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P Ř E D M L U V A 

H l a v n í m i „ p o s t a v a m i " d ě j e t é t o k n í ž k y j s o u r ů z n é 
g e o m e t r i c k é ú t v a r y , n e b o j a k se j i m z d e č a s t ě j i ř í k á , 
m n o ž i n y b o d ů . N a z a č á t k u t o j s o u j e d n o d u c h é o b r a z c e 
v r ů z n ý c h s o u v i s l o s t e c h . P o h y b u j í s e , o d h a l u j í n o v é 
v l a s t n o s t i , p r o t í n a j í s e , s j e d n o c u j í , t v o ř í c e l é s y s t é m y 
a m ě n í s v o u t v á ř n o s t , n ě k d y k n e p o z n á n í . A v š a k j e 
z a j í m a v é p o t k a t s t a r é z n á m é v e s l o ž i t é s i t u a c i , o b k l o -
p e n é n o v ý m i o b r a z c i , k t e r é se o b j e v í v e f i n á l e . 

K n í ž k a o b s a h u j e a s i d v ě s t ě ú l o h , m n o h é j s o u u v e d e n y 
i s ř e š e n í m n e b o k o m e n t á ř e m . J s o u t o ú l o h y r ů z n é h o 
c h a r a k t e r u ; o d t r a d i č n í c h ú l o h , v e k t e r ý c h se h l e d á n e b o 
p o u ž í v á j i s t á m n o ž i n a b o d ů , a ž p o m e n š í ú l o h y b a d a -
t e l s k é , v e d o u c í k d ů l e ž i t ý m m a t e m a t i c k ý m p o j m ů m 
a t e o r i í m ( n a p ř í k l a d ú l o h y o s ý r u , o č l u n u n e b o o a u t o -
b u s u ) . K r o m ě b ě ž n ý c h g e o m e t r i c k ý c h v ě t o p ř í m k á c h , 
k r u ž n i c í c h a t r o j ú h e l n í c í c h s e v k n í ž c e p o u ž í v á m e t o d a 
s o u ř a d n i c , v e k t o r y a g e o m e t r i c k é t r a n s f o r m a c e a č a s t o 
s e ú l o h y f o r m u l u j í p o m o c í p o h y b u . N ě k t e r é l o g i c k é 
j e m n o s t i v ř e š e n í c h ú l o h j s o u p ř e n e c h á n y k r o z m ý š l e n í 
č t e n á ř i . Z n a k ( ? ) z n a m e n á „ c v i č e n í " , „ o v ě ř t e " , „ o d ů -
v o d n ě t e " , „ j e v á m t v r z e n í z ř e j m é ? " , a t d . , p o d l e t o h o , 
k d e s t o j í . Z n a k e m • j e o z n a č e n z a č á t e k a k o n e c ř e š e n í 
a j. u k a z u j e , ž e ř e š e n í n e b o v ý s l e d e k n a j d e t e n a k o n c i 
k n í ž k y . 

Ú l o h y n a z a č á t k u k a ž d é k a p i t o l y j s o u o b y č e j n ě j e d -
n o d u c h é a j s o u v y l o ž e n y v t e x t u . O s t a t n í ú l o h y n e n í 
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t ř e b a ř e š i t v š e c h n y j e d n u z a d r u h o u , p o d l e v l a s t n í h o 
u v á ž e n í s i m ů ž e č t e n á ř v y b r a t t y l á k a v ě j š í . J e u ž i t e č n é 
o v ě ř i t s i v y l o ž e n o u l á t k u p o k u s e m , n a č r t n o u t s i h r u b ý 
o b r á z e k , n e j l é p e v n ě k o l i k a o b m ě n á c h , s r ů z n ý m i z a -
d á n í m i . T a k o v ý e x p e r i m e n t á l n í p ř í s t u p p o m ů ž e n e j e n 
o d h a d n o u t v ý s l e d e k a f o r m u l o v a t h y p o t é z u , a l e č a s t o 
u k á ž e c e s t u i p ř i v l a s t n í m m a t e m a t i c k é m d ů k a z u . A u t o ř i 
s e p ř i p ř í p r a v ě o b r á z k ů p ř e s v ě d č i l i , ž e z a k a ž d o u ú l o h o u 
j e s k r y t a ú l o h a p ř í p r a v n á , s p o č í v a j í c í v s e s t r o j e n í n ě -
k o l i k a b o d ů n e b o k ř i v e k , o k t e r ý c h se j e d n á v ú l o z e . 
P ř í p r a v n á ú l o h a j e p ř í s t u p n ě j š í , n i k o l i m é n ě z a j í m a v á . 

A u t o ř i j s o u v d ě č n i I . M . G e l f a n d o v i z a r a d y p ř i p ř í -
p r a v ě k n í ž k y a I . M . J a g l o m o v i , V . G . B o l t j a n s k é m u 
a Ž . M . R a b b o t o v i z a p r o č t e n í r u k o p i s u a u ž i t e č n é p ř i -
p o m í n k y . O d p r v n í h o v y d á n í v r o c e 1 9 7 0 j e t a t o k n í ž k a 
s t á l e p o u ž í v á n a p ř i p r á c i d á l k o v é h o s e m i n á ř e . P ř i p ř í -
p r a v ě d r u h é h o v y d á n í j s m e v z a l i v ú v a h u z k u š e n o s t i 
a p ř i p o m í n k y n a š i c h p ř á t e l a k o l e g ů v e d o u c í c h s e m i n á ř . 
J i m v š e m i r e d a k t o r u k n í ž k y A . F . L a p k o v i u p ř í m n ě 
d ě k u j e m e . 

N. B. Vasiljev, 
V. L. Gutenmacher 
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Ú v o d 

ÚVODNÍ ÚLOHY 

0 . 1 Ž e b ř í k s t o j í c í u s t ě n y n a h l a d k é p o d l a z e k l o u ž e 
d o l ů . P o j a k é k ř i v c e s e p ř i t o m p o h y b u j e k o t ě s e d í c í 
u p r o s t ř e d ž e b ř í k u ? 

P ř e d p o k l á d e j m e , ž e j e k o t ě n e t e č n é a s e d í k l i d n ě . 
Z a t é t o p o d m í n k y m ů ž e m e u v e d e n o u o t á z k u f o r m u l o v a t 
m a t e m a t i c k y : 

J e d á n p r a v ý ú h e l . U r č e t e m n o ž i n u s t ř e d ů v š e c h 
ú s e č e k d é l k y d, j e j i c h ž k r a j n í b o d y l e ž í n a r a m e n e c h 
d a n é h o ú h l u ( p ř e s n ě j i — j e d e n k r a j n í b o d l e ž í n a j e d -
n o m r a m e n i a d r u h ý n a d r u h é m r a m e n i ) . 

Z k u s m e n e j d ř í v e u h o d n o u t , j a k á t o b u d e m n o ž i n a . 
P o h y b u j í - l i s e k r a j n í b o d y ú s e č k y p o r a m e n e c h ú h l u , 
j e a s i z ř e j m é , ž e s t ř e d ú s e č k y o p i s u j e j i s t o u k ř i v k u ( c o ž 
n a p o v í d á i p r v n í n á z o r n á f o r m u l a c e ú l o h y ) . N e j d ř í v e 
u v á ž í m e , k d e l e ž í k o n c o v é b o d y t é t o k ř i v k y . O d p o v í d a j í 
k r a j n í m p o l o h á m ú s e č k y , t e d y v e r t i k á l n í a h o r i z o n t á l n í 
p o l o z e . T o z n a m e n á , ž e k o n c o v é b o d y h l e d a n é k ř i v k y 
l e ž í n a r a m e n e c h d a n é h o ú h l u v e v z d á l e n o s t i d l 2 o d j e h o 
v r c h o l u . 

S e s t r o j t e n ě k o l i k d a l š í c h b o d ů t é t o k ř i v k y . B u d e t e - l i 
r ý s o v a t d o s t a t e č n ě p ř e s n ě , z j i s t í t e , ž e j s o u v š e c h n y 
s t e j n ě v z d á l e n y o d v r c h o l u O d a n é h o ú h l u . 

D o s p í v á m e t í m k d o m n ě n c e , ž e h l e d a n o u k ř i v k o u j e 
o b l o u k k r u ž n i c e o p o l o m ě r u á / 2 a s t ř e d u O , c o ž j e v š a k 
t ř e b a d o k á z a t . 
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• D o k á ž e m e n e j d ř í v e , ž e s t ř e d M k a ž d é ú s e č k y KL 

p o ž a d o v a n ý c h v l a s t n o s t í m á o d b o d u 0 v z d á l e n o s t d / 2 . 
T o o v š e m p l a t í , p r o t o ž e d é l k a t ě ž n i c e OM p r a v o ú h l é h o 
t r o j ú h e l n í k u KOL se r o v n á p o l o v i n ě d é l k y j e h o p ř e p o -
n y KL. ( O s p r á v n o s t i t o h o t o t v r z e n í s e l e h c e p ř e s v ě d č í -
m e , d o p l n í m e - l i t r o j ú h e l n í k KOL n a o b d é l n í k KOLT 
a u v á ž í m e , ž e ú h l o p ř í č k y KL a OT j s o u s t e j n ě d l o u h é 
a n a v z á j e m se p ů l í — o b r . 1 . ) 

0 B L 

Obr. 1 

T í m j s m e d o k á z a l i , ž e s t ř e d ú s e č k y KL l e ž í n a o b l o u k u 
AB k r u ž n i c e se s t ř e d e m v b o d ě 0 . A b y c h o m m o h l i 
t v r d i t , ž e t e n t o o b l o u k j e h l e d a n o u m n o ž i n o u b o d ů , 
m u s í m e d o k á z a t t a k é o b r á c e n ě , ž e l i b o v o l n ý b o d M 

o b l o u k u AB p a t ř í d o h l e d a n é m n o ž i n y . A l e t o j e j e d n o -
d u c h é . L i b o v o l n ý m b o d e m M o b l o u k u AB m ů ž e m e t o t i ž 
v é s t p o l o p ř í m k u OM, n a n í u r č i t b o d T ^ O t a k , a b y 
| J f T | = \OM\, a p o t o m s e s t r o j i t k o l m i c e b o d e m T 

n a r a m e n a ú h l u , č í m ž d o s t a n e m e k r a j n í b o d y K, L 

ú s e č k y o s t ř e d u M, j e j í ž d é l k a j e d. • 
D r u h á p o l o v i n a d ů k a z u b y s e m o h l a z d á t z b y t e č n á , 

n e b o ť j e z ř e j m é , ž e s t ř e d ú s e č k y KL v y p l ň u j e „ s o u v i s l o u 
k ř i v k u " s k o n c o v ý m i b o d y A, B, c o ž z n a m e n á , ž e b o d M 

p r o b í h á c e l ý o b l o u k AB a n e j e n j e h o č á s t . T a t o ú v a h a 
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se zdá přesvědčivá, není však jednoduché formulovat ji 
matematicky přesně. 

Podíváme se teď na pohyb žebříku z úlohy 0.1 z jiné 
strany. Předpokládejme, že úsečka KL („žebřík") je 
upevněna a přímky KO a LO („stěna" a „podlaha") 
se pohybují kolem bodů K a L tak, že stále svírají pravý 
úhel (obr. 2). 

Skutečnost, že vzdálenost středu úsečky KL a bodu O 
se nemění, dává známou Thaletovu větu: jsou-li v ro-
vině dány dva různé body K a L, pak množina bodů O, 
pro které je | <£ KOL\ = 90°, je kružnice nad průměrem 
KL. Tato věta i její zobecnění, které uvedeme v bodě 
E 2. kap., se často hodí při řešení úloh. 

Vraťme se k úloze 0.1 a položme obecnější otázku. 

0.2 Po jaké křivce se pohybuje kotě sedící na žebříku 
v bodě různém od středu? 

Na obrázku 3 je sestrojeno několik bodů této křivky. 
Hned vidíme, že zakreslené body neleží ani na přímce, 
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a n i n a k r u ž n i c i , a l e v y p l ň u j í j i n o u k ř i v k u . 0 j a k o u 
k ř i v k u s e j e d n á , z j i s t í m e m e t o d o u s o u ř a d n i c . 

• Z a v e d e m e s o u s t a v u s o u ř a d n i c t a k , ž e r a m e n a ú h l u 
b u d o u o s y Ox a Oy ( o b r . 4 ) . N e c h ť k o t ě s e d í v b o d ě 
M\x, y\ v e v z d á l e n o s t i a ^ 0 o d k r a j n í h o b o d u K a v e 
v z d á l e n o s t i 6 ^ 0 o d k r a j n í h o b o d u L (a + b = d). 

M(x,y) 

Obr. 3 Obr. 4 

U r č í m e r o v n i c i , k t e r o u m u s í s p l ň o v a t s o u ř a d n i c e x, y 
b o d u M. 

J e s t l i ž e ú s e č k a KL s v í r á s o s o u Ox ú h e l <p, p a k y = 
= b s i n <p, x = a c o s q>, t a k ž e p r o l i b o v o l n é <p(0 ^ <p ^ 
^ tc/2) p l a t í 

( 1 ) + H 
6 2 = 1 . 

V k a p . 6 u k á ž e m e , ž e m n o ž i n o u b o d ů v r o v i n ě , j e j i c h ž 
s o u ř a d n i c e v y h o v u j í r o v n i c i ( 1 ) , j e e l i p s a . K o t ě s e b u d e 
p o h y b o v a t p o o b l o u k u e l i p s y . • 

V š i m n ě m e s i , ž e p r o a = b = dj2, t j . s e d í - l i k o t ě u p r o -
s t ř e d ž e b ř í k u , r o v n i c e ( 1 ) p ř e j d e v r o v n i c i k r u ž n i c e 
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x2 + Í/2 = (dj2)2. T í m d o c h á z í m e k d a l š í m u , a n a l y t i c -
k é m u ř e š e n í ú l o h y 0 . 1 . 

V ý s l e d e k ú l o h y ' 0 . 2 v y s v ě t l u j e p r i n c i p z a ř í z e n í k r e s l í -
c í h o e l i p s y . T e n t o p ř í s t r o j , k t e r ý j e z n á z o r n ě n n a 
o b r á z k u 5 , se n a z ý v á e l i p s o g r a f L e o n a r d a d a V i n c i h o . 

0 . 3 M ě j m e p e v n o u k r u ž n i c i , p o n í ž s e (s v n i t ř n í m 
d o t y k e m ) k o t á l í b e z k l o u z á n í k r u ž n i c e o p o l o v i č n í m 
p o l o m ě r u . J a k o u k ř i v k u o p i s u j e p ř i t o m b o d K l e ž í c í 
n a m e n š í k r u ž n i c i ? 

O d p o v ě ď n a t u t o o t á z k u j e k u p o d i v u j e d n o d u c h á : 
b o d K s e p o h y b u j e p o p ř í m c e , p ř e s n ě j i p o p r ů m ě r u 
p e v n é k r u ž n i c e . T o t o t v r z e n í s e n a z ý v á Koperníkovou 
větou. 

P ř e s v ě d č t e s e p o k u s e m o p r a v d i v o s t i t é t o v ě t y . 
( P ř i t o m j e d ů l e ž i t é , a b y v n i t ř n í k r u ž n i c e n e k l o u z a l a , t j . 
a b y o d p o v í d a j í c í o b l o u k y n a o b o u k r u ž n i c í c h b y l y s t e j n ě 
v e l i k é . ) N e n í t ě ž k é K o p e r n í k o v u v ě t u d o k á z a t — s t a č í 
s i v z p o m e n o u t n a v ě t u o o b v o d o v é m a s t ř e d o v é m ú h l u . 
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• N e c h ť b o d p o h y b u j í c í s e k r u ž n i c e , k t e r ý s p l y n u l 
v p o č á t e č n í p o l o z e s b o d e m A p e v n é k r u ž n i c e , s e p ř e -
m í s t i l d o b o d u K ( o b r . 6 ) . O z n a č m e T b o d , v e k t e r é m se 
n y n í o b ě k r u ž n i o e d o t ý k a j í . P r o t o ž e d é l k y o b l o u k ů KT 

a AT s e s o b ě r o v n a j í a p o l o m ě r p o h y b u j í c í se k r u ž n i c e 

B i 

Obr. 6 

j e p o l o v i č n í , v i d í m e , ž e s t ř e d o v ý ú h e l p ř í s l u š n ý o b l o u k u 
KT j e r o v e n d v o j n á s o b k u s t ř e d o v é h o ú h l u p ř í s l u š n é h o 
o b l o u k u A T. O z n a č í m e - l i O s t ř e d p e v n é k r u ž n i c e , m á m e 
i AOT | = ' < t KOT | p o d l e v ě t y o o b v o d o v é m a s t ř e d o -
v é m ú h l u ( v i z s t r . 1 8 ) . T o z n a m e n á , ž e b o d K l e ž í n a 
p o l o m ě r u A O . 

T y t o ú v a h y p l a t í p o u z e d o o k a m ž i k u , v e k t e r é m se 
p o h y b u j í c í se k r u ž n i c e o d k o t á l í p o č t v r t i n ě p e v n é k r u ž -
n i c e ( t j . k d y b o d d o t y k u s p l y n e s b o d e m B, p r o n ě j ž j e 
| BOA\ = 9 0 ° , a b o d K s p l y n e s b o d e m O). D a l š í p o h y b 
se d ě j e a n a l o g i c k y — d r á h a b o d u K b u d e p ř i n ě m 
s o u m ě r n ě s d r u ž e n á p o d l e p ř í m k y BO k d r á z e j i ž p r o -
b ě h n u t é . A ž b o d K d o s t i h n e b o d A', k d e A A' j e p r ů m ě r 
p e v n é k r u ž n i c e , b u d e s e p o h y b l i v á k r u ž n i c e k o t á l e t p o 
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dolní polovině pevné kružnice a bod K se vrátí po prů-
měru A A' do bodu A. • 

Porovnejme výsledky úloh 0.1 a 0.3. Jejich zajíma-
vost spočívá zřejmě v tom, že v obou případech se jed-
ná o poměrně složitý pohyb objektu (v první úloze o po-
hyb úsečky, ve druhé kružnice), avšak trajektorie někte-
rých bodů jsou neočekávaně jednoduohé. Ukazuje se, že 
tyto dvě úlohy nesouvisí jen vnějšími znaky, nýbrž tím, 
že pohyby v nich zkoumané jsou totožné. 

Skutečně, nechť se po vnitřku kružnice poloměru d 
kotálí kružnice poloměru d/2 a nechť je KL průměr 
této kružnice, pevně s ní spojený. Podle Koperníkovy vě-
ty se body K, L pohybují po průměrech A A' a BB' 
pevné kružnice. Takže průměr KL klouže svými konco-
vými body po dvou na sebe kolmých přímkách, pohybu-
je se tedy tak jako úsečka v úloze 0.1. 

Ještě jedna zajímavá otázka souvisí s pohybem 
úsečky KL: jakou množinu bodů vyplňuje tato úsečka, 
tj. co je sjednocením všech možných poloh úsečky KL 
při jejím pohybu? Křivka, která ohraničuje tuto mno-
žinu, se nazývá asteroida. Dá se ukázat, že ji můžeme 
dostat takto: necháme kružnici o průměru dj2 kotálet 
po vnitřku kružnice o průměru 2d a narýsujeme trajek-
torii libovolného bodu pohybující se kružnice — tato 
trajektorie je asteroida. O ní a jí podobných křivkách 
pojednáme v 7. kap. této knížky, kde se podrobněji sezná-
míte se souvislostmi, kterých jsme se zde dotkli. 

Avšak dříve než se budeme zabývat složitějšími 
otázkami a křivkami, zůstaneme u úloh o přímkách 
a kružnicích — jiné křivky se v prvních pěti kapitolách 
nebudou vyskytovat. 
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Kapitola 1 

MNOŽINY BODŮ 

V t é t o k a p i t o l e p o j e d n á m e o z á k l a d n í c h t y p e c h ú l o h 
p r o b í r a n ý c h v n a š í k n í ž c e . B u d e m e j e i l u s t r o v a t n a p ř í -
k l a d e c h a u k á ž e m e p o j m y a p o s t u p y u ž í v a n é p ř i j e j i c h 
ř e š e n í . K a p i t o l a j e z a k o n č e n a ř a d o u r ů z n ý c h g e o m e t r i c -
k ý c h ú l o h . 

P r o b e r e m e n e j p r v e t e r m í n , k t e r ý s e v k n i z e v y s k y -
t u j e n e j č a s t ě j i a k t e r ý s t o j í i v n a d p i s e k a p i t o l y . 

Množina bodů j e v e l m i o b e c n ý p o j e m . M ů ž e t o b ý t 
l i b o v o l n ý ú t v a r : j e d e n n e b o n ě k o l i k b o d ů , p ř í m k a n e b o 
r o v i n n á o b l a s t . 

V m n o h ý c h ú l o h á c h n a š í k n í ž k y se h l e d á m n o ž i n a 
b o d ů v y h o v u j í c í c h j i s t é p o d m í n c e . Ř e š e n í m ú l o h j s o u 
z p r a v i d l a ú t v a r y z n á m é z e š k o l s k é g e o m e t r i e ( p ř í m k y , 
k r u ž n i c e n e b o o b r a z c e j i m i o h r a n i č e n é a j . ) . H l a v n í 
j e o d h a d n o u t , o j a k ý ú t v a r s e j e d n á . V ú l o z e 0 , 1 
o k o t ě t i j s m e z j i s t i l i , ž e ř e š e n í m j e k r u ž n i c e , a v ú l o z e 
0 . 3 ú s e č k a . 

P ř i ř e š e n í ú l o h j e t ř e b a p ř e s v ě d č i t se o t o m , ž e 
a ) v š e c h n y b o d y s p l ň u j í c í d a n o u p o d m í n k u p a t ř í d o 

z j i š t ě n é h o ú t v a r u , 
b ) v š e c h n y b o d y u v a ž o v a n é h o ú t v a r u v y h o v u j í d a n é 

p o d m í n c e . 
N ě k d y j s o u o b ě t a t o t v r z e n í z ř e j m á , j i n d y j e n n ě k t e r é 
z n i c h ; a j i n d y j e v ů b e c t ě ž k é se d o p á t r a t ř e š e n í . 

R o z e b e r e m e n ě k o l i k c h a r a k t e r i s t i c k ý c h ú l o h . 
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1.1 B o d O l e ž í n a ú s e č c e AC. U r č e t e m n o ž i n u b o d ů M , 
p r o k t e r é p l a t í MOC\ = 2 | < £ MAC\ ( o b r . 7 ) . 

• Ř e š e n í m j e s j e d n o c e n í k r u ž n i c e o s t ř e d u O a p o l o -
m ě r u \OA\ (s v y l o u č e n í m b o d u A) a p o l o p ř í m k y OC 

(s v y l o u č e n í m b o d u O ) . 
P ř e s v ě d č í m e s e o t o m . N e c h ť b o d M h l e d a n é m n o ž i n y 

n e l e ž í n a p ř í m c e AO. D o k á ž e m e , ž e \M0\ = \A0\. 

Obr. 7 

S e s t r o j í m e t r o j ú h e l n í k OAM. P o d l e v ě t y o v n ě j š í m ú h l u 
t r o j ú h e l n í k u j e v e l i k o s t ú h l u MOC r o v n a s o u č t u 
v e l i k o s t í v n i t ř n í c h ú h l ů p ř i v r c h o l e c h A a M, t j . 

\^OAM\ + \^AMO\ = \<£MOC\ = 2\^MAO\. 

T a k ž e z p o d m í n k y , k t e r o u m á b o d M s p l ň o v a t , d o s t á v á -
m e h n e d | <£ OAM\ = | <£ AMO|, t j . t r o j ú h e l n í k AMO j e 
r o v n o r a m e n n ý , t e d y \OM\ = \AO\. 

U k á ž e m e , ž e p l a t í i o b r á c e n ě : k a ž d ý b o d M p o p s a n é 
k r u ž n i c e s p l ň u j e v ý š e u v e d e n o u p o d m í n k u . S k u t e č n ě , 
t r o j ú h e l n í k AMO j e r o v n o r a m e n n ý , v e l i k o s t i j e h o ú h l ů 
p ř i v r c h o l e c h . 4 a M j s o u s t e j n é , a o p ě t p o d l e v ě t y o v n ě j -
š í m ú h l u t r o j ú h e l n í k u d o s t á v á m e | <%.MOC = 21 <£MAC|. 

P o k u d b o d M l e ž í n a p o l o p ř í m c e OC, M # O, j e 
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MOC | = 2 A / v l C j == O a p o d m í n k a j e r o v n ě ž 
s p l n ě n a . 
F Z b ý v a j í c í b o d y p ř í m k y AO u ž n e p a t ř í d o h l e d a n é m n o -
ž i n y , n e b o ť p r o n ě j e MOC p ř í m ý a <£ MAC n u l o v ý 
n e b o p ř í m ý . ( P ř i č e m ž o b o d u O se n e d á n i c ř í c i . ) • 

1 . 2 K e k a ž d é d v o j i c i k r u ž n i c o p o l o m ě r e c h rx, r2(rx > 
> r2), k t e r é s e d o t ý k a j í p ř í m k y l a l e ž í v p e v n ě z v o l e n é 

p o l o r o v i n ě o h r a n i č e n é p ř í m k o u Z, s e s t r o j í m e p r ů s e č í k M 

j e j i c h v n i t ř n í c h t e č e n . U r č e t e m n o ž i n u v š e c h t ě c h t o 
p r ů s e č í k ů M ( o b r . 8 ) . 

• Ř e š e n í m j e p ř í m k a r o v n o b ě ž n á s p ř í m k o u l . 
V š i m n ě m e s i , ž e b o d M l e ž í n a o s e s y m e t r i e o b o u 

k r u ž n i c , t j . n a p ř í m c e 0X02, k d e j s m e Ox> 02 o z n a č i l i 
s t ř e d y k r u ž n i c . S t a č í t e d y h l e d a t m n o ž i n u p r ů s e č í k ů 
p ř í m k y 0X02 a t e č n y TXT2 ( k d e Tx, T2 z n a č í b o d y d o -
t y k u ) . 

Z n á z o r n ě m e s i ú l o h u n a o b r á z k u a v y z n a č m e p o l o -
m ě r y v b o d e c h d o t y k u , t j . 0XTX a 02T2. V i d í m e , ž e b o d 
M d ě l í ú s e č k u 0X02 v p o m ě r u rx : r2 ( n e b o ť p r a v o ú h l é 
t r o j ú h e l n í k y MOxTx a M02Tt j s o u s i p o d o b n é ) . J e z ř e j -
m é , ž e m n o ž i n a s t ř e d ů O x i m n o ž i n a s t ř e d ů 02 j s o u p ř í m -

14 



k y r o v n o b ě ž n é s p ř í m k o u l . M n o ž i n a b o d ů M, k t e r é d ě l í 
ú s e č k y o k r a j n í c h b o d e c h n a t ě c h t o p ř í m k á c h v d a n é m 
p o m ě r u r x : r 2 , j e r o v n ě ž p ř í m k a r o v n o b ě ž n á s p ř í m k o u l . 

M n o ž i n a p r ů s e č í k ů v n i t ř n í c h t e č e n j e t e d y r o v n o b ě ž k a 
s p ř í m k o u l ( v e v z d á l e n o s t i 2 r 1 r 2 : ( r x + r2) o d n í ) . • 

P ř i ř e š e n í n á s l e d u j í c í ú l o h y b u d e h l e d á n í p r a c n ě j š í . 
B u d e t ř e b a r o z d ě l i t r o v i n u n a n ě k o l i k č á s t í a v k a ž d é 
z n i c h p r o v é s t v y š e t ř o v á n í z v l á š ť . 

1 . 3 J e d á n p r a v o ú h e l n í k ABCD. N a j d ě t e v š e c h n y 
t a k o v é b o d y v r o v i n ě p r a v o ú h e l n í k u , p r o k t e r é j e s o u -
č e t j e j i c h v z d á l e n o s t í o d p ř í m e k AB a CD r o v e n s o u č t u 
j e j i c h v z d á l e n o s t í o d p ř í m e k BC a AD. 

• O z n a č m e d é l k y s t r a n p r a v o ú h e l n í k u a, b. N e j d ř í v e 
v y š e t ř í m e p ř í p a d , k d y p r a v o ú h e l n í k n e n í č t v e r c e m ; 
n e c h ť j e a < 6 . 

B o d y l e ž í c í u v n i t ř o b d é l n í k u , d o k o n c e v š e c h n y b o d y 
v p á s u s e v ř e n é m p ř í m k a m i , k t e r é j s o u p r o d l o u ž e n í m 
d e l š í c h s t r a n o b d é l n í k u , n e s p l ň u j í p o ž a d a v k y ú l o h y , 
p r o t o ž e j e d e n s o u č e t j e r o v e n a a d r u h ý j e v ě t š í n e b o 
r o v e n b. 

N e c h ť b o d M l e ž í v n ě o b d é l n í k u v p á s u s h r a n i č n í m i 
p ř í m k a m i , k t e r é j s o u p r o d l o u ž e n í m k r a t š í c h s t r a n o b -
d é l n í k u . O z n a č m e y j e h o v z d á l e n o s t o d t é d e l š í s t r a n y 
o b d é l n í k u , k t e r á l e ž í k n ě m u b l í ž . P a k j e v z d á l e n o s t 
o d d r u h é s t r a n y r o v n a y + a. K t o m u , a b y b o d s p l ň o -
v a l p o d m í n k u ú l o h y , j e t ř e b a , a b y p l a t i l o y - f - (y - f o) = 
= b, t j . y = (b — a)l2. V i d í m e t e d y , ž e z b o d ů l e ž í c í c h 
v t o m t o p á s u v y h o v u j í p o d m í n c e p r á v ě t y b o d y , k t e r é 
l e ž í v n ě o b d é l n í k u v e v z d á l e n o s t i ( 6 — o ) / 2 o d b l i ž š í 
z o b o u d e l š í c h s t r a n . 

V y h o v u j í t u d í ž d v ě ú s e č k y EF a E'F' ( o b r . 9 ) . 
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N a k o n e c v e z m e m e b o d M , k t e r ý l e ž í v ú h l u , j e h o ž 
r a m e n a j s o u t v o ř e n a p o l o p ř í m k a m i o p a č n ý m i k p o l o -
p ř í m k á m CD a CB. O z n a č í m e x v z d á l e n o s t b o d u M 
o d p ř í m k y CB a y v z d á l e n o s t b o d u M o d p ř í m k y CD. 

E F 

~ ~ ! T f ^ o 
! ¡ 2 

! : \b-a 
I Ú2 

E' F' 

Obr. 9 

P o t o m p o d m í n k a ú l o h y d á v á a; + ( z + = y + (y + 
+ a), t j . y = x + (b — a)l2. V š i m n ě m e s i , ž e č í s l a x , y 
j e m o ž n o c h á p a t j a k o s o u ř a d n i c e b o d u M v s o u s t a v ě 
s o u ř a d n i c s o s a m i CD, CB. V t é t o s o u s t a v ě s o u ř a d n i c 
p o p i s u j e r o v n i c e y = x + (b — a)l2 p ř í m k u r o v n o b ě ž -
n o u s o s o u ú h l u DCB. T í m j s m e u k á z a l i , ž e z b o d ů u v a -
ž o v a n é h o ú h l u p o d m í n k u ú l o h y s p l ň u j í t y a j e n t y b o d y , 
k t e r é l e ž í n a p ř í m c e y = x + (b — a ) / 2 ( o b r . 1 0 ) . 

