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PŘEDMLUVA 

Symetrie (z řečtiny) — souměrnost: pravidelné seskupení 
předmětů nebo jejich částí podle střední osy. Symetrie 
se objevuje v p ř í r o d ě jako důsledek jejích zákonitostí 
a je základním schématem stavby živočišného nebo 
rostlinného těla; vývojově nižší živočichové, např. 
prvoci, houby, jsou nesouměrní, asymetričtí. Symetrie 
se projevuje i v u m ě n í : je dodržována klasicisujícími 
směry a popírána směry romantickými; ve výtvarném 
umění tvoří asymetrie v některých obdobích výrazový 
prostředek jako reakci na přísný klasický řád, uplat-
ňuje se i v architektuře. Asymetrie zde vyjadřuje vždy 
jisté n a p ě t í . 

Vymezení pojmů symetrie a asymetrie v předcházejí-
cím odstavci jsme převzali z Příručního slovníku nauč-
ného, který vyšel v Praze v letech 1962—1967; citujeme 
z hesla symetrie ve IV. dílu a z hesla asymetrie v I. dílu. 
Tento populární výklad pochopitelně nemůže obsah slov 
symetrie, symetrický postihnout ve vší úplnosti; to však 
čtenáři Školy mladých matematiků, který jistě velmi 
dobře zná např. geometrické aspekty symetrie (souměr-
nost podle přímky — osy, bodu — středa atp.), urěitě 
vadit nebude. 

Lidstvo chápe pojem symetrie zcela intuitivně (snad 
proto se také dětem někdy plete N s W a S s Z ! ) a v názo-
rech na symetrii se velmi různí. Tak např. význačný 
německý (později americký) matematik Hermann Weyl, 
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který žil v letech 1885—1955 a ovlivnil řadu odvětví 
matematiky, fyziky i filozofie, napsal kdysi, že „symetrie 
je idea, s jejíž pomocí se člověk v průběhu tisíciletí své 
historie pokoušel pochopit řád, krásu a dokonalost", 

Blake (1757—1827) hovořil o „strašné symetrii", Victor 
Hugo (1802—1885) ae domníval, že „nic tak nespoutává 
srdce jako symetrie", a Thomasů Mannovi (1875—1955) 
je připisován výrok o šestibokém „zlořádu sněhových 
krystalů". 
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A když už jsme u typických symetrických obrazců, 
jako jsou pravidelné n-úhelníky, zadejme »i zde úlohu: 
Do dané kružnice vepíšeme rovnostranný trojúhelník, 
tomu vepíšeme kružnici, do té opět vepíšeme čtverec, 
tomu vepíšeme kružnici a do té vepíšeme pravidelný 
pětiúhelník a tak pokračujeme donekonečna. Dostává-
me posloupnost soustředných kružnic (viz obrázek), 
jejichž poloměry se zmenšují, až se „smrsknou" v bod. 
Je to pravda? 

V tomto svazku rozšíříme pojem symetrie na mate-
matické objekty n e g e o m e t r i c k é povahy a ukážeme 
jejich použití v algebře a matematické analýze; většinou 
se budeme zabývat otázkami velmi elementárními. 
V prvních dvou kapitolách půjde o symetrické funkce 
dvou a tří proměnných a v kapitolách IV a V ukážeme, 
jak jich lze použít při řešení především algebraických 
problémů. Zde se autor podstatně inspiroval knížkou 
V. G. Boltjanského a N. J . Vilenkina Simmetrija v algeb-
re, která vyšla v Moskvě v roce 1967; čtenář, kterého 
tato problematika zaujme, najde v uvedené publikaci 
mnoho dalšího materiálu. Kapitoly I I I a VI se zabývají 
symetrickými funkcemi n proměnných a jejich použi-
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tím; tato část je poněkud náročnější a navazuje na 39. 
svazek Školy mladých matematiků Nerovnosti a odhady, 
který v textu citujeme jako [1]. 

V úvodním odstavci se hovořilo v souvislosti s asy-
metrií o napětí. Nám zde o žádné napětí nejde, a jako 
ilustraci toho, že i v asymetrii může být krása a řád, 
o němž hovořil Hermann Weyl, uvedme lipskou Starou 
radnici (viz obrázek): v jejím průčelí je věž umístěna 
sice asymetricky, ale tak, že dělí průěelí v poměru zla-
tého řezu. 
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K a p i t o l a I. 

SYMETRICKÉ FUNKCE 
DVOU PROMĚNNÝCH 

Uvažujme kvadratickou rovnici 

(1) í2 + at + b = 0 

o neznámé teR a označme x, y Icořeny této rovnice. 
Mezi kořeny x, y a koeficienty a, b rovnice (1) platí zná-
mé Viětovy vztahy 

(2) « = — (x + y), b = xy, 

jež jsou důsledkem formule pro rozklad kvadratického 
troj členu na kořenové činitele: 

fi + at + b = (t — x) (t — y). 

Vztahy (2) vlastně říkají, že koeficienty rovnice (1) 
jsou funkcemi kořenů této rovnice. Nejsou to ovšem 
funkce jen tak ledajaké, mají — jak ihned uvidíme — 
jednu důležitou vlastnost. Zapišme tyto funkce trochu 
jinak: místo a pišme —ex a místo b pišme ea; pak mají 
vzorce (2) tvar 

(3) ex = x + y, e2 = xy. 
Funkce ex a e2 se nezmění, zaměníme-li pořadí proměn-
ných: 

y)=x + y = y + x = ev{y, x), 

e2(s, y) =xy = yx = et(y, x). 
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Jsou příkladem symetrických funkcí dvou proměnných, 
t j . funkcí / proměnných x, y, u nichž nezáleží na pořadí 
proměnných: 

/(*. y) = f{y, x) pro každé x.yeR. 
Je ihned vidět, že stejnou vlastnost symetrie — tj . nezá-
vislosti na pořadí proměnných x a y — mají výrazy 

®2 + y2> v + TT' ( * - i ) 3 + ( ž / - i ) 3 . 
x y 

sin 2 xy, e?+vi a
x + av, 

a čtenář si jistě podobných výrazů (funkcí proměnných 
x a y) sestrojí ještě celou řadu. Je ovšem také ihned 
vidět, že mnoho funkcí tuto vlastnost symetrie n e m á — 
např. funkce 

x ~ y ' 1T' T ( a ; i — y2)> 

{x — l)3 -f {y + l)3, xa — Ixy atp. 
V dalším si všimneme podrobněji speciálních symetrie-, 
kých funkcí — tzv. symetrických polynomů. 

1.1. Definice. Polynom P(x, y) proměnných x, y (tj. 
funkci, která je součtem funkcí tvaru a&y1, kde a je 
reálné číslo, k a l jsou celá nezáporná čísla) nazveme 
symetrickým polynomem, platí-li pro všechny dvojice 
reálných čísel x, y 

(4) P(x,y)=-.P{y,x). 

1.2. Příklady, (a) Funkce x + y, xy, x8 + y2, x1 + 
+ 6a;y + y>, (x — l)s + (y — l)3 = x3 — 3a;2 + 3x — 
— 1 + y3 — 3y2 + 3y — 1 jsou symetrické polynomy. 
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(b) Funkce i - (x2 — y2), (x — 1)® + (y + l)3 = * + 

+ y3 — 3a;2 + 3y2 -f 3x + 3y, x3 — 7xy jsou sice poly-
nomy, nejsou to však symetrické polynomy. [Dokažte 
to tím, že naleznete takovou dvojici čísel, x0, y0, že pro 
příslušný polynom P(x, y) je P{x0, y0) ^ P(y0t a;0).] 

Funkce 6j 8» z formule (3) jsou symetrickými poly-
nomy. Nazýváme je elementárními symetrickými funk-
cemi a hned uvidíme proč. 

1.3. Příklady, (a) x2 + y2 je symetrický polynom. Dá 
se přitom vyjádřit pomocí elementárních symetrických 
funkcí e1( ea: 
(5) x2 + y2=x2 + 2xy + y2 — 2xy = (z + y)a — 

— 2 xy = e\ — 2e2. 
(b) Totéž platí pro symetrický polynom x3 -f- y3: 

(6) x3 + y3 = x3 + 3 x2y -f 3 xy2 + y3 — 3x2y — 
— 3xy2 = {x + y)3 — 3xy(x -f y) = 
— 1 36<j6| • 

(c) Totéž platí pro symetrický polynom x* + y*: 
x* + y* = x* + 2x2y* + y* — 2x"y2 = 

= (x2 + y2)2-2(xy)2; 
použijeme-li nyní vzorce (5), je 
(7) y* = (e? — 2ea)2 — 2eI = ef — 4e2e2 + 

+ 4e| — 2 el = e\ — 4efe2 + 2e\. 
(d) Totéž platí pro symetrické polynomy xsy + xy* 

a x^y1 + x7ys: použijeme-li formule (7), je 
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x*y + xf = xy{xi + y*) = e2(e} — ée\e2 + 2e|) 
a 

x3y7 + x1y3 = x3y3(x4 + y*) = elfe* — 4efe2 + 
+ 2el). 

1.4. Úloha. Označme pro přirozené číslo n 
(8) an = a^ + r-
Vyjádřete symetrické polynomy s5, sK, s7, sg, s9 a s10 po-
mocí elementárních symetrických funkcí elt e2. 

Návod. Lze postupovat podobně jako v příkladu 1.3 
a vypočítat p ř í m o ss, pak s6 atd. Lze však využít též 
rekurentní formule 
(9 ) sn = e l ® » - l 

kterou čtenář jistě snadno dokáže. 

Existuje však také p ř í m é vyjádření symetrického 
polynomu sn pomocí e1( e2, tzv. Waringova formule: 

(10) + = + 

(n 3)! (» — 4)! . 
2!(w. — 4)! *» 3!(n — 6)! 62 + ' ' ' ' > 

sčítají se výrazy tvaru ame1![~2me^, kde m se mění od nuly 

*) Edward W A R I N G , anglický matemat ik , žil v letech 1734 
až 1798 a formuli (10) dokázal v roce 1779. Zabýval se pře-
devším teorií čísel a v roce 1770 vyslovil hypotézu (nazvanou 
pak po něm), že každé přirozené číslo n lze vyjádř i t jako sou-
čet nejvýše g(k) A-tých mocnin přirozených čísel, přičemž 
g{k) nezávisí na n (je např . g(2) = 4, g(3) = 9). Waringovu 
hypotézu dokázal v roce 1909 David H Í L B E R T . 
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do největšího celého čísla N takového, íe N ^ — n, 
¿i 

, (» »» 1)! , ». v V 

a am = ( - 1 ) - . m ! ( r a _ 2 m ) , (připomeňme, ze 0! = 1). 
Doporučujeme čtenáři, aby se pokusil formuli (10) 

dokázat matematickou indukcí. 

Pro přehlednost si vyjádříme symetrické polynomy 
aB = x" -(- 2/" P r o n — I»2 , . . . , 10 pomocí elementárních 
symetrických funkcí ex, e2 ve tvaru tabulky: 

X + y = e, 
x1 + yí = e\ — 2e, 
x' + y3 = e* — Se^t 
X1 + yl = e{ — 4Íjfij 
x' + y* = 6* — 5e{e, + óe^l 
a* + y = e j - 6e}s, + 9e'eJ — 2e| 
x> + y> = e í - 7e5e, + 14eje{ — 76^5 
3* +y> = e ? - 8eje2 + 20e}ř| — 16e|e! + 2e\ 
xf> + y> = e ? — 9 e?e, + 27eje* — 30e}e5 + 96^ 
X 1 0 + y 0 »10 

— e j — lOeJe, + 35eJeJ — 50e}eJ + 25e}eJ — 2e\ 

Tab. I . l 

Na pravých stranách jsou vesměs výrazy v proměnných 
elt e2, a to opět p o l y n o m y v těchto proměnných; 
podobně tomu bylo i v příkladu 1.3 (d). To tedy zna-
mená, že některé symetrické polynomy P(x, y) lze vy-
jádřit jako polynomy Q(e1, e2) v proměnných elt e2, t j . 
jako součet funkcí tvaru ae*e2, kde a je reálné číslo, 
k a l jsou celá nezáporná čísla; máme pak 

(11) P(x,y)=Q(x + y,xy). 
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Vzniká nyní přirozená otázka, zda tuto vlastnost mají 
jen n ě k t e r é symetrické polynomy, či zda to platí pro 
v šechny . A odpověď dává následující věta: 

1.5. Věta. Každý symetrický polynom v proměnných x, 
y lze vyjádřit jaíco polynom v proměnných ex = x + y, 
c2 = xy. 

Důkaz je jednoduchý. Každý symetrický polynom 
P(x, y) je tvořen sčítanci tvaru 

(12) aaty* a &(a?Y -f rty"), 

kde a, b jsou reálná čísla, k, l, m jsou nezáporná celá 
čísla, l ý=m. (Obsahuje-li totiž polynom P(x, y) sčítanec 
bx^y1, musí — protože je symetrický — nutně obsahovat 
i sčítanec &afy™.) Bez újmy na obecnosti lze předpoklá-
dat, že m > l. Nyní je 

a2?"yk = a{xy)h = ae\ 
a 

+ aty™) = ba^yt(xm~l + y"1'1) = be^sm_t. 

Protože podle formule (10) lze také sm_j vyjádřit ve 
tvaru polynomu v elt e2, jsou všechny výrazy tvaru (12) 
polynomy v eu e2, a tedy také P(x, y) je rovno polynomu 
Q(ei, ea). 

1.6. Příklad. Chceme-li symetrický polvnom P(x, y) = 
= a? — 12 + x3y3 — 3 x*y2 + 2a; V + y" — 12a; V -f 
-f- 2x1y i vyjádřit pomocí elementárních symetrických 
funkcí eít e2, užijeme postup z důkazu věty 1.5: Je 

P(x, y) = {x* + i?) — 12(a;V + + 2(a;y + 
+ sty») + x y — 3a ;y = (a* + y») — 
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— 12xiy6{x + y) + 2x2yi(x6 + yb) + x'y3 — 

— 3x2y2 = «„ — 12e»ei + 2e|«5 + e\ — 3e|; 

vyjádříme-li nyní s8 a s5 pomocí tabulky 1.1, máme 
P{x, y)=(e\ — 8ejea + 20efel — 16cfel + K) — 

— 12e|et + 24(e[ — 5e?e2 + Se^l) + e\ — 3eJ = 
= e\ — 8eje2 + 2«®el + 20eíe| — lOefel — 

— 16e?ejS — ^ e š + lOe^ + 2e| + ej — 3e| = 
= Q(elt e2). 

1.7. Poznámka. Podle věty 1.5. existuje ke každému 
symetrickému polynomu P(x, y) polynom (obecně nesy-
metrický — viz příklad 1.6!) Q(elt e2), takže platí vztah 
(11). Lze ukázat, že polynom Q(e,, e2) je určen jednoznač-
ně, t j . že pokud existuje ještě polynom H(et, e2) takový, 
že 

P{x, y) = H(x + y, xy), 

pak jsou polynomy Q a H sobě rovné . Důkaz tohoto 
tvrzení však provádět nebudeme. 
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K a p i t o l a I I . 

SYMETRICKÉ FUNKCE 
TŘÍ PROMĚNNÝCH 

Uvažujme kubickou rovnici 

(1) f3 + aí2 + bt + c = 0 

a označme x, y, z kořeny této rovnice. Pak můžeme rov-
nici (L) zapsat též takto: 
(2) (ř —a;) (t —y) (í — s) = 0. 

Roznásobíme-li dvoj členy na levé straně v (2) a porov-
náme-li výsledek s levou stranou v (1), zjistíme, že 
koeficienty rovnice (1) — t j . čísla a, b,c — souvisejí s ko-
řeny x, y, z takto: 

a = —(x + y + z), 
b =xy + yz + zx, 
c = —xyz. 

Zapišme tyto Viětovy formule ještě trochu jinak: místo 
a pišme —eu místo b pišme e2 a místo c pišme —e,. 
Pak je 
(3) ex = x + y + z, 

H = xy + yz + zx, 
e3 = xyz. 

Funkce elt e2, e3 tří proměnných x, y, z mají opět vlastnost 
symetrie: nezmění se, změníme-li jakkoli pořadí proměn-
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ných x, y, z. Budeme je — analogicky jako v případě 
dvou proměnných—nazývat elementárními symetrickými 
funkcemi. 

11.1. Definice. Funkci / tří proměnných x, y, z nazveme 
symetrickou funkcí, nezmění-li se při jakékoliv změně 
pořadí proměnných, t j . platí-li 
(4) f{x, y, z) = f(x, z, y) = f(y, x, z) = f\y, z, x) = 

= f(z, x, y) = f(z, y, x) pro všechna x,y, ze R. 
Je-li funkce / polynomem (tj. součtem funkcí tvaru 
«a^z™, kde a je reálné číslo, k,la,m jsou celá nezáporná 
čísla) a má-li vlastnost (4), nazveme ji symetrickým poly-
nomem. 

11.2. Příklady, (a) Funkce e„ e2, e3 z (3) jsou symetrické 
funkce, a dokonce symetrické polynomy. 

(b) Funkce z2 + y2 + z2, ((ex)»)*, sin (x + y) + sin {y + 
+ z) + sin (z + x), (x -f y)(y + z) (z + jsou syme-
trické funkce. 

(c) Funkce xy + yz + zx2, xy2z, xy + yz jsou polyno-
my, ale nejsou symetrické (dokažte!). 

(d) Výraz x2 -f- y2 + z2 je dokonce symetrický poly-
nom; dovedeme ho vyjádřit pomocí elementárních sy-
metrických funkcí elt e2, e3: 
(5) x* + y* + z2 = (x + y + z)2 — 2xy — 2yz — 

— 2 zx = ef — 2ea. 
(e) Totéž platí pro symetrický polynom x2y + xy2 + 

+ x2z + xz2 + y2z + yz2: Je totiž 

( 6 ) x2y + xy2 + x2z + xz2 + ylz + yz2 — (xy -+- xz - J -

+ yz) x + (xy + yz + xz)y + (xz -f yz + 
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+ xy) z — Sxyz = (xy + yz + zx) (x + y + 
+ z) — 3 xyz = e ^ — 3ea. 

(f) Totéž platí pro symetrický polynom x3 -f y3 + z3: 

X* + y3 + 2S = (* + y + z)3 — 3(®«y + *ž/2 + 
+ x2z + xz2 + y2z -f- yz2) — 6xyz; 

užijeme-li nyní formule (6), je 
(7) x3 + y* + z3 = e\ — 3(eie2 — 3e3) — 6e3 = 

= ej — Ze^ + 3es. 
(g) Totéž platí pro symetrický polynom x2yz + xy2z + 

+ xyz1: 

(8) x2yz -j- xy2z + xyz2 = xyz(x y + z) = 
= 

(h) Totéž platí pro symetrický polynom x2y2 + y2z2 + 
+ z2x2: 

® V + y*zi + z i ! a : ! ! = (xy + vz +za;)2 — 

— 2{x2yz + xy2z + xyz2) = 4 — 2exes; 

přitom jsme využili vzorce (8). 

II.3. Úloha. Označme pro přirozené číslo n 
(9) a, = x» + y» + z". 

Ukažte, že tyto symetrické polynomy lze vyjádřit po-
mocí elementárních symetrických funkcí elt e2, e3. 

