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PREDMLUVA

Symetrie (z Yedtiny) — soumérnost: pravidelné seskupeni
pfedméti nebo jejich &dsti podle stfedni osy. Symetrie
se objevuje v pFirodé jako disledek jejich zakonitostf
a je zikladnim schématem stavby Zivo¢isného nebo
rostlinného téla; vyvojové niZ§f Zivodichové, napf.
prvoci, houby, jsou nesoumérnf, asymetriéti. Symetrie
se projevuje i v uméni: je dodriovana klasicisujicimi
sméry a popirina sméry romantickymi; ve vytvarném
umén{ tvol{ asymetrie v nékterych obdobich vyrazovy
prostiedek jako reakci na p¥isny klasicky ¥id, uplat-
nuje se i v architektufe. Asymetrie zde vyjadfuje vidy
jisté napéti.

Vymezeni pojmi symetrie a asymetrie v ptedchézeji-
cim odstavei jsme pievzali z Pfiruéniho slovniku nauc-
ného, ktery vySel v Praze v letech 1962—1967; citujeme
z hesla symetrie ve IV. dilu a z hesla asymetrie v I. dilu.
Tento populirni vyklad pochopitelné nemtze obsah slov
symetrie, symetricky postihnout ve v3f dplnosti; to viak
Stenaki Skoly mladych matematikd, ktery jistd velmi
dobfe znd napf. geometrické aspekty symetrie (soumér-
nost podle pifmky — osy, bodu — stiedu atp.), uréité
vadit nebude.

Lidstvo chipe pojem symetrie zcela intuitivnd (snad
proto se také détem nékdy plete Ns ¥l a S s 2!) a vnizo-
rech na symetrii se velmi rizni. Tak napf. vyznadny
némecky (pozdéji americky) matematik Hermann Weyl,
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ktery Zil v letech 1885—1955 a ovlivnil ¥adu odvétvi
matematiky, fyziky i filozofie, napsal kdysi, %e ,,symetrie
je idea, s jeji% pomoci se &lovék v prabéhu tisicilet{ své
historie pokousel pochopit ¥id, krisu a dokonalost®,

zatimco ¥fada spisovateli byla jiného minéni: William
Blake (1757—1827) hovofil o ,,stradné symetrii‘‘, Victor
Hugo (1802—1885) se domnfval, Ze ,,nic tak nespoutava
srdee jako symetrie*, a Thomasu Mannovi (1875—1955)
je pripisovan vyrok o Sestibokém ,,zlofdidu snéhovych
krystala‘“.
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A kdy? uz jsme u typickych symetrickych obrazci,
jako jsou pravidelné n-thelniky, zadejme ~i zde tlohu:
Do dané kruZnice vepiSeme rovnostranny trojtihelnfk,
tomu vepiSeme kruznici, do té opét vepiSeme &tverec,
tomu vepfSeme kruZnici a do té vepiseme pravidelny
pétithelnfk a tak pokradujeme donekoneéna. Dostava-
me posloupnost soustfednych kruZnic (viz obrazek),
jejichZz poloméry se zmensuji, a% se ,,smrsknou‘“ v bod.
Je to pravda?

V tomto svazku rozsifime pojem symetrie na mate-
matické objekty negeometrické povahy a ukiZeme
jejich pouziti v algebfe a matematické analyze; vétsinou
se budeme zabyvat otdzkami velmi elementirnimi.
V prvnich dvou kapitolich pljde o symetrické funkce
dvou a t¥f proménnych a v kapitolach IV a V ukaZeme,
jak jich lze pouZit pfi FeSeni pFedevsim algebraickych
problému. Zde se autor podstatné inspiroval knizkou
V. G. Boltjanského a N. J. Vilenkina Simmetrija v algeb-
re, ktera, vysla v Moskvé v roce 1967; ¢tenat, kterého
tato problematika zaujme, najde v uvedené publikaci
mnoho daldiho materidlu. Kapitoly III a VI se zabyvaji
symetrickymi funkcemi n» proménnych a jejich pouZi-




tim; tato &ast je pondkud naroénéjsi a navazuje na 39.
svazek Skoly mladych matematikd Nerovnosti a odhady,
ktery v textu citujeme jako [1].

V tvodnim odstavei se hovotilo v souvislosti s asy-
metrif o napéti. Nam zde o 24dné napéti nejde, a jako
ilustraci toho, Ze i v asymetrii miZe byt krisa a Fid,
o ném% hovotil Hermann Weyl, uvedme lipskou Staron
radnici (viz obrazek): v jejim prideli je v&% umisténa
sice asymetricky, ale tak, Ze déli prideli v poméru zla-
tého fezu.



KapitolaI.

