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PREDMLUVA

Hlavnimi ,,postavami‘ déje této knizky jsou rdzné
geometrické dtvary, nebo jak se jim zde &astdji Fika,
mnoziny bodi. Na zadatku to jsou jednoduché obrazce
v rdznych souvislostech. Pohybuji se, odhaluji nové
vlastnosti, protinaji se, sjednocuji, tvofi celé systémy
a ménf svou tvifnost, nékdy k nepozndni. Aviak je
zajimavé potkat staré znamé ve slozité situaci, obklo-
pené novymi obrazci, které se objev{ ve finale.

KnfZka obsahuje asi dvé sté dloh, mnohé jsou uvedeny
i s feSenim nebo komentifem., Jsou to dlohy rézného
charakteru; od tradiénich dloh, ve kterych se hleda nebo
pouZivé jistd mnoZina bodd, az po mensi dlohy bada-
telské, vedoucf k dulezitym matematickym pojmim
a teorifm (napfiklad dlohy o syru, o élunu nebo o auto-
busu). Kromé béinych geometrickych vét o pfimkach,
kruZnicich a trojihelnicich se v kniZce pouziva metoda
soufadnic, vektory a geometrické transformace a &asto
se tlohy formuluji pomoci pohybu. Nékteré logické
jemnosti v FeSenich tdloh jsou prenechdny k rozmysleni
dtenar. Znak (?) znamena ,,cvideni”, ,ovéfte”, ,odl-
vodnéte*, ,,je vam tvrzeni zfejmé ?*, atd., podle toho,
kde stojf. Znakem []J je oznaden zadatek a konec feSeni
a | ukazuje, %e feSeni nebo vysledek najdete na konci
knizky.

Ulohy na zadatku kazdé kapitoly jsou oby&ejné jed-
noduché a jsou vyloZeny v textu. Ostatn{ vlohy nenf
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tieba fesit vSechny jednu za druhou, podle vlastniho
uvafen{ si miZe étenaf vybrat ty lakavéjsi. Je uziteéné
ovéfit si vylozenou latku pokusem, nadrtnout si hruby
obrazek, nejlépe v nékolika obménach, s riznymi za-
danfmi. Takovy experimentalni pifstup pomiiie nejen
odhadnout vysledek a formulovat hypotézu, ale dasto
ukaze cestu i pfi vlastnim matematickém dukazu. Autofi
se pfi piipravé obrazku presvédéili, Ze za kazdou tilohou
je skryta tloha piipravna, spodivajici v sestrojenf né-
kolika bodit nebo kiivek, o kterych se jedna v tloze.
Pripravna uloha je pfistupnéjsi, nikoli méné zajimava.
Autofi jsou vdédni I. M. Gelfandovi za rady pii pii-
pravé knizky a I. M. Jaglomovi, V. G. Boltjanskému
a Z. M. Rabbotovi za prodtenf rukopisu a uZitetné p¥i-
pominky. Od prvnfho vydani v roce 1970 je tato knizka
stile pouZivana p¥i praci dédlkového seminaie. Pii pii-
pravé druhého vydani jsme vzali v dvahu zkuSenosti
a plipominky nasich pfatel a kolegli vedoucich seminaf.
Jim viem i redaktoru kniZky A. F. Lapkovi upffmné
dékujeme.
N. B. Vasiljev,
V. L. Gutenmacher



Uvod

UVODNI ULOHY

0.1 Zeb¥k stojici u stény na hladké podlaze klouze
doli. Po jaké kfivce se pfitom pohybuje koté sedicf
uprostied Zeb¥iku?

Predpokladejme, Ze je koté netetné a sedf klidné.
Za této podminky miuzZeme uvedenou otdzku formulovat
matematicky:

Je dén pravy thel. Urdete mnoZinu stfedii viech
usedek délky d, jejichZ krajnf body leif na ramenech
daného thlu (pfesnéji — jeden krajni bod leZi na jed-
nom rameni a druhy na druhém rameni).

Zkusme nejdifve uhodnout, jakd to bude mnoZina.
Pohybuji-li se krajnf body tseéky po ramenech thlu,
je asi zfejmé, Ze st¥ed tiselky opisuje jistou kiivku (coZ
napovida i prvni nazornd formulace ilohy). Nejdfive
uvazime, kde lez{ koncové body této k¥ivky. Odpovidaji
krajnim polohdm tsedky, tedy vertikalni a horizontalni
poloze. To znamend, Ze koncové body hledané kfivky
le{ na ramenech daného tihlu ve vzdalenosti d/2 od jeho
vrcholu.

Sestrojte n&kolik dal$ich bodu této kfivky. Budete-li
rysovat dostatedné pfesnd, zjistite, Ze jsou vsechny
stejné vzdéleny od vrcholu O daného ihlu.

Dospfvame tim k domnénce, Ze hledanou kfivkou je
oblouk kruZnice o poloméru d/2 a stfedu O, coz je viak
tfeba dokézat.



J DokaZeme nejd¥ive, Ze stied M kazdé Gseéky KL
pozadovanych vlastnosti ma od bodu O vzdalenost d/2.
To ovSem platf, protoze délka téznice OM pravodihlého
trojihelnfku KOL se rovna poloviné délky jeho ptepo-
ny KL. (O spravnosti tohoto tvrzen{ se lehce presvédéi-
me, doplnime-li trojuhelnik KOL na obdélnik KOLT
a uvaziime, Ze dhlopfitky KL a OT jsou stejné dlouhé
a navzdjem se pualf — obr. 1.)

M
A
0 B8 L
Obr. 1

Tim jsme dokazali, Ze stfed dsetky KL leii na oblouku

AB kruznice se stfedem v bodé O. Abychom mohli
tvrdit, Ze tento oblouk je hledanou mnozZinou bodd,
musime dokazat také obricené, Ze libovolny bod M
oblouku 4B patii do hledané mnoziny. Ale to je jedno-
duché. Libovolnym bodem M oblouku 4B muZeme totiz
vést polopiimku OM, na ni urdit bod T = O tak, aby
|MT| = |OM|, a potom sestrojit kolmice bodem T
na ramena tuhlu, éfmZ dostaneme krajni body K, L
usetky o stfedu M, jejiz délka je d. 3

Druhé polovina dukazu by se mohla zdat zbytedna,
nebot je zfejmé, e stied usedky KL vypliiuje ,,souvislou
kfivku‘* s koncovymi body 4, B, coZ znamen4, Ze bod M

probiha cely oblouk AB a ne jen jeho #st. Tato ivaha
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se zdé pfesvédliva, neni viak jednoduché formulovat ji
matematicky pFesné.

Podivéme se ted na pohyb Zebiiku z dlohy 0.1 z jiné
strany. Pfedpokladejme, %e tsetka KL (,%eb¥k") je
upevnéna a pifmky KO a LO (,sténa‘’ a ,,podlaha‘)
se pohybujf kolem bodu K a L tak, %e stale sviraji pravy
thel (obr. 2).

K

Obr. 2

Skutednost, Ze vzdalenost stfedu vdsetky KL a bodu O
se neméni, divé zndmou Thaletovu vétu: jsou-li v ro-
viné dany dva rizné body K a L, pak mnoZina bodd O,
pro které je | KOL|= 90°, je kruZnice nad primérem
KL. Tato véta i jejf zobecnén{, které uvedeme v bodé
E 2. kap., se &asto hodf p¥i Fesenf iloh.

Vratme se k tloze 0.1 a poloime obecnéjdi otdzku.

0.2 Po jaké kiivce se pohybuje koté sedfcf na Zebfiku
v bodé riazném od stiedu?

Na obrazku 3 je sestrojeno nékolik bodu této kiivky.
Hned vidime, Ze zakreslené body nele%f ani na pfimce,
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ani na kruznici, ale vypliiuji jinou kiivku. O jakou
kiivku se jedna, zjistime metodou soutadnic.

O Zavedeme soustavu soufadnic tak, Ze ramena tGhlu
budou osy Ox a Oy (obr. 4). Necht koté sedi v bodé
Mz, y] ve vzdalenosti @ +# 0 od krajntho bodu K a ve
vzdalenosti b £ 0 od krajnfho bodu L (a + b = d).

Obr. 3

Uréime rovnici, kterou musi spliiovat soufadnice z, y
bodu M.

Jestlize vusetka KL svira s osou Oz thel ¢, pak y =
= bsin ¢, * = a cos ¢, takZe pro libovolné ¢(0 < ¢ <
= w/2) plati

x? y?
(1) FD + # =1.
V kap. 6 ukaZeme, Ze mnozinou bodd v roving, jejichz
soufadnice vyhovuji rovnici (1), je elipsa. Koté se bude
pohybovat po oblouku elipsy. [
Vsimnéme si, Ze pro ¢ = b = d/2, tj. sedi-li koté upro-
stted Zebfiku, rovnice (1) pfejde v rovmici kruZnice
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z? 4+ y* = (d/2)%. Tim dochézime k dalsimu, analytic-
kému Feden{ alohy 0.1.

Vysledek tlohy 0.2 vysvétluje princip zafizeni kresli-
ctho elipsy. Tento piistroj, ktery je zndzornén na
obrazku 5, se nazyva elipsograf Leonarda da Vinciho.
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Obr. 5

0.3 Méjme pevnou kruZnici, po niZ se (s vnitfnim
dotykem) kotalf bez klouzani kruZnice o poloviénim
poloméru. Jakou k¥ivku opisuje pfitom bod K leZfef
na mensf kruznici?

Odpovéd na tuto otazku je kupodivu jednoducha:
bod K se pohybuje po piimce, pfesnéji po pruméru
pevné kruZnice. Toto tvrzeni se nazyva Kopernikovou
vétou.

Piesvédéte se pokusem o pravdivosti této véty.
(Pfitom je dilezité, aby vnitfni kruZnice neklouzala, tj.
aby odpovidajici oblouky na obou kruznicich byly stejné
veliké.) Nenf tézké Kopernfkovu vétu dokizat — stadi
si vzpomenout na vétu o obvodovém a st¥edovém thlu.
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0 Necht bod pohybujicif se kruZnice, ktery splynul
v podateéni poloze s bodem A pevné kruznice, se pie-
mistil do bodu K (obr. 6). Oznadme T bod, ve kterém se
nyni obé kruznice dotykaji. ProtoZe délky oblouki KT
a AT se sobd rovnaji a polomér pohybujfci se kruZnice

B

Obr. 6

je poloviéni, vidime, Ze stfedovy thel p¥isluiny oblouku
KT je roven dvojnasobku stfedového uhlu pislusného
oblouku AT. Oznadime-li O stted pevné kruZnice, mame
|<x AOT | = | < KOT | podle véty o obvodovém a stfedo-
vém thlu (viz str. 18). To znamen4d, Ze bod K le#{ na
poloméru AO0.

Tyto uvahy plati pouze do okamzZiku, ve kterém se
pohybujici se kruznice odkotali po &tvrtiné pevné kruz-
nice (tj. kdy bod dotyku splyne s bodem B, pro néjz je
| X BOA| = 90°, a bod K splyne s bodem QO). Dalsi pohyb
se déje analogicky — draha bodu K bude pfi ném
soumérné sdruZena podle p¥imky BO k draze ji% pro-
béhnuté. Az bod K dostihne bod 4’, kde A4’ je pramér
pevné kruZnice, bude se pohybliva kruZnice kotalet po
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dolni poloviné pevné kruZnice a bod K se vrati po pri-
méru 4A’do bodu 4.

Porovnejme vysledky tloh 0.1 a 0.3. Jejich zajima-
vost spodfva zfejmé v tom, Ze v obou p¥ipadech se jed-
né o pomérne slozity pohyb objektu (v prvni tloze o po-
hyb tdset¢ky, ve druhé kruznice), aviak trajektorie nékte-
rych bodi jsou neodekavané jednoduché. Ukazuje se, Ze
tyto dvé dlohy nesouvisf jen vnéjdfmi znaky, nybrz tim,
Ze pohyby v nich zkoumané jsou totoZné.

Skuteéné, necht se po vnitiku kruZnice poloméru d
kotal{ kruinice poloméru d/2 a nechf je KL primér
této kruZnice, pevné s nf spojeny. Podle Kopernikovy vé-
ty se body K, L pohybuji po priimérech A4’ a BB’
pevné kruznice. Tak?e pramér KL klouZe svymi konco-
vymi body po dvou na sebe kolmych pfimkéch, pohybu-
je se tedy tak jako tselka v tloze 0.1.

Jesté jedna zajimavd otdzka souvisi s pohybem
usetky KL: jakou mnoZinu bodu vypliuje tato usetka,
tj. co je sjednocenim vSech moZnych poloh uset¢ky KL
pii jejim pohybu? Ktivka, kterd ohraniduje tuto mno-
zinu, se nazyva asteroida. D4 se ukdzat, Ze ji maZeme
dostat takto: nechdme kruznici o priiméru d/2 kotilet
po vnittku kruZnice o priméru 2d a narysujeme trajek-
torii libovolného bodu pohybujici se kruZnice — tato
trajektoric je asteroida. O nf a ji podobnych ktivkich
pojedname v 7. kap. této knizky, kde se podrobnéji sezna-
mite se souvislostmi, kterych jsme se zde dotkli.
otdzkami a kiivkami, zdistaneme u tdloh o piimkach
a kruZnicich — jiné kfivky se v prvnich péti kapitolach
nebudou vyskytovat.
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Kapitola 1

MNOZINY BODVU

V této kapitole pojednime o zakladnich typech iloh
probiranych v nasi kni%ce. Budeme je ilustrovat na p¥i-
kladech a ukaZeme pojmy a postupy uzivané pii jejich
Fedeni. Kapitola je zakonéena fadou riznych geometric-
kych tloh.

Probereme nejprve termin, ktery se v knize vysky-
tuje nejéastéji a ktery stoji i v nadpise kapitoly.

MmnoZina bod% je velmi obecny pojem. MiZe to byt
libovolny utvar: jeden nebo nékolik bodi, p¥imka nebo
rovinna oblast.

V mnohych tlohdch nasi knizky se hledd mnoZina
bod@i vyhovujicich jisté podmince. Resenfm tloh jsou
zpravidla dtvary zndmé ze Skolské geometrie (p¥imky,
kruZnice nebo obrazce jimi ohraniéené aj.). Hlavnf
je odhadnout, o jaky utvar se jedni. V tloze 0,1
o kotéti jsme zjistili, Ze FeSenim je kruinice, a v tloze
0.3 usedka.

Pri feSenf iloh je tieba piesvédéit se o tom, Ze

a) viechny body spliiujici danou podminku patff do
zjisténého utvaru,

b) vSechny body uvaZovaného titvaru vyhovuji dané
podmince.

Nékdy jsou obé tato tvrzeni zfejmd, jindy jen nékteré
z nich; a jindy je viabec tézké se dopatrat feSeni.

Rozebereme nékolik charakteristickych tloh.
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1.1 Bod O leZi na tseéce AC. Urdete mnozinu bodtt M,
pro které plati | x MOC| = 2 | MAC| (obr. 7).

0 Resenfm je sjednocenf kru#nice o stiedu O a polo-
méru |0A4] (s vyloudenim bodu A) a poloptimky OC
(s vyloudenfm bodu O).

Piesvédéime se o tom. Necht bod M hledané mnoZiny
nelezi na piimce AOQ. Dokazeme, %e |MO| = |4A0|.

Aw

Obr. 7

Sestrojime trojuhelnik OAM. Podle véty o vnéj§im tdhlu
trojdhelnfku je velikost dhlu < MOC rovna soudtu
velikosti vnitfnich dhla pi#i vrcholech A a M, tj.

|X OAM | + | & AMO| = | MOC| = 2| MAO|.

Tak?e z podminky, kterou ma bod M spliiovat, dostava-
me hned | OAM| =|<x AMO|, tj. trojihelnik AMO je
rovnoramenny, tedy [OM| = [40|.

Ukazeme, zZe plati i obracené: kazdy bod M popsané
kruZnice spliiuje vyse uvedenou podminku. Skuteéné,
trojl'lhe].nik AMO je rovnoramenny, velikosti jeho dhla
pfi vrecholech 4 a M jsou stejné, a opét podle véty o vnéj-
8fm thlu trojihelniku dostdvime | 3/ OC =21 S MAC|.

Pokud bod M leif na polopiimce OC, M # 0, je
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X MOC| = 2|4 MAC| =0 a podminka je rovnsi
splnéna,

1 Zbyvajici body ptimky 40 uz nepatif do hledané mno-
#iny, nebof pro né je < MOC ptimy a <X MAC nulovy
nebo piimy. (Pf¥itemZ o bodu O se ned4 nic #eci.) O

1.2 Ke ka#dé dvojici kruznic o polomérech r,, ry(r, >
> r,), které se dotykaji pfimky ! a leZf v pevné zvolené

Obr. 8

poloroviné ohranidené pi¥imkou !, sestrojime praseéik M
jejich vnitinich tefen. Urdete mnozinu vsech téchto
prasetéika M (obr. 8).

J Resenfm je pfimka rovnobézna s piimkou .

Vsimnéme si, Ze bod M le#f na ose symetrie obou
kruZnic, tj. na ptimce 0,0,, kde jsme O,, O, oznadili
stfedy kruZnic. Stadi tedy hledat mnoZinu praseéfka
pHimky 0,0, a teény 7,7, (kde T,, T, znadf body do-
tyku).

Znézornéme si ulohu na obrdzku a vyzna¢me polo-
méry v bodech dotyku, tj. O,T, a O,T;. Vidime, Ze bod
M déli visedku 0,0, v poméru 7, : r, (nebof pravoihlé
trojihelniky MO,T, a MO,T, jsou si podobné). Je zfej-
mé, e mnozina stfedd O, i mnoZina stfedu O, jsou p¥m-
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ky rovnobé&iné s pfimkou I. MnoZina bodd M, které délf
usedky o krajnich bodech na téchto pfimkich v daném
poméru r, : 7, je rovnéz pfimka rovnobéZné s pfimkou .

Mnozina priseéika vnitifnich teden je tedy rovnobézka
s pHmkou ! (ve vzdalenosti 27,7, : (r, + 7,) od ni). O

Pii feSenf nasledujfci ulohy bude hledanf pracnéjsi.
Bude tfeba rozdélit rovinu na nékolik ¢asti a v kazdé
z nich provést vySetfovan{ zvlast.

1.3 Je din pravouhelnik ABCD. Najdéte vSechny
takové body v roviné pravoihelniku, pro které je sou-
det jejich vzdalenostf od pfimek 4B a CD roven soudtu
jejich vzdalenosti od p¥imek BC a AD.

0 Oznatme délky stran pravouhelnfku a, b. Nejdiive
vysetiime piipad, kdy pravoidhelnik nenf d&tvercem;
necht je a < b.

Body lezici uvnit¥ obdélniku, dokonce vsechny body
v pésu sevieném pi{mkami, které jsou prodlouZenim
delsich stran obdélniku, nespliiuji poZadavky ilohy,
protoZe jeden soudet je roven a a druhy je véts{ nebo
roven b.

Necht bod M leif vné obdélniku v pasu s hraniénimi
pfimkami, které jsou prodlouZenim kratSich stran ob-
délniku. Oznadme y jeho vzdalenost od té deldf strany
obdélnfku, ktera leZf k nému bliZ. Pak je vzdilenost
od druhé strany rovna y 4+ a. K tomu, aby bod spliio-
val podminku tlohy, je tfeba, aby platiloy + (y + a) =
= b, tj..y = (b — a)/2. Vidime tedy, %e z bodu lezicich
v tomto pasu vyhovujf podmince pravé ty body, které
lezi vné obdélnfku ve vzdalenosti (b — a)/2 od bliZsf
z obou delsfch stran.

Vyhovuji tudiZ dvé dsetky EF a E'F’ (obr. 9).
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Nakonec vezmeme bod M, ktery lezf v dhlu, jehoz
ramena jsou tvoiena polopfimkami opaénymi k polo-
piimkim CD a CB. Oznaéfme z vzdilenost bodu M
od piimky CB a y vzdélenost bodu M od p#mky CD.

£ F |
1] bza y/

o

.

[}

1

.
El Fl
Obr. 9 Obr. 10

Potom podminka tdlohy dava z + (x + b) =y + (v +
+ a), tj. y = z + (b — «)/2. Viimnéme si, Ze &isla x, y
je moino chapat jako soufadnice bodu M v soustavé
soufadnic 8 osami CD, CB. V této soustavé soufadnic
popisuje rovnice y =z + (b — a)/2 ptimku rovnobéz-
nou s osou uhlu DCB. Tim jsme ukazali, Ze z bodu uva-
Zovaného ihlu podminku dlohy spliiuji ty a jen ty body,
které lezf na pitimce y = x + (b — a)/2 (obr. 10).

Stejnou tvahu lze provést i pro uhly ve zbyvajicich
tfech vrcholech obdélniku. Tim budou vysetfeny véech-
ny body v roviné. MnoZina vSech bodt vyhovujicich
dané podmince je znazornéna na obrazku 11.

Zbyvé jesté vydetfit piipad, kdy dany pravodhelnik
je &tverec, tj. @ =b. Lehko se zjist{, Ze hledanou
mnoZinou je pak dany &étverec s celym svym vnitfkem
a prodlouZen{ jeho thlop¥iéek (obr. 12) (2). O
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Viimnéme si jesté, %e pravoihelntk mé dvé osy sy-
metrie, a protoZe dvojice symetrickych stran vzhledem
k témto osdm vystupujf v podmince tlohy téZ symetric-
ky, musi byt hledana mnoZina také podle téchto dvou os
symetrickd. Z toho plyne, Ze pii feSenf nenf t¥eba vy-
Setfovat body celé roviny, ale stadf prozkoumat jednu
ze &tyt &¢asti, na které je rovina rozdélena uvedenymi
osami symetrie. V piipadé &tverce jsou vsechny jeho
étyti osy symetrie také osami symetrie hledané mnoZiny.

S

SN

Obr. 11 Obr. 12

Systémy kfivek a pohyb. Vedle mnozin bodi budeme
vySetfovat i mnoZiny kftvek neboli, jak se Sastéji Fka,
soustavy kfivek.

Pracujeme-li v geometrickych dlohdch se soustavou
kruZnic nebo ptimek, je nékdy vyhodné pfedstavit si
tuto soustavu jako jednu pohybujici se kruZnici nebo
ptimku. Za pomoci pohybu jsme uZ formulovali a Fesili
prvni dlohy a tento piistup pouZijeme vicekrat i v dal-
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§fm vykladu, nebot velmi nézorné objasfiuje mnohé
ulohy a véty.

Priklad nemusime hledat daleko. Vratme se k 1loze
1.1. Jeji znéni a FeSenf miZeme formulovat takto:

Necht se ptimka AM otaéi kolem bodu A s konstantni
tdhlovou rychlosti w (tj. otodf se o tthel w za jednotku
dasu) a pfimka OM se otddf kolem bodu O v témize

Q._——/

Obr. 13 Obr. 14

smyslu s dhlovou rychlosti 2w, pfitemZ v poédtednim
stavu obé pfimky splyvajf s pfimkou 40. Pak priseéik M
téchto piimek opise kruznici se stfedem O (obr. 13).

Z toho muZeme odvodit vétu o stfedovém a obvodo-
vém Ghlu.

Otoéi-li se pFimka AM za as t z polohy AM, do polohy
AM, o dhel wt, pak pfimka OM se otoéi o thel 20t,
jinymi slovy velikost obvodového whlu M, AM, je rovna
poloving velikosti stfedového dhlu M,0M, (obr. 14).

Jedtd ndzornéji je mozné formulovat piedchézejic
vétu takto:
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Viéta o prstenci na kru¥nici. Navléknéme na drdténou
kruZnict malinky prstenec. Kolem bodu A lefictho na
kruZnici se otd&i tycka, kterd prochdzi prstencem. Otdéi-li
se tycka rovnomérné vwhlovou rychlosti o, prstenec probihd
krugnici rovnomérné thlovou rychlosti 2w (obr. 15).

Uvedeme jesté jeden pifklad véty, kterou je mozno
formulovat za pomoci pohybu.

2\

Obg. 15 Obr. 16

Necht se piimka 1 rovnomérné posouvd v roviné, tj. tak
Ze se neméni jeji smér, a pritom jeji priseétk M s jistou
pevnou pFlmkou m se pohybuje rovnomérné po m. Potom
praseétk N piimky 1 s libovelnou pevnou piimkou n se
rovnés pohybuje rovnomérné po primce n.

To je v podstaté pfeformulované tvrzeni, Ze rovno-
béiné p¥{mky vytinaji na ramenech tihlu imérné dseky.
Analogicky k vété o prstenci mizeme dat ptedchazejic
vété tento tvar:

Véta o prstenci na piimce. Na dvé primky je v praseétbu
navleCen maly prstenec. Je-li jedna z téchto primek pevnd
a druhd se rovnomérné posunuje (rovnobéiné se svou pu-
vodnt polohow), pak se i prstenec pohybuje rovnomérné
(obr. 186).
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Nejednou se jesté setkdme s riznymi soustavami p¥-
mek. V piipadech, kdy pujde o soustavy ptimek procha-
zejfcich danym bodem nebo o soustavy pifmek téhoz
sméru, muZe byt uZitednd prvni nebo druhé véta o prs-
tenci.

Konstruk&ni dlohy. V klasickych konstrukénich ilo-
hach (sestrojit trojihelnfk, nanést tsetku, vést tednu,
najit bod) se obvykle pozaduje, aby tloha byla provede-
na jen za pomoci pravitka a kruZitka. To znamena, Ze
dvéma body mazeme prolozit pfimku, nakreslit kruZniei
daného poloméru a stfedu a najit priseéfky téchto éar.

Pro fefienf takovych uloh je nékdy vhodné popsat
kruzZnice a primky jako mnozZiny bodit vyhovujicfch
jisté podmince.

1.4 Necht je dana kruZnice a v jejf vnéjsf oblasti
bod 4. Vedte bodem 4 tednu ¢ k dané kruinici.

0 Oznadfme-li X bod dotyku teény ¢ a kruinice,
vime, Ze dhel OXA je pravy. MnoZina boda 3, pro
které je Ghel OM A pravy, vypliiuje kruznici o priméru
OA (oviem bez bodi O, A). Pfimku ¢ lze tedy zkonstruo-
vat takto: narysujeme kruznici, jejimz primérem je
tisetka OA. Necht X je prusedik této kruZnice s danou
kruZnici (takové pruseéiky jsou dva a jsou soumérné
sdruZené podle pifmky OA). Pak vedeme pfimku body
AaX. O

1.5 Je'dina kruZnice a bod A. Vedte bodem A

pimku tak, aby vytinala na dané kruZnici tétivm
délky d.

[0 Uréime mnoZinu vsech piimek, na kterych vytina

20



dana kruZnice tétivu délky d. Tyto ptimky jsou teé¢nami
soustfedné kruznice § s polomérem ]/r2 —dz/4 , kde r je
polomér dané kruzZnice (?). Tim se.iloha pFevede na
alohu predchazejici: vést teénu bodem A4 ke kruznici 6.

Uloha m4 dvé& Feseni, pokud bod A4 lezi ve vnéjsf oblasti
kruznice 8, jedno Fedeni, lezi-li na ni, a nema feseni,
kdy?% bod A le#f ve vnitini oblasti kruznice 4. [J

Casto se hledan4d mnozina d4 ziskat ze zndmé mnoZiny
néjakym jednoduchym zobrazenim: otodenim, symetrii,
posunutim nebo stejnolehlosti. (Tento postup je zvlist
vhodny v konstrukénich dlohich.) Pfipomefime si, jak
gestrojit obraz pi¥imky a kruZnice p¥i shodnosti nebo po-
dobnosti.

U ptimky stadf sestrojit body A’, B’ — obrazy dvou
jejich raznych bodt 4, B — a body 4’, B’ vést pfimku.
Pro kruzZnici o stfedu O a poloméru r staéf najit obraz O’
jejfho stfedu a kolem néj opsat kruznici o poloméru r
(jedna-li se o shodnost), nebo o poloméru kr (jedna-li se
o podobnost s koeficientem k).

Uvedeme typické ptiklady tloh, kde se pouZiva shod-
ného zobrazent.

1.6 Je dén bod A a kruZnice k, 4 ¢ k. Najdéte mnozi-
nu vrcholi M viech rovnostrannych trojuhelniki AN M,
pro které vrchol N lezi na dané kruznici k.

0 Necht je N libovolny bod kruZnice k. Otodime-li
usetku AN o 60° kolem bodu A, dostane se bod N
do vrcholu M rovnostranného trojihelnfku ANM (obr.
17). Odtud hned vidime, Ze pii otodeni kruZnice k
0 60° kolem bodu A ptejde kazdy jeji bod N ve tretf
vrchol M rovnostranného trojihelniku ANM.