Návod. V příkladech II.2(d) a (f) jsme přímým výpočtem 
našli vyjádření pro 9, a ss: 
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s2 — ef 2e21 

«3 = e® — 3exe2 + 3e3. 
Metodou přímého výpočtu lze postupovat i dále a po-
stupně vypočítat í4, s-, 8h atd. Tak je např. 

a4 = cj — 4efe2 + 2c| + ie^; 

tento postup však není nejlepší, výhodnější je použití 
rekurentní formule 
(10) 8n = e-jSn^ 2 ~h C^n-a-

(Dokažte platnost této formulek) 

II.4. Poznámka. Je-li P(x, y, z) symetrický polynom 
t ř í proměnných, je výraz 

H(x, y) = P(x, y, 0) 

symetrický polynom dvou proměnných x, y. (Dokažte!) 
Položíme-li ve vzorcích (3) z = 0, bude 

(11) ey—x-\-y-\-0=-x-\-y, 
e2 = xy + y0 + Ox = xy, 
e3 = xyO = 0, 

a speciálně jsou tedy prvé dvě elementární symetrické 
funkce elt e2 stejné jako v případě dvou proměnných. 
Dosadíme-li z (11) do (10), bude 

sn = Ci^n-i 62^11 -21 

a to není nic jiného než rekurentní formule (9) z kapi-
toly I (pro z = 0 je totiž a„ = x" + i/"-4-0B = a^, + yH). 

Odtud je vidět, že řadu výsledků platných pro sy-
metrické funkce dvou proměnných lze odvodit z vý-
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sleďků pro symetrické funkce tří proměnných speciální 
volbou z = 0. 

II.5. Waringova formule. V kap. I jsme uvedli formuli 
pro přímé vyjádření symetrických součtů sn = x" + í/" 
pomocí elementárních symetrických funkcí elt e2 — viz 
odst. 1.4, formuli (10). Také pro součty «„ = x" + y* + 
+ z" platí taková formule: 

(12) + + 2-) = i - e f — 
7v fv 

e2 + OM rtl 1 I e3 + (» — 2)!1!0! 1 (» — 3)!0!1! 

+ (» — 4)!2!0! Cl 

(« —5)! 1! 1! 

sčítají se výrazy tvaru 

(13) ( - 1 ( g + f , ^ ~ 1 ) ' 

přiěemž se sěítá přes všechny trojice celých nezáporných 
čísel a, p, y takových, že 
(14) a + 2/3 + 3y = n. 

Doporučujeme čtenáři, aby se pokusil formuli (12) 
dokázat a aby ji porovnal ve smyslu předcházející po-
známky s formulí (10) z kap. I. 

II.6. Příklady, (a) Vyjádříme s4 pomocí Waringovy 
formule (12). Pro n = 4 má rovnice 

« + 2/3 + 3y = 4 
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(s neznámými a, {}, y z množiny všech celých nezápor-
ných čísel) celkem čtyři řešení, takže na pravé straně 
(12) budou čtyři sčítance. Tato řešení a jim odpovídající 
koeficienty podle (13) vypadají takto: 

1) a = 4 , ^ = 0 , y = 0 ; ( - l ) - . - i r | ^ r = i - , * 

2) a = 2 , ^ = l , y = 0 ; ( - l ) - ^ r = - l , 

3) a = l , /3 = 0 ,y = l ; ( - i r « . T Í Í | 1 T = : l , 

4) a = 0 , ^ = 2 , y = 0 ; ( - l ) - ^ 4 L r - - i . 
Podle (12) je tedy 

1 1 4 2 , , 1 2 si — eie2 ~r Ci^a ~r ~2 ^ 

(porovnejte s formulí pro s4 v úloze II.3). 
(b) Vyjádříme sf. Rovnice 

a + 2/? + 3y = 5 

<X V koeficient 

5 0 0 
1 
5 

3 1 0 — 1 
2 0 1 1 
1 2 0 1 
0 1 1 —1 

Tab. II . 1 
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má pět řešení, která jsme uspořádali spolu s koeficienty 
podle (13) do tabulky I I . 1. Z (12) tedy plyne, že 

xh i/® 4- z5 = ef — 5e?e2 + 5e?e3 + óe^l — 5e2e3. 

Všechny příklady, které jsme v předcházejících od-
stavcích uvedli, ukazují, že n ě k t e r é symetrické poly-
nomy P(x, y, z) lze vyjádřit pomocí polynomů Q(elt e2, 
e3) v proměnných elt e2, e3, t j . jako součet funkcí tvaru 
ae\el

2e™, kde a je reálné číslo, k,l&m jsou celá nezáporná 
čísla; máme pak 

(15) P(x, y, z) = Q(x + y + z, xy + yz + 
+ zx, xyz). 

A podobně jako u symetrických polynomů dvou pro-
měnných mají tuto vlastnost v š e c h n y symetrické poly-
nomy v proměnných x, y, z. Platí totiž následující ana-
logie věty 1.5: 

II.7. Věta. Každý symetrický polynom v proměnných 
x, y, z lze vyjádřit jako polynom v proměnných e1 = x -j-
+ y + z, e2 = xy + yz + zx, e3 = xyz. 

Důkaz je opět myšlenkově jednoduchý, je ovšem po-
někud pracnější než v případě dvou proměnných. 
Naznačíme zde postup, z něhož je patrno, jak se poly-
nom Q z (15) k symetrickému polynomu P sestrojí, 
a podrobné ověření přenecháme čtenáři. 

Protože polynom P(x, y, z) je symetrický, obsahuje 
s členem xkylzm též všechny členy vzniklé záměnou pro-
měnných; obsahuje proto násobek výrazu 

(16) Si.i.m = zyz™ + :e*y»zl + rfykzm + odymzk -f 
+ xmykzl -f- xmylzk. 
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Nechť je třeba m n e j m e n š í z čísel k, l, m, t j . nechť je 

k m, l ^ m. 
Pak je 

(17) Sk,i,m = {xyz)m -f xi_m2í_m + 
yi-myk-m ¡¡i-m^k-m yk-mtf-m yl-m^c-m^ — 

' (xyz)m $k—m. l—m. o • 

Dále je pro libovolná celá nezáporná čísla a, ¡3 

(18) Sa,p,0 = Sa8fi — 8<x+fi, 
kde Sy jsou součty z úlohy II.3, t j . sY = xv yv + zv 

(pro y = 0 klademe s0 = 3). (Dokažte platnost formule 
(18) jako cvičení!) 

Nakonec je tedy 

(19) Sk.l.rn = (xyz)m (sk-m «l-m — «fc+l-w») = 

= e${sk_m 8t_m — sk+i_2m), 
a protože podle úlohy II.3. lze součty sY vyjádřit jako 
polynomy v proměnných elt e2, e3, platí totéž i o výra-
zech Sk,,,m. 

Tím však je věta dokázána, neboť symetrický poly-
nom P(x, y, z) je součtem výrazů tvaru aSk,i,m> kde ® je 
reálné ěíslo. 

II.8. Příklady, (a) Vyjádříme pomocí elementárních 
symetrických funkcí polynom 

P(x, y, z) = (x + y) (x + z){y + z), 

který je symetrický. Použijeme-li označení z důkazu 
věty II.7, zjistíme po roznásobení, že 

P(x, y, z) = /S2.li0 + 2xyz = s^ — sa + 2e3 = 
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= (e\ — 2e2) et — (e\ — && + 3es) + 2e3 = 
= CjCJ c3. 

[Použili jsme vzorců (18), (5) a (7).] 
(b) Pro symetrický polynom 
P(x, y, z) = (x + y — z) (x — y + z) (—a; + y + z) 

je po roznásobení 
P(x, y, z) = —(®» + i/» + z») + S2.li0 — 2xyz = 

(20) = —a3 + «¡¡«i — s3 — 2es = 
= —2(e? — 3eie2 + 3ea) + 

+ (cj — 2e2) ex — 2e3 = — e\ + áe^ — 8es. 
(c) Určíme obsah p trojúhelníka, známe-li jeho obvod, 

součet čtverců stran a součet třetích mocnin stran: 
Označíme-li délky stran trojúhelníka písmeny x, y, z, 
známe tedy slt s2 a a3. Podle Heronova vzorce je 

f «i (—X + y + z) (X — y + z) (x + y — z) _ 
2 ' 2 2 ' 2 

využijeme-li předcházejícího příkladu, je podle formule 
(20) (2. řádek) 

(21) P = j / ^ r ( ^ 1 - 2 * 3 - 2 e a ) . 

Zbývá ještě vyjádřit e3 pomocí a1( s2 a a3. Ze vzorců 
= ei> 
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— cf 2c2, 
= 6* 36̂ 62 "1" 

zjistíme, že 
_ 1 , 1 , 1 

ea — "g" s i 2" S lS2 ' "3" ' 

a z (21) pak plyne 

II.9. Poznámka. Na závěr této kapitoly dodejme, že 
polynom Q(et, e2, e3), který odpovídá symetrickému po-
lynomu P(x, y, z) tak, aby platil vztah (15), a jehož 
existence je zaručena větou II . 7, je určen jednoznačně. 
Viz též poznámku 1.7. 
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K a p i t o l a I I I . 

SYMETRICKÉ FUNKCE 
n PROMĚNNÝCH 

Zobecníme nyní úvahy z obou předcházejících kapitol. 
Uvažujme algebraickou rovnici w-tého stupně (v pro-
měnné () 
(1) r + «M»-1 + + • • • + oB-i< + an = 0 
a označme xlt x2, . . x n kořeny této rovnice. Pak může-
me rovnici (1) zapsat též takto: 
(2) (t — x1)(t — x2)...(t — xn) = 0. 
Provedeme-li násobení naznačené na levé straně v (2) 
a porovnáme-li výsledek s levou stranou v (1), zjistíme, 
že koeficienty rovnice (1) — tj . čísla alt a2 a„ — sou-
visejí s kořeny xly x2, . . x „ takto: 

«i = —(«i + x2+ ... + x„), 
&2 = XjX2 -)- XyX3 -(-...-)- XyX„ XyX3 

... x2xn + .. . + Xn_iXB, 

®n-l = ( i)B 1(XiX2X3 . . . X„_y -(- XyX2 . . . Xn_2X„ -f-

. . . X2Z3X4 . . . X„) , 
an = (—\)nxlx2x3 ...«„. 

Zavedeme-li funkce ek = ek{xlt x2, ..., xn) (¿--1,2,. ., 
n) formulí 
(3) e» = (—l)*a*, 
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bude tedy 

(4) ex = xx + x2 + ... + xn, 

C2
 = XxX2 X}X3 - ( - . . . Xn _iXn, 

e 3 = X1X2X3 + X1X2Xi . . . -f- Xn—\Xn , 

+ . . . + X ^ t . . . Xn, 

en = xíx2x3 ... xn. 
Zdůrazněme, že k-tá. funkce e* je 'polynom tvořený sou-
čtem všech možných součinů tvaru 

x^xt, . . . xik, kde 1 ^ ix < i2 < ... < ik ^ n. 

Odtud plynou dvě důležité skutečnosti: 

(a) Počet sčítanců v k-té funkci e* je roven Číslu 

(b) Funkce ek mají vlastnost symetrie: nezmíní se, změ-
níme-li jakkoliv pořadí proměnných xlt x2, ..., xn. 

Proto je budeme nazývat elementárními symetrickými 
funkcemi. 

m.1 . Definice.Funkci f(xu x2, ..., xn) n proměnných 
nazveme symetrickou funkcí, nezmění-li se při jakékoliv 
změně pořadi proměnných, t j . platí-li 

pro jakoukoliv permutaci {ťlf i2, . . . , ¿„} čísel 1,2, . . . , n. 

(5) f(xx, x2, ..., x„) = /(»i,, xu xi%) 
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Je-li funkce / polynomem (tj. součtem funkcí tvaru 
AX£>X¡' . . . X*N, 

kde a je reálné číslo, acj, a2, . . . , a„ jsou celá nezáporná 
čísla), a má-li vlastnost (5), nazveme ji symetrickým 
polynomem. 

m.2 . Příklady, (a) Funkce ek z (4) jsou symetrické 
funkce, a to symetrické polynomy. 

(b) Funkce x% -f x\ + . . . + x\ je symetrický poly-
nom; dovedeme ji vyjádřit pomocí elementárních sy-
metrických funkcí e*, neboť 
(6) x\ + xl+ ... +xl = e ? — 2e2 

(dokažte!). 
(c) Pro nezáporné celé číslo N označme 

(7) sN = af + + . . . + 

je to symetrický polynom a platí 
s0 = n (podle definice), 

= e1 (podle definice), 
s2 = ef — 2e2 (podle formule (6)). 

Obecně platí Waringova formule 
(8) - L s „ = ^ ( -1)^-«. -« . -••• -%. 

(a, + a 2 + • • • + « n — 1)! 
a x ! a 2 ! . . . «„! 1 2 B 

přičemž se sčítá přes všechny »-tice celých nezáporných 
čísel a1, <x2, . , . , « „ takových, že 

(9) «! + 2«2 + 3<*3 + • • • + n<x„ = N. 
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111.3. Úloha. Pokuste se dokázat platnost formule (8). 
Využijte k tomu následujícího rekurentního vztahu mezi 
symetrickými součty sN: 
(10) sN = ^«y-! — e2«Jf_2 + 3 — .. • + 

+ (—1)^ -^5 , 
(přitom považujeme za rovné nule ty sčítance tvaru 
( — u nichž je k > n). 

čtenáře nyní jistě nepřekvapí, vyslovíme-li (bez dů-
kazu) větu analogickou větám 1.5. a II.7. 

111.4. Věta. Ke každému symetrickému polynomu P 
v proměnných xlt x2, . . . , x„ existuje polynom Q v proměn-
ných ev e2, ..., en tak, že platí 

(11) P{xu x2 x„) = Q(elt e2, . . . , e„). 

Polynom Q je polynomem P urěen jednoznačně. 

111.5. Příklad. Najdeme polynom Q z věty III .4 k sy7 
metrickému polynomu 

(12) P(zlt x2, ..., xn) = (x, — x2)* + (xt — x3)a + 
+ ... + (x„_i — xny 

(jedná se o součet všech výrazů tvaru (x< — x,)2, kde 
1 á i < j ^ n). 

Provedeme-li naznačené umocnění, zjistíme, že 

(13) P{x„x2,. ..,xn) = ( n - 1) (x? + x | + . . . + x£) -
— 2e2 = (n— l)s2 — 2e2 = (n — 1) e\ — 2ne2 

(použili jsme vzorce (6)). Je tedy 
Q(elt e2, ...,en) = (n — 1) e\ — 2 ne2. 
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III.fi. Příklad. Vztah (13) má řadu zajímavých dů-
sledků: Ze vzorce (12) je zřejmé, že P(x,, x2 x„) 2í 
^ 0, a tedy je také (n — 1) e\ — 2ne2 ^ 0 čili 
(14) (» — 1) ef ^ 2net. 
Protože ze vzorce (6) plyne, že 2e2 = e\ — st, dostáváme 
z (14) nerovnost 

e\ ^ ns2 

čili (protože e1 = s j 
(15) («! + « , + . . . + xn)* ^ n{x\ + x* + 

+ . . . + * ) . 
[Poslední nerovnost byla jako speciální případ Cau-
chyho nerovnosti odvozena např. v [1], str. 51, formule 
(II.8).] 

Vzorec (14) můžeme upravit nejrůznějším způsobem. 
Dosadíme-li např. ef = 2e2 + — viz (6), bude 

n i 
(n — 1) (2ea -f- «¡¡) ^ 2ne2 čili e2 ^ — - — a2, 

čili 
( 1 6 ) XxX2 + XíXJ + . . . + Xn^Xn ^ 

+ + • • • + 

Všimneme si nyní několika dalších vlastností elemen-
tárních symetrických funkcí. 

III.7. Úloha. Nechť jsou všechna čísla xk různá od nuly 
(k = 1, 2 n). Ze vzorce (4) plyne, že 

ry> (M fyt /m /y /*» /M A* 
U/1U/2T/Z • • • , »«'Í^a^a • • • -Gn , , 

c _ — . 4 . i _1— _L_ 
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| X-yX^JC^ . . . Xn 

XiX ¡x„...xn- ř— + — + • • • + —1 
V %2 %nJ 

čili 
&n-l(%l> X2, • • • , Xn) = 

= Cní̂ l» xi %n) • eli~> — . • • • i ' 

V xi x2 x„ f . 

Dokažte, že pro ¿ = 1 , 2 , . . . , » — 1 platí 

(17) e„_i(xu x2, ..., xn) = 
= en(®l> • • • > Xn) • e. "Z-' • • • > "T-1' V. Xx X2 X n ) 

Návod. Vztah (17) lze snadno dokázat přímo — stačí si 
uvědomit, že en(xlt x2, ..., xn) = xxx2 ... xn a že e< I — , 

— , . . — je součet všech výrazů tvaru 
Xa Xn I "n J 

1 
Xk.Xk,.. .xki 

, kde 1 ^ kx < k2 < ... < k{ ^n. 

Lze však využít též souvislosti mezi funkcemi eť a kořeny 
jistého polynomu: Ze vztahů (1) a (3) plyne, že čísla 
xX) x jsou kořeny polynomu P„ v proměnné t, 
daného vzorcem 

(18) Pn(t) = ť" — e^"1 + e2t»~* — . • • + 
+ (—l)"-^-!« + (—l)"e„; 
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„zde je eť = e^x^ x2, • • • > xn)- Polynom Qn v proměnné s, 
daný vzorcem 

QÁs) = (4"). 

má tudíž kořeny — , . . . , — a jeho koeficienty jsou x2 xn 

(se střídajícím se znaménkem) symetrické funkce 

e{ í — , — — ) (s jistým násobkem!). 
V x 2 x n ) 

Současně však jsou koeficienty polynomu Qn určeny 
koeficienty polynomu P„, a porovnáním dostaneme 
vztahy (17). [Pozor: u polynomu P„ je podstatné, že 
koeficient u tn je roven jedné ; proto je třeba příslušně 
upravit i polynom Qn!] 

III.8. Příklad. Dokážeme toto tvrzení: Funkční hod-
noty funkce e< = e^a^, x2, . . . , xn) jsou kladné, právě když 
všechna čísla x4 jsou kladná (¿ = 1 , 2 , . . . , » ) . 

(a) Je-li X{ > 0 pro i = 1, 2 n, plyne ihned ze 
vzorců (4), že také eť > 0 pro ¿ = 1 , 2 , . . . , » . 

(b) Nechť je ej > 0 pro ¿ = 1,2, . . . , » . Čísla xt jsou 
kořeny rovnice 
(19) ť" — ejí""1 + e2ť"-í — . . . + 

+ (—l)""^«-!* + (—l)"eB = 0; 
vynásobíme-li tuto rovnici číslem (—l)n, můžeme psát 

( — 0 " + e x ( — í ) " " 1 + c a ( — 0 " ~ a + • • • + 

+' en_1(—t) + c„ = 0 
neboli po substituci s = —t 

*20) «» + e^»"1 + e^" 2 + . . . + + e„ = 0. 
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Tato poslední rovnice má kořeny y{ = —x{ (i = 1, 2, 
..., n). Žádný z těchto kořenů n e m ů ž e být nezápor-
ný, neboť po dosazení nezáporného čísla a do levé strany 
v (20) dostaneme kladné číslo a nikoliv nulu (všechna 
e4 jsou kladná). Musí tedy být < 0 čili —xt < 0, čili 
Xi > 0 pro ¿ = 1 , 2 , . . . , » . 

III.9. Příklad. Nechť jsou čísla xt kladná. Pak platí 
(21) efc^.eft+i — e | < 0 pro k = 1, 2, . . . , n— 1; 

zde klademe 

(22) e^Xy, xt, ...,«„) = 1. 