SYMETRICKE FUNKCE
DVOU PROMENNYCH

Uvazujme kvadratickou rovnici
(1) 4 at+b=0

o nezndmé { € R a oznalme z, y kofeny této rovnice.
Mezi kofeny z, y a koeficienty a, b rovnice (1) plati zna-
mé Viétovy vztahy

(2) a=—@+y), b=ay,

jeZz jsou dusledkem formule pro rozklad kvadratického
trojélenu na kotenové é&initele:

Prat4+b=(—z)(t—y).

Vztahy (2) vlastnd fikaji, Ze koeficienty rownice (1)
jsou funkcemi kofendt této rovnice. Nejsou to oviem
funkce jen tak ledajaké, maji — jak ihned uvidime —
jednu dileZitou vlastnost. ZapiSme tyto funkce trochu
jinak: misto a piSme —e, a misto b pifme e,; pak maji
vzorce (2) tvar

(3) ee=x+y, ey = Y.
Funkee e, a ¢, se nezméni, zaménime-li pofadi promén-
nych:
a@y)=z+y=y+z=ely7),
ex(T, y) = 7y = Yz = ey(y, 7).



Jsou ptikladem symctrickijch funkc! dvou proménniych,
tj. funkef f proménnych z, 9, u nichZ nezdlezf na potadf
proménnych:

Hz, y) = [y, ) pro kazdé =z,ye R.

Je ihned vidét, %e stejnou vlastnost symetrie — tj. nezé-
vislosti na pofadf proménnych x a y — maji vyrazy

By gt @11

sin 2xy, er+y, a® 4 av,

a étendl si jisté podobnych vyrazi (funkef proménnych
z a y) sestroji jeité celou fadu. Je oviem také ihned
vidét, %e mnoho funkei tuto vlastnost symetrie nem4 —
napf. funkce
x 1
— 2 (g2
T—=y o g @)

(x— 1)+ (y 4-1)°, 2 — Ty atp.
V dalsim si vimneme podrobnéji specidlnich symetric-,
kych funkef — tzv. symetrickych polynom.

L1. Deflnice. Polynom P(z,y) proménnych z, y (tj.
funkei, kterd je souétem funkef tvaru axz*y, kde e je
reilné &fslo, & a [ jsou celd nezdporna dfisla) nazveme
symetrickym polynomem, plati-li pro vlechny dvojice
redlnych &isel z, y

(4) P(x’ y) = P(?/» x).

1.2. Pfiklady. (a) Funkce z + y, zy, 2? + 92, 27 +
+ 6% +y, (x —1)* + (y —1)° = 2° — 32® + 30 —
— 1 4 3 — 3y% 4+ 3y — 1 jsou symetrické polynomy.

8



(b) Punkoe - (22 — 4%), (& — 1)* + (y + 1)* = =° +

+ y® — 32% 4 3y® 4 3x + 3y, ® — Tzy jsou sice poly-
nomy, nejsou to viak symetrické polynomy. [Dokazte
to tim, Ze naleznete takovou dvojici éfsel, z,, y,, Ze pro

ptisludny polynom P(z, y) je P(xg, ¥o) 7 P(o, 2).]

Funkee ¢, a e, z formule (3) jsou symetrickymi poly-
nomy. Nazyvame je elementdrnimi symetrickymi funk-
cems a hned uvidime pro¢.

L.3. PHklady. (a) 22 4 %* je symetricky polynom. D4
se pfitom vyjad¥it pomoci elementirnfch symetrickych
funkef ey, e,:

B) B+ y=a"+ 20y +y*— 22y = (x + y)*—
— 22y = e — 2¢,.

(b) Totéz platf pro symetricky polynom 2? 4 y3:

(6) 234 y® = 2% 4 3x% + 3y 4 y® — vy —
— 3yt = (x4 yP—3eylx+y) =
= e} — 3e,e,.

(c) TotéZ plati pro symetricky polynom x* +- y3:

x4yt = 2t 4 2xty? 4 gt — 20t =
= (e* + ) — 2ay)’;
pouzijeme-li nyni vzorce (5), je
() 2% 4 yb = (6 — 26, — 26} — et — dcle, +
+ 462 — 2¢% =: e — 4dele, -+ 265,

(d) Totéz plati pro symetrické polynomy x%y + xy®
a 2% + 27y*: pouzijeme-li formule (7), je



2ty + zy® = ay(z*t + y*) = esley — 4defe, + 2¢))

By + Ty = Bt + ) = ellet — dele, +
+ 2¢63).

&

L.4. Uloha. Ozna&me pro pirozend &islo n
(8) 8y = z" + y”.

VyjadFete symetrické polynomy s, s, 8, 8g, Sp & 814 PO-
mocf elementarnich symetrickych funkef e,, e,.