TudfZ vSechny takové body M leif na jedné ze dvou
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kruZnic, které se dostanou z dané kruZnice otoéenim
0 60° kolem bodu 4, a to bud ve smyslu otddeni hodi-
novych ruéiek, nebo proti nému.

Stejnym zpisobem lze dokéazat, Ze kazidy bod M ze
sjednoceni obou vySe ziskanych kruZnic je vrcholem
jistého rovnostranného trojihelniku AN M s vrcholem N
na dané kruZnici. ]

Obr. 17 Obr. 18

1.7a Je dan konvexni thel BAC a v jeho vnitiku
bod D. Sestrojte tisetku s krajnimi body na ramenech
ihlu tak, aby bod D byl stfedem této usedky.

O Podivejme se na mnoZinu vSech tsedek, jejichz
jeden krajni bod lezi na rameni 4C daného dhlu s vrcho-
lem A a jejichZ stfed je v bodé D. Druhé krajni body
pak lezf na polopfimce, kterd je soumérné sdruiena
k rameni AC podle bodu D (obr. 18).

Konstrukece spoéivéd v tom, Ze najdeme bod A’ stfe-
dové soumérné sdruzeny k bodu A podle stfedu D
a bodem A’ vedeme rovnobéiku s ramenem AC. Jejf
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prisedik s ramenem AB oznadme E, prusedik pimky
ED s ramenem AC oznadme F. Usedka EF je hledani
tisetka se stfedem D. Uloha m4 pravé jedno Fefeni. ]

Je zajimavé, Ze uvedena konstrukce fesi nasledujfci
ulohu.

1.7b Méme dan konvexni thel a v jeho vnitiku
bod D. Bodem D se mé vést pfimka tak, aby z thlu
vytinala trojihelnik nejmensiho obsahu.

M/ B
E N!
D
A N F C
Obr. 19

O Ukazeme, Ze hledand pfimka je pravé pfimka EF,
kterou jsme sestrojili v pfedchézejici dloze, tj. takova
ptimka, Ze usetka, kterou na ni vytinaji ramena thlu,
je bodem D piilena.

Vedme bodem D pf¥imku MN rtznou od pfimky EF,
ptitem%z body M, N lezf na ramenech daného idhlu
(obr. 19). DokéZeme, Ze pro obsahy trojihelniki plati

Syan > Sgar . (1)

Bez djmy obecnosti mifeme pfedpoklddat, Ze bod M
mé od bodu 4 v&tsf vzdélenost ne bod E (kdyby tomu
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tak nebylo, zaménime ramena hlu). Staéf se ptesvéddéit,
Ze

Sepy > Srpx (2)

protoZe z toho hned plyne (1). Ale nerovnost (2) je
zfejmé, nebotf trojihelnik EDM obsahuje trojihelnfk
EDN’, soumérné sdruZeny s trojihelnfkem FDN podle
bodu D. O

Né&kolik uloh:

1.8 Jsou dany body 4, B. Uréete mnozinu pat kolmic
vedenych bodem A na vsechny pfimky prochdzejici
bodem B.

1.9 Necht je ddna kruznice a bod 4. Urdete mnozinu
stfedd tétiv, které vytind dand kruZnice na vsech
piimkach prochazejicich bodem A. (Je tfeba vysetfit
zvlast ptipady, kdy bod 4 leZi ve vnéjsi oblasti kruZnice,
ve vnitini oblasti kruZnice nebo na ni.)

1.10 Jsou dany body 4, B. Uréete mnozinu boda sou-
mérné sdruzenych s bodem A podle vSech piimek pro-
chéazejicich bodem B.

1.11 Sestrojte kruznici*) dotykajici se dvou danych
rovnobéZek a prochazejici danym bodem lezfcim mezi
nimi.

1.12 Sestrojte kruznici poloméru r, ktera se dotyké
dané piimky a dané kruiZnice,

1.13 Je déana kruZnice a v jeji vnitini oblasti body
A, B. Vpiste do dané kruZnice pravoihly trojihelnfk tak,
aby jeho odvésny prochazely body 4, B. |

1.14 Jsou dany body A, B. Dvé kruznice se dotykaji
piimky AB, jedna v bodé 4, druhé v bodé B, a obé se

*) Zdo a v3ude déle formulace jako ,,sestrojte kruZnici‘* zna-
mend ,,sestrojte viechny kruZnice*.
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dotykaji vzijemné v bodé M. Urdete mnoZinu vsech
téchto bodii M, méni-li se ob& kruznice. |

1.15 V roviné jsou dany &ty¥i body. Vedme kaidym
z téchto bodu pfimku tak, aby tyto pfimky ohranigily
pravothelnik. Co je mnoZinou stiedu takto vzniklych
pravouhelnika? |

1.16 Strany OP a 0Q pravoihelniku OPMQ lezi na
ramenech daného pravého Ghlu. Najdéte mnozinu viech
vrcholu M, jestlize je

a) délka uhlopiitky PQ,

b) soudet délek stran OP a 0Q,

c) soudet druhych mocnin délek stran OP a 0Q
roven dané hodnoté d. i

1.17 Necht je dan pravothelnfk. Najdéte mnoZinu
vSech bodu takovych, Ze soutet druhych mocnin jejich
vzdélenosti od &étyt stran pravodhelniku je roven druhé
mocniné jeho dhlopfitky.

- 1.18 4 a B jsou dvé mésta. Uréete mnoZinu viech
bodi M s touto vlastnosti: jdeme-li z bodu M pi¥imo
do mésta B, pak se vzdalenost od mésta A4 zvétsuje.

1.19 O trojthelnfku ABC vime, Ze délka jeho téZnice
AQO je

a) rovna poloviné délky strany BC,

b) vé&tsi nez polovina délky strany BC,

c) mensf ne% polovina délky strany BC.

Dokaizte, Ze tihel p¥i vrcholu A je a) pravy, b) ostry,
c) tupy.

1.20 V roviné je ddna kruinice a bod A. Urdete
mnozinu stfedd tseéek AN, kde bod N probifha danou
kruZnici.

1.21 Je dana kruznice a bod z vnéjif oblasti této kruz-
nice. Vedte timto bodem sednu kruZnice tak, aby jeden
jejf prusedfk s kruZnici pilil dsedku tvofenou druhym
prisedikem a danym bodem.
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1.22 Prisedikem dvou danych kruinic vedte piimku
tak, aby vytinala na kruznicich tétivy stejné délky.

1.23 Uréete mnozinu vrchold C vsech étverci ABCD,
pro které vrchol A leif na dané piimce a vrchol B je
pevné dan.

1.24 a) Kde leZi &tvrty vrchol étverce, jestlize dva jeho
vrcholy lezf na jednom rameni daného ostrého ihlu
a tfeti vrchol leZi na jeho druhém rameni?

b) Je dan ostroihly trojihelnik ABC. Vpiste do néj
Stverec tak, aby dva jeho vrcholy lezely na strané AB.

1.25 Jakou kiivku opisuje st¥ed spojnice dvou chodetl,
kteif jdou rovnomérné po piimkach? |

1.26 Do daného trojuhelnika 4 BC vpiste pravoihel-
nik, jehoZ jedna strana lezi na strané 4 B. Najdéte mno-
Zinu st¥edl téchto pravodhelniki.

1.27 Dievény pravoihly trojihelnik se pohybuje
v roviné tak, Ze vrcholy, pfi nichZ lei ostré dhly, se po-
sunujf po ramenech daného pravého ihlu (jeden vrchol
po jednom a druhy po druhém rameni). Jak se bude
pohybovat tfeti vrehol tohoto trojihelniku ?

1.28 Na stole lezi dvoje ploché hodinky. Oboje jdou
presné. Po jaké kiivce se bude pohybovat stfed tisetky
spojujici konce minutovych rudidek ? |

1.29 Prisedifkem A dvou danych kruZnic vedme
pfimku. Ta protind kruinice v bodech K, L, K # A,
L # A. Uréete mnozinu stfedu vdsedek KL. |
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Kapitola 2

ABECEDA

Tato Lkapitola je soupisem vét o mnoZinich bodil
vyhovujicich urditym geometrickym podminkam. Po-
stupné sestavime cely seznam takovych podminek a vét,
jichZz budeme uZivat pfi Fedenf tiloh nejraznéjstho typu.

Geometrickéd tloha na urdenf mnoZiny bodu je analo-
gicka algebraické iloze feseni rovnice (soustavy rovnic,
nerovnic). Resit rovnici nebo nerovnici znamena najit
mnoZinu viech &sel, kterd vyhovujf jistym podminkdm.
Podobné jako se ve skole u¢ime pievadét riizné rovnice
(naptiklad trigonometrické, logaritmické) na linedrn{
nebo kvadratické, ukazuje se dasto, Ze je mozZno sloZi-
téj8i geometrickou podminku pfevést na jednoduchou
vlastnost pH{mky nebo kruznice.

Podobnost mezi algebraickymi tlohami a tlohami
na hleddni mnoZin bodu danych vlastnost{ nenf jen vnéj-
§f. Pomoci metody soutadnic lze jednu z téchto iloh
pfevést na druhou. Pfitom uvidime, Ze geometrické
podminky, které se zdaji na prvni pohled ruzné, lze
obsdhnout tymiZ matematickymi vétami.

Zatnéme nasi abecedu nejjednodussimi vétami.

A. MnoZina vdech bodi stejné veddlenych od dvou da-
nyjch bodi A, B (A # B) je primka kolmd k tiseéce AB
a prochdzejict jejim stiedem.

Tuto p#mku m nazyvame osou tUsetky 4B. Dél
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rovinu na dvé poloroviny. Body jedné poloroviny (s vy-
jimkou jeji hraniénf p¥mky) jsou bliz k bodu A nez
k bodu B, v druhé poloroviné je tomu obracené. Body
4, B jsou soumérné sdruené podle piimky .

B. Mnoéina vdech bod# stejné vzddlenijch od dvou da-
nych riaznobéiek l, a l; je dvojice vzdjemné kolmych pFi-
mek, které pali whly tvofené primkams 1, 1, (obr. 20).

Obr. 20

Uvedené dvé kolmé piimky jsou osami soumérnosti
dvojice piimek I, I, a délf rovinu na &tyti dasti. Na
obrazku jsou vyznateny dva pravé uhly, jejichZz vnittky
tvoff mnoZinu viech bodd, které jsou bliz k p¥imce I,
nez k ptimee .

C. MnoZina bodi, jejichZ vzddlenost od dané primky 1 je
rovna danému &islu h (b > 0), je dvojice pitmek 1, 1,
rovnobéinyjch 8 primkou l a leZicich v riiznijch polorovindch
ohranienych prtmkou 1.

Pas roviny ohranideny pfimkami /,, I, je mnoZinou
viech bodi, jejich? vzdalenost od p¥mky ! je nejvyse
rovna &slu A.
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D. Mnofina vdech bodu, jejichf vzddlenost od daného
bodu O je rovna danému &slu r (r > 0), je krufnice
se stredem O a polomérem r. (To je definice kruznice.)

Kruznice délf rovinu na dvé &isti: vnitini a vnéjsi
oblast kruZnice. Pro body vnitini oblasti je vzdalenost
od stfedu mens&f nez r, pro body vnéjsi oblasti je tato
vzdélenost veétsf ne# r.

Nékolik nésledujicich tloh lehce vyfesite uZitim vét
A, B, C D

2.1 Urdéete mnozinu stfedd vSech kruZnic prochdze-
jicich dvéma danymi body.

2.2 Urdete mnozinu stfedi vSech kruZnic, které se
dotykajf dvou danych riznobézek.

2.3 Najdéte mnozinu stfeda vSech kruinic o polo-
méru r, které se dotykajf dané p¥mky.

2.4 Jsou dény dva body 4, B. Uréete mnoZinu vSech
bod M takovych, Ze obsah S ,up trojihelniku AMB
je roven danému ¢&islu ¢ > 0.

Na zdkladé tvrzeni B dokdZzeme vétu o osich vniti-
niho a vnéjsiho dhlu trojihelnfku.

2.6 Necht osy dvojice pifmek AC, BC protinajf
pkimku A B v bodech E, F. Pak platf

|AE| _ |AF|  |AC|
[BE] ~ [BF| ~ BC|

(obr. 21).
O Necht je M néktery z bodii £ a F. Pak je
] Yy )
1AM|  Sacu
| BM| Sgoa
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(Trojtihelniky ACM a BCM majf spole¢nou vysku CH.)

Pomér obsahui je mozno vyjadtit téZ jinym zpiisobem:
protoze bod M lezi na ose pfimek AC, BC, je od obou
pFimek stejné vzdalen, proto je

Siow _ |40
Sseu |BC| )

C

A ‘E B H F
Obr. 21 Obr. 22

KruZnice, dvojice kruhovych obloukii. Nésledujici pis-
menko abecedy je jesté jednou variaci véty o obvodo-
vém a stfedovém Ghlu a o prstenci na kruznici, kterou
jsme probirali v kap. 1.

E°. Dvé riznobéiné piimky 1, a lp se otdéeji kolem
svyjch bod® A a B se stejnow dhlovou rychlostt o a ve stej-
ném smyslu (a proto sviraji konstantni ihel). Trajektorii
jejich praseliku je krugnice (obr. 22).

Ditkaz. Sestrojime kruznici § prochézejici body A, B
a jednou polohou M, prusetiku pi{mek I, a 5. Podle
véty o prstenci na kruznici z 1. kap. se priseéik piimky I,
a kruzZnice pohybuje po kruZnici § rovnomérné dhlovou
rychlosti 2. Stejné se pohybuje i priseditk pimky Ip
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a kruZnice 6. ProtoZe jsou vSak v jednom okamZiku
(v poloze M) totozné, jsou totoiné v kaidém Sasovém
okam#iku.

Uvedeme jesté jedno znéni véty E, které neuiiva
pohybu.

Obr. 23

E. MnoZinou vdech bodw, ze kterijch vidime danou vsecku
AB pod vhlem dané velikosti ¢ (t]. mnofiny boda M, pro
které je |X AMB| = ¢), je dvojice kruhovijch oblouka
8 koncovyyms body A, B, navzdjem soumérnyjch podle piim-
ky AB.

Oblast, kterd je ohranilend témito oblouky, je mnofinou
vdech téch bodw M, pro které je |<x AMB| > ¢ (obr. 23).

Poznamenejme, Ze v piipadé ¢ = 90° vytvoii oba
oblouky kruZnici nad primérem AB (viz odst. 0.1 —
Thaletova véta).

2.6 Po dané kruZnici s pevnou tétivou AB se pohybujf
krajni body tétivy CD, aniz by tétiva meénila svou veli-
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kost. Po jaké kiivce se pohybuje priuseditk ptimek
a) AD, BC, b) AC, BD?

2.7 V roviné jsou diny dva neprotinajfci se kruhy.
Uhel vyrobeny z prihledného materidlu se pohybuje
v rovind tak, Ze stile pfekryvé oba kruhy a kazdé jeho
rameno se dotykd jednoho kruhu. DokaZte, %e je moZno

Obr. 24

~

na dhlu vyznadit bod, ktery se pohybuje po oblouku
kruZnice.

2.8a Je ddna kruZnice a na nf dva body 4, B. Necht
je M libovolny bod této kruZnice. Na prodlouZenf
usedky AM za bod M zvolime tsetku M N, jejiz velikost
je rovna velikosti uselky BM. Uréete mnozinu v3ech
takto sestrojenych bodd N (obr. 24).

O Necht je NV bod sestrojeny podle podminek tlohy;
pak je |[BM| = |NM|a|<x NBM| =|< MNB| Protoze
je| < AMB| =& MBN|+ | MNB|, je |% ANB| =
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=| X AMB|/2. Velikost ihlu A M B je pro viechny body M
leZici na jednom z oblouki AB konstantnf (viz bod E):
X AMB|= ¢.Proto| &t ANB| = ¢/2, tedy vSechny od-
povidajicf body N le#f na kruhovém oblouku AnB,
z jehoZ bodi je vidét dseéku AB pod idhlem ¢/2. (St¥ed
tohoto oblouku leZi ve stfedu oblouku 4mB dané kruz-
nice (?).)

Vyhovuji obracené vSechny body oblouku 4AnB pod-
minkdm tlohy ? V3echny nevyhovuji.

Viimnéme si, Ze kdyZz bod M probihd oblouk AmB
od bodu B k bodu A4, otadi se tétiva AM kolem bodu 4
od piimky AB k tetné dané kruZnice v bodé A. Proto
hledané mno#ind pat¥i pouze d4st oblouku AnB, a to
oblouk EnB, kde E je prisetik oblouku AnB s tednou
dané kruinice v bodé 4 (obr. 25).

Pfitom muiZzeme bod B zahrnout do hledané mnoZiny
(odpovida té poloze bodu B3, ve které splyvd bod M
s bodem B a velikost tdseky BM je nulova). Naproti
tomu bod E nepatii hledané mno#iné; splyva-li bod M
s bodem 4, nemiiZzeme mluvit o ptimce 4 M.

Podobné zkoumame body, které le#{f v druhé polo-
roviné ohrani¢ené pifmkou AB. Hledand mnozina bodi
se tak sklidé ze dvou kruhovych obloukd EnB
aEn'B. O

Ulohu 2.8a muzeme fesit také jinak, jestlize si viim-
neme, %¢ body N a B jsou soumérné sdruZené podle
piimky CM, kde je C stied oblouku AmB. Dale pak vy-
uzijeme vysledku ilohy 1.10.

Podobns jako dlohu 2.8a si muZe &tenaf vytesit Glohu:
2.8b Podminky tlohy jsou stejné jako v tloze 2.8a,

33



pouze isedku M N nanaSime na opadnou polopiimku,
tedy na polopiimku MA.

Druhé moeniny vzdalenosti. P¥edpokladejme, Ze jsou
v roviné diny dva body A, B a dale libovolné é&islo c.

F. MnoZinou vdech boda M, pro které je
|[AM|* — |BM|? = c,

je primka kolmd k piimce AB. V pfipadé ¢ = 0 se jednd
o0 osu usetky AB.

G. Necht je |AB| = 2a. Mnofinou bodt, pro kieré je

|[AM|? + |BM|? = ¢,
je v piipadé
a) ¢ > 2a® kruinice se stfedem ve stiedu O wseéky AB
a polomérem V(c — 2a?)/2,
b) ¢ = 2a? bod O,
¢) ¢ < 2a? prdzdnd mnofina.

Tvrzeni F a G je moino lehce dokazat uZitim Pytha-
gorovy véty nebo metodou soufadnic (?). Nebudeme je
nyni kazdou zvlast dokazovat, ukazeme pozdéji, Ze jsou
obé disledkem obecnéjsiho tvrzeni. Diive viak je do-
plnime nékolika piiklady.

2.9 Jsou dany dvé kruZnice, bod M a body dotyku
T,, T, teten vedenych bodem M k jedné a druhé
kruZnici. Uréete mnoZinu viech téch bodi M, pro které
plati [MT,| = |MT,|

{J Necht jsou O, a O, stiedy danych kruznic, r, a 7,
jejich poloméry (r, = r,), MT, a MT, jejich tetny ve-
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dené bodem M. Uzitim Pythagorovy véty zapiseme pod-
minku |[MT,|? = |MT,|* ve tvaru

|MO,J2 — |0,T,[* = |MO,[2 — |0,T,*

neboli
|[MO, |2 — |MO,|? = r§ — 1.

Podle tvrzeni F leii vSechny body M pozadované
vlastnosti na pfimce kolmé k pi¥imce 0,0,. Jestlize se

Obr. 26

kruZnice protinaji, je tato piimka spojnici jejich priise-
diku, Je-li totiz 4 prisedik obou kruznie, je

|AO,|2 — |AO,|2 = r} — 3,

a bod 4 tedy leii na této piimce. MnozZina hledanych
bodu je vyznadena na obrizku 26; je sjednocenim dvou
polopfimek.

Jsou-li dané kruZnice rizné a soustfedné, je hledana
mno#ina prazdni. Splyvaji-li obé kruZnice, skladi se
hledand mnoZina ze v8ech bodu této kruZnice a z bodd
jeji vn&jsi oblasti. Nejsou-li kruZnice soustfedné a ani
se neprotinajf, je vysledkem celd p¥imka. [J
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Piimka, o které se mluvi v.pfedchéazejici uloze, se
nazyva chorddlow danych kruinic. Necht se kruZnice
neprotfnaji. Pak jejich chordala déli doplnék sjednocent
obou kruhu, které dané kruZnice ohraniéuji, na dvé
oblasti: vnitiek jedné oblasti je mmozina bodt M, pro
které je |[MT,| > |MT,|, a vnitiek druhé je mnozina
bodut M, pro které je |MT,| < |MT,|.

2,10 Urdete mnozinu stfedii vSech kruini.c, které
protinaji kaZdou z danych dvou kruznic v bodech dia-
metralné protilehlych.

2.11 a) Soudet druhych mocnin délek dhloptitek rov-
nobézniku se rovna souétu druhych mocnin délek jeho
stran. Dokaite.

b) Jestlize ma konvexni ¢étyfuhelnik AMBN kolmé
uhloptitky, je |AM|® 4 |BN|? = |[AN{® 4+ |[BM% Do-
kazte. |

[ a) Oznadme ¢ vzdailenost vrchold 4 a B od sttedu O
rovnobéintku AMBN a r vzdalenost vrchold M a N
od bodu O. Poloime ¢ = 2(a® 4 r?). Protoze je pak

[OM| = V(c — 2a2)/2, je podle tvrzeni G soudet druhych
mocnin vzdélenosti bodid A, B od bodu M roven ¢
a totéZ plati pro vzdailenosti bodu N od bodid 4, B.
Proto je

|AM|® + [BM|* + |AN|* 4- |BN|? =
= 2 = 4(a® + 72) = |[MN|* + |AB2. O
Uvedeme nyni obecnou vétu, ze které vyplyvaji tvr-
zeni F, G, A a D nasf abecedy.

Véta o druhych moecnindch vzdalenostf. Mnofinou
véech boda M, pro kieré plati podminka
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LIMAR + | MAE + ... + AMAL =p, (1)

kde 4,, 4,, cee A, jsou damé body a A, Ay, ..., Ap, u
jsou dand éisla, je
1) kruZnice, bod mebo prdzdnd mnofing v pripa,dé kdy

plati Ay + A + ... + A #0;

2) primka, celd rovina mebo prdzdnd mnofina, je-li

A+2A+ ...+ 4, =0

Pti dakazu uZijeme metody soufadnic. Druhd mocnina
vzdélenosti bodd M[z; y] a Ai[xy; yx] je rovna

|MA? = (2 — ) + (y — W) =
= 2% + y? — 2mx — 2y + 7% + ¥; -
Vyraz A, |[MA,* + 2, |[MA,2+ ... + 2, |MA,]* se
v soufadnicich rovna soudtu nékolika vyrazi tvaru
(2? + y* — 2px — 29y + p* + ¢°).
MuzZeme tedy podminku (1) psit ve tvaru rovnice
det 4 dy* + ax + by 4 ¢ =0, (2)

kded =24, + 4, + ... + A

Dokézeme nyn{, Ze rovnicf (2) je ddna néktera z uve-
denych mnozin.

1°. Je-li d # 0, muZeme rovnici (2) pfepsat ekviva-
lentné timto zphsobem:

a b c
z’+y2+7x+7y+7=
nebo

b ]’ b + a® — 4dc 29

a a
[x+ﬁ]+(y+ 2d i
Vidime, Ze je tim déna:
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kruznice se stfedem C[—a/2d; —b[2d], je-li pravi
strana rovnice (2) kladna,

jeden jediny bod C[—a/2d; —b/2d], je-li prava strana
rovna nule,

prézdna mmnozina, je-li prava strana zdporna.

2°, Je-li d = 0, ma rovnice (2) tvar

ar + by + ¢ = 0.

Touto rovnic je dana:
pi{mka, je-li a® 4 b% # 0,
celd rovina, je-lia =b =¢ =0,
prazdna mnozina, je-lia = b =0, ¢ # 0.

V kazdém konkrétnim piipadé sc vidy lehce urd,
kterd z uvedenych mozZnosti nastava. Vratme se k bo-
dim F, G nasi abecedy, které jsme nedokazali.

Diakaz F. Podminka [M A2 — |[MB|* = ¢ je zvladtnim
piipadem podminky (1), ve které je n =2, 1, =1,
Ay = —1, tedy d = 0, a definuje tudiZ pfimku, rovinu
nebo prazdnou mnoZinu.

Protoze rovnice (z + @) — (x — «¢)? = ¢ ma v pii-
padé a 5 0 vidy jediné Yeseni x = c/4a, lezi na piimce
AB pravé jeden bod hledané mnoZiny, kterd je tudiz
pfimkou. Ze soumérnosti plyne, Ze je kolma k piimce
AB. (P¥imku AB jsme zvolili za osu z, st¥ed tiseSky 4B
za podatek soustavy soufadnic).

Dikaz G. Podminka |[MA*+ |MB|* =c je opét
zvladtni pHpad (1). Zde je 4, = 1, 4, = 1, d # 0, je tedy
hledana mnoZina bud prézdna, nebo se skldd4 z jediného
bodu, nebo je kruznicf. Vzhledem k tomu, %e body 4, B
vystupuji v podmince ulohy symetricky, splyva stfed
kruZnice se stfedem isetky 4B.
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Abychom poznali, kdy je hledand mno#ina kruZnicf
a jaky je jeji polomeér, najdeme na pfimce 4B body vy-
hovujfef podmince tlohy |[AM|? 4 |BM|? = ¢. Tato pod-
minka dava rovnici (xr — a)? + (x 4 @)? = ¢, kterd mé
FeSeni pro ¢ = 2a?, pfidemz

x| =r = V(c — 2a?)/2 .

2.12 Najdéte mnoZinu vSech bodi, pro které je soudet
druhych mocnin jejich vzdélenosti od dvou protileh-
lych vrcholii daného pravotihelniku roven soudtu dru-
hych mocnin jejich vzdilenosti od zbyvajicich dvou
vrchold pravouhelniku.

(] ReSenim je cela rovina. Necht je ABCD dany
pravoihelnik. Hleddme tedy mnoZinu vsech boda M,
pro které plati

|[MA]* + |MC|*— |[MB|* — |[MD}?* = 0.

Polozme v podmince (1) n =4, 4, =4, =1, 1, =4, =
= —1, a tudiz 14, 4+ 4, + 4; + 1; = 0. Podle tvrzenf je
hledana mnozina bud pFimka, nebo prazdna mnoZina,
nebo celd rovina.

Véimnéme si, #e vrcholy 4, B, C, D daného pravo-
thelnfku vyhovuji podmince tlohy. Naptiklad pro bod
A platf |AA]* + |AC|? — |AB|? — |AD]* = 0 (Pytha-
gorova véta). Neni tedy hledand mnozina prazdnd a nenf
pifimkou. Musi to tudiZ byt cela rovina. [

Z vysledku tdlohy 2.12 plyne, Ze pro kaidy bod M
roviny pravouhelniku 4 BCD platf

|[MA|* + [ MC|? = |[MB]? + |MDJ.

Uzitim tohoto vztahu FeSte tuto dlohu:
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2.13 Je dan kruh a jeho vnitinf bod 4. Najdéte mno-
#inu &tvrtych vrchold C pravouhelnikd ABCD, jejichz
vrcholy B a D le#f na hraniéni kruZnici daného kruhu.

2.14 Dokaite, Ze v pipadé |MA| = |MB| plati
[MA|?— |[MB|? = 2 |AB|.o(M, m), kde m je osa tsetky

AB a o(M, m) je vzdalenost bodu M od primky m.
M

/

A M1 B 0 M2

Obr. 27

Ptidejme k nadi abecedé jeété jedno pismenko —
tvrzeni, které se 8asto v geometrii uzivé a jeZ je dusled-
kem véty o druhych mocnindch vzdalenostf.

H. V roviné jsou ddny dva rizné body A, B. MnoZinou
vdech boda M, pro kieré je |MA|| |MB| =k, k >0, k #

5= 1, je kruZnice se stfedem na primce AB.

Tato mnozina viech bodi, jejichZz pomér vzdalenosti
od bodi 4 a B je konstantni (rizny od jedné), se nazyva
Apolloniove krufnice (obr. 27).