Později (viz úlohu VI.4) ukážeme, že vztah (21) je 
důsledkem obecnější nerovnosti; proto zde pouze na-
značíme myšlenku p ř í m é h o důkazu nerovnosti (21): 
Stačí si uvědomit, že typickým členem ve výrazu 
eic-iek+1 — ef bude výraz 

(23) xix| . . . n^ixk_i+1xk_i+i ... xk+i (i < k). 

Tento výraz vznikne jednak ze součinu ek_xek+í, jednak 
ze součinu ek.ek = ef. V prvním případě se bude na levé 

straně vzorce (21) vyskytovat^. ^ jkrá t , neboť z 2i 

„volných" činitelů arj;_i+1, xk^+t xk+i lze i — 1 či-
nitelů volit z efc_! a zbývající pak patří do ek+l; takových 

možností máme ^ ^ j. Ve druhém případě se bude 

výraz (23) vyskytovat na levé straně vzorce (21) 

^ j k r á t (a bude mít znaménko minus), neboť ¿ činitelů 

z 2¿ posledních lze volit z prvého ek a zbývající pak patří 
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do druhého e*. Kladné číslo (23) tedy bude na levé straně 
vzorce (21) opatřeno koeficientem 

< « > ( , _ , ) - ( ? ) — ^ - ' V r " ^ -

který je záporný. Na levé straně v (21) je součet zápor-
ných čísel, a tím je nerovnost (21) dokázána. 

ni.lO.tíloha. Dokažte: Je-li xk>0 pro k = 1, 2, 
..., n, pak pro 1 ^ i < j šš n platí 
(25) ti-iCj < 

Návod. Užijte nerovnosti (21), kterou zapíšeme ve tvaru 
e*-i ek 

e* efc+1 ' 

postupně pro k = 1,2 i, ..., j, ..., n — 1. 

I I I . l l . Poznámka. Zvolíme-li v (25) i = 1 a j = n, 
dostaneme vzhledem k (22) vztah 
(26) e» <«!«„_,. 

Vztah (26) jsme odvodili z (21), a už při důkazu této 
nerovnosti jsme viděli, že je velice „nepřesná", že rozdíl 
mezi ek-iek+1 a e| je nejen záporný, ale dokonce v absolut-
ní hodnotě „velký" — viz (24). A tak se asi dopouštíme 
velké chyby i při odhadu (26). Skutečně: už jen pros-
tým pohledem na součin je vidět, že bude platit 
lepší odhad než (26), totiž odhad 
(27) > nen, 
odkud (26) už plyne. A ani tento odhad není nejlepší: 
platí dokonce 
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(28) ®l®n—1 — 
Důkaz nerovnosti (28). Vyjdeme z nerovnosti 
(29) + . . . + xn). 

V / 

(viz např. [1], str. 29 nebo str. 52). Převedeme-li zlomky 
v druhém činiteli na levé straně nerovnosti (29) na spo-
lečného jmenovatele, bude mít tato nerovnost, tvar 

a to už je (28). 

111.12. Úloha. Dokažte, že pro kladná čísla x{ platí 

(30) e*e„_s ^ = 1 , 2 , . . . , » - 1 . 
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K a p i t o l a IV. 

POUŽITÍ SYMETRICKÝCH FUNKCÍ 
DYOU PROMĚNNÝCH 

IV.l. Příklad. Dejme tomu, že máme najít čísla 
x a y, která vyhovují této soustavě dvou rovnic o dvou 
neznámých: 
(1) x* + y* = 5, 

x3 + y3 = 9. 
Podíváme-li se na soustavu (1) pozorněji, snadno se nám 
podaří jedno řešení „uhádnout": je to dvojice 

(2) » = 1, y = 2, 

a vzhledem k s y m e t r i i výrazů na levých stranách sou-
stavy rovnic (1) bude řešením i dvojice 
(3) x = 2, 2/ = l . 
Jsou to však v šechna řešení soustavy (1)? A jak by 
tomu bylo, kdyby na pravých stranách v (1) stála jiná 
čísla, např. ir místo 5 a log 2 místo 9? Pak by to asi 
s „hádáním" bylo těžší, a tak budeme muset soustavu 
(1) podrobit poněkud systematičtějšímu zkoumání. 

Vyzkoušíme tedy metodu eliminacní: pokusíme se 
vyloučit jednu neznámou. Z prvé rovnice máme x2 = 
= 5 — y2, z druhé z3 = 9 — y3, a tedy 

x* = (5 — y2)3 - 125 — lby2 + 15i/4 — y*, 

x« = (9 — y3)2 = 81 — 18 y3 + y». 
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Protože x9 = x*, dostáváme odtud rovnici o j e d n é ne-
známé y: 
(4) — 15t/4 — 181/» + 75ya — 44 = 0. 

To je ovšem rovnice 6. stupně, a tu neumíme řešit. 
Pokusme se tedy využít symetrie levých stran v (1) 

a našich poznatků z kapitoly I. Na levé straně v (1) jsou 
výrazy s2 a s„ a podle tabulky 1.1 můžeme proto sou-
stavu (1) zapsat takto: 
(5) ef — 2ea = 5, 

€r\ 36J62 == 9 • 
To je opět soustava dvou rovnic, tentokrát ovšem o ne-
známých elf e2. [Připomeňme, že 
(6) e ^ x + y, e2 = xy.] 

Řešme soustavu (5): Z první rovnice máme 

(7) e * = 4 ( e ? - 5 ) ; 

dosadíme-li za e2 do druhé rovnice v (5), dostaneme po 
úpravě k u b i c k o u rovnici pro e^. 

(8) ef — lfíei + 18 = 0. 

Ani takovou rovnici není snadné řešit, zde si však po-
můžeme vzorci (2) ěi (3): využijeme-li tam uvedených 
hodnot x a y, zjistíme, že jim odpovídá hodnota et — 3, 
a to je skutečně řešení rovnice. (8). Protože 

ej — 15^ + 18 = [eí — 3) (ef + ^ — 6), 

redukuje se řešení kubické rovnice (8) na řešení k v a d r a -
t i cké rovnice 

ň + 3e! — 6 = 0, 
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která má kořeny 

ei = Y ^ + V33) a = i - ( - 3 - ]fW). 

Vypočítáme-li ještě odpovídající e2 podle vzorce (7), 
zjistíme, že soustava (5) má tři řešení, uvedená v násle-
dující tabulce: 

e, 3 _ 1 ( _ 3 +1/33) y (—3 - V33) 

e2 2 1 ( 1 1 - 3 j/33) -^(11 + 3 V33) 

T a b . I V . 1 

My však potřebujeme najít řešení soustavy (1). Vrá-
tíme se proto ke vzorcům (6): Jak víme z kapitoly I, jsou 
x a y kořeny kvadratické rovnice 

t2 — e1t + e2 = 0. 
Utvoříme proto pro každou dvojici e1, e2 z tab. IV. 1 od-
povídající rovnici [pro druhou dvojici je to rovnice 

t2 — y (—3 + 1/33) t + ~ (11 — 3 V33) = 0], 

vyřešíme ji a kořeny tv t , budou tvořit dvojici x, y řešení 
soustavy (1). Přitom můžeme vzhledem k symetrii volit 

x = tlt y = í2 
nebo 

« = <2. y = t i-
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Nakonec tak zjistíme, že soustava (1) má šest řešení: 
jsou to tř> dvojice x, y z tabulky IV.2: 

X 2 i-(—3 + 1/33" + _L(__3_V33 + X 2 
+ ]j—2 + 6 1/33 J + i ^2 + 6 yššj 

y i l ( - 3 + j / 33 - l ( _ 3 _ J / 3 3 _ y i 
— ]j—2 + 6 J/33 J — i + 6 V33 J 

Tab. IV. 2 

a další tři dvojice, které vzniknou z předcházejících zá-
měnou x a y. 

Soustava (1) má tedy šes t řešení. Zajímají-li nás 
ovšem jen r e á l n á řešení, musíme poslední dvojici 
v tab. IV.2 vynechat: soustava (1) pak má č t y ř i reálná 
řešení. 

Předcházející příklad ukazuje, jak můžeme někdy vy-
řešit soustavy rovnic, v nichž neznámé vystupují ve 
tvaru symetrických polynomů. Využíváme přitom po-
znatků z kapitoly I — především věty 1.5 — a dále pak 
následujícího tvrzení: 

IV.2. Věta. Budte. elt e2 daná čísla. Má-li kvadratická 
rovnice 
(R) ř2 — eyt + e2 = 0 
řešení tlt tit má soustava rovnic 
(S) x + y = elt 

xy = e2 

37 



dvé řešení: 

®i = 'i> H\ — t2 o = t2, yj — 
Jsou-li naopak čísla xt, y0 řešení soustavy (S), jsou tato 
čísla i kořeny rovnice (R). 

Důkaz je takřka zřejmý. Jsou-li í1( ř2 kořeny rovnice (R), 
platí 

' i 4* 's = ei > txt2 = e2, 
a jak dvojice {í^ í2}, tak dvojice {í2) í j tedy řeší soustavu 
(S). Tato soustava už žádné j iné řešení nemá: je-li totiž 
{&„, y0} řešení soustavy (S), je x0 + y0 = e1( x0y0 = et, 
a tedy 

ť2 — exť + e2 = t* — (x0 + y„)t + x,y0 

-- (t — x0) ( ř — i / o ) , 

t j . x0 a y0 jsou kořeny rovnice (R). 

IY.3. Příklady, (a) Řešme soustavu 
(9) x + y = 5, 

z2 — xy + y2 = 7. 

Protože x2 — xy -+- y2 = (x + ž/)2 — můžeme sou-
stavu (9) zapsat pomocí vzorců (6) takto: 
(10) tx = 5, 

ef — 3 e 2 = 7 . 

Tato soustava má řešení et = 5, e2 = 6, a řešení výchozí 
soustavy (9) bude tedy podle věty IV.2 tvořeno kořeny 
kvadratické rovnice 

t* — 5t + 6 = 0 . 
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A tak řešeními soustavy (9) jsou dvojice 

{3,2} a {2,3}. 

(b) Řešme soustavu 
(11) * + y = i , 

x* + y2 = 0. 
Použijeme-li formule (5) z kap. I, můžeme soustavu (11) 
zapsat ve tvaru 

¿1 = 1, 
e\ — 2ea = 0, 

a máme tedy = 1, e2 = Utvoříme kvadratickou 

rovnici 

í a _ ř + ± = o 

a zjistíme, že řešeními soustavy (11) jsou dvojice 

{ | ( l + i). | ( l - i ) } a { | ( l - i ) , | ( l + i)}-

(c) Řešme soustavu 
' (12) x3 + y

3 = n* + y), 
x3 — y3 = 19(a; — y). 

Je-li x = —y, je první rovnice splněna identicky a druhá 
má tvar 

2x3 = 38a;. 

Tato rovnice má řešení x = 0, x = ]/l9, x = —]/l9, 
a dostáváme tak t ř i řešení soustavy (12): 
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(13) {0,0}, {V 19, — Vl9}, {—1/19, V19}. 
Je-li x = y, je druhá rovnice v (12) splněna identicky 
a první má tvar 

2xa = 14a;. 
Tato rovnice má řešení x = 0, a; = ]/7 a x = —]/7, 
a dostáváme tak da lš í dvě řešení soustavy (12): 

(14) {1/7,1/7} a {—1/7, —1/7}. 

Je-li x ^ y i x ^ —y, můžeme rovnice soustavy (12) 
zjednodušit vydělením (x + y), resp. (x — y). Dostane-
me pak soustavu 

x2 — xy + y2 = 7, 
x2 + xy + y2 = 19, 

kterou můžeme zapsat pomocí vzorců (6) takto: 

(15) e\ — 3e2 = 7, 
ef — e2 = 19. 

Odtud zjistíme, že e2 = 6 a e\ = 25, takže řešeními sou-
stavy (15) jsou dvě dvojice 

{5,6} a {—5,6}. 
Utvoříme-li k těmto dvojicím kvadratické rovnice 

t2 — 5í + 6 = 0 a ť2 + 5í + 6 = 0, 
najdeme pomocí kořenů těchto rovnic dalš í č t y ř i řešení 
soustavy (12): 
(16) {3,2} a {2,3}, { - 2 , - 3 } a { - 3 , - 2 } . 

Soustava (12) má tedy celkem d e v ě t řešení, uvedených 
ve vzorcích (13), (14) a (16). 
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IV.4. Úlohy, (a) Řešte soustavu 

® . y 25 x y = 1, !- — = —-• a y ' x 12 
[{3, 4} a {4, 3}]. 

(b) Řešte soustavu 

1- = 18, x + y = 12. 
ž/ z / 

[{4, 8} a {8, 4}]. 
(c) Řešte soustavu 

x -f y = 4, x4 + y4 = 82. 
[{1, 3}, {3, 1}, {2 + 5i, 2 — 5i}, {2 — 5i, 2 + 5i}]. 

(d) Řešte soustavu 
x + y = a, x7 i/' = a7 (o reálné). 

[Pro a * 0 : {a, 0}, {0, a}, (1 + i Y3), -g- (1 — i |/3)} 

a (1 — i 1/3), (1 + i ]/Š)J; pro a = 0: libovolná dvo-
jice čísel x, y takových, že x -j- y = 0.] 

(e) Řešte soustavu 
x + t/ — z = 7, x2 + i/2 —z2 = 37, 

X3 + J/3 — z3 = 1 . 
[Návod. Použijte opět vzorců (6) a vylučte z. Zjistíte, 
že ex = 19, e2 = 90 a z = 12, a odtud dostanete řešení 
{9, 10, 12}, {10, 9, 12}.] 

Další úlohy si zainteresovaný čtenář jistě snadno se-
staví sám, a tak si raději ukážeme další možnosti využití 
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poznatků z kap. I. Pozorný Čtenář si jisté všiml, že poly-
nom vystupující v druhé rovnici soustavy z příkladu 
IV.3(c) nebyl symetrický, a že jsme k soustavě v symet-
rickém tvaru dospěli jistými úpravami. Uvedeme nyní 
několik úprav, které umožňují řešit i „nesymetrické" 
soustavy či jiné, komplikovanější rovnice. 

IV.5. Příklady, (a) Řešme soustavu 

(17) . u2 + v = 5, 
u* + v3 = 65. 

Výrazy na levých stranách nejsou symetrické; použije-
me-li však substituce 
(18) u2=x, v = y, 

bude mít soustava (17) tvar 
x + y = 5, 

x3 + y3 = 65, 
a tuto soustavu umíme řešit: zjistíme, že má řešení 
{4, 1} a {1, 4}. Nyní se pomocí vztahů (18) vrátíme k pů-
vodním proměnným u, v a zjistíme, že soustava (17) má 
č t y ř i řešení 

{2,1}, {—2,1}, {1,4} a { - 1 , 4 } . 

(b) Řešme soustavu 
(19) 4«« + 9v2 = 5, 

8u3 — 27vH = 9. 
Také zde nejsou výrazy na levých stranách symetrické 
v proměnných i tat i ; použijeme-li však substituce 

2 u = x, —Zv = y, 
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dostaneme ze soustavy (19) soustavu (1). A tak najdeme 
řešení {u, v) soustavy (19) z řešení {x, y) soustavy (1) 
pomocí vzorců 

1 1 
M = T X ' V = 3 Y 

(dvojice {x, y) najdeme v tab. IV.2). 
(c) Řešme v oboru nezáporných čísel soustavu 

(20) 6(]/m + ]/v) — 5 I/uv = 0, 
u + v = 13. 

Zde je v první rovnici na levé straně sice symetrická 
funkce, ale není to symetrický polynom, a proto nelze 
užít věty 1.5. Ale pomocí substituce 

(21) x = 1lu, y = ]fv 
přejde soustava (20) v soustavu 

+ y) — 5xV = 
x* + y* = 13, 

čili 
6e! — 5e2 = 0, 
e? — 2e2 = 13. 

Odtud máme 

13 78 
ex = 5, e2 = 6 a ex = —, e2 = — • 

Druhá možnost však nepřichází v úvahu, neboť z (21) 
plyne, že x i y musí být nezáporná čísla; z první dvojice 

e2} dostáváme 

x = 2, y = 3 a x=3,y = 2 
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a z (21) plyne, že soustavu (20) řeší dvojice 
{4,9} a {9,4}. 

Některé úlohy lze vhodným obratem převést na sou-
stavy, jaké jsme zatím řešili: 

IV.6. Příklady, (a) Řešme rovnici 
(22) (z2 + l)7 — (z2 — l)7 = 128. 

Provedeme-li naznačené umocnění, dostaneme rovnici 
12. stupně, a to není nic příjemného. Jestliže však polo-
žíme 

z2 + l=x, —(Z*—I)=y, 
bude 

x + y = 2 
a rovnici (22) můžeme zapsat takto: 

x> + y> = 128. 

Tím jsme však rovnici (22) převedli na úlohu IV.4(d) 
s a = 2 (128 = 27), a podle této úlohy máme pro x čtyři 
možnosti: 

x = 2, z = 0, x = 1 + i V 3 a x = l — i]/3. 

Řešení rovnice (22) pak určíme z kvadratické rovnice 

z2 = x — 1, 

t j . rovnici (22) řeší tyto hodnoty: 
4 4 

i , - i , i, - i , ( i + i ) y ^ , (i - o y ^ 

( - 1 + i > f í < - i - i > y i -
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(b) Řešme v R rovnici 

(23) fyíT+ž + fel —z = 2. 

Položíme-li 
4 4 

(24) x = y 4 1 + z , y = j/41 <— z, 
dostaneme soustavu 

«« + y4 = 82, 
x + y = 2 

a ta má tato r e á l n á řešení: 
{3, - 1 } a { - 1 , 3} 

(zbývající řešení jsou komplexní, ověřte!). Z (24) však 
plyne, že čísla x i y musí být nezáporná, a tak nemá 
rovnice (23) v R žádné řešení, 

(o) Řešme v R rovnici 

(25) 1̂ 10 — z — — z = 1. 

Položíme 

x = ]/l0 — z, y = —1/3 —z 
a dostaneme soustavu 

x + y = i, 
xa + y3 = 7. 

Tu dovedeme řešit: jejími řešeními jsou dvojice 
{ 2 , - 1 } a { - 1 , 2 } , 

a protože z = 10 •— x3, zjistíme, že rovnici (25) řeší 
hodnoty z = 2 a z = 11. 
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(d) Řešme v (O, 2n) rovnici 

(26) sin3 z + cos3 z = 1 . 

Zde využijeme známého vztahu sin4 z + cos2 z = 1. Po-
ložíme-li 

x = cos z, y = sin z, 
dostáváme soustavu 

*2 + ž/a = 1, 
x3 + y3 = 1; 

ta má reálná řešení {0, 1} a {1, 0} a dále ještě komplexní 
řešení, která nebudeme uvažovat (zajímají nás hodnoty 
z z intervalu (0, 27t)). Dostali jsme tedy pro z rovnice 

cos z = 0, sin z = 1 
nebo 

cos 2 = 1, sin z = 0, 

jimž vyhovují v (0, 2n) jen hodnoty 

Protože věty 1.5 a IV.2 ukazují na úzkou souvislost 
mezi symetrickými funkcemi, výrazy ex a e2 a kořeny 
kvadratické rovnice (R), lze očekávat, že této souvislosti 
bude možno užít v různých příkladech majících nějaký 
vztah ke kvadratickým rovnicím a jejich kořenům. 
Uvedeme nejprve dva typické příklady a pak jedno 
takřka zřejmé tvrzení. 