S t e j n o u ú v a h u l z e p r o v é s t i p r o ú h l y v e z b ý v a j í c í c h 
t ř e c h v r c h o l e c h o b d é l n í k u . T í m b u d o u v y š e t ř e n y v š e c h -
n y b o d y v r o v i n ě . M n o ž i n a v š e c h b o d ů v y h o v u j í c í c h 
d a n é p o d m í n c e j e z n á z o r n ě n a n a o b r á z k u 1 1 . 

Z b ý v á j e š t ě v y š e t ř i t p ř í p a d , k d y d a n ý p r a v o ú h e l n í k 
j e č t v e r e c , t j . a = b. L e h k o s e z j i s t í , ž e h l e d a n o u 
m n o ž i n o u j e p a k d a n ý č t v e r e c s c e l ý m s v ý m v n i t ř k e m 
a p r o d l o u ž e n í j e h o ú h l o p ř í č e k ( o b r . 1 2 ) ( ? ) . • 

Obr. 10 
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V š i m n ě m e s i j e š t ě , ž e p r a v o ú h e l n í k m á d v ě o s y s y -
m e t r i e , a p r o t o ž e d v o j i c e s y m e t r i c k ý c h s t r a n v z h l e d e m 
k t ě m t o o s á m v y s t u p u j í v p o d m í n c e ú l o h y t é ž s y m e t r i c -
k y , m u s í b ý t h l e d a n á m n o ž i n a t a k é p o d l e t ě c h t o d v o u o s 
s y m e t r i c k á . Z t o h o p l y n e , ž e p ř i ř e š e n í n e n í t ř e b a v y -
š e t ř o v a t b o d y c e l é r o v i n y , a l e s t a ě í p r o z k o u m a t j e d n u 
z e ě t y ř č á s t í , n a k t e r é j e r o v i n a r o z d ě l e n a u v e d e n ý m i 
o s a m i s y m e t r i e . V p ř í p a d ě č t v e r c e j s o u v š e c h n y j e h o 
č t y ř i o s y s y m e t r i e t a k é o s a m i s y m e t r i e h l e d a n é m n o ž i n y . 

S y s t é m y k ř i v e k a p o h y b . V e d l e m n o ž i n b o d ů b u d e m e 
v y š e t ř o v a t i množiny křivek n e b o l i , j a k se č a s t ě j i ř í k á , 
soustavy křivek. 

P r a c u j e m e - l i v g e o m e t r i c k ý c h ú l o h á c h s e s o u s t a v o u 
k r u ž n i c n e b o p ř í m e k , j e n ě k d y v ý h o d n é p ř e d s t a v i t s i 
t u t o s o u s t a v u j a k o j e d n u p o h y b u j í c í s e k r u ž n i c i n e b o 
p ř í m k u . Z a p o m o c i p o h y b u j s m e u ž f o r m u l o v a l i a ř e š i l i 
p r v n í ú l o h y a t e n t o p ř í s t u p p o u ž i j e m e v í c e k r á t i v d a l -

X 
Obr. 11 Obr. 12 
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š í m v ý k l a d u , n e b o ť v e l m i n á z o r n ě o b j a s ň u j e m n o h é 
ú l o h y a v ě t y . 

P ř í k l a d n e m u s í m e h l e d a t d a l e k o . V r a ť m e s e k ú l o z e 
1 . 1 . J e j í z n ě n í a ř e š e n í m ů ž e m e f o r m u l o v a t t a k t o : 

N e c h ť s e p ř í m k a A M o t á č í k o l e m b o d u A s k o n s t a n t n í 
ú h l o v o u r y c h l o s t í co ( t j . o t o č í s e o ú h e l co z a j e d n o t k u 
č a s u ) a p ř í m k a OM se o t á č í k o l e m b o d u O v t é m ž e 

s m y s l u s ú h l o v o u r y c h l o s t í 2w, p ř i č e m ž v p o č á t e č n í m 
s t a v u o b ě p ř í m k y s p l ý v a j í s p ř í m k o u . 4 0 . P a k p r ů s e č í k M 

t ě c h t o p ř í m e k o p í š e k r u ž n i c i se s t ř e d e m 0 ( o b r . 1 3 ) . 

Z t o h o m ů ž e m e o d v o d i t v ě t u o s t ř e d o v é m a o b v o d o -
v é m ú h l u . 

Otočí-li se přímka AM za čas t z polohy AMX do polohy 
AM2 O úhel a)t, pak přímka OM se otočí o úhel 2<at, 
j i n ý m i s l o v y velikost obvodového úhlu M1AM2 je rovna 
polovině velikosti středového úhlu MtOM2 (obr. 14). 

J e š t ě n á z o r n ě j i j e m o ž n é f o r m u l o v a t p ř e d c h á z e j í c í 
v ě t u t a k t o : 
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Věta o prstenci na kružnici. Navlékněme na drátěnou 
kružnici malinký prstenec. Kolem bodu A ležícího na 
kružnici se otáčí tyčka, která prochází prstencem. Otáčí-li 
se tyčka rovnoměrně úhlovou rychlostí OJ, prstenec probíhá 
kružnici rovnoměrně úhlovou rychlostí 2w (obr. 15). 

U v e d e m e j e š t ě j e d e n p ř í k l a d v ě t y , k t e r o u j e m o ž n o 
f o r m u l o v a t z a p o m o c i p o h y b u . 

Necht se přímka l rovnoměrně posouvá v rovině, tj. tak 
že se nemění její směr, a přitom její průsečík M s jistou 
pevnou přímkou m se pohybuje rovnoměrně po m. Potom 
průsečík N přímky l s libovolnou pevnou přímkou n se 
rovněž pohybuje rovnoměrně po přímce n. 

T o j e v p o d s t a t ě p ř e f o r m u l o v a n é t v r z e n í , ž e r o v n o -
b ě ž n é p ř í m k y v y t í n a j í n a r a m e n e c h ú h l u ú m ě r n é ú s e k y . 
A n a l o g i c k y k v ě t ě o p r s t e n c i m ů ž e m e d á t p ř e d c h á z e j í c í 
v ě t ě t e n t o t v a r : 

Věta o prstenci na přímce. Na dvě přímky je v průsečíku 
navlečen malý prstenec. Je-li jedna z těchto přímek pevná 
a druhá se rovnoměrně posunuje (rovnoběžně se svou pů-
vodní polohou), pak se i prstenec pohybuje rovnoměrně 
( o b r . 1 6 ) . 
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N e j e d n o u s e j e š t ě s e t k á m e s r ů z n ý m i s o u s t a v a m i p ř í -
m e k . V p ř í p a d e c h , k d y p ů j d e o s o u s t a v y p ř í m e k p r o c h á -
z e j í c í c h d a n ý m b o d e m n e b o o s o u s t a v y p ř í m e k t é h o ž 
s m ě r u , m ů ž e b ý t u ž i t e č n á p r v n í n e b o d r u h á v ě t a o p r s -
t e n c i . 

K o n s t r u k č n í ú l o h y . V k l a s i c k ý c h k o n s t r u k č n í c h ú l o -
h á c h ( s e s t r o j i t t r o j ú h e l n í k , n a n é s t ú s e č k u , v é s t t e č n u , 
n a j í t b o d ) s e o b v y k l e p o ž a d u j e , a b y ú l o h a b y l a p r o v e d e -
n a j e n z a p o m o c i p r a v í t k a a k r u ž í t k a . T o z n a m e n á , ž e 
d v ě m a b o d y m ů ž e m e p r o l o ž i t p ř í m k u , n a k r e s l i t k r u ž n i c i 
d a n é h o p o l o m ě r u a s t ř e d u a n a j í t p r ů s e č í k y t ě c h t o č a r . 

P r o ř e š e n í t a k o v ý c h ú l o h j e n ě k d y v h o d n é p o p s a t 
k r u ž n i c e a p ř í m k y j a k o m n o ž i n y b o d ů v y h o v u j í c í c h 
j i s t é p o d m í n c e . 

1 . 4 N e c h ť j e d á n a k r u ž n i c e a v j e j í v n ě j š í o b l a s t i 
b o d A. V e ď t e b o d e m A t e č n u t k d a n é k r u ž n i c i . 

• O z n a č í m e - l i X b o d d o t y k u t e č n y t a k r u ž n i c e , 
v í m e , ž e ú h e l OXA j e p r a v ý . M n o ž i n a b o d ů 31, p r o 
k t e r é j e ú h e l OMA p r a v ý , v y p l ň u j e k r u ž n i c i o p r ů m ě r u 
O A ( o v š e m b e z b o d ů O, A). P ř í m k u i l z e t e d y z k o n s t r u o -
v a t t a k t o : n a r ý s u j e m e k r u ž n i c i , j e j í m ž p r ů m ě r e m j e 
ú s e č k a OA. N e c h ť X j e p r ů s e č í k t é t o k r u ž n i c e s d a n o u 
k r u ž n i c í ( t a k o v é p r ů s e č í k y j s o u d v a a j s o u s o u m ě r n ě 
s d r u ž e n é p o d l e p ř í m k y OA). P a k v e d e m e p ř í m k u b o d y 
A a X. • 

1 . 6 J e " ' d á n a k r u ž n i c e a b o d A. V e ď t e b o d e m A 

p ř í m k u t a k , a b y v v t í n a l a n a d a n é k r u ž n i c i t ě t i v u 
d é l k y d. 

• U r č í m e m n o ž i n u v š e c h p ř í m e k , n a k t e r ý c h v y t í n á 
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d a n á k r u ž n i c e t ě t i v u d é l k y d. T y t o p ř í m k y j s o u t e č n a m i 
s o u s t ř e d n é k r u ž n i c e <5 s p o l o m ě r e m ] / r l — d 2 / 4 , k d e r j e 
p o l o m ě r d a n é k r u ž n i c e ( ? >. T í m se ú l o h a p ř e v e d e n a 
ú l o h u p ř e d c h á z e j í c í : v é s t t e č n u b o d e m A k e k r u ž n i c i b. 

Ú l o h a m á d v ě ř e š e n í , p o k u d b o d A l e ž í v e v n ě j š í o b l a s t i 
k r u ž n i c e «5, j e d n o ř e š e n í , l e ž í - l i n a n í , a n e m á ř e š e n í , 
k d y ž b o d A l e ž í v e v n i t ř n í o b l a s t i k r u ž n i c e <5. • 

Č a s t o s e h l e d a n á m n o ž i n a d á z í s k a t z e z n á m é m n o ž i n y 
n ě j a k ý m j e d n o d u c h ý m z o b r a z e n í m : o t o č e n í m , s y m e t r i í , 
p o s u n u t í m n e b o s t e j n o l e h l o s t í . ( T e n t o p o s t u p j e z v l á š ť 
v h o d n ý v k o n s t r u k č n í c h ú l o h á c h . ) P ř i p o m e ň m e s i , j a k 
s e s t r o j i t o b r a z p ř í m k y a k r u ž n i c e p ř i s h o d n o s t i n e b o p o -
d o b n o s t i . 

U p ř í m k y s t a č í s e s t r o j i t b o d y A', B' — o b r a z y d v o u 
j e j í c h r ů z n ý c h b o d ů A, B — a b o d y A', B' v é s t p ř í m k u . 
P r o k r u ž n i c i o s t ř e d u O a p o l o m ě r u r s t a č í n a j í t o b r a z O' 

j e j í h o s t ř e d u a k o l e m n ě j o p s a t k r u ž n i c i o p o l o m ě r u r 
( j e d n á - l i s e o s h o d n o s t ) , n e b o o p o l o m ě r u kr ( j e d n á - l i s e 
o p o d o b n o s t s k o e f i c i e n t e m k). 

U v e d e m e t y p i c k é p ř í k l a d y ú l o h , k d e s e p o u ž í v á s h o d -
n é h o z o b r a z e n í . 

1 . 6 J e d á n b o d A a k r u ž n i c e k, A k. N a j d ě t e m n o ž i -
n u v r c h o l ů M v š e c h r o v n o s t r a n n ý c h t r o j ú h e l n í k ů ANM, 

p r o k t e r é v r c h o l N l e ž í n a d a n é k r u ž n i c i k. 

• Nechť je N libovolný bod kružnice k. Otočíme-li 
úsečku AN o 60° kolem bodu A, dostane se bod N 
do vrcholu M rovnostranného trojúhelníku ANM (obr. 
17). Odtud hned vidíme, že při otočení kružnice k 
o 60° kolem bodu A přejde každý její bod N ve třetí 
vrchol M rovnostranného trojúhelníku ANM. 

T u d í ž v š e c h n y t a k o v é b o d y M l e ž í n a j e d n é z e d v o u 
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k r u ž n i c , k t e r é se d o s t a n o u z d a n é k r u ž n i c e o t o č e n í m 
o 6 0 ° k o l e m b o d u A, a t o b u ď v e s m y s l u o t á č e n í h o d i -
n o v ý c h r u č i č e k , n e b o p r o t i n ě m u . 

S t e j n ý m z p ů s o b e m l z e d o k á z a t , ž e k a ž d ý b o d M z e 
s j e d n o c e n í o b o u v ý š e z í s k a n ý c h k r u ž n i c j e v r c h o l e m 
j i s t é h o r o v n o s t r a n n é h o t r o j ú h e l n í k u ANM s v r c h o l e m N 

n a d a n é k r u ž n i c i . O 

A F C 

Obr. 18 

1 . 7 a J e d á n k o n v e x n í ú h e l BAC a v j e h o v n i t ř k u 
b o d D. S e s t r o j t e ú s e č k u s k r a j n í m i b o d y n a r a m e n e c h 
ú h l u t a k , a b y b o d D b y l s t ř e d e m t é t o ú s e č k y . 

• P o d í v e j m e se n a m n o ž i n u v š e c h ú s e č e k , j e j i c h ž 
j e d e n k r a j n í b o d l e ž í n a r a m e n i AC d a n é h o ú h l u s v r c h o -
l e m A a j e j i c h ž s t ř e d j e v b o d ě D. D r u h é k r a j n í b o d y 
p a k l e ž í n a p o l o p ř í m c e , k t e r á j e s o u m ě r n ě s d r u ž e n á 
k r a m e n i AC p o d l e b o d u D ( o b r . 1 8 ) . 

K o n s t r u k c e s p o č í v á v t o m , ž e n a j d e m e b o d A' s t ř e -
d o v ě s o u m ě r n ě s d r u ž e n ý k b o d u A p o d l e s t ř e d u D 

a b o d e m A' v e d e m e r o v n o b ě ž k u s r a m e n e m AC. J e j í 
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p r ů s e č í k s r a m e n e m AB o z n a č m e E, p r ů s e č í k p ř í m k y 
ED s r a m e n e m AC o z n a č m e F. Ú s e č k a EF j e h l e d a n á 
ú s e č k a s e s t ř e d e m D. Ú l o h a m á p r á v ě j e d n o ř e š e n í . • 

J e z a j í m a v é , ž e u v e d e n á k o n s t r u k c e ř e š í n á s l e d u j í c í 
ú l o h u . 

1 . 7 b M á m e d á n k o n v e x n í ú h e l a v j e h o v n i t ř k u 
b o d D. B o d e m D s e m á v é s t p ř í m k a t a k , a b y z ú h l u 
v y t í n a l a t r o j ú h e l n í k n e j m e n š í h o o b s a h u . 

Obr. 19 

• U k á ž e m e , ž e h l e d a n á p ř í m k a j e p r á v ě p ř í m k a EF, 

k t e r o u j s m e s e s t r o j i l i v p ř e d c h á z e j í c í ú l o z e , t j . t a k o v á 
p ř í m k a , ž e ú s e č k a , k t e r o u n a n í v y t í n a j í r a m e n a ú h l u , 
j e b o d e m D p ů l e n a . 

V e ď m e b o d e m D p ř í m k u MN r ů z n o u o d p ř í m k y EF, 

p ř i č e m ž b o d y M, N l e ž í n a r a m e n e c h d a n é h o ú h l u 
( o b r . 1 9 ) . D o k á ž e m e , ž e p r o o b s a h y t r o j ú h e l n í k ů p l a t í 

SMÁN > SBAF • (1) 

B e z ú j m y o b e c n o s t i m ů ž e m e p ř e d p o k l á d a t , ž e b o d M 

m á o d b o d u A v ě t š í v z d á l e n o s t n e ž b o d E ( k d y b y t o m u 
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t a k n e b y l o , z a m ě n í m e r a m e n a ú h l u ) . S t a č í se p ř e s v ě d č i t , 
ž e 

Sedm > $FDN , (2) 

p r o t o ž e z t o h o h n e d p l y n e ( 1 ) . A l e n e r o v n o s t ( 2 ) j e 
z ř e j m á , n e b o ť t r o j ú h e l n í k EĎM o b s a h u j e t r o j ú h e l n í k 
EDN', s o u m ě r n ě s d r u ž e n ý s t r o j ú h e l n í k e m FDN p o d l e 
b o d u D. • 

N ě k o l i k ú l o h : 

1 . 8 J s o u d á n y b o d y A, B. U r č e t e m n o ž i n u p a t k o l m i c 
v e d e n ý c h b o d e m A n a v š e c h n y p ř í m k y p r o c h á z e j í c í 
b o d e m B. 

1 . 9 N e c h ť j e d á n a k r u ž n i c e a b o d A. U r č e t e m n o ž i n u 
s t ř e d ů t ě t i v , k t e r é v y t í n á d a n á k r u ž n i c e n a v š e c h 
p ř í m k á c h p r o c h á z e j í c í c h b o d e m A. ( J e t ř e b a v y š e t ř i t 
z v l á š ť p ř í p a d y , k d y b o d A l e ž í v e v n ě j š í o b l a s t i k r u ž n i c e , 
v e v n i t ř n í o b l a s t i k r u ž n i c e n e b o n a n í . ) 

1 . 1 0 J s o u d á n y b o d y A, B. U r č e t e m n o ž i n u b o d ů s o u -
m ě r n ě s d r u ž e n ý c h s b o d e m A p o d l e v š e c h p ř í m e k p r o -
c h á z e j í c í c h b o d e m B. 

1 . 1 1 S e s t r o j t e k r u ž n i c i * ) d o t ý k a j í c í se d v o u d a n ý c h 
r o v n o b ě ž e k a p r o c h á z e j í c í d a n ý m b o d e m l e ž í c í m m e z i 
n i m i . 

1 . 1 2 S e s t r o j t e k r u ž n i c i p o l o m ě r u r, k t e r á se d o t ý k á 
d a n é p ř í m k y a d a n é k r u ž n i c e . 

1 . 1 3 J e d á n a k r u ž n i c e a v j e j í v n i t ř n í o b l a s t i b o d y 
A, B. V p i š t e d o d a n é k r u ž n i c e p r a v o ú h l ý t r o j ú h e l n í k t a k , 
a b y j e h o o d v ě s n y p r o c h á z e l y b o d y A, B. \ 

1 . 1 4 J s o u d á n y b o d y A, B. D v ě k r u ž n i c e se d o t ý k a j í 
p ř í m k y AB, j e d n a v b o d ě A, d r u h á v b o d ě B, a o b ě se 

*) Zdo a všude déle formulace jako „sestrojte kružnici" zna-
mená „sestrojte všechny kružnice". 
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d o t ý k a j í v z á j e m n ě v b o d ě M. U r č e t e m n o ž i n u v š e c h 
t ě c h t o b o d ů M, m ě n í - l i s e o b ě k r u ž n i c e , j 

1 . 1 5 V r o v i n ě j s o u d á n y č t y ř i b o d y . V e ď m e k a ž d ý m 
z t ě c h t o b o d ů p ř í m k u t a k , a b y t y t o p ř í m k y o h r a n i č i l y 
p r a v o ů h e l n í k . C o j e m n o ž i n o u s t ř e d ů t a k t o v z n i k l ý c h 
p r a v o ú h e l n í k ů ? | 

1 . 1 6 S t r a n y OP a OQ p r a v o ú h e l n í k ů OPMQ l e ž í n a 
r a m e n e c h d a n é h o p r a v é h o ú h l u . N a j d ě t e m n o ž i n u v š e c h 
v r c h o l ů M, j e s t l i ž e j e 

a ) d é l k a ú h l o p ř í č k y PQ, 

b ) s o u č e t d é l e k s t r a n OP a OQ, 

c ) s o u č e t d r u h ý c h m o c n i l i d é l e k s t r a n OP a OQ 

r o v e n d a n é h o d n o t ě d. 

1 . 1 7 N e c h ť j e d á n p r a v o ů h e l n í k . N a j d ě t e m n o ž i n u 
v š e c h b o d ů t a k o v ý c h , ž e s o u č e t d r u h ý c h m o c n i n j e j i c h 
v z d á l e n o s t í o d č t y ř s t r a n p r a v o ú h e l n í k ů j e r o v e n d r u h é 
m o c n i n ě j e h o ú h l o p ř í č k y . 

1 . 1 8 A a B j s o u d v ě m ě s t a . U r č e t e m n o ž i n u v š e c h 
b o d ů M s t o u t o v l a s t n o s t í : j d e m e - l i z b o d u M p ř í m o 
d o m ě s t a B, p a k s e v z d á l e n o s t o d m ě s t a A z v ě t š u j e . 

1 . 1 9 O t r o j ú h e l n í k u ABC v í m e , ž e d é l k a j e h o t ě ž n i c e 
AO j e 

a ) r o v n a p o l o v i n ě d é l k y s t r a n y BC, 

b ) v ě t š í n e ž p o l o v i n a d é l k y s t r a n y BC, 

c ) m e n š í n e ž p o l o v i n a d é l k y s t r a n y BC. 

D o k a ž t e , ž e ú h e l p ř i v r c h o l u A j e a ) p r a v ý , b ) o s t r ý , 
c ) t u p ý . 

1 . 2 0 V r o v i n ě j e d á n a k r u ž n i c e a b o d A. U r č e t e 
m n o ž i n u s t ř e d ů ú s e č e k AN, k d e b o d N p r o b í h á d a n o u 
k r u ž n i c i . 

1 . 2 1 J e d á n a k r u ž n i c e a b o d z v n ě j š í o b l a s t i t é t o k r u ž -
n i c e . V e ď t e t í m t o b o d e m s e č n u k r u ž n i c e t a k , a b y j e d e n 
j e j í p r ů s e č í k s k r u ž n i c í p ů l i l ú s e č k u t v o ř e n o u d r u h ý m 
p r ů s e č í k e m a d a n ý m b o d e m . 
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1 . 2 2 P r ů s e č í k e m d v o u d a n ý c h k r u ž n i c v e ď t e p ř í m k u 
t a k , a b y v y t í n a l a n a k r u ž n i c í c h t ě t i v y s t e j n é d é l k y . 

1 . 2 3 U r č e t e m n o ž i n u v r c h o l ů C v š e c h č t v e r c ů ABCD, 
p r o k t e r é v r c h o l A l e ž í n a d a n é p ř í m c e a v r c h o l B j e 
p e v n ě d á n . 

1 . 2 4 a ) K d e l e ž í č t v r t ý v r c h o l č t v e r c e , j e s t l i ž e d v a j e h o 
v r c h o l y l e ž í n a j e d n o m r a m e n i d a n é h o o s t r é h o ú h l u 
a t ř e t í v r c h o l l e ž í n a j e h o d r u h é m r a m e n i ? 

b ) J e d á n o s t r o ú h l ý t r o j ú h e l n í k ABC. V p i š t e d o n ě j 
č t v e r e c t a k , a b y d v a j e h o v r c h o l y l e ž e l y n a s t r a n ě AB. 

1 . 2 5 J a k o u k ř i v k u o p i s u j e s t ř e d s p o j n i c e d v o u c h o d c ů , 
k t e ř í j d o u r o v n o m ě r n ě p o p ř í m k á c h ? ,[, 

1 . 2 6 D o d a n é h o t r o j ú h e l n í k a ABC v p i š t e p r a v o ú h e l -
n í k , j e h o ž j e d n a s t r a n a l e ž í n a s t r a n ě AB. N a j d ě t e m n o -
ž i n u s t ř e d ů t ě c h t o p r a v o ú h e l n í k ů . 

1 . 2 7 D ř e v ě n ý p r a v o ú h l ý t r o j ú h e l n í k se p o h y b u j e 
v r o v i n ě t a k , ž e v r c h o l y , p ř i n i c h ž l e ž í o s t r é ú h l y , s e p o -
s u n u j í p o r a m e n e c h d a n é h o p r a v é h o ú h l u ( j e d e n v r c h o l 
p o j e d n o m a d r u h ý p o d r u h é m r a m e n i ) . J a k s e b u d e 
p o h y b o v a t t ř e t í v r c h o l t o h o t o t r o j ú h e l n í k u ? 

1 . 2 8 N a s t o l e l e ž í d v o j e p l o c h é h o d i n k y . O b o j e j d o u 
p ř e s n ě . P o j a k é k ř i v c e s e b u d e p o h y b o v a t s t ř e d ú s e č k y 
s p o j u j í c í k o n c e m i n u t o v ý c h r u č i č e k ? j , 

1 . 2 9 P r ů s e č í k e m A d v o u d a n ý c h k r u ž n i c v e ď m e 
p ř í m k u . T a p r o t í n á k r u ž n i c e v b o d e c h K, L, K ^ A, 

L ^ A. U r č e t e m n o ž i n u s t ř e d ů ú s e č e k KL. | 
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K a p i t o l a 2 

ABECEDA 

T a t o k a p i t o l a j e s o u p i s e m v ě t o m n o ž i n á c h b o d ů 
v y h o v u j í c í c h u r č i t ý m g e o m e t r i c k ý m p o d m í n k á m . P o -
s t u p n ě s e s t a v í m e c e l ý s e z n a m t a k o v ý c h p o d m í n e k a v ě t , 
j i c h ž b u d e m e u ž í v a t p ř i ř e š e n í ú l o h n e j r ů z n ě j š í h o t y p u . 

G e o m e t r i c k á ú l o h a n a u r č e n í m n o ž i n y b o d ů j e a n a l o -
g i c k á a l g e b r a i c k é ú l o z e ř e š e n í r o v n i c e ( s o u s t a v y r o v n i c , 
n e r o v n i c ) . Ř e š i t r o v n i c i n e b o n e r o v n i c i z n a m e n á n a j í t 
m n o ž i n u v š e c h č í s e l , k t e r á v y h o v u j í j i s t ý m p o d m í n k á m . 
P o d o b n ě j a k o s e v e š k o l e u č í m e p ř e v á d ě t r ů z n é r o v n i c e 
( n a p ř í k l a d t r i g o n o m e t r i c k é , l o g a r i t m i c k é ) n a l i n e á r n í 
n e b o k v a d r a t i c k é , u k a z u j e s e č a s t o , ž e j e m o ž n o s l o ž i -
t ě j š í g e o m e t r i c k o u p o d m í n k u p ř e v é s t n a j e d n o d u c h o u 
v l a s t n o s t p ř í m k y n e b o k r u ž n i c e . 

P o d o b n o s t m e z i a l g e b r a i c k ý m i ú l o h a m i a ú l o h a m i 
n a h l e d á n í m n o ž i n b o d ů d a n ý c h v l a s t n o s t í n e n í j e n v n ě j -
š í . P o m o c í m e t o d y s o u ř a d n i c l z e j e d n u z t ě c h t o ú l o h 
p ř e v é s t n a d r u h o u . P ř i t o m u v i d í m e , ž e g e o m e t r i c k é 
p o d m í n k y , k t e r é s e z d a j í n a p r v n í p o h l e d r ů z n é , l z e 
o b s á h n o u t t ý m i ž m a t e m a t i c k ý m i v ě t a m i . 

Z a č n ě m e n a š i a b e c e d u n e j j e d n o d u š š í m i v ě t a m i . 

A. Množina všech bodů stejní vzdálených od dvou da-
ných bodů A, B (A Ťí B) je přímka kolmá k úsecce AB 
a procházející jejím středem. 

T u t o p ř í m k u m n a z ý v á m e o s o u ú s e č k y AB. D ě l í 
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r o v i n u n a d v ě p o l o r o v i n y . B o d y j e d n é p o l o r o v i n y (s v ý -
j i m k o u j e j í h r a n i č n í p ř í m k y ) j s o u b l í ž k b o d u A n e ž 
k b o d u B, v d r u h é p o l o r o v i n ě j e t o m u o b r á c e n ě . B o d y 
A, B j s o u s o u m ě r n ě s d r u ž e n é p o d l e p ř í m k y m . 

B. Množina všech bodů, stejně vzdálených od dvou da-
ných různoběžek lt a l2 je dvojice vzájemně kolmých pří-
mek, lcteré půlí úhly tvořené přímkami lí, l2 (obr. 20). 

U v e d e n é d v ě k o l m é p ř í m k y j s o u o s a m i s o u m ě r n o s t i 
d v o j i c e p ř í m e k l l t l 2 a d ě l í r o v i n u n a č t y ř i č á s t i . N a 
o b r á z k u j s o u v y z n a č e n y d v a p r a v é ú h l y , j e j i c h ž v n i t ř k y 
t v o ř í m n o ž i n u v š e c h b o d ů , k t e r é j s o u b l í ž k p ř í m c e 
n e ž k p ř í m c e l 2 . 

C. Množina bodů, jejichž vzdálenost od dané přímky l je 
rovna danému číslu h (h > Q), je dvojice přímek lx, l2 

rovnoběžných s přímkou l a ležících v různých polorovinách 
ohraničených přímkou l. 

P á s r o v i n y o h r a n i č e n ý p ř í m k a m i l x , l 2 j e m n o ž i n o u 
v š e c h b o d ů , j e j i c h ž v z d á l e n o s t o d p ř í m k y l j e n e j v ý š e 
r o v n a č í s l u h. 
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D. Množina všech bodů, jejichž vzdálenost od daného 
bodu O je rovna danému číslu r (r > 0), je kružnice 
se středem O a poloměrem r. ( T o j e d e f i n i c e k r u ž n i c e . ) 

K r u ž n i c e d ě l í r o v i n u n a d v ě č á s t i : v n i t ř n í a v n ě j š í 
o b l a s t k r u ž n i c e . P r o b o d y v n i t ř n í o b l a s t i j e v z d á l e n o s t 
o d s t ř e d u m e n š í n e ž r, p r o b o d y v n ě j š í o b l a s t i j e t a t o 
v z d á l e n o s t v ě t š í n e ž r. 

N ě k o l i k n á s l e d u j í c í c h ú l o h l e h c e v y ř e š í t e u ž i t í m v ě t 
A , B , C , D . 

2 . 1 U r č e t e m n o ž i n u s t ř e d ů v š e c h k r u ž n i c p r o c h á z e -
j í c í c h d v ě m a d a n ý m i b o d y . 

2 . 2 U r č e t e m n o ž i n u s t ř e d ů v š e c h k r u ž n i c , k t e r é se 
d o t ý k a j í d v o u d a n ý c h r ů z n o b ě ž e k . 

2 . 3 N a j d ě t e m n o ž i n u s t ř e d ů v š e c h k r u ž n i c o p o l o -
m ě r u r, k t e r é s e d o t ý k a j í d a n é p ř í m k y . 

