům A-Bi VClt &C1VA1 a A-41F51, popřípadě 
AB2VC2, AC2VA2a AA2VB2. 

Důkaz. Pravdivost tvrzeni vyplývá opět z věty 30, 
jestliže podle ní upravíme texty vět 19 a 25. 

Věta 36. Jsou-li dvojice [AABC, A^i-^Cj] nebo 
[AABC, AA2B2C2] Z relací p nebo q podle V, potom 
vrcholy trojúhelníků AA1B1C1 nebo AA2B2C2 jsou sou-
měrně sdruženy s pólem V podle stran A ABC a to: 

vrchol Ax (A2) podle strany BC, 
vrchol Bl (B2) podle strany AC, 
vrchol Cj (C2) podle strany AB. 

Důkaz. Také zde stačí obměnit užitím věty 30 texty 
vět 20 a 29. Pro naše úvahy má ovšem tato věta zvláštní 
význam. Dokázali jsme pravdivost tvrzení věty, která 
byla v úvodu připomenuta jako příklad důkazové úlohy, 
na niž lze navázat obsáhlou diskusi. Dospěli jsme v této 
diskusi k závěru druhé části druhé kapitoly, kterou opět 
uzavřeme několika příklady a dalšími úlohami. 

Příklad 1. Sestrojte &ABC z dvojice [ A A B C , 
AA&CJ ep podle S, kde A^i-BiC^ je rovnoramenný 

trojúhelník vepsaný do kružnice o poloměru velikosti 
32 mm s jedním vnitřním úhlem velikosti 30°. Trojúhel-
ník A1BlCl však nerýsujtel 

Rozbor. Hledaný trojúhelník je podle věty 30 v relaci 
p podle V s daným A ^ A C , . Protože pQdle zadání nelze 
zjistit, je-li AA1B1C l ostroúhlý nebo tupoúhlý, jsou tyto 
dvě možnosti, pokud jde o velikost jeho vnitřních úhlů: 

a) 30°, 30°, 120°. 
b) 30°, 75°, 75°. 
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V prvním případě budou velikosti vnitřních úhlů 
v ¿\ABC podle věty 34: 

2.30° = 60°, 2.30° = 60°, 2.120° —180° = 60°, takže 
hledaný trojúhelník je rovnostranný. 

V druhém případě jsou velikosti vnitřních úhlů 
180° — 2.30° = 120°, 180° — 2.75° = 30° a třetí úhel 
ovšem rovněž 30°. 

Vidíme hned, že podmínkám úlohy vyhovuje jenom 
případ druhý, protože v prvním případě příslušný troj-
úhelník je rovnostranný, takže A-^I-BICI by musel být 
rovněž rovnostranný. K označení vrcholů jsme při řešení 
této úlohy nepřihlédli. 

Příklad 2. Je dán A K L M [KL = 4 cm; LM = 2,5 
cm; <£KLM = 135°]. Sestrojte /\K2L2M2 z relace 
A KLM q ¿\KJJ2M 2 podle V, aniž narýsujete kružnici 
oběma trojúhelníkům opsanou. Konstrukci umístěte 
tak, aby průsečík výšek A KLM padl mimo nákresnu! 

Rozbor. Předpokládejme, že hledaný trojúhelník exis-
tuje. Potom podle věty 36 je vrchol M2 souměrně sdru-
žený podle přímky KL a vrchol K2 souměrně sdružený 
podle přímky LM s průsečíkem výšek V. Protože však 
podle zadání leží průsečík výšek mimo nákresnu, se-
strojíme nejdříve paty výšek M0 na straně KL a K0 na 
straně LM, jakož i výšku na stranu KM včetně jejího 
prodloužení za vrchol L. Přeneseme-li nyní -^MjLV = 
= $.M0LM2 do poloroviny KLM a úhel -^K0LV = 
= <$LK0LK2 do poloroviny MLK (obr. 71), protnou 
ramena takto přemístěných úhlů přímky MM0 a KK0 
po řadě v bodech M2 a K2. Pokud bude nepřístupný 
i bod LT, můžeme narýsovat snadno aspoň části stran 
M2L2 a KJJ2. Stačí si uvědomit, že podle věty 34 je 
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= 2. <^KML a také <$M2K2L2 = 2. -$MKL. 
Konstrukce je provedena na obr. 71 a její popis je 

obsažen v rozboru. 
Diskuse. Úlohy tohoto typu mají vždy právě jedno 

Příklad 3. Do kružnice o poloměru velikosti 3,5 cm 
vepište dvojice [ A A B C , A ^ i ^ C j ] e p podle V tak, aby 
platilo: AB = BjCx = 5,5 cm. 

Rozbor a popis konstrukce. Známe-li velikost poloměru 
kružnice opsané a velikost jedné strany trojúhelníku, 
můžeme graficky zjistit velikost protilehlého úhlu. 
V našem případě to bude y = <*'. Podle věty 17 pak platí 

a. = 90° . Tento úhel snadno sestrojíme (obr. 72). 
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Kolem bodu A opíšeme oblouk poloměrem AB = 
= B1C1 = 5,5 cm. Tento oblouk protne kružnici opsa-
nou v bodě M, takže <$MBA = y. Úhel vedlejší k 
< í M B A má velikost 180° — y. Rozpůlíme jej a bodem A 
vedeme rovnoběžku s jeho- osou. Rovnoběžka protne 
kružnici opsanou v bodě C. 

Z konstrukce~vyplývá, že úhel ^cCAB májrelikost 
v 

90° —. Potom už obvyklým způsobem sestrojíme 

ňAlB1C1. 

Diskuse. Úhel 90° ~ je ostrý, takže naposledy 
sestrojená rovnoběžka protne kružnici opsanou v bodě 
jediném. Úloha má právě jedno řešení. 

Příklad 4. Je dán &KLM [KL = 10 cm; LM = 
= 5 cm; MK = 6 cm]. Aniž provedete příslušné kon-
strukce, zjistěte, zda existuje k danému trojúhelníku 
K1L1M1 z relace p nebo AŘ^L^M^ z relace q podle V 
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a jaké je pořadí vrcholů těchto trojúhelníků na přímkách 
VK, VL a VM. 

Řešení. Nejdříve zjišťujeme, že KL2 > LM2 + MK2, 
neboť 102 > 52 + 62. 

Podle toho je daný trojúhelník tupoúhlý s tupým 
úhlem při vrcholu M. Existuje proto ¿\K<JJ2M2 Z relace 
q podle V. 

Užitím kosinové věty zjistíme přibližně velikosti 
vnitřních úhlů A K L M a to: 

^LMK = 113° = a, <íKLM = 27° = /9, 
^MKL = 40° = y. 

Potom mají podle věty 34 vnitřní úhly AK2L2M2 
velikosti 

-ZK2 = ý = 2y = 80°, < L 2 = p = 20 = 54°, 
<$M2 = «' = 2« — 180° = 46°. 

Je proto y' > p > & a podle tabulky u příkladu 7 
v první části této kapitoly je pořadí bodů 

na polopřímce VK: VK2K, 
na polopřímce VL: VL2L, 

— - > 

na polopřímce VM: VMM2. 

Příklad 5. Mějme dvojici [AABC, AA1B1C1] e p po-
dle V takovou, že velikosti vnitřních úhlů ¿\ABC tvoří 
aritmetickou posloupnost s diferencí d. Potom vnitřní 
úhly AA1B1C1 tvoří aritmetickou posloupnost s diferen-
cí 2d. 

Dokažte a proveďte diskusi vzhledem k parametru d\ 

Řešení. Podle zadání jsou velikosti vnitřních úhlů 
A ABC po řadě a, « + d, « + 2 d. 
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Z věty 33 pak plyne: Rozdíl: 
«' = (180° —2a) 
p' = 180° — 2(a + d) = (180° — 2a) — 2 d 
ý - 180° — 2(a + 2 d) = (180° — 2a) — 4 d 

2 d 
2 d 

Velikosti vnitřních úhlů A^i-S1C1 skutečně tvoří 
aritmetickou posloupnost s diferencí |2d|. 

Sečteme-li velikosti vnitřních úhlů A ABC, dostaneme 
rovnici 

3a + 3<Z = 180° a odtud a = 60° — d, P = 60°, y = 
= 60° + d. 

Dosadíme-li tyto hodnoty podle věty 33, dostaneme: 
a' - 60° + 2d, P' = 60°, y' - 60° — 2d. 

Předpokládejme, že je d > 0. Potom úhel velikosti 
60° — 2d je nejmenší úhel a nutně je 

Příklad 6. Je dán A ^ a ^ C ^ ^ i = 3 cm, B1C2 = 

60° — 2d > 0 => d > 30°. 
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= 4 cm, $:AiB1Ci = 120°]. Sestrojte trojúhelník ABC 
z relace 

[ A ABC, AA2B1C2] e q podle Sb. 

Rozbor. Podle věty 30 je [AA^BjC* AABC} eq podle 
V, kde V = Sb 

Konstrukce (obr. 73). Sestrojíme průsečík výšek 
AA2B102 a kružnici jemu opsanou k. Potom přímka 
V A 2 protne kružnici k v bodě A, přímka VB, v bodě B 
a přímka VC2 v bodě C. 

Diskuse. Protože AAiB1C2 je tupoúhlý, má úloha 
právě jedno řešení. 

Příklad 7. K danému trojúhelníku K1L1M1 [K^ = 
= 7; L1M1 = 6; MíKl = 5] sestrojte A KLM z relace 
[ A K L M , AK^MJep podle V. 

Řešeni (obr. 74). Užijeme opět věty 30, podle níž je 
[ a A - B A , A^-BC] e p podle S, kde S = V. 

M, 

Obr. 74 
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Zde sestrojíme nejdříve střed kružnice vepsané 
A-^iByCi, potom kružnici jemu opsanou a na ní nám 
přímky A f í , BXS a CXS určí body A, B a C hledaného 
trojúhelníku. 

Cvičení 

1. K danému trojúhelníku narýsujte druhou složku z relace 
p podle průsečíku výšek V. 

a) A ABC [AB = 43; BG = 67; <B A O = 75°], 
b) A D E F [DE = 52; EF = 35; «J£DEF = 105°]. 

2. J e d é n AK^M^ Z dvojice [ AKLM, AK^LyM^ e p podlo 
V[K1L1 = = 6,2; K1M1 = 4,5]. Narýsujte AKLM. 

8. K libovolně zvolenému tupoúhlému AElFlG1 sestrojte 
AEFG Z dvojice [ AEFG, A-SI-FI&I] e p podle V. 

4. AAiB t C t = 4; .BaC, = 6; A%O, = 6] je z dvojice 
[ A ABC, AA^Bfi^eq podle V. Narýsujte A ABCl 

5. D o kružnice k = ( 0 ; 33) vepište dvojici tupoúhlých troj-
úhelníků [ A M N Z , AMiNiZ^Gp podle V, víte-l i , že úhel 
př i vrcholu Z je tupý, dále M%Zt = 60° a ^ZtMtN2 = 45°. 

6. Pokud jste v úlohách 2, 3, 5 rýsovali osy úhlů, opakujte 
konstrukce bez použití kruží tka! 

7. Vn i t řn í úhly daného trojúhelníku maj í velikosti v poměru 
2 : 3 : 4 . Vypočítejte velikosti vni třních úhlů druhé složky 
z relace p podle V k danému trojúhelníku. 

8. Vn i t řn í úhly trojúhelníku maj í velikosti v poměru u : v : (, 
kde u, v, t jsou kladná čísla. Vyslovte podmínky pro to, aby 
trojúhelník byl ostroúhlý, tupoúhlý nebo pravoúhlý. 

9. Úlohu 7 řešte obecně a výsledky porovnejte. 
10. Velikosti vnitřních úhlů první složky v relaci p podle V 

jsou v poměru 21 : 4 : 6. Vypočíte j te velikosti vni třních 
úhlů druhé složky a výsledek porovnejte s výsledkem 9. 
úlohy! 

11. Poměr velikostí vnitřních úhlů druhé složky z relace q 
podle V je 7 : 8 : 25. Určete velikosti vnitřních úhlů první 
složky. 

12. N a libovolně zvolené kružnici zvolte t ř i navzá jem různé 
body X , Y , Z a kolem těchto bodů opište takové kružnice, 
které se po dvou protnou na dané kružnici a mimoto ma j í 
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společný ještě jeden další bod ve vnitřní nebo vnější oblasti 
zvolené kružnice. 

13. Je dán trojúhelník FQH. Určete takový bod M, aby kruž-
nice opsané troj úhelníkům A F M O , A F M H , AGMHbyly 
navzájem shodné. 

14. Zvolte polopřímku AM, bod V, který na ní neleží, a úsečku 
velikosti r. Sestrojte A ABC, jehož strana AB leží na polo-
přímce AM, bod V je průsečíkem jeho výšek a úsečka r 
poloměrem jeho kružnice opsané. 

15. Zvolte polopřímku B^M, bod V mimo ni ležící a úsečku 
velikosti r. Sestrojte dvojici A ABC p AA^B^C, podle V 
tak, že strana BlGl padne na polopřímku BlM, bod V bude 
průsečíkem výšek A ABG a r velikost poloměru společné 
kružnice opsané této dvojici. 

16. Úsečka AB = 6 cm je stranou AABC,r = 3,5 cm velikost 
poloměru kružnice jemu opsané a 0 V = 1,5 cm vzdálenost 
průsečíku výšek od středu kružnice opsané. Sestrojte 
dvojici [ AABC, A ^ i S i C \ ] e p p o d l e V. 

17. Sestrojte dvojici [ AKLM, A K ^ M ^ e q podle V, víte'-li, 
že KL = 5,8 cm, poloměr společné kružnice opsané r = 
= 3,4 cm a vzdálenost průsečíku výšek V od středu opsané 
kružnice O V = 5 cm. 

18. N a kružnici k = (O; r) zvolte bod A a jeden bod vnitřní 
oblasti této kružnice označte V. Ukažte, že ty to t ř i prvky 
určují jednoznačně dvojici [ A ABG, A -41-8,0,] Gp podle V. 

19. Opakujte úlohu 18 s t ím rozdílem, že bod V zvolíte vně 
kružnice. 

20. Je dána kružnice k = ( 0 ; r) , její bod vnitřní oblasti V 
a úsečka c < 2r. Sestrojte dvojici [ A F Q H , A - F i C i ^ i ] S 
€ p podle V tak, aby bylo FG — c. 

21. Opakujte úlohu 20 s t í m rozdílem, že bod V bude ve vněj-
ší oblasti kružnice k. 

22. Libovolný vnitřní bod zvolené kružnice k = ( 0 ; r ) označte 
V. Potom zvolte přímku h. Sestrojte dvojici [ A K L M , 
A K j L i M ^ e p podle V tak, aby strana LM AKLM byla 

rovnoběžná s přímkou h a bod V byl příslušným pólem. 
23. Do kružnice o poloměru r = 3 cm vepište dvojici [ AKLM, 

A - K I - M Í , ] e p podle V tak, aby byl ^KVL = 120° 
a = 140°. 

24. Sestrojte dvojici [ AEFG, AEiFtGt] eq podle V tak , aby 
E2F3 - 6,5 cm, ^cEtGtFt = 25° a <£EFG = 35°. 
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25. Zvolte t ř i navzájem různé body A, B, C, které neleží 
v přímce. Potom sestrojte trojúhelník KLM, v němž zvo-
lené body A, B, C jsou po řadě patami výšek na strany 
KL, LM, MK. 

26. N a dané kružnici k = (O; 3,8) zvolte body A, B, Ax a se-
strojte dvojici A ABC p ňA1B1C1 podle V. Udejte pod-
mínky řešitelnosti! 

27. N a kružnici & = (O; 4,2) umístěte body A, Av Bt asestrojte 
dvojici A ABC p AAíBiCí podle V. Udejte podmínky 
řešitelnosti 1 

28. V dvojici A ABC p AA^BiCy podle V známe poloměr 
kružnice opsané r - 4,2 cm, -¡¡.ABC = P = 48°, ^B^AyCi 
= a.' = 64°. Narýsujte! 

29. Je dána kružnice k = (0 ; 3,6), na ní bod C\ a př ímka h, 
která je rovnoběžná se stranou AB trojúhelníku ABC 
z dvojice [ A ABC, A ^ I - B I C I ] € p podle V. Sestrojte tuto 
dvojici tak , aby $.BAC = « = 60°. 

80. Vyšetřete množinu všech pólů Q sdružených s průsečíkem 
výšek V trojúhelníku ABC, když vrchol C probíhá oblouk 

- kružnice A ABC opsané! 
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C. S T Ř E D K R U Ž N I C E O P S A N É 
A T Ě Ž I Š T Ě 

Bude-li pólem střed kružnice danému trojúhelníku 
opsané nebo jeho těžiště, půjde v obou případech o relaci 
p podle definice 1. To proto, že jak střed kružnice troj-
úhelníku opsané, tak i těžiště jsou prvky podmnožiny, 
kterou jsme v úvodní kapitole označili K'. 

Velmi jednoduché jsou vztahy mezi trojúhelníky 
z dvojice 

[AABC, A ^ I - B A ] e p podle O, kde 0 je střed kruž-
nice oběma trojúhelníkům opsané. 

Věta 37. Jsou-li trojúhelníky A ABC a /\A1B1C1 v re-
laci p podle O, kde O je střed společné kružnice oběma troj-
úhelníkům opsané, je tato relace středovou souměrností se 
středem O. 

C 

B 

Á 

1 

B 

A 

C, -i 
Obr. 75 

130 



Důkaz (obr. 75). Podle definice 1 procházejí v daném 
případě přímky AAlt BB, a CC, středem kružnice 
A ABC opsané. Je tedy 

AO = OA, A BO = OB, A CO = 0C„ 
takže trojúhelníky A ABC a ¿\A,B,C, jsou souměrně 
sdruženy podle středu 0 . Bezprostředním důsledkem 
toho je jejich shodnost A ABC ^ ¿\A,B,C„ z čehož 
pak vyplývají další vlastnosti relace p podle O: 

a) rovnost stran: AB= A,B,; BC = B,C,; CA = 
= C,A„ 

b) rovnoběžnost stran: AB || A,B„ BC\\B,C„ CA || 
II C,A„ 

c) shodnost úhlů: « = a'; = /9', y = y , 
d) <£AOB = 2y, je-li y g 90°, nebo <£AOB = 360° — 

— 2y, je-li y > 90° (s cyklickými obměnami pro úhly 
<x a P). 

K zajímavému důsledku dojdeme, utvoríme-li k relaci 
p podle O relaci p podle O. 

Věta 38. Je-li dvojice [AABC, AA,B,C,]ep podle O 
a dvojice [AA,B,C„ A ABC] ep podle O, potom přísluš-
ný pól O je průsečíkem výšek AA,B,C, a středem kružnice 
vepsané A ABC a to: 

a) uvnitř A ABC, je-li A ABC ostroúhlý, 
b) vně A ABC, je-li A ABC tupoúhlý. 

Důkaz, a) Na obr. 76 vlevo je A ABC ostroúhlý. Proto-
že přímky AA„ BB, a CC, procházejí středem O kruž-
nice A ABC opsané, jsou trojúhelníky A A A,A, A BB,B 
a A CC,C podle věty Thaletovy pravoúhlé s pravými 
úhly při vrcholech A, B a C. 
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J e tedy A1 ' X AA a současně podle věty 13 AA || 
\\Bfi» takže AAr 1 B1G1 a obdobně i BB1 ±_ A^C^, 
ČGl _L i A 

Podle věty 13 však přímky AAlt BBX a CCX prochá-
zejí pólem 0, čímž je dokázáno, že pól O je průsečíkem 
výšek A A - B ^ , ale také podle věty 30 je středem kruž-
nice vepsané A ABC. 

b) Na obr. 76 vpravo je A ABC tupoúhlý s tupým 
úhlem při vroholu A. Ukázali jsme již v důkazu věty 13, 
že přímky AAlt BBt a 001 procházejí týmž bodem, který 
však v tomto případě leží vně kružnice ¿\ABC opsané. 
Podle věty 10 je tu nutnou a postačující podmínkou, 
aby trojúhelníky A - ^ A C Í a A ABC byly opačného 
smyslu. Dokažme, že tomu tak skutečně je. Z vlastností 
středové souměrnosti vyplývá, že trojúhelníky A ABC 
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a A^I-BÍCJ jsou téhož smyslu. Protože podle předpokla-
du jsou úhly <£BAC a ^.B,A,C, tupé, odděluje^přímka 
AA1 bod B od bodu C, jakož i bod Bl od bodu C„ a to 
tak, že B, leží v polorovině AA,C a bod C, v polorovině 
AA,B. Dále je podle věty 13 

A A || B,C, || BC, 
takže bod A leží v polorovině BOA. Proto i přímka AAX 
odděluje shora uvedené dvojice bodů. Uvidíme dále, že 
přímky BB a CC se navzájem protínají na přímce AAV 

Proto při konstrukci podle věty 13 padne bod B do 
— — > 

poloroviny AA,C, kde ležíi b o d a bod C do poloroviny 

AA,B, kde leží i bod C,. Jsou tedy trojúhelníky A ABC 
a A A í B 1 C 1 opačného smyslu a podle věty 10 se polo-
přímky BBU CC, a ovšem i AA, protínají vně kružnice 
A ABC opsané. Jejich průsečík je na obr. 76 vpravo 
označen 0. 

Nyní už jenom musíme dokázat, že bod O je průsečík 
výšek &A,B,C,. 

Postup bude stejný jako v části a) důkazu: 
Také zde je CČ X ČC, => CC, X B,A„ protože je 

CC\\B,A,. 
Obdobně je BB, X C,A, a tedy i O A, X B,C,. 
Bod O je proto p ůsečíkem výšek v ¿\A,B,C, a podle 

věty 30 současně s edem kružnice vně vepsané A ABC, 
a to proti vrcholu A. 

Poznámka 1. Trojúhelníky v právě popsané složené re-
laci p o p podle pólu O mají ještě některé další vlast-
nosti, které stojí za zmínku. Na obr. 76 vpravo je prů-
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sečík polopřímek BXB a CC (nevyznačený) středem kruž-
nice vepsané trojúhelníku ABC. Pravdivost tohoto 
tvrzení vyplývá přímo z konstrukce: 

BB || A1C1 || CA => AB = CB, protože 

čtyřúhelník BBAC je lichoběžník. (2.21) 

AA || C1B1 || BC => AB = AC, protože také 

čtyřúhelník ACBA je lichoběžník. (2.22) 

Podle (2.21) a (2.22) je potom CB = CA, 

neboli <$.BČC = -^ÁČC, takže polopřímka CC 

je osou <£AČB. (2.23) 

Obdobně je v lichoběžníku ABCC AC = BC7 a v licho-
běžníku ACBA AC = BA, odkud pak plyne BČ = BA, 

což znamená, že •^ABB1 = •¡f.CBB1 a polopřímka 

BBX je osou -¿íÁBČ. (2.24) 

Podle (2.23) a (2.24) se polopřímky CČ a BBX protnou 
v jednom bodě, a t o ve středu S kružnice vepsané 
A ABC. 

Přímým důsledkem toho pak je, že CCt _L AB, 
AAt JL BC, BBt _L CA. 

Podle předchozích úvah jsou body B & C po řadě stře-
dy oblouků AČ a AB, takže například přímka CClt která 
prochází středem 0 kružnice opsané A ABC, je osou 
tětivy AB a obdobně přímka BBX osou tětivy AČ. Po-
tom ovšem i přímka AAX je osou tětivy BC. 
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Poznámka 2. Zde je třeba ještě připomenout, že věta 
38, jak ostatně vyplývá z jejího textu, neplatí pro troj-
úhelník pravoúhlý. To proto, že k pravoúhlému troj-
úhelníku lze sestrojit l\AlB1C1 v relaci p podle O, avšak 
nikoliv ¿\ABC v relaci p podle O. Má-li totiž A ABC 
pravý úhel například při vrcholu A, potom body B a C 
splynou. 

Nyní obrátíme svou pozornost k vlastnostem relace p 
podle pólu T, kde T je těžiště daného trojúhelníku. 

Ukažme nejdříve, že v tom případě stojí za zmínku 
především zvláštní rozmístění vrcholů uvažovaných 
trojúhelníků na kružnici jim opsané. 

"Věta 39. Mějme dvojici [AABC, AAJSfi^ep podle 
pólu T, kde T je těžiště A ABC, jehož strany maji velikosti 
a - BC, b - CA, c = AB. Potom vrcholy uvažovaných 
trojúhelníků leží na společné kružnici opsané tak, že je 

AtB : AjC = b : c, BXC : BXA = c : o, 
CtA : CtB = a:b. 

Důkaz (obr. 77). Na obr. 77 je T těžiště A ABC 
a A+ střed strany BC. Z podobnosti A-^iBA* ~ A C A A + 

vyplývá 
AXB : BA+ = CA : AA + 

a odtud 
CA.BA+ b.a 

A l B " AA+ ~ ' 

dosadíme-li CA = b, BA+ = AA+ = ta, kde ta je 
¿t 

těžnice příslušná ke straně BC. (2.25) 
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Obdobně pak z podobnosti /\A1CA + ~ [\BAA+ plyne 

Ač : CA+ = BA : 
a odtud 

. __ BA.CA + c.a 
a * g = — a f — a r - ( 2 - 2 6 ) 

když BA = e, CA+ = = *.. 
¿t 

Obr. 77 

Ze (2.25) a (2.26) už dostaneme dělením a po úpravě 
krácením: 

AXB : A,C = b :c. 

Zbývající dva vztahy jsou výsledkem cyklických zá-
měn. 

Protože důkaz se opírá o rovnost úseček CA+ = 

= BA+ = má vlastnost uvedenou ve vě tě 39 ¿t 
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právě relace p podle T. U všech v této kapitole probíra-
ných relací jsme našli víceméně jednoduché vztahy 
mezi velikostmi vnitřních úhlů první a druhé složky, 
což umožňovalo řešení úlohy, kde jsme k dané druhé 
složce z relací p nebo q dovedli sestrojit složku první. 
J ak uvidíme dále, u relace p podle T žádný takový 
jednoduchý vztah neexistuje. Proto nejdříve věnujeme 
pozornost vztahům mezi velikostmi stran a těžnic 
uvažovaných trojúhelníků. 

Věta 40. Mějme dvojici [AABC, A A ^ f i ^ e p podle 
T, kde strany A ABC mají velikosti po řadě a, b, c a k nim 
příslušné těznice velikosti ta, h, te- Potom platí 

B,CX : CtAx : A^B, = a.ta : b.tb : c.tc. 