O Ptepiseme-li podminku v 1loze H do tvaru

|MAJ? — k* |MBJ2 = 0,

vidime, Ze se jedni o zvlistni p¥ipad podminky (1),
pro ktery je n =2, 1, =1, 1, = —k?, a protoZe je
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1 — k2 +# 0, je hledana mnoZina kruZnici, bodem nebo
prazdnou mnoZinou. ProtoZe rovnice (¢ + a)? = k¥x —
—a)® ma pii k2 5£ 1, a # 0 pravé dva rizné koteny,
existuji na pfimce AB pravé dva razné body M, a M,
hledané mnoziny, ktera je tudiz kruznicf. [

Je-li M bod této Apolloniovy kruznice, ktery nelezi
na piimce 4B, pak osy dvojice p¥imek M A & MB pro-
tinaji p¥{mku AB pravé v bodech M,, M, (obr. 28).

A M, B M,

Obr. 28

Tvrzeni vyplyva z véty 2.5, podle které je
|43, |AM,| _ |AM|
|BM,| — |BM,| [BM|’

Této skuteénosti muZeme vyuiit pfi FeSeni na.sledu—
jicf dlohy.

2.15 Na priméru kulatého kulednikového stolu lezi
kuleénikové koule A4 a B. Jakym smérem musime
odstréit kouli B, ma-li se po odrazu od hrany stolu srazit
s kouli 4, a neméa-li se pohybovat po praméru stolu?

2.16 Na dané piimce lezf body 4, B, C, D. Sestrojte
bod, z néhoz jsou vidét dseéky AB, BC a CD pod shod-
nymi thly.
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Vzdalenosti od p¥imek. Dosud se v nasi abeced& vysky-
tovaly hlavné takové podminky, které davaly kruZnici.
V dalsich dvou piipadech budou vysledkem p¥imky
(dvojice piimek).

Necht je ddno kladné &fslo ¢ a dvé raznobézky I, a I,.

J. Mnofina vdech boda M, pro které je pomér o( M, 1,) :
co(M, 1,) jejich vzddlenosti od pFimek 1,, 1, roven c, je
dvojice primek prochdzejicich prasetikem danijch piimek.

K. Mno#ina vech bod# M, pro které je souéet o(M, 1,) +
+ o(M,1,) jejich veddlenosti od pftmek 1, a l, roven c,
je hranice pravouhelntku, jehof vihlopitéky left na daniyjch
primkdch.

Diive nez piejdeme k dikazu téchto tvrzeni, probe-
reme dva jednoduché piiklady.

2.17 Je dan trojihelnik ABC. Najdéte mnozinu véech
bod@ M, pro které se obsahy S.imc & Spuc trojihelniki
AMC a BMC sobé rovnaji.

[0 Necht &, a h, jsou vzdélenosti bodu M od p¥imek
AC a BC. Pak je

1 1
Sane = 5 IACI.h,,, Spuc = 5> |BC’[.ha,

tedy hqfhs = |AC] | |BC].

Vidime, Ze hledanou mnozinou vSech bodtu M je mno-
#ina popsand pod pismenem J pro p¥imky AC a BC
a ¢ = |AC| [ |BC|. Je to tedy dvojice pfimek prochize-
jicich bodem C. UkéZeme, Ze jedna z téchto pfimek je
téZnicf trojuhelniku ABC a druhd je rovnobéina s p¥m-
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kou AB. K dikazu stati zvolit na kazdé z téchto ptimek
jeden bod a ukazat, Ze spliuje zadanou podminku.
Oznad¢me h velikost vysky trojihelniku A BC vedené
bodem C' a necht je N libovolny bod p¥imky ! vedené
vrcholem C rovnobéiné s pfimkou AB; pak je

1 1
Saox = 5 |CN|k, Spexy = o> |CN |k, tedy S4cx = Sso¥

a pF¥imka [ je ¢asti hledané mnoZiny.

Necht je K stied strany 4B, tj. |AK| = |KB|. Pak je
SAKG = IA.KI h/2 = |BKI h/2 = SBKC, tudiz i téZnice m
je dasti hledané mnoziny. (]

Tvrzeni K se da v podstaté preformulovat takto:

2.18 Je dan rovnoramenny trojtihelnik AOB. Dokai-
te, Ze soudet vzdilenosti libovolného bodu M zékladny
AB od ramen AO a BO je roven vysce trojihelniku
vedené k jeho rameni.

Tvrzenf J a K nebudeme dokazovat geometricky,
i kdyZ by to nebylo sloZité, nybrz poddéme dikaz pouZi-
tim pohybu (podobné jako v bodé E o kruZnici a dvojici
kruhovych obloukd). Nejdiive viak vyslovime lemmu*
zobechiujici tvrzeni o prstenci na pifmee (viz str. 19).

Lemma. Na pitmky 1, a 1, je v jejich praseéiku navleten
maly prstenec M. Jestlize se katdd z primek 1,, 1, rovno-
mérné posouvd, pohybuje se prstenec rovnomérné po pFimee.

Ditkaz. P¥imku z tvrzeni lemmy dostaneme, vyznaéi-
me-li si dvé razné polohy M, a M, pohybujicitho se

*) lemma — poulka, pomocnd véta
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prstence. Pruseéiky pohybujicich se piimek !, a I,
s pevnou pifmkou M, M, se pohybuji rovnomérné. Pro-
toze viak ve dvou raznych dasovych okam#icich sply-
vaji, splyvaji v kaidém okamziku.

Dikaz tvrzeni J. Pro kladné éfslo ¢ tvo¥l body, jejichz
vzdilenost od pfimky I, je rovna ¢ a do pfmky I, je
rovna ct, vrcholy rovnobézniku se stfedem O v priseéi-
ku pi¥imek I, I,. Mnozinou vSech bodi, jejichZz vzdéle-
nost od pHmky [, je ¢, jsou totiz dvé rovnobézky s pi{m-
kou I, (viz iloha B) a stejné tak je mnoZinou bodu o vzda-
lenosti ¢t od pfimky I, dvojice rovnobéZek s piimkou I, .
Obé dvojice rovnobézek se protinaji ve ¢tyfech vrcholech
rovnobéinfku, které vyhovuji podmince ilohy J, nebot
ctft = c. Probiha-li ¥islo ¢ mnozinu vsech kladnych real-
nych &sel, dostaneme vSechny body hledané mnoZiny.

Divame-li se na ¢ jako na ,,éas®, vidime, Ze se obé& dvé
dvojice rovnobézek pohybuji rovnomérné (jedna dvojice
je stale rovnobéina s pkimkou I,, druhd s 1,). Podle
lemmy se jejich prisediky pohybuji po primkach
prochazejicich bodem O.

Ditkaz torzeni K. Vedme dvé piimky ve vzdalenosti ¢
od pfimky I, a dalsi dvé pf¥imky ve vzdalenosti ¢ —¢
od piimky [, (0 <t < ¢). Cty¥i prisediky téchto piimek
patii do hledane mnoziny. Ménime-li ,,8as‘‘ spojité od 0
do ¢, pohybuji se pfimky rovnomérné a kazdy ze &tyt
obdrZenych prusedikii se podle lemmy pohybuje po
usedce. Krajni body téchto usedek odpovidaji hodnotam
t =0 at=c, leii na p¥imkach [,, I, a tvoFf vrcholy
pravouhelniku.

Uvedeme ted obecnou vétu, ktera zahrnuje tvrzeni B,
C, J a K jako své zvlastni piipady. Zkoumejme mnoZinu
viech bodu M, pro které plati
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ho(M, 1) + Ap0(M, 1) + ... 4 Ao(M, 1) = u;  (3)

zde jsou I,, 1,, ..., I, dané ptimky roviny a 1, 4,, ...,
An, o dana &isla.

Popsat takto zadanou mnozZinu neni jednoduché. Hned
viak uvidime, Ze je snadné urdit priniky této mnoZiny
8 dastmi roviny, na které je rovina rozdélena p¥#imka-
mily, I, ..., L. Oznatme @ jednu takovou &ast.

Vita o vzdalenostech od pfimek. Mnofina bodd viho-
vujictch podmince (3) a patFicich do @ je bud 1) pranikem
Q a néjaké primky, tedy dseckou, poloprimkou mebo celou

primkou, nebo 2) celé Q, nebo 3) prdzdnd mnofina.

Diakaz. Zjistime-li priniky hledané mnoziny s kazdou
tast{ roviny, na které je rovina rozdélena pfimkami
L,1l, ..., ., je tim déna celd hledand mnoZina. K du-
kazu véty pouZijeme metody soufadnic.

Necht je tedy @ zvolena &ast roviny. Pak je @ priini-
kem n polorovin s hraniénimi pifmkami I, I,, ..., .
Rovnici ayz + by + ¢ = 0 piimky L, (k = 1,2, ..., n)
muZeme zvolit tak, Ze pfislusnd polorovina je dana ne-
rovnicf e + by + ¢ = 0 a Ze plati a2 + b2 =1 (2),
takZe pro body M{x; y] této poloroviny platf o(M, Ii) =
= ax + by + cx. Proto je levd strana rovnice (3)
soudtem vyrazi tvaru Axax + by + ¢i), a rovnice (3)
ma tudiZ tvar

ar + by +c¢c =0,

Je-li a? + 5% # 0, je to rovnice pfimky, pro ¢ = b =0
je touto rovnici déna bud celd rovina, nebo prazdna
mnoZina.

Jiny dikaz dostaneme, prevedeme-li 1ilohu pomocf
dlohy 2.14 na vétu o druhych mocnindch vzdale-
nostf (?).
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2.19 a) Je dan rovnostranny trojihelnik 4BC. Na-
jdéte mnoZinu vSech bodi M, pro které se soudet vzda-
lenosti od pfimek AB, BC, CA rovna danému d&islu

> 0.

# b) Jei dan pravothelnik ABCD. Najdéte mnozinu
v8ech bodu M, pro které je soudet vzdalenosti od p¥i-
mek AB, BC, CD a DA roven danému d&islu u.

2.20 a) T#i ptimky [,, [,, I, prochizeji jednim bodem
a kazdé dvé z nich sviraji thel 60°. Najdéte mnoZinu
vsech bodu M, pro které plati

e(M, 1) = e(M, 1)) + o(M, 1,).

b) Je dan rovnostranny trojihelnik. Najdéte mnozi-
nu viech bodi M, pro které je vzdalenost od jedné z p¥i-
mek AB, BC, CA rovna poloviénimu souétu vzdalenosti
od zbyvajicich dvou. |

Prehled na3f abecedy. Mnozina viech bodu vyhovuji-
cich uréité podmince se zpravidla oznaduje takto: do
sloZenych zavorek se nejdifve napiSe pismeno oznadujici
nlibovolny bod* mnoZiny (zpravidla uZivime pisme-
no M, muze to byt ovSem i jiné pismeno), pak se napise
dvojtetka a za nf se napise podminka, kterou jsou body
mnoziny charakterizovany.

NapiSeme kritce probrané mnoziny v nasi abecedé:

A. {M:|MA| = |MB}
B. (M :o(M,1) = o(M,1,)}
C. {M:oM,1)=h

D. {M:[MO| =1+

E. {M: X AMB = g}

F. {M:|AM]?— BM|* = c}
G. {M:|AM[* + |BM]* = c}

»
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H. (M :|AM|]|BM| =k}
J. {M :Q(M’ L) [o(M, 1) = k}
K. {M : Q(M’ L) + Q(M: ) = c}

Piripomenme si, %Ze vSechny tyto mnoZiny kromé
mnoziny uvedené pod pismenem E jsme rozdélili na dvé
skupiny

ADF,GH a BCJ K
Prvni skupina — to jsou zvlastni p¥{pady mnoZiny
{M: 4| MA24 ... 4+ A|MA,]2 = u},
druhd skupina jsou zvlastni pf¥ipady mnoZiny
(O : do(M, L) + ... + dg(M, 1) = ).
V kap. 6 doplnime nasi abecedu dal§imi éty¥mi pismeny:
L. {M:|MA|+ |MB| =c}

N. {M:||MA|—|MB|| =c}
P. {M:|MA|=o(M,1,)}
Q. {M: M4l o, i) =)

Tyto mnoZiny (elipsy, hyperboly a paraboly) tvoif
také prirozenym zpusobem jednu skupinu kiivek, tzv.
kiivek druhého stupné.
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Kapitola 3

LOGICKE KOMBINACE

Zde jsou shromaZdény ruzné dlohy, ve kterych vystupuje
zpravidla nékolik geometrickych podminek najednou.
Pti feSeni téchto uloh se naudime t¥idit body, vyjadio-
vat logické souvislosti mezi podminkami pomoci operaci
8 mnoZinami,

Spole&ny bod tii pfimek. V prvnich dlohach se dotkne-
me tradiénfho geometrického tématu. Pomoci jednodu-
hych operaci s mnozinami nasi abecedy dokaZeme véty
o ,,vyznamnych bodech trojihelniku. VSsechny dvahy
se vlastné prevedou na uziti tranzitivnosti: je-li ¢ = b
ab=c, pakjea =c.

3.1 V trojtuhelnfku se osy stran protinaji v jediném
bodé, ktery je stfedem kruZnice trojtihelnfku opsané.
Dokaite.

3 Osy m. a m, stran AB a BC trojihelniku ABC se
samozfejmé protinaji; oznadme jejich prusedik O. Protoze
bod O lezi na ose m,, je podle A 2. kap. (04| = |0B|.
Stejné tak je |OB| = |0C|, protoze bod O leii také
na ose m, Pak je viak také |0A4| = |0C|, a tudiZ je
bod O také bodem osy m, strany AC. Tim jsme doka-
zali, Ze vSechny t#i osy stran prochizeji jedinym
bodem. O
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3.2 Vyiky trojihelnfku se protinaji v jediném bodé,
ktery se nazyva prusetik vysek, nebo téZ ortocentrum
trojuhelnfku. Dokaite.

O Vedme kaZzdym vrcholem trojihelniku 4 BC pim-
ku rovnobéZnou s protéjsf stranou. Tyto pimky tvoii
novy trojihelnfk A’B’C’, v némi jsou body 4, B, C
stfedy stran a vysky trojihelniku ABC jsou soudasné
osami stran trojihelnfku 4'B’C’. Prochézeji tudiz podle
3.1 jedinym bodem. ]

Ukazeme si je§té jiny dikaz véty 3.2, podobny di-
kazu véty 3.1.

0 Kazdou vysku trojihelniku muZeme popsat jako
mnoZinu v8ech bodu spliiujicich jistou podminku. Vy-
uzijeme k tomu bodu E. Vime, %e mnozina {M : |MA4 |2 —
— |MBJ|? = d} je pfimka kolmé k p¥imce AB. Zvolme d
tak, aby tato piimka prochézela bodem C, tedy d =
= |CA|? — |CB|%. Je tudiz h, = {M : |[MA|*— |MB]? —
= |CA|* — |CB|?} vyska trojihelniku vedena vrcho-
lem C.

Zcela obdobné miZeme popsat zbyvajici dvé vysky:

ha = {M : |MBJ2 — |MCJ* = |ABJ> — |AC|3},
hy = {M : |MC|— |MAJ* = [BC|* — |BAJ}.

Necht se pfimky k; a h, protinaji v bodé H, pak plati
soudasné

|HA* — [HB[* = |CA|"— |CB’,
|HBJ — |HC|2 = |ABJ* — |AC]".

Sedtenim téchto dvou rovnosti dostaneme
|[HA|* — |HC|* = |AB|*— |CBJ~.
Odtud v8ak plyne, Ze bod H je také bodem vyiky h,. []
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3.3 Osy uhld trojihelniku se protinajf v jediném bodé
(ve stfedu kruzZnice trojuhelniku vepsané). Dokaizte.

O Zvolme libovolny trojithelnik ABC a oznadme @, b
a ¢ piimky BC, CA a AB. Osy [, a I, ihlt trojdhelnfku
pfi vrcholech 4 a B se protinaji ve vnitfnfm bodé O
trojihelniku ABC. Bod O spliiuje podminky (0, b) =
=0(0,¢) a p(0,a) = o(0, c}). Pak je také (0, bd) =
= p(0, a), tedy bod O je také bodem osy I, Ghlu pfi
vrcholu C zvoleného trojihelniku. ]

Pozndmka. Mnozina viech bodu M roviny, pro které
je o(M,c) = o(M, b) a soudasné (M, a) = o(M, ¢), se
skladé ze &ty bodi O, O,, O,, O,, ve kterych se proti-
naji osy dvojice piimek b, ¢ s osami piimek e, c.Z tran-
zitivnosti opét plyne, Ze témito ¢tyfmi body prochazeji
téZ osy piimek a, b (ka¥dd osa prochazi dvéma z téchto
¢tyt bodi).

Odtud plyne, Ze Sest os vnit¥nich a wvnéjgich dhla
trojihelniku se protina ve é&tyfech bodech, kaZzdym
z nich prochazeji tii osy. Jeden z téchto &tyi bodu je
stfedem kruZnice trojihelniku vepsané, zbyvajfci t¥i
body jsou stfedem t#{ kruznic trojihelnfku vné vepsa-
nych.

Poznamenejme, Ze pro paty vysek A, B, C ostrouhlé-
ho trojihelnfku 0,0,0, jsou body 0O,, O,, O4 stiedy
kruZnic, vné vepsanych trojihelniku ABC. Jsou tedy
vysky trojihelnfku 0,0,0, osami 1ihli v trojihelniku
ABC.

3.4 Té#nice trojihelniku prochazeji jedinym bodem,
tzv. téZistém trojuhelnfku. Dokazte.

Tuto vétu muZeme dokazat mnoha zpisoby. Prvni di-

¥ wew
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O Umistéme ve vrcholech trojuhelnfku ABC zivaii
Iy, I'y, I'; té%e hmotnosti a hledejme jejich téZisté. Té-
7i8td zava¥i I'y a I'p je ve stfedu tiseéky AB, a proto
t8%isté Z vSech tii zdavaZi leZi na odpovidajief téZnici.
Stejné tak musi tézidté Z lezet na zbyvajicich dvou téz-
nicich, vSechny t¥i téZnice se tudiz protinajf v jediném
bodé. O

Ukézeme si jesté dikaz obdobny dukazim predcha-
zejicich t¥ vét.

[0 Body téZnic trojihelniku ABC vedenych vrcholy
A, B, C vyhovujf postupné podminkim (viz 2.17)

Samp = Soma, Sams = Spmce, Spac = Sema. (1)

Je vidét, %e z prvnich dvou podminek plyne tfeti pod-
minka, téZnice se tudiz protinaji v jediném bodé&. [

Pozndmka. MnoZina vsech bodu, které vyhovujf né-
které podmince v (1), je (viz 2.17) dvojice pifmek skla-
dajici se z téZnice a z dal$f pfimky. VSechny tii takovéto
dvojice pfimek se protinaji ve &tyfech bodech Z, A’,
B', C'. Trojihelnik A’B’'C’ je trojuhelnik, kterého jsme
pouzili v prvnim dukaze véty 3.2 (obr. 29).

Obr. 29
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3.6 a) Dokazte, Ze chorddly t¥{ kruZnic prochazejf
jedinym bodem nebo jsou spolu rovnobéiné (viz 2.9).

b) Méjme t¥i kruZnice, které se po dvou protinaji.
Pro kazdou dvojici danych kruznic vezméme jejich
spoleénou tétivu. Pak se tyto tii tétivy (nebo jejich
prodlouZen{) protinaji v jediném bodé& nebo jsou rovno-
béiné. |

3.6 Dokaite, Ze v ostroihlém trojihelnfku ABC
existuje bod 7, ze kterého jsou viechny tii strany
trojihelniku vidét pod shodnymi Whly, tj.| <X ATB| =
=|<¥ BTC|=|< CTA|. Tento bod se nazyvd bod
Torricelltho (&i Toriéeliho). ‘

3.7 UvaZujme vSechny trojihelniky s danou stranou
AB a danou velikosti ¢ dhlu pfi protéj§im vrcholu.
Uréete mnozinu

a) téZist viech téchto trojuhelniki;

b) stfedt kruznic vepsanych témto trojihelnikim; |

¢) prusediku vysek uvaZovanych trojihelnika. |

3.8 a) Po dvou se protinajici pfimky @, b, ¢ prochizeji
po fadé body A4, B, C, kolem kterych se otddeji viechny
t¥i stejnou tdhlovou rychlosti w. Dokaite, Ze v jednom
okam#iku prochdzeji vSechny tfi piimky jedinym
bodem. |

b) Dokazte, ze kruznice, které jsou soumérné sdruzené
s kruZnici opsanou trojuhelniku ABC podle piimek
AB, BC, CA, prochazeji jedinym bodem, prisedikem
vysek trojihelniku ABC. |

3.9 Vita Cevova (¢ti Cevova). Na stranach AR, BC,
CA trojtihelniku ABC jsou zvoleny body C,, 4,, B,.
Dokaite, %e se tisetky A4,, BB,, CC, protinaji v jedi-
ném bodé pravé tehdy, kdyz plati

4, |BA)| [0B| _, |
BC,| 04 4B~
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3.10 Body C,, 4,, B, leifcimi po fadé na stranich
AB, BC, CA deného trojihelnfku ABC jsou vedeny
kolmice k témto stranam. DokaZte, Ze tyto t¥i kolmice
prochéazejf pravé tehdy jednim bodem, kdyz je splnéna
podminka [AC,|* + |BA,|* + |CB,|* = |4B,|* + |BC,|*
+ 104, )

Prinik a sjednoceni. Popidme podrobnéji ty zékladni
operace, kterymi se stile zabyvime,

Necht jsou dény dvé, nebo i vice mnozin bodu. Pri-
nikem téchto mnoZin nazyvame mnoZinu vdech bodd,
které pati soudasné véem danym mnoZindm. Sjednoce-
nim téchto mno#in je mnoZina viech bodd, které pati
alesponi jedné z danych mnoZin.

Jestlize jsme méli najit v iloze viechny body, které
spliiovaly soudasné nékolik podminek, postupovali jsme
takto: nasli jsme mnoZiny véech bodu, které spliiovaly
postupné vidy jednu z téchto podminek, a pak jsme vzali
prunik vSech takto nalezenych mnoZin. S takovou
situaci jsme se setkali také v algebraickych tulohéch:
mnoZina Fedeni soustavy rovnic

fl(x) =0,
fo(x) = 0
je prunikem mnozin vsech feSeni jednotlivych rovnic

soustavy.

Mame-li v iloze najit body, které vyhovuji alespori
jedné z nékolika podminek, musime najit mnoziny bodu,
které vyhovuji jednotlivym podminkam, a pak vzit
jejich sjednoceni. Stejné tak postupujeme pfi FeSent
rovnice f(x) = 0, jejiz levd strana je soudinem: f(z) =
= },(z)fs(x). Najdeme mnoZiny Fefeni jednotlivych rov-
nic f,(x) = 0 a fy(x) = 0 a vezmeme jejich sjednoceni.
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Jesté jeden pojem, se kterym jsme zde pracovali, vy-
volava algebraické asociace — pojem rozkladu. Pfi fe-
genf nerovnice f(x) > 0 nebo f(x) < 0 pro spojitou funkei
f fesfme nejdiive odpovidajici rovnici f(x) = 0. Obdrze-
né body rozdéluji definidni obor funkee f (interval nebo
celou pfimku) na édsti, ve kterych nabyva funkce f
hodnot stejného znaménka (obr. 30). Stejné tak mnozi-
ny bodit roviny, které spliuji néjakou nerovnici, jsou

Y
y=Ff(x)

o

T]v *

Obr. 30

obydejné oblasti ohranitené ki¥ivkami, na kterych je
splnéna odpovidajicf rovnice. Mnoho jednoduchych
prikladd jsme vidéli v kap. 2.

V nasledujicf tiloze se setkame se sloZitéj§imi rozklady

vvvvv

3.11 Necht jsou diny dva rfizné body A, B v roviné.
Najdéte mnozinu viech bod{t M, pro které je trojithelnik
AMB

a) pravouhly,

b) ostroihly,

¢) tupoihly.

O a) Trojahelnik A M B je pravoihly, jestlize je splné-
na jedna z podminek: 1)| TAMB|= 90°, 2)| <xBAM| =
= 90° 3)|<x ABM| = 90°.
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Hledand mnoZina je proto sjednocenim téchto tif
mno#in: 1) kruZnice s primérem A4B, 2) piimky I,
prochazejici bodem A kolmo k piimce AB, 3) ptimky 5,
prochazejici bodem B kolmo k pifmce AB. Z tohoto
sjednoceni nutno ovem vyjmout body A4, B (obr. 31).

b) Trojihelnik A M B je ostrotihly, jestlize jsou splné-
ny zarovei podminky: 1)| XAMB| < 90°,2)| XBAM| <
< 90°, 3)| < ABM] < 90°. Hledand mnoZina je tudiz

N/

Obr. 31 Obr. 32

pranikem téchto t¥i mnoZin: 1) mnozZiny vnéjsich bodi
kruhu s pramérem AB (viz kap. 2, D), 2) poloroviny bez
hraniéni pfimky I,, obsahujici bod B, 3) poloroviny bez
hrani¢ni ptimky Iz, obsahujici bod A. Jejich prinikem
je pés mezi piimkami 14, I bez bodi kruhu s primé-
rem AB (obr. 32).

c¢) Vsimnéme si, ze kazdy bod M roviny (s vyjimkou
bodu piimky AB) splituje nékterou ze tii podminek:
bud je trojihelnik 4 M B pravoiuhly, nebo je ostrotdhly,
nebo je tupothly, pFidemZ jednotlivé piipady se vza-
jemné vyluéuji. Proto se v pfipadé ¢) rovné hledand
mnozina mnoziné viech téch boda, které nepatfi ani
do mnoziny boda spliiujicich podminku a), ani do mno-
¥iny bodid spliujicich podminku b). Tato mnoZina je
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sjednocenim dvou polorovin a kruhu s vynechinfm bodi
p¥imky AB a hraniénich bodi (obr. 33). O

3.12 V roviné jsou opét dany dva ruzné body A4, B.
Najdéte mnoZinu viech bodi M, pro které je

a) trojihelnik 4 M B rovnoramenny;

b) nejdelsi stranou trojihelnifku ABM strana AB;

¢) nejdeli stranou trojihelniku ABM strana AM.

AN SN
m

Obr. 33 Obr. 34

3.13 V roviné je dan étverec o strané délky 1. Zvoleny
bod roviny nemé od Zadného vrcholu &tverce vzdile-
nost vétsi nez 1. DokaZte, Ze vzddlenost tohoto bodu
od kaidé strany étverce je alesponr 1/8.

[J Mnozina boda M, jejichz vzdalenost od ka%dého
vrcholu &tverce je nejvyse rovna jedné, je prinikem
étyt kruhia o poloméru 1 se stiedy ve vrcholech &tverce
(obr. 34). Je to ,,étyfihelnik‘’ ohranideny &tyFfmi kruho-
vymi oblouky; vzdédlenost jeho vrchold od nejbliZsi

strany je 1 — Vﬁ_/2. Ovéfme, Ze toto éislo je vétsi nez
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Ted je zfejmé, %e viechny body nasi mnoZiny maji
od kazdé strany &tverce vzdalenost vétsi nez 1/8. O

3.14 Bodem O roviny jsou vedeny tfi pfimky, které
rozdéluji rovinu na Sest shodnych whla. Vzdélenost
bodu M od kazdé z danych pfimek je mensi nezi 1.
Dokaizte, ze vzdalenost |0M| je mensi nez 7/6.

3.15 Je dan &étverec ABCD. Najdéte mnoZinu viech
bodti, které jsou bliZz k pfimce 4B neZ k pHmkim BC,
CDa DA.

3.16 Je dan trojihelnik ABC. Urdete v roviné
trojihelniku mnoZinu bodi M, pro které je obsah
kaidého z trojuhelnikt AMB, BMC, CMA mensi nez
obsah trojuhelniku ABC.

3.17 Je dan konvexni &tyithelnik A BCD. Dokaite,
e ¢tyfi kruhy s praméry 4B, BC, CD a DA pokryvaji
cely ¢tytGhelnik.

{J Predpoklddejme, Ze uvniti étyfuhelniku lezi bod
M, ktery nelezi v Zadném z popsanych kruhi. Pak podle

kap. 2, E jsou viechny thly AMB, BMC,CMDa DMA
ostré, a tedy jejich soudet mensi nez 360°, coz je spor. []

3.18 Cast lesa mé tvar konvexniho &tyithelniku
o obsahu 8 a obvodu p. Dokazte, Ze uvnitf lesa je bod,
jehoz vzdalenost od okraje lesa je vétsi nez S/p.