IV.7. Příklady, (a) Sestavme kvadratickou rovnici, 
jejímiž kořeny jsou osmé mocniny kořenů kvadratické 
rovnice 
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(27) č2 — í + 7 = 0. 
Nechť má hledaná kvadratická rovnice tvar 

(28) í2 + P< + g = 0; 

máme tedy určit koeficienty p, q. Mohli bychom postu-
povat mechanicky: určit kořeny x, y rovnice (27) 

[je x = \ (1 + i 3 ]/3), y = i - (1 — i 3 ]/3)J, vypočítat 
a í a ^ a položit pak 

P = — (s8 + ya), q = nP.y*. 
My vsak x a y vůbec počítat nemusíme: použijeme-li 
toho, že x + y = ex = 1, x.y = ea = 7, a tabulky 1.1, 
zjistíme, že 

q = ( X y f = e| = 7B = 5 764 801, 

P = —(z8 + ž/8) = —s8 = — (e? — 8e*ea + 
+ 20eM — 16e2e| + 2 e|) = —239, 

tajcže hledaná rovnice má tvar 
ř2 — 239ť + 5 764 801 = 0. 

(b) Sestavme kvadratickou rovnici, víme-li, že pro její 
kořeny x, y platí 
(29) x3 + y3 = 0, x2 + xy + y* = 6. 

Opět bychom mohli spočítat dvojice x, y, které sou-
stavu (29) řeší; my však víme, že kvadratická rovnice 
už je určena čísly e , = i + i / a e , = xy\ metodou, kte-
rou jsme používali na začátku této kapitoly, zjistíme, že 
existují tři dvojice {ex, e2} : {0, —6}, {3, 3} a {—3, 3}, takže 
naši úlohu řeší tři kvadratické rovnice: 

47 



¿2 — 6 = 0 , ť2 — 3£ + 3 = 0, 
ť2.+ 3ť + 3 = 0. 

[čtenář si jistě uvědomil, že úlohy tohoto typu jsme prů-
běžně řešili v příkladech IV.3 i v úlohách IV.4; neformu-
lovali jsme je ovšem tak explicitně jako v předcházejí-
cích příkladech, protože konečným cílem bylo nalezení 
kořenů a sestavení kvadratické rovnice bylo jen jednou 
etapou.] 

IV.8. Věta. Budte elt e2 daná reálná Čísla. K tomu, aby 
řešení x, y soustavy 
(S) x + ž/ = e1( 

xy -- e2 

byla reálná čísla, je nutné a stačí, aby platilo 
(30) e\ — 4 e 2 ^ 0 . 
K tomu, aby čísla x a y byla nezáporná, je nutné a stačí, 
aby vedle (30) platilo ještě 

e ^ O , e 2 ^ 0 . 

Důkaz plyne z věty IV.2. Podle ní jsou čísla x, y kořeny 
kvadratické rovnice í2 — e±t + e2 = 0, a tedy je 

e i + Ve! ~ *e2 „ e t — ]/ef — 4e2 
* = 2 ' y = 2 

Tato čísla x a y budou reálná tehdy a jen tehdy, bude-li 
diskriminant ef — 4e2 nezáporný, a to je nerovnost 
(30). — Také druhé tvrzení věty plyne ihned z (S) a z (30): 
přenecháváme je čtenáři, který může najít inspiraci 
i v příkladu III.8. 

48 



Poslední věty můžeme využít opět k řešení různých 
úloh. Uvedeme jich několik na ukázku. 

IY.9. Příklad. Nechť jsou x, y dvě nezáporná čísla. 
Jaký je vztah mezi třetí mocninou jejich aritmetického 
průměru a aritmetickým průměrem jejich třetích moc-
nin? 

Znamená to, že musíme porovnat čísla 

s + 2/V1 + 
~ ~ 2 ~ ) a 2 ' 

t j . čísla -i- e\ a s3 = -i- (e? — Se^). Pro jejich rozdíl 
O ¿i Z 

platí 
1 1 3 3 

-g-ci — + Y ¥ a = — "o" ei(e? — 4ea) ^ °> 

neboť e, ^ 0 (čísla x, y jsou nezáporná) a podle (30) je 
také e\ — 4e2 ^ 0. Platí tedy 

( x + y V ^ x* + ya 

{ 2 J - 2 

(viz též [1], str. 94, vzorec (111.40) pro r = 1, s = 3). 

IV.10. Příklad. Jaké maximální hodnoty nabývá funk-
ce 

F(x, y) = xy(x — y)\ 
jestliže reálné proměnné x, y splňují podmínku x + y = 
= 8 ? 

Funkční hodnotu F(x, y) můžeme zapsat takto: 

F(x, y) = e2(s2 — 2ea) = e2(e? — 4ea); 
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zavedeme-li označení 

(31) ef — 4 e., = t, 

je především t ^ O (podle vzorce (30)) a 

(32) 
takže 

Využijeme-li ještě toho, že x y = et = 8, máme 

F{x, y) = ť (64 — 0 = i - (—t2 + 64ť) = 

= Y [— (< — + 1 0 2 4 ; | = 256 — - ^ ( í — 32)«. 

A odtud už je vidět, že 
F(x, y) ^ 256 

a že své m a x i m á l n í hodnoty — tj . hodnoty 256 — na-
bude F(x, y) právě tehdy, bude-li t = 32. 

A zajímá-li nás navíc, pro k t e r é hodnoty x, y dosáhne 
funkce F(x, y) uvedeného maxima, stačí využít vztahu 
(31) a řešit soustavu 

ef — 4ea = 32, 
= 8; 

zjistíme, že dvojice x, y jsou kořeny kvadratické rovnice 

z2 — 8z + 8 = 0, 
t j . F{x, y) = 256 pro dvojici 3 = 4 + 2 ̂ 2, y = 4 — 2 ]/2 
a pro dvojici x = 4 — 2 ]/~2, y = 4 + 2 ]/2. 
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IV.ll . Poznámka. Obrat, který jsme použili v předchá-
zejícím příkladu, totiž zavedení nezáporného čísla t 
podle (31) a vyjádření e2 pomocí ex a t, viz (32), nebo 
naopak ef ve tvaru 

se dá u úloh tohoto typu často využít. Uvedeme ještě 
dvě ukázky. 

IV.12. Příklady, (a) Ukážeme, že pro libovolná nezá-
porná čísla x, y platí 

Použijeme-li tabulky 1.1 a vzorce (33), bude 

x1 + 2 x3y + 2 xy3 + y* — &x2y2 = x* + y* + 2 xy(x2 + 
+ y2) —&(xy)2 =Sl + 2e2s2 — 6e2 = e\ — 4e2e2 + 
+ 2e| + 2e2(ef — 2e2) — 6el = e\ — 2e\e2 — 8e| = 

= (4e2 + i)2 — 2e2(4eg + t) — 8e| = t2 + 6e2t ^ 0, 

neboť podle věty IV.8 je t ^ 0 i e2 Si 0. 
(b) Budiž a > 0. Platí-li pro reálná čísla x, y vztah 

(35) x + y ^a, 

(33) e\ = 4e2 + t 

(34) x* + 2x3y + 2xy3 + yl ^ Qx2y2. 

pak je 

(36) x2 + y2^ — a2. 1 

Použijeme-li totiž tabulky 1.1 a vzorce (32), je 

x2 + y2 = e2 — 2e2 = ef - 2 i - (e? - í) = 
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neboť podle věty IV.8 je t 0. Nerovnost (36) nyní ply-
ne z předchozí nerovnosti a z nerovnosti (35), podle níž je 
ex ^ o. 

IY.13. tílohy. (a) Dokažte, že za předpokladů příkladu 
IV. 12 (b) platí 

xie _j_ yU ^ _ L _ aie a t d . 

(b) Dokažte, že pro libovolná reálná čísla x, y platí 

x4 + y* ^ x3y + xy9> 
' a® + y9 ^ x6y + xys, 

a8 + i/« ^ x i y ay', 
a rozhodněte, zda analogické nerovnosti platí i pro vyšší 
hodnoty exponentů. (Viz též poznámku IV.14.) 

(c) Dokažte, že pro kladná čísla xlt a2, . . . , a„ platí 

(37) (®l + a | + . . . + X l l ) ( J - + - L + . . . + 
V. *1 X2 Xn J 

(Viz též poznámku II I . l l . ) 

Návod. Dokažte nejprve, že pro kladná čísla a, y platí 

(38) 7 + Í ^ 2 ' 

a to pomocí věty IV. 8; pak proveďte v (37) roznásobení 
a využijte nerovnosti (38). 
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IV.14. Poznámka. Předpokládáme, že čtenář si před-
cházející úlohy vyřeší pomocí věty IV. 8, ale řada z výše 
uvedených nerovností se dá dokázat i jinými metodami, 
bez použití teorie elementárních symetrických funkcí. 
Tak třeba nerovnost (37) je v [1] dokázána dvojím způ-
sobem (z toho jednou pomocí Cauchyho nerovnosti); ne-
rovnosti z úlohy IV. 13 (b) plynou pro změnu zase z Hól-
derovy nerovnosti 

xiVi + ^ (4 + xZ)llT(yi + yl)llQ, 

kde p > 1, q > 1, — + — = 1 (viz [11, str. 72): Zvolí-p q 
4 

me-li totiž x1 = xa, x2 = ya, yí = y, y2 = x, p = — 
a q = 4, dostaneme první z nerovností v úloze IV.13(b). 

Uvedli jsme zatím několik ukázek, jak lze elementár-
ních symetrických funkcí ve dvou proměnných využít 
k řešení řady úloh. Nejsou tím pochopitelně vyčerpány 
všechny možnosti jejich použití: lze pomocí nich doka-
zovat různé identity, upravovat složité algebraické 
výrazy, řešit speciální algebraické rovnice vyšších řádů 
i různé speciální rovnice, zkoumat řešitelnost různých 
soustav rovnic atp. Uvedeme proto spíše namátkou 
a pro ilustraci několik příkladů, z nichž poslední ukazuje, 
že i poznámka 1.7 o jednoznačnosti polynomu Q, urče-
ného symetrickým polynomem P, má svůj význam. 

IV.15. Příklady, (a) Platí tato identita: 

(39) (x + yf — x6 — ys = 5xy(x + y)(x* + xy+ 

+ ž/2). 
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Levou stranu lze totiž psát ve tvaru ej — s5 = e[ — 
— (e® — 5efe2 + Se^l) = f>e.xe,2(e\ — e.,), a poslední výraz 
je roven pravé straně v (39). 

(b) Zjednodušíme výrazy 
(x + yf — x6 — yb (x + y)1 — x> — y1 

(x + y)3 — x3 — y3 (x + yf — x6 — y6 

První výraz můžeme zapsat ve tvaru 

el — Ss 
e3 s3 

a pomocí tabulky 1.1 dostaneme, že se rovná 

W + xy + y*); 

podobně ukážeme, že druhý výraz je roven 

•y(eí — «2) =^-(x* + xy + yi). 

(c) Najdeme celočíselná řešení rovnice 

(40) x3 -f y3 + 1 = 3 xy: 

Rovnici můžeme zapsat takto: s3 + 1 = 3e2, čili 
ef — 3exe2 + 1 = 3e2 čili 

(«1+ 1) (ef — « ! + 1 — 3e2) = 0. 
To tedy znamená, že je bud 

ex + 1 = 0 
nebo 

(41) e? — ex + 1 — 3e2 = 0. 
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První eventualita znamená, že e1 = —1 čili x -f- y = 
= —1, a to dává nekonečně mnoho dvojic řešení rov-
nice (40), totiž dvojice tvaru 
(42) — (k + 1)}, k celé. 
Vyšetřujme tedy rovnici (41): Podle vzorce (30) je 
— e2 S: — e\, a tedy je 

3 
ef — ex + 1 — 3e2 ^ e\ — et + 1 — ef = 

Nutnou podmínkou pro platnost rovnice (41) je tedy 
platnost vztahu 

(ex — 2)a = 0 čili et = 2, čili x + y = 2, 
což dává opět nekonečně mnoho dvojio tvaru 

{fc, 2 — k}, k celé. 
Ale dosazením těchto dvojic do (40) nebo do (41) zjistí-
me, že jedině dvojice {1, 1} vyhovuje rovnici (40). Od-
pověď tedy zní: rovnici (40) řeší celočíselné dvojice 

x = k, y = —(k + 1), k celé, 
a 

x = 1, y = 1. 

Zajímají-li nás jen k l a d n á celočíselná řešení rovnice 
(40), existuje j ed iné : x = y = 1. 

(d) Soustava t ř í rovnic 
(43) x + y = a, 

x2 + y* = b, 

X> -j-J/3 = c 
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pro dvě neznámé y (a, b, c jsou daná čísla) je přeurčená 
a nemusí mít vždy řešení. Najdeme tedy podmínky na 
čísla a, b, c, za nichž je soustava (43) řešitelná v oboru 
komplexních čísel: 

Užijeme-li tabulky 1.1, můžeme naši soustavu zapsat 
takto 

ey = a, e\ — 2e2 = b, e3 — 3exe2 = c. 

Je tedy e2 = {a2 — 6) a z třetí rovnice dostaneme hle-
¿i 

daný vztah mezi čísly a, b, c: musí být 

a3 — 3ač> + 2c = 0. 
(e) Rovnice 

(44) te + 4í* — 10í4 + 4ť2 + 1 = 0 

je rovnice osmého stupně, a ty neumíme obecně řešit. 
Naše rovnice je však v jistém smyslu symetrická: má 
stejné koeficienty u í8 i ř° (totiž 1), u í7 i t1 (totiž 0), u t* 
i t2 (totiž 4) a u ť5 i í3 (totiž 0). Můžeme proto provést 
jistý obrat hodící se i na rovnice vyšších (ovšem sudých) 
stupňů, které mají obdobnou vlastnost symetrie koe-
ficientů: vytkneme t* a máme 

čili 
(45) ť [(í* + i - ] + 4 [í2 + - 1 ] - 10] = 0 

(snadno se přesvědčíme, že t = 0 není kořenem naší 
výchozí rovnice). Označme nyní t = x, — = y. Pak je 

t 
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ei = t + ea = 1 

a z tabulky 1.1 máme 

= í 3 + 1 T = e ! - 3 e i , 

+ = —4ef + 2 

atd. Speciálně dostáváme z (46) rovnici č t v r t é h o 
stupně o neznámé ex [tedy rovnici polovičního stupně, než 
byla původní rovnice (44)]: 

í4[ei — 4ef + 2 + 4(e? — 2) — 10] = 0 
čili 

ť4[ej — 16] = 0. 
Její kořeny dovedeme najít: 

ex = 2, ex = —2, ex = 2i, ex = —2i. 
Zbývá tedy vyřešit čtyři kvadratické rovnice 

ť + T = e " 
z nichž najdeme osm kořenů rovnice (44): 
1, —1 (oba dvojnásobné), i(l + ]/!), i(l —1/2), i(—1 + 
+ l / 2 ) , i ( - l ) - l / 2 ) . 

(f) Rovnice 

(46) 10ř* + ť5 — 47í4 — 47ť3 + í2 + 10* = 0 

nemá vlastnost symetrie (tj. stejné koeficienty u ř* i í°, 
í5 i t1 atd.), ale dá se zapsat ve tvaru 

ť(10ťs + í4 — 47ť3 — 47ťa + ř + 10) = 0, 
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z čehož je patrný již jeden kořen rovníce (46): t = 0. 
Zbývá tedy vyřešit rovnici 

(47) 10f8 + í4 — 47 ť3 — 47ť* + t + 10 = 0, 
která vlastnost symetrie (tj. stejný koeficient 10 u tB 

i t°, stejný koeficient 1 u í4 i í1 a stejný koeficient —47 
u í3 i í2) už má. Rovnice (47) je lichého stupně, a snadno 
se přesvědčíme, že každá rovnice l i chého stupně s uve-
denou vlastností symetrie má kořen t = —1. Můžeme 
tedy psát (47) takto: 

10ť6 + í4 — 47í3 — 47 ť2 + t + 10 = 
= (ť + 1) (10í4 — 9í3 — 38í2 — 9ť + 10) = 0, 

a zbývá řešit rovnici čtvrtého stupně 

Ta je opět symetrická a má sudý stupeň, proto můžeme 
postupovat jako v příkladu (e): zapíšeme ji ve tvaru 

Kvadratická rovnice v hranatých závorkách má kořeny 
29 

ex = —2, e1 = -JQ-, takže zbývá řešit dvě kvadratické 
rovnice 

10í4 — 9í3 — 38<2 — 9ť + 10 = 0. 

[ 1 0 ( í
2

 + 1 ) _ 9 ( í + 1 ) - 3 8 ] = 0 

čili 

čili 
ř2[10(ef — 2) — 9ex — 38] = 0, 

ía[10e? — 9ex — 58] = 0. 
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Nakonec zjistíme, že původní rovnice (46) má tyto ko-

řeny: 0, —1 (trojnásobný), { a i 
¿d o 

IY.16. Příklad. Dokážeme toto tvrzení: Platí-li pro 
čísla x, y, u, v vztahy 
(48) x + y = u + v, 

+ y% = + v2. 
pak platí pro každé přirozené Číslo n vztah 

(49) X* + y* = u* + vn. 

Označme 

ex = x 4 - y , e2 = xy, e\ = u + v, e\ = uv. 

Ze vztahů (48) vyplývá, že ex = e* a ef — 2e2 = e*2 — 
— 2e|, čili také e2 = e*. 

Je-li nyní P(x,«/) libovolný symetrický polynom 
v proměnných x, y, existuje podle poznámky 1.7 jedno-
značně určený polynom Q takový, že P(x, y) = Q(elt e2). 
Protože polynom Q je určen jednoznačně, je P(u, v) = 
= Q(e*, et); ale e\ = ex a e\ = e2, a tedy je e2) = 
= Q(ei, e2) ěili 
(50) P(x,«/) = P(u, v) 

pro k a ž d ý symetrický polynom P, a speciálně tedy pro 
symetrický polynom P(x, y) = x" + yn. 

IV.17. Poznámka. Předcházející tvrzení jsme ovšem 
mohli dokázat i bez použití poznámky 1.7: Při označení 
z příkladu IV. 16 plyne z (48), že 

6i = £t 62 — Cg* 
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To však znamená, že jak dvojice {x, y), tak dvojice 
{u, v) je řešením t éže kvadratické rovnice 

t2 — ett + ea = 0 čili í2 — ejf + ej = 0. 
Proto je buď {x, y} = {u, v}, nebo {x, y) = {v, u} a ze sy-
metrie polynomu P už plyne vztah (50). 
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K a p i t o l a V. 

POUŽITÍ SYMETRICKÝCH FUNKCÍ 
TŘÍ PROMĚNNÝCH 

Srovnáním kapitoly I I s kapitolou I jsme zjistili, že 
teorie symetrických funkcí tří proměnných je jen zobec-
něním teorie symetrických funkcí dvou proměnných, 
zobecněním, které je náročné spíše po stránce technické 
než po stránce myšlenkové. A tak i příklady, které v dal-
ším uvedeme, budou jen početně komplikovanějšími 
analogiemi příkladů z kapitoly předcházející. 

Uveďme nejprve větu, která je analogií věty IV.2 
a kterou při řešení příkladů užijeme. Její důkaz přene-
cháme čtenáři; vychází ze vztahů mezi kořeny a koe-
ficienty kubické rovnice, jak jsme je odvodili na začátku 
kapitoly II . 

V.l. Věta. Budte. eu e2, e3 daná čísla. Má-li kubická 
rovnice 
(R) t3 — e^ + e2t — e3 = 0 

řešení tlt t2, t3, má soustava rovnic 

(S) x + y + z = ex, 
xy + yz + zx = e2, 

xyz = e3 
šest řešení: 

x — ti, y — t2, z = t3; x = ti, y — t3, z = t2\ 
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x — í2, y — ti, z — í3; x — í2, y — t3, z — 

® = 'si y = z = ¿2! % — tai y — z — t\. 
Jsou-li naopak čísla x0, y0, z0 řešením soustavy (S), jsou 
tato čísla i kořeny rovnice (R). 