Ndvod. Lze postupovat podobné jako v piikladu 1.3
a vypoditat pfimo s;, pak s, atd. Lze viak vyuZit téZ
rekurentnt formule

(9) - 8p = €18a—1 — €28a_2,

kterou &tendf jisté snadno dokaiZe.

Existuje vSak také pfimé vyjadieni symetrického
polynomu s, pomoci e,, e,, tzv. Waringova formule:

— 2!
(10) %(x“ry") =7l{e'1'——1(!7(bn __—2;')!—e’1'—2e2+
(n — 3)! 2 m—a _
t o G T B e @t )

stftaji se vyrazy tvaru a,e} e, kde m se méni od nuly

*) Edward WARING, anglicky matematik, Zil v letech 1734
a% 1798 a formuli (10) dokézal v roce 1779. Zabyval se pfe-
devsim teorii &isel a v roce 1770 vyslovil hypotézu (nazvanou
pak po ném), Ze ka?dé pfirozené &islo n lze vyjddfit jako sou-
get nejvyde g(k) k-tych mocnin ptirozenych d&isel, pii¢emz
g(k) nezdavisi na n (je napf. g(2) = 4, g(3) = 9). Waringovu
hypotézu dokdzal v roce 1909 David HILBERT.
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do nejvétifho celého ¢&isla N takového, Zze N < %n,

R
“ml(n — 2m)! (pripomenme, 7e 0! = 1).
Doporudujeme &tenafi, aby se pokusil formuli (10)

dokézat matematickou indukei.

a a, = (—1)m.

Pro piehlednost si vyjadifme symetrické polynomy
8y = a* - y*pron = 1,2, ..., 10 pomocf elementirnich
symetrickych funkef ¢,, e, ve tvaru tabulky:

z +y =e

2! 4yt = e} — 2¢,

z* + y® = e} — 3e,e,

zt + y* = e} — dele, + 2¢}

xb + y* = e} — Sele, + 5Seyel

z® + y* = ef — Befs, + 9ele}] — 2¢3

2" + y' = e] — Teley + l4ede} — Te,e)

2 + y* = el — 8efe, + 20ede] — 16eicd + 2ed

7 + y® = ef — Oelo, + 27elel — 30eled + 9eed

210 4 Y10 = 1% — 10efe, + 35e§ed — 50efel + 25edes — 265

Tab. I.1

Na pravych strandch jsou vesmés vyrazy v proménnych
e, €, a to opét polynomy v téchto proménnych;
podobné tomu bylo i v pfikladu 1.3 (d). To tedy zna-
mena, %e nékteré symetrické polynomy P(z, y) lze vy-
jad¥it jako polynomy Q(e,, ¢;) v proménnych e, e,, tj.
jako soudet funkef tvaru aefe}, kde a je redlné é&islo,
k a [ jsou celd nezdporna ¢&sla; mame pak

(11) P(z,y) = Qx + y, zy).
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Vznika nyni pfirozena otizka, zda tuto vlastnost majf
jen nékteré symetrické polynomy, & zda to plati pro
viechny. A odpovéd dava nasledujici véta:

L5. V¥ta. Kasdy symetricky polynom v proménnyjch x,
y lze vyjddfit jako polynom v proménnych e, = x + y,
e, = xy.

Dikaz je jednoduchy. Xaidy symelricky polynom
P(z, y) je tvoFen séitanci tvaru

(12) azty* a b(amy + dym),

kde a, b jsou realna d&isla, k, I, m jsou nezaporni celd
dsla, I = m. (Obsahuje-li totiz polynom P(z, y) séitanec
bamyp, musf — protoze je symetricky — nutné obsahovat
i s¢ftanec baty™.) Bez ijmy na obecnosti lze pfedpoklé-
dat, Ze m > I. Nyni je

azty* = a(xy)* = aef
blamyt + 2fym) = bl + YY) = bepsm_.

ProtoZe podle formule (10) lze také s,_; vyjadfit ve
tvaru polynomu v ¢,, e,, jsou viechny vyrazy tvaru (12)
polynomy v e,, ¢,, a tedy také P(z, y) je rovno polynomu
Qley, €9).

1.6. Pfiklad. Chceme-li symetricky polynom P(zx, y) =
= g8 — 122%° 4+ 2% — 3x%y® + 2x%7 4 y® — 1225 |-
+ 227y? vyjadFit pomocf elementarnich symetrickych
funkef e,, e,, uZijeme postup z dikazu véty 1.5: Je