Důkaz (obr. 77). Z podobnosti A B f i , T ~ A C B T 
plyne 

B f i , : CB = B.T : ČT čili R f i , = • 
0 1 

2 
Dosadíme-li do této rovnosti CB = a, ČT = —- tc, J 

BJT = B^B+ + B+T, kde 

tílSS ~ B+B ~ Tfc" A B 1 tb' 
dostaneme po úpravách 

g(36* + Ml)  
1 1 8 htc 

V čitateli tohoto výrazu dále dosaďme 

fc = y V ^ + c2) — b* 
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a po dalších úpravách dojdeme ke konečnému výsledku: 

^ = a(a* + b* + c2) 

s cyklickými záměnami: 

0 3 , = 

4 tbtc 

6(a2 + 62 + c2) 
4 tatc 

c(a2 + 62 + c2) 

UtvoHme-li z výrazů (2.27) postupný poměr, můžeme 
jej zkrátit výrazem 

a*+ b* + c2 

4tatbtc 
a dostaneme tvar, jehož pravdivost jsme měli dokázat: 

B& : C^ : A ^ = a.t0 : b.tb : c.tc. 
Užijeme-li sinové věty a současně vyjádříme velikosti 

těžnic pomocí velikostí stran A ABC, bude 

sin <x : sin /?' : sin y =a ]/2(62 -f c2) — a2 : 

: b |/2(a2~+ c2) — b2 : c ]/2(a2 + 62) — c2. 

Výsledek, ke kterému jsme právě dospěli, napovídá, 
že k danému ¿\ABC lze početně i konstrukčně nalézt 
A^I-BICÍ z relace p podle T, avšak obrácenou úlohu 
nelze řešit ani početně, ani konstrukcí. Spokojíme se 
však tvrzením, že početní řešení vede k soustavě rovnic 
čtvrtého stupně, která má aspoň dvě reálná řešení, po-
kud &ABC není rovnostranný, a jedno řešení v tom pří-
padě, když rovnostranný je. Toto tvrzení nyní dokáže-
me. 
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Věta 41. Je-li dvojicemi AÁBC, AA&CJ ep podle T 
a dvojice AA^fi,, A ABC] ep podle T, potom příslušný 
pól Ť je těžištěm A ABC. 

Důkaz (obr. 78). Na obr. 78 je zobrazen A ABC, dále 
AAiBiC i z relace p podle T a A ABC podle věty 13 
z relace p podle T. Trojúhelníku BTC je opsána kruž-
nice a její průsečík s přímkou AAX je označen A0. 

Podle vět 4 a 14 je 
<£AŤČ =J + p' = 180° — p => <£AjrČ = p = 
= <ApBC, 
ŠiBTC = « + « ' = 180° — « =» 3LBA0C = <%. 

Trojúhelníky AA^BC a A ABC mají tudíž dva vnitřní 
úhly shodné, takže je 

AAjiČ™ AABC. (2.28) 
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Současně plyne z konstrukce 

CyB = AjB => -$C\CB = $TCB = ^BCAX 

a také 

A f i = B f i => = ^CBB, = ^CtfT7 

a odtud 
A B T C ~ ABAjČ. (2.29) 

V podobnosti podle (2.28) a (2.29) odpovídá v obou 
trojúhelnících straně BC s t rana BC a tudíž i bodu T 
bod Ax. Tím je dokázáno, že bod Ax je těžištěm AA^BC 
a současně že přímka AA0 protíná úsečku BC v jejím 
středu A+. Proto platí v kružnici k: 

AA+.AXA+ = BA+.ČA+ 

a V kružnici k: ŤA^.A^A* = BA + .ČA+, neboli 

AA + .AyA* = ŤA+.A0A+. 

Dáme-li poslednímu výrazu tvar úměry, bude důkaz 
úplný, protože 

AA+ :TA+ =A0A+:A1A+ = 3:1, 

takže bod T je těžištěm A ABC. Současně je dokázáno, 
že v složené relaci A-A.BC p AA1B1C1 p A ABC podle 
T je A-ABC různý od A ABC, a to s jedinou výjimkou, 
když A ABC je rovnostranný, takže vrcholy A, A sply-
nou stejně jako B, B a C, C. 

V této souvislosti je dobře si připomenout, že také 
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složená relace p o p podle T je symetrická s relací 
p o p podle T a že i zde platí věta 14 o velikostech 
vnitřních úhlů v trojúhelnících A ABC a A ABC. Pro 
vztahy mezi velikostmi stran uvažovaných trojúhelníků 
pak platí další věta: 

Věta 42. Nechť trojúhelníky ve složené relaci [\ABC 
pop l\ABC podle T mají velikosti stran a, b, c, à, h, i 
a velikosti téžnic t„, h, tc, h, h, t-c, potom o téchto velikostech 
platí: 

a ) a : b : c = la : lb : lr , 
b) ď : h : č = ta • h : tc-
Důkaz (obr. 79). Na obr. 79 je T těžiště A ABC a A+ 

střed strany BÓ. Dále je A+A' = A+T a obdobně 
B+B' = B+T, C+C' = C+T. Čtyřúhelník TBA'C je rov-
noběžník, a proto 

BA' = TC = \ t c , TA ô ^ t a , T B = ~ t b . (2.30) 

C 

A' 

C" Obr. 79 
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Obdobně je 

CT = ^tc,B'C = ^ta,TB' =Ytb' (2"31) 

a také 

TC' = tc, AT = ~ ta, C'A = y <6. (2.32) 

Podle (2.30), (2.31) a (2.32) je 

ATA'B ^ AB'CT ^ AATC'. (2.33) 
Pro lepší přehlednost nejsou na obr. 79 zakresleny 

trojúhelníky A-^I-BICI a A ABC z uvažované relace. 
Předpokládáme-li, že ty to trojúhelníky mají velikosti 
vnitřních úhlů po řadě a, P', y', a, P, y, je dále 

^ATB = (y + y') <BTA' = 180° — (y + y') = y, 

ŠATC = (p + P') =» <ATC' = 180° — (P + P') = P, 

•Š.CTB = (a + «') => -$CTB' = 180° — (« + a) - s. 

Užijeme-li nyní věty 14, zjistíme, že například 
A BTA' a podle (2.33) i A ATC' a A GTB' jsou podobné 
A ABC, takže 

a :b : 6 — ta : ti, : tr, 

čili 
a : b : c = la \li \lc, 

protože v uvažovaných trojúhelnících mají těžnice BA+, 

CB+ a AC+ velikosti , —- a — . Je ovšem možno na-
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mítnout, že jame tu užili obrácení věty 14, jehož prav-
divost jsme nikde nedokázali. Platnost obrácené věty 14 
však jednoznačně vyplývá z věty 6. 

Na závěr této kapitoly ještě uvedme důležitý důsle-
dek věty 14, podle kterého je 

B,C, : C,A, : A ^ = a.la : b.lb : č.lc. 
Důkaz není nutno podávat, protože pravdivost tvrzení 

vyplývá ze symetričnosti relace p o p a , věty 40. 

K předchozím úvahám nyní opět připojme několik 
příkladů úloh a obvyklá cvičení. 

Příklad 1. Na kružnici k = (0; 3,5) zvolte tři navzá-
jem různé body A, Bx, C a sestrojte trojici trojúhelníků 
A ABC p x A^I-BICI P2 A ABC podle P tak, aby bylo 
A,A ± BC, BtB _L AC, C,C ± AB. 

Rozbor (obr. 80). Podle zadání splňují hledané troj-
úhelníky předpoklady věty 38, a proto je P = O, kde O 
je střed dané kružnice. 

Obr. 80 
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Konstrukce. Přímka AO protne kružnici k v bodě Alt 

přímka B,0 v bodě B. Dále je AXČ = B,C a přímka CO 
protne kružnici k v bodě Cx. Podle věty 13 pak je A,B = 
= C,B a C,A = B,A. 

Důkaz. Správnost vyplývá z věty 13, neboť jsme při 
konstrukci postupovali přesně podle této věty. 

Diskuse. Nutnou a postačující podmínkou, aby úloha 
měla řešení, je, aby přímky ABU AC a B,C neprochá-
zely středem O, neboť: 

1. Je-li O BALB,, je B = A, A A = B, => A = B. 

2. Je-li O eAC, je A, = Č A A,Č = B,C = 0 a odtud 
B, = C, C, = B, takže A ABC je pravoúhlý s pra-
vým úhlem při vrcholu A. Podle poznámky 2 za větou 
38 však tato věta v pravoúhlém trojúhelníku neplatí. 

3. Je-li O eB^C, je B, = C,. 

Zvolíme-li nejdříve body A a B„ jsou již jednoznačně 
určeny body Ax a B. Potom bod C můžeme zvolit na 
menším nebo na větším oblouku kružnice k A ABC opsa-
né mezi body A a B,. V prvním případě jakož i ve dru-
hém může trojúhelník A ABC být ostroúhlý i tupoúhlý. 
Zajímavý je případ, kdy bod C je středem oblouku 
AB„ neboť splynou body C a Cu takže pól O leží na 
tečně kružnice k v jejím bodě C. 

Příklad 2. Ke zvolenému A ABC sestrojte zbývající 
dva z trojice A ABC p £\A1BíC1p &ABC podle O. 

Rozbor. Podle věty 38 je pól 0 středem kružnice 
vepsané A ABC. 
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Konstrukce (obr. 81). Vepíšeme kružnici A ABC a její 
střed označíme O. AA 1 B l C 1 je v relaci p podle O 
s A ABC a AABC v relaci p podle O s AA^B^C^ Tím 
je dán postup konstrukce: 

Obr. 81 

Důkaz správnosti je dán větou 38. 
Diskuse. Všechny body v průběhu konstrukce jsou 

zvolenými p rvky určeny jednoznačně s výj imkou 
pravoúhlého trojúhelníku. Úloha proto má až na tu to 
výj imku řešení vždy a právě jedno. 

Příklad 3. S tanovte postačující podmínku pro to, aby 
A ABC ze složené relace A ABC p o p A ABC podle O 
byl pravoúhlý. 

Řešeni. Podle věty 38 je především A ABC ^ 
^ A A - B I C I a pól O je průsečík výšek AA1B1C1. Platí 
proto podle vě ty 34 a = 180° — 2a' nebo ¡3 = 180° — 
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— 20', y = 180° — 2y'. J e tedy podle zadání například 
90° = 180° — 2a, odkud dostáváme <* = «' = 45°. 

Může ovšem být také = 45° nebo y' = 45°. Protože 
však A ABC může mít nanejvýš jeden úhel velikosti 
90°, je nutnou a postačující podmínkou, aby právě je-
den vnitřní úhel A ABC měl velikost 45°. 

Příklad 4. Je dán AABC [AB = 12; AC = 18; 
ŠJCAB = 60°]. 

Je-li dvojice [A ABC, A ^ A C J e p podle T, dělí 
polopřímka AAX <£CAB na dvě části, a to: 

= šiA^B 0,0.1 = '¡¡lAXAC. 

Ukažte, že v daném případě je sin <xj : sin <x2 = 3 : 2, 
a potom vypočítejte velikosti úhlů ax a a2! 

Řešení, a) Podle věty 39 je 

AXB : AXC = 6 : c = 18 : 12 = 3 : 2. (2.34) 

Současně je AXB = 2.r.sin a! a AXC = 2r.sin <*2. 
Dosadíme-li tyto hodnoty do (2.34), bude 

sin <*! : sin a2 = 3 : 2. 

b) Podle zadání je sin a1 = sin (« — a2), takže 

s in ' (a—a») 3 . . 
i; — = — => 2 sin (<x — a,) = 3 sin a , 
sin a-2 2 \ v 2 

(2.35) 
za předpokladu, že a2 ^ 0, což v tomto případě platí. 

Rovnici (2.35) upravíme nejdříve na tvar 

2(sin a.. cos aa — cos <*. sin a2) = 3 sin <*2» 

146 



potom dosadíme 

sin a. — 1/1 
m « = JL - , cos a. = —, cos <x2 = j/l — sin2 a. 

Ekvivalentními úpravami pak dojdeme ke konečné-
mu tvaru 

Tato ryze kvadratická rovnice má jediný vyhovující 
kořen, a t o « 2 = 23°25', odkud pak OLx = 36°35'. Druhý 
kořen je záporný, takže příslušný úhel je větší než 180°. 

Příklad 5. Je dán A ABC [a = BČ = 3, b = AČ = 5, 
c = AB = 4], Narýsujte trojici A ABC p t\AlB1C1p 
p A ABC podle T a potom vypočítejte velikosti všech 
stran, těžnic a vnitřních úhlů této trojice trojúhelníků. 
Výsledky porovnejte! 

Řešení. Postup konstrukce snad není nutno popisovat. 
Připomeňme jenom, že jde o pravoúhlý trojúhelník 
ABC s pravým úhlem při vrcholu B, neboť je 

Velikosti vnitřních úhlů A ABC lze tedy určit velmi 
snadno a jsou to: « = 36°52'12",0 = 90°, y = 53°07'48". 

K výpočtu velikostí těžnic A ABC použijeme běžně 
používaných vzorců, zde například: 

= a2 + c2. 

a obdobně 
ta yJ/2(62 + c 2 ) - a 2 = 4,272, 

tt = 2,5, 
te= 3,605. 
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Velikosti stran A^I-BICI dostaneme podle (2.27), kde 
například 

B í 0 í ~ - 4 ' 1 6 0 ' 
a obdobně 

A~ČX = 4,068, 
A j B , = 4,687. 

Protože podle zadání je velikost poloměru opsané 
kružnice rovna jedné polovině přepony AC, je r = 2,5. 
Z toho snadno zjistíme velikosti vnitřních úhlů A - ^ A C I , 
neboť je například 

. , B A 4,160 sin <x = „ = — - — = a td . , 2 r 5 
takže 

OL = 56°18'38', 0' = 54°14'46", / = 69°26'36\ 

Velikosti vnitřních úhlů A ABC zjistíme užitím věty 
14, kde například 

5 = 180° — (OL + OL') = 86°49'10", P = 35°46'14*, 
y ' 57°25'36". 

Tím je usnadněn výpočet velikostí s tran A ABC: 

a = 2 . r . s in a = 4,993, b = 2,922, č = 4,21. 

Velikosti těžnic [\ABC pak zjistíme stejně jako veli-
kosti těžnic A ABC: ta = 2,63, ib = 4,38, lc = 3,50. 

Všechny velikosti jsou tu ovšem určeny jen přibližně, 
a to u délek s přesností na tř i až čtyři platné cifry, 
u úhlů s přesností na vteřiny. Podle toho je t řeba i posu-
zovat výsledky získané měřením. 
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Příklad 6. I když výsledky získané v předcházející 
úloze jsou jenom přibližné, přece lze s výhradou tvrdit, 
že 

a.ta :b.ti, : c.tc •-== á.la:b.tb :č.lc. 
Ukažte, že nejde o jev nahodilý! 
Řešení. Víme, že složená relace p o p je symetrická. 

Z toho lze soudit, že platí-li pro dvojici [ A A B C , 
A ^ A C J e p podle T věta 40, t j . 

B1C1 : C1A1 : AXBX = a.ta : b.ta : c.ttt, 

musí platit i pro dvojici [ IsABC, ep podle T, 
takže 

BÍC1 : O^! : AtBx = a.la :b.lb: č.lc. 

Tím je dokázána obecná platnost vztahu uvedeného 
v úloze v přímém souladu s důsledkem věty 14 uvedeným 
na konoi této kapitoly. 

Příklad 7. Na dané kružnici k = (O; 4) leží body A, B 
a Ax tak, že AB = 6 cm, BAt = 3 cm. 

a) Narýsujte dvojici [ A A B C , A^i-Si^i] e p podle T. 
b) Proveďte diskusi úlohy pro případ, kdy velikost 

BA j není známa a bod At probíhá celou kružnici k. 

a) Rozbor. Vyšetříme nejdříve množinu všech těžišť T 
trojúhelníků ABX, kde X je bod, který probíhá kružnici 
k. Na obr. 82 je C+ střed strany AB hledaného A ABC. 
T je jeho těžiště. Víme, že v tom případě je C+T : 

: C+X = 1 : 3 . Tím je dána stejnolehlost H = j C+; y j , 

v níž obrazem kružnice k je opět kružnice s poloměrem 

velikosti y |zde -^-j opsaná A A ' B ' T , kde A' a B' leží na 
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AB t ak , že C+A' = C+A : 3, C+B' = C+B : 3. Tato 
kružnice je hledanou množinou s tím, že body A' a B' 
nejsou prvky této množiny. Je j í střed pak leží na polo-

přímce C+0 t ak , že C+0' = -J- C+0. Pro zjednodušení 
O 

konstrukce je dobře si uvědomit, že je 

takže je k' = ( o ' ; y j -

Popis konstrukce. Máme-!i sestrojenu kružnici k', bude 
hledaný bod T průsečíkem polopřímky AA, s kružnicí 
k' a potom bod O průsečíkem polopřímky C+T s kruž-
nicí k. 

b) Z předchozího je již zřejmé, že existence a počet 
řešení je závislý na tom, zda přímka A A, bude mít spo-
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léčné body s kružnicí k. Vederae-li bodem A tečny ke 
kružnici k', protnou tyto tečny kružnici k v bodech M 
a N (viz obr. 82 vlevo). Potom bude mít úloha právě 
jedno řešení, bude-li Ax = M nebo Ax = N, dvě řešení, 
bude-li Ax uvnitř <£MAN, a žádné řešení, bude-li Ax 
ležet vně <£MAN. 

Cvičení 
1. K danému AABC [AB = 6; BC = 4^5; CA = 7] sestrojte 

AAyByCi z relace p podle O a AABC z relace p o p podle 
O. Sestrojte i pól 0 . 

2. Je_dán A K L M [KL = 55; LM = 35; ^MKL^ = 30°; 
L je t u p ý ] ze složené relace A KLM p o p í\KLM podle 

O. Sestrojte A KLM. Udejte počet řešení a zdůvodněte! 
3. Velikosti vnitřních úhlů v A-ABC jsou v poměru 2 : 3 : 10. 

V j akém poměru jsou velikosti vni třních úhlů A ABC 
z relace A ABC p o p podle O t 

4. V dané dvojici A ABC p o p AABC podle O známe veli-
kosti vni třních úhlů ve druhé složce, a to: čí = 36°54', p = 
= 81°12 \ Určete velikosti vnitřních úhlů první složky, t j . 
A ABC\ 

5. Ú lohu 3 řešte obecně! 
6. Ú lohu 4 řešte obecně! 
7. N a dané kružnici zvolte t ř i navzájem různé body A, Clt C. 

Potom sestrojte trojici ¿\ABC p AA^B^C^ p &ABC pod-
le O. _ 

8. Úlohu 7 opakujte s trojicí bodů A, B, A\ 
9. Úlohu 7 opakujte s trojicí bodů A, Blt C, . 

10. Úlohu 7 opakujte s trojicí A, B, C, . Tvořte dále obdobné 
úlohy! 

11. Je dán A KLM velikostmi stran, a to: KL — 6, LM = 5, 
MK = 7. Sestrojte trojici £\KLM p A Í i i A P A KLM 
podle T. 

12. K libovolně zvolenému A E F O sestrojte trojici A E F O p 
P AEyFfii p AEFO podle Ť l 

13. Strany daného AABC maj í velikosti a = BC = 4; 6 = 
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= AC = 5; c = AB = 6. Narýsujte trojici A ABC p 
p AA^BjCip AABC podle T. Potom vypočítejte velikosti 
všech stran, všech vnitřních úhlů, těžnic v A ABC a A ABC 
a poloměru kružnice opsané. Výsledky porovnejte s vý-
sledky získanými konstrukcí! 

14. N a kružnici k = (O; 4) umístěte body A, Blf C, Aít B, Cl 
v tomto daném pořadí tak , že AtB : AtC = b : c; BXC : 
: BXA = c : a; CtA : CtB = o : b, kde o, b, c jsou velikosti 
úseček splňující trojúhelníkovou nerovnost. 

16. Už i t ím věty 42 řešte známou úlohu: Sestrojit trojúhelník, 
jsou-li dány velikosti všech t ř í jeho těžnic. 

16. V dané kružnici k = (O; 4) sestrojte tět ivy AB = 6 cm, 
CCl = 7 cm, tak aby bod (7, byl vrcholem ¿\AlBlCl z re-
lace A ABC p ¿\A1B1Cl podle T. Ukažte, že úloha má 
řešení, právě když je (7(7, > AB. 

17. Úlohu 16 opakujte pro tět ivy BC = 5,5 cm a AAX = 7 cm 
a relaci p o p podle T. 

18. N a kružnici k = ( 0 ; 3,5 cm) leží body E, F a P , tak, že 
EF = 5,5 cm, EFx = 2,5 cm. Narýsujte dvojici [ A E F Q , 
AExFjOj] e p podle ,T. 

19. V daném různostranném trojúhelníku jsou zakresleny 
všechny t ř i těžnice AA', BB', CO' a jejich průsečík T. 
Kozstřihneme-li tento trojúhelník podél těžnic, získáme 
šest různých trojúhelníků, z nichž lze po dvou složit t ř i 
shodné trojúhelníky podobné AABC ze složené relace 
A ABC p o p ABC podleJT.J)okažte! 

20. Obměňte úlohu 20 pro AABC Z téže relace! 
21. Vypočítejte velikosti úhlů = a = ^ B ^ C 

v dvojici A ABC p A ^ , B I ( 7 , podle T, je-li AB = 24 mm, 
BC = 32 mm a <OBAj= 45°. 

22. Je-li AABC p o p A ABC podle T, je <„ : tb : te = sin čí : 
: sin p : sin y, kde ta, řj, tg jsou velikosti těžnic A ABC a a, 

. p, y velikosti vnitřních úhlů v A ABC. Dokažte! 
23. Je-li A ABC p Op A ABC podle T, ia; lb •. le = sin <x : 

: sin P : sin y, kde a, /}, y jsou velikosti vnitřních úhlů 
v A ABC a ř„, h, te velikosti těžnic v A ABC. Dokažte! 

24. Ukažte, že důsledkem úloh 22 a 23 je vztah: ta : tb : t0 — 
= sin (« + a ' ) : sin (P + /?') : sin (y + y') = a : 5 : č, kde 
o, 5, o jsou velikosti stran A ABC. 
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K A P I T O L A 3 

P O D O B N Á Z O B R A Z E N Í 

A. O B E C N É V L A S T N O S T I 

V závěru první kapitoly jsme naznačili, že v této kapi-
tole pojednáme podrobněji o relacích „p podle P" nebo 
,,q podle Q". Zatím jsme se těmito relacemi zabývali 
jenom natolik, že jsme dokázali existenci A ABC před-
pokládaných vlastností (viz větu 13) a vztahy mezi veli-
kostmi vnitřních úhlů trojice A ABC p AA1B1C1 p 
p A ABC podle P, kde P je vnitřní bod A ABC (viz větu 
14). 

V tomto omezení jsme využili vět 13 a 14 při zkoumání 
vlastností složené relace pop podle T, kde T bylo těžiště 
A ABC. Pro další úvahy však nyní již s tímto omezením 
nevystačíme. Především musíme odvodit větu obdobnou 
větě 14 pro pól P ležící vně A ABC. 

Víta 43. Má-li trojice trojúhelníků ze složené relace 
A ABC p ¿\AyBjCx p A ABC podle P vnitřní úhly veli-
kostí a, p, y; a', fi', ý\ a, ¡3, y, potom o těchto velikostech 
platí: 

S = (« + «') — 180°, když ol + a! > 180°, 

y =y + / • 
Důkaz (obr. 83). Na obr. 83 je v A ABC a + ď > 
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> 180°, takže pól P leží podle věty 4 v polorovině 
BCA *. Proto je 

0 = ABC = ^B,BČ — ^B,.BA. (3.1) 

Dále pak podle věty 13 B,C = A,C a odtud 

-ZBiBC = 180°— -ZA^C = 180°— <£PAC 
(3.2) 

současně je 

B,A = C,A => -^B.BA = ^.CfiA = <$PCA. 
(3.3) 

Dosadíme-li podle (3.2) a (3.3) do (3.1), bude 

0 = 180° — <$PAC — -ZPCA = <$APC = 0 + 0' 

a to podle věty 4 v A A P C . 
Obdobně dostaneme v A^-BP y = <£APB= y + y'. 
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Protože je a -f + y = 180°, bude 
a = 180° — (,3 + P ) - (y + y') = (« + «') — 180°. 

Existují ovšem ještě cyklické záměny pro (0 + P) > 
> 180° a (y + y') > 180°. Ty uvedeme později v pře-
hledné tabulce. 

Věta 44. Má-li trojice trojúhelníků ze složené relace 
l\ABG q ¿\AJB2C2 q AA.BC podle Q vnitřní úhly veli-
kostí a, (i, y; a', /?', y'; a, ¡1, y, potom o těchto velikostech 
platí: 
a) ležl-li pól Q uvnitř BAC, a = 180° + (« — «'); 

P = (P— P')\ v = (y — y')'y 
b) leží-li pól Q uvnitř úhlu vrcholového k <%BAC, a = 

= 180° + («' - «); ? = (p - /?); y = (y' - y). 

Důkaz. Pravdivost tvrzení a) vyplývá z obrácení věty 
43. K důkazu proto použijeme obrázku 83. Zde leží pól 
P vně kružnice A-A.BC opsané. 

Zaměňme označení pólů P = Q A Q = P, takže je-li 
A ABCp AA1B1C1p A ABC podle P, 

bude 
AABČq AAoBzCa q AABC podle Q, 

když A A i B f í , = A A i B í C r Zaměníme-li současně ozna-
čení ABC za ABC a naopak, jakož i označení příslušných 
vnitřních úhlů, bude 

(X = a + «' — 180° => a = 180° + (<* — <*'), 

y =y + / => y = y — y'. 
b) Druhé tvrzení věty 44 se týká pólu Q ležícího uvnitř 

vrcholového úhlu <$.BAC (obr. 84). 
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y = <íC2CB — $.C2CA (3.4) 
a současně 

C2B = A2B => <£C2CB = •$.AiB2B = 
= 180°— <A2B2Q. (3.5) 

C2A = =» <£C2ČA - -ŽB2A2A -
= ^ B ^ Q . (3.6) 

Dosadíme-li také zde podle (3.5) a (3.6) do (3.4), bude 
v AA2B2Q 
y = 180° — ^A2B2Q - 3LB2A2Q = ^AQB = / — y . 