V.2. Příklady, (a) Řešme soustavu 
(1) x + y + z = a, 

x* + y2 + z® = b, 
x3 + y3 + z3 = c, 

kde a, b, c jsou daná reálná čísla. 
Soustavu (1) můžeme zapsat též takto: 

— OJ y 52 — 6 f SQ — C 

[viz kap. II , vzorec (9)]; vyjádříme-li symetrické poly-
nomy s2, s3 pomocí elementárních symetrických 
funkcí ev e2, e3, dostaneme z (1) soustavu 

ex = a, 
e\ — 2 e2 = b, 

e3 — Sefa + 3e3 = c 
(viz úlohu II.3), kterou dovedeme snadno vyřešit: je 

e1 = a , Cg = y {a2 — b), 

e3 = Y (c — (i3) + Y a(a2 — b). 

Dosadíme-li sem opět za elt e2, e3 jejich vyjádření pomocí 
x, y, z, dostaneme soustavu tvaru (S), která je ekviva-
lentní soustavě (1): 
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x + y + z = a, 

xy + yz + zx = (a2 — b), 

xyz = y (c — a3) + y a(a2 — b), 

a podle věty V. 1 tedy najdeme řešení soustavy (1) tím, že 
určíme kořeny kubické rovnice 

(2) ť » _ r t . + i - ( 0 . _ 6 ) ť _ i - ( c _ 0 . ) _ 

_ i - o ( a 2 _ 6 ) = 0. 

(b) Zvolme v předcházejícím příkladu a = 2, b = 6, 
c = 8. Pak má rovnice (2) tvar 

t3 — 2í2 — t 4- 2 = 0 
a její kořeny jsou čísla h = 2, í2 = 1, ř3 = —1, neboť 

ťa — 2ř2 — ř + 2 = (í — 2) (í4 — 1). 
Soustava 

x + y + z = 2, 
x2 4- y2 4- z8 = 6, 
x3 + y3 4- z3 = 8 

má tedy těchto šest řešení: 
{2, 1 , - 1 } , {2 , -1 ,1} , { 1 , 2 , - 1 } , 

{ 1 , - 1 , 2 } , { - 1 , 2 , 1}, { - 1 , 1, 2}. 

(c) Řešme soustavu 
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(3) xy + yz + zx = 11, 

xy(x 4 - y ) + yz(y + z) -f zx{z + x) = 48, 

xy(x2 + y2) + yz(y2 + z2) + zx(z2 + x2) = 118 . 
Vyjádříme symetrické polynomy na levých stranách 
rovnic soustavy (3) pomocí elementárních symetrických 
funkcí eu e2, e3 podle věty II.7. V první rovnici je vlevo 
přímo e2, ve druhé je vlevo symetrický polynom jS2 > 1 > 0 

a ve třetí symetrický polynom $3i l i0 [viz kap. II, vzorec 
(16)]. Protože podle úlohy II.3 je' ' 

$2.1»0 = ®3 1 3ea 

(viz též příklad II.2 (e)), 

můžeme soustavu (3) napsat takto: 

(4) = 11, 
eiea — 3es - 48, 

efe2 — 2e| — e& = 118. 
Z obou prvních rovnic vyjádříme e2 a e3: 

(5) e2 = l l , e ^ ^ - e ! — 1 6 , 

a dostáváme pro e1 kvadratickou rovnici 
llef + 24ex —540 = 0, 

90 
která má kořeny cx = 6 a ex = —. Odtud a z (5) 
máme dvě trojice řešení soustavy (4): 

«1 = 6, e2 = 11, e8 = 6 
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Těmto dvěma trojicím odpovídají dvě kubické rovnice: 

Kořeny rovnice (6) nalezneme snadno: jsou to čísla řx = 
= 1, ť2 = 2 a <3 = 3, z nichž dostaneme šes t řešení 
soustavy (3) podle věty V.l. Také kořeny rovnice (7) 
můžeme spočítat, ovšem už ne tak snadno: užijeme 
Cardanových vzorců a při označení 

(6) ř 3 _ 6 ř 2 I l í 6 = 0 

a 

(7) 
90 

t* + -ppť2 + l l í + 46 = 0. 

můžeme kořeny rovnice (7) zapsat takto: 

= + + Y ( « - / * ) 1/3, 

= + y (« - /»> VŠ. 
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Podle věty V.l pak z těchto kořenů dostáváme d a l š í c h 
šes t řešení soustavy (3), která tak má celkem d v a n á c t 
řešení. 

Druhá část posledního příkladu naznačuje, že při po-
užití elementárních symetrických funkcí tří proměnných 
můžeme narazit na značné potíže při konkrétních vý-
počtech kořenů kubických rovnic. Zajímají-li nás ovšem 
třeba jen ce loč í s e lná řešení, mohou být metody, 
o nichž zde hovoříme, efektivní. 

Soustavy, které jsme zatím vyšetřovali, obsahovaly 
symetrické polynomy. Ale podobně jako v případě 
dvou proměnných lze i zde řešit některé obecnější sou-
stavy (třeba s nesymetrickými výrazy), použijeme-li 
vhodných obratů. 

V.3. Příklady, (a) Řešme soustavu 
(8) u — 3« — 5w = a, 

u2 + 9v2 + 25 w2 = b, 
u3 — 27 v9 — 125 w* = c, 

kde a, b, c jsou daná reálná čísla. 
Výrazy na levýoh stranách v (8) n e j s o u symetrioké; 

použijeme-li však substituce 
(9) x — u, y = —3v, z =—5w, 
přejde soustava (8) v soustavu (1) z příkladu V.2 (a), 
a řešení soustavy (8) dostaneme z řešení soustavy (1) 
pomocí vzorců (9). 

Zvolíme-li např. a = 2, b = 6, c = 8, dostaneme po-
mooí výsledků příkladu V.2(b) tato řešení soustavy (8): 
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/ i JL _ A l / _ ! M |— i _ J _ _ A l . 
1 ' 3 ' 5 / ' \ 3 ' 5J ' l 3 ' 5 / 

(b) Řešme soustavu 
(10) x + y + z = 6, 

xy yz zx = 11, 
(x — y)(x — z) (y — z) = —2. 

Zdenenî symetrická levá strana třetí rovnice; povýší-
me-li však třetí rovnici na druhou, dostaneme vlevo 
symetrický polynom 

(x — yf (x — zY (y — zY = —4efe3 + e\4 + 
+ lSe^eg — 4e| — 27e|, 

který by se měl rovnat 4. Protože z obou prvních rovnic 
soustavy (10) máme ex = 6, e2 = 11, dává třetí rovnice 
(po umocnění!) kvadratickou rovnici pro e3: 

ef — 12e, + 36 = 0, 

která má jeden (dvojnásobný) kořen e3 = 6. Řešení 
x, y, z soustavy (10) tedy najdeme pomocí kořenů ku-
bické rovnice 

í3 — 6ř2 + l l í — 6 = 0, 

t j . pomocí čísel = 1, řa = 2, t3 = 3. Těmto kořenům 
odpovídá šes t trojic x, y, z, ty ovšem řeší n iko l iv sou-
stavu (10), n ý b r ž soustavu, v níž je třetí rovnice umoc-
něna. Musíme se proto ještě přesvědčit, která z uvede-
ných šesti trojic vyhovuje třetí rovnici v (10), a najdeme 
nakonec t ř i řešení soustavy (10): 

{1,2,3}, {2,3,1} a {3,1,2}. 
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(c) Řešme v oboru reálných čísel soůstavu 1 

(11) 8(w + v + w) = 73, 
uvw = 1 , 

]/u + ]/v + = ]/uv + ]/vw + |lim. 
Zde máme co činit se symetrickými funkcemi, ale u třetí 
rovnice to nejsou symetrické polynomy. Položíme-li však 
(12) u = z3, v = y3, w = z3, 
dostaneme z (11) soustavu 
(13) S(x3 + y3 + z3) = 13, 

x3y3z3 = 1, 
x + y + z = xy + yz + zx, *) 

kterou můžeme zapsat též takto: 
8s3 = 73 (čili 8(e? — Z e ^ + 3e3) = 73), 

eg = 1 (čili e3 = 1), 
e i = e2 • 

*) Zde jsme použili (a i v dalším použijeme) toho, že pro 
reálné číslo r definujeme t ře t í odmocninu z r opět jako r e á l n é 
číslo, speciálně t edy klademe pro re B 

]/7* = r . 
Činíme tak , aby naše úvahy byly pokud možno jednoznačné; 
čtenář ovšem ví, že t ře t í odmocninu z jedné lze definovat 
t ro j ím způsobem: 

1/T , u 1 ^ • V» . 1 . 1 / 3 H = 1 n e b o — — + i - í j - n e b o — _ — i . 

Kdybychom připustili t u t o „ t rojznačnost" , naše úvahy by se 
značně zkomplikovaly. (Přesvědčte se o tom na příkladu, k terý 
právě počítáte I) 
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To vede na kubickou rovnici pro ex: 

(14) 8e? — 24ef — 49 = 0. 

7 1 3I/3" 
Její kořeny jsou ex = —, ex = — H 1— i, ex = 

1 3I/3" 
1— i a najdeme je buď opět pomocí Carda-

nových vzorců, nebo tím, že první řešení uhádneme 
[stačí napsat rovnici (14) ve tvaru (2ej)s—6(2ex)2 — 
— 49 = 0 s řešením 2e1 = 7] a místo (14) pak řešíme 
kvadratickou rovnici. 

Tím dostáváme tři trojice e1; e2, e3, pomocí nichž mů-
žeme utvořit tři kubické rovnice: 

( ' - { ^ + { ( - 1 = 0 , 

' • ( T ^ M T ^ 1 ) « — • • 
Z těchto rovnic nás zajímá pouze první, protože hledáme 
r e á l n á řešení soustavy (13). Uvedená kubická rovnice 
má řešení řx = 1, t2 = 2, t3 = —, takže šest trojic 

¿t 

x, y, z řešení soustavy (13) vznikne různými permuta-
cemi trojice čísel 1,2,—. Šest trojic u, v, w reálných řeše-
ní soustavy (11) pak dostaneme podle vzorců (12) růz-

. nými permutacemi trojice čísel 1, 8, —-• 
o 
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(d) Řešme soustavu 

(15) x + y + z = 2a, 

x2 + y* — z2 = o2. 
x3 + y* + z3 — 3 xyz = —a*, 

kde o je reálné číslo, 8 ^ 0 , Zde není symetrickým poly-
nomem levá strana druhé rovnice, ale přesto náš běžný 
postup povede k cíli — ovšem především díky vhodné 
konstelaci polynomů na levé straně a konstant na pravé 
straně soustavy (15): Zapíšeme-li druhou rovnici ve 
tvaru 

x2 + y2 + z2 = a2 + 2z2, 

dostaneme z (15) soustavu 
ex = 2 a , 

s2 = a2 + 2z2 (čili e\ — 2et = a2 + 2z2), 
s3 — 3es = —o3 (ěili e® — 3eíe2 = —a3). 

Z první rovnice máme 
(16) ex = 2a, 
z třetí rovnice pak najdeme 

(17) 

a z druhé rovnice plyne konečně 

4o2 — 3a2 = a2 + 2z2 ěili z = 0. 
Dostali jsme tak soustavu 

x + y = 2a, 
3 t 

xy = y « ! , 
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jejíž řešení určíme pomocí kořenů f1( í2 kvadratické 
rovnice 

(viz kap. IV). Soustava (15) má tedy dvě řešení 

V.4. Úloha. Uvědomte si, kde jsme při řešení předchá-
zejícího příkladu využili toho, že a # 0, a nalezněte ře-
šení soustavy (15) pro o = 0. 

Je zřejmé, že vlastností elementárních symetrických 
funkcí lze využít při různých úlohách souvisejících 
s kubickými rovnicemi a jejich kořeny. Dále se tyto 
funkce hodí při zjednodušování složitých výrazů, při 
dokazování různých identit apod. Uvedeme nyní ně-
kolik typických příkladů. 

V.5. Příklad. Sestavme kubické rovnice, jejichž kořeny 
jsou druhými, resp. třetími mocninami kořenů kubické 
rovnice 

Mohli bychom kořeny této rovnice vypočítat, umocnit 
je na'druhou, resp. na třetí a sestavit příslušné kubické 
rovnice; to by však bylo dosti náročné [kořeny rovnice 
jsme už našli — viz příklad V. 2 (c): naše rovnice (18) 
je totiž rovnice (7)]. Místo toho však využijeme toho, 

í2 — 2at + a2 = 0 
¿i 

a 

(18) llť3 4- 90í2 + 121í + 506 = 0. 
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že kubická rovnice, jejíž kořeny jsou druhé, resp. třetí 
mocniny kořenů x, y, z rovnice (18), má tvar 

í3 — pt2 + qt — r = 0, 
kde 

p = x2 + y2 + z2, q = x2y2 -j- y2z2 + z2x2, 

resp. 
r = x2y2z2, 

p = a;3 -f- y3 + z3, q = a;3?/3 -f- ž/3z3 + z3a;3, 

Protože 
r = x3y3z3. 

x2 + y2 + z2 = e2 — 2e2, 
1 - 1 

Y Ù 2.2.0 - Y xY + y2z2 + z2x2 = — S2.2.0 =—(4—Si) = 4 - 2eie„ 

a;2í/2z2 = e§ 
a 

a;3 + y» + z3 = e\ — 3eie2 + 3e8, 

« V + y3z3 + z3®3 = Y 3̂.3.0 = y («1 — ««) = 

— > 
x*y3z3 = e3 

(ověřte tyto formule!), a protože 
90 

7 1 ei = — r r > e2 = 1 1 » es = — 4 6 > 

zjistíme nakonec, že hledané kubické rovnice mají tvar 
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reap. 

ťs + 55
1^1°8 t2 — 47411 + 97 336 = 0. 

Y.6. Příklady, (a) Nechť x + y + z = 0. Dokážeme, 
že pak platí tyto identity: 

(19) x3 + y3 + 2a = 3 xýz, 
(20) x* + y* + z* = 2 (xy + yz + ar)1, 

,9n X5 + y6 + z5 x3 + y* + z3 x* + y* + z2 
( 2 1 ) 5 3 2 

Důkaz využívá vzorců z úlohy II.3. Protože e1 = 0 (tj. 
x + y + z = 0), vypadají vzorce pro součty s3, s4 
a #6 takto: 

s2 = —2e2, 
«3 = 3es [to je vzorec (19)], 
a4 = 2e| [to je vzorec (20)], 

= —e^s + e3«2 = —5e2e3 = 5.-^-.-^-

[a to je vzorec (21)]. 
(b) Dokážeme, že když x-\-y-\-z = x2 + y2 + z2 = 

= x3 + y3 + z3 = 1, pak xyz = 0. 
Je tedy ex = s2 = s3 = 1. Protože s2 = ef — 2e2 = 

= 1, plyne odtud, žě e2 = 0, a protože s3 = e\ — 3eje2 + 
-I- 3e3 = 1, plyne odtud e3 = 0. To je však vztah xyz = 0. 

(c) Dokážeme, že pro reálná čísla a, b, c platí vztah 

(a — b)3 + (b — c)3 + (c — a)3 = 
= 3{a — b) (b — c) (c — a). 
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Plyne to z (19), kde položíme x = a— b, y = b — c, 
z = c — a. Podmínka x + y + z = 0 je zřejmě splněna. 

(d) Rozložíme v součinitele výraz 

P(x, y, z) = z* + y* + z* — 2xy — 2yaza — 
— 2zaxa. 

Je P = — 52,2,o = — (̂ 2 — 'i) = 2 — 4 = 

= 2(eJ — 4e?ea + 2el + 4eies) — (ef — 2e2)a = e{ — 
— 4e?e2 + Se^a = e^ef — 4 6 ^ + 8e3). To znamená, že 
jedním ze součinitelů v P je výraz e1 = (x + y + z). 
Píšeme-li nyní — x místo x (resp. — y místo y, resp. — z 
místo z), nezmění se výraz P(x, y, z), neboť obsahuje jen 
8vdé mocniny proměnných x, y, z. Proto je součinitelem 
v P i (—x + y + z), (x — y + z) a (x + y — z). To zna-
mená, že 

(22) P(x, y,z) = {x + y + z) (—x + y + z) (x — y + 
+ z) (x + y — z).Z, 

kde zbývající činitel Z musí být konstantou, protože P 
je polynom čtvrtého stupně a součin čtyř troj členů na 
pravé straně je také polynom čtvrtého stupně. Vztah 
(22) musí platit pro všechna x, y, z; dosadíme-li tam 
např. x = 0, y = 0, z = 1, zjistíme, že Z = —1, a tedy 

s4 + V* + z* — 2xat/2 — 2 y2z* — 2zaxa = 
= ~{x + y + z) (—x + y + z) (x — y + z) (x + 

+ y — z). 
(e) Zjednodušíme výraz 

_ x8 + y3 + z3 — 3xyz 
(x — y)a + (y — z)a + (z — x)a ' 
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Zde je v čitateli symetrický polynom 
Sj — 3e, = 6® — 36JC2 = » 

ve jmenovateli symetrický polynom 

2st — 2ea = 2e? — 4e2 — 2ea = 2cf — 6ea = 
= 2(ef —3ea); 

je-li tedy ef — 3e2 # 0, můžeme tímto činitelem krátit 
a máme 

V.7. Úloha. Dokažte toto tvrzení: Platí-U pro čísla 
x, y, z, u, v, w vztahy 

pák pro každé přirozené číslo n platí 
«" + l/n + 2n = ttn + Vn + ttA 

Návod. Jedná se o analogii příkladu IV. 16; využijeme 
přitom poznámky II.9. 

V.8. Příklad. Pro která reálná čísla a je v oboru reál-
ných čísel řešitelná soustava 

x + y + z 
2 

x* + y* + za = M2 + va + 

x3 + y3 + z3 = u* + v3 + w*, 

(23) 

(x+l)df — 5) (x — y) = 0 ? 
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Označme 

(24) x + 1 = u3, 5 — y = v3, y — x = w3. 
Pák je především 
(25) u3 + v3 + w3 = 6, 
první rovnice soustavy (23) má tvar u + v = —w čili 
(26) tt + í + t j = 0 

a druhá rovnice soustavy (23) má tvar u3v3tv3 = a čili 
3 

(27) uvw = y« 

(viz poznámku pod čarou na str. 68). Využijeme-li for-
mule (19) z příkladu V.6 (a), musí vzhledem k podmínce 
(26) platit u3 + v3 + w3 = 3uvw čili 6 = 3 ^a. Nutnou 
podmínkou řešitelnosti soustavy (23) je tedy podmínka 

a = 8 . 

Hledejme nyní řešení soustavy (23) (s a = 8). Vyjdeme 
ze soustavy (25), (26), (27) a zjistíme, že z ní plyne e1 = 0, 
ep = 2, zatímco na e2 žádnou podmínku neklademe. 
Řešení u, v, w soustavy (25)—(27) tedy určíme podle 
věty V.l pomocí kořenů kubické rovnice 

(28) í3 + e2ť — 2 = 0. 

Označme 

Pak platí: 
pro D > 0 (tj. pro e2 > —3) má rovnice (28) jeden 

reálný kořen a dva komplexně sdružené kořeny, 
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pro D ^ 0 (tj. pro e2 ^ —3) má rovnice (28) tři reálné 
kořeny. 