3.19 Uvniti &étverce o strané délky 1 je zvoleno n
bodi. Dokazte, Ze z nich lze vybrat dva body tak, Ze

jejich vzdalenost je mensi nez 2/)/nn. |

V dalsich ulohdch bude tfeba zkoumat sjednoceni
nekoneéné mnoha mnoZin.
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3.20 a) Je déan bod 0. UvaZujme systém viech kruZnic
o poloméru 3 cm, jejich? stfedy maji od bodu O vzda-
lenost 5 cm, a dale systém kruZnic poloméru 5 cm, je-
jichZ vzdalenost od bodu O je 3 cm. DokaZte, Ze sjedno-
ceni viech kruznic prvniho systému splyva se sjednoce-
nim viech kruZnic druhého systému.

b) Najdéte mnozinu stiedt vSech uselek, jejichz
jeden krajn{i bod lez{ na jedné z danych kruznic a druhy
na druhé.

[0 b) Ozna¢me poloméry danych kruZnic r, a r,
a jejich st¥edy O, a O, (obr. 35). Zvolme nejdiive pevné
bod K prvni kruznice a najdéme mnoZinu stfedu
tsedek, jejichZ jeden krajni bod splyvda s bodem K
a druhy leZi na druhé kruznici. Vysledkem je kruZnice
s polomérem r,/2 a stiedem @, ktery splyvd se stfedem
usetky KO,. Je to kruznice, ktera odpovidd kruznici
(0,5, ry) ve stejnolehlosti se stfedem K a koeficientem
1/2. Poznamenejme, Ze bod @ lezi ve vzdalenosti r,/2
od sttedu P tsetky 0,0,.

Budeme-li pohybovat bodem K po kruznici (0,, r,),
bude se bod @ pohybovat po kruzZnici o poloméru r,/2
a stfedu P. Hledana mnozina je sjednocenim v3ech krui-
nic o poloméru r,/2, jejichZ sttedy leZi na kruznici o po-
loméru r,/2 a stfedu P. MnoZinou viech bodd vyhovu-
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jicich podmince dlohy je mezikruzf s vnéj$im polomé-
rem (r; + 7,)/2 a vnitinim polomérem |r, — r,|/2. V p¥i-
padé r; = r, je touto mnozinou kruh. J

3.21 Bod O je pocdatednim bodem = vektord délky
jedna, které jsou umistény v jedné poloroviné, ohrani-
¢ené pfimkou I, jez prochazi bodem 0. Dokazte, %e v pii-
padé lichého 7 je velikost souétu danych vektori rovna
alespon jedné. |

3.22 Vesnicf A, obklopenou ze viech stran loukami,
prochézi jedind pfima cesta. Clovék miZe jit po cesté
rychlosti 5 km/hod a po louce rychlosti 2 km/hod.
Nadrtnéte mnozinu bodi, kterych &lovék muzZe dosdh-
nout za jednu hodinu po vyjiti z 4.

3.23 Uloha o sjru. Je mozno &tvercovy syr s dirkami
rozfezat vZdy na konvexni ¢asti tak, aby v kazdé &asti
byla pravé jedna dirka?

Matematicky miZeme tuto tilohu formulovat takto:

Uvnitt étverce je nékolik neprotinajicich se kruht.
Je mozZno étverec rozdélit na konvexni mnohothelniky
tak, aby v kaZdém z nich byl pravé jeden kruh?

Odpovéd je vidy kladna. Pro libovolny piiklad s ne-
pEilis velkym poétem kruhi muZeme lehce ukazat, jak
étverec roziezat, aby byla splnéna podminka dlohy. Aby-
chom viak podali vylerpivajici dikaz, musime ukazat
obecny postup, ktery by se hodil pro libovolny potet
kruht a jejich libovolné rozmisténi.

Zkoumejme nejdifve jednodusSi Glohu: piedpokla-
dejme, Ze poloméry viech kruht jsou stejné. Pak muze-
me &tverec roziiznout zpisobem, ktery popiseme nej-
dfive velmi struéné, jednou vétou. Kazdému kruhu
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pfifadime mnoZinu téch bodd étverce, které maji od
ného mensi vzdalenost nez od vsech ostatnich kruhid —
a to budou pravé hledané konvexni mnohoihelni-
ky ().

Vysvétleme si nyni tento postup podrobnéji. Stiedy
danych kruht oznaéime C,, C,, ..., C,, a necht C; je
jeden z nich. Najdeme mnoZinu vsech bodid étverce,
jejichZz vzdalenost od bedu C; neni vét§f nez vzdilenost
od ostatnich boda C;. MnoZina vSech bodi roviny, které
jsou bliZze k bodu C; nei k jednomu zvolenému bodu C;,
(t # §), tvoii polorovinu ohrani¢enou osou usedky C.C;
(viz kap. 2,A). Nas zajimaji body &tverce, které jsou bliz
k bodu C; nez ke viem ostatnim stfedum, tedy body,
které lezi ve vsech takto obdrZenych polorovinach.
Tvofi tedy mnoZinu, ktera je prinikem (n — 1) polo-
rovin a daného étverce, a tudiZ konvexnim mnohoihel-
nfkem (?). Protoze kazdd z uvaZovanych polorovin
obsahuje bod C;, a dokonce cely kruh se stfedem C;
(plyne z toho, Ze kruhy se stfedy C; a C; maji stejny polo-
mér a neprotinaji se), lezi tento kruh i v jejich pruniku.

KaZdému stfedu C; odpovidd tudiZ mnohothelnfk
{M:|MC, < |MC,| pro vSechna j # ¢, M leZi v daném
étverci}. Je zfejmé, Ze tyto mnohouhelniky pokryvajf
cely ¢étverec a #4dné dva nemaji spoledny vnitfni bod.
Cheeme-li urdit, do kterého z téchto mmnohouhelnfkit
patii bod N daného ¢&tverce, musime si zodpovédst
otazku: Ktery ze stfedi C; le#i nejbliz bodu N ? Je-li
takovych nejblizsich bodu vice, lezi bod N na ose usetky
C.C; pro nékterou dvojici ¢ # j, tedy na hranici mnoho-
dhelnfku, na ¥fezu. Timto zpusobem je étverec rozfezan
na konvexni mnohoihelnfky, z nichZ kazdy obsahuje
pravé jeden kruh.

Krasny piiklad dostaneme, splyvaji-li stfedy kruhd
s vrcholy sité tvofené shodnymi rovnobéiniky. N4S
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zpusob rozdélen{ &tverce muZeme popsat takto: ve
viech rovnobéinicich sité vedeme krat$i dhlopiidky.
Dostaneme tim sit tvofenou navzdjem shodnymi ostro-
ihlymi trojihelnfky s tymizZ vrcholy jako sit rovnobéZni-
kova. Uvnitt kaZdého trojihelniku sité vedeme osy
stran. ObdrZené $estithelniky (pfesnéji jejich pruniky
se &tvercem) tvoi{ nade rozdéleni &tverce (obr. 36).

Obr. 36

Zatim jsme vyfesili Glohu 3.23 v pFipadé, kdy vSechny
kruhy mély stejny polomér. V obecném ptipadé, kdy
jsou poloméry kruhu rizné, miZeme postupovat takto:
Z kazdého bodu, ktery leZi vné vSech danych kruhu,
vedeme ke véem kruhium teény. MnoZina bodid pfitaze-
nd kruhu y se bude sklddat z kruhu y a z téch body,
ze kterych je tedna ke kruhu y kratsf nez teény k ostat-
nim kruhim. Tato mnoZina je prinikem nékolika polo-
rovin obsahujicich kruh y; hraniénfmi pffmkami téchto
polorovin jsou chordaly kruZnice y a nékteré z dalsich
kruZnic (viz tlohy 2.9 a 3.5). Timto zpusobem bude
opét cely dtverec dan jako sjednoceni konvexnich mno-
hothelnfki, které nemajf spoleéné vnitinf body, a kazdy
z mnohothelnfkii obsahuje sviij kruh.
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Kapitola 4

MINIMUM A MAXIMUM

Tato kapitola zad¢ind zcela jednoduchymi tlohami,
ve kterych se hledaji nejvétsi nebo nejmensi hodnoty,
jichZ nabyva ta & ona velidina, a konéf zajimavymi, slo-
%it&jsimi priklady. Ulohy na maximum a minimum je
mozné obydejné prevést na zkouman{ analyticky zadané
funkce. Zde si vSak ukdZzeme hlavné takové tlohy, ve
kterych geometrické wvahy vedou mmnohem rychleji
k cfli. Uvidite, jak se pfi feseni takovych tloh pouiiva
mnozin bodd dané vlastnosti.

4.1 Pod jakym ihlem vzhledem k bfehum p¥imého
tseku Feky musi plout lodka, aby vzdélenost, o kterou
je lodka unesena proudem feky za dobu jeji plavby od
jednoho b¥ehu ke druhému, byla co moZnéd nejkratsf.
Pfitom je rychlost proudu feky 6 km/hod a rychlost
lodky ve stojaté vodé 3 km/hod.

(1 Odpovéd je 60°. Musime totiZz nafidit lodku tak,
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aby jeji absolutni rychlost (vzhledem k bfehtim) svirala
s bfehem nejvétsf mozny thel (?). Necht vektor 04
znadf rychlost toku feky a AM znad vektor rychlosti
lodky vzhledem k vodé (obr. 37). Soudet 04 + AM =
— OM dav absolutni rychlost lodky v biehtim. Ve-

likost vektoru AM je 3, jeho smér miZeme zvolit libo-
volné. MnoZina vSech moZnych koncovych boda M

vektort AM je kruznice o poloméru 3 se stiedem
v bodé A. Je zfejmé, Ze nejvétsi moZny tihel s b¥ehem

_— —
svird ze vSech vektori OM vektor OM,, ktery leif na
tedné k uvazované kruZnici. Dostaneme tak pravoihly
trojihelnik, ve kterém je odvésna rovna poloroviné
pFepony, a tudfz je hledany 1hel 60°. O

4,2 Ze viech trojuhelnfka s danou stranou BC a da-
nou velikosti ¢ dhlu pfi vrcholu 4 méime najit ten,
pro ktery je polomér vepsané kruZnice nejvéts.

(0 Uvazujme body A, které lez{ v jedné poloroviné
ohranidené pfimkou BC a pro které je|<x BAC| = ¢.
Mnozina stfeda vSech kruZnic vepsanych trojihelnikém
ABC je oblouk kruinice s krajnimi body B a C (viz
3.7 b). Je vidét, Ze nejveétsi polomér vepsané kruznice
odpovidé rovnoramennému trojtihelnfku. ]

4.3 Ze viech trojihelnikii s danou stranou a danou
velikost{ prot&jéfho Ghlu vyberte ten, ktery ma nejvétsi
obsah.,

4.4 Po dvou na sebe kolmych pfimych cestich jdou
dva chodci, jeden rychlostf », druhy rychlosti v. Kdyz
byl prvni chodec v priseéiku obou cest, zbyvalo druhé-
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mu jesté d kilometri do tohoto mista. Uréete nejmensf
vzdalenost obou chodcu. |

4.5 Vesnici A, obklopenou ze vsech stran loukami,
prochazi jeding p¥ima cesta. Clovék miZe jit po cestd
rychlosti 5 km/hod, po louce rychlosti 2 km/hod v libo-
volném sméru. Jak daleko ma jit chodec po cesté, chee-li
se co nejrychleji dostat z vesnice 4 k chaloupce B,
kterd stoji ve vzdalenosti 13 km od vesnice a ve vzda-
lenosti 5 km od cesty ?

4.6 Jsou déany dvé protinajici se kruZnice, necht 4 je
jeden jejich spoledny bod. Bodem A méme vést piimku
tak, aby jeji druhé prisediky s kruZnicemi tvorily tisetku
maximalni délky. |

4.7 V roviné je dan bod 0. Vzdalenost jednoho vrcho-
lu rovnostranného trojihelniku od bodu O je a, vzda-
lenost druhého vrcholu je b. Jaka je maximalni vzdéle-
nost tfetiho vrcholu od bodu O?

[0 Odpovéd je a 4 b. Necht je AMN rovnostranny
trojihelnik, pro ktery je |0A| = a, |ON| = b. Pfi fesent
ulohy miuzZeme piedpokladat, Ze viechny uvaZované
trojihelniky maji jeden vrchol v bodé A. V opaéném
piipadé bychom totiz mohli cely trojuhelnik otodit
kolem bodu O tak, aby vrchol, jehoZ vzdalenost od bodu
O je a, splynul s bodem 4. P¥i tomto otoleni se nezméni
vzdalenosti bodi od bodu O. Budeme tedy predpokla-
dat, Ze A je pevny bod ve vzdalenosti ¢ od bodu O
a bod N probtha kruznici o poloméru b a stiedu O
(obr. 38). Jakou mnozinu pak probiha bod M ? Odpo-
véd je dana v uloze 1.6: Bod M probihd dvé kruZnice,
které dostaneme z kruzZnice (O; b) otofenim o dhel 60°
kolem bodu A. Z nich stadf vzit jen jednu, druhd je
s ni soumérné sdruzend podle piimky OA. Vzdalenost
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jejtho stfedu O’ od bodu O je a (nebof trojihelnik
OAQ’ je rovnostranny) a jeji polomér je b. Tudi% je ma-
ximaln{ vzdalenost bodu O od tietiho vrcholu M rovna
a+b

Z této ulohy plyne zajimavé tvrzeni: vzddlenost
libovolného bodu roviny od vrcholu rovnostranného
trojuhelniku nent nikdy vétsi neZ soudet vzdélenosti
tohoto bodu od zbyvajicich dvou vrcholi.

4.8 Jaka je nejvétsf moznd vzdalenost bodu O od
vrcholu M &tverce AKMN, jestliZe

a) [0A| = |ON| =1;
b) [OA| = a, |ON| = b?
4.9 Ze vsech trojuhelnfkit s danou jednou stranou

a velikostf protéjsiho dhlu vyberte trojihelnik s maxi-
malnim obvodem. |

Kde umistit bod ?

4.10 My$ muZe vylézt tfemi dirami, a to v bodech
A, B, C, které jsou koce znamy. Kam si ma kotka sed-
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nout, aby byla co nejbliZe i k dife, kterd je od ni nej-
vzdélenéjsi? Jinymi slovy, hledame misto, pro které
je maximum vzdilenost{ od danych dér nejmensf.

{0 UvazZujme kruhy téhoZ poloméru r se stfedy v bo-
dech A4, B, C. Je tieba najit nejmensi polomér r,,
pii kterém maji tyto ti¥i kruhy spoledny bod. Bude to
pak jejich jediny spoleény bod, a to bude hledany
bod K. Je-li totiz M jiny bod, je vnéjsim bodem alespor
jednoho z uvaZovanych kruhia o poloméru r,, a je tudiz
jeho vzdalenost od jednoho z bodta A4, B, C vétsf nez r,.

V ptipadé ostrouhlého trojihelnfku ABC splyvi
bod K se stfedem opsané kruznice, v pfipadé pravo-
dhlého trojihelniku nebo tupoihlého trojihelniku je
bod K st¥edem nejdelsi strany. (O

(0 Bod K miZeme najit také jako stfed nejmensfho
kruhu, ktery obsahuje body 4, B, C (%). O

[ UkaZeme jesté jeden zphsob feSenf dlohy 4.10.

Rozdélime rovinu na tfi mnoziny:

a={M:|MA| = |MB|a |MA| =z [MC|},
b={M:|\MB| = |MA|a |MB| = |MCj},
c={M:|MC| = |MB|a |MC| = |MA|}.

To jsou tfi dhly, jejichz ramena leZf na osiach stran
trojihelniku 4 BC. Sedi-li kotka v dhlu a, pak z boda
A, B, C je od ni nejvzdalenéjsi bod 4, sedf-li v dhlu 3,
je nejvzdalendjsf bod B a v thlu ¢ bod C.

Je-li trojihelnik A BC ostrodhly, je pro ko8ku nejvy-
hodnéjsf sedét ve spoleéném vrcholu dhli a, b, ¢, tj. ve
stfedu opsané kruZznice. Je-li trojihelnik ABC pravo-
uhly nebo tupoihly, je zfejmé pro kodku nejvyhodndjsi
sedét ve stfedu nejdeldi strany trojihelntku ABC.
(Podobné v piipadé, kdy body A, B, C leif na p¥m-
ce.) O
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4.11 V &asti lesa ohranitené tfemi rovnymi %eleznid-
nimi tratémi Zije medvéd. Kde si ma vybudovat doupé,
chee-li byt od traté co nejdal?

sedét, ma-li byt nejvétsi ze vzdalenosti libovolného
bodu jezera k nejbliZz§imu krokodylovi co nejmensf?
b) Redte tuté% vlohu pro #tyfi krokodyly.

4.13 Uloha o &lunu, Na malém ostrové O stoji majik,
jehoZ svételny paprsek osvétluje na moiské hladiné
usedku délky a = 1 km. Svételny paprsek se rovno-
mérné otddf kolem osy majaku, jednu otddku vykona
za &as T = 1 min. Clun, ktery mize plout nejvyse rych-
losti v, se ma dostat nepozorované k ostrovu (tak, aby
nebyl osvétlen paprskem majdku). Pri jaké nejmensf
rychlosti v se mu to podafi?

[0 Nazv&me kruh o poloméru «a, ktery je svétlometem
osvétlovan, ,nebezpeénym kruhem‘. Je zfejmé, Ze
pro ¢lun je nejvyhodnéjsi vplout do tohoto kruhu v bo-
dé A, ktery byl pravé osvétlen.

Pluje-li élun k ostrovu po sedce, dostane se k ostrovu
za Sas afv; aby paprsek ¢lun nedostihl, je tfeba, aby se
svételny paprsek nestalil za tuto dobu jednou otoéit,
tj. aby byla splnéna nerovnost a/v < T, odkud

v > a/T = 60 km/hod.

Tim jsme dokézali, Ze pfi v > 60 km/hod se mize
flun dostat nepozorované na ostrov. Z toho oviem
neplyne, e 60 km/hod je dolnf hranici rychlosti, pfi
které nebude ¢lun objeven. Kapitan ¢lunu miiZze totiZ
vybrat i jinou cestu neZ po isedce AO0.

Skuteéné se ukaZe, Ze existuje vyhodnéjsf draha &lunu.
Nez budete &ist ddl, promyslete si nékterou vyhodndjsi
cestu sami.
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Vsimnéme si, Ze rychlosti raznych bodu svételného
paprsku jsou rtizné: éim bliZe lezf bod k bodu O, tim je
jeho rychlost mensi (obr. 39). Uhlové rychlost paprsku
je rovna 2x/T. Po kruZnici o poloméru » = v7'/2n mizZe
¢lun klidné plout pfed svételnym paprskem, protoze
jeho rychlost je rovna rychlosti odpovidajiciho bodu
paprsku. Vné kruhu o poloméru r a sttedu O je rychlost

Obr. 39

bodu na paprsku vét&f a uvnit¥ tohoto kruhu je rychlost
bodu paprsku mensi neZ v (nazveme tento kruh ,,bezpeé-
nym kruhem*).

Dostal-li se ¢lun bez potiZzi k bezpetnému okruhu,
dostane se nepozorované na ostrov. Jedna z moznych
cest uvnit¥ bezpedného kruhu je kruZnice o poloméru
r/2 prochizejici bodem O: pohybuje-li se ¢lun K po
této kruZnici rychlosti v, otadf se usetka KO kolem
bodu O se stejnou thlovou rychlosti, se kterou by se
¢lun pohyboval po kruZnici o poloméru r, tj. takovou,
jakou se pohybuje paprsek majiku (viz tloha 0.3).
Proto nebude ¢lun osvétlen.
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Hlavnim tkolem ¢&lunu je tedy dosahnout bezpeéného
kruhu.

Pluje-li élun do bezpedného kruhu po poloméru 40
a pak vySe popsanym zpisobem, splni svaj dkol uz
pti rychlosti

1 a a
Traem 7 0827

Podatilo se nam zlepsit pfedchdzejici odhad pro nej-
nizdi rychlost &lunu, p#i které se muze élun dostat ne-
pozorované k ostrovu. UkaZe se, Ze to neni nejlepsi
odhad. Ten najdeme nynf.

MnoZina bodd nebezpeéného kruhu, kterych mize
¢lun dosdhnout za &as ¢, je oblast ohranidena kruhovym
obloukem o poloméru vt se sttedem v bodé 4. Predpo-
kladejme, Ze za tuto dobu se paprsek otodi z polohy OA
do polohy OP (obr. 40—42). MnoZinu vSech bodi, do
kterych se za dobu ¢ dostane élun nepozorovan, oznaéi-
me D. Na obrazcich je ukdzano, jak se ménf mnozina D
v zévislosti na ¢. Jsou moZné dva piipady:

1) neni-li rychlost v dostateéné velika, pak mnozina D
v jistém &ase ¢ Gplné vymizi, aniZ by se ¢lun dostal pfed-

% . P A

v > = 51,7 km/hod.

(&)

o

Obr, 40 Obr. 41
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tim do bezpedného kruhu. Bude tedy zpozorovan nej-
pozddji v tase t = t,, kdy se paprsek dotyka v bodd L
kruhového oblouku o poloméru ¢, se sttedem v bodé 4
(obr. 43). Bod L le%i vné bezpetného kruhu (jinak by
&lun dosahl nepozorované ostrova), pfitemi &éfm je v
vétsf, tim vétsf je das t, a tim blize je bod L k ostrovu.

A

SAey
)

Obr. 42 Obr. 43

2) je-li rychlost v vétsi neZ jist4 hodnota v,, ma mno-
Zina D v jistém &ase ¢t neprazdny prinik s bezpeénym
kruhem a &lun dostihne ostrova.

Minimélni hodnota v, rychlosti &lunu odpovidd tomu
pfipadu, kdy se paprsek dotykd oblouku o poloméru
voly v bodé N, lezicim na hraniéni kruZnici bezpeéného
kruhu (obr. 44). Abychom nasli hodnotu »,, oznaéme §
velikost ihlu NOA a vyuZijme téchto rovnosti:

. v, T

INO| =1 =——, |AN| = vy,

AN| . 248  2n

~o| —®h — T
|NO| = a cos 8.
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Z prvni a posledni rovnosti plyne
vy = (27 a cos B)|T
a z prvnich ¢tyF dostaneme
2r + B =tgp.

)
&

Tuto rovnici miZeme feSit pouze pfiblizné, napiiklad
pomoci tabulek. Dostaneme, e se f rovni pfibliZné
0,92n/2, odkud

vy = 0,8a/T = 48 km/hod.

Pfi rychlostech &lunu vétéich neZ v, se muZe &lun
dostat bezpeéné k ostrovu. [

4.14 a) Syn plave uprostfed kruhového bazénu. Otec
stojicf na okraji bazénu neumf{ plavat, ale bézi étyfikrit
rychleji, neZ plave syn. Syn dokaZe béZet rychleji nez
otec, a chce mu uniknout. Podaii se mu to?

b) Pfi jakém poméru rychlosti » a u (v rychlost, jakou
syn plave; u rychlost béhu otce) nemiZe syn utéci?
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Kapitola 5

HLADINY

V této kapitole pojedname o ilohich a vétach pted-
chéazejicich kapitol, budeme je vsak formulovat v jiné
terminologii. Sezndmime se s pojmem funkce definované
v roviné a s pojmem hladiny funkce, které jsou zvlast
vhodné pfi FeSeni tloh na maximum a minimum.

NN

A

B

Obr. 456

5.1 Uloha o autobusu. Po pfimé silnici jede zédjezdovy
autobus. Stranou od silnice stoji palac, jehoz pradelf
svird se silnici jisty Ghel. V kterém misté na silnici ma
autobus zastavit, aby si cestujicf mohli z autobusu
prudeli palidce nejlépe prohlédnout ?

Matematicky miZeme dlohu formulovat takto:

Je dana piimka I a dsedka AB, kterd ji neprotind.
Na piimce ! najdéte bod P tak, aby tdhel APB byl co
nejvétsi (obr. 45).
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Nejdiive se podivejme, jak se asi méni dhel AMB,
pohybuje-li se bod M po pfimce I. Jinymi slovy, jak se
chovd funkce f, kterd kaidému bodu M pFimky 1
pfifazuje velikost thlu A MB.

Lehce muZeme sestrojit pfiblizny graf této funkce.
Pfipomenime, e graf se sestroji takto: nad kazdym bo-
dem M nasi p¥imky zvolime bod ve vzdalenosti f(M) =
=|x AMBI.

Ulohu bychom mohli fesit analyticky: zavést na ptm-
ce ! soustavu soufadnic a vyjadrit velikost thlu AMB
pomoci soufadnice  bodu M a pak zjistit, pro kterou
hodnotu x nabyva funkce svého maxima. Avsak vyjadre-
ni funkee f(x) je pomérné sloZité.

Podime elementdrnéjsi a poudnéjsi feSeni. K tomu
bude tieba zjistit, jak zavisi velikost dhlu AMB na
poloze bodu M, kdy% bod M probiha celou rovinu,
nejen pfimku .

O MnoZina vSech bodd M v roviné, pro néZ ma thel
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ABM danou velikost ¢, je dvojice soumérné sdruzenych
kruhovych obloukl s krajnimi body 4, B (kap. 2, E).
Tyto oblouky, probihd-li ¢ interval (0, =), pokryvaji
celou rovinu s vyjimkou pimky AB. Napiiklad hod-
noté ¢ = n/2 odpovidd kruznice nad primérem AB
(obr. 46).

Budeme nyni zkoumat pouze body M, leziof na ptim-
ce I, Z nich mame vybrat bod, pro ktery je tithel AMB
nejvétsi. S vyjimkou prisetitku C pimky ! s pfimkou
AB prochazi kazdym bodem piimky ! oblouk naSeho
systému; je-li (X AMB| = ¢, le#f bod M na oblouku
odpovidajicim hodnoté ¢. Mame tedy ze viech uvazo-
vanych oblouku, které maji spoleény bod s p¥imkou I,
vybrat ten, ktery odpovida nejvétsf hodnoté ¢.

UvaZujme jen jednu z polopfimek, na které délf
piimku ! bod C. (Pfipad, kdy pfimka ! je rovnobéiné
s usetkou AB, pfenechdme &tenafi.) Sestrojime oblouk
¢, ktery se dotyké zvolené polopiimky, a dokdZeme, Ze
z bodu dotyku P, je tisetka AB vidét pod nejvétsim
tihlem (obr. 47). Skuteéné, libovolny bod M nasf polo-
pFimky rizny od bodu P, lezi vné oblouku ¢,. Odtud
plyne (kap. 2, E), %e | <X AMB| <|<x AP,B|.

Je zfejmé, Ze pro druhou polop#imku je situace stejna;
bod P,, ze kterého je vidét visedka AB pod nejvétsim
uhlem, je bodem dotyku této polopfimky a jednoho
z uvaZovanych oblouki.

Tim jsme dokéazali, Ze hledany bod P splyva s jednim
z boda P,, P,, ve kterych se dotykaji kruZnice procha-
zejfcf body A, B pi{mky ! (obr. 48). Bod P splyne s tim
z bodu P,, P,, pro ktery je thel PCA ostry. Je-li isedka
AB kolma k pfimce I, je ze symetrie ziejmé, %e oba body
P, a P, splnuji podminky ulohy. Avsak vyletniei si
musi{ v kazdém pifpadé vybrat z boda P,, P, ten, ze
kterého vidf pradeli paldce. [
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Funkce definované v rovind. Zakladn{ myslenka ¥eSeni
tlohy 5.1 spoéivala v tom, Ze jsme na celé roviné uvazo-
vali funkei f, kterd kazdému bodu M piifazovala veli-
kost \hlu AMB, tj. (M) =|<X AMB,.

V predchazejicich paragrafech jsme se vlastné uz
setkali s riznymi funkcemi v roviné. Kromé nejjedno-
dussich funkei v roving, jako f(M) = |OM|, f(M) =
= o(l, M), |f(M) = | ABM|(kde O, A, B jsou dané

{
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Obr, 47 Obr. 48

body a ! dand piimka), jsme zkoumali soutty, rozdily,
poméry téchto funkef a jiné jejich kombinace.

Hladiny funkei. Mnoho podminek, kterymi jsme defi-
novali mnoZiny bodid, je moZno formulovat takto:
v roviné nebo v jeji ddsti je definovana funkce f a je
tfeba najit mnoZinu viech bodd M, ve kterych tato
funkce nabyva dané hodnoty A, tj. {M : (M) = h}.