Obdobně je p = P — p a odtud 
5 = 180° - (p' - /?) - ( / — y) = 180° - (p + / ) + 
+ (p + y) = 180° — (180°— <*') + (180° — a) = 180° + 
+ («' - <*)• 

Příslušné cyklické záměny shrneme nyní spolu se zá-
měnami vyplývajícími z vět 14 a 44 do přehledné ta-
bulky: 
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Poloha pólu 
P nebo Q 

Velikosti vnitřních úhlů v A ABC 

Poloha pólu 
P nebo Q 

a = < B A C P - <£ABC y = <£ACB Poloha pólu 
P nebo Q 

velikosti úhlů jim odpovídajících 

Poloha pólu 
P nebo Q 

<CA0B <AB0C -$BC0A 

P vnitřní bod A ABC 180° — (& + «') 180° — (/? + /?') 180° — (y + y ) 

P v polorovině BCA * 
ACB* 
ABC* 

( « + «') —180° 
a. -f- ď 
a -f- OL 

P + P' 
(p + p') — 180° 

P + P' 

y + y' 
y + P' 

(Y + Yl— 180° 
Q uvnitř <$.CAB 

-ZABC 
-ZBCA 

180° + (« — «') 
OL OL 

a — a ' 

P-P' 
180 ° + (p — p') 

P-P' 

y — y' 
y — y' 180° + (y y ' ) 

Q uvnitř vrcholového 
úhlu k <$.CAB 

<$ABC 
<£BCA 

180° + ( a ' — a ) 
OL OL 

/ 
OL OL 

P ' - P 
180° + (P' —P) 

P'—P 

y'—y 
y — y 1 8 0 ° + (y' — y) 

tab. 3 



Poznámka. V záhlaví tabulky jsou vedle velikostí 
vnitřních úhlů v A ABC uvedeny v příslušných rubri-
kách i velikosti úhlů :CA„5, <ZAB0C a ^BC?A, o kte-
rých zatím nebyla řeč. Brzy však poznáme, že jde o veli-
kosti vnitřních úhlů v podobných trojúhelnících, takže 
je výhodné je uvést do jedné společné tabulky. Tabulka 
nám dobře poslouží při rozvíjení dalších úvah i při řešení 
úloh. 

Nyní již můžeme přikročit k vlastní látce této kapi-
toly. Začneme definicí: 

Definice 3. Mějme dvojice [ /\ABC, AA^C^ep po-
dle P nebo [ A A B C , AA2B2C2]eq podle Q, kde póly P 
nebo Q neleží na žádné straně A ABC ani na žádném je-
jich prodloužení. Potom množinami MTA, MTB a MTC rozu-
míme po řadě množiny všech trojúhelníků vepsaných do 
kružnic la, lb a lc, kde 

{B, C, P} V {B, C, Q} C h, 

{A, C, P}V {A, C, Q}(Zlt„ 

{A,B,P}W{A,B, Q}<Zl. 

Připomeňme si, že již v první kapitole jsme se zabý-
vali vlastnostmi kružnicových oblouků procházejících 
například body A, B,P nebo A, B, Q. Tam šlo o množiny 
všech pólů P nebo Q předpokládaných vlastností. V de-
finici 3 se ted objevuje celá kružnice lc obsahující uve-
dené body jako nositelka vrcholů trojúhelníků z mno-
žiny Mjy. Jedním prvkem této množiny je také AABC0, 
kde C0 je průsečík přímky CC\ s kružnicí lc. Podobně lze 
utvořit i AA,yBC v kružnici Z0 nebo AB0C v kružnici lb. 
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Vlastnosti trojúhelníků tohoto typu vyjadřuj í další dvě 
věty: 

Věta 45. Mějme dvojici [AABC, A^i-BiCJep podle 
P a trojici trojúhelníků [ A A ^ B C , ¿\AB/J a AABCq], 
kde A0 je průsečík přímky AP s kružnicí opsanou &PBC, 
B0 průsečík přímky BP s kružnicí opsanou AAPC a C0 
průsečík přímky CP s kružnicí opsanou AABP. Je-li 
současně 

AABC pop A ABC podle P, 
potom 

AAJBC~ AAB0C~ A ABC0~ A ABC. 

Důkaz (obr. 85). Na obr. 85 vlevo je pól P vnitřní bod 
A ABC a kružnice la je opsána A BCP. 

V kružnici la je 
-£BA0C = 180° — -Š.BPC = 180° — (a + <*') (3.7) 



Dále je 

^AoBC = -ZAoPC = 180°— 3LÁPC = 

= 180° — (jí + /?') (3.8) 

rovněž podle věty 4. 
Podle (3.7) a (3.8) mají trojúhelníky A A^BC a A ABC 

(z relace p o p podle P) dva vnitřní úhly shodné, a proto 
je A AqBC ~ A ABC. Tento výsledek je v dobrém sou-
ladu s údaji v tabulce 3 právě tak jako závěry z cyklic-
kých záměn: ~ 

&AB0C~ AABČA AABC0~ AABC, 
takže 

AA0BC~ AAB0C~ AABC0~ A ABC. 
> 

Na obr. 85 vpravo je pól P v polorovině BCA*. 
Zde je <$.BA0C = 180 — -$BPC = 180° — [360° — 

— (a + a')] podle věty 4 a odtud 
<£BA0C = (<* + a) — 180°. (3.9) 

Dále je 
<£CBA0 = $CPA = p + p (3.10) 

a potom i 
<$.BCA0 = -ZBPA = y + y' (3.11) 

obojí podle věty 4. 

Porovnáme-li (3.9), (3.10) a (3.11) s tabulkou 3, vidí-
me, že tam uvedené dvojice úhlů jsou skutečně shodné, 
takže je AAoBC ~ A ABC. 

V kružnici lb pak je <£AB0C = <£APC = 0 + 0' 
a také 3iBQAC = ^.BA^C = (« + «') — 180°. 
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Je proto ¿\ABqC ~ A ABC a obdobně i &ABC0 ~ 
~ A ABC opět v dobrém souladu s tabulkou 3. Věta 45 
proto platí i tehdy, když pól P leží vně A ABC. 

Věta 46. Mějme dvojici [AABC, AA2B2C2] e g podle 
Q a trojici trojúhelníků [ AA^BC, /\AB0C a &ABC0], 
kde A0 je průsečík přímky AQ s kružnicí opsanou AQBČ, 
B0 průsečík přímky BQ s kružnici opsanou AAQB a C0 
průsečík přímky CQ s kružnicí opsanou AABQ. Potom je 

AAQBC ~ A AB0C ~ AABC0 ~ A ABC, 
kde A ABC je druhá složka ze složené relace [A ABC, 
AABC] e g o g podle Q. 

Důkaz (obr. 86). Na obr. 86 vlevo je pól Q vnitřní bod 
<$.BAC, a proto: 

•$BA0C = 180° --- <£BQC - 180° — («' — ff) = 
= 180° + (<x— <x'), (3.12) 



dále je 
-ZAoBC = <£AQC = (ft — P) (3.13) 

podle věty 5 a obdobně 

<AfiB = <AQB = (y — y') (3.14) 

také podle věty 5. Srovnáme-li tento výsledek s tabul-
kou 3, zjistíme, že vnitřní úhly AA^BC jsou shodné 
s vnitřními úhly A ABC, takže je A AqBC ~ A ABC. 

Z cyklických záměn dále plyne 

A AB0C~ /\ABČ A A ABC0~ A ABC 
a odtud 

AAvBC ~ A AB0C ~ aABC0 ~ A ABC. 

b) Na obr. 86 vpravo je pól Q uvnitř úhlu vrcholového 
k úhlu BAC, a proto: 

<£BA0C = 180° — <$BQC = 180° — (« — «') = 
= 180° + («' — «), 

potom 

•ZA^BC = <£A0QC = -ZAQC 

a koneěně 

<A0CB = -£A0QB = <$AQB = y' — y. 

Opět jsme došli k shodnému závěru, že uvažované 
trojúhelníky mají shodné velikosti vnitřních úhlů 
a jsou proto podobné. Spolu s cyklickými záměnami pak 
platí: 

AAqBC~ AAB0C~ AABC0~ AABČ. 
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V předcházejících důkazech jsme nejenom prokázali 
pravdivost vět 45 a 46, ale současně i oprávněnost uspo-
řádání tabulky 3, kde jsme uvedli rovnosti: 

a = 0 = ^AB0C, y = <$ABC0. 

Budeme proto tabulky 3 používat také v souvislosti 
s vlastnostmi trojúhelníků f\A^BC eMTa, /\AB0C e 
eMTb a /\ABC0 eMTC- Přitom je třeba si uvědomit, že 

je-li dána dvojice [ A A B C , A^I-BJCJ] e p podle P, nebo 
dvojice [ A A B C , AA^B^C^ eq podle Q, lze kružnice 
la, lb a lc narýsovat jediným způsobem, a právě tak i body 
A0, B0 a C0 jsou jednoznačně určeny. Tím ovšem je dána 
jednoznačně také trojice trojúhelníků AAqBC, A A B 0 C 
a AABC0 . J istě je na místě ta to úmluva: 

Právě popsaný vztah mezi uvažovanými trojúhelníky 
budeme nadále vyjadřovat takto: 

dvojice [ A A B C , A ^ - B j C J e p a k ní příslušná tro-

Bd 

Obr. 87 U 
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jice, nebo [ A A B C , AA 2 B 2 C^ e g a k ní příslušná tro-
jice. Téhož obratu použijeme v případě, že bude násle-
dovat jenom jeden nebo dva z uvažované trojice troj-
úhelníků. 

V množině MTA utvořme nyní relaci p e (MTA x MTA), 
a to [ AAqBC, A P B a C a ] e p podle Av 

Z obrázku 87 je zřejmé, že body Ba a Ca jsou průsečíky 
polopřímek BAt a CAX s kružnicí la podle definice 1. 
Protože jsme relaci p v úvodní kapitole uvedli jako zobra-
zení, je zřejmé, že pól P zde je obrazem bodu A0, zatímco 
bod A i převzal úlohu pólu v relaci p v množině MTa . 

Obdobné relace pak lze utvořit i v množinách MTb, 
MTC. Změní se jenom označení vrcholů příslušných troj-
úhelníků. Tak dostaneme další dvojice trojúhelníků. 

[ /\AB0C, ¿\AtPCb] 6 p podle Bl v množině M n , 

[ A ABC o, &AcBeP] e p podle Cl v množině MTC. 

Protože právě zavedená relace je relací p podle P, 
má všechny dosud popsané vlastnosti této relace. Podle 
popisu konstrukce jednotlivých bodů je opět zřejmé, že 
jejich poloha jednoznačně vyplývá z poloh v dané 
dvojici trojúhelníků [&ABC, ¿sA^C^ep. Proto 
vztáhneme úmluvu z předcházejícího textu i na právě 
popsanou trojici, takže budeme psát: 

dvojice [ A ABC, A-^I-BICI] e p podle P a k ní přísluš-
ná trojice [ APBaCa, AAbPCb, /\ACBCP]. 

Věta 47. Mějme dvojici [AABC, /sA^BjC^ep podle 
P a k ní příslušnou dvojici [ £\A0BC, ¿\PBaCa] ep podle 
Ax. Potom je 

A PBaCa~ A AjBfi^ 
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Důkaz, a) Nechť pól P je vnitřní bod A ABC (obr. 
87). Potom je v kružnici la <^BaCaP = <£BaBP a v kruž-
nici k je 

-ZBaBP = <A{BB! = ^AjCJ.BJ, = / . (3.15) 

Současně je v kružnici la ^ C a B J 3 = <£CaCP a v kruž-
nici k 

<£CaCP ss ^AXCC, = <AlBlCl = p. (3.16) 

Trojúhelníky APBaCa a AA1B1C1 mají podle (3.15) 
a (3.16) dva vnitřní úhly shodné, a proto jsou podobné. 

b) Nechť pól P je vnější bod A ABC, takže leží napří-
» 

klad v polorovině BCA* (obr. 88). 

Obr. 88 
« 
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Na první pohled se obrázky 87 a 88 podstatné liší, 
protože například bod Ax je zde jednou bodem vnitřní, 
podruhé bodem vnější oblasti kružnice la. Postup důka-
zu však je v obou případech naprosto stejný, jak je 
možno se přesvědčit. Nemusíme proto důkaz znovu 
opakovat. Nesmíme však přehlédnout důsledky vyplý-
vající z právě dokázané věty: 

Z cyklických záměn totiž dostáváme 

¿±AhPCb ~ AA1B1C1 A A&P ~ A ^ I ^ A , 

takže z věty 47 plyne: 

AA1B1C1 ~ APBaCa ~ AAtPCt ~ AA&P. 

Věta 48. Mějme dvojici [ A ABC, AA2B2C2] eq podle 
Q a k ní příslušnou dvojici [AA^BC, AQBaCa\ ep nebo 
q podle A2. Potom je 

AQBaCa ~ AAZBZC. 

Ba 

i 

Q 

B. 'z Obr. 89 
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Důkaz (obr. 89 a 90). a) Nechť pól Q leží nejdříve 
uvnitř <£BAC. 

V kružnici la je <QBaCa = -$QCCa = 180°— <£A2CC2 
a v kružnici k je <£A2CC2 = 180° — <£A2B2C2, neboli 

<ZQBaCa = <A2B2C2 = p'. (3.17) 
Současně je v la <£QCaBa = -£QBBa = 180° — < 

<A2BB.í a v kružnici k je < A 2 B B 2 = 180° — -$A2C2B2, 
neboli 

<QCaBa = <£A2C2B2 = y'. (3.18) 
Trojúhelníky AQBaCa a AA 2B 2C 2 mají podle (3.17) 

a (3.18) dva vnitřní úhly shodné, a proto jsou také 
podobné. 

b) Na obr. 90 je pól Q vnitřní bod úhlu vrcholového 
k <£BAC. 
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Zde se opět změnil jenom obrázek, protože bod A2 tu 
je bod vnější oblasti kružnice la, ale postup důkazu je 
opět zcela shodný s předchozím s tím rozdílem, že 

<£QCC0 = <A2B2C2 = 0', 

<ZQCaBa = 180°— ^QBBa = -$B2C2A2 = y. 

Odtud pak pijme: /\>QBaCa~*> AA 2 B 2 C 2 . 
Také zde je třeba vzít v úvahu i cyklické záměny: 

AAbQCb~ f\A2B2C2 A AA cB eQ ~ AA 2 B 2 C 2 , 

takže 

AA2B2C2 ~ AQBaCa ~ AAbQCb ~ AACBCQ. 
Zde je ovšem možné namítnout , že důkazy vět 45—48 

nebyly dovedeny až do konce a že jsme snad neopráv-
něně použili důkazu z analogie, když jsme ze vztahů 
v kružnici la usuzovali, že stejné vztahy nalezneme 
i v kružnicích lb a le. Formálně je ovšem ta to námitka 
oprávněná. Ukážeme však například postup v části 
a) důkazu věty 48. Zde v kružnici lc platí: 

<$QBAC = <£QAAC = <A2AC2 = -ZA2B2C2 = 0', 

•ZQACBC = 180° — <£QBBC = ^CJBB, = 
= ^.C2A2B2 = a'. 

Z tohoto příkladu je zřejmé, že jde skutečně o analogii 
a příslušné důkazy se hodí spíše do cvičení. 

Mnohem zajímavější zde jsou důsledky vět 45—48. 
Podle věty 45 a 46 je například A AJiC~ A ABC 

a podle věty 47 a 48 ¿\PBaCa ~ kA^Bfi, nebo 
AQBaCa ~ AA2B2C2. 
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Současně však víme, že je 

[AABC, A ^ A C J e p podle P 
a také 

[ AAqBC, APBaCa] 6 'p podle A1. 

Zřejmě je tedy v podobnosti MR -v MTA dvojice 
[A ABC, A^J -BJCJ ep podle P vzorem a dvojice 
[AAqBC, l\PBaCa\ e p podle Ax jejím obrazem a na-
opak. 

I zde je třeba vzít v úvahu cyklické záměny, takže 
tyto důsledky vět 45—48 platí i pro podobnosti MT -> 
-v MTb a Mt ->MT c , přičemž je vždy pól P vzorem a póly 
Alt Bl a C1 jeho obrazy a naopak. Jedno z těchto po-
dobných zobrazení ukazuje obr. 91. 

Dodejme ještě, že také dvojice [A ABC, A,A2B2C2] e 
ep podle Q je vzorem a dvojice [í\A^BC, AQBaCa] e p 

Ba 
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podle A2 jejím obrazem, jak ukazuje obr. 92, a to se 
všemi dalšími důsledky včetně těch, které jsou vyjádře-
ny v další větě. 

Obr. 92 

Věta 49. Mějme dvojici trojúhelníků [ A ABC, 
A ^ A C J ] e p podle P nebo [ A A B C , AA^Bfi^ eq po-
dle Q a Ic nim příslušné trojice trojúhelníků APBaCa, 
AAbPCia AAcBcP, nebo AQBaCa, AAbQC„a AAcBcQ, 
potom 

a) přímky AbAc, BaBc a CaCb procházejí póly P nebo Q 
a současně je 

<—> — > *—> < — 

b) AbAc || B1C1 nebo AbAc || -B2C2> 

BJ3, || Í A nebo BaBc || A&2, 

cjcb || AJ}X nebo CaCb || A ^ . 
\ 

Důkaz zde musíme provést pro čtyři různé polohy 
pólů P nebo Q. 
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a) Na obr. 93 je pól P vnitřní bod A ABC, a proto: 
v kružnici la je 

<£CC«P = <CBP, (3.19) 
v kružnici k pak je 

<CBP = CBBi = <£CAXBX, (3.20) 
takže podle (3.19) a (3.20) je 

^CAXBÍ = ^CCaP, neboli AXBX || CaP. (3.21) 

Dále je v kružnici lb 

-ZCCtP = CAP, (3.22) 
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v kružnici k pak je 
•ZCAP = •$ČAA1 = <$.CBíAl, (3.23) 

takže podle (3.22) a (3.23) je 

CBXAX = <íCC„P a odtud AlBl ]| CVP. (3.24) 
Podle (3.12) a (3.24) jsou přímky CaP a CJP rovno-

běžné s přímkou AÍB1 a tedy i navzájem rovnoběžné. 
Mají-li současně společný bod P, potom musí splývat 
a je P e CaCb. 
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Tím je důkaz proveden pro přímku CaCb a z cyklických 
záměn dostaneme také 

X X || B^Ci A P e X X , 

BJ3C || Ajoi AP e BJic • 
b) V případě, že pól P leží vně l\ABC, je situace po-

někud složitější, avšak myšlenkový postup důkazu je 
stejný jako v případě a), proto zde provedeme jenom 
stručný zápis důkazu (obr. 94). 

V kružnici la je ^.GCJ* = <$CBP, v k je -$CBP = 
= <CBB! = ^ C ^ A , a proto 

<$.CCaP = 4CA& => CaP || A&. (3.25) 
Dále v lb je -ZCCoP = <$CAP, v k je <£CAP = 

= <£CAA1 = 180° — •£CB1A1, a proto 
CCbP = 180° — ^CB.A, => CtP || A1B1. (3.26) 

Konečně podle (3.25) a (3.26) je CaP || CbP, neboli 
CaCb || A1Bl A P e CaCb. 

Obdobně pak platí: <£A A6P = ACP = - Í ^ C C j = 
= ^ABXGX, takže 

3LAAJP = ^ A B , ^ => ^ P I I J B A , (3-27) 
•¿ /U^P = = = ^ A C ^ , takže 

=> ACP || . (3.28) 

vl zase podle (3.27) a (3.28) je AbP || ACP, neboli 

XX || APeXX (3.29) 
Tím je dokázáno i třetí tvrzení, neboť z podobnosti 

trojúhelníků APBaCa A ~ A„PCb A ~ ACB,P vyplývá 

-$.CaPBa = <£CbPBn takže P S , = P 5 „ . (3.30) 
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c) Na obr. 95 leží pól Q uvnitř úhlu BAC. 
Protože i zde jde o zcela shodný myšlenkový postup, 

použijeme ještě stručnějšího zápisu: 
^AAeQ = 180°— <4(7,2?, =» AcQ\\C2B2, 

(3.31) 
^AAbQ = ^AB2C2 AbQ || C A - (3.32) 

Ze (3.31) a (3.32) plyne 

Ju2 c ' | | Bfi2 A Q eA^Ac, (3.33) 
<£LBaQ = 180°— <$BA2C2 => BaQ\\A2C2, 

(3.34) 
<BBCQ = <$BC*A2 => -BCQ 11-4,0,. (3.35) 

Ze (3.34) a (3.35) plyne 

|| A f i t AQe 1",Č7,. (3.36) 
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Obdobně jako v případě b) můžeme i zde z (3.33) 
a (3.36) usuzovat z podobnosti na pravdivost tvrzeni 
třetího, t j . 

c~cb II A QeCaCb. (3.37) 

d) Zbývá už jenom případ, kdy pól Q leží uvnitř úhlu 
vrcholového k <£BAC, jak ukazuje obr. 96. 

Zde je <£AAb.Q = <%ACQ = -$ACCl = -£AB2C2, 
takže <£AAbQ = ^.ABiGi => AbQ || CJBit a také 
<£AAcQ = šABQ = <£ABB2 = <£AC2B2, takže 
<£AACQ = => ACQ || a odtud 

A j c || c j i t A Q e I X . (3.38) 
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Současně je -$BBaQ = ^BA2C2 => BaQ || A2C2, dále 
<XBBCQ = 180°— <BC2A2 => BCQ || A2C2 a odtud 

B<$c || 1~2C2 A Qe BaBc. (3.39) 
Podobně jako v předchozích dvou důkazech vyplývá 

z (3.38) a (3.39) také třetí tvrzení, a to: 
i-

CaCb II A2B2 AQe cA. (3.40) 

Tím jsme získali dostatečnou představu o obecných 
vlastnostech podobných zobrazení z množiny MT do 
množin MTa, MTb a MTc a naopak, takže můžeme opět 
na několika příkladech ukázat řešení konstrukčních úloh 
užitím příslušných vět. 

Příklad 1. Je dán trojúhelník PBaCa [PBa = 7; 
BaGa = 6; CaP = 4], o němž víme, že je největší z tro-
jice trojúhelníků APBaCa, AAbPCb a AAcBcP příslušné 
k dvojici [ AABC, A-^I-BICJ Z relace p podle P. Sestroj-
te A ABC, víte-li, že pól P je jeho vnitřní bod a velikosti 
trojúhelníků z dané trojice jsou v poměru 5 : 4 : 3 . 

Řešení (obr. 97). Především uvažme, že za nejmenší 
z uvažované trojice trojúhelníků můžeme považovat 
buď AAbPCb nebo AAeBcP. Zde provedeme pouze druhý 
případ. 

Potom je podle zadání poměr podobnosti prvých dvou 
trojúhelníků kt = 4 : 5 a poměr podobnosti druhého 
a třetího k2 = 3 : 4. Můžeme proto zjistit konstrukcí 
nebo výpočtem i velikosti stran druhého a třetího troj-
úhelníku, a to: 

AbP = 5,6; PCb = 4,8; CbAb = 3,2 ; 
ACBC = 4,2; BCP = 3,6; PAC = 2,4. 
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Sestrojíme-li daný /\PBaCa, máme již polohy přímek 
BaBc = PBa a CaPb = PCa, které podle věty 49 prochá-
zejí pólem P. Naneseme-li na příslušné polopřímky od 
pólu P úsečky PAb, PCb a PBC, dostaneme chybějící 
vrcholy hledané trojice trojúhelníků. Tím je úloha vyře-
šena. 

K vlastní konstrukci je třeba dodat, že nebude vždy 
možné získat výpočtem přesné velikosti chybějících 
rozměrů, a proto raději užijeme vhodných redukčních 
úhlů k sestrojení požadovaných velikostí. K sestrojení 
přímky AbAc pak je nutno uvážit, že podle věty 49 je 

<£AbPCb = <$PBaCa. 
Diskuse. Řešení existuje nepochybně tehdy, když 

kružnice opsané uvažované trojici trojúhelníků se pro-
tnou po dvou ve dvou různých bodech, z nichž jeden je 
pól P. To musí ovšem nastat vždy, protože v případě, 
že by kterékoliv dvě kružnice vedle pólu P neměly další 
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společný bod, musely by se dotýkat právě v tomto 
pólu, a to při seskupení trojúhelníků odpovídajícím větě 
49 nemůže nastat. 

Bude mít proto takto daná úloha vždy právě jedno 
řešení. V našem případě, jak jsme uvedli v rozboru, je 
zadání dvojznačné, a proto úloha má dvě řešení. 

Příklad 2. Jsou dány velikosti strany AB a poloměru 
kružnice opsané trojúhelníku ABC i poloha pólu Q. 
Určete polohu třetího vrcholu C v A ABC tak, aby troj-
úhelníky AQBaCa, AAbQC„ a l\AcBcQ byly rovnora-
menné a tvořily trojici příslušnou k [ A ABC, A A2B2C2] e 
eq podle Q. 

Rozbor. Zvolme například AB = 6 cm; r — 3,5 cm; 
AQ = 12 cm, BQ = 6,5 cm (viz obr. 98). 

Protože je dána kružnice opsaná A ABC i pól Q, mů-
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žeme na dané kružnici určit polohy bodů A2 a B2. Podle 
věty 48 pak bude například /±QBaCa podobný AA2B2C2 , 
takže řešení úlohy spočívá v tom, že musíme určit 
polohou C2 tak, aby /\A2B2C2 byl rovnorameimý. To 
lze provést celkem čtyřmi způsoby. První dva trojúhel-
níky dostaneme, když za hlavní vrchol zvolíme body A2 
nebo B2, druhé dva, když hlavním vrcholem bude bod C2. 
Zde provedeme jednu z druhých dvou možností, a to tu, 
kde ¿\A2B2C2 je ostroúhlý. Spojnice vrcholu C2 s Q určí 
na opsané kružnici polohu třetího vrcholu C. Nyní již 
známe všechny prvky potřebné k sestrojení hledané 
trojice trojúhelníků. Ve zvoleném případě však se setká-
váme s jistými potížemi, protože některé důležité body 
leží mimo nákresnu. A tu je dobrá příležitost k tomu, 
abychom využili všech poznaných vlastností této trojice 
podle dokázaných vět. 

Diskuse. Z rozboru je zřejmé, že úloha může mít až 
čtyři řešení. To ovšem za předpokladu, že pól Q neleží 
na žádné straně A ABC ani na jejím prodloužení. Sou-
časně ovšem musí být AB ^ 2r. 

Příklad 3. J e dán A ABC [AB = 7 cm; BC = 6 cm; 
CA = 5 cm]. Určete polohu pólu P tak, aby A ABC ze 
složené relace A ABC p O p A ABC byl pravoúhlý 
s pravým úhlem při vrcholu A a ostrým úhlem veli-
kosti 30° při vrcholu B. 

Řešení. Užijeme-li důsledků věty 14, můžeme veli-
kosti úhlů <*', p' a y určit ze vztahů « + + « = 180°, 
P + P'+j) = l&0° a y + _ / + ý = 180°. Potom už 
sestrojíme £\AlB1C1 a A ABC. To je ovšem postup dosti 
zdlouhavý, zvláště když musíme uvažované úhly sčítat 
graficky. 
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Zde se však nabízí řešení mnohem jednodušší (obr. 99). 
Užijeme vlastností trojice AA^BC, AAB 0 C a A A B C 0 , 

o níž víme, že podle věty 45 a podmínek v zadání úlohy 
má vnitřní úhly velikostí po řadě 90°, 30° a 60°. Narýsu-
jeme-li aspoň dva z této trojice trojúhelníků, například 
¿\AqBC a /\ABJJ, potom se přímky AA0 a BB0 protnou 
v bodě P, který je hledaným pólem. 