Pz, y) = (=* + 9°) — 12(2%° + z%y°) 4 2(2?y" +
+ 2%?) + 23%° — 3%y = (z* + ¢*) —
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— 122%%(z + y) + 22%%(=° + ¢°) + 2%y —
— 3x%® = 8, — 12efe, + 2e3s; 4 e} — 3ék;
vyjédtime-li nyn{ sq a s; pomocf tabulky I.1, médme
P(z, y)=(e§ — 8eles + 20efel — 166kl -+ 2eF) —
— 12¢fe, + 2¢3(e} — Sefe, + Seyef) + € — 3ef =
= &8 — 8ele, + 2e8e + 20efel — 10elel —
— 16¢3e} — 12¢,e8 + 10¢,e8 + 2¢} + ] — 36k =
= Q(el’ ez) .
L7. Poznimka. Podle véty I.5. existuje ke kazdému
symetrickému polynomu P(z, y) polynom (obecné nesy-
metricky — viz ptiklad 1.6!) Q(e,, ¢,), takZe plati vztah

(11). Lze ukdzat, Ze polynom Q(e,, ¢;) je urden jednoznaé-
né, tj. Ze pokud existuje jesté polynom H(e,, ¢;) takovy,
Ze

P(z,y) = H(x + y, xy),

pak jsou polynomy @ a H sobé rovné. Dikaz tohoto
tvrzeni véak provadét nebudeme.
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Kapitola II.

SYMETRICKE FUNKCE
TRIi PROMENNYCH

Uvazujme kubickou rovnici
(1) B +att4bt-c=0

a oznadme z, ¥, z kofeny této rovnice. Pak mtZeme rov-
nici (1) zapsat téZ takto:

(2) ¢t—2)¢—y)(t—2) =0.
Roznasobime-li dvojéleny na levé strané v (2) a porov-
name-li vysledek s levou stranou v (1), zjistime, Ze
koeficienty rovnice (1) — tj. &isla a, b, ¢ — souviseji s ko-
feny =, y, 2z takto:

a=—@+y+2),

b=oy+ yz+ 2z,

c = —=xyz.

Zapisme tyto Viétovy formule jestd trochu jinak: misto
a piSme —e,, misto b piSme e, a misto ¢ piSme —e,.
Pak je

3) e =x4+y+ 2,
e, = xY + yz + 2z,
ey = xYZ.

Funkce e,, ¢,, e; t¥i proménnych x, y, 2 maji opét vlastnost
symelrie: nezmén{ se, zménime-li jakkoli pofadi promeén-
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nych z, y, z. Budeme je — analogicky jako v pfipadé
dvou proménnych—nazyvat elementdrnims symetrickymsi
funkcems.

IL.1. Definice. Funkei f t¥#i proménnych z, y, z nazveme
symeirickou funkci, nezméni-li se pfi jakékoliv zméné
potadi proménnych, tj. plati-li

(@) f,9,2) = [0, % 9) = 5, 2,2) = 19, 2 2) =
= f(z, z, y) = f(2, y, ) pro viechna x, y, ze R.

Je-li funkce f polynomem (tj. souétem funkei tvaru
axkytzn, kde a je realné &fslo, k, [ a m jsou celd nezaporna
tisla) a ma-li vlastnost (4), nazveme ji symetrickym poly-
nomem.

I1.2. PFiklady. (a) Funkee ¢,, ¢,, €5 z (3) jsou symetrické
funkce, a dokonce symetrické polynomy.

(b) Funkee ? + y* + 22, ((e*))r,sin (¢ + y) + sin (y +
+ 2)+sin(z2 4+ 2), (*+ y) (y + 2) (z + x) jsou syme-
trické funkce.

(c) Funkece zy 4+ yz 4 222, zy®z, vy + yz jsou polyno-
my, ale nejsou symetrické (dokazte!).

(d) Vyraz z? + y® + 22 je dokonce symetricky poly-
nom; dovedeme ho vyjadfit pomoci elementdrnich sy-
metrickych funkef ¢,, ¢,, e,:

(5) o+ 42+ 2 = (3 +y + 2 — 2ay — 2yz —
— 22 = € — 2e,.

(e) TotéZ plati pro symetricky polynom z?y 4 zy* +
+ 2% + x2® + y*z 4 y2*: Je totiz

(6) 2%y + xy? +x2z+xz2+y’z+yz’—(zy+xz
+y2)e+ (ey +yz +x2)y + (22 + yz +
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+ay)z—dwyz = (ay + gz + @) (@ 4y +
+ 2) — 3xyz = e,e, — 3e,.
(f) Totéz plati pro symetricky polynom z® 4 3® + 23:
2+ Yyt 2= (x+ y + 2)° — 3% + 2y® +-
+ 22z + 2% 4 y%z2 -+ y2?) — 6xyz;
uzijeme-li nynf formule (6), je
(7) 2 4 y® + 2° = e] — 3(e,6, — 3ey) — bey =
= &} — 3Be,e, 1+ 3ey.

(g) Totéz plati pro symetricky polynom z2yz | xy?z +
+ xy2?:
(8) o?yz + 2’z + 2y =2y2( -y + 2) =
= elea .