2 . 4 J s o u d á n y d v a b o d y A, B. U r č e t e m n o ž i n u v š e c h 
b o d ů M t a k o v ý c h , ž e o b s a h SAMB t r o j ú h e l n í k u AMB 

j e r o v e n d a n é m u č í s l u c > 0 . 

N a z á k l a d ě t v r z e n í B d o k á ž e m e v ě t u o o s á c h v n i t ř -
n í h o a v n ě j š í h o ú h l u t r o j ú h e l n í k u . 

2 . 5 N e c h ť o s y d v o j i c e p ř í m e k AC, BC p r o t í n a j í 
p ř í m k u AB v b o d e c h E, F. P a k p l a t í 

\AE\ _ \AF\ _ \AC\ 

\BE\ ~ l-B-FI ~ \BC\ 
( o b r . 2 1 ) . 

• N e c h ť j e M n ě k t e r ý z b o d ů E aF. P a k j e 

\AM\ _ SACM 

\BM\ SBOM ' 
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(Trojúhelníky ACM a BCM mají společnou výšku CH.) 
Poměr obsahů je možno vyjádřit též jiným způsobem: 

protože bod M leží na ose přímek AC, BC, je od obou 
přímek stejně vzdálen, proto je 

&ACM _ J—| 

SBCM \BC\ 

Kružnice, dvojice kruhových oblouků. Následující pís-
menko abecedy je ještě jednou variací věty o obvodo-
vém a středovém úhlu a o prstenci na kružnici, kterou 
jsme probírali v kap. 1. 

E°. Dvě různoběžné přímky lA a lB se otáčejí kolem 
svých bodů A a B se stejnou úhlovou rychlostí co a ve stej-
ném smyslu (a proto svírají konstantní úhel). Trajektorií 
jejich průsečíku je kružnice (obr. 22). 

Důkaz. Sestrojíme kružnici d procházející body A, B 
a jednou polohou M0 průsečíku přímek lA a lB. Podle 
věty o prstenci na kružnici z 1. kap. se průsečík přímky IA 
a kružnice pohybuje po kružnici <5 rovnoměrně úhlovou 
rychlostí 2co. Stejně se pohybuje i průsečík přímky lB 
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a kružnice ó. Protože jsou však v jednom okamžiku 
(v poloze M0) totožné, jsou totožné v každém časovém 
okamžiku. 

Uvedeme ještě jedno znění věty E, které neužívá 
pohybu. 

E. Množinou všech bodů, ze kterých vidime danou úsečku 
AB pod úhlem dané velikosti q> (tj. množiny bodů M, pro 
které je | AMB\ = q>), je dvojice kruhových oblouků 
s koncovými body A, B, navzájem souměrných podle přím-
ky AB. 

Oblast, která je ohraničená těmito oblouky, je množinou 
všech těch bodů M, pro které je AMB\ > <p (obr. 23). 

Poznamenejme, že v případě <p = 90° vytvoří oba 
oblouky kružnici nad průměrem AB (viz odst. 0.1 — 
Thaletova věta). 

2.6 Po dané kružnici s pevnou tětivou AB se pohybují 
krajní body tětivy CD, aniž by tětiva měnila svou veli-
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kost. Po jaké křivce se pohybuje průsečík přímek 
a) AD, BC, b) AC, BDI 

2.7 V rovině jsou dány dva neprotínající se kruhy. 
Úhel vyrobený z průhledného materiálu se pohybuje 
v rovině tak, že stále překrývá oba kruhy a každé jeho 
rameno se dotýká jednoho kruhu. Dokažte, že je možno 

n 
/ 

/ 
/ 

/ 
/ 
i 
i 

\ 
\ 
\ 

A 

na úhlu vyznačit bod, který se pohybuje po oblouku 
kružnice. 

2.8a Je dána kružnice a na ní dva body A, B. Nechť 
je M libovolný bod této kružnice. Na prodloužení 
úsečky AM za bod M zvolíme úsečku MN, jejíž velikost 
je rovna velikosti úsečky BM. Určete množinu všech 
takto sestrojených bodů N (obr. 24). 

• Nechť je N bod sestrojený podle podmínek úlohy; 
pak je \BM\ = \NM| a I NBM| = | MNB\. Protože 
je | <£ AMB\ = | <£ MBN\ + | <£ MNB\, je |<£ = 
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=| <£ AMB\\2. Velikost úhhiAMB je pro všechny body ilř 
ležící na jednom z oblouků AB konstantní (viz bod E): 
<£ AMB \ = <p. Proto | <£ = <p/2, tedy všechny od-
povídající body N leží na kruhovém oblouku AnB, 
z jehož bodů je vidět úsečku AB pod úhlem <p/2. (Střed 
tohoto oblouku leží ve středu oblouku AmB dané kruž-
nice <?).) 

Vyhovují obráceně všechny body oblouku AnB pod-
mínkám úlohy? Všechny nevyhovují. 

Všimněme si, že když bod M probíhá oblouk AmB 
od bodu B k bodu A, otáčí se tětiva AM kolem bodu A 
od přímky AB k tečně dané kružnice v bodě A. Proto 
hledané množině patří pouze část oblouku ÁnĚ, a to 
oblouk EnB, kde E je průsečík oblouku AnB s tečnou 
dané kružnice v bodě A (obr. 25). 

Přitom můžeme bod B zahrnout do hledané množiny 
(odpovídá té poloze bodu M, ve které splývá bod M 
s bodem B a velikost úsečky BM je nulová). Naproti 
tomu bod E nepatří hledané množině; splývá-li bod M 
s bodem A, nemůžeme mluvit o přímce AM. 

Podobně zkoumáme body, které leží v druhé polo-
rovině ohraničené přímkou AB. Hledaná množina bodů 
se tak skládá ze dvou kruhových oblouků ÉnĚ 
a Wn/B. • 

Úlohu 2.8a můžeme řešit také jinak, jestliže si všim-
neme, že body N a B jsou souměrně sdružené podle 
přímky CM, kde je C střed oblouku AmB. Dále pak vy-
užijeme výsledku úlohy 1.10. 

Podobně jako úlohu 2.8a si může čtenář vyřešit úlohu: 

2.8b Podmínky úlohy jsou stejné jako v úloze 2.8a, 
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pouze úsečku MN nanášíme na opačnou polopřímku, 
tedy na polopřímku MA. 

Druhé mocniny vzdáleností. Předpokládejme, že jsou 
v rovině dány dva body A, B a dále libovolné číslo c. 

F . Množinou všech bodů M, pro které je 

| AM\* — \BM\2 = c, 

je přímka kolmá k přímce AB. V případě c = 0 se jedná 
o osu úsečky AB. 

6. Nechí je \AB\ = 2a. Množinou bodů, pro které je 

\AM\2 + \BM\* = c, 
je v případě 

a) c > 2o2 kružnice se středem ve středu O úsečky AB 
a poloměrem ]/(c — 2a2)/2, 

b) c = 2a2 bod O, 
c) c < 2a2 prázdná množina. 

Tvrzení F a G je možno lehce dokázat užitím Pytha-
gorovy věty nebo metodou souřadnic ( í ) . Nebudeme je 
nyní každou zvlášť dokazovat, ukážeme později, že jsou 
obě důsledkem obecnějšího tvrzení. Dříve však je do-
plníme několika příklady. 

2.9 Jsou dány dvě kružnice, bod M a body dotyku 
Tlt T2 tečen vedených bodem M k jedné a druhé 
kružnici. Určete množinu všech těeh bodů M, pro které 
platí \MTt\ = |MT2\. 

• Nechť jsou Oj a 02 středy daných kružnic, rY a r2 

jejich poloměry (r2 ^ r1), MTX a MT2 jejich tečny ve-
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dené bodem M. Užitím Pythagorovy věty zapíšeme pod-
mínku \MTt\2 = \MT2\2 ve tvaru 

I-ÍI/OjJ4 — IOXTJI2 = \M02\2 — \02T2\2 

neboli 
\M02\2— \MOtf = ň — r\. 

Podle tvrzení F leží všechny body M požadované 
vlastnosti na přímce kolmé k přímce Ofi2 . Jestliže se 

kružnice protínají, je tato přímka spojnicí jejich průse-
číků. Je-li totiž A průsečík obou kružnic, je 

\A02\2—\A01\2 = rt — r21, 

a bod A tedy leží na této přímce. Množina hledaných 
bodů je vyznačena na obrázku 26; je sjednocením dvou 
polopřímek. 

Jsou-li dané kružnice různé a soustředné, je hledaná 
množina prázdná. Splývají-li obě kružnice, skládá se 
hledaná množina ze všech bodů této kružnice a z bodů 
její vnější oblasti. Nejsou-li kružnice soustředné a ani 
se neprotínají, je výsledkem celá přímka. • 
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Přímka, o které se mluví v předcházející úloze, se 
nazývá chordálou daných kružnic. Nechť se kružnice 
neprotínají. Pak jejich chordála dělí doplněk sjednocení 
obou kruhů, které dané kružnice ohraničují, na dvě 
oblasti: vnitřek jedné oblasti je množina bodů M, pro 
které je |MTX\ > \MT2\, a vnitřek druhé je množina 
bodů M, pro které je \MTX\ < \MT.,\. 

2.10 Určete množinu středů všech kružnic, které 
protínají každou z daných dvou kružnic v bodech dia-
metrálně protilehlých. 

2.11 a) Součet druhých mocnin délek úhlopříček rov-
noběžníku se rovná součtu druhých mocnin délek jeho 
stran. Dokažte. 

b) Jestliže má konvexní čtyřúhelník AMBN kolmé 
úhlopříčky, je \AM\* + |5iV|2 = |,4ATj2 + \BM\*. Do-
kažte. J, 

• a) Označme a vzdálenost vrcholů A a B od středu O 
rovnoběžníku AMBN a r vzdálenost vrcholů M a N 
od bodu O. Položme c = 2(a2 -f r2). Protože je pak 
\OM\ = V(c — 2a2)/2, je podle tvrzení G součet druhých 
mocnin vzdáleností bodů A, B od bodu M roven c 
a totéž platí pro vzdálenosti bodu N od bodů A, B. 
Proto je 

\AM\* + \BM\2 + IJ^I2 + |£iV|2 = 
= 2c = 4(a2 + r2) = \MN\* + \AB\*. • 

Uvedeme nyní obecnou větu, ze které vyplývají tvr-
zení F, G, A a D naší abecedy. 

Věta o druhých mocninách vzdáleností. Množinou 
všech bodů M, pro které platí podmínka 
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X^MAtf + X2\MA2\2 + ... + Xn\MAn\2 = p, (1) 

kde Alt A2 An jsou dané body a X2, .. ., X„, ¡i 
jsou dané Čísla, je 

1) kružnice, bod nebo prázdná množina v případě, kdy 
platí + X2 + . . . + Xn Ť^ 0; 

2) přímka, celá rovina nebo prázdná množina, je-li 
+ X2 + ... + Xn = 0. 

Při důkazu užijeme metody souřadnic. Druhá mocnina 
vzdálenosti bodů M[x\ y\ a Ak\xk\ je rovna 

\MAk\2 = (x — xk)2 + {y- ykf = 
= x2 + y2 — 2xtx — 2yky + x\ + y\ . 

Výraz X, \MAtf + X2 \MAtf + ... + Xn \MAn\* se 
v souřadnicích rovná součtu několika výrazů tvaru 

(xa + y2 — 2 px — 2 qy + p2 + q2). 

Můžeme tedy podmínku (1) psát ve tvaru rovnice 

dx2 + dy2 + ax + by + c = 0, (2) 

kde d = X1 + X2 + ... + Xn. 
Dokážeme nyní, že rovnicí (2) je dána některá z uve-

dených množin. 
1°. Je-li d 0, můžeme rovnici (2) přepsat ekviva-

lentně tímto způsobem: 

x2 + y2+-^x + ~y + ^- = 0 

nebo 

í , a V , í , 6 V b2 + a2 — 4dc 
la: + -2jJ+lž/ + "šij- 4ď2 * {2) 

Vidíme, že je tím dána: 
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kružnice se středem C*[—a/2d; —bj2d], je-li pravá 
strana rovnice (2') kladná, 

jeden jediný bod C[—a/2d; —b\2d], je-li pravá strana 
rovna nule, 

prázdná množina, je-li pravá strana záporná. 
2°. Je-li d = 0, má rovnice (2) tvar 

ax + by + c = 0. 

Touto rovnicí je dána: 
přímka, je-li a2 + b2 ^ 0, 
celá rovina, je-li a = b = c = 0, 
prázdná množina, je-li a = b = 0, c ^ 0. 

V každém konkrétním případě sc vždy lehce určí, 
která z uvedených možností nastává. Vraťme se k bo-
dům F, G naší abecedy, které jsme nedokázali. 

Důkaz F. Podmínka \MA\2 — \MB\l = c je zvláštním 
případem podmínky (1), ve které je n = 2, = 1, 
A2 = —1, tedy d = 0, a definuje tudíž přímku, rovinu 
nebo prázdnou množinu. 

Protože rovnice (a; -f a)2 — (x — a)2 = c má v pří-
padě a ^ 0 vždy jediné řešení x = cjAa, leží na přímce 
AB právě jeden bod hledané množiny, která je tudíž 
přímkou. Ze souměrnosti plyne, že je kolmá k přímce 
AB. (Přímku AB jsme zvolili za osu x, střed úsečky AB 
za počátek soustavy souřadnic). 

Důkaz G. Podmínka \MA\2 + \3IB\2 = c je opět 
zvláštní případ (1). Zde je = 1, Á2 = 1, d ^ 0, je tedy 
hledaná množina buď prázdná, nebo se skládá z jediného 
bodu, nebo je kružnicí. Vzhledem k tomu, že body A, B 
vystupují v podmínce úlohy symetricky, splývá střed 
kružnice se středem úsečky AB. 
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Abychom poznali, kdy je hledaná množina kružnicí 
a jaký je její poloměr, najdeme na přímce AB body vy-
hovující podmínce úlohy \AM\2 + \BM\2 = c. Tato pod-
mínka dává rovnici (x — a)2 + ix + a)2 = c, která má 
řešení pro c 2a2, přičemž 

|*| = r = V(c — 2a2)¡2 . 

2.12 Najděte množinu všech bodů, pro které je součet 
druhých mocnin jejich vzdáleností od dvou protileh-
lých vrcholů daného pravoúhelníku roven součtu dru-
hých mocnin jejich vzdáleností od zbývajících dvou 
vrcholů pravoúhelníku. 

• Řešením je celá rovina. Nechť je ABCD daný 
pravoúhelník. Hledáme tedy množinu všech bodů M, 
pro které platí 

\MA\2 + \MC\2 — \MB\2 — \MD\2 = 0. 

P o l o ž m e v p o d m í n c e ( 1 ) n = 4 , = A 2 = 1 , A3 = = 
= — 1 , a t u d í ž + Á 2 + + = 0 . P o d l e t v r z e n í j e 
h l e d a n á m n o ž i n a b u d p ř í m k a , n e b o p r á z d n á m n o ž i n a , 
n e b o c e l á r o v i n a . 

Všimněme si, že vrcholy A, B, C, D daného pravo-
úhelníku vyhovují podmínce úlohy. Například pro bod 
A platí .\AA\2 + \AC\2 — \AB\2 — \AD\2 = 0 (Pytha-
gorova věta). Není tedy hledaná množina prázdná a není 
přímkou. Musí to tudíž být celá rovina. • 

Z výsledku úlohy 2.12 plyne, že pro každý bod M 
roviny pravoúhelníku ABCD platí 

\MA\2 + \MC\2 = \MB\2 + \MD\*. 

Užitím tohoto vztahu řešte tuto úlohu: 

39 



2.13 Je dán kruh a jeho vnitřní bod A. Najděte mno-
žinu čtvrtých vrcholů C pravoúhelníků ABCD, jejichž 
vrcholy B a D leží na hraniční kružnici daného kruhu. 

2.14 Dokažte, že v případě \MA\^\MB\ platí 
\MA\2 — \MB\2 = 2 \AB\.Q(M, TO), kde m je osa úsečky 
AB a Q{M, TO) je vzdálenost bodu M od přímky to. 

Přidejme k naší abecedě ještě jedno písmenko — 
tvrzení, které se často v geometrii užívá a jež je důsled-
kem věty o druhých mocninách vzdáleností. 

H. V rovině jsou dány dva různé body A, B. Množinou 
všech bodů M, pro které je \MA | / \MB\ = k, k > 0, k ^ 
^ 1, je kružnice se středem na přímce AB. 

T a t o m n o ž i n a v š e c h b o d ů , j e j i c h ž p o m ě r v z d á l e n o s t í 
o d b o d ů A a B j e k o n s t a n t n í ( r ů z n ý o d j e d n é ) , s e n a z ý v á 
Apolbniova kružnice (obr. 27). 

• Přepíšeme-li podmínku v úloze H do tvaru 

vidíme, že se jedná o zvláštní případ podmínky (1), 
pro který je n = 2, = 1, X2 = —k2, a protože je 

M 

Obr. 27 

\MA\2 — k2 \MB\2 = 0, 
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1 — k2 ^ O, je hledaná množina kružnicí, bodem nebo 
prázdnou množinou. Protože rovnice (x -f- = fc2(ar — 
— a)2 má při k2 ^ 1, a ^ 0 právě dva různé kořeny, 
existují na přímce AB právě dva různé body MX a 312 

hledané množiny, která je tudíž kružnicí. • 
Je-li M bod této Apolloniovy kružnice, který neleží 

na přímce AB, pak osy dvojice přímek 31A a 31B pro-
tínají přímku AB právě v bodech 31 ̂ , 312 (obr. 28). 

Tvrzení vyplývá z věty 2.5, podle které je 

\AMX\ _ \AMT\ _ \A31\ 

\BMX\ ~ \BMX\ ~ \BM\ ' 

Této skutečnosti můžeme využít při řešení následu-
jící úlohy. 

2.15 Na průměru kulatého kulečníkového stolu leží 
kulečníkové koule A a B. Jakým směrem musíme 
odstrčit kouli B, má-li se po odrazu od hrany stolu srazit 
s koulí A, a nemá-li se pohybovat po průměru stolu? 

2.16 Na dané přímce leží body A, B, C, D. Sestrojte 
bod, z něhož jsou vidět úsečky AB, BC a CD pod shod-
nými úhly. 
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Vzdálenosti od přímek. Dosud se v naší abecedě vysky-
tovaly hlavně takové podmínky, které dávaly kružnici. 
V dalších dvou případech budou výsledkem přímky 
(dvojice přímek). 

Nechť je dáno kladné číslo c a dvě různoběžky Zx a l2. 

J. Množina všech bodů M, pro které je poměr Q(M, lx) : 
: g{M, l2) jejich vzdáleností od přímek lx, l2 roven c, je 
dvojice přímek procházejících průsečíkem daných přímek. 

K. Množina všech bodů M, pro které je součet q(M, lx) + 
+ Q(M, l2) jejich vzdáleností od přímek a l2 roven c, 
je hranice pravoúhelníku, jehož úhlopříčky leží na daných 
přímkách. 

Dříve než přejdeme k důkazu těchto tvrzení, probe-
reme dva jednoduché příklady. 

2.17 Je dán trojúhelník ABC. Najděte množinu všech 
bodů M, pro které se obsahy SAMO a SBMC trojúhelníků 
AMC a BMC sobě rovnají. 

• Nechť hb a ha jsou vzdálenosti bodu M od přímek 
AC a BC. Pak je 

SAMO = \AC\.hb, SbMC = -g- \BC\. ha, 

teáyhalhb = \AC\ / \BC\. 

Vidíme, že hledanou množinou všech bodů M je mno-
žina popsaná pod písmenem J pro přímky AC a BC 
a c = \AC\ I \BC\. Je to tedy dvojice přímek procháze-
jících bodem C. Ukážeme, že jedna z těchto přímek je 
těžnicí trojúhelníku ABC a druhá je rovnoběžná s přím-
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kou AB. K důkazu stačí zvolit na každé z těchto přímek 
jeden bod á ukázat, že splňuje zadanou podmínku. 

Označme h velikost výšky trojúhelníku ABC vedené 
bodem C a nechť je N libovolný bod přímky l vedené 
vrcholem C rovnoběžně s přímkou AB; pak je 

SMy = Y |CW| h, SBCN = ~\CN\h, tedy SACX = SBC" 

a přímka l je částí hledané množiny. 
Nechť je K střed strany AB, tj. \AK\ = \KB\. Pak je 

SAKO = \AK\ A/2 = \BK\ h/2 = SBKc, tudíž i těžnice m 
je částí hledané množiny. • 

Tvrzení K se dá v podstatě přeformulovat takto: 

2.18 Je dán rovnoramenný trojúhelník AOB. Dokaž-
te, že součet vzdáleností libovolného bodu M základny 
AB od ramen AO a BO je roven výšce trojúhelníku 
vedené k jeho rameni. 

Tvrzenf J a K nebudeme dokazovat geometricky, 
i když by to nebylo složité, nýbrž podáme důkaz použi-
tím pohybu (podobně jako v bodě E o kružnici a dvojici 
kruhových oblouků). Nejdříve však vyslovíme lemmu* 
zobecňující tvrzení o prstenci na přímce (viz str. 19). 

L e m m a . Na přímky a l2 je v jejich průsečíku navlečen 
malý prstenec M. Jestliže se každá z přímek llt l2 rovno-
měrní posouvá, pohybuje se prstenec rovnomírní po přímce. 

Důkaz. Přímku z tvrzení lemmy dostaneme, vyznačí-
me-li si dvě různé polohy Mi a M2 pohybujícího se 

*) lemma — poučka, pomocná véta 
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prstence. Průsečíky pohybujících se přímek a l2 
s pevnou přímkou MlM2 se pohybují rovnoměrně. Pro-
tože však ve dvou různých časových okamžicích splý-
vají, splývají v každém okamžiku. 

Důkaz tvrzení J. Pro kladné číslo c tvoří body, jejichž 
vzdálenost od přímky l2 je rovna t a do přímky je 
rovna ct, vrcholy rovnoběžníku se středem O v průsečí-
ku přímek l1, l2. Množinou všech bodů, jejichž vzdále-
nost od přímky l2 je t, jsou totiž dvě rovnoběžky s přím-
kou l2 (viz úloha B) a stejně tak je množinou bodů o vzdá-
lenosti ct od přímky dvojice rovnoběžek s přímkou lx. 
Obě dvojice rovnoběžek se protínají ve čtyřech vrcholech 
rovnoběžníku, které vyhovují podmínce úlohy J, neboť 
ct/t = c. Probíhá-li číslo c množinu všech kladných reál-
ných čísel, dostaneme všechny body hledané množiny. 

Díváme-li se na t jako na „čas", vidíme, že se obě dvě 
dvojice rovnoběžek pohybují rovnoměrně (jedna dvojice 
je stále rovnoběžná s přímkou l l t druhá s l2). Podle 
lemmy se jejich průsečíky pohybují po přímkách 
procházejících bodem O. 

Důkaz tvrzení K. Veďme dvě přímky ve vzdálenosti t 
od přímky lx a další dvě přímky ve vzdálenosti c — t 
od přímky l2 (0 fS t ^ c). Čtyři průsečíky těchto přímek 
patří do hledané množiny. Měníme-li „čas" spojitě od 0 
do c, pohybují se přímky rovnoměrně a každý ze čtyř 
obdržených průsečíků se podle lemmy pohybuje po 
úsečce. Krajní body těchto úseček odpovídají hodnotám 
t = 0 a t = c, leží na přímkách , l2 a tvoří vrcholy 
pravoúhelníku. 

Uvedeme teď obecnou větu, která zahrnuje tvrzení B, 
C, J a K jako své zvláštní případy. Zkoumejme množinu 
všech bodů M, pro které platí 
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XLQ(M, K) + X2Q(M, L2)+ ... + Xng(M, LN) = (I-, (3) 

zde jsou llt l2, . . . ,ln dané přímky roviny a XLT X2 

X„, /a daná čísla. 
Popsat takto zadanou množinu není jednoduché. Hned 

však uvidíme, že je snadné určit průiuky této množiny 
s částmi roviny, na které je rovina rozdělena přímka-
mi l l t l2, . . . , Z„. Označme Q jednu takovou část. 

Věta o vzdálenostech od přímek. Množina bodů vyho-
vujících podmínce (3) a patřících do Q je bud 1) průnikem 
Q a nějaké přímky, tedy úsečkou, polopřímkou nebo celou 
přímkou, nebo 2) celé Q, nebo 3) prázdná množina. 

Důkaz. Zjistíme-li průniky hledané množiny s každou 
částí roviny, na které je rovina rozdělena přímkami 
li> l2 , • • • i lni je tím dána celá hledaná množina. K dů-
kazu věty použijeme metody souřadnic. 

Nechť je tedy Q zvolená část roviny. Pak je Q průni-
kem n polorovin s hraničními přímkami lx, l2, . .., Z„. 
Rovnici akx -f- bky + ck = 0 přímky lk (k = 1,2 n) 
můžeme zvolit tak, že příslušná polorovina je dána ne-
rovnicí aicX + bky + ck ^ 0 a že platí ak + b% = 1 (?), 
takže pro body M[x\ y] této poloroviny platí Q(M, lk) = 
= a^x + bky -j- cfc. Proto je levá strana rovnice (3) 
součtem výrazů tvaru Xk(akx -f- bky -(- ck), a rovnice (3) 
má tudíž tvar 

ax + by + c = 0. 

Je-li a2 + ¿>2 ̂  0, je to rovnice přímky, pro a = b = 0 
je touto rovnicí dána buď celá rovina, nebo prázdná 
množina. 

Jiný důkaz dostaneme, převedeme-li úlohu pomocí 
úlohy 2.14 na větu o druhých mocninách vzdále-
ností (?). 
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2.19 a) Je dán rovnostranný trojúhelník ABC. Na-
jděte množinu všech bodů M, pro které se součet vzdá-
leností od přímek AB, BC, CA rovná danému číslu 

b) Je dán pravoúhelník ABCD. Najděte množinu 
všech bodů M, pro které je součet vzdáleností od pří-
mek AB, BC, CD a DA roven danému číslu ¡1. 

2.20 a) Tři přímky l0, l l t l2 procházejí jedním bodem 
a každé dvě z nich svírají úhel 60°. Najděte množinu 
všech bodů M, pro které platí 

e(M, l0) = g(M, k) + Q{M, l2). 

b) Je dán rovnostranný trojúhelník. Najděte množi-
nu všech bodů M, pro které je vzdálenost od jedné z pří-
mek AB, BC, CA rovna polovičnímu součtu vzdáleností 
od zbývajících dvou. j 

Přehled naší abecedy. Množina všech bodů vyhovují-
cích určité podmínce se zpravidla označuje takto: do 
složených závorek se nejdříve napíše písmeno označující 
„libovolný bod" množiny (zpravidla užíváme písme-
no M, může to být ovšem i jiné písmeno), pak se napíše 
dvojtečka a za ní se napíše podmínka, kterou jsou body 
množiny charakterizovány. 

Napíšeme krátce probrané množiny v naší abecedě: 

A. {M : \MA\ = \MB\} 
B. {M : q(M, k) = Q(M, l2)} 
C. {Jí : q(M, l) = h} 
D. {M : \MO\ = r} 
E. {M : <£ AMB = <p} 
F. {M : AM 2 BM 
G. [M : AM a + BM 
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H. {M : \AM\ I \BM\ = k} 
J. {M : q(M, 1,) I E(M, l2) = k} 
K. {M : E(M, 1,) + q{M, l2) = c} 

Připomeňme si, že všechny tyto množiny kromě 
množiny uvedené pod písmenem E jsme rozdělili na dvě 
skupiny 

A, D, F, G, H a B, C, J, K. 

První skupina — to jsou zvláštní případy množiny 

{M : X^MAtf + ... + Xn\MAn\2 = fi), 

druhá skupina jsou zvláštní případy množiny 

{M : XlQ(M, l,) + ... + ^(M, la) = fi}. 

V kap. 6 doplníme naši abecedu dalšími čtyřmi písmeny: 
L. {M : MA + \MB\ = c} 
N. {M : \MA\ — \MB\\ = c} 
P. {M: MA = E(M, H)} 

Q. {M : MA I q(M, l) = c} 

Tyto množiny (elipsy, hyperboly a paraboly) tvoří 
také přirozeným způsobem jednu skupinu křivek, tzv. 
křivek druhého stupně. 
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Kapi to la 3 

LOGICKÉ KOMBINACE 

Zde jsou shromážděny různé úlohy, ve kterých vystupuje 
zpravidla několik geometrických podmínek najednou. 
Při řešení těchto úloh se naučíme třídit body, vyjadřo-
vat logické souvislosti mezi podmínkami pomocí operací 
s množinami. 

Společný bod tří přímek. V prvních úlohách se dotkne-
me tradičního geometrického tématu. Pomocí jednodu-
hých operací s množinami naší abecedy dokážeme věty 
o „významných bodech" trojúhelníku. Všechny úvahy 
se vlastně převedou na užití tranzitivnosti: je-li a = b 
a b = c, pak je a = c. 

3.1 V trojúhelníku se osy stran protínají v jediném 
bodě, který je středem kružnice trojúhelníku opsané. 
Dokažte. 

• Osy MC a m0 stran AB a BC trojúhelníku ABC se 
samozřejmě protínají; označme jejich průsečík O. Protože 
bod O leží na ose MC, je podle A 2. kap. \OA\ = \OB\. 
Stejně tak je \OB\ = \OC\, protože bod O leží také 
na ose MA. Pak je však také \OA\ = \OC\, a tudíž je 
bod O také bodem osy mb strany AC. Tím jsme doká-
zali, že všechny tři osy stran procházejí jediným 
bodem. • 
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3.2 Výšky trojúhelníku se protínají v jediném bodě, 
který se nazývá průsečík výšek, nebo též ortocentrum 
trojúhelníku. Dokažte. 

• Vedme každým vrcholem trojúhelníku ABC přím-
ku rovnoběžnou s protější stranou. Tyto přímky tvoří 
nový trojúhelník A'B'C', v němž jsou body A, B, C 
středy stran a výšky trojúhelníku ABC jsou současně 
osami stran trojúhelníku A'B'C'. Procházejí tudíž podle 
3.1 jediným bodem. • 

Ukážeme si ještě jiný důkaz věty 3.2, podobný dů-
kazu věty 3.1. 

• Každou výšku trojúhelníku můžeme popsat jako 
množinu všech bodů splňujících jistou podmínku. Vy-
užijeme k tomu bodu E. Víme, že množina {M : \MA |2 — 
— \MB\2 = d} je přímka kolmá k přímce AB. Zvolme d 
tak, aby tato přímka procházela bodem C, tedy d = 
= CA\2 — \CB\2. Je tudíž hc = {M : \MA\2 — |Jf£|» — 
= CA\2—\CB\2} výška trojúhelníku vedená vrcho-
lem C. 

Zcela obdobně můžeme popsat zbývající dvě výšky: 

K = {M : \MB\2 — \MC\2 = |AB\2 — \AC\*}, 
hb = {M : \MC\*— \MA\2 = \BC\2 — \BA\*}. 