Konstrukce je vlastně již popsána v rozboru, jenom 
připomeňme, že BCA„ = 60°, <CBA0 = 30°, 
<£ACB0 = 60° a konečně -ZCAB,, = 90°. 

Příklad 4. K dané dvojici [ A A B C , AA&CJep po-
dle P [.AB = 5; BC = 5,5; CA = 6,6; AP = 4•, BP = 
= 2,5] sestrojte trojici k ní příslušných trojúhelníků 
APBaCa, AAbPCb a ¿\ACBCP, avšak tak, že nenarýsu-
jete kružnice opsané trojúhelníkům A A B P , £\BCP 
a A A C P . 

Řešení. Užijeme opět věty 49. Nejdříve narýsujeme 
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přímky, které procházejí pólem P a jsou po řadě rovno-
běžné se stranami AA^fi,, a to CaCh || AXBX, AbAc || 
|| B f i , a BaBc || A& (obr. 100). 

Chybějících šest vrcholů hledané trojice trojúhelníků 
nyní již snadno sestrojíme, neboť: 

vrchol Ab leží na polopřímce ABít 

vrchol Ac na polopřímce AClt 

Ba na BAlt Ca na CAlt Bc na BClt Cb na ČBV 

Obr. 100 

Příklad 5. Je dán A ABC9 příslušný k dvojici [ A ABC, 
A-^i-BiCj] z relace p podle P. Jeho strany mají velikosti 
AB = 6 cm, BC0 = 5,4 cm, AC0 = 7,8 cm. Sestrojte 
příslušnou trojici /\PBaCa, AAbPCb a /\ACBCP, víte-li, 
že jde o trojici rovnostranných trojúhelníků. 
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Rozbor (obr. 101). Ze zadání vyplývá, že v množině 
MTC předpokládáme existenci dvojice [ /\ABC0, 
AACBCP] e p podle C1 v souladu s důsledky věty 46 

(viz obr. 87). Řešení dané úlohy tedy bude spočívat 
v tom, že v kružnici lc opsané danému l\ABC0 sestrojí-
me takový pól Glt aby obraz /\ABC0 z relace p podle 
Cx byl rovnostranný trojúhelník. Podle věty 4 takový 
trojúhelník dovedeme sestrojit. 

Konstrukce. Především opíšeme [\ABC0 kružnici le 
a s pomocí úsekových úhlů sestrojíme kružnicové oblou-
ky ACXB a BCjCq s obvodovými úhly velikostí - g A C ^ = 
= < ACgB + 60°, ^BCtPo = <$BAC0 + 60°. Tyto 
oblouky se protínají v hledaném bodě Opíšeme-li 
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nyní kružnici k trojúhelníku ABClt protne přímka C^C, 
kružnici le v bodě P a kružnici k v bodě C. Známe-li 
AABC a hledaný pól P, snadno sestrojíme i A-^I-BICI 
a tři hledané trojúhelníky. Kružnice lb a la ani rýsovat 
nemusíme (viz příklad 4). 

Příklad 6. Do kružnice k = (0; 3,5 cm) vepište A ABC 
[AB = 5 cm, BC = 6 cm] a určete polohu pólu Q t ak , 
aby o rozměrech trojúhelníků z dvojice [ A A B C , 
&A2B2C2] eq podle Q a k n í příslušné trojice A QBaCa, 
AAbQCb a AAcBeQ platilo: 

B£2 : QČb :BJQ = 7 : 12 : 11. 

Řešeni. Podle věty 48 je AA 2 B 2 C 2 ~ AAbQCb ~ 
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~ AACBCQ, takže rozměry těchto trojúhelníků mají veli-
kosti úměrné. Platí-li to o stranách těchto trojúhelníků, 
platí to také o velikostech poloměrů kružnic jim opsa-
ných. Je tedy podle zadání 

r : rb : rc = 7 : 12 : 11 = 35 : 60 : 55, 

protože je r = 35 poloměr kružnice opsané /\A2B2C2. 
Známe tedy velikosti rb = 60 mm, rc = 55 mm. 

Konstrukce (obr. 102). Narýsujeme nejdříve kružnici 
lb, která prochází body A a C a má poloměr velikosti 
60 mm, potom kružnici lc poloměrem 55 mm tak, aby 
procházela body A a B. Tyto kružnice se protínají 
v hledaném pólu Q. 

Diskuse. Kružnice lb a lc lze narýsovat ve čtyřech odliš-
ných polohách, takže úloha má čtyři řešení. Zde jsme 
však uvedli jenom jedno z nich. 

Cviření 

1. K danému AABC [AB = 7; BC = 5; -ZABC = 90°] se-
strojte trojici ňPBaCa, A A b P G b , A A e B c P příslušnou 
k dvojici z relace p podle P, leží-li pól P uvni t ř A ABC tak, 
že Š.BCP = <£CBP = 30°. 

2. Opakujte cvičení 1, avšak tak, že pól P umístíte vně 
¿\ABC tak, že -Š.CAP = -$.ACP = 15°. 

8. Je dán A K L M [KL = 9; LM = 5; KM = 7] a pól Q, 
který leží v polorovině KLM na tečně sestrojené v bodě L 
ke kružnici A KLM opsané, přičemž LQ = 4. Sestrojte 
trojici AQBaCa, A A b Q C b , A A c B e Q příslušnou k dvojici 
z relace q podle Q. 

4. Do kružnice o poloměru r = 3,5 cm vepište pravoúhlý 
rovnoměrný A E F G s pravým úhlem při vrcholu F. N a 
prodloužení výšky příslušné ke straně EO určete bod Q 
tak, aby FQ mělo velikost této výšky. Potom sestrojte 
trojici AABC0, AAB0C, AA0BC i trojici AQBaCa , 
AAbQCb, AACBCQ příslušné k dvojici z relace q podle Q. 

184 



K přesnému sestrojení jednotlivých bodů využij te zná-
mých pomocných konstrukcí. 

5. Jsou dány velikosti vnitřních úhlů trojúhelníků ze složené 
relace A ABC p AA^Bfi^p A ABC podle P nebo Q (když 
střední složka je A-^I-BJC^). Zjistěte velikosti vnitřních 
úhlů trojúhelníků z trojice AA^BC, AABvO, AABC„ pří-
sluiné k dané trojici. Podle výsledku udejte polohu přísluš-
ného pólu. 

a) a = 58°, /? = 73°, « ' = 49°, 0' = 28°, y = 28°; 
b) <* = 12°,/? = 115°,« ' = 21°, P' - 135°, y - 77°; 
c) a = 69°, p = 54°, = 13°, /?' = 23°, y = 93°; 
d) a = 81°, jS = 44°, ať = 55°, f)' = 4 2 ° , y = 1 5 2 ° ; 

6. Je dán A M N Z [MN = 5; NZ = 6; ZM = 7]. Sestrojte 
pól P t ak , aby rozměry trojúhelníků v trojici AM0NZ, 
AMN„Z a A M N Z 0 příslušné k relaci p podle P byly v po-
měru 3 : 4 : 6 . Stanovte nejdříve počet řešení a potom ně-
které sestrojte. 

7. Opakujte úlohu 6 pro pól Q a poměr velikostí stran uvažo-
vaných trojúhelníků 2 : 6 : 7 . 

8. Narýsujte libovolnou dvojici trojúhelníků z relace p podle 
pólu P, k terý leží uvnitř zvolené dvojice, a současně 
i trojúhelník z relace p o p podle téhož pólu P. 
a) Označte první složku relace AABC &n& APBCx ověřte 

pravdivost tvrzení: 

« + + a = 0 + P' + ~f} = y + y' +y, 

kde užité znaky maj í význam podle textu. 
b) V narýsovaném obrázku vyhledejte další trojúhelníky 

podobné A P B C X . 
9. Je dán AAeBeP [A„BC = 8; PAC = 6; PBe = 5] z trojice 

příslušné k relaci p podle P. Sestrojte zbývající dva troj-
úhelníky z této trojice, víte-li, že PBa = 4, PAt, = 7. Na-
rýsujte i AAjBjCu avšak kružnici jemu opsanou nerýsuj-
te! 

10. Je dána úsečka A b A e = 1 1 cm, jejíž kra jn í body jsou 
vrcholy trojúhelníků z trojice příslušné k relaci podle pólu 
Q s první složkou A ABC. Pól Q dělí úsečku AbAc tak , že 
Af,Q = 7 cm a bod Ba půlí úsečku QB„. Dále je známa veli-
kost vnitřního úhlu -Bj-ájC, = 120° příslušného rovno-
ramenného A^a-BjC,. Sestrojte A A B C l 
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11. N a kružnic i k = (O; 3,5) jsou dány body A a B [AB = 
= 4,5] a body Bv C l [ABX = 6; 2]. Pól_P je hlav-
n í m vrcholem rovnoramenného A A A P , kde A je vrchol 
A ABC z relace p o p podle P. Sestrojte A ABC a AABC0 

příslušný k dvoj ic i z relace p podle P. 

12. Je dán aK^M^ = 7j_ LlM^= 5,5; -ZK^M^ = 
- 60°] a vel ikost i úseček KK = £ L _ = _ 2 , kde ^ K ^ M ^ 
je d ruhá složka z relace p podle P a K, L vrcholy A K L M 
z relace p o p podle P. Narýsu j te t ro j ic i t ro júhe ln íků 
&PBaCa, AAtfPCb, AAcBfP příslušnou k těmto relacím, 

aniž narýsujete kružnice hledané troj ic i opsané. 
18. Je dán AU 1 V l Z 1 \VlV1 = 6,5; V1Zl = 7; r = 3,8] a ve-

l ikosti úseček XJxZ = UXV = 3, kde V je vrchol AUVZ 
z r e l a c e p o p . Sestrojte troj ici A V Z, £\UV0Z, A UVZ0, 
aniž narýsujete kružnice j i m opsané. 

14. Je dán AEFG [EF = 4,5; FG = 6; GE = 6,5] a dva vnitř-
ní úh ly EF,G = 45° a -%EG0F t ro júhe ln íků z troj ice 
příslušné k relaci [ A EFG, A-^ i -F i^ i ] e p podle P. Sestrojte 
t u t o t ro j ic i i t ro j ic i APFeG f , AEfPGf, AEgFaP, aniž na-
rýsujéte kružnice t ě m t o t ro j ic ím opsané. 

15. O p a k u j t e ú lohu 14, avšak s úhly vel ikostí -^iEF^G = 
= 135°, - £ G E t F = 25°. Zdůvodněte, proč v t o m t o pří-
padě nelze už í t relace p podle P, ale relace q podle Q. 
P o t o m sestrojte A E f Q C j . 

16. K l ibovolně zvo lenému A ABC sestrojte A-^I-BIC, z relace 
p podle pólu P, k t e r ý leží uvn i t ř A ABC. P o t o m poklá-
de j te AA1BlCl za p r v n í složku v relaci [ AA1BlCl, 
A ABC] e p podle P a sestrojte k ní příslušný t ro júhe ln ík 

^4lJBl0'ó a v kružnic i j e m u opsané A A'cB'eP z relace p podle 
pólu C. D o k a ž t e , že je A A'eB'eP ~ A ABC. 

17. Ú l o h u 16 opaku j te pro pól P ležící vně AABC. 
18. Ú l o h u 16 opakuj te pro pól Q ležící uvn i t ř -¿cBAC. 
19. Ú l o h u 16 opaku j te pro pól Q ležící v ú h l u vrcholovém 

k $BAC. 
20. K zvo lenému AA lB lC 1 z relace p podle P sestrojte p r v n í 

složku A ABC, v í te- l i , že k této dvoj ic i příslušné t ro j -
úhe ln íky AAÉC0, AAB0ú, AAqBC jsou rovnostranné. 

21. U v a ž t e , lze-l i ú lohu 20 za stejných podmínek řešit i pro 
vnější pól Q. 
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22. Vně libovolného AABC narýsujte trojúhelníky /\ABC0 ~ 
~ ¿\ABnC ~ AAaBC takové, že AB : BČ„ : Č7Ay = 5 : 
: 6 : 7. P ř í m k y AA0, BB„ a CC0 procházejí jedním bodem. 
Dokažte! O který bod jde? 

23. Je dána dvojice [ AAbPCb, A AB0C] 6 p podle Bt příslušná 
k dvojici A ABC p AA^fi^ podle Pi AtP = 7,3; CbP = 
= 6,2; -ZAbPCt = 43°; AC = 6,8; BtAC = 67°. 
a) Určete velikosti stran a vnitřních úhlů A ABC. 
b) Sestrojte a provedte přibližnou kontrolu měřenín)! 

24. Je dán A ABC ze složené relace A ABC p o p A ABC 
[AB = 4,8; <£BAČ = 72°; <£ČBA = 65°] a některé roz-
měry trojúhelníků k této dvojici příslušných, a to: AB„ = 
= 6; BC0 = 7,4; CAa = 6,2. Narýsujte všechny v tex tu 
uvedené trojúhelníky. 

26. Zvolte l ibovolný A E F O , jeho vni t řn í bod označte P 
a sestrojte dvojici AEFG p AExFíGl podle P a k ní pří-
slušné trojice [AABC?, AAB0C, AAtBC], [ AACBCP, 
AAbPCj,, APBaCa], aniž narýsujete kružnice těmto troji-

cím opsané la , l i , l e . 
26. Opakujte úlohu 25 pro relaci [ A K L M , AK2L2Mt] e q po-

dle Q. 
27. Zvolte l ibovolný A ABC a vnější pól Q na tečně vedené 

v bodě B ke kružnici A ABC opsané. Potom narýsujte 
dvojici A ABC q A AtB2C, podle Q a trojice trojúhelníků 
k ní příslušné. 

28. Úlohu 27 opakujte s t ím rozdílem, že pól Q bude průsečí-
kem tečen vedených ke kružnici A ABC opsané v jeho 
vrcholech B a C. 
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B. Z V L Á Š T N Í P Ř Í P A D Y P O D O B N Ý C H 
Z O B R A Z E N Í 

Ve druhé kapitole jsme shledali, že zvláštním polohám 
pólů P nebo Q odpovídají zvláštní vlastnosti dvojic troj-
úhelníků podle nich utvořených. Můžeme proto právem 
předpokládat, že se ty to zvláštní vlastnosti projeví i u tro-
jic trojúhelníků k nim příslušných, t j . [ / \ A 0 B C , /\AB0C, 
/\ABC„] a [ £\PBaGa, AAbPCb, /\ACBCP] nebo [ l\QBaCa, 
AAbQCb, AAeBcQ}. 

Ukažme nejdříve, jaké důsledky z toho plynou pro 
dvojice utvořené podle středů kružnic danému trojúhel-
níku vepsaných. 

Věta 50. Mějme dvojici [A ABC, A ^ A C i ] ep podle 
S, kde S je střed kružnice A ABC uvnitř vepsané, a k ní 
příslušné trojice [ L\A0BC, /\AB0C, AABC0] a [ £\SBaCa, 
AAbSCb, ¿\ACBCS]. Potom platí: 
a) AA0BC ASB a C a , AAB a C ^ AA bSC b , A A B C 0 ^ 

^ AACBCS, 
b) AA0BC ~ AAB 0 C ~ AABC0 ~ AA^C,, 
c) Vrcholy A0, B0 a C0 jsou středy kružnic A ABC vně 

vepsaných. 

Důkaz. Všechna tvrzení uvedená v této větě vyplý-
vají přímo z dříve dokázaných vět. Stačí je jenom při-
pomenout podle obr. 103. 

a) Podle věty 19 jsou body A u B t a Cx středy kružnic 
opsaných po řadě trojúhelníkům A SBC, A ASC 
a A A B S . Protože tyto vrcholy jsou póly v relacích p 
podle Alt Bx a Ct, jde o středovou souměrnost v množi-
nách MT a , M n a MTc a uvažované dvojice jsou shodné. 

(3.41) 
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b) Podle věty 47 je například ASBaGa ~ AA1BlC1 
a současně podle (3.41) ¿\SBaCa ^ AA0BC, takže je 
také AA0BC ~ AA1B1C1. Obdobně pak AAB0C ~ 
~ AA1B1C1, AABC0 ~ AA1BlC1. 

Ab 

Obr. 103 

c) Zde podle věty 25 je například přímka ÁA0 osou 
•£BAC a střed Sa leží na kružnici opsané ABSC, takže 
je S„ = A0 a obdobně také Sb = B0 i Sc = C0. 

Právě dokázaná věta má ještě další důsledky, z nichž 
nejdůležitější jsou: 

1. O velikostech vnitřních úhlů v trojúhelnících 
AA0BG, AAB0C a AABC 0 platí 
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2. Ze středové souměrnosti v množinách MTA, MTB, 
MTc vyplývá: 

AeBc || ABA A^B0 = AB, B£a || BOA BjOa = BČ, 

CbAb || CA A O^Ab = CA; 

3. Vrcholy A0, B0 a C0 jsou vrcholy trojúhelníku, 
v němž kružnice opsaná A ABC je kružnicí Feuerbacho-
vou (viz větu 27). 

Věta 51. Mějme dvojici [AABC, l\A1A2C2'\ eq podle 
Sa, kde S„ je střed kružnice vně vepsané A ABC proti 
vrcholu A a k této dvojici přisluSné trojice [AA^BC, 
&AB0C, AABC^ a [SaBaCa, AAbSaCb, AAcBeSal 

Potom platí: 
a) AA0BC ^ ASaBaCa, AAB0C ^ &AbSaCb, 

AABC0 ^ AAcBcSa; 
b) AA0BC ~ AAB0C ~ AABC0 ~ AA t B 2 C 2 , 
o) Vrchol A0 je středem kružnice A ABC uvnitř vepsané. 

Důkaz (obr. 104). Z věty 25 opět vyplývá, že bod Ax je 
středem kružnice opsané trojúhelníkům AAJBC a 
A8aBaCa, takže příslušná relace p podle AX v množině 

MT„ je středovou souměrností. To však pro důkaz věty 
51 nestačí, neboť musíme ještě dokázat, že bod B2 je 
středem kružnice opsané AABSa a bod C2 středem kruž-
nice opsané AACSa . 
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Především je podle věty 5 *$:C3aB = <*' — Dosa-

díme-li sem podle věty 23 a <*' = 90° + , dostaneme 

<£CSaB = 90° + y — « = 90° — y • (3.42) 

W: 

\ //. 

Obr. 104 

Dále je v kružnici k <$.CC2B = ^CAB = «, takže 
v AG2BSa <$C2BSa = 180° — -$CSaB — a po-
tom podle (3.42) 

<£C2BSa = 180° — (90° — y j — * = 90° — y • 

(3.43) 
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Porovnáme-li (3.42) a (3.43), zjistíme, že /\C2SAB má 
dva úhly shodné a je rovnoramenný, čili C2SA = C2B. 
Rovnost Č2A = Č2B plyne z věty 22, a proto body A, B 
a SA leží na kružnici opsané kolem středu C2. Cyklickou 
záměnou dostaneme i další rovnosti 

B^A = BFI = BJŠA. 
Tím jsme současně dokázali, že relace p podle ALT B2 

a C2 v množinách MTA, MTB a MTC jsou středovými sou-
měrnostmi a odtud plyne shodnost dvojic trojúhelníků 
uvedených v tvrzení a) věty 51. 

Tvrzení b) snadno odvodíme z věty 48, protože podle 
této věty je například A S A B A C A ~ /\A1BIC2 a současně 
podle tvrzení a) věty 51 /\A0BC ^ ¿\SABACA, takže je 
AAFFIC ~ ¿\A1B2G2 a z cyklických záměn pak plyne: 
L\AB0G ~ /\A1B2C2, AABC0 ~ AA,B2C2. 

Tvrzení c) je jako u věty 50 důsledkem věty 25, neboť 
je A0 - S. 

Nežli uvedeme důsledky právě dokázané věty, je třeba 
vzít v úvahu ještě cyklické záměny pro póly SB a SE, pro-
tože věta 51 byla vyslovena pouze ve vztahu k pólu SA. 

Tyto záměny ovšem uvedeme bez důkazu: 
Je-li pólem střed kružnice vně vepsané A ABC proti 

vrcholu B, bude 
a) A A B 0 C ^ A A B S B C B , A A B C 0 a* AACBCSB, 

AA^BC A* AS„BACA; 
b) &A0BC ~ A A B 9 C ~ A A B C 0 ~ AATBFII, 
c) Vrchol B0 je středem kružnice A ABC uvnitř vepsané. 

Je-li pólem střed kružnice vně vepsané A ABC proti 
vrcholu C, bude 
a) A A B C 0 ^ AACBCSE, AA0BC SÉ A B A C A S C , 

AAB0C SŽ AABSCCB) 
b) AA0BC ~ A AB0C ~ A ABC O ~ A A2B2C0; 
c) Vrchol C0 je středem kružnice A ABC uvnitř vepsané. 
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Na obr. 105 jsou v jednom obrázku zakresleny všechny 
tři trojice trojúhelníků příslušných k dvojicím uvede-
ným ve větě 51 a jejích důsledcích podle cyklických zá-
měn. Z obrázku lze snadno zjistit, že se některé vrcholy 
zobrazených trojúhelníků navzájem kryjí a mimoto se 
jejich označení vyskytuje ještě jednou v jiné trojici. 
Najdeme proto každou z dvojic [̂ 4cjBc], [BACA] a [CV^t] 

Obr. 105 
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v obrazci třikrát. Současně pak některé vrcholy splý-
vají, a to: 

Sa = B0 = C0, A0 = Sb = C0, Ac = Bc = S0. Ovšem 
také S == A0 =s B0 = G0, kde S je střed kružnice uvnitř 
vepsané t\ABG. 

Z téhož obrázku lze vyčíst i další důsledky věty 51 
zcela obdobné důsledkům uvedeným za větou 50. Není 
nutné je proto opakovat. Jsou tu však ještě další, 
z nichž uveďme aspoň jeden: 

V šestiúhelníku AbCbCaBaBeAc lze nalézt několik čtyř-
úhelníků pravoúhlých, jako například AcAbScSb nebo také 
ASaAbS0 a podobně. Ze jde o pravoúhlé čtyřúhelníky, 
není nutno dokazovat, vyplývá to z Thaletovy věty, 
nebo z věty 27, podle níž je kružnice opsaná A ABC 
Feuerbachovou kružnicí /\SaSbSc. Také dvojice [A^B^, 
[BaCa\ a \CbAb~\, které se v obr. 105 opakují, jsou vrcholy 
obdélníků, jak dokážeme v příkladech připojených na 
konci této části kapitoly. 

Věta obecné platnosti, kterou nyní uvedeme, zahajuje 
úvahy o vlastnostech trojic trojúhelníků odvozených 
z relace p nebo q podle průsečíku výšek A ABC. 

Věta 52. Je-li bod V průsečíkem výšek daného A ABC, 
potom kružnice opsané trojúhelníkům A VBC, A A VB, 
A ABV a A ABC jsou navzájem shodné. 

Důkaz (obr. 106). Připomeňme si větu 36. Podle ní je 
například vrchol Ax ¿\A1B1Cl z relace p podle V sou-
měrně sdružený podle osy BC s pólem V. Je tedy 
A VBC ^ AAtBC a odtud plyne, že i kružnice opsané 
těmto dvěma trojúhelníkům jsou navzájem shodné. 
Obdobně platí A AVC g* ¿\ABXC a také A ABV ^ 
^ A A B C l t takže všechny čtyři uvažované kružnice 
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jsou navzájem shodné. Bude-li trojúhelník ABC pravo-
úhlý, potom neexistují trojúhelníky AVBC, A A V B , 
AABV a nemá smyslu uvažovat, zda věta 52 platí i pro 
takový trojúhelník. Bude-li však tupoúhlý, platí věta 
36 a tudíž i věta 52. 

Věta 53. Mějme dvojici [AABC, A ^ A C J ep podle 
V nebo dvojici [A ABC, áA2B2C2] eq podle V takové, že 
žádný vnitřní úhel A A BC není pravý a V je průsečík vý-
šek A ABC. 

Potom o trojúhelnících z trojic příslušných k dané dvojici 
platí: 

a) AA0BC ^ A ABqC s* A ABC0 ^ A ABC. 
b) Trojúhelníky A V B A C A , A A B V C B a A A „ B C V jsou 

souměrně sdruženy s A^I-BI^Í nebo AA^B^C2 podle 
stran &ABC. 
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c) Body Alt BltCi nebo Aít B2, C2 jsou po řadě průsečí-
ky výšek v trojúhelnících ¿\A0BC, ¿^AB^C a AABC0, 
současně pak středy kružnic vepsaných trojúhelníkům 
AVBaGa, AAbVCba AAcBeV. 

Důkaz (obr. 107). a) Na obr. 107 je A ABC ostroúhlý. 
Podle věty 36, jak jsme již připomněli, je přímka BC 
osou úsečky VA1 a podle věty 52 i osou souměrnosti 
kružnic opsaných trojúhelníkům A VBG a AAJ^BO. 
Přímka VA1 proto protíná tyto kružnice v bodech sou-
měrně sdružených podle osy BC, takže trojúhelníky 
A ABC a AAjBC jsou rovněž souměrně sdruženy podle 
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osy BC a jsou shodné. Doplníme-li tento výsledek cy-
klickými záměnami, dostáváme: 

A AoBC « A AB0G ^ £ABC0 « A ABC. 
b) Protože v popsané osové souměrnosti je bod A t 

obrazem bodu V, je dvojice [¿\A0BC, A VBaG^\ e p po-
dle Ax obrazem dvojice [ A A B C , A^i-SiCi] ep podle V. 

c) Z toho dále plyne, že body Alt Bt a C1 jsou průsečíky 
výšek v trojúhelnících A AoBC, A AB0C a A ABG0. To 
však podle věty 30 současně znamená, že tyto body jsou 
středy kružnic vepsaných trojúhelníkům A VB„Ca, 
AAhVCb a A A c B e V . 

Tím je důkaz věty 53 podán pouze pro trojúhelník 
ostroúhlý. Z obr. 108 však je zřejmé, že tato věta platí 
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i v trojúhelníku tupoúhlém, neboť rozdíly jsou právě 
jenom v indexech, jak je možno se přesvědčit. 

Pozornému čtenáři jistě neušla skutečnost, že se tu 
projevují důsledky vět 45 a 46 týkajících se podobných 
dvojic z množin MT, MTa, M n & MJV. Ukažme ještě, jak 
se to projeví v relacích podle středu kružnice A ABC 
opsané nebo podle jeho těžiště. 

Věta 54. Mějme dvojici [ A A B C , AAJBJG^ ep podle 
O, kde O je střed kružnice A ABC opsané. Potom o trojicích 
trojúhelníků k ní příslušných platí: 

Vrcholy Alt Bz a C± jsou po řadi 
a) středy kružnic uvnitř vepsaných trojúhelníkům 
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b) průsečíky výšek trojúhelníků ¿\OBaCa, AAbOCb 
a AAcBcO. 