(h) Totéz plati pro symetricky polynom z%y? - y222 |
+ z2x%:

zyP + yi2t 4 2%t = (vy + yz + ) —
— 2x%z + 2y + xy2?) = €3 — 2e.6,;
pfitom jsme vyuZili vzorce (8).
I1.3. Uloha. Ozna&me pro ptirozené &fslo n
(9) 8y = 2" + Y™ + 2.

Ukaizte, Ze tyto symetrické polynomy lze vyjadfit po-
mocf elementirnich symetrickych funkef e,, e,, e,.

Ndvod. V ptikladech I1.2(d) a (f) jsme pHmym vypodétem
nasli vyjadfeni pro s, a s,:
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8, = &2 — 2e,,
83 == e} — 3e,e, + 3e,.

Metodou pfimého vypoétu lze postupovat i dale a po-
stupné vypoditat s,, s;, s, atd. Tak je napi.

8, = el — dele, + 268 4 4dese,;

tento postup vSak neni nejlepdi, vyhodnéj#i je pouZitf
rekurentnt formule

(10) 8n = €18n_3 — €8p_p + €39:_3.
(DokaZte platnost této formule!)
I1.4. Poznimka. Je-li P(z, y, z) symetricky polynom
t#{ proménnych, je vyraz
H(z,y) = P(z, y, 0)

symetricky polynom dvou proménnych z, y. (Dokaite!)
Polozime-li ve vzorcich (3) z = 0, bude

(11) g =x+y+0=x+y,
ey =2y + y0 4 Oz = zy,
eg =zy0 =0,

a specidlnd jsou tedy prvé dvé elementirni symetrické
funkce e,, e, stejné jako v pfipadé dvou proménnych.
Dosadime-li z (11) do (10), bude

Ip = €184 — €98,3,

a to nenf nic jiného neZ rekurentni formule (9) z kapi-
toly I (pro z = 0 je totiz 8, = 2" 4 y*» 4 O* = 2» 4 ym).

Odtud je vidét, Ze fadu vysledku platnych pro sy-
metrické funkce dvou proménnych lze odvodit z vy-
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sledkii pro symetrické funkce t¥f proménnych speciilni
volbou z = 0.

I1.5. Waringova formule. V kap. I jsme uvedli formuli
pro pfimé vyjéd¥eni symetrickych soudtd s, = an + y»
pomoci elementirnich symetrickych funkef ¢,, e, — viz
odst. I.4, formuli (10). Také pro souéty s, = a* + y» +
+ 2z plati takova formule:

1 1
=2 - (n —3)!
._(1!,——2)!1!_0T61 2ez+meﬁes+
(n—3)
Tt m—nrzror 4 ‘et —
m—4! .
_mel Seses + ...
séftajf se vyrazy tvaru
(13) (—1p—ep-y 8T BAY DL 0gyy

al Byl
plitemz se s&ftd pfes viechny trojice celych nezépornych
isel «, 8, y takovych, Ze

(14) «+ 28+ 3y =n.

Doporuéujemé &tenafi, aby se pokusil formuli (12)
dokézat a aby ji porovnal ve smyslu pfedchézejici po-
zndmky s formulf (10) z kap. I.

I1.6. P¥iklady. (a) Vyjddiime s, pomoci Waringovy
formule (12). Pro # = 4 m4 rovnice

a4 2843y =14



(s nezndmymi «, 8, ¥ z mnoZiny viech celych nezapor-
nych &fsel) celkem &tyFi fefend, takie na pravé strané
(12) budou é&tyti séitance. Tato feseni a jim odpovidajici
koeficienty podle (13) vypadaji takto:

3! 1
= = =0 (—]1¥48% —— — -
1) a—4’ﬂ 0:')’ 0)( l) '4!0!0' 4’
2!
—3 == == t{— 4-1 —_—  —
2) «a=2,8=19y=0;(-—1) 211101 1,
1!
3 a=Lp=0y=bLE " gy = L
1! 1

4) a=0,ﬂ=2,y=0; (—1)4_2 mr=?°
Podle (12) je tedy
1

1 1
2= Te‘{_egez + eey + ?eg

(porovnejte s formuli pro s, v tloze 11.3).
(b) Vyjadiime s;. Rovnice

a+284+3y=5

a B y koeficient
1

5 0 0 5

3 1 0 —1

2 0 1 1

1 2 0 1

0 1 1 —1

Tab. I1.1
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mé pét Fefenf, kterd jsme uspofidali spolu s koeficienty
podle (13) do tabulky II. 1. Z (12) tedy plyne, Ze

28 4 % + 2% = e — Bele, + Sele, + 5e,ef — Beyey.