Nechť se přímky hc a ha protínají v bodě H, pak platí 
současně 

\HA\2— \HB\* = \CA\*— \CB\2, 
\HB\2 — \HC\2 = \AB\2—\AC\*. 

Sečtením těchto dvou rovností dostaneme 

| HA |2 — \HC\2 = \AB\2 — \CB\2. 

Odtud však plyne, že bod H je také bodem výšky hb. Q 
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3 . 3 O s y ú h l ů t r o j ú h e l n í k u se p r o t í n a j í v j e d i n é m b o d ě 
( v e s t ř e d u k r u ž n i c e t r o j ú h e l n í k u v e p s a n é ) . D o k a ž t e . 

• Z v o l m e l i b o v o l n ý t r o j ú h e l n í k ABC a o z n a ě m e a, b 

a c p ř í m k y BC, CA a AB. O s y l a a l b ú h l ů t r o j ú h e l n í k u 
p ř i v r c h o l e c h A a B s e p r o t í n a j í v e v n i t ř n í m b o d ě O 
t r o j ú h e l n í k u ABC, B o d O s p l ň u j e p o d m í n k y q(0, b) = 

= e(0, c ) a Q(0, a) = Q(0, C). P a k j e t a k é Q(0, b) = 

= g(0, a), t e d y b o d 0 j e t a k é b o d e m o s y lc ú h l u p ř i 
v r c h o l u C z v o l e n é h o t r o j ú h e l n í k u . • 

Poznámka. M n o ž i n a v š e c h b o d ů M r o v i n y , p r o k t e r é 
j e Q(M, C) = Q{M, b) a s o u č a s n ě Q(M, a) = Q{M, C), s e 
s k l á d á z e č t y ř b o d ů O , O l t 0 2 , 0 3 , v e k t e r ý c h s e p r o t í -
n a j í o s y d v o j i c e p ř í m e k b, c s o s a m i p ř í m e k a, c. Z t r a n -
z i t i v n o s t i o p ě t p l y n e , ž e t ě m i t o č t y ř m i b o d y p r o c h á z e j í 
t é ž o s y p ř í m e k a, b ( k a ž d á o s a p r o c h á z í d v ě m a z t ě c h t o 
č t y ř b o d ů ) . 

O d t u d p l y n e , ž e š e s t o s v n i t ř n í c h a v n ě j š í c h ú h l ů 
t r o j ú h e l n í k u se p r o t í n á v e č t y ř e c h b o d e c h , k a ž d ý m 
z n i c h p r o c h á z e j í t ř i o s y . J e d e n z t ě c h t o č t j n ř b o d ů j e 
s t ř e d e m k r u ž n i c e t r o j ú h e l n í k u v e p s a n é , z b ý v a j í c í t ř i 
b o d y j s o u s t ř e d e m t ř í k r u ž n i c t r o j ú h e l n í k u v n ě v e p s a -
n ý c h . 

P o z n a m e n e j m e , ž e p r o p a t y v ý š e k A, B, C o s t r o ú h l é -
h o t r o j ú h e l n í k u O 1 O 2 0 3 j s o u b o d y 0lt 02, 03 s t ř e d y 
k r u ž n i c , v n ě v e p s a n ý c h t r o j ú h e l n í k u ABC. J s o u t e d y 
v ý š k y t r o j ú h e l n í k u O f i f i ^ o s a m i ú h l ů v t r o j ú h e l n í k u 
ABC. 

3 . 4 T ě ž n i c e t r o j ú h e l n í k u p r o c h á z e j í j e d i n ý m b o d e m , 
t z v . t ě ž i š t ě m t r o j ú h e l n í k u . D o k a ž t e . 

T u t o v ě t u m ů ž e m e d o k á z a t m n o h a z p ů s o b y . P r v n í d ů -
k a z , k t e r ý s i u v e d e m e , z á r o v e ň v y s v ě t l u j e n á z e v t ě ž i š t ě . 
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• Umístěme ve vrcholech trojúhelníku ABC závaží 
FA, FB, RC téže hmotnosti a hledejme jejich těžiště. Tě-
žiště závaží rA a FR je ve středu úsečky AB, a proto 
těžiště Z všech tří závaží leží na odpovídající těžnici. 
Stejně tak musí těžiště Z ležet na zbývajících dvou těž-
nicích, všechny tři těžnice se tudíž protínají v jediném 
bodě. • 

Ukážeme si ještě důkaz obdobný důkazům předchá-
zejících tří vět. 

• Body těžnic trojúhelníku ABC vedených vrcholy 
A, B, C vyhovují postupně podmínkám (viz 2.17) 

SAMB = &CMA, SAMB = SBMC, HBMC = SC.UA- (1) 

Je vidět, že z prvních dvou podmínek plyne třetí pod-
mínka, těžnice se tudíž protínají v jediném bodě. • 

Poznámka. Množina všech bodů, které vyhovují ně-
které podmínce v (1), je (viz 2.17) dvojice přímek sklá-
dající se z těžnice a z další přímky. Všechny tři takovéto 
dvojice přímek se protínají ve čtyřech bodech Z, A', 
B', C'. Trojúhelník A'B'C' je trojúhelník, kterého jsme 
použili v prvním důkaze věty 3.2 (obr. 29). 

Obr. 29 
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3.5 a) Dokažte, že chordály tří kružnic procházejí 
jediným bodem nebo jsou spolu rovnoběžné (viz 2.9). 

b) Mějme tři kružnice, které se po dvou protínají. 
Pro každou dvojici daných kružnic vezměme jejich 
společnou tětivu. Pak se tyto tři tětivy (nebo jejich 
prodloužení) protínají v jediném bodě nebo jsou rovno-
běžné. j, 

3.6 Dokažte, že v ostroúhlém trojúhelníku ABC 
existuje bod T, ze kterého jsou všechny tři strany 
trojúhelníku vidět pod shodnými úhly, tj. | ATB| = 
= | < BTC | = | < CTA |. Tento bod se nazývá bod 
Torricelliho (čti Toričeliho). 

3.7 Uvažujme všechny trojúhelníky s danou stranou 
AB a danou velikostí <p úhlu při protějším vrcholu. 
Určete množinu 

a) těžišť všech těchto trojúhelníků; 
b) středů kružnic vepsaných těmto trojúhelníkům; j 
c) průsečíků výšek uvažovaných trojúhelníků. [ 
3.8 a) Po dvou se protínající přímky a, b, c procházejí 

po řadě body A, B, C, kolem kterých se otáčejí všechny 
tři stejnou úhlovou rychlostí w. Dokažte, že v jednom 
okamžiku procházejí všechny tři přímky jediným 
bodem. j, 

b) Dokažte, že kružnice, které jsou souměrně sdružené 
s kružnicí opsanou trojúhelníku ABC podle přímek 
AB, BC, CA, procházejí jediným bodem, průsečíkem 
výšek trojúhelníku ABC. j 

3.9 Věta Cevova (čti Cevova). Na stranách AB, BC, 
CA trojúhelníku ABC jsou zvoleny body Cx, Ax, Bx. 
Dokažte, že se úsečky AAt, BB1, CCl protínají v jedi-
ném bodě právě tehdy, když platí 

[¿Cil ¡BA, | \CBX 1 _ 
LBCjI ICM,I l ^ l ' * 
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3.10 Body Cj, AX, BR ležícími po řadě na stranách 
AB, BC, CA daného trojúhelníku ABC jsou vedeny 
kolmice k těmto stranám. Dokažte, že tyto tři kolmice 
procházejí právě tehdy jedním bodem, když je splněna 
podmínka \ACX\* + \BAX\* + \CBX\* = \ABX|2 + |BCX\* 

+ \CAtf. 1 

Průnik a sjednocení. Popišme podrobněji ty základní 
operace, kterými se stále zabýváme. 

Nechť jsou dány dvě, nebo i více množin bodů. Prů-
nikem těchto množin nazýváme množinu všech bodů, 
které patří současně všem daným množinám. Sjednoce-
ním těchto množin je množina všech bodů, které patří 
alespoň jedné z daných množin. 

Jestliže jsme měli najít v úloze všechny body, které 
splňovaly současně několik podmínek, postupovali jsme 
takto: našli jsme množiny všech bodů, které splňovaly 
postupně vždy jednu z těchto podmínek, a pak jsme vzali 
průnik všech takto nalezených množin. S takovou 
situací jsme se setkali také v algebraických úlohách: 
množina řešení soustavy rovnic 

fx(x) = 0, 

/»(*) = o 

je průnikem množin všech řešení jednotlivých rovnic 
soustavy. 

Máme-li v úloze najít body, které vyhovují alespoň 
jedné z několika podmínek, musíme najít množiny bodů, 
které vyhovují jednotlivým podmínkám, a pak vzít 
jejich sjednocení. Stejně tak postupujeme při řešení 
rovnice f(x) = 0, jejíž levá strana je součinem: f(x) = 
= fi(x)f2(x). Najdeme množiny řešení jednotlivých rov-
nic /,(x) = 0 a /¡¡(x) = 0 a vezmeme jejich sjednocení. 
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Ještě jeden pojem, se kterým jsme zde pracovali, vy-
volává algebraické asociace — pojem rozkladu. Při ře-
šení nerovnice f(x) > 0 nebo f(x) < 0 pro spojitou funkci 
/ řešíme nejdříve odpovídající rovnici f(x) = 0. Obdrže-
né body rozdělují definiční obor funkce / (interval nebo 
celou přímku) na části, ve kterých nabývá funkce / 
hodnot stejného znaménka (obr. 30). Stejně tak množi-
ny bodů roviny, které splňují nějakou nerovnici, jsou 

obyčejně oblasti ohraničené křivkami, na kterých je 
splněna odpovídající rovnice. Mnoho jednoduchých 
příkladů jsme viděli v kap. 2. 

V následující úloze se setkáme se složitějšími rozklady 
a složitějšími kombinacemi množin. 

3.11 Nechť jsou dány dva různé body A, B v rovině. 
Najděte množinu všech bodů M, pro které je trojúhelník 
AMB 

a) pravoúhlý, 
b) ostroúhlý, 
c) tupoúhlý. 

• a) Trojúhelník AMB je pravoúhlý, jestliže je splně-
na jedna z podmínek: 1) | -^AMB\ = 90°, 2) | -^BAM\ = 
= 90°, 3) | ABM| = 90°. 

y 
y=f(x) 

Obr. 30 
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Hledaná množina je proto sjednocením těchto tří 
množin: 1) kružnice s průměrem AB, 2) přímky lA, 
procházející bodem A kolmo k přímce AB, 3) přímky lB, 
procházející bodem B kolmo k přímce AB. Z tohoto 
sjednocení nutno ovšem vyjmout body A, B (obr. 31). 

b) Trojúhelník AMB je ostroúhlý, jestliže jsou splně-
ny zároveň podmínky: \)\^AMB\ < 90°, 2)| <£BAM\ < 
< 90°, 3) | <£ ABM\ < 90°. Hledaná množina je tudíž 

Obr. 31 Obr. 32 

průnikem těchto tří množin: 1) množiny vnějších bodů 
kruhu s průměrem AB (viz kap. 2, D), 2) poloroviny bez 
hraniční přímky LA, obsahující bod B, 3) poloroviny bez 
hraniční přímky LB, obsahující bod A. Jejich průnikem 
je pás mezi přímkami lA, lB bez bodů kruhu s průmě-
rem AB (obr. 32). 

c) Všimněme si, že každý bod M roviny (s výjimkou 
bodů přímky AB) splňuje některou ze tří podmínek: 
buď je trojúhelník AMB pravoúhlý, nebo je ostroúhlý, 
nebo je tupoúhlý, přičemž jednotlivé případy se vzá-
jemně vylučují. Proto se v případě c) rovná hledaná 
množina množině všech těch bodů, které nepatří ani 
do množiny bodů splňujících podmínku a), ani do mno-
žiny bodů splňujících podmínku b). Tato množina je 
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sjednocením dvou polorovin a kruhu s vynecháním bodů 
přímky AB a hraničních bodů (obr. 33). • 

3.12 V rovině jsou opět dány dva různé body A, B. 
Najděte množinu všech bodů M, pro které je 

a) trojúhelník AMB rovnoramenný; 
b) nejdelší stranou trojúhelníku ABM strana AB; 
c) nejdelší straiiou trojúhelníku ABM strana AM. 

3.13 V rovině je dán čtverec o straně délky 1. Zvolený 
bod roviny nemá od žádného vrcholu čtverce vzdále-
nost větší než 1. Dokažte, že vzdálenost tohoto bodu 
od každé strany čtverce je alespoň 1/8. 

Množina bodů M, jejichž vzdálenost od každého 
vrcholu čtverce je nejvýše rovna jedné, je průnikem 
čtyř kruhů o poloměru 1 se středy ve vrcholech čtverce 
(obr. 34). Je to „čtyrúhelník" ohraničený čtyřmi kruho-
vými oblouky; vzdálenost jeho vrcholů od nejbližší 
strany je 1 — |/3 /2 . Ověřme, že toto číslo je větší než 
1/8: 

1 / 3 1 7 1/3 49 . „ 
1 — > <=> — > - t— o —- > 3. 2 8 8 2 16 



Ted je zřejmé, že všechny body naší množiny mají 
od každé strany čtverce vzdálenost větší než 1/8. • 

3.14 Bodem O roviny jsou vedeny tři přímky, které 
rozdělují rovinu na šest shodných úhlů. Vzdálenost 
bodu M od každé z daných přímek je menší než 1. 
Dokažte, že vzdálenost \OM\ je menší než 7/6. 

3.15 Je dán čtverec ABCD. Najděte množinu všech 
bodů, které jsou blíž k přímce AB než k přímkám BC, 
CD a DA. 

3.16 Je dán trojúhelník ABC. Určete v rovině 
trojúhelníku množinu bodů M, pro které je obsah 
každého z trojúhelníků AMB, BMC, CMA menší než 
obsah trojúhelníku ABC. 

3.17 Je dán konvexní čtyřúhelník ABCD. Dokažte, 
že čtyři kruhy s průměry AB, BC, CD a DA pokrývají 
celý čtyřúhelník. 

• Předpokládejme, že uvnitř čtyřúhelníku leží bod 
M, který neleží v žádném z popsaných kruhů. Pak podle 
kap. 2, E jsou všechny úhly AMB, BMC, CMD a DMA 
ostré, a tedy jejich součet menší než 360°, což je spor. • 

3.18 Část lesa má tvar konvexního čtyřúhelníku 
o obsahu S a obvodu p. Dokažte, že uvnitř lesa je bod, 
jehož vzdálenost od okraje lesa je větší než Sjp. 

3.19 Uvnitř čtverce o straně délky 1 je zvoleno n 
bodů. Dokažte, že z nich lze vybrat dva body tak, že 
jejich vzdálenost je menší než 2/j/nn. .[ 

V dalších úlohách bude třeba zkoumat sjednocení 
nekonečně mnoha množin. 
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3.20 a) Je dán bod O. Uvažujme systém všech kružnic 
o poloměru 3 cm, jejichž středy mají od bodu O vzdá-
lenost 5 cm, a dále systém kružnic poloměru 5 cm, je-
jichž vzdálenost od bodu O je 3 cm. Dokažte, že sjedno-
cení všech kružnic prvního systému splývá se sjednoce-
ním všech kružnic druhého systému. 

b) Najděte množinu středů všech úseček, jejichž 
jeden krajní bod leží na jedné z daných kružnic a druhý 
na druhé. 

• b) Označme poloměry daných kružnic a r2 
a jejich středy Ox a 02 (obr. 35). Zvolme nejdříve pevně 
bod K první kružnice a najděme množinu středů 
úseček, jejichž jeden krajní bod splývá s bodem K 
a druhý leží na druhé kružnici. Výsledkem je kružnice 
s poloměrem r2/2 a středem Q, který splývá se středem 
úsečky K02. Je to kružnice, která odpovídá kružnici 
(O,, r2) ve stejnolehlosti se středem K a koeficientem 
1/2. Poznamenejme, že bod Q leží ve vzdálenosti rx/2 
od středu P úsečky 0X02. 

Budeme-li pohybovat bodem K po kružnici (01; rt), 
bude se bod Q pohybovat po kružnici o poloměru rJ2 
a středu P. Hledaná množina je sjednocením všech kruž-
nic o poloměru r2/2, jejichž středy leží na kružnici o po-
loměru rtj2 a středu P. Množinou všech bodů vyhovu-
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jících podmínce úlohy je mezikruží s vnějším polomě-
rem (rj + r2)l2 a vnitřním poloměrem |rx — r2|/2. V pří-
padě r, = r2 je touto množinou kruh. • 

3.21 Bod O je počátečním bodem n vektorů délky 
jedna, které jsou umístěny v jedné polorovině, ohrani-
čené přímkou l, jež prochází bodem O. Dokažte, že v pří-
padě lichého n je velikost součtu daných vektorů rovna 
alespoň jedné. j, 
3.22 Vesnicí A, obklopenou ze všech stran loukami, 

prochází jediná přímá cesta. Člověk může jít po cestě 
rychlostí 5 km/hod a po louce rychlostí 2 km/hod. 
Načrtněte množinu bodů, kterých člověk může dosáh-
nout za jednu hodinu po vyjití z A. 

3.23 ťJloha o sýru. Je možno čtvercový sýr s dírkami 
rozřezat vždy na konvexní části tak, aby v každé části 
byla právě jedna dírka ? 

Matematicky můžeme tuto úlohu formulovat takto: 

Uvnitř čtverce je několik neprotínajících se kruhů. 
Je možno čtverec rozdělit na konvexní mnohoúhelníky 
tak, aby v každém z nich byl právě jeden kruh? 

Odpověd je vždy kladná. Pro libovolný příklad s ne-
příliš velkým počtem kruhů můžeme lehce ukázat, jak 
čtverec rozřezat, aby byla splněna podmínka úlohy. Aby-
chom však podali vyčerpávající důkaz, musíme ukázat 
obecný postup, který by se hodil pro libovolný počet 
kruhů a jejich libovolné rozmístění. 

Zkoumejme nejdříve jednodušší úlohu: předpoklá-
dejme, že poloměry všech kruhů jsou stejné. Pak může-
me čtverec rozříznout způsobem, který popíšeme nej-
dříve velmi stručně, jednou větou. Každému kruhu 
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přiřadíme množinu těch bodů čtverce, které mají od 
něho menší vzdálenost než od všech ostatních kruhů — 
a to budou právě hledané konvexní mnohoúhelní-
ky (?) 

Vysvětleme si nyní tento postup podrobněji. Středy 
daných kruhů označíme Clt C2, . . ., Cn, a nechť C, je 
jeden z nich. Najdeme množinu všech bodů čtverce, 
jejichž vzdálenost od bodu C( není větší než vzdálenost 
od ostatních bodů C,. Množina všech bodů roviny, které 
jsou blíže k bodu Ci než k jednomu zvolenému bodu C, 
(i j)t tvoří polorovinu ohraničenou osou úsečky C^C, 
(viz kap. 2,A). Nás zajímají body čtverce, které jsou blíž 
k bodu Ci než ke všem ostatním středům, tedy body, 
které leží ve všech takto obdržených polorovinách. 
Tvoří tedy množinu, která je průnikem (n— 1) polo-
rovin a daného čtverce, a tudíž konvexním mnohoúhel-
níkem (?). Protože každá z uvažovaných polorovin 
obsahuje bod Ci} a dokonce celý kruh se středem Cj 
(plyne z toho, že kruhy se středy Ci a C, mají stejný polo-
měr a neprotínají se), leží tento kruh i v jejich průniku. 

Každému středu Ci odpovídá tudíž mnohoúhelník 
{M : \MCi\ íS \MC,\ pro všechna j ^ i, M leží v daném 
čtverci}. Je zřejmé, že tyto mnohoúhelníky pokrývají 
celý čtverec a žádné dva nemají společný vnitřní bod. 
Chceme-li určit, do kterého z těchto mnohoúhelníků 
patří bod N daného čtverce, musíme si zodpovědět 
otázku: Který ze středů C{ leží nejblíž bodu N ? Je-li 
takových nejbližších bodů více, leží bod N na ose úsečky 
CiCj pro některou dvojici i ^ j, tedy na hranici mnoho-
úhelníku, na řezu. Tímto způsobem je čtverec rozřezán 
na konvexní mnohoúhelníky, z nichž každý obsahuje 
právě jeden kruh. 

Krásný příklad dostaneme, splývají-li středy kruhů 
s vrcholy sítě tvořené shodnými rovnoběžníky. Náš 
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způsob rozdělení čtverce můžeme popsat takto: ve 
všech rovnoběžnících sítě vedeme kratší úhlopříčky. 
Dostaneme tím síť tvořenou navzájem shodnými ostro-
úhlými trojúhelníky s týmiž vrcholy jako síť rovnoběžní-
ková. Uvnitř každého trojúhelníku sítě vedeme osy 
stran. Obdržené šestiúhelníky (přesněji jejich průniky 
se čtvercem) tvoří naše rozdělení čtverce (obr. 36). 

Zatím jsme vyřešili úlohu 3.23 v případě, kdy všechny 
kruhy měly stejný poloměr. V obecném případě, kdy 
jsou poloměry kruhů různé, můžeme postupovat takto: 
Z každého bodu, který leží vně všech daných kruhů, 
vedeme ke všem kruhům tečny. Množina bodů přiřaze-
ná kruhu y se bude skládat z kruhu y a z těch bodů, 
ze kterých je tečna ke kruhu y kratší než tečny k ostat-
ním kruhům. Tato množina je průnikem několika polo-
rovin obsahujících kruh y; hraničními přímkami těchto 
polorovin jsou chordály kružnice y a některé z dalších 
kružnic (viz úlohy 2.9 a 3.5). Tímto způsobem bude 
opět celý čtverec dán jako sjednocení konvexních mno-
hoúhelníků, které nemají společné vnitřní body, a každý 
z mnohoúhelníků obsahuje svůj kruh. 
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K a p i t o l a 4 

M I N I M U M A M A X I M U M 

T a t o k a p i t o l a z a č í n á z c e l a j e d n o d u c h ý m i ú l o h a m i , 
v e k t e r ý c h s e h l e d a j í n e j v ě t š í n e b o n e j m e n š í h o d n o t y , 
j i c h ž n a b ý v á t a č i o n a v e l i č i n a , a k o n č í z a j í m a v ý m i , s l o -
ž i t ě j š í m i p ř í k l a d y . Ú l o h y n a m a x i m u m a m i n i m u m j e 
m o ž n é o b y č e j n ě p ř e v é s t n a z k o u m á n í a n a l y t i c k y z a d a n é 
f u n k c e . Z d e s i v š a k u k á ž e m e h l a v n ě t a k o v é ú l o h y , v e 
k t e r ý c h g e o m e t r i c k é ú v a h y v e d o u m n o h e m r y c h l e j i 
k c í l i . U v i d í t e , j a k se p ř i ř e š e n í t a k o v ý c h ú l o h p o u ž í v á 
m n o ž i n b o d ů d a n é v l a s t n o s t i . 

4.1 Pod jakým úhlem vzhledem k břehům přímého 
úseku řeky musí plout loďka, aby vzdálenost, o kterou 
je loďka unesena proudem řeky za dobu její plavby od 
jednoho břehu ke druhému, byla co možná nejkratší. 
Přitom je rychlost proudu řeky 6 km/hod a rychlost 
loďky ve stojaté vodě 3 km/hod. 

• Odpověď je 60°. Musíme totiž nařídit loďku tak, 

O 6 A 

Obr. 37 
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aby její absolutní rychlost (vzhledem k břehům) svírala 
s břehem největší možný úhel (?). Nechť vektor O A 
značí rychlost toku řeky a AM značí vektor rychlosti 
lodky vzhledem lt vodě (obr. 37). Součet OA-{- AM = 

= OM dává absolutní rychlost loďky vůči břehům. Ve-
likost vektoru AM je 3, jeho směr můžeme zvolit libo-
volně. Množina všech možných koncových bodů M 

vektorů AM je kružnice o poloměru 3 se středem 
v bodě A. Je zřejmé, že největší možný úhel s břehem 
svírá ze všech vektorů OM vektor OM0, který leží na 
tečně k uvažované kružnici. Dostaneme tak pravoúhlý 
trojúhelník, ve kterém je odvěsna rovna polorovině 
přepony, a tudíž je hledaný úhel 60°. • 

4.2 Ze všech trojúhelníků s danou stranou BC a da-
nou velikostí q> úhlu při vrcholu A máme najít ten, 
pro který je poloměr vepsané kružnice největší. 

• Uvažujme body A, které leží v jedné polorovině 
ohraničené přímkou BC a pro které je | <C BAC\ = <p. 
Množina středů všech kružnic vepsaných trojúhelníkům 
ABC je oblouk kružnice s krajními body B a C (viz 
3.7 b). Je vidět, že největší poloměr vepsané kružnice 
odpovídá rovnoramennému trojúhelníku. • 

4.3 Ze všech trojúhelníků s danou stranou a danou 
velikostí protějšího úhlu vyberte ten, který má největší 
obsah. 

4.4 Po dvou na sebe kolmých přímých cestách jdou 
dva chodci, jeden rychlostí u, druhý rychlostí v. Když 
byl první chodec v průsečíku obou cest, zbývalo druhé-
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mu ještě d kilometrů do tohoto místa. Určete nejmenší 
vzdálenost obou chodců, j 

4.5 Vesnicí A, obklopenou ze všech stran loukami, 
prochází jediná přímá cesta, člověk může jít po cestě 
rychlostí 5 km/hod, po louce rychlostí 2 km/hod v libo-
volném směru. Jak daleko má jít chodec po cestě, chce-li 
se co nejrychleji dostat z vesnice A k chaloupce B, 
která stojí ve vzdálenosti 13 km od vesnice a ve vzdá-
lenosti 5 km od cesty ? 

4.6 Jsou dány dvě protínající se kružnice, nechť A je 
jeden jejich společný bod. Bodem A máme vést přímku 
tak, aby její druhé průsečíky s kružnicemi tvořily úsečku 
maximální délky, j 

4.7 V rovině je dán bod O. Vzdálenost jednoho vrcho-
lu rovnostranného trojúhelníku od bodu 0 je o, vzdá-
lenost druhého vrcholu je b. Jaká je maximální vzdále-
nost třetího vrcholu od bodu Ol 

• Odpověd je a + b. Nechť je AMN rovnostranný 
trojúhelník, pro který je \OA\ = a, |OAr| = b. Při řešení 
úlohy můžeme předpokládat, že všechny uvažované 
trojúhelníky mají jeden vrchol v bodě A. V opačném 
případě bychom totiž mohli celý trojúhelník otočit 
kolem bodu O tak, aby vrchol, jehož vzdálenost od bodu 
O je a, splynul s bodem A. Při tomto otočení se nezmění 
vzdálenosti bodů od bodu O. Budeme tedy předpoklá-
dat, že A je pevný bod ve vzdálenosti a od bodu O 
a bod N probíhá kružnici o poloměru b a středu O 
(obr. 38). Jakou množinu pak probíhá bod M1*. Odpo-
věd je dána v úloze 1.6: Bod M probíhá dvě kružnice, 
které dostaneme z kružnice (O; ¿>) otočením o úhel 60° 
kolem bodu A. Z nich stačí vzít jen jednu, druhá je 
s ní souměrně sdružená podle přímky O A. Vzdálenost 
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jejího středu 0' od bodu O je a (neboť trojúhelník 
OAO' je rovnostranný) a její poloměr je b. Tudíž je ma-
ximální vzdálenost bodu O od třetího vrcholu M rovna 
a + b. • 

Z této úlohy plyne zajímavé tvrzení: vzdálenost 
libovolného bodu roviny od vrcholu rovnostranného 
trojúhelníku není nikdy větší než součet vzdáleností 
tohoto bodu od zbývajících dvou vrcholů. 

Obr. 38 

4.8 Jaká je největší možná vzdálenost bodu O od 
vrcholu M čtverce AKMN, jestliže 

a) \OA\ = \ON\ = 1; 
b) \0A\ = a, \0N\ = 
4.9 Ze všech trojúhelníků s danou jednou stranou 

a velikostí protějšího úhlu vyberte trojúhelník s maxi-
málním obvodem. | 

Kde umístit bod ? 

4.10 Myš může vylézt třemi dírami, a to v bodech 
A, B, C, které jsou kočce známy. Kam si má kočka sed-
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nout, aby byla co nejblíže i k díře, která je od ní nej-
vzdálenější? Jinými slovy, hledáme místo, pro které 
je maximum vzdáleností od daných děr nejmenší. 

O Uvažujme kruhy téhož poloměru r se středy v bo-
dech A, B, C. Je třeba najít nejmenší poloměr r0, 
při kterém mají tyto tři kruhy společný bod. Bude to 
pak jejich jediný společný bod, a to bude hledaný 
bod K. Je-li totiž M jiný bod, je vnějším bodem alespoň 
jednoho z uvažovaných kruhů o poloměru r0, a je tudíž 
jeho vzdálenost od jednoho z bodů A, B, C větší než r0. 

V případě ostroúhlého trojúhelníku ABC splývá 
bod K se středem opsané kružnice, v případě pravo-
úhlého trojúhelníku nebo tupoúhlého trojúhelníku je 
bod K středem nejdelší strany. • 

• Bod K můžeme najít také jako střed nejmenšího 
kruhu, který obsahuje body A, B, C (?). • 

• Ukážeme ještě jeden způsob řešení úlohy 4.10. 
Rozdělíme rovinu na tři množiny: 

a = {M : \MA\ ž \MB\ a \MA\ ž \MC\), 
b = {M : \MB\ ž \MA\ a \MB\ ^ \MC\), 
c = {M : \MC\ ^ \MB\ a |JfC| ̂  \MA\}. 

To jsou tři úhly, jejichž ramena leží na osách stran 
trojúhelníku ABC. Sedí-li kočka v úhlu a, pak z bodů 
A, B, C je od ní nej vzdálenější bod A, sedí-li v úhlu b, 
je nejvzdálenější bod B a v úhlu c bod C. 

Je-li trojúhelník ABC ostroúhlý, je pro kočku nejvý-
hodnější sedět ve společném vrcholu úhlů a, 6, c, tj. ve 
středu opsané kružnice. Je-li trojúhelník ABC pravo-
úhlý nebo tupoúhlý, je zřejmě pro kočku nejvýhodnější 
sedět ve středu nejdelší strany trojúhelníku ABC. 
(Podobně v případě, kdy body A, B, C leží na přím-
ce.) • 
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4.11 V části lesa ohraničené třemi rovnými železnič-
ními tratěmi žije medvěd. Kde si má vybudovat doupě, 
chce-li být od tratě co nejdál ? 

4.12 a) V kruhovém jezeře žijí tři krokodýli. Kde mají 
sedět, má-li být největší ze vzdáleností libovolného 
bodu jezera k nejbližšímu krokodýlovi co nejmenší? 

b) Řešte tutéž úlohu pro čtyři krokodýly. 

4.13 (Jloha o člunu. Na malém ostrově O stojí maják, 
jehož světelný paprsek osvětluje na mořské hladině 
úsečku délky a = 1 km. Světelný paprsek se rovno-
měrně otáčí kolem osy majáku, jednu otáčku vykoná 
za čas T = 1 min. člun, který může plout nejvýše rych-
lostí v, se má dostat nepozorovaně k ostrovu (tak, aby 
nebyl osvětlen paprskem majáku). Při jaké nejmenší 
rychlosti v se mu to podaří ? 