Zpravidla je touto mnoZinou pro ka%¥dé pevné &fslo A
k¥ivka; rovina se t{mto zptsobem rozklida na kfivky,
které se nazyvaji hladinami (nékdy té% vrstevnicemi)
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funkece f. PFi feSen{ tilohy 5.1 jsme tedy zkoumali hladi-
ny funkce (M) =| <X AMB)

Graf funkee. Vysvétlime si nyni pojem hladina funkce.
Pro funkce definované v roviné je mozné sestrojit graf
v podstaté stejné jako pro funkce y = f(x) definované
na piimce, jen s tim rozdilem, %e to bude utvar v prosto-
ru. Budeme piedpokladat, Ze rovina, na které je funkce
definovéna, je horizontélni, a pro kazdy jeji bod M vy-
znadime v prostoru bod lezici nad bodem M ve vzda-
lenosti f(M), je-li (M) = 0, a pod bodem M ve vzda-
lenosti |f(M)], je-li (M) < 0. Viechny takto vyznalené
body tvofi plochu, kteri se nazyva grafem funkce f.
Jinymi slovy, zavedeme v horizontilni roviné soustavu
soufadnic Ozy; kladna &ist osy z nechf sméfuje kolmo
vzhiru. Grafem funkce bude mnoZina bodut se soufadni-
cemi [z; y; 2], kde z = f(M) a [x; y] jsou souFadnice
bodu M v roviné. (Neni-li funkce definovana ve vsech
bodech roviny, ale jen v bodech jeji jisté dasti, leZi graf
jen nad touto &asti.)

Vidime, Ze hladina {M : f(M) = h} se skladd z téch
boda M, nad kterymi jsou body grafu ve stejné trovni,
ve vysce h.

Na nasledujicich obrizcich jsou zndzornény grafy
funkef, jejichZz hladinami jsou mnoZiny nasf abecedy.
U kaZdého grafu je téZ obrazek vyznadujici hladiny
piislusné funkece.

C. (M) = o(M, 1), grafem je hranice klinu, hladinami

jsou dvojice rovnobéinych pf¥imek (obr. 49).

D. (M) = |[MO|, grafem je &ast kuZelové plochy, hla-

dinami jsou soustfedné kruznice (obr. 50).

E. (M) = | AMB|, grafem je ,horsky hibet*, nej-
 vy88i body tvofi horizontilni vsetku ve vysce =
nad tsedkou AB; v krajnich bodech horizontéln{
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uselky jsou vertikdlni srdzy, z ostatnich bodu lze
zvolna sestoupit k nulové hladiné, kterou tvoi piim-
ka AB s vyjimkou tsetky AB (obr. 51).

F. (M) = |[MA[* — |[MB? grafem je rovina, hladinami
navzajem rovnobézné piimky (obr. 52).

G. (M) = |[MA|* + [MBJ?, grafem je rotadni parabo-
loid, hladinami soustfedné kruZnice (obr. 53).

H. (M) = |MA| | |MB|, graf ma v bodé A dilek, u bo-
du B se zdvihd nade vSechny meze; hladinami jsou
kruznice, jejichZz stfedy leif na pfimce AB, kazdé
dvé z nich maji za svou chordélu osu usetky AB.
Ta je sama té% hladinou odpovidajief hodnoté 1
{obr. 54).

J. (M) = o(M, 1,)o(M,1,), graf se sklidd ze dvou:
tasti hyperbolickych paraboloidd, hladinami jsou
dvojice pfimek prochdzejicich prisedikem piimek
l,, I, (obr. 55).

K. f(M) = o(M, 1) + o(M, I,), grafem je tast tyFboké
jehlanové plochy, hladinami jsou pravouhelniky
s uhloptitkami na p¥{mkach I,, I, (obr. 56).

Funkce
f(M) = Ale(Mr ll) + }'29(M) l2) + LI + }me(M’ ln))

o které jsme hovorili v kap. 2 (véta o vzdalenostech od
piimky), mé v kazdé &asti @, na kterou je rovina roz-
délena p¥imkami I, I,, ..., I, tvar

f(x, y) = ax + by + ¢,

je tedy linearni. Proto se jeji graf bude sklidat z kouski
rovin, které jsou bud naklonéné, nebo (je-li ¢ = b = 0)
horizontalni. To jsme vidéli na p¥fkladech mnoZin v bo-
dech C, J, K na&i abecedy.

Hladiny takové funkece se sklddajf z kousku pFimek;
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obsahuje-li graf horizontdlni ploSinku, obsahuje né-
ktera hladina celou &ast @ roviny.

Funkee f tvaru f(M) = 4,|MA, >+ ,|MA,2+ ... +
+ A|MA, 2 je v piipadé A, + 4, + ... + 4, = 0 také
linedrni funkei definovanou na celé roviné (ptiklad F)
a v obecném piipadé pfi 4, + 4, + ... + 1, = 0 se da

psat ve tvaru
f(M) =dIMA|2

Obr. 57

kde A je jisty bod roviny. V tomto p¥ipadé jsou hladi-
nami kruZnice (véta o druhych mocninach vzdélenostf
§2) a grafem je rotaéni paraboloid.
Nejslozitéjsi grafy v nasf abecedé maji funkce f(M) =
= |X AMB| a (M) = |AM|||BM|. Poznamenejme,
‘Ze mezi hladinami téchto funkeci je zajimavy vztah:
jsou to dva systémy kruZnic, pti¢emz kazdd kruZnice
jednoho systému protind ka¥dou kruZnici druhého systé-
mu kolmo (?); fikdme jim ortogonalni systémy (obr. 57).
Ukazeme jesté jeden piiklad jednoduché funkce, jejiz
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hladiny jsou polopf{imky vychézejicf z jednoho bodu
a grafem je pomérné sloZitd plocha. Je to funkce
f(M) = |<x MAB|, kde A, B jsou dané body roviny.
Jejim grafem je nad kaZdou polorovinou, na kterou délf
rovinu pfimka 4B, Sroubova plocha, helikoid (obr. 58).

Mapa funkce. Jak vidime, pro mnohé funkee je dost
slozité sestrojit jejich graf. Pro pfedstavu o prabéhu
funkce je zpravidla vyhodnéjsi zakreslit si jeji hladiny.

Obr. 59

Geografickd mapa se sestavuje timto zpisobem:
necht je (M) nadmotskd vyska v misté M. Narysuji se
hladiny {M : f(M) = 200 m}, {M : (M) = 400 m} atd.
Oblasti mezi témito vrstevnicemi se vyznadujf riznymi
barvami: oblast {M : 0 < f(M) < 200 m} zelené, oblasti
{M :f{(M) >200m} hnédé¢ a oblasti {M :f(M) < 0}
riznymi odstiny modré.

K sestaveni mapy funkce je tieba narysovat nékolik
jejich hladin — dostatedné mnoho, aby z nich bylo moZné
usoudit na prabéh ostatnich — a pfipsat ke kazdé
z nich hodnotu funkce, které tato hladina odpovida.

Narysujeme-li hladiny odpovidajici rovnomérné ros-
toucim funkénim hodnotam, d4 se z jejich hustoty

81



usoudit na strmost grafu: hladiny jsou hustgji rozlo-
Zeny tam, kde je graf strméjsi (obr. 59).

Délici kfivky. Pii feSeni dlohy 3.23 o syru jsme

zkoumali pomérné sloZitou funkei
f(M) = min {{MC,|, |MC,|, ..., |MC,|},

kters pfifazuje kazdému bodu jeho nejmensi vzdale-
nost od bodu C,, C,, ..., C,. PH vlastnim fesenf Glohy
nas ani tak nezajimala samotnd funkce, jako s ni
svazané kfivky, které délily rovinu na oblasti; kazda
oblast byla prinikem polorovin. Zkusme si pfedstavit
mapu a graf této funkce. Za¢neme u nejjednodusdich
piipadin =2an = 3.

5.2 a) V roviné jsou dany rizné body C, a C,. Na-
kreslete hladiny funkce f(M) = min {|{MC,|, |[MC,}.

b) V roviné jsou dany body C,, C,, C;, které nelezf
na piimce. Nakreslete hladiny funkce

f(M) = min {{MC,|, |MC,|, |MC,l}.

O a) Vezméme nejdffve mnoZinu vSech bodu M,
pro které je |MC,| = |MC,|. Touto mnofinou je osa
usetky C,C,, kterd déli rovinu na dvé poloroviny, a aZ
na body spole¢né pfimky jsou body jedné poloroviny
bliz k bodu C,, body druhé poloroviny bliz k bodu C,.
V prvni poloroviné tudfiZ plati f(M) = |MC,| a ve dru-
hé (M) = |MC,|. Sestrojime tedy v prvni poloroviné
bladiny funkce f(M) = |MC,|, coz jsou kruZnice (pfes-
néji priniky kruZnic s uvafovanou polorovinou) a vy-
slednou mapu jesté doplnime obrazem soumérné sdru-
Zenym podle osy usedky C,C, (obr. 60).

b) Uvazujme mnoziny {M : |MC,| = |MC,| < |MC,},
{M: |MC,| = |MCy| < |MC,|}, {M: |MC,| = |MCy| <
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< |MC,|}. To jsou tfi poloptimky na osidch stran
trojihelniku C,C,C,, které vychézeji ze spoleéného
bodu O a déli rovinu na t¥i oblasti (viz tiloha 3.1).V oblas-
ti, kterd obsahuje bod C,, plati f(M) = | MC,|, v oblasti
s bodem C, je f(M) = |MC,| a ve tfeti oblasti platf
/(M) = |MC,|. Mapu funkee (M) = min {|{MC,|, |MC,|,
|MC,|} dostaneme tedy takto: v prvni oblasti vezmeme
mapu funkce (M) = |MC,|, ve druhé mapu funkce
f(M) = |[MC,| a ve tfeti funkce f(M) = |[MC,| a tyto
t¥i mapy slepime podél délicich kfivek, kterymi jsou tfi
polopiimky (obr. 61). [

@)

Obr. 60

Obr. 61
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Graf funkce

(M) = min {|{MC,|, |MC,|, ..., |MC,|}
si miZeme piedstavit takto: nasypeme do truhliku rov-
nou vrstvu pisku a v bodech C,, C,, ..., C, provrtame

do dna truhliku dirky, kterymi &ist pisku vypadne;
kolem kaZdé dirky se vytvofi ,trychtyt‘. Plocha tvo-
fend v8emi témito trychty¥i je grafem funkce f. Pied-
poklidame ovsem, Ze jsme vzali dostatedns silnou vrstvu
pisku tak sypkého, aby sklon trychtyta byl 45°.

Vratme se ted k dloham 3.11 a 3.12. Jejich podminky
Ize také formulovat pomoci funkef definovanych v ro-
viné.

5.3 V roviné jsou dany rizné body A, B. Zakreslete
hladiny funkei

a) f(M) = max ﬂl{ AMB|, | BAM|, |<x MBA|},

b) f(M) = min {|AM|, |MB|, |AB|}
a popiSte jejich grafy.

Extrémy funkce. Necht je f funkee definované v rovi-
né. Piedstavme si jeji graf jako kopcovitou krajinu.
Maximélni hodnoty f(M) odpovidaji vyskdm kopci
grafu a minimélni hodnoty jsou trovné proldklin.

Na mapé funkce jsou vrcholy a prolakliny zpravidla
obepnuty hladinami. Naptiklad funkce f(M) = |[MA|* +
+ |MB|* nabyva svého minima ve stiedu M, tsetky
AB a hladinami jsou soustfedné kruZnice se stfedem
v bodé M,.

Slo#itéjsi mapu dostaneme pro funkei fM) =
=| < AMB]|. Tato funkce nabyvé své maximaln{ hodno-
ty = ve viech bodech tisetky A B (s vyjimkou bodu 4, B,

ve kterych neni definovana). Své minimalni hodnoty 0
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nabyva ve vlech ostatnich bodech pfimky A B. Prechod
od maximalni hodnoty k minimalni neni v bodech 4, B
plynuly, graf ma v téchto bodech vertikalni srazy.
Na zadatku paragrafu jsme pou#ili mapu hladin
funkce pfi Fedeni tlohy 5.1. Byla to také iloha na hle-
dani maxima funkce, av3ak jiného typu. Obecné se
uloha formuluje takto: urdete, jakou nejvétsi nebo
nejmens{ hodnotu nabyva funkce f (definovand v roving)

V
g

Obr. 62

v bodech dané kiivky y. V uvaZované tloze byla kiivka
pfimkou. Postup, ktery jsme uplatnili v Gloze 5.1, lze
uiit i v jinych obdobnych tlohidch. Funkce nabyva
zpravidla své nejvétsi a nejmensi hodnoty na kfivee y
v nékterém z téch bodi, ve kterych se kiivky y dotyka
hladina funkce. Prochazi-li viak kfivka bodem, ve kte-
rém nabyva funkce své nejvétsi nebo nejmensi hodnoty
v celé roviné, nabyva zfejmé v tomto bodé také své nej-
vétéi nebo nejmensi hodnoty na kfivee y.

Nechf funkce f nabyvd své maximalni hodnoty na
kiivce y v bodé P a je f(P) = c. Pak kiivka y nemuze
mit spoledny bod s oblastif {M : {(M) > c}, musi cela
lezet v doplitku {M : (M) < c}, pfitemZ bod P leif na
délici k¥ivce mezi témito oblastmi, na hladiné {M :
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: f(M) = c}. Ktivka y nemiZe tedy protinat hladinu
{M : [(M) = c}, musf se ji v bodé P dotykat (obr. 62).

Vidéli jsme, jak se tento princip ,,dotyku‘* uplatnil
pfi hledani extrémi v tlohdch paragrafu 4. V téchto
tlohdch jsme hledali maximum nebo minimum jedno-
duchych funkei f(M)= o(M, 1), (M)=| <X MOA|, {(M) =
= |MA| na dané kfivece y. Hladina odpovidajfci extre-
malni hodnoté se dotykala kiivky y. Kfivkou y byla
vidy kruZnice. Také nékteré nésledujici dlohy vedou
na hleddni maxima nebo minima funkce na dané
kruznici nebo pfimce.

5.4 a) Na pfeponé pravouhlého trojihelniku najdéte
tekovy bod, aby jeho priméty na odvésny mély nej-
mensf vzdalenost.

b) Na dané pfimce najdéte bod M tak, aby vzdale-
nost jeho primeétu na ramena daného dhlu byla nej-
mensf. |

5.6 Je dana kruZnice se stfedem O a jeji vmitin{
bod A. Najdéte na kruZnici bod M, pro ktery je velikost
dhlu 4 MO nejmenéi.

5.6 Jsou dany body 4, B. Na dané kruZnici ¥ najdéte
bod M, pro ktery je

a) soudet

b) rozdil
druhych mocnin vzdalenosti bodu M od bodi 4 a B
minimalni.

5.7 Je 'dana pfimka ! a s ni rovnobéina usetka AB.
Najdéte na piimce ! ty body M, pro které je hodnota
|AM| | |BM| nejmensf nebo nejvéts. |

b.8 Pobliz jezera vedou dvé pi{mé cesty. Pro ktery
bod na biehu jezera je soudet jeho vzdilenosti od obou
cest nejmensi? UvaZujte piipad, kdy ma jezero tvar
a) kruhu, b) pravoihelniku.
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Poznamenejme, Ze i pii hledani maxima funkce y =
= f(z) jedné proménné se uplatiiuje ,,princip dotyku‘.
Necht je narysovan graf funkce f, kterym je néjaka
kfivka. Najit maximum funkce f znamens najit nejvyssf
bod grafu. Staéf tedy najit pfimku, kterd se ,,dotyka‘
grafu, je rovnobéina s osou x a cely graf lez{ pod ni.
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Kapitola 6

KRIVKY DRUHEHO STUPNE

Elipsy, hyperboly, paraboly. Dosud jsme se omezovali
zakladn{ 8kole; mluvili jsme pouze o pfimkach a kruzni-
cich. VSechny mnoZiny nasi abecedy se v podstaté
skladaly z &asti pfimek a kruznic. V tomto paragrafu se
sezndmime s nékterymi daldimi kfivkami — elipsams,
hyperbolami a parabolamsi. Tyto kiivky se nazyvaji sou-
hrnné kuZeloseéky, protoze kaZdou z nich miZeme dostat
jako prunik roviny a kuZelové plochy.

Nejdiive budeme definovat elipsy, hyperboly a parabo-
ly analogicky jako mnoZiny nadi abecedy v 2. kap. Dale
vystupujf jako obalové kiivky systémi piimek. Pomoci
soustavy soufadnic nakonec ukaZeme, Ze tyto kiivky
jsou dany algebraickymi rovnicemi druhého stupné.
Ditkaz ekvivalenoe téchto definic neni jednoduchy, ale
vBechny jsou uZitedné. Kazdd z definic umoiniuje vy-
hodné fesit jinou t¥{du uloh.

Rozsitme tedy nasi abecedu o dal$i pismena L, N, P
& posléze o pismeno R.

L. Elipsa. Uva%ujme mnozinu viech boda M v roviné,
pro néz je soudet vzdalenosti od dvou danych raznych
bodt 4, B roven danému ¢&islu.

Oznadme toto éislo 2a, vzdalenost bodit 4 a B ozna-
¢ime 2c. Poznamenejme, %e pro ¢ < c¢ je tato mnoZina
malo zajimava; je-li @ < ¢, dostaneme prazdnou mnozi-
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nu, protoZe v roviné neexistuje bod M, pro ktery plati
|[AM| + |MB| < |AB|. Pro a = ¢ je uvazovanou mno-
Zinou usetka .

Abychom zfskali pfedstavu o tvaru kfivky pro a > ¢,
zatluéeme v bodech A, B hiebiky a navlékneme na né
provizek délky 2(a + c), jehoZ konce spojime. Napneme
provizek tuzkou a opiSeme takto kiivku, piitemz dba-
me, aby provazek byl stile napnuty. Dostaneme uzavie-

Obr. 63

nou k¥ivku, ktera se nazyva elipsa. Body A4, B jsou tav.
ohniska této elipsy (obr. 63). Z definice elipsy je zfejmé,
Ze ma dvé osy soumérnosti, jednou je pfimka 4B a dru-
hou osa tusetky AB, jejich priseéik O je stiedem elipsy.

Pripustime-li 4 = B, dostaneme uvedenym zpiisobem
kruznici. PovaZzujeme proto kruZnici za zvlastni pfipad
elipsy, pro ktery splyvaji obé ohniska se stfedem.

Ménfme-li délku provazku, dostaneme cely systém
elips s danymi ohnisky. Jinymi slovy, dostaneme mapu
hladin funkce

f(M) = |MA| + |MB|.
N. Hyperbola. Uvazujme mnozinu vSech bodi, jejichz
rozdil vzdéalenosti od dvou danych bodd 4 a B se
v absolutni hodnoté rovné dané hodnoté 2a(a > 0).
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Necht je jako v predchazejicim pkipadé |AB| = 2c.
Je-li @ > ¢, je hledand mnoZina prizdnéd, protoze pro
zddny bod M neni |AM| — |[MB| > |AB| ani |[MB| —
— |AM| > |AB|. Pro a = ¢ se hledand mnoZina sklida
ze dvou polopfimek, které dostaneme z p¥imky AB vy-
nechanfm vnit¥nich bodi dsedky AB.

V piipadé @ < ¢ se uvaZovand mnozina sklidé ze dvou
dasti, tzv. vétvi. Jedna je mnozinou {M : [MA|— |[MB|=

M
Obr. 64 Obr. 65

= 2a} a druhé mnoZinou {M : |MB| — |MA| = 2a}. Celd
kfivka (sjednoceni obou vétvi) se nazyvd hyperbola
a body 4, B jejimi ohnisky (obr. 64). Z definice plyne, Ze
hyperbola mé dvé osy soumérnosti, stfed O tsetky 4B
je jejim stredem.

Abychom dostali celou mapu hladin funkce

f(M) = || MA|— |MB]|,
musfme k systému hyperbol s ohnisky A4, B pfidat osu
tsetky AB, kterd odpovida hodnoté f(M) = 0.

P. Parabola. MnoZina viech bodii M stejné vzddlenych
od bodu F jako od p¥imky I, jeZ bodem F neprochazi, se
nazyva parabola (obr. 65).

Bod F se nazyva jejim ohniskem a piimka I #ldici
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pFimkou paraboly. Parabola ma jednu osu soumérnosti,
ktera prochéazi ohniskem F kolmo k Fidici pfimce.

Shriime uvedené definice. Doplnili jsme nasi abecedu
témito mnozinami:

L. {M : |MA| + |MB| = 2a}, kde 2a > |AB].
N. {M : |[MA|— |MB]|| = 24}, kde 2a < |AB|.
P. {M:|MF| = o(M, 1)}, kde F ¢ L.

Je-li vysledkem néjaké ulohy mnozina bodd, kterou
lze popsat jednou z vlastnosti P, L, N, je odpovédi
parabola, elipsa nebo hyperbola. K 1plné odpovédi je
oviem tfeba urdit polohu a rozméry kuZelosetky, napt.
uréit jeji ohniska a ¢&islo a.

6.1 V roviné jsou dany dva rizné body 4, B. Najdéte
mnoZinu viech bodd M, pro které
a) je obvod trojtihelniku A M B roven danému é&islu p,

b) nenf obvod trojihelniku 4 M B vétsi nez p,
c) neni rozdfl |[MA| — |MB| mensi nez p.

6.2 Je dana usetka A B ana nf bod 7. Najdéte mnoZinu
viech bodi M, pro které se kruinice vepsana trojihel-
niku A M B dotyké strany AB v bodé T'.

6.3 Najdéte mnozinu stfedi vSech kruiZnic, které se
dotykaji
a) dané p¥imky a prochazeji danym bodem,

b) dané kruzZnice a prochézeji danym vnitinim bodem
této kruznice,

c) dané kruZnice a prochédzeji danym vnéjsim bodem
této kruznice,

d) dané kruZnice a dané p¥imky,

e) danych dvou kruZnie. |,

6.4 Méjme kloubovy mechanismus, ktery lezi v roviné
a sklada se z ty¢f AB, BC, CD, ptitemz klouby 4 a D
jsou umistény pevné, klouby B a C se pohybuji v roviné
volné. Je |AD| = |BC| = a, |AB| = |[CD| = b. Najdéte
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mnozinu véech praseéiki p¥imek AB a CD, je-lil) a <
< b, 2) @ > b (obr. 66).

6.5 a) V roviné jsou dany dva body A, B, jejichi
vzdalenost je pfirozené &islo. Sestrojme viechny kruz-
nice s celodiselnymi poloméry a stfedy v bodech 4, B.
Na obdrZené siti zvolme posloupnost jejich vrchola tak,

B 7772 SR
c T IR TN
[””.‘-".'.0'0’0;0,""',‘.\\\
N
A RO aess
D NN oS waly,
Obr. 66
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Obr. 67a, obr. 87b  —C— =LA

aby kazdé dva za sebou jdouci vrcholy byly protéjsimi
vrcholy kfivoSarého &tyfdhelniku sité. Dokaite, Ze
viechny body posloupnosti lezi bud na elipse, nebo na
hyperbole (obr. 67a).

b) V roviné je dana piimka ! a na ni bod F. Sestrojme
vSechny kruinice s celodfselnymi poloméry a stiedy
v bodé F a viechny pimky rovnobéiné s ptimkou I,
jejichZ vzdalenost od pHmky [ je také celé &islo. Dokaite,
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%e viechny body posloupnosti vrchold sité sestrojené
stejné jako v tloze a) leZi na parabole s ohniskem F
{obr. 67b).

Plochy, které dostaneme rotacf paraboly, elipsy nebo
hyperboly kolem jeji osy, se nazyvaji rotaéni parabo-
lotd, rotaéni elipsoid nebo rotaéni hyperboloid. Ten je bud
jednodflng, nebo dvojdilny, podle toho, kolem které osy
hyperbolu otaéime.

Ohniska a tefny. Mnoho zajimavych tloh pro elipsy,
hyperboly a paraboly souvisi s vlastnostmi teden téchto
kfivek. Jednu vlastnost tedny elipsy dostaneme porov-
nanfm dvou FeSeni nésledujici Glohy.

6.6 Jsou diny dva body A a B a piimka I, ktera je
neoddéluje. Najdéte na piimce [ bod X tak, aby soudet
vzdélenosti [AX| 4+ |XB| byl nejmensi.

O Uvazujme bod 4’ soumérné sdruzeny k bodu 4
podle pfimky I. Pro kazdy bod M p¥mky [ je |[A'M| =
= |AM|. Proto je soudet |[AM + |MB|= |A'M|+
+ |[MB| nejmensf, splyva-li bod M s prisedfkem X
tsetky A’'B a pimky I. Pak je |4'X|+ |[XB|=
= |A'B|. O

Poznamenejme, Ze bod X mé tuto vlastnost: dsedky
AX a BX sviraji shodné uhly s pfimkou .

Kdybychom fesili tlohu 6.6 postupem uvedenym
v kap. 5 — pomoci hladin funkce — sestrojili bychom

il TRRDRPYS

83



systém elips {M : |AM| + |[MB| =c} s ohnisky 4, B
a vybrali bychom z nich tu, ktera se dotyka pimky 1.
Je tedy bod X bodem dotyku elipsy s ohnisky 4, B
a ptimky [ (obr. 68). Opravdu, viechny ostatni body M
piimky [ lezi vné elipsy, tj. soutet [AM| + | M B| je vétsi
nei |AX| + |BX]|.

Porovnanim obou feSeni dostdvame tzv. ohniskovou
vlastnost elipsy: Uselky spojujici bod X elipsy s jejimi
ohmisky sviraji shodné uhly s tebnou elipsy v bodé X.

Tato vlastnost elipsy ma ndzormou fyzikalni inter-
pretaci. Necht m4 reflektor tvar &asti rotaéniho elipsoidu,
ktery vznikl rotaci elipsy kolem spojnice jejich ohnisek
A, B. Umistime-li bodovy zdroj svétla do ohniska A4,
odréZeji se paprsky do bodu B (obr. 69).

Také hyperbola ma vyse uvedenou ohniskovou vlast-
nost: Usecky spojujict bod X hyperboly s jejimi ohnisky
sviraji stejné velke uhly s teénou hyperboly v bodé X. Tuto
vlastnost hyperboly dokéZeme feSenfm nésledujfei
tlohy dvéma zpisoby.

6.7 Jsou dany body A a B a pfimka I, ktera je odd8lu-
je, pfitem? bod A leZ{ dal od pfimky I nez bod B. Najdéte
na dané pfimce bod X, pro ktery je rozdil vzdalenost{
|AX| — |BX| nejvétsi.

Prvn{ zpisob fefeni: oznaéme 4’ bod soumérné sdru-
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feny k bodu A podle pfimky I. Hledanym bodem X je
prusedfk pimky A’B s pimkou I (?). Usetky AX a BX
sviraji zfejmé stejné velké tGhly s pfimkou .

Druhy postup, ktery se opira o vysledky kap. 5, vede
k této odpovédi: X je bodem dotyku pimky ! a hyper-
boly s ohnisky 4 a B (obr. 70). Srovnani obou vysledka
davé ohniskovou vlastnost hyperboly.

Obr. 70 Obr. 71

Z ohniskovych vlastnosti plyne zajimavy disledek
tykajicf se systému viech elips a hyperbol se spoleénymi
ohnisky 4, B. Vezmeme jednu elipsu a jednu hyperbolu,
které se protinaji v bodé X. Vedme bodem X pi¥imky,
které svirajf stejné velké Ghly s piimkami AX a BX.
Dostaneme tak dvé piimky, které jsou na sebe kolmé
(obr. 71). Z ohniskovych vlastnosti plyne, Ze jedna je
tednou elipsy, druhd tednou hyperboly. TakiZe tetny
k elipse a hyperbole jsou na sebe kolmé, tvoii tudiz
elipsy a hyperboly s ohnisky 4 a B dva ortogonalni
systémy kiivek, kaZda elipsa protina kaZdou hyperbolu
kolmo. Oba systémy budou dob¥e patrné na obrizku
k tloze 6.5a, vybarvime-li ¢tyFihelnitky jako na Sachov-
nici.
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Ohniskova vlastnost paraboly. Necht je parabola ddna
ohniskem F a Fidict primkou | a necht X je jeji bod. Pak
ptimka XF a kolmice vedend bodem X na pitmku 1 svirajt
stejné veliké 1ihly s teCnou paraboly v bodé X.

Dakaz. Oznadme H patu kolmice vedené bodem X na
piimku I (obr. 72). Podle definice paraboly je |[XF| =
= |XH|, lezi tudiZ bod X na ose m usetky FH. Dokaze-
me, %e piimka m je teénou paraboly. UkiZeme, Ze ma
s parabolon spoleény jen bod X a Ze celd parabola leZi

Feac/AX
[
m/
Obr. 72 Obr. 73

v jedné poloroviné ohranidené pfimkou m. Bude to ta
polorovina, ve které lezi bod F. Pro kazdy bod M para-
boly rizny od bodu X je totiz |[MF| < |MH|, protoZe
|MF| = o(M,l)a o(M,1) < |MH|.