Protože hledáme reálná řešení, omezíme se na druhý 
případ. Zvolme třeba e2 = —3. Pak má rovnice (28) 
kořeny = 2, t2 = <3 = —1. Soustava (25) — (27) má 
tři řešení, {w, v, w}: 

{ 2 , - 1 , - 1 } , { - 1 , 2 , - 1 } , { - 1 , - 1 , 2 } 

(podle věty V.l je těchto řešení šest, ale opakují se po 
dvou), a těmto trojicím odpovídají podle vzorců (24) tři 
řešení soustavy (23): 

s = 7, y = 6; x = — 2, y = — 3 a 
ic=—2, y = 6. 

Podobně bychom postupovali i pro e2 < —3. 

V.9. Poznámka. Uvědomte si důležitost poznámky 
pod čarou na str. 68! Můžeme si to ilustrovat na pří-
kladu soustavy 

(23*) fen—]/y—5 = 3 + t e 3 7 * / . 
(x+ \ ) ( y - 5 ) ( x - y ) = 8, 

která se od soustavy (23) liší (pro a = 8) „jen" sčítan-
cem 3 na pravé straně první rovnice. Budeme-li postu-
povat stejně jako v příkladu V.8, dojdeme nakonec ke 
kubické rovnici 
(28*) t3 — W + 3t — 2 = 0, 

která je analogií kubické rovnice (28). Pomooí jejích 
kořenů určíme trojice u, v, w, takže např. máme 

_ l + il/3 1— i^3 v, = 2, v = —í—, w = —í 
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Této trojici odpovídá podle vzorců (24) dvojice řešení 
soustavy (23*) 

z = 7, y = 6. 
Tato dvojice však řeší i soustavu (23) (pro a = 8), takže 
docházíme ke sporu . Kde je tedy chyba? Napišme si 
první rovnici soustavy (23*) pro naše hodnoty z, y: 

tys-fc-s + V r 

Tato rovnost není splněna, definujeme-li fyl jako 1 

(a tedy fy8 jako 2), je však splněna, definujeme-li třeba 

fy 8 jako 2, fyl vlevo jako ^ i vpravo jako 
A ¿t 

1 VŠ — + i - ^ - » t j . ,,využijeme-li" nejednoznačnosti třetí 
M tí 

odmocniny. 

Oblíbenou úlohou školské matematiky je odstraňová-
ní iracionálních výrazů ze jmenovatele zlomku. Máme-li 
např. upravit zlomek 

tak, aby v jmenovateli bylo číslo r ac ioná ln í , vynáso-
bíme čitatele i jmenovatele výrazem |/2 — ]/3 a užijeme 
vzorce pro rozdíl čtverců. Pak bude 

Horší je to u zlomků, v nichž je ve jmenovateli součet 
tří sčítanců. I zde lze využít vzorce pro rozdíl čtverců, 
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který použijeme (při vhodném uzávorkování) dvakrát, 
můžeme si však vypomoci také elementárními symetric-
kými funkcemi. 

Y.10. Příklad. Upravme zlomek 
1 

7* = 
}[u + ]/v + ]/w 

Označme ]/u = x, ]/v = y, \!w = z. Pak je jmenovatel 
roven eu a abychom se zbavili odmocnin, musíme ex 
vynásobit vhodným výrazem tak, aby vzniklý součin 
obsahoval jen sudé mocniny proměnných x, y, z, tedy 
např. výrazy s2 nebo a4. Protože 

$2 = C2 2Č2, 

a'4 = ej 4e262 4cj63 -j~ 24, 

vidíme, že v obou výrazech vystupuje ex jako činitel 
všude kromě posledního sčítance. Je tedy třeba oba 
výrazy vhodně zkombinovat — tak, aby jejich poslední 
sčítance zmizely. Utvořme tedy výraz 

(29) 4 — 2st = e* — 4e?e2 + 4e| — 2(e} — 4e?e2 + 
+ ée^a + 24) = ex(—ef + ée^ — 8e„); 

ihned vidíme, že staěí vynásobit čitatele i jmenovatele 
zlomku r číslem 

46^2 — ej — 8es = 4 [x + y + z) (xy + yz + zx) — 

— (X + V + Z)3 — 8xyz = 4 (]/u + ]fv + 

+ Mw) (]/uv + Yvw + ]/vm) — (V« + ]/« + |/w)s — 
— 8]luvw, 
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a dostaneme zlomek, v jehož jmenovateli bude výraz 
s\ — 2s4 = (z2 + y* + z2)2 — 2{xi + y* + z«) = 

= (u + v + w)2 — 2 (u2 + v2 + w2). 
Tento výraz už neobsahuje žádné odmocniny. 

V. l l . Poznámky, (a) Upravený tvar zlomku r z před-
chozího příkladu sice nemá ve jmenovateli odmocniny, 
ale příliš'přehledně nevypadá — zvláště čitatel. Můžeme 
se sice pokusit o další úpravy, např. čitatel lze psát i ji-
nak, neboť 

ale obecně tyto úpravy už velké zjednodušení nepřine-
sou. 

(b) Čtenář si jistě sám odvodí postup, jímž lze postu-
povat při usměrňování zlomků, u nichž je v čitateli vý-

n n n 
raz 1lu + ]/v + ]/w pro n = 3, 4 Pro procvičení do-
poručujeme podrobněji vyšetřit alespoň případy n = 3 
a n = 4. 

(c) Úpravy, o nichž jsme hovořili, se nehodí jen u zlom-
ků. Chceme-li například upravit rovnici 
(30) ]/u + V» + ]/w = 0 

tak, aby neobsahovala odmocniny, můžeme užít vý-
sledků z příkladu V. 10. Rovnice (30) má totiž tvar 

Cj. = 0 

(při označení x = ]/u, y = ]]v, z = ]/w); vynásobíme-li 
tuto rovnost výrazem ée^ — e\ — 8e3, přejde naše rov-
nice v důsledku vzorce (29) v rovnici 

4 — 2s4 = 0, 
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t j . v rovnici 

(u + v + w)2 — 2 (u2 + v2 + w2) = O, 

která neobsahuje odmocniny. 

Přejdeme nyní k nerovnostem pro symetrické funkce 
tří proměnných a k jejich využití při řešení různých 
úloh. Především platí pro každou trojici x, y, z kladných 
čísel nerovnost 
(31) e ^ ^ & s ; 
je to speciální případ nerovnosti (28) kap. I I I pro n = 3 
(viz poznámku III. 11). Zato nerovnost 

e\ ^ 4e2) 

kterou jsme pro dvě proměnné odvodili ve větě IV.8, 
pro t ř i proměnné n e p l a t í . Platí však nerovnost jiná: 

Y.12. Příklad. Jsou-li x, y, z reálná čísla, pak platí 

(32) ef ^ 3e2, 
přičemž rovnost zde nastává právě tehdy, je-li x = y = 
= z. Dále platí 

(33) e\ ^ 

a pro kladná čísla x, y, z pak navíc 

(34) e\ ^ 27ea, 

(35) e | ^ 2 7 e § . 

Nerovnost (32) je důsledkem zřejmého vztahu 

(x — y)2 + (y — z)2 + (z — x)2> 0. 
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Tuto nerovnost, v níž rovnost nastává právě pro x = 
= y = 2, můžeme totiž pro roznásobení zapsat ve tvaru 

2s2 — 2ea ^ 0 
čili 

2(e? — 2e2) — 2e2 ^ 0 
a odtud už máme (32). 

Položíme-li nyní x = uv, y = vw a z = wu, má ne-
rovnost (32) tvar 

(mv + vw + Mw)2 sš 3(uv2w + «v«;8 + t taw) 
čili 

(ííu + ww 4- ž 3uvw(u 4 » 4 «•), 
a to není nic jiného než nerovnost (33). 

Z nerovností (32) a (31) plyne 

e* = efef e?3e2 = 3e1(e1e2) ^ Se^ea = 276^ 
a po vykráčení ex máme odtud (34) (všechna e{ jsou 
kladná, neboť x, y, z jsou kladná). 

Podobně odvodíme i nerovnost (35) z (33) a (31): Je 

c| = c2e| ^ e ^ e ^ = Se^e^) ^ 3es9es = 
= 27e|. 

Y.13. ÍJloha. Nerovnosti (32) a (33) jsme dokázali 
přímo, bez použití nerovnosti (31). Dokažte, že naopak 
nerovnost (31) je důsledkem nerovností (32) a (33). 

Návod. Znásobte obě uvedené nerovnosti. 

V.14. Příklady, (a) Pro libovolná reálná čísla x, y, z platí 

(36) x» 4- y% 4- z2 ^ y {x + y + z)2> 
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(37) (x2y2 + y2z2 + z2x2) ^ xyz(x + y + z). 

Nerovnost (36) lze totiž zapsat ve tvaru s2 ef, 
o 

a protože a2 = ef — 2e2, plyne (36) ihned z (32). 

Nerovnost (37) lze pak psát ve tvaru £2,2.0 ^ eie3> 

a protože S ^ = ^ - (4 , — »4) — A — 2 e ies (viz např. 

příklad V.6 nebo y .6 (d)), plyne (37) ihned z (33). 
(b) Pro kladná čísla x, y, z platí 

(38) (x + y)(y + z) (z + x) ^ 8xyz , 

(39) J ^ £ Í L ± ! ± Í . . 

Nerovnost (38) má na levé straně výraz $2.1.0 + 2es = 
= «2*1 — «3 + 2Cs = (ef — 2e2) e1 — (ef — Se^ + 
4- 3ea) + 2es = e ^ — e3 a na pravé straně výraz 8e3; 
je tedy důsledkem nerovnosti (31). 

Umocníme-li nerovnost (39) na třetí, má tvar e3 ^ 
1 

¿a — ej, a to je nerovnost (34). 
«7 

(o) Je-li x + y + z = 0, je xy + yz + zx ^ 0. Plyne 
to ihned z nerovnosti (32), uvědomíme-li si, že zadání 
říká: je-li et = 0, je e2 ^ 0. 

V.15. Příklad. Jsou-li a, b, c strany trojúhelníka, platí 

(40) (a2 + b2 + c2) (a + b + c) > 2(a3 + 63 + c3). 

Položíme-li totiž x = a -\- b — c, y = a — 6 -f- c, z = 

= + b + c, je a = y (x + y), b = y (x 4- z), 
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c = -— (y -f- z) a po dosazení těchto výTazů do (40) do-
¿t 

staneme po úpravách nerovnost 
1 1 3 

Y + e a ) « i > y s J + j s 2.1.0 Sili etet + 3e3 > 0. 
Poslední nerovnost však zřejmě platí, neboť x > 0, y > 
> 0, z > 0 (proč?). 

Y.16. tíloha. Dokažte, že pro strany a, b, c trojúhel-
níka platí 

(41) (a + b — c) (b + c — a) (c + a — b) ^ abc. 

Návod. Postupujte jako v příkladu V.15 a využijte 
nerovnosti (38). 

V.17. Příklad. Jaké maximální hodnoty nabývá 
funkce 

F(x,y, z) = (1 + z) (1 + y) (1 + z), 

jestliže n e z á p o r n é proměnné x, y, z splňují podmínku 
x + y + z = 1? 

Protože F(x, y,z) = 1 + e, + c8 + e, = 2 + e8 + c, 
(je totiž el = 1), dostaneme pomocí nerovností (31) 
a (32) 

F(x, y, z) ^ 2 + e2 + — e& = 2 +e2 + —e2 = 

o , 10 „ 1« 1 , „ , 10 64 
= 2 + - e ^ 2 + - T e f = 2 + - = - ; 

rovnost zde nastane právě tehdy, bude-li x = y = z, t j . 
1 1 1 

pro x = —, y = --, z = ~ . 
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V.18. Úloha. Nechť x, y, z jsou kladná čísla a nechť 
kladná čísla u, v, w leží mezi nejmensím a největším 
z čísel x, y, z. Nechť platí 
(42) x y z ^.u + v + w. 

Dokažte, že pak je 

(43) xyz < umo 

a 
(44) xy + yz + zx ^ uv -f vw + wu. 

(Poznámka. Úloha V.18 byla použita v I. kole kategorie 
A XIII. ročníku MO.) 

V.19. Příklad. Jsou-li <x, y úhly ostroúhlého troj-
úhelníka, pak platí 

(45) cos a.. cos /S. cos y iS • 
o 

Zvolíme-li totiž x = 26c cos x, y = 2ac cos z = 
= 2áb cos y, u = a2, v = b2 a w = ca, kde a, 6, c jsou 
strany trojúhelníka, pak jsou splněny předpoklady úlohy 
V.18 (je dokonce x-\-y-}-z = u-\-v-s

rw — dokažte!). 
Nerovnost (45) je pak důsledkem nerovnosti (43). 

Jiný důkaz spočívá ve využití nerovnosti (38): vyjádří-
me cos a, cos (i a cos y pomocí kosinové věty a užijeme 
(38) s x = b2 + c2 — a2, y = c2 + a2 — b2 a z = a2 + 
+ 62 — c2 (proveďte!). 

V.20. Poznámka. Vraťme se na závěr této kapitoly 
k nerovnosti e2 4ea, která nám tak posloužila v kapi-
tole IV a která pro elementární symetrické funkce tří 
proměnných nep l a t í . Tuto nerovnost jsme odvodili ve 
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větě IV. 8 na základě vlastností diskriminantu D kvadra-
tické rovnice 

ť2 — ê t + e2 = 0, 
která má kořeny x, y. je 
(46) D = e\ — 4e2 = (x + y)2 — 4xy = (x — y)2. 
Diskriminant kvadratické rovnice je důležitým pomoc-
ným prostředkem pro její řešení; všimněme si proto 
vzorce (46) a hledejme jeho analogie pro k u b i c k é rov-
nice. 

Mějme tedy kubickou rovnici 
(47) t3 — etí2 + e2* — e3 = 0, 
která má kořeny x, y, z, a definujme diskriminant D rov-
nice (47) jako výraz 
(48) D = (x - y)2 (y — z)2 (z - x)2. 
Lze snadno ukázat, že (viz též příklad V.3 (b)) 
(49) D = —4e?ea + e2e| + 18eie2es — 4e|— 27e|. 

Máme-li kubickou rovnici (47) s r e á l n ý m i koeficienty 
elt e2, e3, můžeme pomocí znaménka diskriminantu klasi-
fikovat kořeny. Čtenář si jistě pomocí formule (48) snad-
no dokáže, že 

(a) je-li D > 0, jsou všechny kořeny rovnice (47) reálné 
a různé; 

(b) je-li D = 0, jsou alespoň dva kořeny rovnice (47) 
sobě rovné; 

(c) je-li D < 0, má rovnice (47) jeden reálný a dva kom-
plexně sdružené kořeny. 

Tato klasifikace není úplná: v případě, že D = 0, ne-
víme, zda kořen náhodou není trojnásobný. Zde existuje 
další pomůcka — symetrický polynom 
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(50) D*=e f—3e 2 . 
Je totiž 

2D* = (x — yf + {y — zf + (z — *)» 
(dokažte!) a bod (b) naší výše uvedené klasifikace mů-
žeme upřesnit takto: 

(bj) je-li D = 0 a D* má rovnice (47) jeden dvoj-
násobný kořen; 

(b2) je-li D = 0 i D* = 0, má rovnice (47) trojnásobný 
kořen. 

Odtud už plyne toto tvrzení, které je analogií věty 
IV.8: 

Bulte elt e2, e3 daná reálná čísla. K tomu, aby řeieni 
x, y, z soustavy 
(51) x + y + z = elt 

xy + yz + zx = e2, 
xyz = e3 

byla reálná, je nutné a stačí, aby platilo 
(52) D ^ 0. 

K tomu, aby čísla x, y, z byla nezáporná, je nutné a stačí, 
aby vedle (52) platilo ještí 

ei ^ 0, e2 ^ 0, c3 ^ 0. 

Y.21. Příklad. Jsou-li x, y, z taková reálná čísla, že 
xyz > 0 a x y z > 0, 

pak 
x* + y" + z" > 0 

pro každé přirozené číslo n. 
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Protože čísla x, y, z jsou reálná, je D ^ 0. Podle před-
pokladu je e3 > 0 a ex > 0; pokud jde o e2, jsou dvě 
možnosti: 

(a) c2 ^ 0: Pak jsou podle výše uvedeného tvrzení 
všechna čísla x, y, z n e z á p o r n á , a protože e3 > 0, jsou 
dokonce k l a d n á . Je tedy ia^ + y» + z n > 0 . 

(b) e2 < 0: Využijeme rekurentní formule 
(53) Sn = CiSn-1 ®2sn-2 "I" e3sn-3 

(viz úlohu II.3), kde všechny koeficienty eu —e2 a ea jsou 
k ladné . Protože 

St=x + y + z> 0, 

s2 = x3 + ya + z2 > 0 , 

s3 = 3ef — Se^ + 3e3 > 0, 
plyne z (53) matematickou indukcí, že s„ > 0 pro všech-
na přirozená čísla n, a naše tvrzení je dokázáno. 
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K a p i t o l a VI. 

SYMETRICKÉ PRŮMĚRY 

Tato kapitola je poněkud obtížnější než kapitoly před-
cházející a bude vyžadovat shovívavou a trpělivou spo-
lupráci. Doporučujeme proto čtenáři, aby si jednotlivé 
vztahy, s nimiž se v dalším setká, podle možnosti 
k o n k r e t i z o v a l , aby si je rozepsal pro různé konkrétní 
hodnoty parametrů n, k atp. Věříme, že to přispěje 
k snazšímu pochopení látky, o jejíž užitečnosti — a to 
nejen pro řešení úloh matematické olympiády — nepo-
chybujeme. 

Budeme se nyní zabývat elementárními symetrickými 
funkcemi n proměnných xu x2, •.., xn. Zavedeme nej-
prve označení, které zkrátí zápis: uspořádanou »-tici čí-
sel xu x2 x„ označíme tučným písmenem x: 

x ^ 0 bude znamenat, že x{ 0 pro i = 1,2, .. ,,n\ 
x > 0 bude znamenat, že > 0 pro i = 1,2 n; 
pro x > 0 označíme 

a pro x = to, x2, ..., xn), y = (ylt y2 yn) bude. 

X + y = («1 + Vi, «2 + Vi, • • xn 4- yn). 

x — (xít x2> . . . , x„); 
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Budeme-li chtít zdůraznit proměnné, z nichž jsou 
symetrické funkce vytvořeny, zapíšeme to takto: 

e* = ek(x). 
Vztah (17) z kap. I I I můžeme při našem označení 

zapsat takto: 

(1) en_i(x) = e B (x) .e ť ^-) , i = 1,2 n— 1. 

Oznaěíme-li tučným e uspořádanou íi-tic.i elt e2 e„, t j . 

e = (eít 6o, ..., e»), 
platí podle příkladu III.8 tato ekvivalence: 
(2) e > 0 x > 0. 

A konečně zaveďme pro úplnost ještě funkci e0: polo-
žíme identicky 

(3) e0(x) = 1 
a formule (1) pak platí pro i = 0, 1, ..., n. 

Čtenář, který zná pojem aritmetického a geometric-
kého průměru -4„(x) a (?n(x) (viz např. [1], str. 15), si 
jistě všiml, že 

(4) An(x) == <?n(x) = ten(x)]"-. 
n 

Protože n je právě počet sčítanců v elementární symet-
rické funkci elt je skutečně aritmetický průměr všech 

sčítanců v ev Zobecněme tento poznatek: Jak jsme uká-
zali (či spíše konstatovali) na začátku kap. III , je počet 
sčítanců v k-té elementární symetrické funkci e* roven 
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číslu ^ j . Utvořme tedy aritmetický průměr všech 

sčítanců T e ^ a označme 

(5) = 4 = 0 ,1 » . 