• Nazvěme kruh o poloměru a, který je světlometem 
osvětlován, „nebezpečným kruhem". Je zřejmé, že 
pro člun je nejvýhodnější vplout do tohoto kruhu v bo-
dě A, který byl právě osvětlen. 

Pluje-li člun k ostrovu po úsečce, dostane se k ostrovu 
za čas ajv; aby paprsek člun nedostihl, je třeba, aby se 
světelný paprsek nestačil za tuto dobu jednou otočit, 
tj. aby byla splněna nerovnost a/v < T, odkud 

v > alT = 60 km/hod. 

Tím jsme dokázali, že při v > 60 km/hod se může 
člun dostat nepozorovaně na ostrov. Z toho ovšem 
neplyne, že 60 km/hod je dolní hranicí rychlosti, při 
které nebude člun objeven. Kapitán člunu může totiž 
vybrat i jinou cestu než po úsečce AO. 

Skutečně se ukáže, že existuje výhodnější dráha člunu. 
Než budete číst dál, promyslete si některou výhodnější 
cestu sami. 
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Všimněme si, že rychlosti různých bodů světelného 
paprsku jsou různé: čím blíže leží bod k bodu 0, tím je 
jeho rychlost menší (obr. 39). Úhlová rychlost paprsku 
je rovna 27c/T. Po kružnici o poloměru r = vTj2it může 
člun klidně plout před světelným paprskem, protože 
jeho rychlost je rovna rychlosti odpovídajícího bodu 
paprsku. Vně kruhu o poloměru r a středu O je rychlost 

bodu na paprsku větší a uvnitř tohoto kruhu je rychlost 
bodu paprsku menší než v (nazveme tento kruh „bezpeč-
ným kruhem"). 

Dostal-Ii se člun bez potíží k bezpečnému okruhu, 
dostane se nepozorovaně na ostrov. Jedna z možných 
cest uvnitř bezpečného kruhu je kružnice o poloměru 
r/2 procházející bodem O: pohybuje-li se člun K po 
této kružnici rychlostí v, otáčí se úsečka KO kolem 
bodu O se stejnou úhlovou rychlostí, se kterou by se 
člun pohyboval po kružnici o poloměru r, tj. takovou, 
jakou se pohybuje paprsek majáku (viz úloha 0.3). 
Proto nebude člun osvětlen. 

Obr. 39 
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Hlavním úkolem člunu je tedy dosáhnout bezpečného 
kruhu. 

Pluje-li člun do bezpečného kruhu po poloměru AO 
a pak výše popsaným způsobem, splní svůj úkol už 
při rychlosti 

1 + (1/2tc) T 
0,862 — = 51,7 km/hod. 

Podařilo se nám zlepšit předcházející odhad pro nej-
nižší rychlost člunu, při které se může člun dostat ne-
pozorovaně k ostrovu. Ukáže se, že to není nejlepší 
odhad. Ten najdeme nyní. 

Množina bodů nebezpečného kruhu, kterých může 
člun dosáhnout za čas t, je oblast ohraničená kruhovým 
obloukem o poloměru vt se středem v bodě A. Předpo-
kládejme, že za tuto dobu se paprsek otočí z polohy OA 
do polohy OP (obr. 40—42). Množinu všech bodů, do 
kterých se za dobu t dostane člun nepozorován, označí-
me D. Na obrázcích je ukázáno, jak se mění množina D 
v závislosti na t. Jsou možné dva případy: 

1) není-li rychlost v dostatečně veliká, pak množina D 
v jistém čase t úplně vymizí, aniž by se člun dostal před-

Obr. 40 Obr. 41 
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tím do bezpečného kruhu. Bude tedy zpozorován nej-
později v čase t = t0, kdy se paprsek dotýká v bodě L 
kruhového oblouku o poloměru vt0 se středem v bodě A 
(obr. 43). Bod L leží vně bezpečného kruhu (jinak by 
člun dosáhl nepozorovaně ostrova), přičemž čím je v 
větší, tím větší je čas t0 a tím blíže je bod L k ostrovu. 

2) je-li rychlost v větší než jistá hodnota v0, má mno-
žina D v jistém čase t neprázdný průnik s bezpečným 
kruhem a člun dostihne ostrova. 

Minimální hodnota v0 rychlosti člunu odpovídá tomu 
případu, kdy se paprsek dotýká oblouku o poloměru 
Vfjt9 v bodě N, ležícím na hraniční kružnici bezpečného 
kruhu (obr. 44). Abychom našli hodnotu v0, označme /? 
velikost úhlu NOA a využijme těchto rovností: 

\NO\=r=^,\AN\=vJ0, 

\AN\ _ 2tc -h /g _ _2rt_ 
~tgP' í0 ~ T ' 

|AT0| = a cos fi. 
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Z první a poslední rovnosti plyne 

v0 = (2it a cos p)jT 

a z prvních čtyř dostaneme 

2w + /? = tg p. 

Obr. 44 

Tuto rovnici můžeme řešit pouze přibližně, například 
pomocí tabulek. Dostaneme, že se p rovná přibližně 
0,92u/2, odkud 

v0 = 0,8a/T = 48 km/hod. 

Při rychlostech člunu větších než v0 se může člun 
dostat bezpečně k ostrovu. • 

4.14 a) Syn plave uprostřed kruhového bazénu. Otec 
stojící na okraji bazénu neumí plavat, ale běží čtyřikrát 
rychleji, než plave syn. Syn dokáže běžet rychleji než 
otec, a chce mu uniknout. Podaří se mu to ? 

b) Při jakém poměru rychlostí v a u (v rychlost, jakou 
syn plave; u rychlost běhu otce) nemůže syn utéci? 
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Kapi to la 5 

HLADINY 

V této kapitole pojednáme o úlohách a větách před-
cházejících kapitol, budeme je však formulovat v jiné 
terminologii. Seznámíme se s pojmem funkce definované 
v rovině a s pojmem hladiny funkce, které jsou zvlášť 
vhodné při řešení úloh na maximum a minimum. 

5.1 tíloha o autobusu. Po přímé silnici jede zájezdový 
autobus. Stranou od silnice stojí palác, jehož průčelí 
svírá se silnicí jistý úhel. V kterém místě na silnici má 
autobus zastavit, aby si cestující mohli z autobusu 
průčelí paláce nejlépe prohlédnout? 

Matematicky můžeme úlohu formulovat takto: 
Je dána přímka L a úsečka AB, která ji neprotíná. 

Na přímce L najděte bod P tak, aby úhel APB byl co 
největší (obr. 45). 
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N e j d ř í v e s e p o d í v e j m e , j a k s e a s i m ě n í ú h e l AMB, 

p o h y b u j e - l i se b o d M p o p ř í m c e l. J i n ý m i s l o v y , j a k s e 
c h o v á f u n k c e / , k t e r á k a ž d é m u b o d u M p ř í m k y l 

p ř i ř a z u j e v e l i k o s t ú h l u AMB. 

L e h c e m ů ž e m e s e s t r o j i t p ř i b l i ž n ý g r a f t é t o f u n k c e . 
P ř i p o m e ň m e , ž e g r a f s e s e s t r o j í t a k t o : n a d k a ž d ý m b o -
d e m M n a š í p ř í m k y z v o l í m e b o d v e v z d á l e n o s t i f(M) = 

= l<£ AMB\. 
Ú l o h u b y c h o m m o h l i ř e š i t a n a l y t i c k y : z a v é s t n a p ř í m -

c e l s o u s t a v u s o u ř a d n i c a v y j á d ř i t v e l i k o s t ú h l u AMB 

p o m o c í s o u ř a d n i c e x b o d u M a p a k z j i s t i t , p r o k t e r o u 
h o d n o t u x n a b ý v á f u n k c e s v é h o m a x i m a . A v š a k v y j á d ř e -
n í f u n k c e f(x) j e p o m ě r n ě s l o ž i t é . 

P o d á m e e l e m e n t á r n ě j š í a p o u č n ě j š í ř e š e n í . K t o m u 
b u d e t ř e b a z j i s t i t , j a k z á v i s í v e l i k o s t ú h l u AMB n a 
p o l o z e b o d u M, k d y ž b o d M p r o b í h á c e l o u r o v i n u , 
n e j e n p ř í m k u l . 

• M n o ž i n a v š e c h b o d ů M v r o v i n ě , p r o n ě ž m á ú h e l 
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ABM danou velikost q>, je dvojice souměrně sdružených 
kruhových oblouků s krajními body A, B (kap. 2, E). 
Tyto oblouky, probíhá-li q> interval (0, 7t), pokrývají 
celou rovinu s výjimkou přímky AB. Například hod-
notě 9> = k/2 odpovídá kružnice nad průměrem AB 
(obr. 46). 

Budeme nyní zkoumat pouze body M, ležíoí na přím-
ce l. Z nich máme vybrat bod, pro který je úhel AMB 
největší. S výjimkou průsečíku C přímky l s přímkou 
AB prochází každým bodem přímky l oblouk našeho 
systému; je-li AMB\ = <p, leží bod M na oblouku 
odpovídajícím hodnotě ip. Máme tedy ze všech uvažo-
vaných oblouků, které mají společný bod s přímkou l, 
vybrat ten, který odpovídá největší hodnotě q>. 

Uvažujme jen jednu z polopřímek, na které dělí 
přímku l bod C. (Případ, kdy přímka l je rovnoběžná 
s úsečkou AB, přenecháme čtenáři.) Sestrojíme oblouk 
cl, který se dotýká zvolené polopřímky, a dokážeme, že 
z bodu dotyku PÍ je úsečka AB vidět pod největším 
úhlem (obr. 47). Skutečně, libovolný bod M naší polo-
přímky různý od bodu P1 leží vně oblouku c1. Odtud 
plyne (kap. 2, E), že | <£ AMB\ < | AP}B\. 

Je zřejmé, že pro druhou polopřímku je situace stejná; 
bod P2, ze kterého je vidět úsečka AB pod největším 
úhlem, je bodem dotyku této polopřímky a jednoho 
z uvažovaných oblouků. 

Tím jsme dokázali, že hledaný bod P splývá s jedním 
z bodů P1; P2, ve kterých se dotýkají kružnice prochá-
zející body A, B přímky l (obr. 48). Bod P splyne s tím 
z bodů Plt P2, pro který je úhel PC A ostrý. Je-li úsečka 
AB kolmá k přímce l, je ze symetrie zřejmé, že oba body 
P1 a P2 splňují podmínky úlohy. Avšak výletníci si 
musí v každém případě vybrat z bodů Plt P2 ten, ze 
kterého vidí průčelí paláce. • 

74 



Funkce definované v rovině. Základní myšlenka řešení 
úlohy 5.1 spočívala v tom, že jsme na celé rovině uvažo-
vali funkci /, která každému bodu M přiřazovala veli-
kost úhlu AMB, tj. f(M) = | < AMB\. 

V předcházejících paragrafech jsme se vlastně už 
setkali s různými funkcemi v rovině. Kromě nejjedno-
dušších funkcí v rovině, jako f(M) = \OM\, f(M) = 

body a l daná přímka), jsme zkoumali součty, rozdíly, 
poměry těchto funkcí a jiné jejich kombinace. 

Hladiny funkcí. Mnoho podmínek, kterými jsme defi-
novali množiny bodů, je možno formulovat takto: 
v rovině nebo v její části je definována funkce / a je 
třeba najít množinu všech bodů M, ve kterých tato 
funkce nabývá dané hodnoty h, tj. [M : f(M) = h). 

Zpravidla je touto množinou pro každé pevné číslo h 
křivka; rovina se tímto způsobem rozkládá na křivky, 
které se nazývají hladinami (někdy též vrstevnicemi) 
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funkce /. Při řešení úlohy 5.1 jsme tedy zkoumali hladi-
ny funkce f(M) = | <£ AMB\. 

Graí funkce. Vysvětlíme si nyní pojem hladina funkce. 
Pro funkce definované v rovině je možné sestrojit graf 
v podstatě stejně jako pro funkce y = f(x) definované 
na přímce, jen s tím rozdílem, že to bude útvar v prosto-
ru. Budeme předpokládat, že rovina, na které je funkce 
definována, je horizontální, a pro každý její bod M vy-
značíme v prostoru bod ležící nad bodem M ve vzdá-
lenosti f(M), je-li f(M) ^ 0, a pod bodem M ve vzdá-
lenosti \f(M)\, je-li f(M) < 0. Všechny takto vyznačené 
body tvoří plochu, která se nazývá grafem funkce /. 
Jinými slovy, zavedeme v horizontální rovině soustavu 
souřadnic Oxy\ kladná část osy z nechť směřuje kolmo 
vzhůru. Grafem funkce bude množina bodů se souřadni-
cemi [x; y\ z], kde z = f(M) a \x\ y] jsou souřadnice 
bodu M v rovině. (Není-li funkce definována ve všech 
bodech roviny, ale jen v bodech její jisté části, leží graf 
jen nad touto částí.) 

Vidíme, že hladina {M : f(M) = h} se skládá z těch 
bodů M, nad kterými jsou body grafu ve stejné úrovni, 
ve výšce h. 

Na následujících obrázcích jsou znázorněny grafy 
funkcí, jejichž hladinami jsou množiny naší abecedy. 
U každého grafu je též obrázek vyznačující hladiny 
příslušné funkce. 
C. f{M) = q(M, l), grafem je hranice klínu, hladinami 

jsou dvojice rovnoběžných přímek (obr. 49). 
D. f{M) = \M0\, grafem je část kuželové plochy, hla-

dinami jsou soustředné kružnice (obr. 50). 
E. f(M) = (<£ AMB\, grafem je „horský hřbet", nej-

vyšší body tvoří horizontální úsečku ve výšce 7r 
nad úsečkou AB; v krajních bodech horizontální 
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Obr. 49 Obr. 50 

Obr. 51 Obr. 52 
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úsečky jsou vertikální srázy, z ostatních bodů lze 
zvolna sestoupit k nulové hladině, kterou tvoří přím-
ka AB s výjimkou úsečky AB (obr. 51). 

F. /(JI/) = \MA\2 — \MB\2, grafem je rovina, hladinami 
navzájem rovnoběžné přímky (obr. 52). 

G. f(M) = \MA |2 + \MB|2, grafem je rotační parabo-
loid, hladinami soustředné kružnice (obr. 53). 

H. f(M) = \MA \ I \MB\, graf má v bodě A důlek, u bo-
du B se zdvíhá nade všechny meze; hladinami jsou 
kružnice, jejichž středy leží na přímce AB, každé 
dvě z nich mají za svou chordálu osu úsečky AB. 
Ta je sama též hladinou odpovídající hodnotě 1 
(obr. 54). 

J. f(M) = Q{M, IJjg^M, Z2), graf se skládá ze dvou 
částí hyperbolických paraboloidů, hladinami jsou 
dvojice přímek procházejících průsečíkem přímek 
l l t l2 (obr. 55). 

K. F(M) = q(M, ZJ + q(M, l2), grafem je část čtyřboké 
jehlanové plochy, hladinami jsou pravoúhelníky 
s úhlopříčkami na přímkách Zt, l2 (obr. 56). 

Funkce 

f(M) = XLQ(M, l,) + X2q{M, Z2) + . . . + ^{M, ln), 

o které jsme hovořili v kap. 2 (věta o vzdálenostech od 
přímky), má v každé části Q, na kterou je rovina roz-
dělena přímkami l l t l2, . . . , l„, tvar 

f(x, y) = ax + by + c, 

je tedy lineární. Proto se její graf bude skládat z kousků 
rovin, které jsou bud nakloněné, nebo (je-li « = 6 = 0) 
horizontální. To jsme viděli na příkladech množin v bo-
dech C, J, K naší abecedy. 

Hladiny takové funkce se skládají z kousků přímek; 
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obsahuje-li graf horizontální plošinku, obsahuje ně-
která hladina celou část Q roviny. 

Funkce / tvaru f{M) = ll\MAl\i+ ... + 
+ h\MAn\* je v případě + + . .. + Xn = 0 také 
lineární funkcí definovanou na celé rovině (příklad F) 
a v obecném případě při ¿1 + A2 + . . . + A„ # 0 se dá 
psát ve tvaru 

f(M) = d\MA\\ 

kde A je jistý bod roviny. V tomto případě jsou hladi-
nami kružnice (věta o druhých mocninách vzdáleností 
§2) a grafem je rotační paraboloid. 

Nejsložitější grafy v naší abecedě mají funkce f(M) = 
= \-&AMB\ a f(M) = \AM\ / \BM\. Poznamenejme, 
že mezi hladinami těchto funkcí je zajímavý vztah: 
jsou to dva systémy kružnic, přičemž každá kružnice 
jednoho systému protíná každou kružnici druhého systé-
mu kolmo (? >; říkáme jim ortogonální systémy (obr. 57). 

Ukážeme ještě jeden příklad jednoduché funkce, jejíž 

80 



hladiny jsou polopřímky vycházející z jednoho bodu 
a grafem je poměrně složitá plocha. Je to funkce 
f(M) = |<£ MAB\, kde A, B jsou dané body roviny. 
Jejím grafem je nad každou polorovinou, na kterou dělí 
rovinu přímka AB, šroubová plocha, helikoid (obr. 58). 

Mapa funkce. Jak vidíme, pro mnohé funkce je dost 
složité sestrojit jejich graf. Pro představu o průběhu 
funkce je zpravidla výhodnější zakreslit si její hladiny. 

Geografická mapa se sestavuje tímto způsobem: 
nechť je f{M) nadmořská výška v místě M. Narýsují se 
hladiny {M : f(M) = 200 m}, {M : f(M) = 400 m} atd. 
Oblasti mezi těmito vrstevnicemi se vyznačují různými 
barvami: oblast {M : 0 < f(M) < 200 m} zeleně, oblasti 
{M : f(M) > 200 m} hnědě a oblasti {M : f{M) < 0} 
různými odstíny modré. 

K sestavení mapy funkce je třeba narýsovat několik 
jejích hladin — dostatečně mnoho, aby z nich bylo možné 
usoudit na průběh ostatních — a připsat ke každé 
z nich hodnotu funkce, které tato hladina odpovídá. 

Narýsujeme-li hladiny odpovídající rovnoměrně ros-
toucím funkčním hodnotám, dá se z jejich hustoty 

Obr. 59 
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usoudit na strmost grafu: hladiny jsou hustěji rozlo-
ženy tam, kde je graf strmější (obr. 59). 

Dělicí křivky. Při řešení úlohy 3.23 o sýru jame 
zkoumali poměrně složitou funkci 

f(M) = min {|JbTCx|, \MC2\, ..., \MCn\), 

která přiřazuje každému bodu jeho nejmenší vzdále-
nost od bodů Clt C2, . . . , C„. Při vlastním řešení úlohy 
nás ani tak nezajímala samotná funkce, jako s ní 
svázané křivky, které dělily rovinu na oblasti; každá 
oblast byla průnikem polorovin. Zkusme si představit 
mapu a graf této funkce. Začneme u nejjednodušších 
případů n = 2 a n = 3. 

5.2 a) V rovině jsou dány různé body C1 a, Ct. Na-
kreslete hladiny funkce f(M) = min {|MCX\, \MC2\). 

b) V rovině jsou dány body Clt C2> C3, které neleží 
na přímce. Nakreslete hladiny funkce 

f(M) = min {IJÍCil, \MCt\, \MCZ\}. 

• a) Vezměme nejdříve množinu všech bodů M, 
pro které je |MC^ = \MC2\. Touto množinou je osa 
úsečky C^C ,̂ která dělí rovinu na dvě poloroviny, a až 
na body společné přímky jsou body jedné poloroviny 
blíž k bodu Clt body druhé poloroviny blíž k bodu C2. 
V první polorovině tudíž platí f(M) = l-MĈ I a ve dru-
hé f(M) = \MC2\. Sestrojíme tedy v první polorovině 
hladiny funkce f{M) = \MCX\, což jsou kružnice (přes-
něji průniky kružnic s uvažovanou polorovinou) a vý-
slednou mapu ještě doplníme obrazem souměrně sdru-
ženým podle osy úsečky CtC2 (obr. 60). 

b) Uvažujme množiny {M : \MC\\ = \MCt\ < \MCa\), 
{M : |MC2\ = \MC3\ ^ \MCj\}, {M : [MC^ = \MCa\ ^ 
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SÍ \MC2\\. TO jsou tři polopřímky na osách stran 
trojúhelníku C1C2C3, které vycházejí ze společného 
bodu O a dělí rovinu na tři oblasti (viz úloha 3.1). Voblas-
ti, která obsahuje bod Cy, platí f(M) = \MC11, v oblasti 
s bodem C2 je f(M) = \MC2\ a ve třetí oblasti platí 
f(M) = |lřC,|. Mapu funkce f{M) = min { 1 ^ 1 , \MG2\, 
\MC3\) dostaneme tedy takto: v první oblasti vezmeme 
mapu funkce f(M) = \MCj\y ve druhé mapu funkce 
f(M) = \MC2\ a ve třetí funkce f(M) = \MC3\ a tyto 
tři mapy slepíme podél dělicích křivek, kterými jsou tři 
polopřímky (obr. 61). • 

Obr. 60 

Obr. 61 
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Graf funkce 

f(M) =min{|JfC1|, \MCt\,...,\MCn\) 

si můžeme představit takto: nasypeme do truhlíku rov-
nou vrstvu písku a v bodech Clt C2, ..., C„ provrtáme 
do dna truhlíku dílky, kterými část písku vypadne; 
kolem každé dírky se vytvoří „trychtýř". Plocha tvo-
řená všemi těmito trychtýři je grafem funkce /. Před-
pokládáme ovšem, že jsme vzali dostatečně silnou vrstvu 
písku tak sypkého, aby sklon trychtýřů byl 45°. 

Vraťme se teď k úlohám 3.11 a 3.12. Jejich podmínky 
lze také formulovat pomocí funkcí definovaných v ro-
vině. 

5.3 V rovině jsou dány různé body A, B. Zakreslete 
hladiny funkcí 

a) f(M) = max{|< AMB\, |< BAM\, \ ^MBA\), 
b) f(M) = min {\AM\, \MB\, \AB\} 

a popište jejich grafy. 

Extrémy funkce. Nechť je / funkce definovaná v rovi-
ně. Představme si její graf jako kopcovitou krajinu. 
Maximální hodnoty f(M) odpovídají výškám kopců 
grafu a minimální hodnoty jsou úrovně proláklin. 

Na mapě funkce jsou vrcholy a prolákliny zpravidla 
obepnuty hladinami. Například funkce f(M) = \MA |2 + 
+ \MB\2 nabývá svého minima ve středu M0 úsečky 
AB a hladinami jsou soustředné kružnice se středem 
v bodě M„. 

Složitější mapu dostaneme pro funkci f(M) = 
= | <£ AMB |. Tato funkce nabývá své maximální hodno-
ty 7c ve všech bodech úsečky AB (s výjimkou bodů A, B, 
ve kterých není definována). Své minimální hodnoty 0 
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nabývá ve všech ostatních bodech přímky AB. Přechod 
od maximální hodnoty k minimální není v bodech A, B 
plynulý, graf má v těchto bodech vertikální srázy. 

Na začátku paragrafu jsme použili mapu hladin 
funkce při řešení úlohy 5.1. Byla to také úloha na hle-
dání maxima funkce, avšak jiného typu. Obecně se 
úloha formuluje takto: určete, jakou největší nebo 
nejmenší hodnotu nabývá funkce / (definovaná v rovině) 

v bodech dané křivky y. V uvažované úloze byla křivka 
přímkou. Postup, který jsme uplatnili v úloze 5.1, lze 
užít i v jiných obdobných úlohách. Funkce nabývá 
zpravidla 6vé největší a nejmenší hodnoty na křivce y 
v některém z těch bodů, ve kterých se křivky y dotýká 
hladina funkce. Prochází-li však křivka bodem, ve kte-
rém nabývá funkce své největší nebo nejmenší hodnoty 
v celé rovině, nabývá zřejmě v tomto bodě také své nej-
větší nebo nejmenší hodnoty na křivce y. 

Nechť funkce / nabývá své maximální hodnoty na 
křivce y v bodě P a je f(P) = c. Pak křivka y nemůže 
mít společný bod s oblastí {M : f(M) > c}, musí celá 
ležet v doplňku {M : f(M) < c}, přičemž bod P leží na 
dělicí křivce mezi těmito oblastmi, na hladině { M : 
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: f(M) = c}. Křivka y nemůže tedy protínat hladinu 
[M : f(M) = c}, musí se jí v bodě P dotýkat (obr. 62). 

Viděli jsme, jak se tento princip „dotyku" uplatnil 
při hledání extrémů v úlohách paragrafu 4. V těchto 
úlohách jsme hledali maximum nebo minimum jedno-
duchých funkcí f(M) = q(M, l), f(M) = | < MOA |, j(M) = 
= \MA\ na dané křivce y. Hladina odpovídající extre-
mální hodnotě se dotýkala křivky y. Křivkou y byla 
vždy kružnice. Také některé následující úlohy vedou 
na hledání maxima nebo minima funkce na dané 
kružnici nebo přímce. 

5.4 a) Na přeponě pravoúhlého trojúhelníku najděte 
takový bod, aby jeho průměty na odvěsny měly nej-
menší vzdálenost. 

b) Na dané přímce najděte bod M tak, aby vzdále-
nost jeho průmětů na ramena daného úhlu byla nej-
menší. [ 

5.5 Je dána kružnice se středem 0 a její vnitřní 
bod A. Najděte na kružnici bod M, pro který je velikost 
úhlu AMO nejmenší. 

5.6 Jsou dány body A, B. Na dané kružnici y najděte 
bod M, pro který je 

a) součet 
b) rozdíl 

druhých mocnin vzdáleností bodu M od bodů A a B 
minimální. 

5.7 Je dána přímka l a s ní rovnoběžná úsečka AB. 
Najděte na přímce l ty body M, pro které je hodnota 
\AM\ I \BM\ nejmenší nebo největší. j 

5.8 Poblíž jezera vedou dvě přímé cesty. Pro který 
bod na břehu jezera je součet jeho vzdáleností od obou 
cest nejmenší? Uvažujte případ, kdy má jezero tvar 
a) kruhu, b) pravoúhelníku. 
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Poznamenejme, že i při hledání maxima funkce y = 
— f(x) jedné proměnné se uplatňuje „princip dotyku". 
Nechť je narýsován graf funkce /, kterým je nějaká 
křivka. Najít maximum funkce / znamená najít nejvyšší 
bod grafu. Staěí tedy najít přímku, která se „dotýká" 
grafu, je rovnoběžná s osou x a celý graf leží pod ní. 
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K a p i t o l a 6 

K Ř I V K Y D R U H É H O S T U P N Ě 

Elipsy, hyperboly, paraboly. Dosud jsme se omezovali 
na nepříliš širokou třídu křivek, které se probírají již na 
základní škole; mluvili jsme pouze o přímkách a kružni-
cích. Všechny množiny naší abecedy se v podstatě 
skládaly z částí přímek a kružnic. V tomto paragrafu se 
seznámíme s některými dalšími křivkami — elipsami, 
hyperbolami a parabolami. Tyto křivky se nazývají sou-
hrnně kuželosečky, protože každou z nich můžeme dostat 
jako průnik roviny a kuželové plochy. 

Nejdříve budeme definovat elipsy, hyperboly a parabo-
l y analogicky jako množiny naší abecedy v 2. kap. Dále 
vystupují jako obalové křivky systémů přímek. Pomocí 
soustavy souřadnic nakonec ukážeme, že tyto křivky 
jsou dány algebraickými rovnicemi druhého stupně. 
Důkaz ekvivalenoe těchto definic není jednoduchý, ale 
všechny jsou užitečné. Každá z definic umožňuje vý-
hodně řešit jinou třídu úloh. 

Rozšiřme tedy naši abecedu o další písmena L, N, P 
a posléze o písmeno R. 

L . Elipsa. Uvažujme množinu všech bodů M v rovině, 
pro něž je součet vzdáleností od dvou daných různých 
bodů A, B roven danému číslu. 

Označme toto číslo 2a, vzdálenost bodů A a B ozna-
číme 2c. Poznamenejme, že pro a ^ c je tato množina 
málo zajímavá; je-li a < c, dostaneme prázdnou množi-
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nu, protože v rovině neexistuje bod M, pro který plati 
|AM\ + \MB\ < \AB\. Pro a = c je uvažovanou mno-
žinou úsečka AB. 

Abychom získali představu o tvaru křivky pro a > c, 
zatlučeme v bodech A, B hřebíky a navlékneme na ně 
provázek délky 2(a + c), jehož konce spojíme. Napneme 
provázek tužkou a opíšeme takto křivku, přičemž dbá-
me, aby provázek byl stále napnutý. Dostaneme uzavře-

nou křivku, která se nazývá elipsa. Body A, B jsou tzv. 
ohniska této elipsy (obr. 63). Z definice elipsy je zřejmé, 
že má dvě osy souměrnosti, jednou je přímka AB a dru-
hou osa úsečky AB, jejich průsečík O je středem elipsy. 

Připustíme-li A = B, dostaneme uvedeným způsobem 
kružnici. Považujeme proto kružnici za zvláštní případ 
elipsy, pro který splývají obě ohniska se středem. 

Měníme-li délku provázku, dostaneme celý systém 
elips s danými ohnisky. Jinými slovy, dostaneme mapu 
hladin funkce 

f(M) = \MA\ + \MB\. 

N. Hyperbola. Uvažujme množinu všech bodů, jejichž 
rozdíl vzdáleností od dvou daných bodů A a B se 
v absolutní hodnotě rovná dané hodnotě 2a(a > 0). 
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Nechť je jako v předcházejícím případě \AB\ = 2c. 
Je-li a > c, je hledaná množina prázdná, protože pro 
žádný bod M není \AM\ — \MB\ > \AB\ ani \MB\ — 
— \AM\ > \AB |. Pro a = c se hledaná množina skládá 
ze dvou polopřímek, které dostaneme z přímky AB vy-
necháním vnitřních bodů úsečky AB. 

V případě a < c se uvažovaná množina skládá ze dvou 
částí, tzv. větví. Jedna je množinou [M : |MA | — \MB\ = 

= 2a} a druhá množinou {M : \MB\ — \MA\ = 2a}. Celá 
křivka (sjednocení obou větví) se nazývá hyperbola 
a body A, B jejími ohnisky (obr. 64). Z definice plyne, že 
hyperbola má dvě osy souměrnosti, střed O úsečky AB 
je jejím středem. 

Abychom dostali celou mapu hladin funkce 

musíme k systému hyperbol s ohnisky A, B přidat osu 
úsečky AB, která odpovídá hodnotě f(M) = 0. 

P. Parabola. Množina všech bodů M stejně vzdálených 
od bodu F jako od přímky Z, jež bodem F neprochází, se 
nazývá parabola (obr. 65). 

Bod F se nazývá jejím ohniskem a přímka Z řídicí 

A 

Obr. 64 Obr. 65 

f(M) = \\MA\ — \MB\\, 
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přímkou paraboly. Parabola má jednu osu souměrnosti, 
která prochází ohniskem F kolmo k řídicí přímce. 