Pozndmka. Pro viechny kiivky, se kterymi jsme se
setkali, se tedna definovala takto: te¢na kfivky y v jejim
bodé M, je takova piimka I prochazejici bodem M, pro
kterou leif kiivka y (nebo alespon jeji prinik s néjakym
kruhem o stfedu M,) v jedné poloroviné ohranifené
piimkou /.

Ohniskovou vlastnost paraboly je moZné vyuiit pfi
konstrukei reflektort. Ma-li reflektor tvar ¢asti rotaéniho
paraboloidu a umistime-li bodovy svételny zdroj do
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ohniska, odraZeji se paprsky rovnobéiné s osou paraboly
(obr. 73).

6.8 VSechny paraboly s danym ohniskem a danou
vertikalni osou se pfirozenym zptsobem délf na dva
systémy. Paraboly jednoho systému maji #idief pf{mku
nad ohniskem, paraboly druhého systému pod ohniskem.
Dokaite, Ze kaZda parabola prvniho systému protind
kaZdou parabolu druhého systému kolmo (obr. 74).

Obr. 74 Obr. 76

Oba systémy parabol, o kterych se mluvi v dloze,
budou dobfe patrny na obrizku 67b, vybarvime-li
¢tyiahelnitky jako na sachovnici.

Resdeni dalsich tloh se opird o definice kuZelosedek
a jejich ohniskové vlastnosti.

6.9 a) Je dana elipsa s ohnisky 4, B. Dokaite, Ze
mnoZina bodd soumérné sdruZenych k ohnisku A podle
viech teden elipsy je kruznice.

b) Dokaite, Ze mnoZina pat kolmic vedenych ohnis-
kem A ke viem teéndm elipsy je kruznice.

[ a) Necht je [ te¢na elipsy v bodé X a N bod sou-
mérné sdruZeny k bodu A4 podle piimky ! (obr. 75).
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Podle tlohy 6.6 lei bod X na p¥imece NB a vzdalenost
|[NB| = |AX| + |XB| je konstantni, nezavisf na volbé
teény I. Oznadme ji 2a. Bod N tudiZz leif na kruZnici
o poloméru 2¢ se stfedem v bodé B. Obracené bychom
ukézali, Ze kaZdy bod této kruznice je soumérné sdruZeny
k bodu A podle nékteré teény elipsy.

b) Je-li M pata kolmice vedend bodem A4 na piimku I,
je |[AM| = —;— |AN|. Podle a) vime, Ze véechny body N

tvoii kruznici. Proto tvofi body M kruznici o poloméru
a, jejim% stfedem je stied dsetky AB. [

6.10 Dokazte tvrzeni Glohy 6.9 pro piipad hyperboly.

6.11 Je dana parabola s ohniskem F a F{dicf pfimkou I.

a) Najdéte mnozinu viech bodt soumérné sdruzenych
k ohnisku F podle te¢en paraboly.

b) DokaZte, Ze mnoZina vSech pat kolmic vedenych
ohniskem F na teiny paraboly je piimka rovnobéina
s pifmkou l.

6.12 a) DokaiZte, Ze soudin vzdalenosti ohnisek elipsy
od jeji te¢ny je konstantni, nezavisly na teéné. |

b) Najdéte mnozinu vsech bodi, ze kterych je vidét
elipsu pod pravym thlem.

6.13 Reste tilohu 6.12a pro hyperbolu.

6.14 Reste tlohu 6.12b pro parabolu.

6.156 Necht se svételny paprsek odraz{ od vnittku
elipsy tak, Ze vytvoii lomenou ¢aru P,P,P,P,. .., kterd
neprochazi ohnisky 4 a B (body P,, P,, P,, ... lezi na
elipse, ostatni body lomené &ary leii ve vnitini oblasti
elipsy).

Doka%te a) neprotind-li iseéka P P, tise¢ku 4B, pak ji
neprotinajf ani use¢ky P,P,, P,P,, P,P,, ... a viechny
se dotykaji téZe elipsy s ohnisky 4, B; |
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b) protind-li tsedka P, P, visetku AB, protinaji ji
i Use¢ky P,P, P,P,, ... a viechny se dotykaji téZe
hyperboly s ohnisky 4, B. |

Rez rota¥ni kuzelové plochy rovinou, ktera neproché-
zi jejim vrcholem, je elipsa, hyperbola nebo parabola
(obr. 76). Sféra, jez se dotyka roviny fezu a je vepsana

Obr. 76 Obr. 77

kuZelové plose, se dotyka roviny fezu v ohnisku kuzelo-
sedky, ktera je fezem. Ridicf p¥imka je prise&nici roviny
fezu a roviny kruznice, podél niz se sféra dotyka kuzelové
plochy.

Sjednocenfm vSech pi{mek v prostoru stejné vzdale-
nych od daného bodu dané piimky [ a svirajicich s ni dany
ostry thel je jednodilny rotadni hyperboloid (obr. 77).
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Te&néd rovina hyperboloidu jej protind ve dvou rtizno-
bézkach, kazda jind rovina ho protind v kuZeloseéce.
Pohybuji-li se body P a N rovhomérné po dvou
riznobézkach, jsou ptimky PN spolu rovnobéiné nebo
se dotykaji téie paraboly. Pohybuji-li se bcdy P, N
rovnomérné po dvou mimobézkach, vytvoii pfimky PN
plochu, ktera se nazyva hyperbolicky paraboloid. Kazda
jeho te&na rovina jej protind ve dvou riznobéikach,

Obr. 78

kazd4 jind rovina v parabole nebo hyperbole. Hyper-
bolicky paraboloid (sedlo) dostaneme také jako sjedno-
ceni viech piimek protinajicich dané mimobéiky I, I,
a rovnobéinych s danou rovinou, kterd p¥imky I, [,
protina (obr. 78).

KuZelosetky jako obalové kfivky. Dosud jsme defino-
vali kf¥ivky jako mnoZiny bodl, které spliovaly jistou
podminku. V dalsich tlohdch vznikaji ki¥ivky jako oba-
lové kiivky systémi p¥imek. Pojem ,,0balova‘ znamend
pouze to, Ze se kiivka dotyké kazdé pfimky systému.
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6.16 Je dana kruZnice se stfedem O a bod 4. Kazdym
bodem M kruZnice je vedena pi{mka kolma k tsedce
MA. Dokaizte, Ze obalovou kfivkou tohoto systému p¥i-
mek je
a) kruznice, splyva-li od 4 s bodem O,

b) elipsa, je-li A bodem vnitfni oblasti kruznice,
c) hyperbola, je-li 4 bodem vnéjsi oblasti kruzZnice. |

6.17 Je déna piimka ! a bod 4, ktery na ni nelezi.
Ka#dym bodem M p¥{mky ! je vedena pfimka kolma
k tsedce MA. Dokaite, Ze obalovou k¥ivkou tohoto
systému pifmek je parabola. |

Rovnice kuZeloselek. Zadali jsme tento paragraf geo-
metrickymi definicemi elipsy, hyperboly a paraboly.
Mnoho dalsich informaci o téchto kfivkach ziskdme
pouZitim metody soufadnic.

Zatneme u paraboly. Vime, Ze parabolu dostaneme
jako graf funkece

Yy = ax?, a #0. (1)

UkaZeme, %e vySe uvedena geometricka definice vede
také k této rovnici. Necht je vzdalenost bodu F od piim-
ky I rovna 2k, Zvolme soustavu soufadnic tak, aby osa z
byla rovnobéind s pfimkou / a byla od ni stejné vzdalena
jako od bodu F a aby osa y prochézela bodem F (osa y
bude tedy osou soumérnosti paraboly). Rovnice, kterou
dostaneme z geometrické definice paraboly, se snadno
upravi na tvar (1):

VF TG — R = ly + A,
z? 4 y? — 2hy + h® — y? 4 2hy + A2,
= x2/4h.
Staéi polozit a = 1/4A.
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Grafem libovolné funkce y = aa? 4 bz 4 ¢ (a # 0) jo
také parabola, dostaneme ji z paraboly y = az? posu-
nutfm. Stejnolehlost se stfedem v podatku soustavy
soufadnic s koeficientem 1/a zobrazuje parabolu y = x?
na parabolu y = az? Jsou tudiz kazdé dvé paraboly
podobné. Naproti tomu nejsou kaidé dvé paraboly
kongruentni (shodné), &m vétsi je |a|, tim je parabola
y = ax® sevienéjdi. Poznamenejme, Ze parabolu y =
= az®(a > 0) miZeme dostat z paraboly y = z? také
stladenim nebo roztaZenfm ve sméru nékteré osy sou-
stavy soufadnic, pfesnéji transformacemi, které bodu
[x; y] piifazuji bod [x/Va, ; ] nebo[x; ay].

Piejdeme ted k elipse a hyperbole. Zvolme soustavu
soufadnic tak, aby ohniska 4, B méla soufadnice
A[—c; 0], B[c; 0]. Elipsa pak ma rovnici

Ve+ror+v+Ve—o  +vi =
= 2a,a >c. 2"

Ekvivalentnimi dpravami mizZeme odstranit odmocniny
a prevést rovnici elipsy na tvar

2 2 .
%+%=1, kde b = |/az — 2. (2)

Podrobnéji vysvétlime prechod od rovnice (2') k (2)
pozdéji.

Z rovnice (2) je vidét, Ze je mozné dostat elipsu také
takto: Vezmeme kruinici o poloméru e s rovniei z? +
+ 92 = a? a ,,stladfme’ ji ve sméru osy y v poméru a : b;
ptitom ptejde bod [z; y] do bodu [z; y'], kde ¥’ = yb/a
(obr, 79). Dosadime-li ¥y = y’a/b do rovnice nadi kruz-
nice, dostaneme rovnici elipsy

(y)?
+ =L
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Je vidét, Ze elipsu muZeme dostat i bez h¥ebiku a pro-
vézku. Staéi zapnout televizor v dobé, kdy se vysild
monoskop, a otoéit regulatorem svislé dimenze; viechny
kruzZnice na monoskopu se zdeformujf v elipsy.

Dvé elipsy s rovnicemi ve tvaru (2) jsou podobné,
maji-li stejny pomér b : a.

Obr. 79

Zvolime-li soustavu soufadnic stejné jako u elipsy,
bude mit hyperbola rovnici

H/(:v + )+ ;4/2—1/(419—0)2 + y% =2a, a < c,(3')

kterou muZeme ekvivalentnfmi tpravami pfevést na
tvar

xZ 2 -
F—-%=l,kdeb=l/cz—a’. (3)

Abychom zfskali pfedstavu o pritbéhu hyperboly v kvad-
rantu z = 0, y = 0, sestrojime si graf funkce

y=2Ja—a.
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Tato funkce je zfejmé definovana pro z = a a je rostou-
cf. Méné zfejmé je, Ze se jeji graf pii zvétsujicim se z
stale vice pfimyka k pfimce y = bx/a. Presnégji Fedeno,
pro kazdou posloupnost &isel 2, kterd roste nade viechny
meze, konverguje posloupnost

b yy—— b
G /A==

k nule. To se snadno dokiZe uZitim rovnosti
xr— Va:” —a? = a?/ (]/:4:2 —a? 4 z). Z uvedenych divodu
fikdme, %e piimka y = bxfa je asympiofou nasi hyper-
bog. Dalsi jeji asymptotou je piimka y = —bz/a.
asto se setkdvame s jinou rovnici hyperboly, s rov-

nic{

zy=d,d #0. 4)
Jak je to mozné? Neni touto rovnici dana jin k¥ivka?
Nenf, rovnici (4) je skuteéné dana hyperbola, jejiz asym-
ptoty jsou na sebe kolmé. Jeji rovnice ve tvaru (3) je

2 y2

2d " 2d
Méme tudiZz dvé rovnice téze hyperboly, kazdou v jiné
soustavé soufadnic (obr. 80): jednou jsme za osy sou-
stavy soufadnic zvolili jeji asymptoty, podruhé osy
hyperboly (?).

JiZ jsme si ukdzali, jak miZeme dostat elipsu ,,stla-
¢enfm® kruZnice x? 4 y® = a®. Stejné tak mulZeme
dostat hyperbolu z2/a?— y%/b® = 1 z hyperboly 2®—
—y? = a?® s kolmymi asymptotami, stlaéime-li ji ve
sméru osy y v pomeéru & : b (obr. 81).

Dvé hyperboly jsou podobné, maji-li stejny pomér
@ :b, nebo, coz je totéz, sviraji-li jejich asymptoty
stejné velky uhel 2y, tg y = b/a.

1.
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Odstranéni odmocnin. UkéZeme zaroven, jak je moiné
dostat z rovnic (2') a (3') jednodussi tvary (2) a (3).
Polozme

- (Y Ve | @

. _[V(z+c)2+y2 +e—+y ]”
2 — 2 .

(2")

Obr. 80 Obr. 81

Necht je = # 0, y = 0. Snadno se pFesvédéime, Ze
0 <2 <2y 2+ 2, =2+ y? 4 %, 2,2, = c%%. Jsou
tedy z,, z, koFeny kvadratické rovnice (0 neznamé z)

22— (224 y2 4 ¢z + c¥x: = 0. (5)

Trojélen na levé strand rovnice (5) je pro z = ¢? zaporny,
proto je z; < ¢% z, > ¢ Viimnéme si, Ze rovnici (5) lze
psat ve tvaru x%(z — ¢?) 4+ y?2 = z(z — c?), tedy

x2 2 ,
7+ zicz =1 (5)

UkaZeme, Ze po dosazeni a® za z je rovnic{ (6') dana
elipsa (pro a > ¢) nebo hyperbola (pro a¢ < ¢).
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Necht je @ > ¢ > 0. Vime, Ze pro z s 0, y # 0 jsou
rovnicemi (3'') a (2’') dany mensi a vétsi kofen rovnice
(5"), ptitemz 2z, < ¢? < z,. Rovnici elipsy (2’) miZeme
ziejmé psdt ve tvaru z, = a?, a protoZe z, je kofenem
rovnice (5'), splituje bod [z; y] elipsy (x # 0  y) rov-
nici

22 2

wt =t ®)
Obracené, spliiuje-li bod [x; y] rovnici (6), je &islo z =
= a? kofenem rovnice (5’), a protoZe je a? > c?, je a?
vétsim kofenem rovnice (5'), tedy a? = z,. Je tudfiz pro
a > c rovnice (2') ekvivalentni{ s rovnici (6).

Analogicky muZeme dokazat, %e pro ¢ < ¢ jsou ekvi-
valentni rovnice (3') a (6), Ze rovnice hyperboly z, = a? je
totoZna s rovnici (6).

Snadno se ovéfi, Ze pro £ = 0 nebo y = 0 je rovnice
(6) ekvivalentni s rovnici (2') nebo (3’) podle toho, je-li
@ >cnebo a < c.

Tim jsme dokazali, Ze rovnice (6) zahrnuje jak rovnici
elipsy (2'), tak rovnici hyperboly (3'). PoloZime-li b =
= Vaz— c? (pro @ >c¢) nebo b = ch—az (pro a < c),
dostaneme rovnice (2) a (3). Tak jsme p¥es rovnici (6)
dokazali ekvivalentnost rovnic (2) a (2') a také rovnic
(3) a (3'). Ukazany postup muZeme &asto pouiit,
chceme-li odstranit odmocniny: vedle soudtu (nebo
rozdilu) drubych odmocnin uvazujeme také jejich rozdil
(nebo soudet).

Konec abecedy. Uvazujme jestd jednu funkei v roving,
jejiz mapa obsahuje vSechny tifi typy kiivek, se kterymi
jsme se seznamili v této kapitole. Bude to posledni
pismeno nasi abecedy.
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R. Necht je dan bod F a pfimkae 1, kterd jim neprochdzi.
MnoZina vech bod@ roviny, jejicht pomér vzddlenosti od
bodu F a od pFimky l se rovnd danému kladnému Eislu k,
je elipsa (pro k < 1), hyperbola (pro k > 1) nebo para-
bola (pro k = 1) (obr. 82).

N

{

Obr. 82

K dikazu zvolime soustavu soufadnic tak, jak jsme ji
volili v pfipadé paraboly. NaSe mnoZina m4 tedy rovnici

Va2 F o —n7 _ .
ly + A ’
pro k = 1 jsme jiz vidéli, Ze je to rovnice paraboly y =

=az?, kde a =1/(4h). Pro 0 <k <1 ji muZeme
ekvivalentnimi ipravami uvést na tvar

2 —_— d 2 .
_‘;2_ + (y—bﬂ_)_ = 1 (elipsa) (7)
a pro & > 1 na tvar
- %:_ + _(y%di = 1 (hyperbola), (8)

107



kde jsme v obou p¥ipadech poloZili

a = 2khf)Je* —1], b = 2kh/|k* — 1],
d = h(k? + 1)j(kz2 —1).

Rovnice (7) a (8) dostaneme z kanonickych rovnic
(2) a (3) posunutim soustavy soufadnic a zdménou os
z, y. V nasem ptipadé leZf ohniska na ose y a stfedem je
bod [0; d]. MuZeme se pFesvédéit, Ze bod F je ohniskem
nejen v pipadé paraboly, ale i v p¥ipadé elipsy nebo
hyperboly. Pfimka I se i v téchto p¥ipadech nazyva
Fidici pf{mkou elipsy nebo hyperboly.

Tak jsme si ukazali, Ze hladinami funkece

(M) = | MF|lo(M,1)

jsou elipsy, hyperboly a jedna parabola.

Snadno jsme mohli uhodnout, %e hladinami budou
kuZelose¢ky. Uvazujme totiz v roviné funkce f, (M) =
= |MF|, (M) = ko(M, 1). Grafem prvni je &4st kuzelo-
vé plochy, graf druhé funkce je dvojice polorovin, pfi-
demz &fslo k je tangens dhlu, ktery sviraji poloroviny
8 horizontaln{ rovinou. Prinikem téchto grafu je elipsa,
parabola nebo hyperbola. Nis pak zajimaji praméty
obdrZenych ktivek do horizontélni roviny, tedy mnoziny

(M : (M) = f(M)} = {M : |MF| = ko(M, 1)}

Pi#i rovnobéZném promitanf se tvar kiivky méni stejné
jako pii jejim stladeni ve sméru kolmém k piimece [

(v poméru sz + 1:1). Proto dostaneme opét elipsy,
hyperboly a parabolu.

Jak jsme jiz nékolikrat ukazali, maji elipsa, hyperbola
a parabola mnoho spoleénych vlastnosti. To ma prosty
algebraicky divod: viechny jsou dany rovnicemi dru-
hého stupné. Oviem jejich charakteristické rovnice
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y = az? z3ja® + y2[b® =1, xBla® — y3[b® =1,
Yy =d

dostaneme pouze pii specialni volbé soustavy soufadnie,
zvolime-li soustavu soufadnic v obecné poloze, bude rov-
nice kuZelosedky slozitéj§i. Neni viak tézké dokazat, Ze
v libovolné soustavé soufadnic mé rovnice kuzelosedky
tvar

az® + bry + cy* +dx + ey + [ =0, (9)

kde alespon jedno z &fsel a, b, ¢ je rtizné od nuly.

Je pozoruhodné, Ze plati i tvrzeni obricené: kaid4
rovnice druhého stupné p(z,y) = 0, tj. rovnice tvaru
(9), uréuje kuzelosetku. Pfesnéji fedeno, kazdd rovnice
tvaru (9) definuje elipsu, hyperbolu nebo parabolu, pokud
se jeji leva strana neda rozloZit na soudin dvou linearnich
diniteld (dostali bychom dvojici pf{mek) a pokud leva
strana nabyvd kladnych i zapornych hodnot (jinak
bychom dostali bod, jednu piimku nebo prizdnou mno-
Zinu). Odtud plyne spoleény nazev pro elipsy, hyperboly
a paraboly; fikame jim téZ kfivky druhého stupné.

Véta, kterou jsme vyse vyslovili, je velmi uZiteénéd
pii hledani mnoZin viech bodd dané vlastnosti. Vidfme-li,
Ze v nékteré soustavé soufadnic je mnoZina dana rovnicf
druhého stupné, vime, Ze hledanou mnozinou je elipsa,
hyperbola nebo parabola, ve vyjimeéném piipadd to
muZe oviéem byt i dvojice pfmek, bod apod. Zbyvé pak
najit ,rozméry“ kuZelosedky a jeji polohu (ohniska,
stied, asymptoty atd.).

6.18 Najdéte mnoZinu viech bodi roviny, pro které
je soudet vzdalenosti od dvou danych kolmych piimek
c-krat v&t3f nez jejich vzdalenost od priseéiku danych
piimek.
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6.19 Je dano kladné &fslo ¢ a v roviné bod 4 a pFim-
ka I. Najdéte mnoZinu vsech bodd, pro které je

a) soudet vzdélenosti od bodu 4 a p¥imky ! roven c,

b) rozdil vzdalenosti od bodu 4 a piimky ! v absolutn{
hodnoté roven c,

¢) pomér vzdilenosti od bodu 4 a od pfimky I mensi
nez c.

6.20 Urlete mnoZinu viech bodu, jejichZ

a) soudet,

b) rozdil
druhych mocnin vzdalenosti od dvou danych rtznobé-
Zek I,, I, je roven danému é&fslu d. Nakreslete hladiny
odpovidajicich funkef:
a) f(M) = 0¥, L) + o*(M, L,),
b) [(M) = o¥(M, |,) — o*(M, L,).

6.21 V roviné je din bod F a pi{mka !. Nakreslete
hladiny funkei

a) f(M) = |MF2 + o¥(M, 1),

b) () = [MF[— o*(M, 1)

6.22 Kloub O kloubového rovnob&iniku OPMQ je
upevnén a ramena OP a OQ riznych délek se otadeji
stejnou tihlovou rychlosti v opaénych smyslech. Po jaké
kiivce se pohybuje bod M ?

O Necht je |OP| = p, |0Q| = q. Proto¥e se piimky
OP a 0Q otadeji na ruzné strany, musf v jednom okamzi-
ku splynout. Vezméme tento okamzik za vychozi ¢as
t = 0 a splyvajici pH{mky za osu =z, podatek soustavy
soufadnic zvolime v bodé O. Necht se piimky OP a 0Q
otadeji iihlovou rychlostf w. Pak maji body P a @ v éase
¢t soufadnice P[p cos wt; p sin wt], @[g cos wt; — g sin wt].
Proto ma bod M soufadnice

z=(p+q)coswt, y = (p—q)sin w?,
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— —> —
nebot OM = OP -+ 0Q. Lez{ tudiZ bod M na elipse
2 *— y2
P+a9® " P—qF
Pti feSen{ dlohy jsme dostali elipsu jako mnozinu bodu
[2; ¥] se soufadnicemi

1.0

x =acos wf, Y = bsin !, (10)

t probfha mnoZinu reilnych &isel. Rovnice uvedeného
typu, které vyjadfuji soufadnice bodu mnoZiny pomocf
parametru £, se nazyvaji parametrické rovnice mnoZiny.
V daném p¥ipadé byl parametr ¢ tas.

6.23 V roviné se kolem boda A, B otddeji stejnou
tdhlovou rychlosti pfimky. Jakou kfivku opisuje jejich
prusedik, otadejili se piimky v opaénych smyslech? |

6.24 Najdéte v roviné mnoZinu vSech boda M, pro
které je| X MBA|= 2| < MAB|, kde AB je dané tsetka
roviny. |,

6.25 a) Uvazujme viechny usetky, které z daného
thlu vytinaji trojihelnik daného obsahu S. Dokaite,
Ze stiedy téchto usedek lezi na téze hyperbole I', jejimiz
asymptotami jsou ramena daného thlu.

b) Dokazte, Ze vSechny tyto usedky se dotykaji téZe
hyperboly I'. |

¢) Dokaite, Ze usetka s krajnfmi body na asympto-
tach dané hyperboly, které se dotyka, je bodem dotyku
pilena. | :

6.26 a) Je din rovmoramenny trojihelnik ABC,
|AC| = |BC|. Najdéte mnozZinu vech bodd M roviny,
jejichZ vzdalenost od piimky AB je rovna geometrické-
mu primeéru jejich vzdalenosti od pfimek AC a BC.

b) Tfi pfimky tvo¥i rovnostranny trojihelnfk. Uréete
mnozinu vSech boda M roviny trojihelnfku, pro které
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je vzdalenost od nékteré z danych pifmek rovna geo-
metrickému priméru vzdalenosti od zbyvajicich dvou
pi{mek.

6.27 T vrcholy kosoétverce leZi postupné na stra-
nich 4B, BC a CD daného ¢tverce. Kde lezi ¢tvrty vrchol
kosoétverce ?

T T Sy

Obr. 83 Obr. 84

Algebraické kfivky. MnozZiny bodd v raznych geo-
metrickych tlohdch nemusi byt samoziejmé vidy pfim-
kami nebo kuZelosedkami. UkdzZeme si dva piiklady.

Mnotzina vSech bodi roviny, jejichZ soudin vzdalenosti
od dvou danych boda F, a F, se rovna danému klad-
nému &slu p, se nazyva Cassiniho ovdl (obr. 83). Je
hladinou funkce

HM) = ]MFII MIFz'-

P¥i vhodné volbé soustavy soufadnic ma proto rovnici
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[(@—c) + 9] (= + 2)* + ¥*] = p?,
kde 2¢ = |F,F,|.

Pro p =¢? ma Cassiniho oval tvar lefaté osmitky
a nazyva se Bernoulliho lemniskata, pro p < c?se skldda
ze dvou &asti.

A jesté jeden piiklad. Necht je dan bod F a pHmka I,
ktera jim neprochdz{. Ozna¢me g(3) vzdalenost bodu M
od priseéfku pHmek FM a l. MnoZina {M : g(M) = d} se
pro kazdé kladné &islo d nazyva Nikomedova konchoida
(obr. 84). Zvolime-li soustavu soufadnic tak, Ze poéatek
splyne s bodem F a pfimka ! bude mit rovnici y + a =
= 0, mj Nikomedova konchoida rovnici

(@ + ¥*) (y + a)* — d?*y* = 0.

Obecné se kazidd kiivka, kterd je ddna rovnicf
Pz, y)=0a Pz, y) je mnohodlen v proménnych 2, y,
nazyvéa algebraickou kiivkou. Stupen polynomu P je
jejim stupném. Jsou tedy Cassiniho ovél i Nikomedova
konchoida algebraické kfivky &tvrtého stupne

Jiz z uvedenych dvou ptikladu je vidét, ze algebralcké
kfivky vy3Sich stuprii mohou vznikat rdznymi zajima-
vymi zpisoby, mohou mit body vratu a mohou samy
sebe protinat (konchoida pro ¢ = d nebo pro a < d).
Jejich tvar se miiZe podstatné ménit pfi zméné para-
metri. S nékterymi se jesté sezndmime v dalsf kapitole.
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Kapitola 7

OTACENI, KOTALENI
A TRAJEKTORIE

V zdvéreéné kapitole seznamime étendfe se zajimavymi
kfivkami, které se definuji pfirozenym zpusobem jako
drahy bodu na kruZnici, kterd se kotédli po jiné kruznici
nebo po primce. Jejich nejzajimavéjsi vlastnosti se
tykaji teten. Milovnik klasické geometrie pozna souvis-
lost mezi kruzniei deviti boda trojihelniku, jeho Simso-
novymi pfimkami a jejich obalkou, kterou je cykloidalni
kfivka s ttemi body vratu. Na zadatku probereme du-
kladné jednu z nejjednodussich cykloidalnich k¥ivek.

Kardioida. Kardioida se obydejné definuje jako tra-
jektorie bodu kruZnice, ktera se kotali po pevné kruZnici
stejného poloméru. Jsou oviem i jiné definice kardioidy.
Dvé z nich uvedeme ve tvaru iloh.

7.1 Dokaite, Ze kardioida je

a) mnoZinou bodu soumérné sdruZenych k danému
bodu 4 podle viech teden pevné kruznice, kterd procha-
z{ bodem A4,

b) mnozinou viech pat kolmic vedenych danym bo-
dem A k teéndm kruznice, kterd prochazi bodem A
(obr. 85).

O a) Uvazujme kruznici ¥, ktera se dotyka dané
kruznice § v bodé 4 a m4 s nf stejny polomér. Kotalejme
kruzZnici y po kruznici é a studujme trajektorii toho bodu
M, ktery ve vychozi poloze splyva s bodem 4. Protoze
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se jednd o kotédleni, jsou délky kruhovych obloukd AT
a MT v kakdém okamziku stejné dlouhé (7 je proménny
bod dotyku obou kruznic). Odtud plyne, Ze jsou body
M a A soumérné sdruzené podle teény v bodé T'. Obéh-
ne-li bod T kruZnici , opise bod M celou kardioidu.