0 
YI.1. Definice. Funkci p*(x) nazveme k-tým elementár-

ním symetrickým průměrem. 

Funkce p*(x) je zřejmě opět symetrickým polynomem. 
Všimneme si nyní blíže jejích vlastností. Především lze 
vztahy (4) zapsat takto: 

(6) Pi(x) = An(x), pn(x) = [í7.(x)]-; 

je totiž j = n a j = 1. Z formule (1) a z vlastností 

kombinačních čísel pak plyne pro x{ ^ 0 (i = 1, 2, . . 
..., n) rovnost 

(7) p»-i(x) = pn(x) • Pí (^- j , i = 0, 1, ..., n. 

VI.2. Úloha. Budiž x = (xv x2 xn) a označme x = 
= (xlt x2 ®B-I)- Dále buďte 

ek = e*(x) a pk = e* , k = 0, 1, ..., n — 1 

m 
elementární symetrické funkce a symetrické průměry, 
odpovídající uspořádané (n— l)-tici x. Ukažte, že pro 
k = 1,2, . . . , n — 1 platí 
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7b /(J IC (8) ek = ek + Xne^!, pk = —-— pk + — a;,^ 
7v 7v 

(je ek = efc(x) a pk = pk{x)). Definujeme-li ještě e„ = O 
a e"_! = O, platí vzorce (8) i pro k = O a k = ». 

V příkladu III .9 jsme naznačili důkaz nerovnosti 
(9) enejt+ 1 á e| pro 4 = 1,2 — 1. 

Ukážeme, že analogická nerovnost platí i pro funkce pk\ 

YI.3. Příklad. Budiž x > 0. Pak platí 

(10) Pk-iPk^i á pk p r o ¿ = 1 , 2 ti 1 . 

Rovnost v (10) nastane právě tehdy, je-li x1 = x2 = ... 
... = xn. 

Toto tvrzení dokážeme matematickou indukcí vzhle-
dem k počtu proměnných n. Nerovnost (10) platí přede-
vším pro TI = 2: je to pak j e d i n á nerovnost 

( U ) P0P2 á pí, 
a protože podle (6) je pe(x) = 02(x) a px(x) = A2(x) 
a protože platí identicky p0(x) = 1, není (11) nic jiného 
než druhá mocnina známé nerovnosti 

0 < 02{x) ^ ¿ 2 (x ) 

mezi geometrickým a aritmetickým průměrem kladných 
čísel xlt x2. V této nerovnosti nastává rovnost, právě když 
Xi = x2, a tím je tvrzení pro n = 2 dokázáno. 

Předpokládejme nyní, že tvrzení platí pro n — 1. Při 
označení z úlohy VI.2 je tedy 

(12) Pí-iPí+1 ^pf p r o j = 1, . . . , n — 2 

a rovností právě tehdy, je-li x1 = x2 = . . . = x„^. Pro-
tože z (12) plyne 
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Pi-l ^ Pi 

Pí Pi+1 ' 

dostáváme odtud volbou j = 1, 2, . . . sérii nerovností 

<, ŽL <, l l . <i <, ^ 
Pl ~ Pi ~ P9 ~~ " ' ~ Pn-2 ~ ZV-i ' 

a pro 1 f^ i ^ j íí n — 1 tedy máme 
(13) PÍ-iPÍ ^PÍPÍ-Í-

Užijeme-li nyní vzorců (8), zjistíme, že pro k = 1 , 2 , . . . 
..., n — 1 platí 

Pk+iPk-i — pl = A + Bxn + Cxi, 
kde 

(w — ¿)2 — 1 ~ ~ (» — k)2 „s  A = ~2 Pk+iPk-i —t í>*. 

( n — k— 1) (k— 1) g 

•D = ~2 Pk+lPk-2 + 
Jí 

( n _ t + l ) ( t + 1) 2[n-k)k „„ 
+ PM-1 tf PkPk~1' 

C = n2 PkPk-2 — Pt-1 • 

Použijeme-li zde nerovnosti (12) pro j = k a, j = k — 1 
a nerovnosti (13) pro i = k — 1, j = k dostáváme 

1 2 1 
li — „2 ® ~ — „2 

takže nakonec je 

(14) Pk+iPk-i — {pl— 2x»PkPk-i + = 
71 
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= — - ¿ ( f t — * « & - l ) 2 

7v 
To však už je nerovnost (10). — Je-li z1 = x2 = . . . = 
= xn, je pk = x j a v (10) zřejmě platí rovnost. Jsou-li 
alespoň dvě z čísel x1; x2 r ů z n á , platí podle 
indukčního předpokladu o s t r é nerovnosti v (12) a (13), 
a je tedy ostrá i nerovnost (14). Je-li x± = x2 = . . . = 
= je P/c = ZiPk-i> nerovnost (14) pak má tvar 

Pk+1Pk-i — (®i ~ ^ 0 

71 

a je ostrá právě tehdy, je-li xx ^ xB. 

VI.4. Úloha. Dokažte nerovnost (9). 

Návod. Využijte definice funkcí pk pomocí ek, nerov-
nosti (10) a vlastností binomických čísel. 

VI.5. Poznámky, (a) Z nerovnosti (10) nyní plyne 
(15) Pť-iP, ^ PiPi-i, 1 

a to stejným způsobem, jakým plyne vzorec (13) z ne-
rovnosti (12). Položíme-li v (15) i = 1, dostáváme vzhle-
dem k (6) odhad pro aritmetický průměr A„: 

( 1 6 ) / = 1 , 2 , . . . , « . 
Pí- iW 

(b) Nerovnost (10) jsme dokázali za předpokladu, že 
x > 0. Důvod je v prvním indukčním kroku: abychom 
mohli nerovnost (?2(x) ^ A2(x) povýšit na druhou, mu-
síme mít zaručeno, že xx ^ 0 i xa ^ 0. Čtenář se ovšem 
snadno přesvědčí přímým výpočtem, že nerovnost (11) 
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platí i bez předpokladu x > 0, a tak platí i nerovnost 
(10) nezávisle na znaménkách čísel xlt x2, ..., xn. 

(c) Nerovnost (10) lze za předpokladu, že všechna x{ 
jsou nenulová, dokázat ještě jedním způsobem — využi-
tím následujícího tvrzení, které uvedeme bez důkazu: 

Budiž m přirozené číslo, c0, cL, ..., cm reálná čísla, 
a označme 
(17) F{S, i) = c0sm + c ^ - H + c ^ - H 2 + . . . + 

+ cro_2s2fm-a + cm_1sím_1 + cmf™. 
[Funkce t~mF(s, t) je polynom ra-tého stupně v proměnné 
s s —; kořeny tohoto polynomu nazveme kořeny — rovnice 
t t 

g 
F(s, t) = 0.] Pak platí: Jsou-li všechny kořeny — rovnice 

v 
F(s, t) = 0 reálné, jsmi reálné i všechny kořeny rovnic 

í'i(s,<)=0, F2(s,t) = 0, 
kde 

F^s, t) = mcoá""1 + (m — 1) c^H + 
+ (m — 2) c^~H 2 + . . . + 2cm_2sím_2 + c^V*-1 , 

F2{s, t) --- c ^ - 1 + 2c2sm-2ř + . . . + 
+ (m — 2) cm_252fm_3 + (m — 1) cm_1ář™-2 + mc j m ' 1 -

[Funkce F^s, t), resp. F2(s, t) vznikne z F(s, t) derivo-
váním podle s, resp. podle £.] 

Použijeme tohoto tvrzení pro speciální výraz 
F(s, «) = (« + *iO (« + x2t) ...(« + x*t); 

zde je m = n a pro koeficienty c{ platí 
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kořeny — rovnice F(s, t) = 0 jsou reálná čísla —x v 
v 

—x2 —x„. Podle výše uvedeného tvrzení jsou tedy 
reálné i kořeny odpovídajících polynomů Flt F2 (těchto 
kořenů je nejvýše n — 1). Nyní postupujeme takto: za 
výchozí polynom (17) považujeme Flt resp. F2 (tj. kla-
deme mj. m = n — 1) a vytvoříme k němu odpovídající 
polynomy Fllt F12, resp. F2l, F22, které mají opět ves-
měs reálné kořeny (jichž je nejvýše n — 2). Pokraču-
jeme-li v tomto postupu, dojdeme nakonec k polyno-
mům tvaru 
(18) CtiPk-^ + 2 Pkst + pk+1t2) 
(k = 1, 2, . . . , n — 1; CJ je jistá nenulová konstanta). 
Polynomy (18) mají jen r eá lné kořeny —; to však zna-

t 

mená, že diskriminant kvadratické rovnice 

je nezáporný: 

*PÍ — 4Pk-iPk+1 ^ 0, 
a to je nerovnost (10). 

YI.6. Příklad. Uvažujme opět x > 0. Pak z nerov-
nosti (10) plyne, že 
(19) Pl > vy2 S p\'* ž piíir1 ' ^ PÍ/B; 
rovnosti zde platí právě tehdy, je-li z1 = x2 = ... = x„. 

Podle nerovnosti (10) je totiž 
(PoPz) (PiPzY (PzPi)3 • • • (Pk-iPk+i)k á 
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protože na levé straně je vlastně výraz 

PoPÍPÍPÍ • • • rZM-Ht+i. 

máme po vykráčení 

(k = 1, 2, . . n — 1) a odtud už (19) plyne. 

VI.7. Poznámka. Podíváme-li se na vzorce (6), vidíme, 
že na začátku nerovností (19) stojí aritmetický průměr 
An(x), na konci pak geometrický průměr Gn(x). Z (19) 
tedy jednak pijme nám už známá nerovnost 

An(x) G„(x), 

jednak je vidět, k o l i k různých výrazů se dá ještě mezi 
oba průměry vložit. 

YI.8. Úloha. Nechť x ^ O a nechť alespoň dvě z čísel 
xlt x2, ..., x„ jsou r ů z n á . Můžeme tedy předpokládat, 
že 

X~i ^ X2 ^ . . . ^ íTji_I ^ Xn 

a že alespoň jedna z těchto nerovností je o s t r á . Zvolme 
přirozené číslo k pevně (1 ^ k ^ n) a označme p = 
= [p*(x>r. 

Utvořme nyní z m-tice x novou w-tici y = (yl, y2, ... 
... , yn) takto: Zvolíme y1 = p, čísla x2, x3 a;„_, po-
necháme beze změny, t j . položíme y2 — x2, y3 = x3, ... , 
• • • »2/n-i = ®n-i, a konečně zvolíme yn takové, aby bylo 
Pk(Y) - Pk{x) = p"-

Dokažte, že pak platí 
(20) pjy) ^ Pí(x) pro i S k. 
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Návod. Označme e* elementární symetrické funkce 
n — 2 proměnných xit x3 xrl_lt a budiž 

S — . 

XT) 
(Podobně jako v úloze VI.2 klademe ej = 1, e*i = 0.) 
Ukažte, že pro k = 1, 2, . . , n platí 

(21) g ] pfc(x) = e*(x) = 

= x&vfil-z + (*! + Xn) ej_x + e*k 

(porovnejte §e vzorci (8)!). Využijte toho, že p*(x) = 
= Pkiy) = P*i a odhadněte znaménko výrazu 

p ) { P i ( y ) - P i ( x ) } . 

TI.9. Poznámky, (a) Pomocí výsledků úlohy VI.8 mů-
žeme opět dokázat nerovnosti (19): Zachovejme ozna-
čení z úlohy VI.8, vyjděme z n-tice x, k ní sestrojíme 
n-tici y a k té opět sestrojíme stejným způsobem w-tici z 
(tj. nejmenší z čísel yu y2, ... , yn nahradíme číslem p 
a místo největšího z těchto čísel dáme takové ěíslo zn, aby 
pk(z) = p*(y) = p*), k n-tíci z sestrojíme stejným 
způsobem n-tici v atd. Po nejvýše n — 1 krocích dojde-
me k n-tici w = (p, p, . . . , p); přitom bude 

P*(x) = Pkiy) = P*(z) = p*(v) = . . . = p*(w) = p* 

a pro i k bude podle (20) 

p<(x) ^ Pi(y) ž Pi{z) ^ p,(v) ^ . . ^ pi(w) = p\ 
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Odtud plyne, že pro i ^ k je 

fo(x)]1/ť ^ P = lPÁ*)}Vh-
Čtenář, který zná publikaci [1], si možná uvědomil, že 
metoda důkazu nerovnosti (19), kterou jsme právě 
použili, je analogií čtvrtého důkazu nerovnosti mezi 
aritmetickým a geometrickým průměrem (viz [1], str. 
26). 

(b) Vzoroe (21) a (8) uvádějí do souvislosti elementární 
symetrické funkce, resp. elementární symetrické prů-
měry pro n proměnných xít x2, ..., xn s týmiž funkcemi 
pro „kratší" vektory — pro (n — l)-tice a (n — 2)-tice. 
Tyto vzorce lze zobecnit: Budiž 

n = i + j, 

kde i, j jsou přirozená čísla; bez újmy na obecnosti lze 
předpokládat, že i ^ j. Označme pro x = {xlt x2, ..., xn) 
symboly x a x tuto uspořádanou í-tici a ý-tici: 

X = X2, . . ., X() , X = (x j + 1 , X{+2, . . . , xn), 

a budiž 
ek = ejt(x), k = 0, 1, 2, . . . , n, 

ek -= ek(x), k = 0,1, 2, ...,i, 

h = ct(x), k = 0, 1,2, 
Pak platí 

(22) e* = 

A | r** A | | M A 
e*eo + e^fa + ... + e0ek 

pro k = 0, 1, ..., j, 
+ + • • • + ejfc-A 

pro k = j + 1, j + 2, . . . , i, 
MA • f A | | M A 
eiek-i T ei-lefc-i+l "T" • • • T čk-fit 

pro & = t + 1, i - f 2 , . . . , » . 
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Doporučujeme čtenáři, aby se pokusil vztahy (22) doká-
zat. 

VI.10. Úloha. Zvolme pevně přirozené číslo k, k ^ », 
a označme pro x = (xlt x2 x„) symbolem xlil uspo-
řádanou i-tici 

x«» = (xu x2, ..., xt), i ^ n . 

Dokažte, že platí: Je-li 0 ^ xY ^ x, ^ ... xn, je pro 
i ^ k 

P*(x(4>) á Í>*(X«+1>) ^ . . . ^ pfc(x<»') = pfc(x). 

Návod. Pomocí druhého vzorce v (8)> a pomocí nerov-
nosti (16) (použité ovšem pro vektor x(n_1)) dokažte, že 
za předpokladu x„ ^ x{ pro i = 1, 2, . . . , n — 1 platí 
nerovnost 

P*(x<»>) ^ PftíX'»-1'). 

Je ihned vidět, že pro libovolné n-tice x a y pl&tf 
identita 
(23) «i(x + y) = «i(x) + ei(y). 

Tato identita je charakteristická právě pro p rvn í ele-
mentární symetrickou funkci e1 a pro zbývající funkce Cj 
obecně n e p l a t í — je např. e0(x + y) = e0(x) = e0(y) = 
= 1. Za předpokladu x > 0, y > 0 však platí pro 
všechny funkce e* nerovnost 
(24) [e*(x + y)]1/fc ^ [efc(x)]1/fc + My)]1'* 

(k = 1,2, . . . , n). Doporučujeme čtenáři, aby se pokusil 
o důkaz nerovnosti (24) přímou cestou: my ji zde od-
vodíme z nerovnosti obecnější. 
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VI.ll. Poznámka. Pro x > 0, y > 0 platí nerovnost 

(25) Cfc(x-fy) ^ e*(x) ek(y)  
efc-i(x + y) ~~ e*-i(x) cj.iíy) 

(k = 1,2, . . . , n). Nebudeme ji dokazovat: její odvození 
je triviální pro k = 1 a k = 2, pro k > 2 ji pak lze 
(pracným způsobem) odvodit z první formule v (8), 
použité pro (n — l)-tice vzniklé vždy vynecháním t-té 
složky v n-tici x (i = 1, 2, . . . , » ) . Z (25) ovšem plyne: 

VI.12. Tvrzení. Budiž x > 0, y > 0; pro přirozená 
čísla r, k, n necht platí 

1 ^ r ^ k ^ n . 
Pak je 

(261 r + y> r ;> r e * w r + r r . 
( 2 6 ) L _ , ( x + y)J I e*-r(x) J + U - , ( y ) J 
Důkaz. Můžeme psát 

ek efc-1 efc-f+2 r+i = • • • 
6*—r ek-l eJt-r+l &k-r 

Odhadneme-li každý součinitel vpravo podle (25), dosta-
neme nerovnost 

[ ek(x + y) f 17 e,(x) ek(y) } 
[ ek_r(x + y) J - LI e^x) * e^y) ) ' 

í Ct-i(x) , efc-i(y) 1 [ e* 
( y ) i r 

' U _ 2 ( x ) et_a(y) J I e t_(x) efc_,(y) JJ 
Výraz vpravo je geometrický průměr součtu dvou uspo-
řádaných r-tic % = (£x, f a , . . . , f,), TJ = (rju rj2, rjr), 
kde 

101 



__ et_<+1(x) _ e,_<+1(y) _ 
sí — ——7—r-. íj< —7~t—. » — 1, A •. r. 

C/t-i(x) Cfc-i(y) 
Protože pro geometrický průměr platí 

G,(? + I,) ^ Gf(?) + 0,(1,) 

(viz např. [1], str. 33), plyne odtud vztah (26), neboť 

« « - » r -

YI.13. Poznámka. Nerovnost (24) plyne z (26) volbou 
r = k. 

Zavedeme nyní toto označení: pro x = (xlt x2,..., xn), 
x > O, a reálné číslo r, r O, označíme 

(27) x' = (x[,xí ...,x'n). 

Dále připomeňme označení aritmetického průměru: 

A /„\ X1 "I" x2 4" • • • + ®n 
ň 

YI.14. Definice. Pro x > O a r ^ O označme 

Mr(x) = [i4n(x')]1/r, 

(28) J W - [ « + « + • • • + < r ; 

pro r = O definujeme 
(29) Jř0(x) = On(x) = [XIX2 ... xj<\ 

Symetrickou funkci Mr(x) nazveme průměrem r-tého 
řádu. 
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YI.15. Úloha. Dokažte, že pro kladná čísla r, a platí 

(30) J í . f (x ) = í - p - , 

M h ) 

(31) Mr.,(*) = W(x ' ) ] 1 / ř , 

(32) J f _ ( x ) rg 2f,(x) £ J f , ( x ) . 

Návod. První dva vztahy plynou přímo z definice prů-
měrů r-tého řádu, třetí je důsledkem nerovnosti mezi 
aritmetickým a geometrickým průměrem. 

YI.16. Poznámky, (a) Průměry r-tého řádu zobecňují 
pojmy aritmetického průměru -¡4„(x), geometrického 
průměru On(x) a harmonického průměru Hn(x) (viz [1], 
str. 15): je totiž 

J f j x ) -- A%[x), Jf,(x) = (?„(*), Jf_,(x) = Hn(x). 

(b) Nerovnost (32) můžeme zobecnit: jsou-li r, s reálná 
čísla, r ^ a, pak platí 

(33) Jf f(x) ^ Jf,(x). 