Shrňme uvedené definice. Doplnili jsme naši abecedu 
těmito množinami: 
L. (M : MA | + \MB\ = 2a}, kde 2a > |AB\. 
N. {M : \MA\— \MB\\ = 2a}, kde 2a < \AB\. 
P. {M : MF\ = Q(M, l)}, kde F i l. 

Je-li výsledkem nějaké úlohy množina bodů, kterou 
lze popsat jednou z vlastností P, L, N, je odpovědí 
parabola, elipsa nebo hyperbola. K úplné odpovědi je 
ovšem třeba určit polohu a rozměry kuželosečky, např. 
určit její ohniska a číslo a. 

6.1 V rovině jsou dány dva různé body A, B. Najděte 
množinu všech bodů M, pro které 
a) je obvod trojúhelníku AMB roven danému číslu p, 
b) není obvod trojúhelníku AMB větší než p, 
c) není rozdíl \MA \ — \MB\ menší než p. 

6.2 Je dána úsečka AB a na ní bod T. Najděte množinu 
všech bodů M, pro které se kružnice vepsaná trojúhel-
níku AMB dotýká strany AB v bodě T. 

6.3 Najděte množinu středů všech kružnic, které se 
dotýkají 
a) dané přímky a procházejí daným bodem, 
b) dané kružnice a procházejí daným vnitřním bodem 

této kružnice, 
c) dané kružnice a procházejí daným vnějším bodem 

této kružnice, 
d) dané kružnice a dané přímky, 
e) daných dvou kružnic. | 

6.4 Mějme kloubový mechanismus, který leží v rovině 
a skládá se z tyčí AB, BC, CD, přičemž klouby A a D 
jsou umístěny pevně, klouby B a C se pohybují v rovině 
volně. Je \AD\ = \BC\ = a, \AB\ = \CD\ = b. Najděte 
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množinu všech průsečíků přímek AB a CD, je-li 1) a < 
< b, 2) a > b (obr. 66). 

6.5 a) V rovině jsou dány dva body A, B, jejichž 
vzdálenost je přirozené číslo. Sestrojme všechny kruž-
nice s celočíselnými poloměry a středy v bodech A, B. 
Na obdržené síti zvolme posloupnost jejích vrcholů tak, 

aby každé dva za sebou jdoucí vrcholy byly protějšími 
vrcholy křivočarého čtyřúhelníku sítě. Dokažte, že 
všechny body posloupnosti leží buď na elipse, nebo na 
hyperbole (obr. 67a). 

b) V rovině je dána přímka l a na ní bod F. Sestrojme 
všechny kružnice s celočíselnými poloměry a středy 
v bodě F a všechny přímky rovnoběžné s přímkou l, 
jejichž vzdálenost od přímky l je také celé číslo. Dokažte, 
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že všechny body posloupnosti vrcholů sítě sestrojené 
stejně jako v úloze a) leží na parabole s ohniskem F 
(obr. 67b). 

Plochy, které dostaneme rotací paraboly, elipsy nebo 
hyperboly kolem její osy, se nazývají rotační parabo-
loid, rotační elipsoid nebo rotační hyperboloid. Ten je bud 
jednodílný, nebo dvojdílný, podle toho, kolem které osy 
hyperbolu otáčíme. 

Ohniska a tečny. Mnoho zajímavých úloh pro elipsy, 
hyperboly a paraboly souvisí s vlastnostmi tečen těchto 
křivek. Jednu vlastnost tečny elipsy dostaneme porov-
náním dvou řešení následující úlohy. 

6.6 Jsou dány dva body A a B a přímka l, která je 
neodděluje. Najděte na přímce I bod X tak, aby součet 
vzdáleností \AX\ + \XB\ byl nejmenší. 

• Uvažujme bod A' souměrně sdružený k bodu A 
podle přímky l. Pro každý bod M přímky l je A'M = 
= AM\. Proto je součet \AM + \MB\ = A'M + 
+ MB\ nejmenší, splývá-li bod M s průsečíkem X 
úsečky A'B a přímky l. Pak je \A'X\ + IXB\ = 
= \A'B\. • 

Poznamenejme, že bod X má tuto vlastnost: úsečky 
AX a BX svírají shodné úhly s přímkou l. 

Kdybychom řešili úlohu 6.6 postupem uvedeným 
v kap. 5 — pomocí hladin funkce — sestrojili bychom 



systém elips {M : \AM\ + \MB\ = c} s ohnisky A, B 
a vybrali bychom z nich tu, která se dotýká přímky l. 
Je tedy bod X bodem dotyku elipsy s ohnisky A, B 
a přímky l (obr. 68). Opravdu, všechny ostatní body M 
přímky l leží vně elipsy, tj. součet \AM\ + \MB\ je větší 
než \AX\ + \BX\. 

Porovnáním obou řešení dostáváme tzv. ohniskovou 
vlastnost elipsy: Úsečky spojující bod X elipsy s jejími 
ohnisky svírají shodné úhly s tečnou elipsy v bodl X. 

Tato vlastnost elipsy má názornou fyzikální inter-
pretaci. Nechť má reflektor tvar části rotačního elipsoidu, 
který vznikl rotací elipsy kolem spojnice jejích ohnisek 
A, B. Umístíme-li bodový zdroj světla do ohniska A, 
odrážejí se paprsky do bodu B (obr. 69). 

Také hyperbola má výše uvedenou ohniskovou vlast-
nost: Úsečlcy spojující bod X hyperboly s jejími ohnisky 
svírají stejné velké úhly s tečnou hyperboly v bodé X. Tuto 
vlastnost hyperboly dokážeme řešením následující 
úlohy dvěma způsoby. 

6.7 Jsou dány body A & B & přímka l, která je oddělu-
je, přičemž bod A leží dál od přímky l než bod B. Najděte 
na dané přímce bod X, pro který je rozdíl vzdáleností 
\AX\ — největší. 

První způsob řešení: označme A' bod souměrně sdru-

Obr. 69 
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žený k bodu A podle přímky l. Hledaným bodem X je 
průsečík přímky A'B s přímkou li?.). Úsečky AX a BX 
svírají zřejmě stejně velké úhly s přímkou l. 

Druhý postup, který se opírá o výsledky kap. 5, vede 
k této odpovědi: X je bodem dotyku přímky l a hyper-
boly s ohnisky A a B (obr. 70). Srovnání obou výsledků 
dává ohniskovou vlastnost hyperboly. 

Z ohniskových vlastností plyne zajímavý důsledek 
týkající se systému všech elips a hyperbol se společnými 
ohnisky A, B. Vezmeme jednu elipsu a jednu hyperbolu, 
které se protínají v bodě X. Vedme bodem X přímky, 
které svírají stejně velké úhly s přímkami AX a BX. 
Dostaneme tak dvě přímky, které jsou na sebe kolmé 
(obr. 71). Z ohniskových vlastností plyne, že jedna je 
tečnou elipsy, druhá tečnou hyperboly. Takže tečny 
k elipse a hyperbole jsou na sebe kolmé, tvoří tudíž 
elipsy a hyperboly s ohnisky A a B dva ortogonální 
systémy křivek, každá elipsa protíná každou hyperbolu 
kolmo. Oba systémy budou dobře patrné na obrázku 
k úloze 6.5a, vybarvíme-li čtyřúhelníčky jako na šachov-
nici. 

A 

Obr. 70 Obr. 71 
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Ohnisková vlastnost paraboly. Necht je parabola dána 
ohniskem F a řídicí přímkou l a necht X je její bod. Pak 
přímka XF a kolmice vedená bodem X na 'přímku l svírají 
stejné veliké úhly s tečnou paraboly v bodé X. 

Důkaz. Označme H patu kolmice vedené bodem X na 
přímku l (obr. 72). Podle definice paraboly je |XF| = 
= |Xřř|, leží tudíž bod X na ose m úsečky FH. Dokáže-
me, že přímka m je tečnou paraboly. Ukážeme, že má 
s parabolou společný jen bod X a že celá parabola leží 

v jedné polorovině ohraničené přímkou m. Bude to ta 
polorovina, ve které leží bod F. Pro každý bod M para-
boly různý od bodu X je totiž \MF\ < \MH\, protože 
\MF\ = Q{M, L) a Q(M, L) < \MH\. 

Poznámka. Pro všechny křivky, se kterými jsme se 
setkali, se tečna definovala takto: tečna křivky y v jejím 
bodě M0 je taková přímka l procházející bodem M0, pro 
kterou leží křivka y (nebo alespoň její průnik s nějakým 
kruhem o středu M0) v jedné polorovině ohraničené 
přímkou l. 

Ohniskovou vlastnost paraboly je možné využít při 
konstrukci reflektorů. Má-li reflektor tvar části rotačního 
paraboloidu a umístíme-li bodový světelný zdroj do 

Obr. 72 Obr. 73 
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ohniska, odrážejí se paprsky rovnoběžně s osou paraboly 
(obr. 73). 

6.8 Všechny paraboly s daným ohniskem a danou 
vertikální osou se přirozeným způsobem dělí na dva 
systémy. Paraboly jednoho systému mají řídicí přímku 
nad ohniskem, paraboly druhého systému pod ohniskem. 
Dokažte, že každá parabola prvního systému protíná 
každou parabolu druhého systému kolmo (obr. 74). 

Obr. 74 Obr. 75 

Oba systémy parabol, o kterých se mluví v úloze, 
budou dobře patrny na obrázku 67b, vybarvíme-li 
ětyřúhelníěky jako na šachovnici. 

Řešení dalších úloh se opírá o definice kuželoseček 
a jejich ohniskové vlastnosti. 

6.9 a) Je dána elipsa s ohnisky A, B. Dokažte, že 
množina bodů souměrně sdružených k ohnisku A podle 
všech tečen elipsy je kružnice. 

b) Dokažte, že množina pat kolmic vedených ohnis-
kem A ke všem tečnám elipsy je kružnice. 

• a) Nechť je l tečna elipsy v bodě X a N bod sou-
měrně sdružený k bodu A podle přímky l (obr. 75). 
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Podle úlohy 6.6 leží bod X na přímce NB a vzdálenost 
\NB\ = + |XB| je konstantní, nezávisí na volbě 
tečny l. Označme ji 2a. Bod N tudíž leží na kružnici 
o poloměru 2a se středem v bodě B. Obráceně bychom 
ukázali, že každý bod této kružnice je souměrně sdružený 
k bodu A podle některé tečny elipsy. 

b) Je-li M pata kolmice vedená bodem A na přímku l, 

je \AM| = —- \AN\. Podle a) víme, že všechny body N 

tvoří kružnici. Proto tvoří body M kružnici o poloměru 
a, jejímž středem je střed úsečky AB. • 

6.10 Dokažte tvrzení úlohy 6.9 pro případ hyperboly. 
6.11 Je dána parabola s ohniskem F a řídicí přímkou l. 
a) Najděte množinu všech bodů souměrně sdružených 

k ohnisku F podle tečen paraboly. 
b) Dokažte, že množina všech pat kolmic vedených 

ohniskem F na tečny paraboly je přímka rovnoběžná 
s přímkou l. 

6.12 a) Dokažte, že součin vzdáleností ohnisek elipsy 
od její tečny je konstantní, nezávislý na tečně, j, 

b) Najděte množinu všech bodů, ze kterých je vidět 
elipsu pod pravým úhlem. 

6.13 Řešte úlohu 6.12a pro hyperbolu. 
6.14 Řešte úlohu 6.12b 

pro parabolu. 
6.15 Nechť se světelný paprsek odráží od vnitřku 

elipsy tak, že vytvoří lomenou čáru P0P1P2P3..., která 
neprochází ohnisky A a B (body P0, Plt P2, ... leží na 
elipse, ostatní body lomené čáry leží ve vnitřní oblasti 
elipsy). 
Dokažte a) neprotíná-li úsečka P 0Pj úsečku AB, pak ji 
neprotínají ani úsečky PjPj . P2P3, P3P4, . . . a všechny 
se dotýkají téže elipsy s ohnisky A, B\ \ 
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b) protíná-li úsečka P^Px úsečku AB, protínají ji 
i úsečky PXP2, P2P3, . . . a všechny se dotýkají téže 
hyperboly s ohnisky A, B. j, 

Řez rotační kuželové plochy rovinou, která neprochá-
zí jejím vrcholem, je elipsa, hyperbola nebo parabola 
(obr. 76). Sféra, jež se dotýká roviny řezu a je vepsána 

Obr. 76 Obr. 77 

kuželové ploše, se dotýká roviny řezu v ohnisku kuželo-
sečky, která je řezem. Řídicí přímka je průsečnicí roviny 
řezu a roviny kružnice, podél níž se sféra dotýká kuželové 
plochy. 

Sjednocením všech přímek v prostoru stejně vzdále-
ných od daného bodu dané přímky l a svírajících s ní daný 
ostrý úhel je jednodílný rotační hyperboloid (obr. 77). 
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T e č n á r o v i n a h y p e r b o l o i d u j e j p r o t í n á v e d v o u r ů z n o -
b ě ž k á c h , k a ž d á j i n á r o v i n a h o p r o t í n á v k u ž e l o s e č c e . 

P o h y b u j í - l i se b o d y P a N r o v n o m ě r n ě p o d v o u 
r ů z n o b ě ž k á c h , j s o u p ř í m k y PN s p o l u r o v n o b ě ž n é n e b o 
s e d o t ý k a j í t é ž e p a r a b o l y . P o h y b u j í - l i se b c d y P, N 

r o v n o m ě r n ě p o d v o u m i m o b ě ž k á c h , v y t v o ř í p ř í m k y PN 

p l o c h u , k t e r á s e n a z ý v á hyperbolický paraboloid. K a ž d á 
j e h o t e č n á r o v i n a j e j p r o t í n á v e d v o u r ů z n o b ě ž k á c h , 

Obr. 78 

každá jiná rovina v parabole nebo hyperbole. Hyper-
bolický paraboloid (sedlo) dostaneme také jako sjedno-
cení všech přímek protínajících dané mimoběžky lx, lt 
a rovnoběžných s danou rovinou, která přímky l l t l2 
protíná (obr. 78). 

Kuželosečky jako obalové křivky. Dosud jsme defino-
vali křivky jako množiny bodů, které splňovaly jistou 
podmínku. V dalších úlohách vznikají křivky jako oba-
lové křivky systémů přímek. Pojem „obalová" znamená 
pouze to, že se křivka dotýká každé přímky systému. 
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6.16 Je dána kružnice se středem O a bod A. Každým 
bodem M kružnice je vedena přímka kolmá lt úsečce 
MA. Dokažte, že obalovou křivkou tohoto systému pří-
mek je 
a) kružnice, splývá-li od A s bodem O, 
b) elipsa, je-li A bodem vnitřní oblasti kružnice, 
c) hyperbola, je-li A bodem vnější oblastí kružnice. j 

6.17 Je dána přímka l a bod A, který na ní neleží. 
Každým bodem M přímky l je vedena přímka kolmá 
k úsečce MA. Dokažte, že obalovou křivkou tohoto 
systému přímek je parabola. J, 

Rovnice kuželoseček. Začali jsme tento paragraf geo-
metrickými definicemi elipsy, hyperboly a paraboly. 
Mnoho dalších informací o těchto křivkách získáme 
použitím metody souřadnic. 

Začneme u paraboly. Víme, že parabolu dostaneme 
jako graf funkce 

y = ax*, a^O. (1) 

Ukážeme, že výše uvedená geometrická definice vede 
také k této rovnici. Nechť je vzdálenost bodu F od přím-
ky l rovna 2h. Zvolme soustavu souřadnic tak, aby osa x 
byla rovnoběžná s přímkou l a byla od ní stejně vzdálena 
jako od bodu F a aby osa y procházela bodem F (osa y 
bude tedy osou souměrnosti paraboly). Rovnice, kterou 
dostaneme z geometrické definice paraboly, se snadno 
upraví na tvar (1): 

V»» + (y — hy = \y + h\, 

x* + y* — 2hy + W — y* + 2 hy + h\ 

y = x*l4Ji. 

Stačí položit a = 1/4h. 
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Grafem libovolné funkce y = ax2 + bx + c (a 0) je 
také parabola, dostaneme ji z paraboly y = ax2 posu-
nutím. Stejnolehlost se středem v počátku soustavy 
souřadnic s koeficientem l/a zobrazuje parabolu y = x2 

na parabolu y = ax2. Jsou tudíž každé dvě paraboly 
podobné. Naproti tomu nejsou každé dvě paraboly 
kongruentní (shodné), čím větší je |a|, tím je parabola 
y = ax2 sevřenější. Poznamenejme, že parabolu y = 
= ax2 (a > 0) můžeme dostat z paraboly y = x2 také 
stlačením nebo roztažením ve směru některé osy sou-
stavy souřadnic, přesněji transformacemi, které bodu 
[a;; y] přiřazují bod [xj]/a ; y] nebo[a;; ay]. 

Přejdeme teď k elipse a hyperbole. Zvolme soustavu 
souřadnic tak, aby ohniska A, B měla souřadnice 
A[—c; 0], B\C\ 0], Elipsa pak má rovnici 

Y(x + c)2 + y2 + ]/(x — c)2 + y2 = 
= 2a,a > c. (2') 

Ekvivalentními úpravami můžeme odstranit odmocniny 
a převést rovnici elipsy na tvar 

+ kde 6 = 1 / ^ ^ " . (2) 

Podrobněji vysvětlíme přechod od rovnice (2') k (2) 
později. 

Z rovnice (2) je vidět, že je možné dostat elipsu také 
takto: Vezmeme kružnici o poloměru a s rovnicí a;2 

y2 = a2 a, „stlačíme" ji ve směru osy y v poměru a :b\ 
přitom přejde bod [a;; y\ do bodu [a;; y'], kde y' = ybja 
(obr. 79). Dosadíme-li y = y'a\b do rovnice naší kruž-
nice, dostaneme rovnici elipsy 

_L ML = 1 
a2 b2 
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Je vidět, že elipsu můžeme dostat i bez hřebíků a pro-
vázku. Stačí zapnout televizor v době, kdy se vysílá 
monoskop, a otočit regulátorem svislé dimenze; všechny 
kružnice na monoskopu se zdeformují v elipsy. 

Dvě elipsy s rovnicemi ve tvaru (2) jsou podobné, 
mají-li stejný poměr b : a. 

Zvolíme-li soustavu souřadnic stejně jako u elipsy, 
bude mít hyperbola rovnici 

|V(» + c)2 + y* — V(® — c)2 + ý*\ = 2a, a<c, 
(3') 

kterou můžeme ekvivalentními úpravami převést na 
tvar 

= (3) 

Abychom získali představu o průběhu hyperboly v kvad-
rantu sestrojíme si graf funkce 

y = — j/z2 — a2. 
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Tato funkce je zřejmě definována pro x a a je rostou-
cí. Méně zřejmé je, že se její graf pří zvětšujícím se x 
stále více přimyká k přímce y = bx/a. Přesněji řečeno, 
pro každou posloupnost čísel xn, která roste nade všechny 
meze, konverguje posloupnost 

— ]/xl — a 2 x„ 
a a 

k nule. To se snadno dokáže užitím rovnosti 
x — ]/x2 — a2 = a2l(]/x2 — a2 + x). Z uvedených důvodů 
říkáme, že přímka y = bxja je asymptotou naší hyper-
boly. Další její asymptotou je přímka y = —bxja. 

Často se setkáváme s jinou rovnicí hyperboly, s rov-
nicí 

xy =d, cl 0. (4) 

Jak je to možné ? Není touto rovnicí dána jiná křivka 1 
Není, rovnicí (4) je skutečně dána hyperbola, jejíž asym-
ptoty jsou na sebe kolmé. Její rovnice ve tvaru (3) je 

= i 
2d 2d 

Máme tudíž dvě rovnice téže hyperboly, každou v jiné 
soustavě souřadnic (obr. 80): jednou jsme za osy sou-
stavy souřadnic zvolili její asymptoty, podruhé osy 
hyperboly (? >. 

Již jsme si ukázali, jak můžeme dostat elipsu „stla-
čením" kružnice x2 + y2 = a2. Stejně tak můžeme 
dostat hyperbolu x2\a2 — y2/b2 = 1 z hyperboly x2 — 
— y2 = a2 s kolmými asymptotami, stlačíme-Ů ji ve 
směru osy y v poměru a : b (obr. 81). 

Dvě hyperboly jsou podobné, mají-li stejný poměr 
a : b, nebo, což je totéž, svírají-li jejich asymptoty 
stejně velký úhel 2y, tg y = bja. 
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Odstranění odmocnin. Ukážeme zároveň, jak je možné 
dostat z rovnic (2') a (3') jednodušší tvary (2) a (3). 
Položme 

z2 = | 

V(® + c)2 + ž/2 — ]/(x — c)2 + y* y 

V(x + c)2 + 2/2 + V(x — c)2 + i/2 

(3" 

• (2") 

Obr. 80 Obr. 81 

Nechť je x # 0, y ^ 0. Snadno se přesvědčíme, že 
0 < zx < z2, zx + z2 = x2 + y2 + c2, ZiZj! = c2x2. jsou 
tedy zt, z2 kořeny kvadratické rovnice (o neznámé z) 

z2 — (x2 + y* + c2) z + c2x2 = 0. (5) 
Trojčlen na levé straně rovnice (5) je pro z = c2 záporný, 
proto je zx < c2, z2 > c2. Všimněme si, že rovnici (5) lze 
psát ve tvaru x2(z — c2) + j/2z = z(z — c2), tedy 

, r 
z + z —c2 

= 1. (5') 

Ukážeme, že po dosazení a2 za z je rovnicí (6') dána 
elipsa (pro a > c) nebo hyperbola (pro a < c). 

105 



Nechť je a > c > 0. Víme, že pro x ^ 0, y ^ 0 jsou 
rovnicemi (3") a (2") dány menší a větší kořen rovnice 
(5'), přičemž zx < c2 < z2. Rovnici elipsy (2') můžeme 
zřejmě psát ve tvaru z2 = o2, a protože z2 je kořenem 
rovnice (5'), splňuje bod \x\ ?/] elipsy {x ^ 0 ^ y) rov-
nici 

x2 w2 

Obráceně, splňuje-li bod [x; y] rovnici (6), je číslo z = 
= a2 kořenem rovnice (5'), a protože je a2 > c2, je a2 

větším kořenem rovnice (5'), tedy a2 = z2. Je tudíž pro 
a > c rovnice (2') ekvivalentní s rovnicí (6). 

Analogicky můžeme dokázat, že pro a < c jsou ekvi-
valentní rovnice (3') a (6), že rovnice hyperboly zt = a2 je 
totožná s rovnicí (6). 

Snadno se ověří, že pro x = 0 nebo y = 0 je rovnice 
(6) ekvivalentní s rovnicí (2') nebo (3') podle toho, je-li 
a > c nebo a < c. 

Tím jsme dokázali, že rovnice (6) zahrnuje jak rovnici 
elipsy (2'), tak rovnici hyperboly (3'). Položíme-li b = 
= j/«2 — c2 (pro a > c) nebo ř> = ]/c2 — o2 (pro a < c), 
dostaneme rovnice (2) a (3). Tak jsme přes rovnici (6) 
dokázali ekvivalentnost rovnic (2) a (2') a také rovnic 
(3) a (3'). Ukázaný postup můžeme často použít, 
chceme-li odstranit odmocniny: vedle součtu (nebo 
rozdílu) druhých odmocnin uvažujeme také jejich rozdíl 
(nebo součet). 

Konec abecedy. Uvažujme ještě jednu funkci v rovině, 
jejíž mapa obsahuje všechny tři typy křivek, se kterými 
jsme se seznámili v této kapitole. Bude to poslední 
písmeno naší abecedy. 
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R. Necht je dán bod F a přímka l, která jím neprochází. 
Množina všech bodů roviny, jejichž poměr vzdáleností od 
bodu F a od přímky l se rovná danému kladnému číslu k, 
je elipsa (pro k <l), hyperbola (pro k >1) nebo para-
bola (pro k = 1) (obr. 82). 

K důkazu zvolíme soustavu souřadnic tak, jak jsme ji 
volili v případě paraboly. Naše množina má tedy rovnici 

pro k — 1 jsme již viděli, že je to rovnice paraboly y = 
= axi, kde a = l/(4&). Pro 0 < k < 1 ji můžeme 
ekvivalentními úpravami uvést na tvar 

Obr. 82 

y » ' + (y — h) 

\y + h\ 

i» 

x• 
a-J + = 1 < e l i P s a ) (7) 

a pro k > 1 na tvar 

+ (Ž/ = 1 (hyperbola), (8) 
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kde jsme v obou případech položili 

a = 2khl]/\k2 — 11, b = 2khl\k* — 1|, 
d = h(k2 + 1)1(^—1). 

Rovnice (7) a (8) dostaneme z kanonických rovnic 
(2) a (3) posunutím soustavy souřadnic a záměnou os 
x, y. V našem případě leží ohniska na ose y a středem je 
bod [0; d], Můžeme se přesvědčit, že bod F je ohniskem 
nejen v případě paraboly, ale i v případě elipsy nebo 
hyperboly. Přímka Z se i v těchto případech nazývá 
řídicí přímkou elipsy nebo hyperboly. 

Tak jsme si ukázali, že hladinami funkce 

f(M)=\MF\le(M, Z) 

jsou elipsy, hyperboly a jedna parabola. 
Snadno jsme mohli uhodnout, že hladinami budou 

kuželosečky. Uvažujme totiž v rovině funkce fx{M) = 
= \MF\, f2(M) = kg(M, Z). Grafem první je část kuželo-
vě plochy, graf druhé funkce je dvojice polorovin, při-
čemž číslo k je tangens úhlu, který svírají poloroviny 
s horizontální rovinou. Průnikem těchto grafů je elipsa, 
parabola nebo hyperbola. Nás pak zajímají průměty 
obdržených křivek do horizontální roviny, tedy množiny 

{M : f,(M) = UM)} = {M : \MF\ = ke(M, l)}. 

Při rovnoběžném promítání se tvar křivky mění stejně 
jako při jejím stlačení ve směru kolmém k přímce Z 
(v poměru + 1:1). Proto dostaneme opět elipsy, 
hyperboly a parabolu. 

Jak jsme již několikrát ukázali, mají elipsa, hyperbola 
a parabola mnoho společných vlastností. To má prostý 
algebraický důvod: všechny jsou dány rovnicemi dru-
hého stupně. Ovšem jejich charakteristické rovnice 
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y = ax2, x2/a2 + y2/62 = 1, x2la2 — y2lb2 = 1, 
xy = d 

dostaneme pouze při speciální volbě soustavy souřadnic, 
zvolíme-li soustavu souřadnic v obecné poloze, bude rov-
nice kuželosečky složitější. Není však těžké dokázat, že 
v libovolné soustavě souřadnic má rovnice kuželosečky 
tvar 

ax2 + bxy + cy2 + dx + ey + / = 0, (9) 

kde alespoň jedno z čísel a, b, c je různé od nuly. 
Je pozoruhodné, že platí i tvrzení obrácené: každá 

rovnice druhého stupně p(x, y) = 0 , tj. rovnice tvaru 
(9), určuje kuželosečku. Přesněji řečeno, každá rovnice 
tvaru (9) definuje elipsu, hyperbolu nebo parabolu, pokud 
se její levá strana nedá rozložit na součin dvou lineárních 
činitelů (dostali bychom dvojici přímek) a pokud levá 
strana nabývá kladných i záporných hodnot (jinak 
bychom dostali bod, jednu přímku nebo prázdnou mno-
žinu). Odtud plyne společný název pro elipsy, hyperboly 
a paraboly; říkáme jim též křivky druhého stupně. 

Věta, kterou jsme výše vyslovili, je velmi užitečná 
při hledání množin všech bodů dané vlastnosti. Vidíme-li, 
že v některé soustavě souřadnic je množina dána rovnicí 
druhého stupně, víme, že hledanou množinou je elipsa, 
hyperbola nebo parabola, ve výjimečném případě to 
může ovsem být i dvojice přímek, bod apod. Zbývá pak 
najít „rozměry" kuželosečky a její polohu (ohniska, 
střed, asymptoty atd.). 

6.18 Najděte množinu všech bodů roviny, pro které 
je součet vzdáleností od dvou daných kolmých přímek 
c-krát větší než jejich vzdálenost od průsečíku daných 
přímek. 
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6.19 Je dáno kladné číslo c a v rovině bod A a přím-
ka l. Najděte množinu všech bodů, pro které je 

a) součet vzdáleností od bodu A a přímky l roven c, 
b) rozdíl vzdáleností od bodu A a přímky l v absolutní 

hodnotě roven c, 
c) poměr vzdáleností od bodu i a od přímky l menší 

než c. 
6.20 Určete množinu všech bodů, jejichž 
a) součet, 
b) rozdíl 

druhých mocnin vzdáleností od dvou daných různobě-
žek lu l2 je roven danému číslu d. Nakreslete hladiny 
odpovídajících funkcí: 
a) f(M) = Q*(M, L,) + Q*(M, LT), 
b ) f ( M ) = e * ( M , h) — e*(M, h). 

6.21 V rovině je dán bod F a přímka l. Nakreslete 
hladiny funkcí 

a) f(M) = 
b ) f (M) = 

MF 
MF 

* + e
2 ( M , i ) , 

l). 

6.22 Kloub O kloubového rovnoběžníku OPMQ je 
upevněn a ramena OP a OQ různých délek se otáčejí 
stejnou úhlovou rychlostí v opačných smyslech. Po jaké 
křivce se pohybuje bod M ? 

• Nechť je \0P\ = p, \OQ\ = q. Protože se přímky 
OP a OQ otáčejí na různé strany, musí v jednom okamži-
ku splynout. Vezměme tento okamžik za výchozí čas 
t — 0 a splývající přímky za osu x, počátek soustavy 
souřadnic zvolíme v bodě O. Nechť se přímky OP a OQ 
otáčejí úhlovou rychlostí <a. Pak mají body P a Q v čase 
í souřadnice P[p cos a>í; p sin co<], Q\q cos eoť; — q sin wt]. 
Proto má bod M souřadnice 

x = (p + q) cos coí, y = {p — q) sin wt, 
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n e b o ť OM = OP + OQ. L e ž í t u d í ž b o d M n a e l i p s e 

* 2 + y2 = l . D 

(:P + íV ( P - f f ) 2 

P ř i ř e š e n í ú l o h y j s m e d o s t a l i e l i p s u j a k o m n o ž i n u b o d ů 
[x; y] s e s o u ř a d n i c e m i 

x = acos(út, y = bsin(ot, (10) 

t p r o b í h á m n o ž i n u r e á l n ý c h č í s e l . R o v n i c e u v e d e n é h o 
t y p u , k t e r é v y j a d ř u j í s o u ř a d n i c e b o d u m n o ž i n y p o m o c í 
p a r a m e t r u ř , s e n a z ý v a j í p a r a m e t r i c k é r o v n i c e m n o ž i n y . 
V d a n é m p ř í p a d ě b y l p a r a m e t r t č a s . 