Vsechny piiklady, které jsme v predchizejicich od-
staveich uvedli, ukazuji, e n8které symetrické poly-
nomy P(z, y, z) lze vyjadfit pomoci polynomu Q(e,, e,,
¢,) v proménnych e,, e,, e,, tj. jako soudet funkef tvaru
aetele?, kde a je redlné éislo, k, [ a m jsou celd nezdporna
¢isla; mame pak

(15) P, y,2)=Qx+y+zxy+yz+
+ zz, 2yz).

A podobné jako u symetrickych polynomi dvou pro-
ménnych majf tuto vlastnost v§echny symetrické poly-
nomy v proménnych z, y, z. Plati totiZ nisledujici ana-
logie véty 1.5:

IL7. V&ta. KaZdyj symetricky polynom v proménnijch
z, ¥, z lze vyjddFit jako polynom v proménnych e, = = +
+ Ytz e =25+ yz+ 2w, ¢y = 2Y2.

Dikaz je opét myslenkovd jednoduchy, je oviem po-
nékud pracngjdi nez v piipad® dvou proménnych.
Naznaéime zde postup, z néhoZ je patrno, jak se poly-
nom @ z (15) k symetrickému polynomu P sestrojf,
a podrobné ovéfeni pfenechime dtenafi.

ProtoZe polynom P(z,y,z) je symetricky, obsahuje
8 élenem z*ylzm té% viechny é&leny vzniklé zéménou pro-
ménnych; obsahuje proto nisobek vyrazu

(16)  Siim = 2Hyiem + atymd + Tyt + alymt +
+ amyket 4 amylek,
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Necht je tfeba m nejmensi z &isel k, I, m, tj. necht je
k=m,l =m.
Pak je
(A7) Seim = (@y2)™ (@Fmy ™ + G 4
4 gyt - glTmkm L gkomplom L giomgkom) —
= (Y2)™ Sk—m.1-m. o-

Dile je pro libovolna celd nezdpornd &fsla «, 8
(18) Sa.ﬂ.o = 8a8p — Sa48,

kde s, jsou souéty z dlohy IL.3, tj. s, =2 + y” + 2*
(pro ¥ = 0 klademe s, = 3). (DokaZte platnost formule
(18) jako cvideni!)

Nakonec je tedy

(19) Sktm = (TY2Z)™ (Sk-m 81—m — Sk41-2m) =
= e?(sk-m 8_m — 3k+l—2m) s

a protoZe podle tilohy IL.3. lze soudty s, vyjad¥it jako
polynomy v proménnych e,, e,, e;, plati totéZ i o vyra-
zech Sk.l.m-

Tim vsak je véta dokdzana, nebof symetricky poly-
nom P(z, y, 2) je soudtem vyrazi tvaru aSy,,, kde a je
realné &fslo.

IL.8. Pfiklady. (a) Vyjadiime pomoci elementirnich
symetrickych funkei polynom

Pz, y,2) = (x + y) (x + 2) (y + 2),

ktery je symelricky. PouZijeme-li oznafeni z dikazu
véty I1.7, zjistfme po roznésobeni, Ze

P(x, y, 2) = Spa0 + 22yz = 838, — 85 + 263 =
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= (6] — 2¢,) e; — (e} — e, + 3es) + 2¢5 =
= elea I ea .

[Pouzili jsme vzored (18), (5) a (7).]
(b) Pro symetricky polynom

Plx,y,2z)=@+y—2)@—y+2)(—r+y+2)
je po rozndsobeni
P(z,y,2) = —(@* + y* + 2°) + Spp0— 22y2 =
(20) = —83 1 88, — 83— 2¢3 =
= —2(e} — 3ese; + 3ey) +
+ (et — 2¢,) e, — 24 = —e€} + 4e,e — 8ey.

(¢) Uréime obsah p trojihelnfka, zndme-li jeho obvod,
soudet &tverc stran a soudet tfetich mocnin stran:
Oznadime-li délky stran trojihelnika pismeny z, y, z,
zname tedy s,, s, a 8,. Podle Heronova vzorce je

G G
=l/&. (=tyt?) @—ytz Ety—2 .
2 2 2 b} ;

vyuZijeme-li pfedchazejictho piikladu, je podle formule
(20) (2. Fadek)

s
(21) = V'l_:;‘ (8281 — 285 — 2¢y).
Zbyva jesté vyjadiit e; pomoci 8,, 8, a s5. Ze vzorci

31 = el,
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8, = €2 — 2e,,
8y = e} — 3e,e, + 3e,

zjistime, Ze

z (21) pak plyne
_1 623, — 88,8, — &} .
P= 3

IL.9. Poznimka. Na zavér této kapitoly dodejme, Ze
polynom Qe,, ¢,, e;), ktery odpovidd symetrickému po-
lynomu P(z,y, z) tak, aby platil vztah (15), a jehoZ
existence je zarudena vétou II. 7, je urden jednoznaéné.
Viz té% poznémku I.7.
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Kapitola III.