Důkaz (obr. 109). Pravdivost věty vyplývá přímo 
z vět 38 a 45. Srovnáme-li totiž obr. 91 a 92 s obr. 109, 
vidíme, že na obr. 109 je například bod Ax obrazem 
pólu O v podobnosti [ A A B C , A A ^ B f i - ^ e p podle 
O ~ [ A AoBC, AOBaCa]ep podle A. V této podobnosti 
pak platí jak tvrzení a), tak i tvrzení b). 

K zcela obdobnému výsledku dospějeme, bude-li pó-
lem těžiště T daného A ABC. 

Yěta 55. Mějme dvojici [i\ABC, AA^ByC^ep podle 
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T, kde T je těžiště A ABC. Potom o trojici k ní příslušných 
trojúhelníka plafí: 

Vrcholy Alt By a CX jsou po řadě těžišti trojúhelníků 
AA0BC, AAB0C a AABC0. 

Důkaz (obr. 110). Podobně jako předcházející věta 
i tato věta pijme přímo z dříve dokázaných vět, a to věty 
41 a 45. Podle věty 41 totiž víme, že v relaci 

[ A A B C , AA1B1C1] ep podle Ť 
je pól T těžištěm A ABC, takže z podobnosti [ A ABC, 
AAj^BjCx] ep podle Ť ~ [ A A ^ f i C , ATBaCa] e p podle 
A1 přímo vyplývá, že bod Ax je obrazem pólu T, tedy 
těžištěm AA0BC. Dále pak podle cyklických záměn je 

těžištěm AAB0C, CJ těžištěm AABC 0 . 

Na závěr této kapitoly si ještě ukážeme, že užitím 
vlastností relace p podle T je možno řešit úlohu z pří-
kladu 6 v první kapitole. Tam byly dány tři úsečky 
velikostí a, b, c. Úsečku c jsme měli rozdělit na dvě části, 
jejichž velikosti jsou v poměru o2 : b2. Zde je možno 
tuto úlohu řešit dvěma způsoby, z nichž jeden ukážeme 
v příkladech po odvození příslušné věty: 

Víta 56. Mějme dvojici [AABC, A-4 A C J ep podle 
T takovou, že tržnice A ABC mají velikosti ta, h ® tc. Dále 
necht na stranách AAlB1C1 leží body 

A+ = (AA, n B&); B+ = (BBt n ¿A); 
c + = {cc1 n ¿ A ) . . 

Potom je: 
AXC* : Bfi* = tl : tl B,A+ : C,A+ = ť2 : ti 

A,B+ : CA+ = t\ : 
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Důkaz (obr. 111). Na obr. 111 je Vc kružnice opsaná 
A A ^ j T , Có průsečík této kružnice s přímkou CXC 
a konečně C+ průsečík přímky CT s přímkou A^B^ 

V kružnici % je ^.CÍBlA1 = <^C'0TA1 = 180° — 
— (P + /?'), protože ^AjTC, = / ? + /?' podle věty 4. 

Obdobně pak ^ ¡ á ^ = 180° — (<* + «'). 

Trojúhelník A ^ C ^ podle toho má dva úhly shodné 
s trojúhelníkem ABC z relace /\A1B1C1 p A ABC podle 
T, jak vyplývá z věty 14. Jsou proto uvažované troj-
úhelníky podobné: A ^ A Q ~ A ABC. 

Vezmeme-li současně v úvahu větu 42, bude 

C 
Obr . 111 

AjC'0 : B& = tb:t, •a (3.44) 
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Dále z podobnosti A^i-Si^ ~ A B A T plyne 

AXT : BXT = BT : AT = tb : ta. (3.45) 

Ze vztahů (3.44) a (3.45) utvořme součin v rovnosti 

AiCí AjT _ j f 
BJl " BjT t\ 

a levou stranu násobme výrazem 

(3.46) 

4 sin | <$.C'aB1T\ 

který se rovná jedné, protože jde o siny protějších úhlů 
v tětivovém čtyřúhelníku C ^ T B , . 

p 
Po vynásobení bude mít (3.46) tento tvar: -gi- = 

" 2 
í2 

= kde P x je velikost obsahu ACó^i^7, P 2 Pak Veli-
ká 

kost obsahu ACÍJijT. Tím se důkaz značně zkrátí, 
protože obsahy P x a P 2 jsou přímo úměrné velikostem 
úseček A1C+ , 

Platí proto : ^ C * = f b :ť a a podle cyklických 
záměn také zbývající dva vztahy z věty 56. 

Jak této věty využijeme při řešení zmíněné úlohy, 
ukažme hned na příkladu: 

Příklad 1. Danou úsečku KL = 12 cm rozdělte na dvě 
části, jejichž velikosti jsou v poměru o2 : bkde a > b 
jsou velikosti libovolně zvolených úseček. 
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Konstrukci provedeme užitím věty 56. Zvolíme libo-
volnou úsečku menší, než je součet daných dvou úseček, 
tak, že lze sestrojit &ABT, kde AŤ = a, BŤ = b, AB 
je vhodně zvolená třetí strana A A B T (obr. 112). 

Nyní určíme bod G tak, aby bod T byl těžištěm A ABC. 
Na prodloužení úsečky AT za bod T určíme bod A + tak, 
že TA+ = — a, na prodloužení úsečky BT za bod T A 

určíme bod B+ tak, že TB+ = 4 - 6 . PolopHmky BA+ 

¿t 
a AB+ se protnou v hledaném bodě C. 

Trojúhelníku ABC opíšeme kružnici a její průsečík 
s přímkou AT označíme Au průsečík s přímkou BT pak 
Bv Podle věty 56 přímka GT dělí úsečku AXBX v poža-
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dováném poměru. K rozdělení dané úsečky KL v tom-
též poměru užijeme například stejnolehlosti, jako je 
tomu na obr. 112. 

Příklad 2. Je dán ASBaCa [SBa = 4; SGa = 3,5; 
BaCa = 4,5] příslušný k dvojici [ A A B C , A A j B j C J e 
ep podle S. Sestrojte tuto dvojici, je-li S střed kružni-

ce uvnitř vepsané l\ABC. 

Řešení (obr. 113). Víme, že vrchol Ax je středem kruž-
nice opsané danému /\SBaCa (věta 19). Dále je strana 
BC /\ABC souměrně sdružená podle středu At se stra-
nou BaC„ daného trojúhelníku (věta 50). Sestrojíme-li 
úsečku BC, můžeme narýsovat i kružnici vepsanou 
A ABC, protože známe střed kružnice jemu vepsané 
a jednu stranu. Zbývající dvě strany pak leží na tečnách 
vedených z bodů B a C ke kružnici vepsané. Vrchol A je 
potom jejich průsečík. Můžeme ovšem vrchol A sestrojit 

Ba 

Obr. 113 
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také tak, že přeneseme úhly <£CBS a -^BGS do poloro-
vin opačných k polorovinám CBS a BCS. 

Příklad 3. Je dána strana AB /\ABC a střed Sa kruž-
nice jemu vně vepsané proti vrcholu A [AB = 4,5 cm; 
ASa = 8 cm; BSa = 5 cm]. Sestrojte trojici trojúhelní-
ků ¿\SaBaCa, AAbSaCb a AAJicS,,, aniž narýsujete 
kružnici opsanou A ABC. 

Řešeni (obr. 114). Přímka ASa je osou vnitřního úhlu 
A ABC při vrcholu A a přímka BSa osou vnějšího úhlu 
při vrcholu B. Můžeme tedy sestrojit polopřímky AG 
a BČ, které se protnou ve vrcholu C. Opíšeme kružnice 

b 

Obr. 114 
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la, lb a lc trojúhelníkům AS*BC, AASaC a AAB8 a . 
Víme, že středem kružnice opsané ASABC je bod Ax 
a polopřímky BAX a CAX protnou kružnici la ve vrcholech 
BA a CA jednoho z hledaných trojúhelníků SaBttCa. Po-
tom polopřímka SaCa protne kružnici lb ve vrcholu Cb 
a polopřímka SABA kružnici l„ ve vrcholu BC. Zbývající 
dva vrcholy, totiž Ab a A>c, sestrojíme užitím podobnosti 
ASABaCa ~ AAbSaCb ~ AACBcSa, například přenese-
ním vnitřních úhlů v ASABaCa. 

Příklad 4. Řešte co nejjednoduššími prostředky úlohu: 
J e d á n A A B V C B [VAB = 65 m m , VCB = 35 m m , 

ABCB = 70 mm] příslušný k dvojici [ A ABC, A AXBXCx]e 
e p podle V, kde V je průsečík výšek A ABC. Sestrojte 
AAXBXCX

 2 relace p podle V a zbývající dva trojúhelní-
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Řešení. Danému trojúhelníku opíšeme kružnici lb 
a sestrojíme střed kružnice uvnitř vepsané Bt. Osa 
úsečky VB1 protne kružnici lb v bodech C a A. Tím je 
úloha vyřešena, protože zbývající tři kružnice, tj. k, la 
a lc, jsou shodné s lb, takže je AO = CO, BXB J_ AC 
atd. Celá konstrukce je provedena na obr. 115. 

Příklad 5. O trojici shodných pravoúhlých trojúhelní-
ků s odvěsnami velikosti 6 cm a 3,6 cm víme, že přísluší 
k dvojici z relace p nebo q podle V. Rozhodněte, kolika 
způsoby lze tuto trojici umístit tak, aby vyhovovala 
uvedené podmínce, a potom sestrojte jednu z těch mož-
ností, kde první trojúhelník v uvažované dvojici je 
tupoúhlý. 

Řešení. Nepřihlédneme-li k označení vrcholů dané tro-
jice trojúhelníků, existují právě čtyři možnosti, jak je 
umístit vzhledem k daným podmínkám. Tyto čtjďři 
způsoby jsou zobrazeny na obr. 116. 

Jestliže první v dvojici trojúhelníků má být ostro-
úhlý, existuje právě jedno uspořádání, neboť v bodě V, 
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který je společným vrcholem daných tří trojúhelníků, 
se musí krýt vrcholy těchto trojúhelníků tak, že bod V 
je vrcholem pravého úhlu v jednom trojúhelníku, vrcho-
lem menšího ostrého úhlu ve druhém a většího ostrého 
ve třetím trojúhelníku. 

Nejinak je tomu v případě, že půjde o trojúhelník 
tupoúhlý. Zde však existují tři možnosti, které se liší 
pořadím těchto úhlů v trojici tvořící úhel přímý. Ozna-
číme-li pravý úhel R a ostré číslicemi 1 a 2, existují tato 
tři různá uspořádání: 1 R 2, R 1 2, 1 2 R. Zbývající tři 
možnosti 2 R 1, 2 1 R, i ř 2 1 vedou k shodným řešením. 

Případ 1 2 R je proveden na obr. 117. 
Postup konstrukce je zde velmi jednoduchý. Narýsuje-

me zvolené seskupení dané trojice trojúhelníků a opí-
šeme jim kružnice la, lb a lc. Tak dostaneme přímo vrcho-
ly hledaného trojúhelníku. Na obrázku to jsou: 

A průsečík kružnic lb a le. 
B průsečík ružnic la a le. 
G průsečík kružme la a lb. 

A 

a 

l b 
Obr . 117 
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Příklad 6. Daný trojúhelník OBaCa [0Ba = 5,5; BaCa = 
= 4; OCa = 5] přísluší k dvojici [AABC, A ^ A ^ i ] e 
e p podle O, kde 0 je střed kružnice opsané A ABC. 
Sestrojte A ABC. 

Řešení. Víme, že podle věty 54 je průsečík výšek 
v L\OBaCa vrcholem Ax trojúhelníku A1BlC1 z relace p 
podle O. Sestrojíme-li tedy tento průsečík, získáme i ve-
likost poloměru kružnice opsané A ABC. Je to velikost 
úsečky AxO. Opíšeme-li tuto kružnici, je vrchol A její 
průsečík s přímkou Afi, vrchol C její průsečík s přím-
kou CaA J a konečně vrchol B její průsečík s přímkou 
BaAv 

Konstrukce je provedena na obr. 118. 

Obr. 118 

Příklad 7. Je dán obdélník SJSbCaCb [SaSb = 96 mm, 
SbCa = 64 mm] a na jeho straně SaSb bod C takový, že 
SaC = 36 mm. Bod C je vrchol A ABC a body Sa, Sb 
středy kružnic jemu vně vepsaných. Body Ca a Cb jsou 
vrcholy trojúhelníků z trojic příslušných k dvojicím z re-
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lací q podle S6 nebo Sa a Sb. Narýsujte A ABC a uvedené 
trojice trojúhelníků. 

Řešení. Podle v ě t y 49 leží pól Sc na přímce CaCh a podle 
v ě t y 27 je úsečka CSe výškou v trojúhelníku Sa8bSc. 
Další dva vrcholy A ABC jsou patami výšek v témž troj-
úhelníku. Tím je úloha vyřešena. Konstrukci zde neuvá-
díme, jde o opakování situace na obr. 105. 

C v i ř e n í 

1. K danému A-4.BC [AB = 60; BC = 52; AG = 67] se-
strojte trojici trojúhelníků ASBACA, AA^SCB, AAEBCS 
příslušnou k relaci p podle S. 

2. J e d á n A D E F [DE = 50; <£FDE = 70°; -$.FED = 50°] 
a relace q podle SF, kde S/ je střed kružnice A DEF vně 
vepsané. Sestrojte trojici ÁS/E^FÁ, ADES/FE, ADFETS/. 

3. K danému A K L M [KL = 45; LM = 55; if.KLM = 
= 60°] sestrojte trojici A VLkMk, AK1 VMU AKmLmV 
příslušnou k relaci p podle V. 

4. Je dán A Z M N [ZM = 58; MN = 40; S^ZMN = 110°] 
a relace q podle V. Sestrojte k ní příslušnou trojici 
A VMZNZ, A Z m V N n , AZnMnV. 

5. Je dán AABO0 Z trojice příslušné k relaci [ A ABC, 
A^I-BICJ GP podle S [AB = 70; BC0 = 80; AC0 = 85]. 

Sestrojte dvojici [ A ABC, AA1BLC{\. 
6. O d a n é m A B C S [BC = 50; -$.BCS = 25°; ' <£CBS = 

= 30°] víme, že je částí AABC a bod S je středem kruž-
nice tomuto trojúhelníku vepsané. Sestrojte střed SA kruž-
nice A ABC vně vepsané proti vrcholu A a trojice troj-
úhelníků příslušných k dvojici [ A ABC, A-^I-BICJ] e p po-
dle SA. 

7. T ro júhe ln ík ACB* [AC = 60; -ZACB0 = 50°; <£GAB0 = 
= 60°] je z trojice trojúhelníků příslušných k relaci 
[AABC, A ^ i ^ č j e p podle V. Sestrojte zbývající dva 
trojúhelníky z této trojice. 

8. K d a n é m u AEFG„ [EF = 65; <£EFG„ = 30°; <£FEGT = 
= 80°] sestrojte trojici A O F , G „ AET0QF, AEQFA0 přísluš-
nou k relaci p podle O. 
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9. Daný A K L M a [KL = 6; KM0 = 6; LM0 = 7] je z trojice 
příslušné k dvojici [ A K L M , í\KxLxM{\ ep podle T. Se-
strojte tu to dvojici i trojici ATBaCa, AAbTCb , AA„BCT. 

10. Vrcholy A^o-B.Co [A0Ba = 12; BVC„ = 10; C0A0 = 15] 
jsou vrcholy trojice trojúhelníků příslušné k relaci 
[ A ABC, AAjB^C^Bp podle S. Sestrojte co nejjednodufi-
ším způsobem A ABC. 

11. Sestrojte A ABC k danému A SBaCa [BaCa = 55, SC„ = 
= 60; SBa = 45] z trojice příslušné k dvojici [ A ABC, 
AAxBxC^\ e p podle S. 

12. Trojúhelník AbVCb [AbCb = 70; VAb = 80; VCb = 45] je 
příslušný k dvojici [ A ABC, AA&CJ e p podle V. Se-
strojte tuto dvojici. 

18. Sestrojte dvojici [A EFO, A-Ejí^Ga] S q podle Sg, je-li 
AEaFjSa [EaSa = 45; F0S0 = 30; ^EgSgF,, = 130°] z tro-

jice příslušné k relaci q podle Ss. 
14. Víte-li, že AA^O [ACBC = 6; A „O = 6,5; B0O = 4,5] je 

z trojice trojúhelníků příslušných k relaci [ A ABC, 
AA^BjC^ep podle O, sestrojte A ABC. 

15. Zvolte trojici bodů E, F, O takových, že neleží v přímce. 
Dokažte, že v rovině EFO existuje aspoň jeden bod M, 
který spolu s body E, F, O určuje tři shodné kružnice. 

16. Zvolte libovolný trojúhelník a kolem jeho vrcholů opište 
kružnice l l t l v l3 takové, aby procházely jedním bodem 
a po dvou určovaly společné tětivy, jejichž velikosti jsou 
shodné. 

17. Daný trojúhelník DEF má velikosti stran v poměru 
6 : 7 : 8 a víme o něm, že patří do trojice trojúhelníků pří-
slušných k relaci p nebo q podle neurčeného pólu. Máme 
sestrojit první složku z těchto relací, kterou je AABO 
a daný trojúhelník přísluší 
a) k relaci p podle S, 
b) k relaci p nebo q podle V, 
o) k relaci q podle Sa, 
d) k relaci p podle O. 

18. Do kružnice k = (O; 3,8) vepište A ABC, jehož vnitřní 
úhly mají velikosti v poměru 5 : 6 : 7, a sestrojte trojice 
trojúhelníků příslušné k relaci p podle T. 

19. Kružnice la, lb a lc opsané trojici trojúhelníků ASBaCa, 
AAtSCb, AAJBe/S příslušné k relaci p podle S se dotýkají 

přímek A^Áv a b„Cb. DokažteI 
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20. Narýsujte trojici AABC p AA-BIC, pJ^ABG podle T 
a sestrojte pól T. Potom pokládejte A ABC za první slož-
ku v relaci p o p a sestrojte k ní příslušnou trojici v kruž-
nicích opsaných A~ABŤ, A~AŤČ a ATBC. Výsledek 
zhodnoťte! 

21. V dvojici trojúhelníků z relace p podle S a k ní přísluš-
ných trojicích známe velikosti úlilů ^AtSCt = 49°53'18'; 
•£CAaB = 62°13'46"; <£ACB = 73°29'14\ Určete veli-
kosti všech zbývajících úhlů. 

22. V ASaBaCa je <SaBaCa = 15°26'19'; ^BaSaC = 
= 143°42'11'. Určete velikosti úhlů v příslušném A ABC. 

28. Je dán AABC„ \_AB = 4,6; VC0 = 6,4; CaA = 6,8] pří-
slušný k dvojici [ A ABC, A ^ - ^ C J e p podle T. Sestrojte 
tuto dvojici! 

24. Opakujte úlohu 23 pro dvojici [ A A B C , A - ^ A C J e 
e p podle 0! 

25. Opakujte úlohu 23 pro dvojici [ A.ABC, A - ^ i ^ C J e 
e p podle SI 

26. Opakujte úlohu 23 pro dvojici [ A ABC, A ^ - B i C J e 
e p podle VI 

27. Trojúhelník ABC,, [AB = 8,5; ^nC0AB = 15°; ^CaBA = 
= 20°] přísluší k dvojici [ A ABC, AAtBtCt] e q podle Sa. 
Narýsujte tuto dvojici! 

28. Opakujte úlohu 27 pro dvojici [ A ABC, A-4,S,C7,] e q po-
dle VI 
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K A P I T O L A 4 

N Ě K T E R É M E T R I C K É 
V Z T A H Y 

V předcházejících třech kapitolách jsme se převážně 
zabývali především vztahy polohovými. Vztahy metric-
ké jsme zatím brali v úvahu v souvislosti s velikostmi 
úhlů a v několika málo dalších případech. Proto v této 
závěrečné kapitole obrátíme svou pozornost k velikostem 
stran uvažovaných dvojic a trojic trojúhelníků a k veli-
kostem poloměrů kružnic jim opsaných. 

Pro zjednodušení textu budeme i zde používat dříve 
zavedených symbolů ve stejném významu. Především 
budeme velikosti vnitřních úhlů A ABC značit po řadě 
a, /?, y a velikosti vnitřních úhlů A^I-BICInebo /\A2B2C2 
po řadě a!, 0', y'. Stejného značení pak užijeme i v troj-
úhelnících jim podobných. Nebudeme ani zdůvodňovat 
obecně platné vztahy, například: 

Leží-li pól P uvnitř /\ABC, potom je podle sinové 
věty 

BC : CA : AB = sin «; sin /? : sin y, 

B1C1 : C1AÍ : A A = sin a' : sin /S' : sin y', 

BC : AČ :AB = sin (a + »') : sin {fi + /9') : 
:sin (y -f / ) • 

Odtud pak pijme z podobnosti například: 

BaCa : CaP : PBa = sin <*' : sin /3' : sin y' 

213 



nebo 
BC : GA0 : A0B = sin (<x + «') : sin (p + p') : 

: sin (y + / ) . 
Samozřejmě vezmeme v úvahu rozdíly, které se tu 

mohou objevit, když bude například podle věty 4 
(« + a) > 180°, nebo y — y' < 0°, kde potom příslušné 
hodnoty sinu budou záporné. Na tyto případy upozor-
ňuje tabulka 3 za věťou 44, které v těchto případech 
opět s výhodou využijeme. 

Vedle důsledků věty sinové uvedeme bez důkazu ještě 
vztah mezi velikostí strany, poloměru kružnice opsané 
a sinu protilehlého úhlu. Například 

AB = 2r sin y = 2r„ sin (y + y')> 
AXBX = 2r sin / , 
A tBa = 2r sin y , 
AcBe = 2rc sin y 

a podobně. 
Nebudeme se zabývat vztahy mezi velikostmi stran 

a úhlů v trojúhelnících A ABC, A A^BC, A AB0C, 
A ABC o, a to proto, že v úlohách bychom těchto vztahů 
příliš nevyužili. Na druhé straně je podle potřeby velmi 
snadno odvodíme ze vztahů, které dále probereme 
podrobněji. 

Věta 57. Je-li dvojice [AABC, A^i^CJ ep podle P 
nebo [ABCA, AA^Bfi^ eq podle Q, potom o velikostech 
stran a úhlů v uvažovaných trojúhelnících platí: 
AXBX : AB = sin y' : sin y, A2B2 : AB = sin y'': sin y, 
BjC, : BC = sin a! : sin oc, B2C2 : BC = sin : sin a, 
C^Ai : CA = sin /3' : sin /S, C2A2 : CA = sin : sin /?. 
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Důkaz. Uvedli jsme, že je AB = 2r sin y a také 
A1Bl = 2r sin y' nebo A2B2 = 2r sin y', 
a proto 

A1B1 : AB = 2r sin y : 2r sin y = sin y' : sin y, 

A2B2 : AB = 2r sin / : 2r sin y = sin y : sin y. 

Dále už jde jenom o cyklické záměny. 

Zajímavé jsou důsledky této věty v případech, kdy 
dvojice trojúhelníků jsou utvořeny podle pólů ve zvlášt-
ních polohách. 

Y8ta B8. Je-li dvojice [AABC, A-¿í-BiCi] ep podle S, 
kde S je střed kružnice A ABC uvnitř vepsané, potom je: 

a) AXBX : AB = 1 : 2 sin b) AXBX = 2r cos-£-, 
Z Z 

B1C1:BC = l :2s in-£-> B1C1 = 2r c o s , 
Z Z 

CXAX : CA = 1 : 2 sin 4r> ciAi = 2 r c o s í » Z Z 

c) JB1C1 : C^AX : A1B1 — cos : cos : cos ^r • 
z z z 

Důkaz. Podle věty 17 je <*' = 90° — - J-, = 90° — 
Z 
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Proto je podle věty 57: 

a) AXBX : AB = sin y : sin y = sin ^90° ^-j : sin y = 

v v y y = cos -jr : 2 sin cos = 1 : 2 sin a cyklické 2 2 2 2 J 

záměny. 

b) = 2r sin ^90° — y j = 2r cos a cyklické zá-

měny; 
c) Vyplývá přímo z b). 

Věta 59. Je-li dvojice [AABC, AA1B2C2]eq podle 
Sa, kde Sa je střed kružnice vně vepsané AÁBC proti 
vrcholu A, potom je: 

a) AXB2 : AB = 1 : 2 cos -, b) AtB2 = 2r sin , 
¿t Li 

B2C2 : BC = 1 : 2 sin , B2C2 = 2r cos y , 

C^x : (Lá = 1 : 2 cos -f-, C2AX = 2r sin -f-, Z Z 

c) 52C2 : C2AX : .^2?, = cos y : sin y : sin y • 

Důkaz. Zde budeme dosazovat podle věty 23 a to: 

* ' = 9 0 ° + | ; / r - A ; y ' = | -

v 
a) : = s í n / : sin y = sin : sin y = 

v v y y = sin ~ : 2 sin cos -^- = 1 : 2 cos • 2 2 2 2 
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o 
Obdobně je CZAX — 1 : cos - - , avšak z 

B2C2 : BG = sin a' : sin a = sin ^90° + y j = cos y : 

a n . a a , „ . <x : sin a = cos — : 2 sin — cos — = 1 : 2 sin — • 
Lt ¿t ¿i Z 

y 
b) AXB2 = 2R sin y' = 2r sin . Obdobně je C2A1 = 

M O 
= 2r sin /Y = 2r sin , avšak z 

B2C2 = 2r sin a' = 2r sin ^90° + y j = 2r cos y • 

Zde je ovšem třeba ještě utvořit cyklické záměny 
vzhledem k pólům Sb a Se. Provedeni ponechme do 
cvičení. 

c) Toto tvrzení opět vyplývá přímo z tvrzení b). 

Yěta 60. Je-li dvojice [¿\ABC, AAJifi^ep podle V, 
nebo dvojice [AABC, AA2B2C^\eq podle V, kde V je 
průsečík výšek A ABC, potom je 
a) v ostroúhlém A ABC 

: AB = 2 cos y : 1, AXBX = 2r sin 2y, 
BXCX : BC = 2 cos a : 1, BXCX = 2r sin 2a, 
CÍAÍ : CA = 2 cos 0 : 1, CXAX = 2r sin 20, 
B1Cl : C1AÍ : AXBX = sin 2a : sin 20 : sin 2y, 
b) v tupoúhlém A ABC, kde a > 90°, 
A2B2 : AB = 2 cos y : 1, A2B2 = 2r sin 2y, 
B2C2 : BC — —2 cos « : 1, B2C2 = —2r sin 2«, 
C2A2 : CA = 2 coa/3 : 1, C24a = 2r sin 20, 
B2C2 : Í7^ág : -d2B2 = —sin 2a : sin 2/5 : sin 2y. 
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Důkaz, a) Je-li A ABC ostroúhlý, musíme dosadit 
podle věty 33 a to: 

a' = 180° — 2a, ? = 180° — 2/3, ý = 180° — 2y. 