6 . 2 3 V r o v i n ě s e k o l e m b o d ů A, B o t á č e j í s t e j n o u 
ú h l o v o u r y c h l o s t í p ř í m k y . J a k o u k ř i v k u o p i s u j e j e j i c h 
p r ů s e č í k , o t á č e j í - l i s e p ř í m k y v o p a č n ý c h s m y s l e c h ? | 

6 . 2 4 N a j d ě t e v r o v i n ě m n o ž i n u v š e c h b o d ů M, p r o 
k t e r é j e | <£ MBA | = 21 < MAB\, k d e AB j e d a n á ú s e č k a 
r o v i n y . | 

6 . 2 5 a ) U v a ž u j m e v š e c h n y ú s e č k y , k t e r é z d a n é h o 
ú h l u v y t í n a j í t r o j ú h e l n í k d a n é h o o b s a h u S. D o k a ž t e , 
ž e s t ř e d y t ě c h t o ú s e č e k l e ž í n a t é ž e h y p e r b o l e r , j e j í m i ž 
a s y m p t o t a m i j s o u r a m e n a d a n é h o ú h l u . | 

b ) D o k a ž t e , ž e v š e c h n y t y t o ú s e č k y s e d o t ý k a j í t é ž e 
h y p e r b o l y r. J, 

c ) D o k a ž t e , ž e ú s e č k a s k r a j n í m i b o d y n a a s y m p t o -
t á c h d a n é h y p e r b o l y , k t e r é s e d o t ý k á , j e b o d e m d o t y k u 
p ů l e n a . | 

6 . 2 6 a ) J e d á n r o v n o r a m e n n ý t r o j ú h e l n í k ABC, 
\AC| = \BC\. N a j d ě t e m n o ž i n u v š e c h b o d ů M r o v i n y , 
j e j i c h ž v z d á l e n o s t o d p ř í m k y AB j e r o v n a g e o m e t r i c k é -
m u p r ů m ě r u j e j i c h v z d á l e n o s t í o d p ř í m e k AC a BC. 

b ) T ř i p ř í m k y t v o ř í r o v n o s t r a n n ý t r o j ú h e l n í k . U r č e t e 
m n o ž i n u v š e c h b o d ů M r o v i n y t r o j ú h e l n í k u , p r o k t e r é 
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je vzdálenost od některé z daných přímek rovna geo-
metrickému průměru vzdáleností od zbývajících dvou 
přímek. 

6.27 Tři vrcholy kosočtverce leží postupně na stra-
nách AB, BC a CD daného čtverce. Kde leží čtvrtý vrchol 
kosočtverce ? 

y 

Obr. 83 Obr. 84 

Algebraické křivky. Množiny bodů v různých geo-
metrických úlohách nemusí být samozřejmě vždy přím-
kami nebo kuželosečkami. Ukážeme si dva příklady. 

Množina všech bodů roviny, jejichž součin vzdáleností 
od dvou daných bodů Fx a F2 se rovná danému klad-
nému číslu p, se nazývá Cassiniho ovál (obr. 83). Je 
hladinou funkce 

f(M) = \MF2\. 

Při vhodné volbě soustavy souřadnic má proto rovnici 
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[(x — c)2 + y*] [(x + xf + y*] = p\ 
kde 2c = |-řYFa|. 

Pro p = c2 má Cassiniho ovál tvar ležaté osmičky 
a nazývá se BernovMiho lemniskata, pro p < c2 se skládá 
ze dvou částí. 

A ještě jeden příklad. Nechť je dán bod F a přímka l, 
která jím neprochází. Označme q(M) vzdálenost bodu M 
od průsečíku přímek FM a l. Množina {M : q(M) = d) se 
pro každé kladné číslo d nazývá Nikomedova konchoida 
(obr. 84). Zvolíme-li soustavu souřadnic tak, že počátek 
splyne s bodem F a přímka l bude mít rovnici y + a = 
= 0, má Nikomedova konchoida rovnici 

(X2 + Ž/2) (y + a)2 — d2y* = 0. 

Obecně se každá křivka, která je dána rovnicí 
P(x, y) = 0 a P(x, y) je mnohočlen v proměnných x, y, 
nazývá algebraickou křivkou. Stupeň polynomu P je 
jejím stupněm. Jsou tedy Cassiniho ovál i Nikomedova 
konchoida algebraické křivky čtvrtého stupně. 

Již z uvedených dvou příkladů je vidět, že algebraické 
křivky vyšších stupňů mohou vznikat různými zajíma-
vými způsoby, mohou mít body vratu a mohou samy 
sebe protínat (konchoida pro a = d nebo pro a < d). 
Jejich tvar se může podstatně měnit při změně para-
metrů. S některými se ještě seznámíme v další kapitole. 
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K a p i t o l a 6 

OTÁČENÍ, KOTÁLENÍ 
A TRAJEKTORIE 

V závěrečné kapitole seznámíme čtenáře se zajímavými 
křivkami, které se definují přirozeným způsobem jako 
dráhy bodu na kružnici, která se kotálí po jiné kružnici 
nebo po přímce. Jejich nejzajímavější vlastnosti se 
týkají tečen. Milovník klasické geometrie pozná souvis-
lost mezi kružnicí devíti bodů trojúhelníku, jeho Simso-
novými přímkami a jejich obálkou, kterou je cykloidální 
křivka s třemi body vratu. Na začátku probereme dů-
kladně jednu z nejjednodušsích cykloidálních křivek. 

Kardioida. Kardioida se obyčejně definuje jako tra-
jektorie bodu kružnice, která se kotálí po pevné kružnici 
stejného poloměru. Jsou ovšem i jiné definice kardioidy. 
Dvě z nich uvedeme ve tvaru úloh. 

7.1 Dokažte, že kardioida je 
a) množinou bodů souměrně sdružených k danému 

bodu A podle všech tečen pevné kružnice, která prochá-
zí bodem A, 

b) množinou všech pat kolmic vedených daným bo-
dem A k tečnám kružnice, která prochází bodem A 
(obr. 85). 

• a) Uvažujme kružnici y, která se dotýká dané 
kružnice 6 v bodě A a má s ní stejný poloměr. Kotálejme 
kružnici y po kružnici <5 a studujme trajektorii toho bodu 
M, který ve výchozí poloze splývá s bodem A. Protože 
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se jedná o kotálení, jsou délky kruhových oblouků AT 
a MT v každém okamžiku stejně dlouhé (T je proměnný 
bod dotyku obou kružnic). Odtud plyne, že jsou body 
M & A souměrně sdružené podle tečny v bodě T. Oběh-
ne-li bod T kružnici 6, opíše bod M celou kardioidu. 

Obr. 85 

b) Uvažovanou množinu dostaneme z množiny po-
psané v části a) pomocí stejnolehlosti s koeficientem 
1/2 a středem A. Je to tedy také kardioida, dvakrát 
menší než kardioida v úloze a). • 

Užitím úlohy 7.1 můžeme sestrojit libovolný počet 
bodů kardioidy a tak ji dost přesně nakreslit. Je to křiv-
ka, která má v bodě A singularitu — bod vratu. Tvarem 
je podobná osovému řezu jablkem, o něco méně obrysu 
srdce, podle něhož dostala název (kardia — srdce). 

Z úlohy 7.1 plyne i další způsob vytvoření kardioidy — 
jako obálky systému kružnic. 

7.2 Je dána kružnice a na ní bod A. Dokažte, že 
sjednocení všech kružnic procházejících bodem A, je-
jichž střed leží na dané kružnici, je oblast ohraničená 
kardioidou (obr. 86). | 
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Obr. 86 

Dvč otáčení. Dále ukážeme, jak poznat některé 
vlastnosti křivek pomocí kinematiky (teorie pohybu), 
a jako příklad nám bude často sloužit kardioida. Dříve 
se však ještě vraťme k řešení 7.1a. Tam jsme došli 
k závěru, že bod M proběhne kardioidu, když bod T 
udělá jednu otáčku. Tím se mínilo, že bod T i střed P 
pohybující se kružnice y se jednou otočí. Avšak sama 
kružnice, nebo lépe řečeno kruh y se otáčí rychleji. Vy-
jasněme si to. 

7.3 Kružnice y se kotálí po pevné kružnici téhož 
poloměru, přičemž střed P kružnice y vykoná jednu 
otáčku. Kolikrát se za tutéž dobu otočí kruh y, kolik 
vykoná otáček kolem svého středu P ? 

Zvolme na kruhu y některý jeho poloměr PM a v ro-
vině pevný bod E. Vezměme takovou úsečku EN, aby 
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se vektory EN a PM sobě rovnaly. Otázku úlohy 7.3 
pak můžeme formulovat takto: kolik otáček kolem bodu 
E vykoná úsečka EN, otočí-li se úsečka OP o 360°? 
Jaký je poměr úhlových rychlostí obou úseček? Uva-
žujme dvě polohy pohybujícího se kruhu. Otočí-li se 
úsečka OP o 90°, otočí se úsečka EN o 180°, a stejně 
tak to platí pro další úhly, o které se otočí úsečka OP. 
Otočí-li se o úhel 360°, otočí se úsečka EN o úhel 720°, 
tedy o dvě plné otáčky. Poměr obou úhlových rychlo-
stí je 2. 

Zvolíme-li bod E totožný se středem O pevné kružnice 
a bod Q tak, aby OQ = PM, dostaneme rovnoběžník 
OPMQ. Při rovnoměrném kotálení kruhu y po kružnici 
b je bod O pevný a úsečky OP a OQ se otáčejí úhlovými 
rychlostmi co a 2<o v témže smyslu. Tím dostáváme další 
možnost vytvoření kardioidy, kterou lze dobře popsat 
pomocí kloubového rovnoběžníku. 

Otáčejí-li se ramena OP a OQ (|OP| = 2\OQ\) kolem 
pevného bodu O v témže smyslu otáčení úhlovými 
rychlostmi to a 2co, je trajektorií čtvrtého vrcholu 
rovnoběžníku OPMQ kardioida. 

Nyní je snadné ukázat ještě jeden způsob konstrukce 
bodů kardioidy a předvést další její zajímavé vlastnosti. 

7.4 Naneseme-li na každou přímku l procházející pev-
ným bodem A dané kružnice <5 o poloměru r od průsečíku 
Q přímky l a kružnice d (A ^ Q) úsečku QM délky 2r, 
vytvoří takto obdržené body M spolu s bodem A kar-
dioidu (obr. 87). 

• Pro každou polohu přímky l můžeme sestrojit 
rovnoběžník OPMQ, ve kterém splynou body Q a M se 
stejně označenými body úlohy (O je střed kružnice <5). 
Bude-li se přímka l otáčet kolem bodu A úhlovou rych-
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lostí (o, budou se ramena OP a OQ rovnoběžníku otáčet 
úhlovými rychlostmi to a 2to, viz tvrzení o prstenci na 
kružnici v kap. 1. Proto pak opisuje bod M kardioidu. • 

Zkuste si na velkém papíře sestrojit kardioidu jednak 
podle 7.1, jednak podle 7.4, a přesvědčte se, že dostanete 
stejné křivky. Jednodušší bude asi druhý způsob. 
Všimněme si, že v úloze 7.4 můžeme nanést od bodu Q 
úsečku délky 2r na obě navzájem opačné polopřímky. 

Obr. 87 Obr. 88 

Tím dostáváme hned dva body M l t M2 kardioidy 
(obr. 88). Odpovídají dvěma polohám kloubového rovno-
běžníku OQMP. Oběhne-li bod Q jednou kružnici 6, 
otočí se úsečka QM o 180° a bod přejde do bodu M2. 
To ukazuje další vlastnost kardioidy. 

7.5 Dokažte, že každá tětiva kardioidy procházející 
jejím bodem vratu A má délku 4R a její střed leží na 
pevné kružnici poloměru r. 
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A ještě dvě úlohy opírající se o druhý způsob kon-
strukce kardioidy. 

7.6 Tyč délky 2r se pohybuje ve vertikální rovině 
tak, že její konec klouže po vnitřní stěně jámy, jejíž 
vertikální řez má tvar půlkruhu o poloměru r a tyč se 
opírá o kraj jámy. Dokažte, že se druhý konec tyče po-
hybuje po kardioidě (obr. 89). 

7.7 Po pevném kruhu poloměru r se kotálí kružnice 
poloměru 2r tak, že kruh leží ve vnitřní oblasti kružnice. 
Dokažte, že trajektorií bodu kružnice je kardioida 
(obr. 90). 

• Jedno řešení úlohy dostaneme jejím porovnáním 
s Koperníkovou větou 0.3. Jedná se o pohyb týchž 
dvou kružnic, jen je vyměněna role pohybující se a ne-
pohybující se kružnice. Koperníkova věta při této 
záměně rolí tvrdí, že se každý průměr MXM2 pohybující 
se kružnice pohybuje tak, že stále prochází určitým bo-
dem A pevné kružnice. Přitom se střed Q průměru 
MXM2 pohybuje po pevné kružnici a je \MTQ\ = 

}M 

Obr. 89 Obr. 90 
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= \QMt\ = 2r (obr. 91). Tím se dostáváme k úloze 7.4 
a vidíme, že se body M1 a M2 pohybují po téže kardioidě. 

Mohli jsme též převést řešení úlohy přímo na kloubový 
rovnoběžník. Nechť je M bod otáčející se kružnice a Q 
její pohybující se střed. Sestrojme rovnoběžník OFMQ. 
Otáčí-li se rameno OQ úhlovou rychlostí 2co, otáčí se 
pohybující se kružnice a s ní i rameno QM úhlovou 
rychlostí co (obr. 92). • 

Obr. 92 

Kardioida, se kterou jsme se dost podrobně seznámili, 
patří do systému křivek, jež se nazývají konchoidami 
kružnice, nebo též Pascalovými závitnicemi. Dostaneme 
je trochu obecnějším postupem, než je postup uvedený 
v úloze 7.4. Na přímky l procházející daným bodem A 
pevné kružnice nanášíme od průsečíku Q této kružnice 
a přímky l úsečky dané délky h (na obě polopřímky od 
bodu Q). Koncové body těchto úseček vytvoří Pascalovu 
závitnici. Rovná-li se délka h průměru dané kružnice, 
jde o kardioidu. Porovnejte tuto definici s definicí 
Niko medový konchoidy, tj. konchoidy přímky. Ukazuje 
se, že Pascalovu závitnici můžeme při každé hodnotě h 
definovat kinematicky. To je obsahem dalších úloh. 

120 



7.8 a) Dokažte, že vrchol M kloubového rovnoběž-
níku, jehož kloub O je upevněn a jehož ramena OP 
a OQ se otáčejí úhlovými rychlostmi 2«) a (o, opisuje 
Pascalovu závitnici. 

b) V rovině je pevně zvolena kružnice poloměru r. 
Po ní se kotálí jiná kružnice téhož poloměru. Dokažte, 
že bod na průměru kotálející se kružnice nebo na jeho 
prodloužení opisuje Pascalovu závitnici. 

c) V předcházející úloze nahraďte pohybující se kruž-
nici kružnicí o poloměru 2r, přičemž pevná kružnice se 
jí dotýká uvnitř. 

Ukážeme teď několik různých úloh, v nichž poměr 
úhlových rychlostí dvou otáčení není (jako v případě 
kardioidy) roven dvěma. Dostaneme tak několik dalších 
cyMoidálních křivek. 

7.9 Po pevné kružnici poloměru R se vně kotálí kruh 
o poloměru a) iž/2, b) iž/3, c) 2ÍŽ/3. Kolikrát se vnější 
kruh otočí, vykoná-li jeho střed jednu otáčku kolem 
středu pevné kružnice ? I 

7.10 Řešte tutéž úlohu v případě, kdy se pohybující 
kruh dotýká pevné kružnice uvnitř. 

7.11 Mezi otáčejícím se kroužkem ložiska o průměru 
6 mm a jeho pevným pouzdrem o průměru 10 mm jsou 
kuličky o průměru 2 mm. Předpokládejme, že při otáčení 
vnitřního kroužku kuličky nekloužou. Jakou úhlovou 
rychlostí se 
a) otáčejí kuličky, 
b) se pohybují jejich středy 
kolem středu ložiska, otáčí-li se vnitřní kroužek ložiska 
rychlostí 100 otáček za sekundu ? 

7.12 Tři ozubená kola otáčející brusičským kamenem 
jsou spojena podle obrázku. Určete poměr poloměrů 
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pohybujících se kol, má-li se malé kolečko (brus) točit 
dvanáctkrát rychleji než rameno OQ, které je uvádí 

Uvažujme dva body kružnice, která se kotálí po kru-
hu. Je zřejmé, že opisují kongruentní (shodné) trajekto-
rie. Ve zvláštním případě se dokonce může stát, že obě 
trajektorie splynou, že se oba body pohybují po téže 
křivce, jeden za druhým. Například v řešení úlohy 7.7 
jsme viděli, že diametrálně protilehlé body vnější kruž-
nice opisovaly stejnou kardioidu. Přesvědčíme se o tom, 
ukážeme-li, že trajektorie těchto bodů mají bod vratu 
v témže bodě pevné kružnice. V dalších úlohách můžeme 
postupovat analogicky. 

7.13 a) Dokažte, že diametrálně protilehlé body Mx 
a M2 kružnice o poloměru 2i?/3, která se kotálí po 
vnitřku pevné kružnice o poloměru R, opisují tutéž 
křivku. Tato křivka se nazývá deltoid, nebo též Steinerová 
křivka (obr. 94). 

b) Dokažte, že body Mu M2 a M3 na kružnici o polo-
měru 3iř/4, které tvoří rovnostranný trojúhelník, opisují 
tutéž křivku (asteroidu), jestliže se kružnice kotálí po 
vnitřku pevné kružnice o poloměru R (obr. 95). 
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c) V předcházející úloze nahraďte hodnotu 3i?/4 hod-
notou 3iř/2 a předpokládejte, že pohybující se kružnice 
obklopuje pevnou kružnici. Místo asteroidy dostanete 
křivku, která se nazývá nefroida. 

Mějme kloubový rovnoběžník OPMQ, kde vrchol O je 
pevný a ramena OP a OQ se otáčejí kolem O, přičemž 

Obr. 94 Obr. 95 
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poměr wop/tooo jejich úhlových rychlostí je k a poměr 
\OP\l\OQ\ jejich ramen je l/|Jfc| (jfc # 0, 1, —1). Potom 
křivku, kterou opisuje vrchol M, nazveme k-cyícloida. 

Pohybují-li se dva body P a N rovnoměrně po kruž-
nici tak, že poměr <wj>/<oA- jejich úhlových rychlostí je 
roven k, je obalovou křivkou přímek PN fc-cykloida 
(viz 7.19). 

Křivky ¿-cykloida a (l/A)-cykloida jsou shodné. 
Křivku ¿-cykloidu můžeme definovat také jako trajek-

torii bodu kružnice, která se kotálí po kružnici o polomě-
ru — l|/r, přičemž při k > 1 mají kružnice vnější a při 
k < 1 vnitřní dotyk. 
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Obyčejně se ¿-cykloidy nazývají v případě k > 0 
epicykloidami, v případě k < 0 hypocykloidami. 

Na obrázcích 96—101 jsou zobrazeny ¿-cykloidy pro 
k = 3/8, —1/7, —3, —2, 2 a 3. Poslední čtyři jsou 
asteroida, Steinerová křivka, kardioida a nefroida. 

Na obr. 102 je zobrazena trajektorie bodu kružnice, 
která se kotálí po přímce. Tato křivka se nazývá cykloida. 
Obalovou křivkou průměru kotálející se kružnice je 
cykloida dvakrát menší. 

Již v případě kardioidy jsme viděli, že tutéž křivku 
můžeme dostat jako trajektorii bodů dvou různých 
kružnic kotálejících se po téže pevné kružnici. Porov-

Obr. 101 

Obr. 102 
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nejte první definici kardioidy s úlohou 7.7: v jednom 
případě je středem pohybující se kružnice bod P a ve 
druhém vrchol Q kloubového rovnoběžníku OPQM. 
Další úloha ukazuje obecně, v jakém vztahu musí být 
pohybující se kružnice, aby trajektorie jejich bodů byly 
shodné. 

7.14 a) Dokažte, že bod kružnice o poloměru r, jež se 
kotálí po pevném kruhu o poloměru R, opisuje trajekto-
rii shodnou s trajektorií, kterou opisuje bod kružnice 
o poloměru R + r kotálející se po témže kruhu tak, že 
jej obklopuje. 

b) Po vnitřku kružnice o poloměru R se kotálejí dvě 
kružnice o poloměrech r a R — r. Dokažte, že trajektorie 
bodů jedné i druhé kružnice jsou shodné. j 

K řešení těchto úloh potřebujeme umět vypočíst 
vztahy mezi rychlostmi spolu vázaných otáčení. Ty 
vyšetříme později, teď přejdeme k nejzajímavějším 
vlastnostem cykloidálních křivek, k vlastnostem jejich 
tečen. 

Věta o dvou kruzích. Vyslovíme zajímavé pravidlo, 
které nám umožní názorně popsat systém všech tečen 
trajektorie bodu M na kružnici o poloměru r kotálející se 
bez klouzání po pevné křivce y. Kotálejme po téže křivce 
y kružnici o poloměru 2r a představme si s ní pevně 
spojený průměr KL, který jsme zvolili tak, aby v urči-
tém časovém okamžiku splynul bod K s bodem M v ten-
týž bod křivky y (obr. 103). Pak se v každém okamžiku 
dotýká průměr KL trajektorie bodu M. Jinými slovy, 
tato trajektorie je obalovou křivkou všech poloh prů-
měru KL. 

Toto výhodné pravidlo jsme nazvali větou o dvou 
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kruzích. K jejímu důkazu se vrátíme později, zatím její 
tvrzení doplníme. Kotálíme-li obě kružnice, o kterých 
věta mluví, současně tak, aby v každém okamžiku sply-
nuly jejich body dotyku s křivkou y, kotálí se menší 
kružnice uvnitř větší bez klouzání. Podle Koperníkovy 
věty se bod M pohybuje po pevném průměru KL větší 
kružnice. A naše věta o dvou kruzích tvrdí, že přímka 
KL je tečnou sestrojenou v bodě M k jeho trajektorii. 

Přejděme k příkladům. Začneme u systému přímek, 
o kterém jsme již hovořili v úvodu knížky. Nechť se 
kružnice o poloměru r s vyznačeným bodem M kotálí 
zevnitř po kružnici o poloměru R = 4r. Kotálejme spolu 
s ní kružnici o poloměru 2r a na ní pevně zvolený průměr 
KL také po vnitřku pevné kružnice o poloměru 4r. 
Předpokládáme přitom, že ve výchozím okamžiku splý-
vají body K a M s bodem A pevné kružnice (obr. 104). 
Podle Koperníkovy věty se krajní body průměru KL 
pohybují po dvou na sebe kolmých průměrech A A' 
a BB' pevné kružnice. Současně se podle věty o dvou 
kruzích dotýká průměr KL v každém okamžiku trajek-

B 

A 

Obr. 103 
B' 

Obr. 104 
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torie bodu M, tj. obalovou křivkou přímek KL je asteroi-
da s body vratu A, B, A', B'. 

Další úloha se týká kardioidy. 

7.15 Z pevného bodu B kružnice vycházejí světelné 
paprsky, dopadají do všech bodů kružnice a odrážejí se 
od ní (úhel dopadu se rovná úhlu odrazu). Dokažte, že 
obalovou křivkou odražených paprsků je kardioida. 

L 

• Označme O střed dané „zrcadlové" kružnice a C 
bod diametrálně protilehlý k bodu B. Nechť se paprsek 
BP odrazí v bodě P do bodu N úsečky BC (předpoklá-
dáme, že | <$PBC| ^ 45°). Pak je | PNC| = | BPN\ + 
+ | <£ PBN | = 3| PBC |. Otáčí-li se tudíž paprsek BP 
úhlovou rychlostí o, otáčí se odražený paprsek úhlovou 
rychlostí 3co, přičemž se bod odrazu P pohybuje po 
zrcadlové kružnici úhlovou rychlostí 2<o (věta o prstenci 
v kap. 1). To zůstává v platnosti i při | PBC\ > 45°. 

Náš systém přímek PN můžeme tedy dostat také 
takto: Kotálejme po pevné kružnici o poloměru r = 
= |0S|/3 se středem v bodě 0 kružnici poloměru 2r 
a s ní pevně spojený průměr KL, který leží ve výchozí 
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poloze na přímce BC (obr. 105). Probíhá-li střed P této 
kružnice kružnici o poloměru 3r a středu O úhlovou 
rychlostí 2W, otáčí se průměr KL úhlovou rychlostí 
3(0 (1), stejně jako odražený paprsek. 

Podle věty o dvou kruzích je obalovou křivkou systé-
mu přímek KL trajektorie bodu M na kružnici o polo-
měru r, která se kotálí po kružnici téhož poloměru se 
středem v bodě O, tj. kardioida. Ve výchozí poloze 
splývá bod M s bodem A, který dělí úsečku BC v po-
měru 2:1. Ten je bodem vratu kardioidy. • 

7.16 Svazek rovnoběžných paprsků dopadá na zrcadlo 
tvaru půlkružnice. Dokažte, že se odražené paprsky 
dotýkají nefroidy. 

Kdyby bylo zrcadlo parabolické, odrážely by se 
všechny paprsky do jednoho bodu, do ohniska paraboly 
(viz kap. 6). Proto se nefroidě také říká ohnisková křivka 
kružnice. 

7.17 Najděte množinu všech bodů, kterou opíše pevný 
průměr kruhu o poloměru r kotálející se 

a) vně po pevné kružnici o poloměru r, 
b) uvnitř po pevné kružnici o poloměru 3r/2. 
Několik dalších zajímavých úloh o tečnách křivky 

uvedeme dále. Dříve však pojednáme o kinematických 
vztazích použitých ve větě o dvou kruzích a v řešeních 
posledních úloh. 

Rychlosti a tečny. Pro určení vztahů mezi úhlovými 
rychlostmi složených otáčení existuje výhodnější postup 
než ten poměrně primitivní, který jsme použili při řešení 
úlohy 7.4. Je to pravidlo skládání úhlových rychlostí 
analogické pravidlu skládání lineárních rychlostí, užívané 
hlavně při přechodu od jedné vztažné soustavy ke druhé. 
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Domluvíme se, že úhly a úhlové rychlosti odpovídající 
otáčení ve smyslu proti otáčení hodinových ručiček 
budeme brát s kladným znaménkem a úhly odpoví-
dající otáčení ve smyslu otáčení hodinových ručiček 
budeme brát záporně. Otočí-li se pak přímka l2 vzhle-
dem k přímce l1 o úhel cp' a přímka l3 vzhledem k přímce 
l2 o úhel q>, otočí se přímka l3 vůči přímce o úhel 
<p -f- q>'. Otáčí-li se tudíž rovinný útvar y2 kolem „pev-
ného" útvaru y1 úhlovou rychlostí to' a útvar y3 kolem 
útvaru y2 úhlovou rychlostí co, otáčí se útvar y3 kolem 
úhlovou rychlostí <o + to'. Vzhledem k tomu, že se 
v našich úlohách jedná především o otáčení kruhů, bu-
deme na každém z nich předpokládat pevně vyznačený 
poloměr, abychom lépe viděli úhly otočení. 

Ukážeme užití pravidla skládání úhlových rychlostí. 
Uvažujme dva kruhy o poloměru r, jejichž středy jsou 
pevně umístěny ve vzdálenosti 2r (obr. 106). Otáčejí-li se 
kruhy bez klouzání, jsou jejich úhlové rychlosti v abso-
lutní hodnotě stejné, ale mají opačná znaménka. Je-li 
například úhlová rychlost prvního —co, je rychlost 
druhého to. Rychlosti (už nikoli úhlové) jejich bodů 
dotyku musí být na obou kruzích stejné. To pijme 
z toho, že kruhy neprokluzují. Protože velikost v lineární 
rychlosti bodu M na kruhu, který se otáčí úhlovou rych-

Obr. 106 Obr. 107 
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lostí tu, je rovna v = car {r je vzdálenost bodu M od 
středu kruhu), plyne z rovnosti lineárních rychlostí 
rovnost absolutních hodnot úhlových rychlostí. Vezmě-
me teď vztažnou soustavu, pevně spojenou s prvním 
kruhem. Pak je třeba ke všem úhlovým rychlostem při-
číst co, úhlová rychlost prvního kruhu bude O a druhého 
2co. To jsme již viděli v úloze 7.4. 

Ještě jeden příklad. Nechť je vzdálenost mezi (zatím 
pevnými) středy O a P dvou dotýkajících se kružnic 
o poloměrech R = 2r a r rovna r (obr. 107). Otáčejí-li se 
kružnice bez prokluzování, jsou jejich úhlové rychlosti 
o) a 2co (poměr absolutních hodnot jejich úhlových 
rychlostí se rovná převrácené hodnotě poměru jejich 
poloměrů). Ve vztažné soustavě pevně spojené s větší 
kružnicí jsou jejich úhlové rychlosti 0 a co (jedná se 
o pohyb, o kterém se mluví v Koperníkově větě). Ve 
vztažné soustavě menší kružnice jsou úhlové rychlosti 
—co a 0 (úloha 7.7). 

Při určení úhlové rychlosti se ovšem můžeme také 
obejít bez zavedení otáčející se vztažné soustavy. Musí-
me pak umět zjistit (lineární) rychlost každého bodu 
kotálejícího se kruhu. To budeme hlavně potřebovat 
v dalším odstavci, pojednávajícím o tečnách cykloidál-
ních křivek. Vraťme se tedy k prvnímu příkladu — 
uvažujme kruh o poloměru r kotálející se po pevné 
kružnici téhož poloměru. Označme T bod kruhu, v němž 
se v daném okamžiku dotýká pohybující se kruh pevné 
kružnice. Okamžitá rychlost bodu T je nulová, protože 
kotálení probíhá bez prokluzování. Jak najít okamžité 
rychlosti ostatních bodů kruhu ? 

K odpovědi použijeme věty Mozziho: V každém 
okamžiku jsou rychlosti bodů desky, která se pohybuje 
v pevné rovině, bud stejné jako v případě posunutí 
desky, tj. všechny jsou stejně veliké a mají stejný směr, 
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nebo jsou takové jako při otáčení, tj. rychlost jednoho 
bodu T je nulová a velikost rychlosti libovolného bodu 
M je rovna \MT\ o>, kde je co okamžitá úhlová rychlost 
otáčení desky. Přitom je směr rychlosti bodu M ^ T. 
kolmý na spojnici bodů M, T. A právě tato druhá mož-
nost nastává v případě kotálejícího se kruhu, přičemž 
roli bodu T — okamžitého středu otáčení — hraje bod 
dotyku kruhu a kružnice. (A to platí i v případě kotálení 
křivého kolečka po kostrbaté cestě.) Použijeme-li toto 
tvrzení, najdeme poměr úhlové rychlosti atl kotálející se 
kružnice a úhlové rychlosti w2, se kterou se otáčí její 
střed P kolem středu O pevného kruhu. Stačí dvěma 
způsoby vypočíst velikost rychlosti bodu P. Jednak se 
rovná tato velikost hodnotě 2rco2, a protože je bod T 
okamžitým středem otáčení, rovná se též rto1. Je tedy 
2rw2 = ro)lt odkud u)1 = 2co2. 