SYMETRICKE FUNKCE
n PROMENNYCH

Zobecnime nyni dvahy z obou p¥edchézejicich kapitol.
Uvazujme algebraickou rovnici n-tého stupnd (v pro-
ménné )

(1) trdaprttapr 4 ... +a i+ a,=0

a oznadéme x,, T,, ..., T, kofeny této rovnice, Pak muZe-
me rovnici (1) zapsat téZ takto:
(2) t—z)(t—2x5) ... (t—wm,) =0.

Provedeme-li ndsobenf naznadené na levé strané v (2)
a porovname-li vysledek s levou stranou v (1), zjistime,
e koeficienty rovnice (1) — tj. ¥isla a,, a,, . .., @, — sou-
visej{ s kofeny z,, x,, ..., x, takto:

o, =—(2, + 2,4 ... + 2,),
@y = T,Ty + 2123 + ... + T,20 + X%y +
+ ot 2t Tag,
Ay_y = (1P Yooy ... Tyy + 125 . - Tp_oZn +
+ ot 2y . T,

a, = (—l1yPzxx;... 2,
Zavedeme-li funkce ¢, = ex(®,, Zp, ..., T) (b —=1,2,. .,
n) formuli
(3) ex = (—1)kax,
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bude tedy
4) e =z +x+ ... + Zn,
e = 1Ty + 173 + ... + Tn_yTa,s

ey = T)Ty%3 + %% + ... I Ta_gTn_ 1T,

€iy = Ty %%y .. Tay + .o+ TTyTy ... Tn,y
€, = T XpTy ... Tp.

Zduraznéme, Ze k-t4 funkce e je polynom tvoreny sou-
étem viech moZnych soudini tvaru

xhzg....x‘k,kdel §1,1<1:2< e <’l:k én.
Odtud plynou dvé daleZité skutednosti:

(a) Polet séitanct v k-té funkei e je roven &lslu

(%)
k

(b) Funkce e, majt vlasinost symetrie: nezméni se, zmé-
nime-li jakkoliv pofadi proménniyjch z,, x,, . .., Ty.

Proto je budeme nazyvat elementdrnimi symetrickyms
funkcems.

ITL.1. Definice. Funkei f(z,, z,, ..., 2;) n proménnych
nazveme symelrickou funkc{, nezméni-li se pfi jakékoliv
zméné pofadi proménnych, tj. plati-li

(5) f(xv Loy o« oy :t,,) = f(xﬁ!xiv e :t;”)

pro jakoukoliv permutaci {¢,, 45, ..., i,} &sel 1, 2, ..., n.
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Je-li funkce f polynomem (tj. soudtem funkei tvaru
arfrg .. . xon,

kde a je redlné &islo, a,, ay, ..., a jsou celd neziporns
¢isla), a ma-li vlastnost (5), nazveme ji symeirickym
polynomem.

II1.2. Piiklady. (a) Funkce ¢, z (4) jsou symetrické
funkee, a to symetrické polynomy.

(b) Funkce 2% 4 2% + ... + 22 je symetricky poly-
nom; dovedeme ji vyjadfit pomoci elementdrnich sy-
metrickych funkef ¢;, nebot

(6) 22t af+ ..+ 2=t —2e
(dokazte!).
(¢) Pro nezdporné celé éislo N oznadme
(7) sy=aof +af + ... +27;
je to symetricky polynom a plati
S =1n (podle definice),
8, =e (podle definice),

8, = et — 2¢, (podle formule (6)).
Obecns plati Waringova formule
1
(8) T Sy = Z (_l)N—a,—a,— EERRt- PN
. (o 4+ o+ ... + az—1)!

al! az! “r e a,,!

a. &,
-efiede ... €ln,

pridems? se s&ité pres viechny n-tice celych nezdpornych
tisel ay, ay, ..., a, takovych, Ze

(9) a, + 2a, + 3a3+ ... + na, = N.
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II1.3. Uloha. Pokuste se dokazat platnost formule (8).
VyuiZijte k tomu nésledujictho rekurentniho vziahu mezi
symetrickymi soudty sy:

(10) 8y = €8y —€by gt €8yg— ... +

+ (—1)¥exs,
(pritom povaZujeme za rovné nule ty séftance tvaru
(—1Y¢exsy _x, u nichz je &k > n).

Ctena¥e nyni jisté neprekvapi, vyslovime-li (bez di-
kazu) vétu analogickou vétam I.5. a IL.7.

II.4. V&ta. Ke Fkatdému symetrickému polynomu P
v proménnijch z,, Ty, . . ., Tn existuje polynom Q v promén-
nyjch ey, ey, . . ., e, tak, Ze plati

(ll) P(xlx Ty, °"1xn) =Q(61! €2y « ¢y eﬂ)'
Polynom Q je polynomem P uréen jednoznadné.