Aj^Bj^ : AB = sin y' : sin y = sin (180° — 2y) : sin y = 
= sin 2y : sin y = 2 sin y cos y : sin y = 2 cos y : 1 

a vSechny cyklické záměny, 

A1B1 = 2r sin y' = 2r sin (180° — 2y) = 2r sin 2y 

a odtud také 

: C ^ ! : A1B1 = sin 2a : sin 2/3 : sin 2y. 

b) Je-li A ABC tupoúhlý s tupým úhlem při vrcholu 
A, je cos a < O a také sin 2a < O. Proto se v přísluš-
ných rovnostech objevuje znaménko minus. Jinak není 
mezi a) a b) rozdíl. 

Metrické vlastnosti dvojic typu [ A A B C , A-^I-BICI] e 
e p podle středu O kružnice A ABC opsané nemusíme 

zkoumat. Podle věty 37 tu jde o souměrnost podle stře-
du, tedy shodnost, takže zde není nic nového k objevení. 

Pokud jde o relaci p podle těžiště T A ABC, té jsme 
věnovali pozornost z hlediska metrických vlastností už 
v kapitole druhé, takže ani jí se zde nemusíme zatím vě-
novat. 

Naopak bude účelné uvědomit si vztahy mezi veli-
kostmi poloměrů kružnic opsanýoh trojúhelníkům 
A ABC, A^ I -B IC I nebo IxA^B^C^ a trojúhelníkům 
APBC, A A P B , &ABP nebo AQBC, AAQC, AABQ. 
K označení velikostí těchto poloměrů užijeme symbolů: 

a) r pro velikost poloměru kružnice opsané trojúhelní-
kům A ABC, /^A1B1C1 nebo /\AtB2C2, 
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b) r„, rb, r0 pro velikosti poloměrů kružnic opsaných 
trojúhelníkům A PBO, AA*BC, APBaCa, A APC, 
AAB0C, AAiPC,,, AABP, AABC0, AACBJ>, 
nebo trojúhelníkům AQBC, AA^BC, AQBaCa, AAQC, 
AAB0O, AAbQCb, AABQ, AABCQ, AAcBeQ. 

Věta 61. Mějme dvojici [ A A B C , A ^ i - B A ] ej> podle 
P a necht poloměry kružnic opsaných po řadě trojúhelní-
kům A ABC, A PBC, A APC a A ABP mají velikosti r, 
Ta, rb a rc, potom je 

sin a sin 8 
r : ra : rb : rc = 1 : • • sin (* + <*')| ' |sin (/? + 0') 

sin y 
• |sin(y + y')| 

Důkaz. V kružnici k opsané A ABC je například 
TiC 

BC = 2ram<x = a . , (4.1) 2 sin a. 

v kružnici la opsané A PBC pak 
BC = 2ra sin (<x + «') podle věty 4, takže 

r ° = 2 sin + a ) ( 4 > 2 l 

Podle (4.1) a (4.2) je proto 

BC BC 
r \r, = -r-2 sin <* ' 2 sin (<x + a') 

a po úpravě 
sin a. 

r : r0 = 1 : ——-.—;—K • sm (« + <* ) 
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Obdobně pak je 
r r - i • —ĚLĚ— 
r - T b l-sm(t} + {!')' 

sin (y + y ) 
Tím je dokázána i pravdivost postupného poměru 

_ sin a sin 0 r : ra] rb : rc - 1 : sin (a + ^ • sin (/3 + p) : 

sin y 
sin (y + y') 

V tvrzení věty 61, jehož pravdivost jsme právě do-
kázali, jsou však hodnoty sinů ve jmenovatelích uve-
deny v absolutní hodnotě. Není proto náš důkaz ještě 
úplný. Musíme zde vzít v úvahu i případ, kdy příslušný 
pól leží vně uvažovaného A ABC, a proto je (<* + a') 
nebo (/S + /?') ěi (y + y') větší než 180°. Potom ovšem 
jeho sinus je záporný a museli bychom jej uvést se zá-
porným znaménkem, aby postupný poměr měl všechny 
členy kladné. Je proto výhodnější do tohoto poměru 
uvést uvažované siny v absolutních hodnotách. To 
jistě můžeme, protože nám v tomto případě jde pouze 
o velikosti uvedených sinů. 

Yěta 62. Mějme dvojici [ A A B C , A A 2 B 2 C 2 ] e q podle 
Q a necht poloměry kružnic opsaných po řadí trojúhelní-
kům A ABC, AQBC, A AQC a A ABQ mají velikosti r, 
ra, rb, a rc; potom je 

_ sin a sin /? 
r:ra:rb:re- l : s i n | a _ ^ = g i n ^ — ^ : 

sin y 
" sin \y — y'\ ' 
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Důkaz. Na rozdíl od důkazu věty 61 zde použijeme 
věty 5. Jinak je důkaz úplnou analogií důkazu věty 61, 
takže není nutno jej dopodrobna opakovat. Rozdíl je 
pouze v tom, že úhly (a — «'), (0 — /?') a (y — y') ne-
mohou mít absolutní hodnotu nikdy větší než 180°. 
Mohou být oyšem záporné, a proto jsou ve jmenovate-
lích v tvrzení této věty uvedeny v absolutní hodnotě. 
Na poloze pólu Q vzhledem k vnitřním úhlům A ABC 
zde nezáleží. 

Pro zvláštní polohy pólů P nebo Q dostaneme ovšem 
po vhodném dosazení a úpravách výrazy mnohem 
jednodušší. 

Věta 63. Mějme dvojici [AABC, AA^fí^ep podle 
S, kde S je střed kružnice A ABC uvnitř vepsané a necht 
r, ra r\„ a rc jsou velikosti poloměrů kružnic opsaných troj-
úhelníkům A ABC, A SBC, AASC a A ABS; potom je 

r : ra : rb : re = 1 : 2 sin ~ : 2 sin : 2 sin • 

Důkaz. Dosaďme do výrazu z věty 61 podle věty 17 

například sin (<* -f-

- sin 190° + y I = cos y . Potom o1 = cos . Potom ovšem bude 

: ——; ; 7T 
sin (<x -+- a.) 

sin OL = 1 : sin a 

0 0 8 T 

= 1 : 

„ . OL OL 2 sin — cos — ¿1 ů 2 
= 1 : 2 sin — 

A* 
OL 

OL 
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Stejným postupem dojdeme i k úměrám 

r : rb : 1 : 2 sin ; r : rc = 1 : 2 sin , 

takže platí 
n 

r : ra : rb : re = 1 : 2 sin : 2 sin : 2 sin ^r • 
« Z z 

Zbývá jenom dodat, že v tomto vztahu není nutné 
uvádět hodnoty sinů v absolutních hodnotách, protože 
střed kružnice uvnitř vepsané leží vždy uvnitř A ABC, 
takže žádný z uvažovaných sinů nenabude záporné 
hodnoty. 

Bude-li pólem některý ze středů kružnic A ABC vně 
vepsaných, jsou tři možnosti, například: 

Y8ta 64. Je-li [ A A B C , A^I-B2C2] e g podle Sa, kde Sa 
je střed kružnice vně vepsané trojúhelníku ABC proti 
vrcholu A, je 

» B y — : 2 cos — : 2 cos y -r : ra : rb : re = 1 : 2 sin — : 2 cos : 2 cos • 

Důkaz. Zde ovšem vyjdeme z tvrzení věty 62 a dosa-
díme podle věty 23, kde 

«' = 90° + y ; / r - A ; / = ! -

Bude proto |<* — a'| = « - 9 0 - - - I 1 — 9 0 ' 

V každém případě je — < 90°, a proto sin |a — a'| = ¿t 

= C 0 8 T 
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Po dosazení a úpravě je jako v předešlé větě 

r : ra = 1 : 2 sin — • 

Dále však je \p — p'\ = F 2 

y - T 
P 

a \y — y'\ = 

takže musíme dosadit sin \p — P'\ = 

= sin sin |y — y'\ = sin f . 

Je tedy 
O • P P 

, sin P , 2 3 i n Y 0 0 3 ~2~ , , P 

sin-

a obdobně také 

sm-2-

r : rc = 1 : cos y • 

Tím je dokázána pravdivost jedné ze tří možností. 
Další dvě vyjdou z cyklických záměn, a to: 

Bude-li St střed kružnice vně vepsané A ABC proti 
vrcholu B pólem, bude 

<x P y r : r« : r& : r„ = 1 : 2 cos — : 2 sm : 2 cos , Z & ¿i 
nebo 

OL P Y r : ra : rb : rc = 1 : 2 cos — : 2 cos : 2 sin -JT-, M ¿í ¿i 

když pólem bude Sc střed kružnice vně vepsané A ABC 
proti vrcholu G. 
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Vezmeme-li v úvahu větu 52 a obr. 106, zjistíme, že 
dvojice [ A A B C , A ^ A C J e p podle V a [ A A B C , 
A AiBsC] e q podle V jsou z hlediska metrických vztahů 

zcela nezajímavé, protože v tomto případě kružnice 
opsané A ABC, A VBC, &AVC a /\ABV jsou navzá-
jem shodné a platí r : ra : rb : rc = 1 : 1 : 1 : 1 bez ohledu 
na to, jde-li o trojúhelník ostroúhlý ěi tupoúhlý. 

Zajímavější je případ, kdy pólem je střed kružnice 
A ABC opsané. 

Věta 65. Je-li dvojice [AABC, AA&CJep podle O, 
kde 0 je střed kružnice A ABC opsané, potom je 

1 1 1 1 T * T ' Th * T — 1 ' * • , 
° ' c 2 cos a ' 2 cos /? ' 2 cos y 

Důkaz. Víme, že relace p podle O je středovou souměr-
ností, tedy shodností, a proto a! = « , / ? ' = 0, y = y. 
Potom ovšem a + a' = 2«, 0 -f /?' = 20, y + y' = 2y, 
takže například 

sin a. , sin a. 
r : ra = 1 : . = 1 : -j— = 

sin 2a 2 sin <x cos a. 

2 cos a.' 
neboli 

1 1 1 
r :ra:rb:rt- 2 c o s a = 2 cos 0 1 2 cos y ' 

V těchto úvahách bychom mohli ještě pokračovat tak, 
že bychom odvodili i vzorce pro výpočet velikostí stran 
trojúhelníků typu A^o^Cnebo A PBaCa či A ABC apod. 
Ve třetí kapitole jsme však již ukázali, že tyto trojúhel-
níky jsou z dvojio navzájem podobných, takže dobře 
vystačíme s dosud odvozenými vzorci. 
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Způsob použití těchto vzorců vysvitne z následujících 
příkladů řešených úloh. 

Příklad 1. Je dána relace A ABC p A^i-BA podle P 
taková, že AB = 7 cm, A1Bl = 5 cm, ^ACB = y = 
= 64°. Vypočítejte: 
a) velikost poloměru kružnice opsané &ABC, 
b) velikost úhlu / = ^ A - f i ^ , 
c) velikost poloměru kružnice opsané A A B P , 
d) velikost úhlu / = <$JČB = <$.ACoB, 
e) velikost strany ACBC trojúhelníku PACBC příslušného 

k dvojici [ A^l-BC, A ^ A C i ] e p podle P. 

Řešeni, a) Protože je AB = 2r sin y, je ' ̂  fli' 

r = = 3,89 cm. 
2 siny 2.0,89 789 

b) Podle věty 57 je : AB = sin y' : sin y, odkud 

s i n = =
 5 0-8

7
9 8 7 9 = 0,64190. 

Tomu vyhovují dva úhly a to: y = 39°56' nebo: 
y' = 140°04' (přesněji 39°56'26', 140°03'84'). 

c) Zde musíme rozlišovat dvě možnosti: 
I. Je-li y' = 39°56', je y + y' = 103°66', takže y + 
y' < 180° a pól P leží uvnitř t\ABC. V tom případě 

je podle věty 61 

_ r s iny ^ 3,89 .sin 64° _ 3,89.0,89 879 
Tc ~ sin (y + y) _ sin 103°56' ~~ 0,97 058 

re = 3,60 [cm]. 
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II. Je-li y' = 140°04', je y + / = 204°04', takže 
y + y > 180° a pól P leží vně A ABC. V tomto případě 
je proto 

rs iny . 3,89.0,89 879 . 
= _ sin (y + y') = 0,40 780 ^ ®'58 [ c m ] ' 

d) V tomto případě stačí nahlédnout do tabulky 3, 
abychom zjistili, že 

I. y = 180° — (y + y') = 180° — (64° + 39°56') = 
= 75°04', což je současně i velikost ACqB. 

II. y = (y + y') — 180° = (64° + 140°04') — 180° = 
= 24°04', což i zde je velikost <£AC0B. 

e) V obou případech užijeme vzorce 

ACBC = 2r sin y . 
I. ACBC = 2.3,60.0,64 190 = 4,62 [cm] 

II. ACBC = 2.8,58.0,64 190 = 11,01 [cm] 

Příklad 2. Do kružnice k o poloměru r — 3,8 cm ve-
pište trojúhelník, jehož strany mají velikosti v poměru 
cos a. : cos 0 : cos y, kde a + /3 + y = 90° jsou poloviční 
velikosti vnitřních úhlů daného A K L M [KL = 6 cm, 
LM = 7 cm, MK = 8 cm]. 

Rozbor. Podle věty 58 je hledaný trojúhelník druhou 
složkou v relaci A ABC p A^i-^iCi podle S za předpo-
kladu, že 2OL, 2/9 a 2Y jsou velikosti vnitřních úhlů 

AKLM ~ A ABC V A KML ~ A ABC V A LKM ~ 
~ AABC V A LMK ~ A ABC V A MKL ~ 

~ A ABC V A MLK~ A ABC. 

Konstrukce. Sestrojíme A KLM a jemu podobný 
A ABC tak, aby poloměr kružnice jemu opsané měl 
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danou velikost 3,8 cm. Potom narýsujeme A ^ A ^ 
z relace p podle S, který již má požadované vlastnosti. 

Důkaz správnosti konstrukce je dán větou 58. 
Diskuse. Jak již bylo v rozboru naznačeno, lze dvojici 

A ABC a A KLM navzájem přiřadit šesti různými způ-
soby. Odtud plyne, že úloha má šest řešení. 

Příklad 3. Je dán A ABC, jehož obsah má velikost 
P = 256 m2 a dva vnitřní úhly velikosti <x = 42°, 
0 = 58°. Vypočítejte velikost obsahu PX trojúhelníku 
A1B1C1 z relace A ABC p A AlBlCl podle S. Úlohu řešte 
nejdříve obecně, potom teprve dosaďte podle zadání. 

Řešení. Především zjistíme velikost úhlu y = 180° — 
— (<* + 0) = 80°. 

Obsahy P a P , vyjádříme takto: 

kde a, b, a jsou velikosti stran uvažovaných troj-
úhelníků. 

Podle věty 58 je B1C1 : BC = 1 : 2 sin a odtud 

B1C1 = — — 
a • <* 

n Y 

(4.4) 

Obdobně pak 

(4.5) 

Současně je podle věty 17 

y' = 90° • L 
2 (4.6) 
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Hodnoty (4.4), (4.5) a (4.6) dosadme do (4.3): 

' . - V S f b r - K " * ) -
2 s in—.2 sin z z 

Protože však velikosti stran BC a AC neznáme, mu-
síme se snažit je ze vztahu vyloučit vhodným dosaze-
ním. K tomu nám dopomůže tato úprava výrazu 
sin ^90° — y j = cos y . Víme, že sin y — 2 sin cos - y , 

ji J y s m y odkud cos = — • 
2 s i n | -

Můžeme proto psát 
1 BC.AC.soíy 

Pi = 2 <x 8 v 2 sin — 2 sin 2 sin ¿1 Z ¿t 

a protože BG.AC.&m y = P, bude konečně ¿i 
T> 

Pi = -„ . « . P . y 8 sin Y sm - y sm Ý 

Tím je úloha obecně vyřešena. Dosadíme-li podle za-
dání, bude 

P, = ?®® = 286,5 m2. 
1 8.0,35 837.0,48 471.0,64 279 

Příklad 4. Je dán postupný poměr velikostí poloměrů 
kružnio opsaných dvojioi [ A ABC, A^i-S^CJ s q podle 
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Sa a k ní příslušným trojúhelníkům /\SaBaCaa, AAbSaCb, 
a to: 

r : ra : rb = u : v : t, kde u, v, t jsou čísla přirozená. 
a) Dokažte, že danou složenou úměrou je jednoznačně 

určen i čtvrtý člen postupných poměrů na obou stranách 
úměry a stanovte podmínky řešitelnosti. 

b) Na základě výsledku úlohy a) ukažte, že ve zvlášt-
ním případě, kdy r = 1 0 a t t : v = 3 : 2 j e daná úloha 
jednoznačná, právě když u = 3. Tento případ řešte po-
četně! 

Řešení, a) Především platí podle věty 64 

1 B r : ra : rb : re = — : sin : cos : cos • (4.7) 

Daný postupný poměr u : v :t upravíme tak, aby první 

člen byl -5-. Proto celý poměr vydělíme číslem 2u, o kte-
Li * 

rém ze zadání víme, že je různé od nuly. Současně do-
plníme čtvrté členy obou postupných poměrů v dané 
úměře, a to na levé straně rc, na pravé straně x. Po těchto 
úpravách dostaneme: 

1 v *  X t A Q\ 
r : r a : r 6 : ř c = y : - - : — : — • (4.8) 

Porovnáme-li nyní pravou stranu výrazu (4.8) s pra-
vou stranou výrazu (4.7), vidíme, že je 

v . a t fix Y —— = srn — : —— -- cos -7—: —— = cos • 2 u 2 ' 2 u 2 2u 2 

Tím jsou velikosti úhlů a, /?, y určeny, a to jednoznačně, 
B y 

protože je < 90° A -5- < 90° a příslušné kosiny jsou 
A Ů 
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kladné a ani nemůže být větší než 90°. Protože pak z 
V 

y - 180° — (a. + P), známe i x = 2«.cos 
Z 

První část důkazu je provedena. 
Dále víme, že absolutní hodnoty sinu a kosinu jsou 

menší než 1. 
Je proto: 

< 1 0 < ~ < 1, neboli 0 < v < 2u, 2 u 2 u 

4-<\ => 0 < -J— < 1, neboli 0 < t < 2u. 
2 u 2 u 

(4.9) 
Musíme ovšem vzít v úvahu i to, že A-^iB2C2 je tupo-

úhlý, protože podle věty 23 je zde <*' = 90° + "ír, takže 
¿i 

P' + / < 90° => + < 90°. To však znamená, že 
8 y 

aspoň jeden z úhlů nebo -jj- je menší než 45°. Můžeme ¿t ¿i 
O 

předpokládat, že je to například úhel . Potom jeho 
kosinus bude větší než cos 45° a platí: 

P * V 2 i/« 
C O S T = 2 ^ > 2 

Tím se interval (4.9) ještě více zúží a bude v^2 < t < 
< 2u, což je hledaná podmínka. 

b) Dosadíme-li u = 3, je v = 2 a potom 3.]/2 < t < 
< 6, takže t = 5, protože podle zadání je t přirozené 

230 



číslo. Dosadíme-li však u = 6, potom v = 4 a t nabude 
hodnot 9, 10, 11, takže úloha už není jednoznačná. 

Je-li tedy u = 3, v = 2, t = 5, bude: 

sin = = 4 - = 0,33 333 a odtud <x = 38°56', 2 ¿11 6 

cos 4- = -J- = 4" = 0,83 333 a odtud B - 67°06', 2 2u 6 
takže y = 74°48'. 

Nyní již můžeme určit i velikost čísla x, neboť x = 

= 2w.cos = 6.cos 37°24' = 4,77. 

Velikosti jednotlivých poloměrů dostaneme ze vztahu 
1 . a 0 y 

r :ra:rb:rc = — : sin — : cos : cos • 
První člen postupného poměru na levé straně má být 

10. Proto postupný poměr na pravé straně rozšíříme 20, 

takže r :ra:rb:rc = 10 : 20 sin : 20 cos : 20 cos = 
A ¿t £t 

= 10 : 6,67 : 17,67 : 13*9, neboli r = 10, ra = 6,67, 
rb = 17,67, rc = 15,9. 

Příklad 5. Do kružnice k = (O; 10) je vepsána dvojice 
[ A ABC, A^i^iCi] e P podle O taková, že poloměr kruž-
nice opsané AOBC má velikost r„ = 12, poloměr kruž-
nice opsané AAOC velikost rb — 15. Vypočítejte veli-
kosti stran a vnitřních úhlů v trojúhelnících ABC 
a ABC, kde AABC je ze složené relace [ A ABC, A ABC] 
ep op podle O. 
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Řešení. Nejdříve zjistíme velikosti vnitřních úhlů 
AABG užitím věty 65. Je-li podle této věty například 

r : ra = 1 : —- , bude cos <x = 
2 cos a. 2ra 

f 
a obdobně cos B = ——* • 

2rb 

Dosadíme-li podle zadání, bude 

10 5 
c o 3 « = — = — =»« = 65°22'32", 24 12 

cos/S = -^- = y = > / ? = 70°31'43". 

Tím je dána i velikost třetího úhlu, y = 44°05'45". 
Velikosti stran A ABC vypočítáme ze vzorců a = 

= 2r sin OL, b = 2r sin /?, c = 2r sin y. Příslušné hodnoty 
jsou: 

a~ 18,2; b = 18,6; c = 13,9. 

Známe-li velikosti vnitřních úhlů A ABC, známe i ve-
likosti vnitřních úhlů ¿\A1B1C1 z^elace p podle 0, který 
je shodný s A ABG, a tedy i velikosti vnitřních úhlů 
A ABG, protože podle věty 14 je například 

S = 180° — (<x + <*') - 180° — («+<%) = 
= 180° — 2« = 49°14'56". 

Potom také 

/3 = 180° — 2/3 = 38°56'34ff, 
y = 180° — 2 y = 91°48'30". 
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Konečně jsou velikosti stran A ABC 
a = 2r sin a = 15,2, 6 = 2r sin p = 12,6, 

č = 2r sin y = 20,0 
(zaokrouhleno na 3 pl. c.). 

Příklad 6. Je dán AACBCV [ACBC = 6,4; BCV = 8; 
VAe = 4,8] příslušný k dvojici [ A A B C , A ^ A C J e p 
p podle V. Určete přibližné velikosti stran A ABC, jeho 
vnitřních úhlů a poloměru kružnice jemu opsané. 

Ěešení. Zde je dobře si uvědomit, že o velikostech stran 
daného trojúhelníku platí 

8a = 6,42 + 4,82 = 40,96 + 23,04 = 64. 
Trojúhelník ACBCV je tedy pravoúhlý s pravým úhlem 

při vrcholu Ac. Tím je dána i velikost poloměru kružnice 

opsané r = — VBC = 4 a velikosti sinů obou ostrých ¿t 
úhlů 

sin y' = = 0,8 => ý ~ 53°08', 
O 

A. FI 

sin /?' = = 0,6 0' ~ 36°52'. 
o 

Dále již musíme rozlišovat dvě odlišné situace, 
a) Bude-li A ABC ostroúhlý, bude se další výpočet 

řídit větou 33, takže 
t 

a! = 180° — 2<x <x = 90° — = 45°, 

/ = 180° — 2y => y = 90° — = 63°26', 
¿i 

/ 

P' = 180° — 2p => p = 90° — = 71°34". 
Ái 
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Potom známe i velikosti stran A ABC, neboť: 

o = 2rsin a = 8.0,70 711 = 5,7, 

b = 2r sin p = 8.0,89 411 = 7,2, 

c = 2T sin y — 8.0,58 952 = 7,6. 

b) Bude-li A ABC tupoúhlý, musíme k výpočtu užít 
věty 34, a proto 

/ 

<x' = 2« a = = 45°, 

P' = 2p => p = = 26°34', 

/ 

/ = 2y — 180° => y = 90° + = 108°26'. 

A 

Také zde již známe velikosti stran ¿\ABC, neboť: 

a = 2r sin a = 8.0,70 711 = 5,7, 

b = 2r sin/ff = 8.0,44 724 = 3,6, 

c = 2t sin y = 8.0,58 952 = 7,6. 
Možnosti, jak zadat úlohy určené k numerickému řeše-

ní, jsou zde velmi pestré, jak ostatně ukazují i cvičení 
navazující na tuto poslední kapitolu. 

Cvi íení 

¡ST, Je dán poloměr r — 5,2 cm kružnice opsané A ABG, veii-
/ >'kost jeho strany AB = 6,7 cm a velikost úhlu y' = 

= •$.AlClBx = 37°24' v A AlBlCl z relace A ABC p 
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p AAlBlC1 podle P. Určete velikosti dalších prvků, a to: 
a) úhlu y z A ABC, 
b) strany -d^B, z AA-fi-fii, 
c) úhlu Y z [\ABC v relaci p o p a A ABC, 
d) poloměru rc kružnice opsané A ABP, 
e) strany ACBcv AACBCP Z trojice příslušné k relaci p 
podle P. 

2. Odvodte vzorec pro výpočet velikosti obsahu A ABC, 
jsou-li dány velikosti poloměru kružnice jemu opsané 
a vnitřních úhlů. Tento vzorec potom upravte pro výpočet 
velikosti obsahů trojúhelníků AAlBlCl nebo A-i*B,(7j 
z relacíp nebo qa trojúhelníků z trojic příslušných k těmto 

. • relacím. 
\Do kružnice k = (0; 5,8) je vepsán AABC S vnitřními 

/ > ú h l y velikosti <x = 72°39', /S = 46°23'. Určete velikosti 
stran A -^ I -B ICJ z relace p podle S. 

4. Určete velikosti obsahů obou složek z relace A ABC p 
p AA-BIC\ podle S, když AB = 9,4 cm, BC = 5,6 cm, 
4 ABC = 112°. 

5. Je dén AEFO vepsaný do kružnice k = (O; 7,2) s vnitřní-
mi úhly velikostí EFO = 82°, -¡CFGE = 68°. Určete 
velikosti stran EXFT a E1G1 i úhlu -^FIE1G1 v trojúhelníku 
EXFFII z relace q podle SE a jeho obsah. 

6. Trojúhelník A^B^Ct z relace A ABC q AA^B^C^ podle Sa 
má rozměry = 4,6; Ba(72 = 9,2; CtAl = 5,6. Určete 
velikost poloměru r kružnice opsané A ABC. 

7. Strany A ABC mají velikosti v poměru 7 : 9 : 8 . Určete 
přibližný poměr velikostí stran AA1B1Cl z relace [ A ABC, 

. A-4i-Bi<7i] € p podle V. 
Trojúhelník ABC s vnitřními úhly dané velikosti a = 42°, 

/ > 0 = 74°, y = 64° má obsah P = 200. Určete velikost 
obsahu AAxByCi z dvojice [ AABG, A-^I-B^] Gp podle 
V. Nejdříve udejte obecný vzorec. 