M t

Obr. 85

b) UvaZovanou mnoZinu dostaneme z mnoZiny po-
psané v &isti a) pomoci stejnolehlosti s koeficientem
1/2 a stfedem A. Je to tedy také kardioida, dvakrat
men#i neZ kardioida v tdloze a). [

Uzitim dlohy 7.1 miZeme sestrojit libovolny podet
bodi kardioidy a tak ji dost piesné nakreslit. Je to kfiv-
ka, kterd ma v bodé A singularitu — bod vratu. Tvarem
je podobna osovému Fezu jablkem, o néco méné obrysu
srdce, podle néhoz dostala nazev (kardia — srdce).

Z ulohy 7.1 plyne i dalsf zpusob vytvoreni kardioidy —
jako obalky systému kruznic.

7.2 Je ddna kruZnice a na ni bod A. Dokaite, Ze
sjednoceni viech kruZnic prochazejicich bodem A, je-
jichZ stfed leZi na dané kruZnici, je oblast ohraniena
kardioidou (obr. 86). |

115



Obr. 86

DvE otadeni. Dale ukédieme, jak poznat nékteré
vlastnosti kiivek pomoci kinematiky (teorie pohybu),
a jako piiklad ndm bude &asto slouZit kardioida. Diive
se vSak jeSté vratme k feSeni 7.1a. Tam jsme dosli
k zdvéru, Ze bod M probéhne kardioidu, kdyz bod T
udéla jednu otadku. Tim se minilo, Ze bod T i stfed P
pohybujici se kruZnice y se jednou otoéi. Avsak sama
kruznice, nebo lépe fedeno kruh y se otadi rychleji. Vy-
jasnéme si to.

7.3 Kruinice y se kotali po pevné kruZnici téhoZ
poloméru, ptiéemZ stted P kruinice y vykons jednu
otitku. Kolikrat se za tutéZ dobu otodi kruh y, kolik
vykoné otdéek kolem svého stfedu P?

Zvolme na kruhu y néktery jeho polomér PM a v ro-
viné pevny bod E. Vezméme takovou dsetku EN, aby
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— P
se vektory EN a PM sobé rovnaly. Otiazku tdlohy 7.3
pak muZeme formulovat takto: kolik otadek kolem bodu
E vykona tsedka EN, otodf-li se isedka OP o 360°?
Jaky je pomeér dhlovych rychlosti obou tsedek? Uva-
7ujme dvé polohy pohybujiciho se kruhu. Otodi-li se
usetka OP o 90°, otodi se tisetka EN o 180°, a stejné
tak to plati pro dalsi Ghly, o které se otodi isedka OP,
Otoédi-li se o thel 360°, otodi se tsetka EN o thel 720°,
tedy o dvé plné otadky. Pomér obou thlovych rychlo-
stf je 2.

Zvolime-li bod E totozny se stfedem O pevné kruznice

—> —>
a bod @ tak, aby 0Q = PM, dostaneme rovnobéinik .
OPMQ. Pfi rovnomérném kotédlenf kruhu p po kruZnici
é je bod O pevny a usetky OP a 0Q se otadeji dhlovymi
rychlostmi w & 2w v témZe smyslu. Tim dostavame dalsi
moznost vytvofeni kardioidy, kterou lze dobfe popsat
pomoci kloubového rovnobézniku.

Otadeji-li se ramena OP a 0Q (|OP]| = 2|0Q]) kolem
pevného bodu O v témie smyslu otddeni dhlovymi
rychlostmi o a 2w, je trajektorii &tvrtého vrcholu
rovnobéiniku OPMQ kardioida.

Nyni je snadné ukézat jesté jeden zpisob konstrukce
bodu kardioidy a piedvést dalsi jeji zajimavé vlastnosti.

7.4 Naneseme-li na kazdou pfimku ! prochazejici pev-
nym bodem A4 dané kruZnice é o poloméru r od praseéiku
@ piimky ! a kruZnice é (4 # Q) vsedku QM délky 2r,
vytvofi takto obdrZené body M spolu s bodem A4 kar-
dioidu (obr. 87).

O Pro kaidou polohu pfimky ! miZeme sestrojit
rovnobézinik OPMQ), ve kterém splynou body @ a M se
stejné oznadenymi body tlehy (O je stfed kruznice 4).
Bude-li se pfimka ! otacdet kolem bodu A4 dhlovou rych-
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losti w, budou se ramena OP a OQ rovnobézniku otacet
uhlovymi rychlostmi w a 2w, viz tvrzeni o prstenci na
kruznici v kap. 1. Proto pak opisuje bod M kardioidu. (]

Zkuste si na velkém papiie sestrojit kardioidu jednak
podle 7.1, jednak podle 7.4, a pfesvédéte se, Ze dostanete
stejné kiivky. Jednodussi bude asi druhy zpusob.
Viimnéme si, %e v uloze 7.4 muZeme nanést od bodu @
useéku délky 2r na obé navzajem opaéné polopfimky.

I's M,
N\
A
\
5 'A
M,
R
Obr, 87 Obr. 88

Tim dostavame hned dva body M,, M, kardioidy
(obr. 88). Odpovidaji dvéma poloham kloubového rovno-
béiniku OQMP. Obéhne-li bod @ jednou kruZnici 4,
ototi se isedka QM o 180° a bod M, pfejde do bodu M,.
To ukazuje dalsi vlastnost kardioidy.

7.6 Dokaite, Ze kazdd tétiva kardioidy prochéazejici

jejim bodem vratu 4 ma délku 4r a jeji stied leif na
pevné kruznici poloméru r.
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A jesté dvé tlohy opfrajici se o druhy zptsob kon-
strukce kardioidy.

7.6 Ty¢ délky 2r se pohybuje ve vertikdlni rovind
tak, Ze jeji konec klouZe po vnitfni sténé jamy, jejiz
vertikélni fez ma tvar pllkruhu o poloméru r a ty¢ se
opira o kraj jamy. Dokaizte, Ze se druhy konec tyée po-
hybuje po kardioidé (obr. 89).

M

/
/

Obr. 89 Obr. 90

7.7 Po pevném kruhu poloméru r se kotali kruZnice
poloméru 2r tak, Ze kruh lezi ve vnitini oblasti kruznice.
Dokazte, %e trajektorii bodu kruZnice je kardioida
(obr. 90).

O Jedno feseni ilohy dostaneme jejim porovninim
s Kopernikovou vétou 0.3. Jedna se o pohyb tychz
dvou kruZnic, jen je vyménéna role pohybujici se a ne-
pohybujici se kruznice. Kopernikova véta pk této
zamens roli tvrdi, Ze se kazdy primér M, M, pohybujic
se kruzZnice pohybuje tak, Ze stile prochazi uréitym bo-
dem A pevné kruznice. Pfitom se stfed @ praméru
MM, pohybuje po pevné kruinici a je |M,Q|=
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= |@QM,] = 2r (obr. 91). Tim se dostavime k tloze 7.4
a vidime, Ze se body M, a M, pohybuji po téZe kardioids.

Mohli jsme téZ prevést Feseni ilohy piimo na kloubovy
rovnobéznik. Necht je M bod otddejici se kruZnice a @
jejl pohybujici se stfed. Sestrojme rovnobézntk OPMQ.
Otadi-li se rameno 0@ uhlovou rychlosti 2w, otddf se
pohybujici se kruznice a s ni i rameno QM thlovou
rychlosti w (obr. 92). O

M, P
‘ A
(&
M,
Obr. 91 Obr. 92

Kardioida, se kterou jsme se dost podrobné seznamili,
pat¥i do systému kiivek, jeZ se nazyvaji konchoidami
kru¥nice, nebo téz Pascalovymi zdvitnicerni. Dostaneme
je trochu obecnéjsim postupem, neZ je postup uvedeny
v tloze 7.4. Na piimky [ prochazejici danym bodem 4
pevné kruzZnice nandsime od pruseéiku @ této kruznice
a pfimky ! dsetky dané délky k (na obé poloptimky od
bodu Q). Koncové body téchto tisedek vytvoti Pascalovu
zgvitnici. Rovni-li se délka A praméru dané kruZnice,
jde o kardioidu. Porovnejte tuto definici s definici
Nikomedovy konchoidy, tj. konchoidy piimky. Ukazuje
se, Ze Pascalovu zévitnici miZeme pfi kazdé hodnoté A
definovat kinematicky. To je obsahem dalsich dloh.
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7.8 a) DokaZte, Ze vrchol M kloubového rovnobéi-
niku, jehoz kloub O je upevnén a jehoi ramena OP
a 0Q se otadeji ihlovymi rychlostmi 20 a @, opisuje
Pascalovu zavitnici.

b) V roviné je pevné zvolena kruZnice poloméru 7.
Po ni se kotdli jina kruZnice téhoZ poloméru. Dokazte,
7e bod na priaméru kotalejici se kruznice nebo na jeho
prodlouZen{ opisuje Pascalovu zavitnici.

¢) V ptedchézejici dloze nahradte pohybujici se krui-
nici kruznicef o poloméru 27, p¥itemz pevnéd kruznice se
ji dotyka uvnitt.

Ukézeme ted nékolik raznych tloh, v nichz pomér
uhlovych rychlosti dvou otadeni neni (jako v piipadé
kardioidy) roven dvéma. Dostaneme tak nékolik dalsich
cykloiddlnich kiivek.

7.9 Po pevné kruznici poloméru B se vné kotali kruh
o poloméru a) R/2, b) R(3, ¢) 2R/[3. Kolikrat se vnéjsi
kruh otoéi, vykona-li jeho stfed jednu otddku kolem
stfedu pevné kruznice? |

7.10 Reste tutéz dlohu v p¥ipads, kdy se pohybujici
kruh dotyka pevné kruZnice uvnitf.

7.11 Mezi otddejicim se krouzkem loZiska o praméru
6 mm a jeho pevnym pouzdrem o priméru 10 mm jsou
kuligky o priméru 2 mm. Pfedpoklddejme, Ze pti otddeni
vnitfntho krouzku kuli¢ky neklouZou. Jakou ihlovou
rychlosti se
a) otadeji kuliky,
b) se pohybuji jejich stiedy
kolem stiedu loziska, otdéi-li se vnitini krouZek loziska
rychlosti 100 otadek za sekundu ?

7.12 T¥i ozubend kola otadejicf brusiéskym kamenem
jsou spojena podle obriazku. Urdete pomér polomérd
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pohybujicich se kol, ma-li se malé koledko (brus) toéit
dvandctkrat rychleji neZ rameno 0@, které je uvadi
v pohyb (obr. 93).

Obr. 93

Uvazujme dva body kruZnice, kterd se kotali po kru-
hu. Je zfejmé, Ze opisuji kongruentnf (shodné) trajekto-
rie. Ve zvliStnim pfipadé se dokonce mize stit, Ze obé
trajektorie splynou, Ze se oba body pohybuji po téze
kfivee, jeden za druhym. Napiiklad v feSeni ulohy 7.7
jsme vidéli, Ze diametralné protilehlé body vnéjsi kruz-
nice opisovaly stejnou kardioidu. Pfesvédéime se o tom,
ukaZeme-li, Ze trajektorie téchto boda maji bod vratu
v témZe bodé pevné kruznice. V dalsich tlohach miZeme
postupovat analogicky.

7.13 a) Dokaite, Ze diametralné protilehlé body M,
a M, kruznice o poloméru 2R/3, kterd se kotali po
vnittku pevné kruznice o poloméru R, opisuji tutéz
kiivku. Tato kiivka se nazyva deltoid, nebo téZ Steinerova
kftvka (obr. 94). |

b) Dokaizte, Ze body M,, M, a M, na kruinici o polo-
méru 3R/4, které tvofi rovnostranny trojihelnik, opisuji
tutéz kiivku (asteroidu), jestlize se kruZnice kotali po
vnitfku pevné kruZnice o poloméru R (obr. 95).
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¢) V piedchazejici uloze nahradte hodnotu 3R/4 hod-
notou 3R/2 a pfedpoklidejte, Ze pohybujici se kruZnice
obklopuje pevnou kruznici. Misto asteroidy dostanete
kFivku, ktera se nazyva nefroida.

Méjme kloubovy rovnobéinik OPMQ, kde vrchol O je
pevny a ramena OP a OQ se otadeji kolem O, pfi¢em?z

| ; [
/

LA I
>0 & § W
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pomeér woplweq jejich thlovych rychlosti je k a pomér
|OP|/|0Q| jejich ramen je 1/|k| (K # 0, 1, —1). Potom
kfivku, kterou opisuje vrchol M, nazveme k-cykloida.

Pohybuji-li se dva body P a N rovnomérné po kruz-
nici tak, Ze pomér wp/wy jejich uhlovych rychlostf je
roven k, je obalovou kiivkou pifmek PN k-cykloida
(viz 7.19).

Obr. 99 Obr. 100

Ktivky k-cykloida a (1/k)-cykloida jsou shodné.

K¥ivku k-cykloidu miZzeme definovat také jako trajek-
torii bodu kruZnice, ktera se kotali po kruZnici o polomé-
ru |k — 1|/r, pFi¢emz p¥i k£ > 1 majf kruZnice vnéjsf a pti
k < 1 vnitini dotyk.
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Obytejné se k-cykloidy nazyvaji v piipadé k> 0
epicykloidami, v ptipadé & < 0 hypocykloidams.

Na obrazcich 96—101 jsou zobrazeny k-cykloidy pro
k=3/8, —1/7, —3, —2, 2 a 3. Posledni &tytfi jsou
asteroida, Steinerova k¥ivka, kardioida a nefroida.

Obr. 101

Na obr. 102 je zobrazena trajektorie bodu kruZnice,
ktera se kotali po pfimce. Tato kfivka se nazyva cykloida.
Obalovou kfivkou priméru kotalejici se kruinice je
cykloida dvakrit mensi.

Jiz v pitipadé kardioidy jsme vidéli, Ze tutéz kfivku
miZeme dostat jako trajektorii bodd dvou riznych
kruZnic kotdlejicich se po téze pevné kruinici. Porov-

EVAp~

Obr. 102
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nejte prvni definici kardioidy s tlohou 7.7: v jednom
piipadé je stfedem pohybujici se kruznice bod P a ve
druhém vrchol @ kloubového rovnobéiniku OPQM.
Dalsi dloha ukazuje obecné, v jakém vztahu musf byt
pohybujici se kruznice, aby trajektorie jejich bodid byly
shodné.

7.14 a) Dokaite, Ze bod kruzZnice o poloméru r, jeZ se
kotali po pevném kruhu o poloméru R, opisuje trajekto-
rii shodnou s trajektorii, kterou opisuje bod kruznice
o poloméru R + r kotalejici se po témze kruhu tak, Ze
jej obklopuje.

b) Po vnitiku kruZnice o poloméru R se kotdleji dvé
kruznice o polomérech » a B — r. Doka#te, Ze trajektorie
bod jedné i druhé kruZnice jsou shodné. |

K feSeni téchto tloh potfebujeme umét vypotist
vztahy mezi rychlostmi spolu vazanych otédeni. Ty
vySetfime pozdéji, ted piejdeme k nejzajimavéjsim
vlastnostem cykloiddlnich kfivek, k vlastnostem jejich
teden.

Véta o dvou kruzich. Vyslovime zajimavé pravidlo,
které nam umo#ni nizorné popsat systém vsech teden
trajektorie bodu M na kruZnici o poloméru r kotalejicf se
bez klouzani po pevné kiivee y. Kotdlejme po téze kiivcee
y kruZnici o poloméru 2r a pfedstavme si s ni pevné
spojeny prumér KL, ktery jsme zvolili tak, aby v urdi-
tém dasovém okamziku splynul bod K s bodem M v ten-
tyz bod kiivky y (obr. 103). Pak se v kazdém okamziku
dotykd primér KL trajektorie bodu M. Jinymi slovy,
tato trajektorie je obalovou ktivkou vsech poloh pri-
méru KL.

Toto vyhodné pravidlo jsme nazvali vétou o dvou
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kruzich. K jejimu dikazu se vratime pozdéji, zatim jeji
tvrzeni doplnime. Kotélime-li obé kruznice, o kterych
véta mluvi, soudasné tak, aby v kazdém okamziku sply-
nuly jejich body dotyku s kfivkou y, kotali se mensf
kruZnice uvnitt vétsi bez klouzani. Podle Kopernikovy
véty se bod M pohybuje po pevném priméru KL veétsi
kruznice. A naSe véta o dvou kruzich tvrdi, ze ptimka
KL je tetnou sestrojenou v bodé M k jeho trajektorii.

e
A A

Bl
Obr. 103 Obr. 104

Piejdéme k piikladim. Za¢neme u systému piimek,
o kterém jsme jiZz hovofili v ivodu knizky. Necht se
kruZnice o poloméru r s vyznadenym bodem M kotali
zevnitf po kruZnici o poloméru B = 4r. Kotalejme spolu
s ni kruznici o poloméru 2r a na ni pevné zvoleny priamér
KL také po vnitfku pevné kruinice o poloméru 4r.
Piedpokladdme ptitom, Ze ve vychozim okamziku sply-
vaji body K a M s bodem A pevné kruZnice (obr. 104).
Podle Kopernikovy véty se krajni body praméru KL
pohybuji po dvou na sebe kolmych primérech 44’
a BB’ pevné kruinice. Soudasné se podle véty o dvou
kruzich dotyka pramér KL v kazdém okamZiku trajek-

127



torie bodu M, tj. obalovou kf¥ivkou piimek KL je asteroi-
da s body vratu 4, B, A°, B'.

Dalsi uloha se tyka kardioidy.

7.15 Z pevného bodu B kruZnice vychdzeji svételné
paprsky, dopadaji do vicch bod kruZnice a odrizeji se
od nf (tihel dopadu se rovna Ghlu odrazu). Dokaite, Ze
obalovou kfivkou odraZenych paprsku je kardioida.

Obr. 106

O Oznadéme O stfed dané ,zrcadlové‘‘ kruZnice a C
bod diametralné protilehly k bodu B. Necht se paprsek
BP odrazi v bodé P do bodu N tsetky BC (pfedpokla-
déme, %e | X PBC| < 45°). Pak je| < PNC|=| <X BPN|+
+| <X PBN| = 3| <& PBC|. Ot4gi-li se tudiZ paprsek BP
tihlovou rychlosti , ot4df se odraZzeny paprsek dhlovou
rychlost{ 3w, pti¢emz se bod odrazu P pohybuje po
zreadlové kruznici thlovou rychlosti 2w (véta o prstenci
v kap. 1). To zlstdva v platnostii p¥i|<x PBC| > 45°.

N&a3 systém piimek PN muZeme tedy dostat také
takto: Kotilejme po pevné kruZnici o poloméru r =
= |0B|/3 se stiedem v bodé O kruinici poloméru 2r
a s nf pevné spojeny prumér KL, ktery lezi ve vychozf
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poloze na pfimce BC (obr. 105). Probiha-li stted P této
kru#nice kruZnici o poloméru 3r a stfedu O tihlovou
rychlost{ 2w, otadi se primér KL thlovou rychlosti
3w (?), stejnéd jako odraZeny paprsek.

Podle véty o dvou kruzich je obalovou kiivkou systé-
mu p¥imek KL trajektorie bodu M na kruZnici o polo-
méru 7, kterd se kotali po kruZnici téhoZ poloméru se
stfedem v bodé O, tj. kardioida. Ve vychozi poloze
splyvd bod M s bodem A, ktery déli usetku BC v po-
méru 2 : 1. Ten je bodem vratu kardioidy. [

7.16 Svazek rovnobéznych paprski dopad4 na zrcadlo
tvaru pulkruznice. DokazZte, %e se odraZené paprsky
dotykajf nefroidy.

Kdyby bylo zrcadlo parabolické, odriZely by se
vSechny paprsky do jednoho bodu, do ohniska paraboly
(viz kap. 6). Proto se nefroidé také ¥k okniskovd kiivka
kru#nice.

7.17 Najdéte mnozinu vSech bodi, kterou opise pevny
prumér kruhu o poloméru r kotéalejici se

a) vné po pevné kruZnici o poloméru 7,

b) uvnitf po pevné kruznici o poloméru 3r/2.

Nékolik dalSich zajimavych tloh o tednach kiivky
uvedeme dale. Diive vSak pojedndme o kinematickych
vztazich pouZitych ve vété o dvou kruzich a v fefenich
poslednich tloh.

Rychlosti a teény. Pro uréeni vztaht mezi dhlovymi
rychlostmi sloZenych otdéeni existuje vyhodnéjsf postup
ne% ten pomérné primitivni, ktery jsme pouzili pfi fesen{
ulohy 7.4. Je to pravidlo skldadani thlovych rychlostf
analogické pravidlu skladan{ linedrnich rychlostf, uzivané
hlavné pfi ptechodu od jedné vztazné soustavy ke druhé.
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Domluvime se, Ze thly a tihlové rychlosti odpovidajicf
otddeni ve smyslu proti otideni hodinovych ruéidek
budeme brat s kladnym znaménkem a ihly odpovi-
dajici otadeni ve smyslu otddeni hodinovych rudidek
budeme brat zaporné. Otodf-li se pak pfimka I, vzhle-
dem k pi{mce [, 0 tihel ¢’ a ptimka I, vzhledem k ptimce
l, o Ghel ¢, otodf se pfimka I, vadi pfimce I, o thel
¢ + ¢’. Otadi-li se tudiz rovinny ttvar y, kolem ,,pev-
ného** utvaru p, thlovou rychlosti o’ a itvar y, kolem
utvaru y, ihlovou rychlostf w, otaéi se utvar y; kolem y,
dhlovou rychlosti w 4+ w’. Vzhledem k tomu, Ze se
v nadich tlohich jedna piedeviim o otadeni kruhi, bu-
deme na kazdém z nich pfedpokladat pevné vyznadeny
polomér, abychom lépe vidéli Ghly otoéeni.

<&

Obr. 106 Obr. 107

14

Ukazeme uziti pravidla skladani dhlovych rychlosti.
UvaZujme dva kruhy o poloméru 7, jejichZ stfedy jsou
pevné umistény ve vzdalenosti 2r (obr. 106). Otadeji-li se
kruhy bez klouzani, jsou jejich ihlové rychlosti v abso-
lutni hodnoté stejné, ale maji opadnd znaménka. Je-li
napiiklad thlovd rychlost prvniho —w, je rychlost
druhého . Rychlosti (uZ nikoli dhlové) jejich bodi
dotyku musi byt na obou kruzich stejné. To plyne
z toho, %e kruhy neprokluzuji. ProtoZe velikost v linearn{
rychlosti bodu M na kruhu, ktery se otaé¢f Ghlovou rych-
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lostf w, je rovna v = wr (r je vzdéalenost bodu M od
sttedu kruhu), plyne z rovnosti lineirnich rychlost{
rovnost absolutnich hodnot dhlovych rychlosti. Vezmé-
me ted vztainou soustavu, pevné spojenou s prvnim
kruhem. Pak je tieba ke viem tihlovym rychlostem pfi-
tist w, thlova rychlost prvniho kruhu bude O a druhého
2w. To jsme jiz vidéli v tloze 7.4.

Jedté jeden p¥iklad. Necht je vzdilenost mezi (zatim
pevnymi) stiedy O a P dvou dotykajicich se kruZnic
o polomérech B = 2r a r rovna r (obr. 107). Otadeji-li se
kruZnice bez prokluzovéni, jsou jejich thlové rychlosti
o a 2w (pomér absolutnich hodnot jejich dhlovych
rychlosti se rovnd pfevricené hodnoté poméru jejich
polomérit). Ve vztaZné soustavé pevné spojené s veétsf
kruznicf jsou jejich dhlové rychlosti 0 a o (jednd se
o pohyb, o kterém se mluvi v Kopernikové vété). Ve
vztaZné soustavé mensi kruZnice jsou dhlové rychlosti
—o a 0 (iloha 7.7).

Pii urdenf tdhlové rychlosti se oviem muZeme také
obejit bez zavedeni otilejici se vztazné soustavy. Musi-
me pak umét zjistit (linearni) rychlost kazdého bodu
kotédlejictho se kruhu. To budeme hlavné potfebovat
v daldim odstavci, pojednavajicim o tenich cykloidal-
nfch kfivek. Vratme se tedy k prvnimu pfikladu —
uvaZujme kruh o poloméru r kotalejici se po pevné
kruZnici tého% poloméru. Oznaéme 7T bod kruhu, v ném%
se v daném okamzZiku dotyka pohybujici se kruh pevné
kruznice. Okamzitd rychlost bodu 7 je nulova, protoze
kotédleni probfhd bez prokluzovani. Jak najit okam#ité
rychlosti ostatnich bod@ kruhu ?

K odpovédi pouZijeme véty Mozziho: V ka?dém
okamZiku jsou rychlosti bodi desky, kterd se pohybuje
v pevné roviné, bud stejné jako v pfipad& posunuti
desky, tj. viechny jsou stejné veliké a majf stejny smér,
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nebo jsou takové jako pii otadeni, tj. rychlost jednoho
bodu 7T je nulova a velikost rychlosti libovolného bodu
M je rovna [MT| o, kde je w okamiita hlové rychlost
otdaceni desky. Pfitom je smér rychlosti bodu M =# T
kolmy na spojnici bodi M, T. A pravé tato druhd moz-
nost nastiva v piipadé kotdlejictho se kruhu, pfitemz
roli bodu T — okamiitého stiedu otadeni — hraje bod
dotyku kruhu a kruznice. (A to plati i v piipadé kotaleni
ktivého koletka po kostrbaté cesté.) Pouzijeme-li toto
tvrzeni, najdeme pomeér thlové rychlosti w, kotalejici se
kruznice a uhlové rychlosti w,, se kterou se otadf jeji
stfed P kolem stfedu O pevného kruhu. Staéi dvéma
zpusoby vypodist velikost rychlosti bodu P. Jednak se
rovnd tato velikost hodnoté 2rw,, a protoZze je bod T
okamiZitym stfedem otddeni, rovni se tézi rw,. Je tedy
2rw, = rw,, odkud w; = 2w,.

Tentyz postup uplatnime v piipadé kruhu o poloméru
r, ktery se kotali po vnitiku kruZnice o poloméru 2r tak,
ze se jeho stied otaéi po kruinici o poloméru r dhlovou
rychlost{ w, > 0. Ozna¢me uhlovou rychlost kruhu w,
a viimnéme si, Ze w, < 0. Vyjddiime-li rychlost bodu P
(sttedu kruhu) dvéma zpilsoby, dostaneme |w,r| =
= |wyr|, odkud 0, = —w,. _

Analogické tivahy nam pomohou i pii studiu jinych
sloZenych otaéeni. Pro nas je zvlast daleZité, Ze Mozziho
véta ndm umozZiiuje uréit i smér rychlosti kazdého bodu
pohyblivého utvaru. Rychlost bodu M je vidy kolma
k tsedce MT, ktera ho spojuje s okamiitym stfedem
otaden.

Uvedeme jesté jeden dukaz Kopernikovy véty. Necht
je M bod kruinice o poloméru r, kterd se kotdli po
vnittku kruZnice o poloméru 2r se sttedem O (obr. 108).
V kazdém okamziku smétuje rychlost bodu M kolmo
na tsetku 7'M, kde je T bod dotyku obou kruZnic, tedy
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okamZity stfed otadeni mensi kruZnice. Sméfuje tudiz
rychlost bodu M do stiedu O vétsi kruznice, protoze T
a O jsou diametralné protilehlymi body mensi kruznice.
Proto se bod M pohybuje po primeéru velké kruZnice,
coz je tvrzeni Kopernfkovy véty.

Dokazeme ted vétu o dvou kruzich. Kotalejme po
ktivce nebo piimce y najednou dvé kruznice o polomé-
rech » a 2r. Oznaéme M a K jejich body, které splyvaji

() |

K
4
T

Obr. 108 Obr. 109

ve vychozi poloze s bodem 4 kfivky ¢, a T spoleény
okamzity stied otddeni obou kruinic, tedy jejich bod
dotyku s kfivkou ¢ (obr. 109). Smér okamzité rychlosti
bodu M je kolmy k tseéce MT, a je tedy totoiny se
smérem toho pruméru vétsi kruZnice, ktery prochazf
bodem M. Je proto tento pramér, jehoZ krajni body
oznadime K, L, pevnym pramérem vétsi kruZnice
a piimka KL se v kazdém okamziku dotyka trajektorie
bodu M. A to je pravé tvrzeni véty o dvou kruzich.