K důkazu této nerovnosti se ještě vrátíme. Zatím jen 
poznamenejme, že z ní plyne toto tvrzení: Pro 0 < r < 1 
16 ¿„(x) Mr{x) ^ On(x) 

(dokažte!). Je tedy vidět, že mezi aritmetický a geomet-
rioký průměr je možno zařadit nekonečně mnoho průmě-
rů r-tého řádu s re (0, 1) (srv. se vzorcem (19) a poznám-
kou VI.7). 
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Zobecníme nyní poněkud pojem průměru Mr. Budiž 
tedy a = («„ <x2, ..., <x„) uspořádaná ra-tice nezáporných 
čísel a nechť je 
(34) «1 + « . + ••• + « . = 1-

YI.17. Definice. Budiž x > 0, oc ^ 0, nechť platí (34) 
a nechť je r reálné číslo. Položme 

IK X J + a r f + . . . + *nX'„)llr 

pro r # 0 , 
x*' x*' ... x*n pro r = 0. 

Funkci MT(x; O) nazveme váženým průměrem r-tého 
řádu (s vahou a). 
f)tVI.18. Poznámky, (a) Vážené průměry Mr(x; a) obec-
ně n e j s o u symetrickými funkcemi (dokažte!). Volíme-li 
ovšem <*! = a2 = . . . = <x„ = —, je 

Jfř(x; a) = Mr(x), 
a pak se jedná o symetrické funkce. Pro speciální volbu 
r = 1 a r = 0 můžeme označit 

M^x; o) = A„(x; a), M0(x; a) = On(x; a) 
a nazvat tyto funkce váženým aritmetickým, resp. váže-
ným geometrickým průměrem. 

(b) Čtenář se snadno přesvědčí, že i pro vážené prů-
měry platí vzorce analogické vzorcům (30) a (31). Ana-
logii vzorce (32) ovšem můžeme dokázat jen za před-
pokladu, že platí analogie nerovnosti mezi aritmetickým 
a geometrickým průměrem, t j . nerovnost 

(36) A„(x;a) Ž 0 n ( x ; a ) . 
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YI.19. Úloha. Dokažte nerovnost (36). 

Návod. Použijte matematické indukce. Pro n = 2 je 
nerovnost (36) dokázána např. v [1], str. 70, vztah 
(III.2). Pro (n + l)-tice x = {xí} x2, ..., x„, x„+1), o = 
= (a1( a2, . . . , <x„+1) přejděte k n-ticím y = (ylt y2, 
• • •> ž/»)> P = (Pi, • • •, Pn) definovaným takto: je 
y{ = xt a pt = ai pro i = 1, 2 n — 1 a yn = 
= a£"/íV využijte indukčního předpokladu. 

VI.20. Věta. Budiž x > 0, a ^ 0, <*! + « , + . . . + 
+ «„ = 1, r ^ s. Pak platí 
(37) J / , (x ;a ) š M,(x-,a). 

Důkaz, (a) Pro r = 0, s = 1 není (37) nio jiného než (36). 
(b) Pro r = 0, s > 0 plyne (37) z nerovnosti (36), po-

užité ovšem pro n-tici xB: 

M0(x; a) = [M0(x*; a)]1" < [M^x", a)]1/' = M,(x; a). 
(c) Od kladných hodnot r resp. a přejdeme k zápor-

ným pomocí vzorce 

(viz pozn. IV. 18 (b)); stačí tedy dokázat (37) pro 0 < 
< r < s. Zde využijeme Hólderovy nerovnosti ve tvaru 
uvedeném např. v [1], str. 85, vztah (III.25): Protože je 
0 < r < s, lze psát r = s.c, kde 0 < c < 1. Označíme 

a&l = Ui, *i = Ví (i = 1, 2 n). 

M_r(x; a) = 1 

Pak je 
cnx\ = «¿af = ( a ^ . a j ^ = uiv}-, 
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podle zmíněné Hólderovy nerovnosti je 
n / n \c f n —c 

a odtud už máme (37), neboť 

2 «f»}-" = 2 aixl = [Jf r(x; «)]', 
1 - 1 < = 1 

(n y / n \l—e ( n y/i 
l i I l Sl""i = I £ "^J " 1 = [M'{X'' a)]r-

VI.21. Poznámka. Nerovnost (33) je nyní speciálním 
případem nerovnosti (37): s přihlédnutím k poznámce 
VI.18(a) ji dostaneme speciální volbou = a2 = . . . = 

1 

Jak už jsme řekli, nejsou vážené průměry obecně sy-
metrické funkce. Vraťme se tedy k symetrickým výra-
zům a zobecněme elementární symetrické průměry 
P*(x). 

Budiž i . •., i„] permutace re-tice [1, 2, . . . , ri\. 
Takových permutací je n\, a to znamená, že pro dané 
íi-tice x = (xlt x2 xn) > 0 a a = (alf a2, • • • > <*«) 
^ 0 můžeme utvořit n\ čísel tvaru 

x?lx*' ... x"n. 
ÍI »„ 

Utvořme tedy aritmetický průměr všech těchto n! čísel: 

VI.22. Definice. Pro x > 0, a ^ 0 položme 

(38) ^ ( x ; a ) = ^ ^ ^ . . . 
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přičemž sčítáme přes všechny možné permutace [ilf 
. . . , čísel 1, 2, . . . , n. Funkci ^(x; a) nazveme sy-

metrickým průměrem. 

VI.23. Poznámka. Z definice symetrického průměru je 
vidět, že když n-tice = (/9XJ /?2, . . . , /?„) vznikne z n-tice 
a = (<*!, <*2> • • •> <*») permutací, bude 

^(x; a) = ^(x; (3). 

Symetrický průměr ^(x; a) tedy závisí jen na h o d n o t ě 
čísel a i , nikoliv na tom, jak jsou s e ř a z e n a . 

VI.24. Příklady, (a) Zvolme a = (r, 0, 0, . . . , 0), r > 0. 
Pak se v ^(x; o) objeví (n— l)!-krát číslo x\ — totiž ve 
tvaru x\ X{, x?t . . . x^, kde [¿¡¡, í3, . . ., i„] je jedna 
z (n — 1)! možných permutací čísel 2, 3 n. Podobně 
bude v ^(x; o) vystupovat (n — l)!-krát číslo x£, x\ 
atd., takže 

(39) ^ ( x ; r , 0 , 0 , . . . , 0 ) = 

= + + ... + x'n) = [ J f ř (x) r . 

Speciálně pro r = 1 máme 

(40) á»(x; 1,0, 0, . . . , 0) = ^ ( x ) = J„(x) . 

(b) Zvolíme-li a = (r, r, r, ..., r), r > 0, budou všech-
ny sčítance v (32) stejné: budou mít tvar x\x\ ... xr

n. 
Protože těchto sčítanců je TI!, bude 

(41) ^ ( x ; r, r, r, ..., r) = x\x\ ... xr
n = 

= [(?„(x)]- = [G„(x')]fl. 
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Speciálně bude pro r = — 

YI.25. Úloha. Připoineneme-li si vzorce (6), můžeme 
formule (40) a (41) (pro r = 1) zapsat takto 

á>(x; 1,0, 0, . . . , 0 ) = p l ( x ) ; 
0 ( x ; 1, 1, 1, . . ., 1) = pn(x). 

Ukažte, že platí 

(43) P (x ; 1, 1, . . . , 1,0, 0, . . . 0) =pk{x), 
k = 1 , 2, . . ., n\ 

íi-tice o = (1,1 1, 0, 0, . . . , 0) zde obsahuje k jedni-
ček a n — íc nul. 

VI.26. Příklad. Ze vzorců (39) a (41) plyne, že 

(44) ¿„(x») — (?n(x") = &(x;n, 0, 0, . . . . 0) — 
— 0»(x; 1, 1, . . . . 1). 

Vynechme u symetrických průměrů ^ ( x ; a) písmeno x 
a popřípadě pro jednoduchost i nuly na posledních 
místech íi-tic a. Pak lze psát 

0>(n, 0, 0, . . . ) — 1, 1, . . . , 1) = 
= [0>{n, 0, 0, . . . ) — 1, 1,0, . . . ) ] + 

+ [£•(»—1,1,0 , . . . ) — — 2, 1, 1,0, . . . ) ] + 
+ [&(n — 2, 1, 1, 0 ...) — &>{n — 3,1, 1, 1, 0, . . . )] + 

+ + 
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+ [£(2 ,1 ,1 , . . . 1 , 0 ) — ^ ( 1 , 1 , 1 , . . . 1 ) ] . 
Všimněme si nyní výrazů v hranatých závorkách; vy-
užijeme přitom toho, že symetrický průměr se nemění při 
permutaci složek «-tice a, a že tedy např. 0,0, . . . ) = 
= £(0, n, 0, . . . ) , — 1, 1, 0, . . . ) = £(1, n — 1, 
0, . . . ) atd. (viz poznámku VI.23). Pak je 

0,0, ...) — &>(n —1,1,0,...) = 

= y { ^ ( w , 0 , 0 , . . . ) + 9>(0,n, 0, . . . ) — 

— ^ ( » — 1 , 1 , 0 , ...) — 1, 0, ...)} = 

= " ¿ r 2 ( x ? i + ^ _ - - v r 1 ) = 

0>(n — 1, 1, 0, 0, . . . ) — 0>(n — 2, 1, 1, 0, . . . ) = 

= \{&(n — \,0, 1,0, . . . ) + ^ ( 0 , n — l , l , 0 , . . . ) — 

-0>(n — 2 ,1 ,1 ,0 , . . . ) — &>(\,n — 2,1,0, . . . ) } = 

= 2 { 3%~1 X t>+ x "~ l x i > ~ x"~2x<>x<- ~ v r \ » = 

0>(n — 2, 1, 1, 0, 0, . . .) — &>(n — 3, 1, 1, 1, 0, . . . ) = 

= — 2 ,0 ,1 ,1 ,0 , . . . ) + 

+ £P(0, n — 2, 1, 1, 0, . . . ) — £ ( » — 3 , 1 , 1 , 1 , 0 , . . . ) — 

2768 



— 0>{\,n — 3, 1,1,0, . . . )} = 

= - ¿ r j ( * r - * r > K - *<,) 

atd., až konečně 

^(2, 1, 1 1,0) —^(1 , 1 1) = 

= 1 ( ^ ( 2 , 0 , 1 , 1 , . . . , 1 ) + 

+ ^(0, 2, 1, 1, . . . , 1 ) —2^(1 ,1 , . . . , 1 )} = 

= - ¿ r ^ to—^i.)2 • • • * v 

všude se sčítá přes všechny permutace [tj, i2, • • ., ř„] čísel 
1, 2, . . . , n. 

Protože xi)fc ^ 0, je (44) součtem nezáporných násobků 
nezáporných výrazů tvaru 

(45) (x* — z*)(zťi — x j , x = 1,2, . . . , » — 1 , 

a tedy je 0, 0, . . . ) — ^(1, 1, . . . , 1) ^ 0 čili 

¿„(x*) ¡š £„(x»). 
Tím jsme dokázali opět (po kolikáté už ?) nerovnost mezi 
aritmetickým a geometrickým průměrem. Rovnost 
v poslední nerovnosti nastane právě tehdy, budou-li 
všechny výrazy tvaru (45) nulové, t j . pro X(, = X{, čili 
pro xl = x2 = . . . = x„. 

Všimneme si nyní vzájemného vztahu symetrických 
průměrů ^ ( x ; o) a ^ (x ; |3) v závislosti na chování w-tic 
a a p. Speciálně nás bude zajímat, kdy pro v šechny 
w-tice x > 0 platí 
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(46) 0»(x;a) P). 
Protože symetrické průměry nezávisí na pořadí čísel a i t 
resp. f}i} budeme všude v dalším předpokládat, že 

(47) a i ^ <x2 ^ . . . ^ ^ 0, p ^ p , ^ 

^ . . . ^Pn ž 0. 
Uvedeme bez důkazu toto tvrzení: 

YI.27. Tvrzení. Nerovnost (46) platí pro všechna x > 0, 
jsou-li splněny vedle podmínky (47) ještě tyto podmínky: 
(48) + <x2 + . . . + « , = P, + pz + . . . + pn, 

«1 + «2 + • • • + «i- á Pl + Pi + ••• + Pk 
pro k = 1,2, .. ,,n — 1. 

Rovnost v (46) nastává právě tehdy, je-li bud a = p, nebo ^ • • • • 

Pro platnost nerovnosti (46) je tedy podstatná plat-
nost soustavy nerovností (48). Existují kritéria, která 
umožňují ověřit platnost vztahů (48): 

YI.28. Úloha. Budiž p ^ 0 a nechť je n-tice a = 
= («!, a2, . . . , a„) dána vzorci 

(40) » = 1 , 2 , . . . , » , 
i=i 

kde n2 daných čísel ci; {i, j = 1, 2, . . . , n) má tyto vlast-
nosti: Pro ¿,7 = 1,2, . . ., n je 

(50) c„- 0, ¿ c « = l a 2 ca = 1 • 
i 3=1 t=l 
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Dokažte, že pak íi-tice a a (1 splňují podmínky (48). 

Předcházejících tvrzení nyní využijeme k důkazu této 
věty: 

VI.29. Věta. Budiž y ^ 0, yt + y2 + ... + y„ = 1. 
Pak plutí pro každou n-tici x > 0 

(51) <?,(*) ^ ¿ „ ( x ) . 

Důkaz. Protože podle (42) je Gn(x) = -i-

. . . , -i-j, stačí ukázat, že existují čísla c{, vyhovující pod-

mínkám (50) a taková, že 

i> 
(52) = » = 1,2 ,...,n. 

í=I 
Pak totiž pijane první nerovnost v (51) z (46), kde ovšem 

klademe -i-, . . . , -^-J místo o a y místo p. Podmínky 

(50) i vztah (52) však platí zřejmě pro cit = — (i, j = 
7V 

= 1, 2, . . . , n). 
Druhá nerovnost v (51) pak má tvar 

(53) £ ( x ; y ) ^ £ ( x ; 1,0, . . . , 0 ) 

— viz (40). Volíme-li tedy v (40) a = y, p = (1, 0, . . ., 0), 
pak platí vztah (49) s čísly Cy definovanými takto: ci} je 
j-tý prvek v i-tém sloupci ve čtvercovém schématu 
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«1» 
«2, 

«3» 

a2i <*3i • • • > an-l> <*n> 
«3> a4> • • •, an> al> 

<*J> <*5, • • • , «11 a2> 

<*n-li ®ni <*l, • • •» <*n-3i <*n-2> 
*n> <*li <*2, • • • > <*n-2> <*n-i • 

Podmínky (50) jsou v tomto případě opět splněny, a platí 
tedy i nerovnost (53). 

V1.30. Příklad. Uvažujme w-tice a = (1, 0, 0, . . ., 0), 
P = ( 4 4 , 0 , . . . , 0 ) , Y = ( i - , | , | , 0 , . . . , 0 ) a t d „ 

obecně 

x = ( t ' X ' • • • ' T ' ° ' 0 , = 

fcírét (n-ifc)*krát 
Zřejmě je 

«1 + «2 + • • • + <*n = 01 + 02 + • • • + 
+ / ? „ = . . . = + *2 + . . . + = 1 , 

«1 > 01>Yl> ••• > *1> 

«1 + «2 = 01 + 02 > Yl + Y2 > ••• > + «2. 

<*1 + <*2 + «3 = 01 + 02 + 03 = Yl + 72 + 
+ y3 > . . . > + «2 + "3 atd., obecně tedy 

«1 + «2 + • • • + <*m ^ 0Í + 02 + ž • • • ^ 
^ + x2 + . . . + Xm 

(m = 1,2, . . . , ÍI — 1). Jsou tedy splněny podmínky (48) 
a z tvrzení VI.27 pak plyne 
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0>(x\ x) ^ . . . ^ ^(X; Y ) Á P) ^ Á»(x; a) . 
Protože 

^ ( x ; o) = ¿„(X) a á»(x; x ) = 

= 1, 1, . . . , 1, O j ^ ^ O ) = ptix1'") 
fc-krát (n-fc)-krát 

— viz (43) —, ukázali jsme, že 

(54) An(x) = P l ( x ) ^ p 2 (xW) ^ p3(x1 / 3) è • ^ 

â p»(xv*) št pm(xW+") ^ ... ^ Pn(xV») = Gn(x). 
Porovnejme tuto formuli s formulí (19) (viz též poznám-
ku VI.7). 

VI.31. Úloha. Platí nějaká nerovnost mezi výrazy 
Pt(x1/Í:) z (54) a [pt(x)]1'* z (19)? 

Návod. Uvědomte si, že pro ¿ = 1 a i = n se jedná 
o tytéž výrazy. Pro w = 3 a & = 2 je 

p2(* i /2) = y (V«i«r+ [ p , w r = 

= ' ~ 3 

a z Cauchyho nerovnosti (viz např. [1], str. 45) plvne, 
že _ 

1. ]]xyxz -f- l . |Ix^ts + 1. |/x3a;1 g 

čili 
p2(x1/2) ^ [p2(x)]1/2, 

a podobně lze postupovat i pro n > 3. 
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VI.32. Úloha. Ukažte, že pro kladné číslo r platí 

£ ( x ; a) 

+ r, <x2 + r + r) = 

= £ ( x ; r , r , . . . , r ) £ ( x ; a ) . 

YI.33. Úloha. Položme a = 0, 0, . . . , oj, p = 
= [ Y - Y ' • • ° } P A K A I + " 2 + " • + A " = ^ + 

+ 02 + . . . -f- 0n = 1> a jak průměr a), tak průměr 
£ ( x ; P) leží podle věty VI.29 mezi A„(x) a G„(x). Obě 
w-tice splňují první podmínku v (48), nikoliv však dru-
hou, neboť a^ < 0U ale c«! + <x2 > 0t + 02- Nemůžeme 
proto zaručit, že by pro v š e c h n a x platila nerovnost 
(46) nebo nerovnost opačná. Nalezněte íi-tici x takovou, 
aby bylo £ ( x ; a) < ^ ( x ; p), a jinou M-tici y, aby bylo 
£ (y ; a) > á»(y; P). [Pro n = 3 lze volit x = (1, 1, 21«), 
y = (1, 1, 2-").] 

VI.34. Úloha. V [1], str. 82, je dokázána tzv. Schurova 
nerovnost 
(55) — y){x — z) + y\y — x){y — z)-\-

+ zx{z — x) (z — y) ^ 0 

(čísla x, y, z jsou nezáporná, A je reálné). Provedeme-li 
násobení naznačené v (55), můžeme tuto nerovnost 
zapsat takto: 

(a^+2 + y*+2 + zA+2) — (ar*"1"1«/ + xx+1z + yx+1x + 
ó o 
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+ yx+1z + z*+1x + zx+1y) + 1 (x*yz + xy^z + xyzx) ^ O 
O 

neboli pomocí symetrických průměrů pro n = 3 a trojici 
u = (x, y, z) takto: 

0>(M-, X + 2, 0, 0) — 2 ^ ( u ; A + 1, 1, 0) + 

+ 1, 1) ^ 0 . 
Dokažte, že Schurovu nerovnost lze rozšířit (s jistými 

omezujícími předpoklady) i na případ n > 3, t j . ukažte, 
že pro x = (xt, x2 xn) > 0, X ^ 0, 6 > 0, a = 
= «.,, ...,<*„) ^ 0 platí 

á»(x; X + 25, 0, 0, o) — 2^(x; A + S, 3, 0, a) + 
+ ^ (x ; ó, S, a) ^ 0. 

VI.35. Na závěr jedna snadná ťiloha: Budiž n ^ 3; 
nechť má rovnice 

a„í" + «i«""1 + <MB~2 + • • • + »«-i t + o« = 0 
(a0 ^ 0) jen k l a d n é kořeny. Dokažte, že platí 

K®n| á A- |ai"-»-l| • 
71 
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