9. Je dán AEFG [EF = 50 mm, FG = 70 mm, GE = 
= 100 mm]. Určete velikosti stran A EtFtGt z relace 
A EFG q AEtF,G2 podle V. 

10. Jsou-li velikosti vnitřních úhlů v AABC V poměru 
3 : 4 : 5 a velikosti vnitřních úhlů AlBlCl z relace p podle 
P v poměru 7 : 8 : 9 , určete velikosti vnitřních úhlů 
A ABC ze složené relace p o p podle P a poměr jejich 

velikostí. 
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11. Je dána dvojioe [A ABC, A-4 l B,0 1 ] ep podle O vepsaná 
do kružnice k = (O; 7,2) s vnitřními úhly $.ABC_=J8", 
•Š.CAB = 46°. Vypočítejte velikost obsahu A ABC ze 
složené relace p o p podle O. Udejte obecný vzorec pro 
dané r, a, p. 

12. Dané trojúhelníky A ABC [AB = 8 cm, BC = 6,5 cm, 
•$ABC = 70°] a AA^JP [AcBe = 5,8 cm, B0P = 6,9 cm, 

A,B0P = 48°] jsou z relace AABC p AA1BxC1 podle P 
a k ní příslušné trojice trojúhelníků. Určete velikosti stran 
AA&C^ 

18. Do kružnice k = (O; 6,4) je vepsán A ABC s vnitřními 
úhly velikostí <x = 76°28'35', 0 = 41°32'53'. Určete veli-
kosti poloměrů kružnic opsaných trojúhelníkům AOBC, 
AAOC, AABO. 

14. Známe-li v relaci [ A ABC, A-^i-BjOJep podle P velikost 
poloměru společné kružnice opsané r = 8,3 cm a velikosti 
úhlů p = 42°36',/?' = 71°18', můžeme určit velikosti 
a) stran AC a A1C1, 
b) poloměru r& kružnice opsané AAPC, 
c) strany AtCt v A AbPC/, z trojice k dané relaci přísluš-

né; naznačené výpočty provedte. 
15. V dvojici [ AABCQ, AAeBcP] ep podle Cx příslušné 

k dvojici [A ABC, A - 4 I B I 0 I ] S p podle P známe: 
AeB0 - 5,6 cm; -£AePB0 = 48°12'; AB - 4,2 cm. Určete 
velikosti r, rc, <í BCA. 

16. Určete polohu pólu Q v relaci A ABC q AAxB%Ct podle Q, 
je-li dán postupný poměr velikostí poloměrů r : ra : rj,: 
: r„ = 3 : 4 : 5 : 6 a velikosti úhlů « = 42°, P = 26°. 

17. Jsou-li r, r0, r j a r„ velikosti poloměrů kružnic opsaných po 
řadě trojúhelníkům A ABC, ÁSBO, A ASC a A ABS 
a velikosti vnitřních úhlů A ABC a., p, y, potom je: 

= r\ : r\ : rj = 

— 0,26 : (1 — cos «) : (1 — cos P) : (1 — cos y). 

Dokažte I 
18. V pravoúhlém AKLM má jeden vnitřní úhel velikost 30°. 

Dokažte, že ze čtveřice poloměrů kružnic opsaných po řadě 
trojúhelníkům AKLM, ASLM, AKSM, AKLS mají 
právě dva shodné velikosti. 

19. Je dán A ABC \_AB = 7; BC = 5; CA = 6] a pól Q 
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[BQ = 9; CQ = 10; QeBCA*. Určete velikosti vnitřních 
úhlů AA2 BiCt z relace A ABC q A AtB2C% podle Q. 

20. V dvojici [A ABC, A^4aB2C2] S g podle Q je A 4,B,C, 
rovnostranný, vepsaný do kružnice & = (O; 7 m). Určete 
velikosti úseček AQ, BQ a CQ, víte-li, že vnitřní úhly 
A ABC mají velikosti A. = 40°, P = 80°. 

21. Do kružnice k = (O; 18) je vepsán A ABC a vnitřními úhly 
a. = 43°; y = 67°. Určete co nejjednodušeji velikosti obsa-
hů všech tří trojúhelníků AA0BC, AAB„C a AABCQ pří-
slušných k relaci [ A ABC, A^i-SiOJ G p podle O. 
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D O D A T E K 

Výběr pojmů a vztahů z projektivní geometrie 
použitých v textu 

Dělicí poměr. Jsou-li A, B,C tři různé body na téže 
přímce, potom dělicím poměrem nazýváme reálné číslo 

AP 
A = (ABC) =-57^, které je kladné, když bod C je 
vnější bod úsečky AB, a záporné, když bod C je její 
vnitřní bod. Toto číslo je ovšem různ&od nuly i od jedné. 

Na obr. D 1 jsou zobrazeny oba uvedené případy 
s náznakem konstrukce bodu C k dané úsečce AB pro 

4 4 
dělicí poměry = — , A2 = — • 
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Dvojpomfir. Jsou-li A, B, C, D čtyři navzájem různé 
body na téže přímce, potom dvojpoměrem nazýváme reál-
né číslo 

x fírm-{ABC)-AC • AD - ACBD 

d - ( A U L V ) - ^ ^ ~ BC.AD " 

-o 
D 

Obr. D 2 

Na obr. D 2 je například AB = 3; BC = 4; CD = 5; 
je tedy: 

a lAnrm { A B C ) A c • A D 

AC.BD _ 7.9 _ 21 
- BC.AD ~ 4.12 _ 1 6 

nebo 
(ach m - { A C B ) - A B • A D 
{ A C B D ) - ( A C D ) = ČB CĎ = 

3 12 5 
— 4 5 16 

atd. 
Z ukázek je zřejmé, že při číselném vyjádření dvoj-

poměru je nutno vzít v úvahu smysl jednotlivých úseček. 

Projektivní čtveřice bodů a přímek. Jsou-li dvě čtveřice 
bodů na různých přímkách nebo i na téže přímce umístě-
ny tak, že je (A B C D) = (K L M N), nazýváme tyto 
čtveřice projektivními, což znamená, že jsou téhož 
dvojpoměru. Projektivními nazýváme i čtveřice přímek 
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z daných svazků, které těmito čtveřicemi bodů prochá-
zejí. 

Proto píšeme obdobně jako u projektivních čtveřic 
bodů rovnost: 

(ab cd) = (klmn). 

Obr. D3 

Oba vztahy jsou zobrazeny na obr. D 3, kde je AC = 
4.0=5 

= 40; CB = 30; BD = 50; KM = 45; ML = 
LN = 450 

19 

19 ' 

Dosadíme-li tyto velikosti, dostáváme: 

{ABCD)=—JI ( K L M N ) = j p 

Současně pak ve svazcích S t a S2 platí: 

(abcd) = (klmn). 
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Věta I; Jsou-li a, b, c, d čtyři navzájem různí přímky 
téhož svazku, potom protínají každou příčku svazku ve 
čtveřici bodů téhož dvojpoměru, tj. projektivní. 

Důkaz. Na obr. D 4 vidíme čtyři přímky svazku S 
proťaté příčkami ve čtveřicích bodů A, B, C, D a K, L, 
M, N. Máme dokázat, že [K L M N) = (A B C D). 

Body L a, B veďme rovnoběžky s přímkou SD a označ-
me jejich průsečíky s přímkami svazku Kz, Klt Mt, Mu 
jak je patrno z obrázku. 

Nyní je především 
BA BKX BC __ BMÍ 

DA = DS ; DG DS '' 
a proto 

BA BG _ BKj_ BMX _ BKX 

DA 'DG DS ' DS ~ BMj, ' ( ' 
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Dále pak 
LK = LK2 LM _ LMt 

NK ~ NS ' NM ~ NS ' 
a proto 

LK LM _ LK2 LM2 _ LK2 
NK '' NM ~ NS : NS ~ LM2 ' ( ' 

fíK T K 

Protože je K,M, [| K2Mt, platí ^ = ^ , a do-

sadíme-li sem podle (1) a (2), bude 
BA BO _ LK^ LM 
DA'DC~NK' NM * 

neboli (A B C D) = (K L M N). 

Perspektivní Stveřice bodů a přímek. Jsou-li dvě navzá-
jem různé čtveřice bodů na dvou přímkách umístěny 
tak, že dvojice sobě odpovídajících bodů leží na přím-
kách téhož svazku, říkáme, že jsou perspektivní. Na obr. 
D 4 jsou to čtveřice (A B C Ď) a (K L M N). Z toho je 
zřejmé, že všechny perspektivní čtveřice bodů jsou také 
projektivní, jak o tom svědčí věta I, avšak ne každé 
dvě čtveřice projektivní jsou i perspektivní, jak ukazuje 
například obr. D 3. 

Věta II. Jsou-li dvě čtveřice bodů projektivní a současně 
mají jeden bod společný, jsou perspektivní. 

Důkaz provedeme sporem. 
Na obr. D 5 je podle předpokladu (A B G D) = 

= (K L M N) a současně K = A. Nechť přímky BL 
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a CM nejsou rovnoběžné, takže se protnou v bodě S, 
a nechť přímka SD protne přímku KN v bodě N'. Před-
pokládejme, že body N a N' jsou různé. Potom ovšem 
platí podle věty I, že čtveřice (A B C D) = (K L M N') 
jsou projektivní, takže i čtveřice (K L M N)a.(K L M N ) 
jsou projektivní a není možné, aby body N a N' byly 
různé. 

Je-li však N = N', potom čtveřice (ABC D) = 
= (K L M N) jsou perspektivní, neboť podle předpo-
kladu je také K = A. 

Perspektivními pak nazýváme takové dvě čtveřice 
přímek ze dvou navzájem různých svazků, které promí-
tají čtveřici bodů na téže přímce. Perspektivní jsou na-
příklad čtveřice (ab c d) = (klmn) na obr. D 6, neboť 
obě promítají čtveřici bodů (A B C D) a S1 ^k S2. 
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Věta III. Jsou-li dvě projektivní čtveřice přímek umístě-
ny tak, že jedna dvojice sobě odpovídajících přímek splývá, 
jsou tyto čtveřice perspektivní. 

Důkaz. Na obr. D 7 jsou zobrazeny čtveřice přímek 
(a b c d) a (k l m n), o nichž předpokládáme, že jsou pro-
jektivní, a současně je a = k. Snadno určíme body 
B = (b n l)> O = (c n m ) a přímku BC, na níž pak leží 
bod A. Předpokládejme dále ještě, že přímky d a n se 
protnou v nějakém bodě D, který neleží na přímce BC. 
Bud dále Dt = (d Q BC) a m' == S ^ . Podle věty I je 
(ABC Dt) = (ABC D2), takže body DX a Z>2 splývají, 
a protože je D e =8JD2, splývají i body D a Dv Bod D 
tedy nemůže ležet mimo přímku BC a uvažované čtve-
řice přímek jsou perspektivní, tj. odpovídající si přímky 
se protínají na přímce BC. 

Věta IV. Věta Desarguesova o trojúhelnících. Jsou-li 

h 
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trojúhelníky l\ABC a &KLM umístěny v téže rovině 
tak, že přímky AK, BL a CM procházejí týmž bodem S, 
potom se sobě odpovídající strany trojúhelníků, tj. [AB, 
KL], [BC, LM] a [CA, MK] protínají v bodech téže přím-
ky. 

Důkaz. Na obr. D 8 je podle věty I (A D C H) = 
= (K N M H), a proto jsou čtveřice přímek (BA BD 
BC BH) a (LK LN LM LH) projektivní. Současně 
přímky BD a LN splývají, takže uvedené čtveřice pří-
mek jsou perspektivní podle věty III. To znamená, že se 
sobě odpovídající přímky protínají v bodech E, F,0 a H. 

Harmonická čtveřice bodů a přímek. Leží-li body 
A, B, C a D na téže přímce tak, že platí (ABC D) = —1, 
nazýváme takovou čtveřici bodů harmonickou. Říkáme 
také, že body C a D dělí úsečku AB harmonicky. Kon-
strukci harmonické čtveřice k dané úsečce AB a dělicí-
mu poměru kde a, b jsou velikosti daných úseček, 

ukazuje obr. D 9. 



„» . v . AC a AD a v Zrejme tu je = - A ^ = y , takže 

, , -4C JD —a a 
( A B C D ) = B č : i w = - i r : T = 

Obdobně nazýváme čtveřici přímek téhož svazku 
harmonickou, jestliže promítá harmonickou čtveřici bodů 
na přímce. Jinak také nazýváme takové přímky „har-
monicky sdružené". Čtveřici harmonicky sdružených 
přímek ukazuje obr. D 10. 

Obr. D 10 

Věta V. Jsou-li polopřimky a, b ramena daného úhlu, 
polopřímka c jeho osou a polopřímka d osou úhlu k němu 
vedlejšího, potom přímky a, b, c, d tvoři harmonickou 
čtveřici. 
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Důkaz. Na obr. D l i jsou v trojúhelníku ABC úhly 
AGB a ACM úhly vedlejší. Současně je AO = MG 
a CE = MA. Bod E leží na straně AB tak, že GE je 
osou ACB, bod D tak, že CD je osou ACM. Je-li dále 

CN = CM, je DG = AN. Z těchto předpokladů pak 
plyne: 

BE_ _ BC_ _ BC_ BD^ BC _ 
~EA ~ ~CM ~ AC A AD ** NC ~ 

BC BC 
" C M AC' 

HW RT) 
Zřejmě je tedy ~ = — a o d t u d (BAED)=—\. 
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Sdružené póly. V kružnici k = (O; r) na obf. D 12 je 
AB průměr a bod Q na prodloužení průměru AB za 
bod B. 

Tečny vedené z bodu Q ke kružnici k se této kružnice 
dotýkají v bodech T a T'. Označme P průsečík přímek 
AB a ŤT'. Takto sestrojenou dvojici bodů P a Q nazý-
váme sdruženými póly, přímku TT' polárou bodu Q 
a přímku p AB jdoucí bodem Q polárou bodu P 
vzhledem ke kružnici k. 

Obr. D 1 2 

Yčta YI. Mějme kružnici k = (0; r), její průměr AB 
a na přímce AB dvojici sdružených pólů P a Q vzhledem 
ke kružnici k. 

Potom je (A B P Q) = —1, tj. sdružené póly P a Q 
děli průměr AB harmonicky. 

Důkaz. Na obr. D 12 je Š.QTB úsekový úhel příslušný 
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k oblouku TB, takže je ^QTB = ^TT'B = <$BTT', 
čili polopřímka TB je osou -šQTT'. Protože podle 
Thaletovy věty je BT _L TA, je TA osou úhlu vedlejšího 
k QTT', takže podle věty V tvoří polopřímky TA, 
TP, TB a TQ harmonickou čtveřici. Odtud pak plyne 
přímo (A B P Q) = —1. 

Věta VII. Je-li bod Q bodem vnější oblasti kružnice k = 
= (O; r) a přímka p jeho polárou vzhledem ke kružnici k, 
potom tato polára je množinou bodů, které spolu s bodem Q 
dělí harmonicky každou přímku jdoucí bodem Q a protí-
nající kružnici k ve dvou bodech. 

Důkaz. Na obr. D 13 je AB průměr kružnice & a P, Q 
sdružené póly ležící na přímce AB. Bodem Q je vedena 
přímka, která protíná kružnici k v bodech A', B' a poláru 
bodu Q v bodě P'. Podle věty VI je (A B P Q) = —1, 

A ' ,T 

A 
/ 

/ 

q Obr. D 13 
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takže čtveřice polopřímek A'A, A'B, A'P a A'Q tvoří 
harmonickou čtveřici. Současně je BA' J_ A'A, a proto 
A'B je osou ^nB'A'Alt kde At je průsečík polopřímky 
A'P s kružnicí k. To však znamená, že oblouky B'B 
a BAX jsou shodné a přímka QP je osou úhlu B'PAX. 
Protože je QP ± PP', je PP' osou -$B'PA' vedlejšího 
k Proto také polopřímky PQ, PB', PP' a PA' 
tvoří harmonickou čtveřici a je {A B P Q) = (A' B' P' Q) 

Z věty VII vyplývá konstrukce poláry, při níž není 
nutno rýsovat tečny z pólu Q ke kružnici íc. Postup je 
zřejmý z obr. D 14. 

Daným pólem Q vedeme sečny kružnice k, které tuto 
kružnici protnou například v bodech A, A2, B a B2. Prů-

—1 

/ 
q Obr . D 13 
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sečík přímek AB a A2B2 buď C0, přímek AB2 a BA2 buď 
C'0. Přímka C0Oó je již hledanou polárou. Stačí ovšem 
najít jenom jeden z bodů C0 nebo G'0, protože, jak víme, 
je C0C'Q X PQ. 

Správnost této konstrukce snadno dokážeme. Je-li 
totiž podle věty VII {A A2 Ax Q) = (B B2BX Q) = —1, 
kde Ax a Bx jsou průsečíky přímek AQ a BQ s polárou, 
jsou čtveřice bodů (A Ax A2 Q) a (B Bx B2 Q) projektivní 
se společným bodem Q, tedy perspektivní, tj. přímky 
AB, AXBU A2B2 a QG0 procházejí jedním bodem, tedy 
bodem C0. Právě tak přímky AB2, A1B1, BA2 a QC'0 bo-
dem C'0. 

Závěrem je třeba připomenout, že věta VII platí 
i tehdy, když zaměníme sdružené póly a poláry. Na obr. 
D 15 jsou P &Q sdružené póly, p, q příslušné poláry. Dále 
víme, že (A B' P' Q) = —1. Z předcházejícího důkazu 

\ \ 

B) 

P 

<P'/ B' 

"A 
q 

q Obr. D 13 
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pak vyplývá, že přímky p, BB' a q jsou navzájem rovno-
běžné, takže je 

(ABPC0) = (A B'P' Q), 
čili: Každá přímka vedená bodem ležícím na poláře q 
a procházející sdruženým pólem P je průsečíky s kruž-
nicí k, pólem P a bodem na poláře C0 dělena harmonicky. 
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/ 

V Ý S L E D K Y C V I Č E N Í 

Kapitola 1 A 

1. Konstrukce podle definice 1. 
2. Konstrukce podle definice 2. 
3. Sestrojte nejdříve kružnici opsanou. 
4. Pól Q leží na přímce RU a současně na tečně vedené ke 

kružnici opsané ¿\RUT v jeho vrcholu T. 
5. Je-li p || AB přímka obsahující střední příčku A ABC, po-

tom 
a) P = (CC, H P)< k d y ž CC, PŮh' menší oblouk AB, 
b) Q = (CC, H P). když CC, půlí větší oblouk AB. 

6. Je celkem šest možností, a to: 
p podle P : ABCA&, ABAJ3B» ABA^Bfi, 
q podle Q : ABCB2At, ABB,CA„ ABBtA2C. 

7. Důkaz sporem: Nechť například P £ AB, ale P BALB1. 
Potom je 4 , s B A = i , takže je PEAB, což je 
v rozporu s předpokladem a předpoklad je nesprávný. 

8. Především je E = FtAF = £ , a dále <f.OOtE = -£GFE. 
9. Především je A s B j A B s i , , dále -£AC2B = ^ACB. 

10. Jsou-li dva podobné trojúhelníky vepsány do společné 
kružnice opsané, jsou shodné. 

11. Rozdíl je v tom, že v úloze 10 jsou udána pořadí vrcholů. 
Zde může být A^l-BC ~ A ^ i ^ B , nebo A-4.BC ~ 
~ BlC1A1 a podobně, avšak i tyto trojúhelníky jsou 
shodné. Přesto je výrok pravdivý, protože je vynechána 
podmínka o velikosti poměru podobnosti. 

12. Protože je i A-K.LAřrovnoramenný se základnou KL, musí 
být M = M% a bod Q je nevlastní bod roviny. 

13. Společným bodem přímek AAU BBX a CC i je pól P sestro-
jený podle věty 4. 

14. Obdoba úlohy 13, řeší ée podle věty 5. 
16. Postup podle vět 4 a 6, a.' = fi' = y' = 60°. 
16. Postup podle věty 6. 3 řešení. 
17. -Š.APC = -%APB = 100°. Platí AABC gg A ^ C . B , . 

254 



18. Sestrojte oblouky o1 = BPC s obvodovým úhlem 100° 
a oblouk Oj APG s obvodovým úhlem 155°. Hledanou 
množinou bodů je oblouk mezi pólem P = (o, Q o,) a bo-
dem B. Body B a P však do této množiny nepatří. 

19. Podobně jako v úloze 18. Zde pro A,Bt S 6,5 je y' > y. 
Je-li y' = y, leží pól Q na přímce AB. Hledanou množinou 
bodů je část oblouku AQC ležící v polorovině ABC. Pól Q 
do této množiny patří, bod C nikoliv. 

20. Řešení podle věty 4, avšak pozor, + <£Jř, = 220°, 
což je více než 180°, a proto pól P leží vně AIJHF-, 
•¿HFUH = 35°. 

21. Zde opět + > 180°. Pól P leží na oblouku KŽ 
s obvodovým úhlem KPZ = 120° a na kružnici opsané 
kolem středu O poloměrem velikosti Dvě řešení, sou-
měrná podle osy úsečky KZ. 

22. Čtyři řešení: 
a) A = Bj A B = Air Ci středem menšího oblouku AB, 
jedno řešení, 
b) A = B , A B = A2, G% středem většího oblouku AB, 

jedno řešení, 
nebo BtCt = A2B2, AaCt = A2B1, dvě řešení. 

23. Pro pól Q je úloha totožná s úlohou 22, protože jé-Ii A 2S2 = 
= AB, je také y = y', takže y — y' = 0 a pól Q leží na 
přímce AB. Pro pól P bude AxBi = AB, když bude 
opět z á k l a d n o u , n e b o = AB A = AB V ̂ 4,(7, = 
= AB. Celkem tedy šest řešení. 

24. Nejdříve doplňte postupný poměr 3 : 4 : + 16 = 3 : 
: 4 : 5, takže velikosti stran A KLM jsou 4,2; 5,6 a 7. 
Je-li úhel při vrcholu K pravý, jsou dvě řešení, pro další 
dva vrcholy opět po dvou řešeních, celkem šest řešení. 

26. « = y'\ úhel /í sestrojte jako obvodový k tětivě AO = 5 cm 
a dále pak podle věty 5. 

26. Je-li KJJX || KL a současně L^M^ || LM, leží pól P na 
osách stran KL a LM. Jde tedy o střed kružnice opsané. 

27. Určete nejdříve velikost strany E1Gl pomocí obvodového 
úhlu •$.E1FlG1 = -$EFG, takže j^G, = EG. Potom umís-
těte E^Qx _£ EF do kružnice opsané. Jsou možná právě 
dvě umístění a každé dává dvě řešení. 

28. Strana BtCt je průměrem opsané kružnice, S sC a || AB. 
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29. Zjistěte velikosti úhlů, potom podle vět 4 a 5. 
80. Postup podle věty 4. 
31. Probíhá-li pól P oblouk kružnice nad tětivou AB tak, že 

•&APB = y + y', potom jsou velikosti vnitřních úhlů 
v trojúhelníku APB1 po řadě y; 180° — (y + y'); y', takže 
bod Gx probíhá oblouk kružnice opsané mezi body A a B 
tak, že •^B1C1A1 = -^ByAAy = -^B^AP = y'. 
Obdobně i důkaz věty obrácené k větě 5. 

82. a) Pól P uvnitř A ABC. 
b) Pól P leží na straně BC. 
c) Pól P leží v polorovině opačné k BCA. 

83. QbBCA O ACB n ~ABC*. 
QeBCA* H ACB* H ABC. 

84. Přímku p ± KL je možno umístit dvěma způsoby, odtud 
dvě řešení. V obou případech jde o relaci p nebo q podle 
pólu dané přímky p vzhledem ke kružnici A KLM opsané. 

85. Úlohu lze řešit užitím podobnosti. Jednodušší se však 
- zdá toto řešení: Označme průměr zvolené kružnice AB. 

Na polokružnici nad průměrem AB určete body D, E, F 
takové, že AD : DE = 3 : 5 a EF : FB = 1 : 1. Přímky 
AF a BD se protnou v bodě P a přímka EP protne zvole-
nou kružnici v bodě O a to je třetí vrchol hledaného troj-
úhelníku. 

86. BCl : ACX = 7:3. 

Kapitola 1 B 

1. a) Přímka h = OQ je osou souměrnosti úseček A,Bt 

a AlBli B = (k 0 P = D h). 
b) ss C, je samodružný bod, proto O = (k Q(5). 

2. h _L OQ je osa souměrnosti. MxMt J_ h\ M = (QMt fl 
Dvě řešení, protože KMX lze nanést na k dvěma způsoby. 

3. Postup podle návodu. 
4. Podle věty 11 je AyB^ souměrně sdružena s Atňt podle osy 

OQ a současně je A2Bt = BA. Proto A^BX i AtBi prochá-
zejí bodem Q. 

5. Obdoba úlohy 4. 
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6. Užijte souměrnosti A-Ai-BiC1, a A^s-B«Ct podle h. 
7. Osa souměrnosti úsečky KlKt obsahuje póly P, Q. čtyři 

řešení. 
8. Kolem středu O opište kružnici k poloměrem O A. At = 

<—> 
= (AQ n Ai souměrně sdruženo s A, podle OQ a potom 
P = (AAt f) OQ). Nutnou podmínkou je OQ ^ O A, proto-
že kdyby body O, A, Q ležely v přímce, byla by úloha 
neurčitá s nekonečným počtem řešení. 

9. Opište kružnici k kolem středu O poloměrem OR. Potom 
Ji, = (RP fl k), Rt souměrně sdružen podle osy OP s i ř l 

a Q = (AA, H OP). Nutná podmínka: OP # OR. 
10. Bod souměrně sdružený s bodem A podle osy PQ označte 

A'. Potom přímky A'Q a AP se protnou v bodě Ax a kruž-
nice opsaná ¿\AA'A1 je kružnicí opsanou A ABC. Přímky 
A'Q a AP se musí protnout v polorovině PQA' a odtud 
plyne nutná podmínka: 
2. •¡(iPQA + -Š.PAQ < 180°. Potom má úloha právě jed-
no řešení. 

11. Obdoba úlohy 10. Pokládejte body L, M za sdružené póly! 
72. Osa úsečky ]<T k" Potom P = (EE^O hh 

Q = (EEi O h). Nutnou podmínkou je, aby AExEtE ne-
byl pravoúhlý s pravým úhlem ve vrcholu Ex nebo Ex. 

13. Přepona A EFG obsahuje střed kružnice opsané. Je-li pře-
ponou EF, jsou dvě řešení, je-li jí EG, opět dvě řešení, 
je-li jí FG, jedno řešení. 
Konatrukce. Trojúhelníku EFXG, opište kružnici. Přímka 
GG% obsahuje pól Q, který leží na oblouku podle věty 5. 