Viimnéme si, %e jsme zde pouzili jiné hledisko pfi
urdeni tedny kiivky; teénou trajektorie pohybujiciho se
bodu je pfimka prochazejici bodem M trajektorie ve
sméru vektoru rychlosti bodu M.

Vétu Mozziho dokazovat nebudeme, ukdZeme si
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viak jeji geometrickou analogii. Je to tvrzeni, Ze kazdé
premisténi roviny v sebe, pii kterém rovinu nepieklo-
pime, je bud posunuti roviny, nebo jeji otodeni kolem
nékterého jejiho bodu 7'. V souvislosti s Mozziho vétou
si véimnéme jesté jedné okolnosti. Okamiity stied ota-
teni T méni pti zcela obecném pohybu destitky v roviné
svou polohu, a to jak vzhledem k pevné roviné, tak
vzhledem k pohybujici se destit¢ce. Vytvafi tak v pevné
roviné i v pohybujfef se roviné pevné spojené s desti¢kou
kiivku. Prvni se nazyva pevnd poloida, druha kybna
poloida. Napiiklad pFi kotaleni koletka po cesté je
pevnou poloidou cesta, hybnou poloidou obvod koledka.
V kinematice se dokazu]e, Ze se hybna poloida kotalf po
nehybné. S vyjimkou posouvani je tedy kaidy spojity
pohyb roviny v sebe kotdlenim jedné k¥ivky po druhé.
My jsme se omezili na ty pohyby, pii kterych byly obé
poloidy kruZnicemi.

Tim ukond&ime nas maly vylet do kinematiky a mi-
Zeme piistoupit k odhaleni nejpozoruhodnéjsich vlast-
nosti cykloidalnich kfivek, souvisicich s jejimi teé¢nami.

7.18 Dokazte, ze tedny kardioidy v krajnich bodech
jeji libovolné tétivy, ktera prochézi bodem vratu kardio-
idy, jsou na sebe kolmé. Vzdalenost jejich pruseéiku od
stfedu pevné kruZnice je 37, kde r znaéi polomér této
kruznice. |,

7.19 Po kruznici jdou dva chodci P a @, pomér jejich
thlovych rychlostf je k (k je riizné od 0, 1 a —1). Uréete
obalovou kiivku viech spojnic PQ. |

7.20 Je dana kruinice a piimka prochazejici jejim
sttedem. DokaZte, Ze sjednocenim vSech kruznic se
stfedem na dané kruZnici a dotykajicich se dané p¥{mky
je oblast ohrani¢ena nefroidou.

7.21 Uvaiujme Steinerovu kiivku opsanou kruZnici
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poloméru 2r. Doka#te, Ze kaZzda jeji te¢na s bodem doty-
ku M ji protina jesté v bodech K, L, pfitemz délka
usetky KL je 4r, jeji stfed lezi na dané vepsané kruznici;
teény Steinerovy kfivky v bodech K, L jsou na sebe
kolmé a jejich prusedik NV leii také na vepsané kruZnici.
Ta pulf usetky KN a LN. |

7.22 Asteroida je opsina kruznici o poloméru 2r.
Dokazte, %e kazdym bodem P vepsané kruznice lze vést
k asteroidé t¥i teény PT,, PT,, PT,, z nich% kaZdé dvé
sviraji spolu thel 60° a body dotyku T,, T,, T tvofi
vrcholy rovnostranného trojihelniku vepsaného krui-
nici o poloméru 3r, kterd se dotyka kruzZnice opsané
asteroidé.

Posledni tloha této séric, kterou lze téz fesit pomoci
pohybu, ukazuje nedekanou souvislost mezi elementarn{
geometrif trojibelniku a cykloidalni kfivkou, kterd nese
jméno geometra, objevitele této souvislosti.

7.23 Je dan trojihelnik ABC. Dokaite, Ze

a) paty kolmic vedenych libovolnym bodem kruZnice
opsané trojuhelniku ABC na piimky 4B, BC, CA leii
na jedné pfimee (Simsonova pfimka),

b) stfedy stran trojihelniku, paty jeho vysek a stfedy
tsedek spojujicich prisedik vysek s vrcholy trojihelniku
lezi na jedné kruinici (tzv. kruZnice deviti bod#, nebo také
Feuerbachova kruznice),

¢) viechny Simsonovy pi{mky trojihelniku ABC se
dotykaji Steinerovy kfivky opsané kruZnici deviti
bodi. |

Parametrické rovnice. Viechny vlastnosti cykloidal-
nich kfivek jsme mohli dokézat také analyticky. Pfitom
je nejvyhodnéjsi pouift parametrickych rovnic kfivky,
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kterymi jsou soufadnice [#; y] bodu M kiivky vyjadfe-
ny pomoci parametru ¢{. Pod parametrem ¢ si miiZeme
piedstavit ¢as. S takovymi rovnicemi jsme se setkali uZ
v tloze 6.22.

UvaZujme trajektorii, po které se pohybuje &tvrty
vrchol M Kkloubového rovnobéiniku OPMQ, jehoz
vrchol O je pevny a splyvd s podéitkem soustavy sou-

P - n
fadnic. Vyjdeme ze vztahu OM = OP + O@. Pohy-
buje-li se bod P po kruZnici o poloméru », a stfedu O
ihlovou rychlosti w, a bod @ po kruznici o poloméru r,
a stfedu O thlovou rychlost{ w,, ma v okamziku ¢ bod
P soutadnice [r, cos w,f; 7, sinw,t], @ = [ry cos wyl;
74 8in w,f] a soutadnice étvrtého vreholu M rovnobéiniku
OPMQ jsou

T = 7, COS w,f + 75 COS Wy,
y = r, sin w,f + 7, sin w,t

(pfedpokldidame, %e v okamiZiku ¢ = 0 splyvaji polo-
piimky OP a 0@ s kladnou polopfimkou osy z). V tloze
6.22 jsme si ukazali, Ze v piipadé w, = —w, opisuje bod
M elipsu. V obecném piipadé, plati-li vztahy

ooy, =k, 1yfry = |k|,

opisuje bod M cykloidalni ki¥ivku, k-cykloidu.

Vyloudenim parametru ¢ z vysSe uvedenych para-
metrickych rovnic dostaneme v nékterych pfipadech
jednoduchou rovnici, kterou jsou spolu svéziny sou-
fadnice z, y kazdého bodu k-cykloidy. Vezméme napii-
klad asteroidu. Pro ni je r, = 3r,, 0w, = —3w,; mifeme
vzit w, = 1, pak je w, = —3 a parametrické rovnice
asteroidy jsou (polozili jsme r, = r)

x = 3rcost + rcos 3¢,
y = 3rsin t — r sin 3¢,
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nebo v jednodussim tvaru (?)
x = 4r cos? ¢, y = 4rsin?¢.
Odtud plyne jednoduché rovnice asteroidy
x2/3 + y2/3 — (4,-)2/3.

Asteroidu i dalsi kfivky, se kterymi jsme se seznamili,
je moiné zadat algebraickymi rovnicemi. Ovéfte si, Ze
soufadnice e ka?dého bodu piislusné kiivky vyho-

vuji rovnici:
asteroida (x? -|— Yy —4r2)% + 108r2x2y? = 0,
kardioida (x? + y2 — 2rx)? — 4r2(2® + y2) = 0,
nefroida (2% + y*— 4r2)3 — 108r422 = 0,
Steinerova  (x? + y?* + 972)? 4 8rx(3y? — z?) —
kiivka — 10874 = 0.

Jsou tedy asteroida a nefroida kiivky Sestého stupné,
kardioida a Steinerova kfivka jsou stupne ¢tvrtého.

D3 se ukazat, Ze pfi raciondlnim poméru k = w,/w, je
cykloiddlni ktivka kiivkou algebraickou. Pro iracio-
nalni k dostaneme nealgebraickou kfivku, jejiz body
vypliuji husté mezikruzi se stfedem O a poloméry
r, + 7, & |r; — 75|. To znamena, Ze v kadém kruhu se
sttedem v popsaném mezikruZi a s libovolné malym
polomérem lezi alespon jeden bod k¥ivky.

Porovnanim rovnice kiivky s jejimi geometrickymi
vlastnostmi mizeme dostat zajimavé dusledky. Uka-
zeme si jednu tlohu, ve které se uiiva vlastnosti aste-
roidy.

7.24 a) Je dan pravy uhel a uvnit¥ n8ho ve vzdale-
nostech a, b od ramen thlu bod K. Je moZné proloZit
bodem K tsetku délky d s krajnimi body na ramenech
dhlu?
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b) Kandl, jehoZ bifehy jsou rovnobéine p¥imky, se
ldme do pravého thlu. Pted lomem mé §ffku a, za lomem
sffku b. Pro kterd d mtZe lomem proplout tenké b¥evno
délky d (obr. 110)?

(1 a) Zvolime ramena thlu za osy soustavy soufadnic.
Useéka délky d s krajnfmi body na ramenech thlu se
dotyka asteroidy, jejiz body vratu maji vzdalenost d

Obr. 110

od stfedu asteroidy. Jeji rovnice je x2/3 4 y2/® = d2/3,
Je-li K vnitinfim bodem oblasti ohranidené asteroidou
a rameny udhlu (nebo bodem hranice oblasti), existuje
usetka pozadovanych vlastnosti. Je to usetka proché-
zejici bodem K a dotykajicf se asteroidy. LeZf-li bod K
vné uvedené oblasti, nem4 tloha Yedeni. Usetka prede-
psanych vlastnosti existuje tedy privé tehdy, je-li
a2’ + p2s < dus. [

Poznamenejme, Ze adkoliv jsme si objasnili, jak
»sestrojit’* za predpokladu a?? 4 523 < d2® hledanou
dsedku pomoci asteroidy, nenf dloha fesitelna jen pomoc{
pravitka a kruZitka.

Pozoruhodné kiivky, se kterymi jsme se sezndmili
v poslednfch dvou paragrafech, jsou znimy jiz vice
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nez 2000 let. Zakladni vlastnosti elips, hyperbol a para-
bol byly popsény jiz v dile ,,0 kuZelosetkich‘’ staro-
feckého matematika Apollonia z Pergy, ktery Zil téméf
soudasné s Euklidem (tfeti stoleti pfed nasim letopoéd-
tem). Studiem trajektorii pohybiu sloZenych z kruho-
vych se jiz ve starovéku zabyvali astronomové, a ne-
miizeme se tomu divit. Pfedpokladdme-li, Ze se planety
pohybuji kolem Slunce zhruba po kruhovych drahach
a v téZe roviné, je pohyb kaidé planety pozorovin ze
Zems jako sloZzeny kruhovy pohyb. Popis pohybu planet
pomoci cykloidélnich k¥ivek se novymi astronomickymi
pozorovanimi stale zpfesiioval az do doby, kdy Johannes
Kepler zjistil, Ze trajektorie planet jsou s velkou ptes-
nost{ elipsy s jednim ohniskem ve stfedu Slunce. Riizné
tlohy fyziky, mechaniky i matematiky souvisejic
8 kfivkami byly zkusebnim kamenem analytické metody
v geometrii, kterou vytvofili v 17. stoleti Descartes,
Leibnitz, Newton, Fermat a jinf. Tato metoda umo#nila
pfechod od jednotlivych tloh o konkrétnich kfivkach
k obecnym zakonitostem tykajicim se vidy celych tiid
kiivek. P¥i vypoétech sloZitych mechanismii a kon-
strukef se sice neobejdeme bez analytické geometrie, ale
nazorné predstavy, kterym je vénovana tato knfZka,
jsou uZitedné, a to i v tlohich nesouvisejicich s geo-
metrif. Ne nadarmo se vysledky vyzkumu a vypoétit
predkladaji ve formé grafi nebo systému kiivek.
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ODPOVEDI, NAVODY,
RESENI

1.13 Vrcholy M pravodhlych trojihelnfka AMB
s pfeponou A B le#f na kruZnici s primérem A4B.

1.14 Bodem dotyku M kruznic vedme jejich spoleénou
teénu. Jeji priseéik s pfimkou AB oznaéme O. Pak je
|A0| = |BO| = |MO| (délky teen vedenych bodem O
k téZe kruZnici jsou stejné velké).

1.15 Sjednoceni t¥{ kruZnic. Necht jsou 4, B, C, D
dané body. Bodem 4 vedeme piimku /, bodem C p¥imku
s nf rovnobéinou a body B, D vedeme pfimky kolmé
k pfimce [. Tim dostaneme pravothelnik. Je-li L stied
usetky AC, K stted BD, je X LMK = 90°, kde je M
stfed pravothelniku. Otdéime-li piimku ! kolem bodu 4
a odpovidajicim zpisobem ostatni pfimky, vidime, Ze
mnozinou bodd M je kruZnice nad primérem KL. Pro-
toZe éty¥i body 4, B, C, D miZeme rozdélit na dvojice
ttemi zplsoby, sklidd se hledand mnoZina ze t¥{ kruZ-
nic.

1.25 Bud je st¥ed pevny, nebo probiha ptimku. Pohy-
buji-li se chodei po rovnobéinych pfimkéch, je stied
bud pevny (chodei jdou kazdy na jinou stranu), nebo se
i stfed pohybuje po pifmce rovnobéiné s danymi. Necht

se pfimky protinaji, oznaéme O jejich yprascéik a 1_;:, ;;
rychlosti chodeil, tedy vektory ze zaméieni prvni a druhé
piimky, jejichZ velikost je rovna draze, kterou ujde ten
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ktery chodec za jednotku &asu. Necht se prvni chodec
nachdz{ v okamZiku ¢ v bodé P, druhy v bodé @, pak je
—_

—_— = - — = — — .
OP =a + tv;,, OQ = b + tv,, vektory a, b udavaji
polohu chodet v gase ¢ = 0. St¥ed M usedky P@ je dan
—> — —> - - — -
vztahem OM = (OP + 0Q)/2 = (a + b)/2 + t(v, + v5)/2.
Vidime, Ze se bod M pohybuje po pfimce rychlost{

Y] lg'

00 MO F(,)

Obr. 111

.
(0, 4 ,)/2. Pro jeji urdeni stadf urdit stfed potétetnich
poloh obou chodci & stfed jejich poloh tieba za jednotku
dasu.

Vypoéty s vektory miZeme nahradit téZ geometric-
kymi dvahami. Nechf jsou P,P, a Q,@, libovolné, ale ne
rovnobéiné tselky, M, stied tsedky PoQ, a M, stied
tsedky P,Q,. Usetka MM, je ténicf v trojihelnfku
L MN,, kde L, a N, jsou ¢tvrtymi vrcholy rovnobéz-
nikd P,PoM,L,, ©,QoM,N,. Usetky P,Q, a N,L, jsou
totiZz uhlopi{ékami v rovnobéiniku P,L,Q,N, (obr. 111).
Zvolime-li mfsto bodu P, a @, na piimkéch P,P,, @,Q,

—> — —> —>
body P, @ tak, aby PP = tP,P;, Q,Q = tQ.,Q,, & se-
strojime-li obdobné jako pfedtim trojihelnik LM N

142



s t&Znicif M M, je tento trojihelnfk zfejmé stejnolehly
8 trojihelnikem L, M N, s téZnici M M,, a bod M lezi
proto na piimece M M,.

1.28 Pouzijeme obrizku z feSenf 1.25. Otddi-li se
usetky PP, a Q,Q, rovnomérné kolem bodu P, @,
stejnou uhlovou rychlostf, otdéf se stejnou ihlovou
rychlosti trojihelnik L, M N, s téZnici M M,.

1.29 Kruinice. Ulohu Feime pomoci pohybu, sestro-
jime poloméry O, K, O,L. Ota¥-li se pfimka KL rovno-
mérnéd ihlovou rychlosti w, otidf se podle véty o prstenci
poloméry O, K a O,L stejnou thlovou rychlosti 2w, je
tedy velikost dhlu pfimek 0,K a O,L konstantni. Tim
se uloha pievede na piedchézejici.

2.11 b) Poutijte F.

2.19 Oznalme vysku trojihelnfku A. Je-li u < b, je
hledanéd mnoZina prazdnd, pro u = h je to cely troj-
thelnik, pro 4 > k obvod 8estitihelnfku (obr. 112).

2.20 Obrazek 113.

V4 NC
d
Obr. 112 " Obr. 113

3.6 b) Pievede se na tlohu 3.6a, nebo se d4 fesit
»prostorovd*‘. Sestrojime t¥i sféry, které maji dané kruz-
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nice za hlavni kruZnice (kaZda sféra prochazi jednou
kruznici a st¥ed sféry a st¥ed kruZnice splyvaji). KaZdé
dvé sféry se protinajf v kruZnici, ktera se promitd do
piislusné tétivy.

3.7b)Je |X AMB| = 90° + ¢/2, kde M je stfed
kruZnice vepsané trojihelnfku. Podle E je hledanou
mnoZinou dvojice kruhovych obloukd s koncovymi

body 4, B.

3.7 ¢) Hledanou mnozinou je dvojice kruhovych
obloukii. Na obrazku 114 jsou po fadé zachyceny p¥i-

a b c
Obr. 114

pady ¢ < 90°, ¢ = 90°, ¢ > 90°. Necht 1, [ jsou riizno-
bézky prochazejici body A, B a necht k4, ky jsou pfimky
rovnéZ prochazejici body A, B, ptitemz ky | lp, kn L
1 14. Otaceji-li se ptimky I, Iz kolem boda 4, B rovno-
mérné, otadeji se stejné ptimky k,, kp. Podle E, probfha
jejich prasetik kruznici. Probiha-li praseéik piimek 14, Ip
kruhovy oblouk kruZnice y, probihi priseéik piimek
k4, kp kruhovy oblouk kruZnice soumérné sdruZené ke
kruznici y podle pfimky AB.

3.8 a) Oznadme K, L, M postupné priseéiky dvojic
piimek @ a b, b a ¢, ¢ a a. Podle E, opisuji body K, L
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kruZnice s tétivami AB, BC. Oznatme H prisedik
téchto kruinic, rizny od B. V okamZiku, kdy pfimka b
prochézf bodem H, splyvaji body K, L s bodem M,
prochazeji tudiz pfimky a a ¢ také bodem H. (Piipady,
ve kterych se uvaZzované dvé kruznice v bodé B dotykajf,
nebo dokonce splyvaji, nutno vysetfit zvlast. V prvnim
pifpadé splyvaji body B a M, ve druhém splyvaji
v ka?dém okamiiku body K, L, M, na p¥Hmky a, b, ¢
je moZné navléknout jeden prstenec.) Poznamenejme
jesté, Ze pii celém otadeni je trojihelntk KLM stéle
podobny jedné své poloze. Prochazeji-li ptimky a, b, ¢
bodem H, redukuje se na bod a nejvétsich rozmért na-
byva v okamziku, kdy jsou p¥imky a, b, ¢ po fadé kolmé
na piimky AH, BH, CH. Pak splyvaji jeho vrcholy
8 body diametralné protilehlymi k bodu H na jednotli-
vych trajektoriich (kruZnicich).

3.8 b) Necht se piimky AH, BH, CH zadinaji otidet
stejnou thlovou rychlosti kolem bodd A4, B,C (H je
pruseéfk vysek). Pak opisuje prisedik kazdé dvojice
kruZnici, a to jsou ty kruZnice, o kterych se mluvi
v uloze.

3.9 Zkoumdme t¥i mnoZiny bodt M le#fcfch uvniti
trOjﬁhelﬂiku, {M : SAMB= kl'SBMC}) {M . SBMC': kz.
Samc) {M : Samc= k3.8S4ys}. To jsou tii tsedky (viz
J), které se protinaji v jednom bodé, pravé kdyz platf
kikoky = 1.

3.10 UvaZujte mnoziny {M : |MA[? — |MB|* = h;},
{M :|MBJ2— |MC|? = hy}, {M : |MC|? — | MA|? = hy}.
Tyto t¥i pfimky (viz F) se protinaji pravé tehdy v jed-
nom bodé, kdy% b, + h, + k3 = 0.

3.19 Uvazujte pro kazdy z danych n bodu €, mnoZinu
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bodi, jejichy vzdalenost od bodu C; nenf vét3i nez
Yfmn i =1, ..., n).
3.21 Uvazujte mnoZinu koncovych bodd vektoru
— —
OM = OE, + OF, + ... + OE, (kde OE; jsou jed-

notkové vektory podle podminek itlohy) nejdfive pro
n =1, pak n = 2 atd.

4.4 Nejmensi vzdéalenost mezi chodci je ud/)u? + o2

Rychlost prvniho chodce necht je —1_:, druhého?(velikosti
téchto vektort jsou dany). Uvafujme relativni pohyb
chodce P vzhledem ke @, to je rovnomérny pohyb rych-

lost{ & — v (viz 1.3). V podateéni poloze, kdy se chodec
P nachdzi v prusediku P, obou cest, je chodec @ v poloze

Q,, vzdilené od P, ve sméru vektoru —% o délku
|@oPo| = d. K uréeni odpovédi ulohy stati bodem P,
- >

vést pfimku ! ve sméru vektoru v — v (to je trajektorie
bodu P pii relativnim pohybu vzhledem k vztazné sou-
stavé, svazané s bodem @) a urdit vzdalenost QoH bodu
@, od pf¥imky ! (H je kolmy primét bodu @, na I). Pro-
toZe trojihelnik @Q,P,H je podobny trojihelniku slo-
> - - ~> - -

Zzenému z vektori u, v, 4 — v (QoPy L u, @oH | u—v),
. - —> el -

je [QoH |/|QoPo| = [ul/lu —v] = w/}/uz ¥ o2,

4.6 Vedme sttedem O, jedné kruZnice kolmici O,N
na piimku ! prochazejici bodem A, stfedem druhé
kruznice kolmici na O,N; jeji patu oznaéme M. Pak je
LOIM | polovina vzdalenosti pruse&ikit ptimky I s obéma

ruZnicemi (riiznych od A4).

4.9 Rovnoramenny trojihelnik. PouZijte 2.8a.

5.4 b) Dokaite, Ze prusedik M kolmic vedenych body
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K, L k ptimkam KA, LA opisuje kruZnici, pohybuji-li
se body K, L po ramenech dhlu s vrcholem 4 tak, aby
se neménila velikost isedky KL (vzpomeiite na souvis-
lost s Kopernfkovou vétou vyloZenou v dvodu).

5.7 Pouzijte tvrzeni, Ze hladiny funkece f(HM) =
= |AM|[/|BM| jsou kruznice kolmé ke kruznicim pro-
chézejicim body A4, B

6.3 e) Odpovéd je hyperbola, jestlize kazda z danych
kruZnic lezi vné druhé (nebo maji vnéjsi dotyk), sjed-
noceni hyperboly a elipsy, jestlize se kruznice protinaji,
a elipsa v ptipadé, Ze jedna z kruZnic lezi ve wvnitini
oblasti druhé (nebo maji vnitin{ dotyk). Ohniska sply-
vajf se stfedy kruznic.

6.12 a) Spolu s danou te¢nou uvazujte i teénu sou-
mérné sdruzenou podle st¥edu elipsy. VyuZijte 6.9b a vétu
o soudinu tsektd na tétivé prochazejici danym bodem
vnitin{ oblasti kruznice (soudin nezavisi na sméru tétivy).

6.15 Sestrojte v piipadé a) elipsu a v piipadé b) hy-
perbolu s ohnisky A4, B dotykajici se prvni tsedky
PyP, a dokaite, Ze se ji dotykd i druhd tdsetka P,P,.
Utzijte k tomu shodnosti trojihelnfki A'P,B, AP,B’,
kde A’ je bod soumérné sdruZeny k bodu A podle P P,
B’ je bod soumérné sdruZeny k B podle P,P, Teény
jsou osami tisebek AA’, BB’ (viz 6.9a, 6.10a).

6.16 c) Sestrojime mnoZinu vSech bodd N, pro které
lezi stied tisetky AN na dané kruZnici. Je to kruZnice,
jeji stfed oznadime B, jeji polomer R. Mnozina bodi,
které jsou bliz k bodu A nez k libovolnému z boda N

K tdlohém 6.16 a 6.17. Na obrdzcich 1156—117 je zakresleno
gouze nékolik pfimek pfisluiného systému, ale zdé se, jako by
yly prorysovény i vysledné obdlky — hyperbola, elipsa, para-
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sestrojend kruZnice, je priunikem polorovin ohraniéenych
osami useéek AN a obsahujicich bod A. TutéZ mnoZinu
miZeme psit ve tvaru {M : |MA|— |MB| < R}, hra-
ni¢n{ kiivkou je jedna vétev hyperboly.

6.17 Porovnejte navod k 6.16 s dikazem ohniskové
vlastnosti paraboly.

6.23 Podatek soustavy soutadnic zvolte ve stfedu
usedky AB a smér osy x tak, aby v nékterém okamziku
byly otidejici se piimky s ni rovnobéiné. Vyjadfete
rovnice pfimek a soufadnice jejich priseéiku v zavislosti
na dase ¢. Vyloudenim parametru ¢ ze soufadnic prisedi-
ku (jako v FeSeni 6.22) dostanete rovnici hyperboly ve
tvaru (4) na str. 104.

6.24 PYedstavme si dvé pfimky otddejicf se kolem
bodil 4, B v opa¢nych smyslech tak, e se druhd otdsf
s dvojnasobnou tdhlovou rychlosti neZ pfimka prvni.
Lehce uhodneme, Ze se jejich pruselik pohybuje po
kiivce podobné hyperbole, pFidem? jeji asymptoty
sviraji s pfimkou A B tihel 60° a jejf priisetik C s viset¢kou
AB ji déli v poméru |AC[|BC| = 2. A odpovéd v této
dloze skuteénd zni — vétev hyperboly. Geometricky
dikaz podime nejlépe pievedenim tlohy na mnozinu Q
nadi abecedy. K tomu sestrojime bod M’ soumérné
sdruZzeny k bodu M podle osy ! Gsetky A B a viimneme
si, Ze BM' je osou ihlu ABM a ie |MM'| = |MB)|, proto
je |[MBlle(M, 1) = 2.

6.25 a) Zvolime-li soustavu soufadnic tak, aby ramena
thlu byla déna rovnicemi y = kx, y = —kx(xz = 0), je
obssh trojahelniku OPQ s vrcholy P, @ na ramenech
thlu a stiedu P[z; y] roven kx? — y2/k.

b) Poutijte vysledki dlohy 1.7b.

c) Vyplyvéa z a) a b).
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7.2 Sjednoceni je mnoZinou vsech boda M, ke kterym
existuje takovy bod P kruZnice, Zze |[MP| < |PA|, nebo
téz mnoZinou bodad M, pro které ma osa tse¢ky MA
spoleény bod s danou kruZnicf. Srovnejte s ulohami
6.16, 6.17.

7.9 Odpovéd: a) 3, b) 4, ¢) 2,5. Najdéte pomér thlo-
vych rychlosti tak, jak to bylo ukazano v odstavei
o rychlostech a teéndch.

7.13 a) Kruhovy oblouk kruznice o poloméru R mezi
dvéma body vratu Steinerovy kiivky ma stejnou délku
jako polokruznice o poloméru 2R/3.

7.14 b) Jednu i druhou kiivku muZeme dostat jako
trajektorii vrcholu M kloubového rovnobéiniku o stra-
nach R —r,r s pomérem uhlovych rychlosti w,/w, =
= —r[(R — r) (Ghlové rychlosti maji opaéna znaménka).

7.18 Pouzijte 7.7 a vétu Mozziho.
7.19 k-cykloida.

7.21 Pouzijte 7.13a. Mozziho vétu a vétu o dvou kru-
zich,

7.23 Necht se bod M pohybuje po opsané kruZniei
uhlovou rychlosti . Pak
(1) se body M,, M,, M,, soumérné sdruzené k bodu M
podle p¥imek BC, CA a ADB, pohybuji po kruZnicich
ihlovou rychlosti —w,
(2) tyto tfi kruznice se protinaji v priasetiku vySek H
trojihelniku 4 BC (3.8b),
(3) ka#dd z piimek MM (: =1, 2, 3) se otadi kolem
bodu H dhlovou rychlostf —w/2,
(4) body M,, M,, M, le%i na jedné piimce I, prochazejict
bodem H (tj. piimky M;M splyvaji v jednu piimku ly),
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() stfedy tsedek MM (¢ =1, 2, 3) a stfed K tusedky
MH leii na jedné p¥imce, Simsonové p¥imce trojihelni-
ku,

(6) bod K se pohybuje po kruinici y, stejnolehlé s kruz-
nici opsanou, s koeficientem 1/2 a stfedem stejnoleh-
losti H,

(7) kruZnice y pochézi témi 9 body, které jsou vyjmeno-
vany v 7.23b,

(8) obalovou ktivkou piimek [ je Steinerova kfivka,
dotykajici se kruZnice .
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