Tentýž postup uplatníme v případě kruhu o poloměru 
r, který se kotálí po vnitřku kružnice o poloměru 2r tak, 
že se jeho střed otáčí po kružnici o poloměru r úhlovou 
rychlostí w2 > 0. Označme úhlovou rychlost kruhu CD1 
a všimněme si, že tO| < 0. Vyjádříme-li rychlost bodu P 
(středu kruhu) dvěma způsoby, dostaneme |ft»xr| = 
= |w2r|, odkud c^ = —a>2. 

Analogické úvahy nám pomohou i při studiu jiných 
složených otáčení. Pro nás je zvlášť důležité, že Mozziho 
věta nám umožňuje určit i směr rychlosti každého bodu 
pohyblivého útvaru. Rychlost bodu M je vždy kolmá 
k úsečce MT, která ho spojuje s okamžitým středem 
otáčení. 

Uvedeme ještě jeden důkaz Koperníkovy věty. Nechť 
je M bod kružnice o poloměru r, která se kotálí po 
vnitřku kružnice o poloměru 2r se středem O (obr. 108). 
V každém okamžiku směřuje rychlost bodu M kolmo 
na úsečku TM, kde je T bod dotyku obou kružnic, tedy 
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okamžitý střed otáčení menší kružnice. Směřuje tudíž 
rychlost bodu M do středu O větší kružnice, protože T 
a 0 jsou diametrálně protilehlými body menší kružnice. 
Proto se bod M pohybuje po průměru velké kružnice, 
což je tvrzení Koperníkovy věty. 

Dokážeme teď větu o dvou kruzích. Kotálejme po 
křivce nebo přímce y najednou dvě kružnice o polomě-
rech r a 2r. Označme M a K jejich body, které splývají 

ve výchozí poloze s bodem A křivky y, a T společný 
okamžitý střed otáčení obou kružnic, tedy jejich bod 
dotyku s křivkou y (obr. 109). Směr okamžité rychlosti 
bodu M je kolmý k úsečce MT, a je tedy totožný se 
směrem toho průměru větší kružnice, který prochází 
bodem M. Je proto tento průměr, jehož krajní body 
označíme K, L, pevným průměrem větší kružnice 
a přímka KL se v každém okamžiku dotýká trajektorie 
bodu M. A to je právě tvrzení věty o dvou kruzích. 

Všimněme si, že jsme zde použili jiné hledisko při 
určení tečny křivky; tečnou trajektorie pohybujícího se 
bodu je přímka procházející bodem M trajektorie ve 
směru vektoru rychlosti bodu M. 

Větu Mozziho dokazovat nebudeme, ukážeme si 
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v š a k j e j í g e o m e t r i c k o u a n a l o g i i . J e t o t v r z e n í , ž e k a ž d é 
p ř e m í s t ě n í r o v i n y v s e b e , p ř i k t e r é m r o v i n u n e p ř e k l o -
p í m e , j e b u ď p o s u n u t í r o v i n y , n e b o j e j í o t o č e n í k o l e m 
n ě k t e r é h o j e j í h o b o d u T . V s o u v i s l o s t i s M o z z i h o v ě t o u 
s i v š i m n ě m e j e š t ě j e d n é o k o l n o s t i . O k a m ž i t ý s t ř e d o t á -
č e n í T m ě n í p ř i z c e l a o b e c n é m p o h y b u d e s t i č k y v r o v i n ě 
s v o u p o l o h u , a t o j a k v z h l e d e m k p e v n é r o v i n ě , t a k 
v z h l e d e m k p o h y b u j í c í s e d e s t i č c e . V y t v á ř í t a k v p e v n é 
r o v i n ě i v p o h y b u j í c í s e r o v i n ě p e v n ě s p o j e n é s d e s t i č k o u 
k ř i v k u . P r v n í se n a z ý v á pevná poloida, d r u h á hybná 
poloida. N a p ř í k l a d p ř i k o t á l e n í k o l e č k a p o c e s t ě j e 
p e v n o u p o l o i d o u c e s t a , h y b n o u p o l o i d o u o b v o d k o l e č k a . 
V k i n e m a t i c e s e d o k a z u j e , ž e se h y b n á p o l o i d a k o t á l í p o 
n e h y b n é . S v ý j i m k o u p o s o u v á n í j e t e d y k a ž d ý s p o j i t ý 
p o h y b r o v i n y v s e b e k o t á l e n í m j e d n é k ř i v k y p o d r u h é . 
M y j s m e se o m e z i l i n a t y p o h y b y , p ř i k t e r ý c h b y l y o b ě 
p o l o i d y k r u ž n i c e m i . 

T í m u k o n č í m e n á š m a l ý v ý l e t d o k i n e m a t i k y a m ů -
ž e m e p ř i s t o u p i t k o d h a l e n í n e j p o z o r u h o d n ě j š í c h v l a s t -
n o s t í c y k l o i d á l n í c h k ř i v e k , s o u v i s í c í c h s j e j í m i t e č n a m i . 

7 . 1 8 D o k a ž t e , ž e t e č n y k a r d i o i d y v k r a j n í c h b o d e c h 
j e j í l i b o v o l n é t ě t i v y , k t e r á p r o c h á z í b o d e m v r a t u k a r d i o -
i d y , j s o u n a s e b e k o l m é . V z d á l e n o s t j e j i c h p r ů s e č í k u o d 
s t ř e d u p e v n é k r u ž n i c e j e 3 r , k d e r z n a č í p o l o m ě r t é t o 
k r u ž n i c e , j 

7 . 1 9 P o k r u ž n i c i j d o u d v a c h o d c i P a Q, p o m ě r j e j i c h 
ú h l o v ý c h r y c h l o s t í j e k (k j e r ů z n é o d 0 , 1 a — 1 ) . U r č e t e 
o b a l o v o u k ř i v k u v š e c h s p o j n i c PQ. 

7 . 2 0 J e d á n a k r u ž n i c e a p ř í m k a p r o c h á z e j í c í j e j í m 
s t ř e d e m . D o k a ž t e , ž e s j e d n o c e n í m v š e c h k r u ž n i c s e 
s t ř e d e m n a d a n é k r u ž n i c i a d o t ý k a j í c í c h s e d a n é p ř í m k y 
j e o b l a s t o h r a n i č e n á n e f r o i d o u . 

7 . 2 1 U v a ž u j m e S t e i n e r o v u k ř i v k u o p s a n o u k r u ž n i c i 
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poloměru 2r. Dokažte, že každá její tečna s bodem doty-
ku M ji protíná ještě v bodech K, L, přičemž délka 
úsečky KL je 4r, její střed leží na dané vepsané kružnici; 
tečny Steinerovy křivky v bodech K, L jsou na sebe 
kolmé a jejich průsečík N leží také na vepsané kružnici. 
Ta půlí úsečky KN a LN. j 

7.22 Asteroida je opsána kružnici o poloměru 2r. 
Dokažte, že každým bodem P vepsané kružnice lze vést 
k asteroidě tři tečny PTlt PT2, PTB, z nichž každé dvě 
svírají spolu úhel 60° a body dotyku T „ T2, Ts tvoří 
vrcholy rovnostranného trojúhelníku vepsaného kruž-
nici o poloměru 3r, která se dotýká kružnice opsané 
asteroidě. 

Poslední úloha této série, kterou lze též řešit pomocí 
pohybu, ukazuje nečekanou souvislost mezi elementární 
geometrií trojúhelníku a cykloidální křivkou, která nese 
jméno geometra, objevitele této souvislosti. 

7.23 Je dán trojúhelník ABC. Dokažte, že 
a) paty kolmic vedených libovolným bodem kružnice 

opsané trojúhelníku ABC na přímky AB, BC, CA leží 
na jedné přímce (Simsonova přímka), 

b) středy stran trojúhelníku, paty jeho výšek a středy 
úseček spojujících průsečík výšek s vrcholy trojúhelníku 
leží na jedné kružnici (tzv. kružnice devíti bodů, nebo také 
Feuerbachova kružnice), 

c) všechny Simsonovy přímky trojúhelníku ABC se 
dotýkají Steinerovy křivky opsané kružnici devíti 
bodů. I 

Parametrické rovnice. Všechny vlastnosti cykloidál-
ních křivek jsme mohli dokázat také analyticky. Přitom 
je nejvýhodnější použít parametrických rovnic křivky, 
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kterými jsou souřadnice [z; y] bodu M křivky vyjádře-
ny pomocí parametru t. Pod parametrem t si můžeme 
představit čas. S takovými rovnicemi jsme se setkali už 
v úloze 6.22. 

Uvažujme trajektorii, po které se pohybuje čtvrtý 
vrchol M kloubového rovnoběžníku OPMQ, jehož 
vrchol O je pevný a splývá s počátkem soustavy sou-
řadnic. Vyjdeme ze vztahu OM = OP + OQ. Pohy-
buje-li se bod P po kružnici o poloměru rx a středu O 
úhlovou rychlostí co, a bod Q po kružnici o poloměru r2 

a středu O úhlovou rychlostí <y2, má v okamžiku t bod 
P souřadnice [rx cos Wjř; rx sin w^], Q = [r2 cos to2<; 
r2 sin co2ř] a souřadnice čtvrtého vrcholu M rovnoběžníku 
OPMQ jsou 

x = rx cos ťoxř -f- r2 cos w2t, 

y = rx sin wj -f- r2 sin <o2t 

(předpokládáme, že v okamžiku t = 0 splývají polo-
přímky OP a OQ s kladnou polopřímkou osy z). V úloze 
6.22 jsme si ukázali, že v případě w2 = — « j opisuje bod 
M elipsu. V obecném případě, platí-li vztahy 

(o1l<o2 = k, r2lrt = 

opisuje bod M cykloidální křivku, k-cykloidu. 
Vyloučením parametru t z výše uvedených para-

metrických rovnic dostaneme v některých případech 
jednoduchou rovnici, kterou jsou spolu svázány sou-
řadnice z, y každého bodu ¿-cykloidy. Vezměme napří-
klad asteroidu. Pro ni je rx = 3r2, io2 = —3«,; můžeme 
vzít wx = 1, pak je co2 = —3 a parametrické rovnice 
asteroidy jsou (položili jsme r2 = r) 

z = 3r cos t + r cos 3ř, 
y = Zr sin t — r sin 31, 
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nebo v jednodušším tvaru < ? > 
x = 4r cos31, y = 4r sin3 í. 

Odtud plyne jednoduchá rovnice asteroidy 
3-2/3 _j_ ̂ 2/3 _ (4r)2/3 

Asteroidu i další křivky, se kterými jsme se seznámili, 
je možné zadat algebraickými rovnicemi. Ověřte si, že 
souřadnice \x\ y~\ každého bodu příslušné křivky vyho-
vují rovnici: 
asteroida (x2 + y2 — 4r2)3 + 108 r2x2y2 = 0, 
kardioida (x2 + y2 — 2 rx)2 — 4 r2(x2 + y2) = 0, 
nefroida (x2 + y2 — 4 r2)3 — 108r4x2 = 0, 
Steinerová (x2 + y2 + 9r2)2 + 8rx(3y2 — x2) — 
křivka — 108r4 = 0. 

Jsou tedy asteroida a nefroida křivky šestého stupně, 
kardioida a Steinerová křivka jsou stupně čtvrtého. 

Dá se ukázat, že při racionálním poměru k = wjw^ je 
cykloidální křivka křivkou algebraickou. Pro iracio-
nální k dostaneme nealgebraickou křivku, jejíž body 
vyplňují hustě mezikruží se středem O a poloměry 
rx + r2 a \rx — r2|. To znamená, že v každém kruhu se 
středem v popsaném mezikruží a s libovolně malým 
poloměrem leží alespoň jeden bod křivky. 

Porovnáním rovnice křivky s jejími geometrickými 
vlastnostmi můžeme dostat zajímavé důsledky. Uká-
žeme si jednu úlohu, ve které se užívá vlastností aste-
roidy. 

7.24 a) Je dán pravý úhel a uvnitř něho ve vzdále-
nostech a, b od ramen úhlu bod K. Je možné proložit 
bodem K úsečku délky d s krajními body na ramenech 
úhlu? 
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b) Kanál, jehož břehy jsou rovnoběžné přímky, se 
láme do pravého úhlu. Před lomem má šířku a, za lomem 
šířku b. Pro která d může lomem proplout tenké břevno 
délky d (obr. 110)? 

• a) Zvolíme ramena úhlu za osy soustavy souřadnic. 
Úsečka délky d s krajními body na ramenech úhlu se 
dotýká asteroidy, jejíž body vratu mají vzdálenost d 

od středu asteroidy. Její rovnice je x2/3 + ž/2'3 = d213. 
Je-li K vnitřním bodem oblasti ohraničené asteroidou 
a rameny úhlu (nebo bodem hranice oblasti), existuje 
úsečka požadovaných vlastností. Je to úsečka prochá-
zející bodem K a dotýkající se asteroidy. Leží-li bod K 
vně uvedené oblasti, nemá úloha řešení. Úsečka přede-
psaných vlastností existuje tedy právě tehdy, je-li 
a ? i a ¿,2/8 < ; ¿ 2 / 3 Q 

Poznamenejme, že ačkoliv jsme si objasnili, jak 
„sestrojit" za předpokladu a2'3 + 62'3 ÍS d213 hledanou 
úsečku pomocí asteroidy, není úloha řešitelná jen pomocí 
pravítka a kružítka. 

Pozoruhodné křivky, se kterými jsme se seznámili 
v posledních dvou paragrafech, jsou známy již více 

a 

b 

Obr. 110 
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než 2000 let. Základní vlastnosti elips, hyperbol a para-
bol byly popsány již v díle „O kuželosečkách" staro-
řeckého matematika Apollonia z Pergy, který žil téměř 
současně s Euklidem (třetí století před naším letopoč-
tem). Studiem trajektorií pohybů složených z kruho-
vých se již ve starověku zabývali astronomové, a ne-
můžeme se tomu divit. Předpokládáme-li, že se planety 
pohybují kolem Slunce zhruba po kruhových drahách 
a v téže rovině, je pohyb každé planety pozorován ze 
Země jako složený kruhový pohyb. Popis pohybu planet 
pomocí cykloidálních křivek se novými astronomickými 
pozorováními stále zpřesňoval až do doby, kdy Johannes 
Kepler zjistil, že trajektorie planet jsou s velkou přes-
ností elipsy s jedním ohniskem ve středu Slunce. Různé 
úlohy fyziky, mechaniky i matematiky související 
s křivkami byly zkušebním kamenem analytické metody 
v geometrii, kterou vytvořili v 17. století Descartes, 
Leibnitz, Newton, Fermat a jiní. Tato metoda umožnila 
přechod od jednotlivých úloh o konkrétních křivkách 
k obecným zákonitostem týkajícím se vždy celých tříd 
křivek. Při výpočtech složitých mechanismů a kon-
strukcí se sice neobejdeme bez analytické geometrie, ale 
názorné představy, kterým je věnována tato knížka, 
jsou užitečné, a to i v úlohách nesouvisejících s geo-
metrií. Ne nadarmo se výsledky výzkumů a výpočtů 
předkládají ve formě grafů nebo systémů křivek. 
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ODPOVĚDI, NÁVODY. 
ŘEŠENÍ 

1.13 Vrcholy M pravoúhlých trojúhelníků AMB 
s přeponou AB leží na kružnici s průměrem AB. 

1.14 Bodem dotyku M kružnic veďme jejich společnou 
tečnu. Její průsečík s přímkou AB označme O. Pak je 
\AO\ = \BO\ = \MO\ (délky tečen vedených bodem O 
k téže kružnici jsou stejně velké). 

1.15 Sjednocení tří kružnic. Nechť jsou A, B, C, D 
dané body. Bodem A vedeme přímku l, bodem C přímku 
s ní rovnoběžnou a body B, D vedeme přímky kolmé 
k přímce l. Tím dostaneme pravoúhelník. Je-li L střed 
úsečky AC, K střed BD, je LMK = 90°, kde je M 
střed pravoúhelníku. Otáčíme-li přímku l kolem bodu A 
a odpovídajícím způsobem ostatní přímky, vidíme, že 
množinou bodů M je kružnice nad průměrem KL. Pro-
tože čtyři body A, B, C, D můžeme rozdělit na dvojice 
třemi způsoby, skládá se hledaná množina ze tří kruž-
nic. 

1.25 Buď je střed pevný, nebo probíhá přímku. Pohy-
bují-li se chodci po rovnoběžných přímkách, je střed 
buď pevný (chodci jdou každý na jinou stranu), nebo se 
i střed pohybuje po přímce rovnoběžné s danými. Nechť 
se přímky protínají, označme O jejich průsečík a vx, v2 

rychlosti chodců, tedy vektory ze zaměření první a druhé 
přímky, jejichž velikost je rovna dráze, kterou ujde ten 
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který chodec za jednotku času. Nechť se první chodec 
nachází v okamžiku t v bodě P, druhý v bodě Q, pak je 
OP = a + tvx, OQ = b + tv2, vektory a, b udávají 
polohu chodců v čase t = 0. Střed M úsečky PQ je dán 
vztahem OM = (OP + OQ)/2 = (a+"&)/2 + ^ +~uí)/2. 
Vidíme, že se bod M pohybuje po přímce rychlostí 

Obr. 111 

(fi + í>2)/2. Pro její určení stačí určit střed počátečních 
poloh obou chodců a střed jejich poloh třeba za jednotku 
času. 

Výpočty s vektory můžeme nahradit též geometric-
kými úvahami. Nechť jsou P0P1 a Q0QX libovolné, ale ne 
rovnoběžné úsečky, M0 střed úsečky P0Q0 a M r střed 
úsečky PXQÚsečka MQMÍ je těžnicí v trojúhelníku 
LXMQNX, kde Lt a Nv jsou čtvrtými vrcholy rovnoběž-
níků PXPJÍQLX, Q1Q9M0NÍ. Úsečky P ^ a NTLT jsou 
totiž úhlopříčkami v rovnoběžníku P ^ Q ^ x (obr. 111). 
Zvolíme-li místo bodů Px a na přímkách P0PU Q0Qi 

body P, Q tak, aby P^P = tP^P,, = a se-
strojíme-li obdobně jako předtím trojúhelník LM^N 

142 



s těžnicí M0M, je tento trojúhelník zřejmě stejnolehlý 
s trojúhelníkem L1M0N1 s těžnicí M0MX, a bod M leží 
proto na přímce M^M^ 

1.28 Použijeme obrázku z řešení 1.25. Otáčí-li se 
úsečky PQPI a Q0Q1 rovnoměrně kolem bodů P0, Q0 

stejnou úhlovou rychlostí, otáčí se stejnou úhlovou 
rychlostí trojúhelník LlM^N1 s těžnicí M0MV 

1.29 Kružnice. Úlohu řešíme pomocí pohybu, sestro-
jíme poloměry OxK, 02L. Otáčí-li se přímka KL rovno-
měrně úhlovou rychlostí co, otáčí se podle věty o prstenci 
poloměry OxK a 02L stejnou úhlovou rychlostí 2co, je 
tedy velikost úhlu přímek O a 02L konstantní. Tím 
se úloha převede na předcházející. 

2.11 b) Použijte F. 

2.19 Označme výšku trojúhelníku h. Je-li ¡i < h, je 
hledaná množina prázdná, pro /x = h je to celý troj-
úhelník, pro fi > h obvod šestiúhelníku (obr. 112). 

2.20 Obrázek 113. 

3.5 b) Převede se na úlohu 3.5a, nebo se dá řešit 
„prostorově". Sestrojíme tři sféry, které mají dané kruž-
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nice za hlavní kružnice (každá sféra prochází jednou 
kružnicí a střed sféry a střed kružnice splývají). Každé 
dvě sféry se protínají v kružnici, která se promítá do 
příslušné tětivy. 

3.7 b) Je AMB\ = 90° + <p/2, kde M je střed 
kružnice vepsané trojúhelníku. Podle E je hledanou 
množinou dvojice kruhových oblouků s koncovými 
body A, B. 

3.7 c) Hledanou množinou je dvojice kruhových 
oblouků. Na obrázku 114 jsou po řadě zachyceny pří-

pady <p < 90°, <p = 90°, (p > 90°. Nechť lA, lB jsou různo-
běžky procházející body A, B a nechť kA, kB jsou přímky 
rovněž procházející body A, B, přičemž kA _L Zfl, kB X 
_L lA. Otáčejí-li se přímky lA, lB kolem bodů A, B rovno-
měrně, otáčejí se stejně přímky kA, kB. Podle E0 probíhá 
jejich průsečík kružnici. Probíhá-li průsečík přímek lA> lB 
kruhový oblouk kružnice y, probíhá průsečík přímek 
kA, kB kruhový oblouk kružnice souměrně sdružené ke 
kružnici y podle přímky AB. 

3.8 a) Označme K, L, M postupně průsečíky dvojic 
přímek a a b, b a c, c a a. Podle E0 opisují body K, L 

a b c 
Obr. 114 
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kružnice s tětivami AB, BC. Označme H průsečík 
těchto kružnic, různý od B. V okamžiku, kdy přímka b 
prochází bodem H, splývají body K, L s bodem M, 
procházejí tudíž přímky a a c také bodem H. (Případy, 
ve kterých se uvažované dvě kružnice v bodě B dotýkají, 
nebo dokonce splývají, nutno vyšetřit zvlášť. V prvním 
případě splývají body B a M, ve druhém splývají 
v každém okamžiku body K, L, M, na přímky a, b, c 
je možné navléknout jeden prstenec.) Poznamenejme 
ještě, že při celém otáčení je trojúhelník KLM stále 
podobný jedné své poloze. Procházejí-li přímky a, b, c 
bodem H, redukuje se na bod a největších rozměrů na-
bývá v okamžiku, kdy jsou přímky a, b, c po řadě kolmé 
na přímky AH, BH, CH. Pak splývají jeho vrcholy 
s body diametrálně protilehlými k bodu H na jednotli-
vých trajektoriích (kružnicích). 

3.8 b) Nechť se přímky AH, BH, CH začínají otáčet 
stejnou úhlovou rychlostí kolem bodů A, B,C (H je 
průsečík výšek). Pak opisuje průsečík každé dvojice 
kružnici, a to jsou ty kružnice, o kterých se mluví 
v úloze. 

3.9 Zkoumáme tři množiny bodů M ležících uvnitř 
trojúhelníku, {M : SAMB = kx.SBMC}, {M : SBMC= kt. 
• SAMC}, {M : SAMC= k3.SAUB}. To jsou tři úsečky (viz 
J), které se protínají v jednom bodě, právě když platí 
t M — i • 

3.10 Uvažujte množiny {M : \MA\* — \MB\2 = 
{M : \MB\* — \MC\* = h2), {M : \MC\2 — \MA\* = ha}. 
Tyto tři přímky (viz F) se protínají právě tehdy v jed-
nom bodě, když hx + h2 + h3 = 0. 

3.19 Uvažujte pro každý z daných n bodů 0 ( množinu 
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bodů, jejichž vzdálenost od bodu C; není větší než 
1/]/tm (i = 1, .. ., n). 

3.21 Uvažujte množinu koncových bodů vektorů 
OM = OE[ + OEZ + • • • + OE« (kde ~OE{ jsou jed-
notkové vektory podle podmínek úlohy) nejdříve pro 
n = 1, pak n = 2 atd. 

4.4 Nejmenší vzdálenost mezi chodci je udj^u1 + v2-
Rychlost prvního chodce nechť je u, druhého v (velikosti 
těchto vektorů jsou dány). Uvažujme relativní pohyb 
chodce P vzhledem ke Q, to je rovnoměrný pohyb rych-
lostí u — v (viz 1.3). V počáteční poloze, kdy se chodec 
P nachází v průsečíku P0 obou cest, je chodec Q v poloze 
Q0, vzdálené od P0 ve směru vektoru —v o délku 
|Q0P0| = d. K určení odpovědi úlohy stačí bodem P 0 

vést přímku l ve směru vektoru u — v (to je trajektorie 
bodu P při relativním pohybu vzhledem k vztažné sou-
stavě, svázané s bodem Q) a určit vzdálenost Q0H bodu 
Q0 od přímky L (H je kolmý průmět bodu Q0 na L). Pro-
tože trojúhelník Q0P„H je podobný trojúhelníku slo-
ženému z vektorů u, v, u — v (QQP0 _L U, Q0H U — v), 
je IGotfl/IGoPol = \u\l\u—7\ = ul]/u?~+~v*. 

4.6 Veďme středem jedné kružnice kolmici OxN 
na přímku L procházející bodem A, středem druhé 
kružnice kolmici na OjA7; její patu označme M. Pak je 

Í01M\ polovina vzdálenosti průsečíků přímky L s oběma 
kružnicemi (různých od A). 

4.9 Rovnoramenný trojúhelník. Použijte 2.8a. 
5.4 b) Dokažte, že průsečík M kolmic vedených body 
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K, L k přímkám KA, LA opisuje kružnici, pohybují-li 
se body K, L po ramenech úhlu s vrcholem A tak, aby 
se neměnila velikost úsečky KL (vzpomeňte na souvis-
lost s Koperníkovou větou vyloženou v úvodu). 

5.7 Použijte tvrzení, že hladiny funkce f(M) = 
= \AM\\\BM\ jsou kružnice kolmé ke kružnicím pro-
cházejícím body A, B. 

6.3 e) Odpověď je hyperbola, jestliže každá z daných 
kružnic leží vně druhé (nebo mají vnější dotyk), sjed-
nocení hyperboly a elipsy, jestliže se kružnice protínají, 
a elipsa v případě, že jedna z kružnic leží ve vnitřní 
oblasti druhé (nebo mají vnitřní dotyk). Ohniska splý-
vají se středy kružnic. 

6.12 a) Spolu s danou tečnou uvažujte i tečnu sou-
měrně sdruženou podle středu elipsy. Využijte 6.9b a větu 
o součinu úseků na tětivě procházející daným bodem 
vnitřní oblasti kružnice (součin nezávisí na směru tětivy). 

6.15 Sestrojte v případě a) elipsu a v případě b) hy-
perbolu s ohnisky A, B dotýkající se první úsečky 
P 0Pi a dokažte, že se jí dotýká i druhá úsečka PjP2. 
Užijte k tomu shodnosti trojúhelníků AP^B, APXB', 
kde A' je bod souměrně sdružený k bodu A podle P0Plt 

B' je bod souměrně sdružený k B podle PXP2- Tečny 
jsou osami úseček AA', BB' (viz 6.9a, 6.10a). 

6.16 c) Sestrojíme množinu všech bodů N, pro které 
leží střed úsečky AN na dané kružnici. Je to kružnice, 
její střed označíme B, její poloměr R. Množina bodů, 
které jsou blíž k bodu A než k libovolnému z bodů N 

K úlohám 6.16 a 6.17. N a obrázcích 1 1 5 — 1 1 7 je zakresleno 

f ouze nékolik přímek příslušného systému, ale zdá se, jako by 
y ly prorýsovány i výsledné obálky — hyperbola, elipsa, para-

bola. 
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sestrojené kružnice, je průnikem polorovin ohraničených 
osami úseček AN a obsahujících bod A. Tutéž množinu 
můžeme psát ve tvaru {M : \MA \ — \MR\ < R}, hra-
niční křivkou je jedna větev hyperboly. 

6.17 Porovnejte návod k 6.16 s důkazem ohniskové 
vlastnosti paraboly. 

6.23 Počátek soustavy souřadnic zvolte ve středu 
úsečky AB a směr osy x tak, aby v některém okamžiku 
byly otáčející se přímky s ní rovnoběžné. Vyjádřete 
rovnice přímek a souřadnice jejich průsečíku v závislosti 
na čase t. Vyloučením parametru t ze souřadnic průsečí-
ku (jako v řešení 6.22) dostanete rovnici hyperboly ve 
tvaru (4) na str. 104. 

6.24 Představme si dvě přímky otáčející se kolem 
bodů A, B v opačných smyslech tak, že se druhá otáčí 
s dvojnásobnou úhlovou rychlostí než přímka první. 
Lehce uhodneme, že se jejich průsečík pohybuje po 
křivce podobné hyperbole, přičemž její asymptoty 
svírají s přímkou AB úhel 60° a její průsečík C s úsečkou 
AB ji dělí v poměru \ACJ\BC\ = 2. A odpověď v této 
úloze skutečně zní — větev hyperboly. Geometrický 
důkaz podáme nejlépe převedením úlohy na množinu Q 
naší abecedy. K tomu sestrojíme bod M' souměrně 
sdružený k bodu M podle osy l úsečky AB a všimneme 
si, že BM' je osou ÚHHI ABM a že \MM'\ = \MB\, proto 
j e \MB\Iq(M, l) = 2. 

6.25 a) Zvolíme-li soustavu souřadnic tak, aby ramena 
úhlu byla dána rovnicemi y = kx, y = —kx(x ^ 0), je 
obsah trojúhelníku OPQ s vrcholy P, Q na ramenech 
úhlu a středu P[x; y\ roven kx2 — y2/k. 

b) Použijte výsledků úlohy 1.7b. 
c) Vyplývá z a) a b). 
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7.2 Sjednocení je množinou všech bodů M, ke kterým 
existuje takový bod P kružnice, že \MP\ GL \PA\, nebo 
též množinou bodů M, pro které má osa úsečky MA 
společný bod s danou kružnicí. Srovnejte s úlohami 
6.16, 6.17. 

7.9 Odpověď: a) 3, b) 4, c) 2,5. Najděte poměr úhlo-
vých rychlostí tak, jak to bylo ukázáno v odstavci 
o rychlostech a tečnách. 

7.13 a) Kruhový oblouk kružnice o poloměru R mezi 
dvěma body vratu Steinerovy křivky má stejnou délku 
jako polokružnice o poloměru 2iř/3. 

7.14 b) Jednu i druhou křivku můžeme dostat jako 
trajektorii vrcholu M kloubového rovnoběžníku o stra-
nách R — r, r s poměrem úhlových rychlostí c0j/c02 = 
= —rl(R — r) (úhlové rychlosti mají opačná znaménka). 

7.18 Použijte 7.7 a větu Mozziho. 

7.19 ¿-cykloida. 

7.21 Použijte 7.13a. Mozziho větu a větu o dvou kru-
zích. 

7.23 Nechť se bod M pohybuje po opsané kružnici 
úhlovou rychlostí co. Pak 
(1) se body MLT M2. M3, souměrně sdružené k bodu M 
podle přímek BC, CA a AB, pohybují po kružnicích 
úhlovou rychlostí —co, 
(2) tyto tři kružnice se protínají v průsečíku výšek H 
trojúhelníku ABC (3.8b), 
(3) každá z přímek M^M (i = 1, 2, 3) se otáčí kolem 
bodu H úhlovou rychlostí —a)/2, 
(4) body MLT MIT M 3 leží na jedné přímce IM procházející 
bodem H (tj. přímky MTM splývají v jednu přímku IM), 
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(5) středy úseček MiM (i = 1, 2, 3) a střed K úsečky 
MH leží na jedné přímce, Simsonově přímce trojúhelní-
ku, 
(6) bod K se pohybuje po kružnici y, stejnolehlé s kruž-
nicí opsanou, s koeficientem 1/2 a středem stejnoleh-
losti H, 
(7) kružnice y pochází těmi 9 body, které jsou vyjmeno-
vány v 7.23b, 
(8) obalovou křivkou přímek lM je Steinerová křivka, 
dotýkající se kružnice y. 
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