14. Hledanou množinou je kružnice opsaná nad průměrem OP, 
kde P je pól sdružený k pólu Q. 

15. Početně podle mocnosti bodu P ke kružnici k je velikost 
příslušné tětivy 8. Konatrukce. Narýsujte tětivu velikosti 8. 
Kolem středu O opište kružnici, která se dotýká této těti-
vy, a její průsečík s tětivou AAl je hledaný bod P. Dvě 
řešení. 

16. Obdoba úlohy 15, opět dvě řešení. 
17. Početně: OP .OQ = 32*. Konstrukce užitím Eukleidovy 

věty o odvěsně. 
18. Narýsujte bod Q podle zadání á vedte z něho tečny k dané 

kružnici. Spojnice dotykových bodů určují sdružený pól P. 
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19. Polopřímka QP a osa úsečky KL určují střed kružnice 
opsané A KLM. 

20. Sestrojte vrchol A, podle osy PQ, potom A = (A^P (~) 
AiQ) a AAAiAt opište kružnici. V ní lze A ABC umístit 

jediným způsobem, označení zbývajících vrcholů B a C 
pak lze provést dvěma způsoby. 

21. Je-li K = Kt, je QK tečnou kružnice opsané A KLM 
a KP PQ. 

22. Hledané dvojice mohou tvořit trojúhelníky rovnostranné, 
rovnoramenné a pravoúhlé. To jsou tři možnosti. Označení 
vTcholů je možno provést šesti způsoby a vnitřní úhly 
v dvojicích trojúhelníků lze označit rovněž Šesti způsoby. 
Celkem tedy 3 x 6 x 6 = 108 řešení pro každou ze dvou 
možných poloh osy souměrnosti. 
J inak konstrukce jsou jednoduché podle definic 1 a 2. 

28. Užijte věty 4 a 5! 
24. Postup podle věty 4 a 5. 
25. Do kružnice k vepište AA1B1C1 tak, aby bylo AA || 

|| BxOu BB || CC || -4,2?,. 
26. Obdoba úlohy 25, pól leží vně kružnice k. 
27. « = 87°40'37", /T = 78°12'57\ y' = 63°58'51', 

a = 54°31'11', 0 = 22°14'07". 
28. Vzhledem k velikosti úhlu P' je a.' < 71°28', takže je 

Y > 62°08' a odtud p < 78°09', což vyhovuje. 
29. Uvažte věty 4 a 5 i obr. 17. Jde o případy I nebo IV. 
SO. Obdoba úlohy 29. 

Kapitola 2 A 

1. Kolmice vedené středem opsané kružnice na strany zvo-
leného trojúhelníku protnou opsanou kružnici v hledaných 
bodech. 

2. Osy Btran a osy vnitřních úhlů A EFG se protínají ve 
vrcholech A^i^iOi-

8. Velikosti vnitřních úhlů A ABC jsou 50°, 60°, 70°, 
v A A ^ C i 65°, 60°, 55°, t . j. 13 : 12 : 11. 
Obecně: Je-li <x : P : y = a : b : c, potom je tx' : P' : y' = 
= (6 + c) : (c + o) : (a + b). 
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4. Zapište do postupného poměru velikosti vnitřních uhlů 
druhé složky podle věty 17 a rozšiřte dvěma. 

6. <x = 64°24', p = 32°48', y = 82°48'. 
6. 90 + - Í - , 90 + 90 
7. Střed kružnice vepsané leží na oblouku kružnice opsané 

kolem středu 61 oblouku ÉF a příslušný úsekový úhel je 
110°. 

8. Poloměr r a úhel <x určují velikost strany BC. Dále pak 
jako v úloze 7. 2 řešení shodná. 

9. Užijte věty 15 a sestrojte nejdříve A ABC. 
10. Vrchol MÍ je středem oblouku ÍČL, KLT = LXM. 
11. BXC1 je osou úsečky AS, kde S je střed kružnice A ABC 

uvnitř vepsané, kružnice opsaná AAB1CL je současné 
kružnicí opsanou A ABC. 

12. Trojúhelník KLM je identický a AEíFxG1 z relace p 
podle S. 

13. Užijte věty 25. 
14. Užijte věty 24. 
15. Úhly AATBTCX mají velikosti 20°, 30°, 130°, úhly v A ABC 

velikosti 40°, 60°, 80° s poměrem 2 : 3 : 4 . 
16. Například pro <x = fi A + y je : 

podle 5«: 90° + - J , podle SB: - J , 90° + - J ; 

podle - í , 90° + ^ • 

Mé-li tedy být -^r = -jr, připadá v úvahu právě pól Se. 
17. Postačující podmínkou je AA1 > ATB, neboť bod <S vždy 

odděluje body A a AX. Opište nejdříve kružnici AAAXB. 
Potom bod CX půlí menší oblouk AB a AXS = S^AY. 

18. Je to přímka ÉElt kde střed oblouku FG je Ex a kružnice 
opsaná kolem bodu EX poloměrem EXF. 

19. Průsečíky jsou vrcholy ¿\H1J1K1 z dvojice [ AH1J1K1, 
AHJK\ep podle S. 

20. Jde o důsledek věty 25. Opište kružnici AAMC. Potom 
E je průsečík této kružnice s přímkou BD, M ^ EX 
a D = SE. 

21. Jde o Feuerbachovu kružnici, protože na ní leží paty výšek 
AEFG. 
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22. Obdoba úlohy 21. 
28. -$.AAXB = -ŽACB = 40°, protože je to vnější úhel 

v rovnoramenném trojúhelníku BAxSa. Potom y' = 70°, 
B = 60°, 0' = 60°, <*' = 50°. 
Množinou všech středů Sa je oblouk kružnice nad tětivou 
AB s obvodovým úhlem velikosti 20°. 

24. S,X.ASB = 160° a odtud y = 140°; případy b) a c) nemají 
řešení. 

25. Daný trojúhelník: 24°, 108°, 48°; A ABC: 48°, 36°, 96°; 
A i A C , : 66°, 72°, 42°. 

26. Podmínky: <$AOBx < 90° A -ZAOC, > 90°, přičemž 
všechny tři body leží na téže polokružnici. Sestrojte nej-
dříve bod C1 (Bx půlí menší oblouk AC), potom bod B (C, 
půlí větší oblouk AB). 

27. (7,07 JL SJSb, CtSa = CtSb, Cfi = C,0, B.A, || S,Sb A 
A BXAX = i - SaSb. 

28. Sestrojte A -4,-8,(7, souměrný podle středu O 8 A ABC 
a potom A ABC G p podle průsečíku výšek A-A,-B,(7,. 

29. Na přímce BxO leží bod B, na přímce CO bod C„ dále je 
AA || B1C1 atd. 

80. Sestrojte nejdříve střed Sa [C2S„ X Bj-4,; BtSa X CtAx], 
potom střed S atd. 

81. Jde o kružnicový oblouk ĚC s obvodovým úhlem velikosti 
3út 

90°. Střed Sa do této množiny nepatří, protože 
A 

ZCStB = 90° — s výjimkou: trojúhelník pravoúhlý ¿i 
rovnoramenný s pravým úhlem při vrcholu A. 

Kapitola 2 B 

1. V = P podle definice 1, V = Q podle definice 2. 
2. Rýsujte dvojici [ A K x L x M í t AKLM]Gp podle S\ 
8. Jako v úloze 2. 
4. Obdoba úloh 2 a 3 s tím rozdílem, že pól V leží ve vnější 

oblasti kružnice opsané AABC. Tři řešení. 
5. Užijte pólu Sz. Jedno řešení. 
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6. Užijte vět 31 a 32! 
7. První složka: 40°, 60°, 80°; druhá složka 100°, 60°, 20°, 

poměr velikostí 6 : 3 : 1 . 
8. a) Čísla u, v, t splňují trojúhelníkovou nerovnost, 

b) jedno z čísel je větší než součet zbývajících dvou, 
c) jedno z čísel se rovná právě součtu zbývajících dvou. 

9. Je-li « : j 3 : y = i ( : » : í A 2 í = « + t ) + í , potom 
a) u ostroúhlého trojúhelníku je 

«' = 4 (• — «)! P = T (« - »)! V = ~ (» - 0. 
o 0 O 

takže a.' : p' : y' = (s — u) : (« — «) : (a — ť) , 
b) u tupoúhlého trojúhelníku: 

. N JIV , JRT 

takže tx' : P' ty' = (u — e) : v : í. 
O tom, zda je uvažovaný trojúhelník ostroúhlý či tupo-
úhlý, je vždy nutno předem rozhodnout podle výsledku 
úlohy 8. 

10. Tento trojúhelník je tupoúhlý, a proto je hledaný poměr 
4 : 6 : 5 , čemuž odpovídají velikosti 48°, 72°, 60°. 

11. TÍloha není jednoznačná. Nevíme, který vnitřní úhel první 
složky je tupý. Je-li například tupý ten, který je na prvním 
místě v postupném poměru u :v : t, potom poměr velikostí 
úhlů ve druhé složce je podle výsledku úlohy 9 (u — «) : 
: v : t = 7 : 8 : 25 a odtud potom jsou hledané velikosti 
úhlů 106°46', 18°, 56°15'. 

12. Podle věty 35 je hledaný společný bod kružnic průsečík 
výšek A YXZ. 

18. Hledaný bod M je průsečík výšek daného A EFO. 
14. Sestrojte bod souměrně sdružený s V podle AM. Kruž-

nice opsaná hledanému trojúhelníku ABC prochází body 

16. Polopřímka BXV je osou úhlu p'. Strana AC leží na ose 
úsečky B1 V. Protože je p' = 180° — 2p, můžeme sestrojit 
velikost úhlu p a také strany AC. Sestrojte AACBlt ve 
kterém známe velikost strany AO, poloměru kružnice 
opsané a výšky, jejíž velikost je polovina velikosti úsečky 
BtV. Dvě řešení. 
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16. Opište kružnici poloměrem O V kolem středu O. Potom se-
strojte knižnici souměrně sdruženou podle přímky AB 
s danou kružnicí. Průsečíky těchto dvou kružnic jsou hle-
dané průsečíky výšek. 

17. Obdoba úlohy 16, A K L M je tupoúhlý. 
18. Sestrojte kružnice o poloměru r, které procházejí body 

A a V. Ty určují na dané kružnici zbývající dva vrcholy 
A ABC. 

19. Obdoba úlohy 18. 
20. Danou úsečku c umístěte na kružnici k v libovolné poloze 

A'B'. Sestrojte kružnici souměrně sdruženou s kružnicí k 
podle přímky A'B'. Kolem středu O opište kružnici polo-
měrem OV. Tyto dvě kružnice se protínají v bodech V 
a V , které otočte kolem středu O do polohy V a o stejný 
úhel otočte i úsečku A'B'. 

21. Obdoba úlohy 20. 
22. Kolmice sestrojená bodem V na přímku h určí na dané 

kružnici body K a Osy úseček VK a VKl obsahují 
hledanou stranu LM. Dvě řešení. 

28. KML = 60°, <£KLM = 40°. 
24. -^EÍFJOÍ = 110°. Sestrojte nejdříve druhou složku relace 

a potom teprve první. 
25. Trojúhelníku ABC opište kružnici a sestrojte A1B1C1 z re-

lace p podle S. Potom KL || B1Cl prochází bodem A, 
LM || A1Cl prochází bodem B a KM || A^Br prochází bo-
dem C. 

26. Strana BC je kolmá na přímku AAl. Bod Al musíme zvo-
lit na větším oblouku AB. 

27. Střed oblouku AXBX je vrchol C; potom BtB X AC atd. 
28. -ZAOC = 2.48° = 96°; bod A je střed oblouku B^C^ 

AB X CCy. 2 řešení. 
29. CjC X h; velikost CB je známa, neboť <BOC = 120°. 
80. Jde o kružnicový oblouk nad úsečkou AB při obvodovém 

úhlu <$.AQB = |3y — 180°|. 

Kapitola 2 C 
1. Postup podle věty 37 a 13. 
2. Sestrojte nejdříve dvojici A KLM p A KJj^M^ podle £ 

a potom aKILÍMÍ p A KLM podle O. 4 řešení. 
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8. V A ABC-. 24°, 36°, 120°, v A ABC: 48°. 72°, 00°; 4 : 6 : 6 . 
4. Obecně je například « = 90° ^ • 

y = 61°54'; a = 71°33\ p = 49°24', y = 59°03\ 
6. Je-li « : P : y = u -.•v : t A u + v + í = 2s, potom a : p : 

:y = (a — u) : (s — v) : (s — i). 
6. Viz úlohu 4. 
7. Postup konstrukce: AO = A 4 , A C^O = &,C; . ^ B , || 

|| 0(7 A e= £ 0 atd. Žádná dvojice na průmSrul 
8. Obdobně jako 7. 
9. Obdobně jako 7. 

10. Užijte poznámky 1 za větou 38: 
0 , 0 AB; A,0 = AO; B ,0 = BO; atd. 

11. Relace p Op podle T. 
12. Relace p Op podle T. 
13. ta = 5,14; tb = 4,44; tc = 3,39; 

a = 41°24'35'; P = 55°46'16"; y = 82°49'09'; BtCx = 
= 5,11; AC = 5,51; = 5,05; r = 6,05; 
a' = 57°39'3O";0' = 66°44'40 *;y' = 56°35'50'; 
a = 80°55'55';/í = 58°29'04 ";y = 40°35'01'; 
o = 5,97; 5 i 5,16; č = 3,93; 
í0 = 3,48; ~tb = 4,35; íc = 5,17. 

14. Užijte věty 39. Nejdříve sestrojte dvojici trojúhelníků po-
dobnou dvojici A ABC p AA1BlCl podle T (první složka 
této relace má strany velikosti daných úseček a, b, c). Tuto 
dvojici pak vložte do kružnice k pomocí odpovídajíoího 
poměru podobnosti. 

15. Sestrojte z daných těžnic trojúhelník. Je podobný 
A ABC ze složené relace p o p podle T. . 

16. Narýsujte dané tětivy do dané kružnice v libovolných 
polohách. Určete střed strany AB a otočte tětivu CO, 
kolem středu O tak, aby procházela středem strany AB. 
Tím'je úloha vyřešena. Není-li tětiva CO, rovna průměru 
dané kružnice, existují dvě možné polohy přímky COx 
a v každé z nich dvě různé polohy vrcholu O nebo O,. 
Úloha má proto celkem čtyři řešení, je-li CC, = 2r, dvě 
řešení. 
Kdyby bylo CC, < AB, padl by střed strany AB do 
vnitřní oblasti kružnice utvořené otáčením středu tětivy 
CO, a nebylo by možno z něho vést tečnu k této kružnici. 
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17. Jako věta 16. AAl > BG. 
18. Obdobná úloha je řešena v příkladu 7 v textu. 
1». Uvažte například dvojici t\ATC' a A B T C . Otočíme-li 

ABTC' kolem bodu C' o 180°, splynou body A a B, bod T 
se otočí do polohy T' tak, že T%" = ClŤ. Vzniklý trojúhel-
ník ATT' má strany těchto velikostí: 

2 2 2 
AT = — ta; TT' = — tc; TB' - -5- lb. Potom podle věty 

O O O 
42 je A ATT' ~ A CBA, což platí o všech třech trojúhel-
nících utvořených podle návodu v úloze. 

20. "Úplná obdoba úlohy 19. 
21. Postup podle příkladu 4 v textu: = 24°, /?, = 21°. 
22. Podle sinové věty je sin a : sin P : sin y = 5 : 6 : č = ta : 

: tb : te. 
28. Obdobně jako v úloze 22. 
24. sin fi = sin [180° — (« + <*')] = sin (a + «') atd. 

Kapitola 3 A 

1. Užijte definice 3 a následujících vět. 
2. Jako úloha 1. 
3. Jako úloha 1. 
4. Jako úloha 1. 
5. Určete vždy nejdříve velikosti třetího úhlu a potom po-

užijte tabulkv 3 za větou 44. 
a) 73°, 79°, 28°; pól P uvnitř, 
b) 33°, 70°, 77°; pól Pe AGB*, 
c) 56°, 31°, 93°; pól Q uvnitř <£BCA, 
d) 26°, 2°, 152°; pól Q uvnitř < B G A . 

6. Každý ze tří hledaných trojúhelníků lze umístit, popřípadě 
označit šesti různými způsoby, odtud celkem 18 řešení. 
Umístíme-li například MNZ0 tak, že MN : Z0M : NZt = 
= 3 : 4 : 6 a obdobně pak podle věty 45 i zbývající dva 
trojúhelníky, potom přímky MM0, NNt a ZZ„ se protnou 
v pólu P . 

7. Obdoba úlohy 6. 
8. Postupujte podle důkazu věty 4. 
9. Doplňte oba chybějící trojúhelníky z trojice příslušné 

k dané relaci a opište všem třem trojúhelníkům kružnice. 

264 



Ty se protnou ve vrcholech A ABC. Potom například <7, 
je průsečík přímek AAC a BBe. 

10. Protože druhá složka z relace q podle Q je rovnoramenný 
trojúhelník s úhlem 120° při hlavním vrcholu, jsou všechny 
tři trojúhelníky z příslušné trojice rovněž rovnoramenné 
a lze je tudíž sestrojit. Kružnice jim opsané se zase protí-
nají ve vrcholech hledaného trojúhelníku. 

11. Osa úsečky AA se protíná s přímkou BB1 v bodě P, který 
je hledaným pólem. 

12. Umístěte body K a K na oblouku L1M1 a body L a L na 
oblouku K1Ml podle věty 13. Přímky KK1 a LLX určují 
pól P. Strany hledané trojice trojúhelníků procházejí po 
dvou pólem P a jsou rovnoběžné se stranami AK1L1M1. 

13. Obdoba úlohy 12, avšak rýsujeme pouze trojici 
AUV0Z, AUVZ0. 

14. Uvědomte si, že je ňE0FG ~ t\EFaG ~ £EFGa. Tyto 
trojúhelníky sestrojte. Přímky EEa, FF0 a FF„ se protí-
nají v bodě P a na opsané kružnici určují vrcholy A-EiPiOi-
Strany hledané trojice jsou rovnoběžné se stranami 
A^i-FiG, a jejich vrcholy leží na přímkách EGU FGlt 

FEX, GEU GFX a EFX. 
15. Nahlédněte do tabulky za větou 44. Konstrukce obdobná 

jako v úloze 14. 
16. V kružnici opsané AA'eB'eP platí: 

•$BfA'eP = •ZB'eB1P~'= -JCB.B = -ZCAB = <*, 
<A'eB'cP = <A'eAxP = -$CAXA = -ZCBA = p. 
Dva úhly jsou shodné s úhly A ABC. 

17. až 19. Obdoba úlohy 16. 
20. Je-li například ¿\A0BC rovnostranný, potom podle ta-

bulky 3 platí: 
180° — (<* + «') = 60° a odtud tx = 120° — «', P = 120° — 
— P't y = 120° — y'-_ 
Dovedeme proto sestrojit A ABC a umístit jej v kružnici 
opsané AAXBXGX podle věty 4. 

21. Podle tabulky 3 je pro pól Q uvnitř úhlu CAB: 
« = <*' — 120° A 0 = 60° + P' A y = 60° + y'. 
Podmínkou tedy je > 120°. 
Pro Q uvnitř úhlu vrcholového k CAB dostáváme rovnice, 
které nelze splnit. 

22. Dokažte nejdříve platnost věty obrácené k větě 45, nejlépe 
sporem. Hledaný bod je pól P. 
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28. at = 56°12', ß = 85°29', y = 38°19', o = 4,8; c = 3,6. 
Při konstrukci sestrojte nejdříve oba dané trojúhelníky 
a spojte je do relace p podle Bt užitím věty 4. Potom 
body A, C, Br už leží na kružnici opsané A ABC a bod B 
leží na přímce B aB l . 

24. Sestr oj te_ troj úhelníky A ABCt ~ A ABtC ~ A A„BC ~ 
~ A ABC 

25. Uvědomte si, že například AtBe || AxBi; Ae je průsečík 
přímek ACB0 a AXC atd. 

28. Obdoba úlohy 25. 
27. a 28. Jde pouze o zvláštní polohu pólů. Jinak konstrukce 

podle definic. 

Kapitola 3 B 

1. Základní konstrukce. Využijte věty 19. 
2. Využijte věty 25. 
8. Využijte věty 52. 
4. Využijte věty 52. 
5. Danému A A B C 0 opište kružnici. Její střed je vrchol Cl 

trojúhelníku A1B1C1 z relace p podle S. Potom hledaný 
trojúhelník je z dvojice AABC„ p AACBCS podle Cx. 

6. Sestrojte nejdříve A ABC; <BCA = 2. -$BCS, <£CBA = 
= 2. <£CBS atd. 

7. Trojúhelník ABC je souměrně sdružený s A ACB0 podle 
přímky AC. 

8. Sestrojte A E F G . Střed kružnice vepsané AEFG 0 je 
vrchol příslušného A-Ei-FiG,. 

9. Těžiště daného trojúhelníku KLM0 je vrchol Ml přísluš-
ného AKlLlMl Z relace p podle T. Pól T pak leží na kruž-
nici opsané A K L M t a na přímce M„Ml. 

10. Vrcholy A ABC jsou paty výšek daného trojúhelníku. 
11. Danému trojúhelníku opište kružnici. Její střed je vrchol 

Al trojúhelníku AlBlCl z relace p podle S. Strana BC hle-
daného trojúhelníku je souměrně sdružena podle středu 
Al se stranou B„Ca daného trojúhelníku. 

12. Vrchol 5 , troj úhelníku A 1BlCl je středem kružnice vepsané 
danému trojúhelníku. 

18. Střed kružnice opsané danému trojúhelníku je vrohol 
ß , (ö , ) a strana EF je souměrně sdružena se stranou E„Fg 
podle středu G!1((?2). 
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14. Vrchol Cy je průsečíkem výšek daného trojúhelníku. 
15. Hledaný bod M je průsečíkem výšek daného trojúhelníku. 
16. Hledaný společný bod kružnic l í t l„ l, je střed kružnice 

vepsané zvolenému trojúhelníku. 
17. Obecně může každá z daných úloh mít 18 řešení, protože 

můžeme za pól zvolit kterýkoliv z vrcholů daného troj-
úhelníku, a potom další vrcholy lze označit šesti různými 
způsoby. Dále pak pokračujeme takto: 
a) Podle úlohy 11. 
b) Podle úlohy 12. 
c) Podle úlohy 13 postupovat nelze, protože příslušný 

trojúhelník je tupoúhlý. Úloha tedy nemá řešení. 
d) Podle úlohy 14. 

18. Příslušné středové úhly mají velikosti 100°, 120°, 140°. 
Dále podle definic. 

19. Příslušná dvojice je &A1BlCl p A ABC podle Vu kde V1 
je průsečík výšek první složky. Proto je také přímka CXS = 
= CiC kolmá na AlB1." Současně je A1Bl || CaCb, takže 
CXC je kolmá na CaCt,. Je tedy CaCb tečnou kružnice l0 
v bodě S. 

20. Celá konstrukce potvrzuje symetričnost složené relace 
A ABC p o p A ABC podle T. Je tedy možno zaměnit 

označení vrcholů trojúhelníků z uvažované dvojice. 
21. <x = 40°54'55'; /? = 65°55'61'; <*' = 76°51'19'; 

y' = 53°15'23"; 0 = 64°30'51'; y = 53°15'23". 
22. a = 107°24'22'; fi = 30°52'38"; y = 41°43'. 
28. Vrchol C1 je těžištěm AABC0, kružnice opsaná A A B C t 

obsahuje vrchol C na přímce C„CX. 
24. Vrchol Cx je středem kružnice vepsané A ABC0; dále jako 

v předešlé úloze. 
25. Vrchol C, je středem kružnice opsané ¿\ABCa. 
26. AABC je souměrně sdružený s AABC„ podle osy AB. 
27. Platí C0 = S. Odtud konstrukce. 
28. Obdobně jako v úloze 26. 

Kapito la 4 
1. a) 40°06', 

b) 6,32 cm, 
c) 102°30', 
d) 3,43 cm, 
e) 4,17 cm. 
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2. Užijte vzorců: P = -¡r-ab sin y; a = 2r sin a; ¿t 
v A4.BC: P = 2r* sin a sin at sin y, 
v A^.BjC,, nebo A ^ P i C , : P = 2r" sin at' sin 0' sin y', 
v APBaCa : P = 2r® sin sin 0' sin y' a cyklické záměny; 
v A ABC : P = 2r' sin (at + at') sin (0 + 0') sin (y + y'). 

8. = 10; -B,C, = 9,35; Č ,4 , = 10,7. 
4. &ABC : P = 24,4 cm2, A4.1P,C, : P = 46,9 cm», Px = 

(X 0 y - 2r' cos — cos cos • ů £ ů 
5. EXF% = 6,99; ExGt = 9,45; P = 31,0 
6. Rozměry A ABC není nutno počítat, r = 5,88. 
7. Užijte sinové věty. Přibližně 743 : 958 : 852. 
8. P' = 8P cos at cos /3 cos y = 144. 
9. E2Ft - 88,6 mm; E,G, = 74,3 mm : FtGt = 1 1 4 mm. 

10. a) j i =^82J30'; 0 = 60°; y = %37°30', 
b) at : 0 : y = 11 : 8 : 5. 

11. P = 39,1. 
12. A A l B 1 C l ~ AAeBcP; AXBX = 7,36 cm, B,C, = 8,71 cm, 

CXAX = 6,5 cm. 
18. ra = 13,7; rb = 4,28; re = 6,81. 
14. a) AC = 31,7 cm; AXCX = 15,7 cm; 

b) rb = 6,15 cm; 
c) AbCb = 11,6 cm. 

16.- Výpočet v pořadí: r„ = 3,76; AB = 2rc sin (y + y'); 
-ZBCA = 97°48'. 

16. <*' = 42° ± 30°07'; 0' = 26° ± 15°15';y = 112°. 
Polohy pólu Q podle tabulky 1, čtyři možnosti: 
ať > at; 0' > 0-, y' < y — úhel vrcholový k ACB, 
<%' > at; 0' < 0; y' < y —vnitřek A C A B ; 
»' < n; 0' < 0; y' > y — vnitřek A ACB; 
ať < at; 0' > 0; y' > y — úhel vrcholový k CAB. 

17. Užijte věty 63! 
18. Podle věty 63 je postupný poměr velikostí například: 

r : ra : rb : rc = 1 : 1 : 1 / 3 : 2 , takže je r = r0. 
19. Užijte věty 5 a kosinové věty: 

at' = 74°11'; 0' = 42°13'; y' = 63°36'. 
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20. y - y', odtud Q 6 SŽ, -Š.BQC = «' — « = /? — P' = 
= 20^_Potom BQ = 12,8 m| CQ_= 25,9 m; AQ = 34,9 m. 

21. Je-li P velikost obsahu A ABC ze složené relace p Op 
podle O, potom je 
T-.P^.Pt -.P^rt -.rl -.rl-. t*, 
P = 299; P, = 140; P, = 638; P , = 489. 
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