HL.5. P¥klad. Najdeme polynom @ z véty III.4 k sy-
metrickému polynomu

(12)  P(xy, g, - . ., Tn) = (2 — 2o)* + (2, — 75)% +-
+ e + (xn—l '—xn)2

(jedna se o soudet vSech vyrazi tvaru (x; — z;)?, kde
1 =i<j=n).
Provedeme-li naznadené umocnéni, zjistime, Ze

(13) P(x;,xp, ..., %) =(n—1) (22 + 224+ ... + 22)—
— 2¢, = (n— 1)8, — 2¢, = (n — 1) €2 — 2ne,
(pouZili jsme vzorce (6)). Je tedy
Qey, 35 ...y €3) = (n— 1) €2 — 2ne,.
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I11.6. Pfiklad. Vztah (13) m4 ¥adu zajimavych dd-

sledkt: Ze vzorce (12) je zfejmé, Ze P(x,, x,, ..., T,) =
= 0, a tedy je také (n — 1) e} — 2ne, = 0 &ili
(14) (n—1) et = 2ne,.

ProtoZe ze vzorce (6) plyne, Ze 2¢, = ¢2 — s,, dostavame
z (14) nerovnost
e < ns,
dili (protoze e; = 8;)
(15) @+ 2t ... + %) Snfa +2f +
TR

[Posledni nerovnost byla jako specidlni pfipad Cau-
chyho nerovnosti odvozena napf. v [1], str. 51, formule
(11.8).]

Vzorec (14) miiZeme upravit nejriznéjdim zpisobem.
Dosadime-li napt¥. e} = 2e, + 8, — viz (6), bude
n—1

—5 " S

(n—1) (2e, 4 8,) = 2ne, &ili e, < 3

ili
(16) %y + X%y + ...t Tp Ty S
n—1

P @At ).

1

Vsimneme si nynf nékolika dalifch vlastnosti elemen-
tarnich symetrickych funkei.

IIL.7. Uloha. Necht jsou viechna &isla z; riizné od nﬁly

k=12, ..., n). Ze vzorce (4) plyne, %e
BTy .. Tn | LTy ... Ty
€ny = 2, + Zon + ... +
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Ty XXy . . . Ty

Wit ad at Tl A
Ty
Z1%5%g. o Ty x—ll+xi2+ +x_l,.]
dili
enq(®y, Xy, ..., %) =
1 1 1
= e,(Zy, Tg,. - .,Tn)-€; ;1—, 3_2’ SRl .

Dokazte, fe proi =1, 2, ..., n — 1 platf

(17) en_i(®y, gy ..., Zy) =
= e,(2,, T ).e L 1
= €n\Ty, Ty, +++y Tn)- 1[2:1: xz’ ey -'l:"]'
Ndvod. Vztah (17) lze snadno dokizat pfimo — stadf si
oy 1
uvédomit, Ze e (), Ty, - . -, Ty) = Ty Xy ... T, & ZE ¢ [a:_'
1
L, R L] je soudet viech vyrazl tvaru
xa z"
1
——kdel =k <k <...<k=n
T, Lpy - - - Ty

(]

Lze viak vyuZit té2% souvislosti mezi funkcemi e¢; a kofeny
jistého polynomu: Ze vztahti (1) a (3) plyne, Ze &isla

%y, &y, ..., Ty jsou kofeny polynomu P, v proménné ¢,
daného vzorcem
(18) Pt) =tr—etrl fer2— ... +

+ (1) et + (—1)"en;
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zde je e; = ei(xy, xy, ..., %,). Polynom @, v proménné g,
dany vzorcem

0uls) = P ),

mé tudiZ kofeny ,i, ;1—, ce :z:i a jeho koeficienty jsou

1 2 n
(se stFidajfcim se znaménkem) symetrické funkce
1 1 1

— — — iisty !

e.[xl, PR 2..] (s jistym nédsobkem!).
Soudasnd vsak jsou koeficienty polynomu @, uréeny
koeficienty polynomu P,, a porovninim dostaneme
vztahy (17). [Pozor: u polynomu P, je podstatné, Ze
koeficient u {* je roven jedné; proto je t¥eba piislusné
upravit i polynom @,!]

I11.8. P¥iklad. DokédZeme toto tvrzeni: Funkéni hod-
noty funkee e; = elz,, z,, ..., %,) jsou kladné, prdvé kdyé
vdechna &isla ; jsou kladnd (1 = 1,2, ..., n).

(a)Jeliz; > 0 pros =1, 2, ..., n, plyne ihned ze
vzorcl (4), Ze takée; > Oproi = 1,2, ..., n.

(b) Necht je e; > O proi =1, 2, ..., n. Cisla z; jsou
kofeny rovnice

(19) tr—evt fetrr— ...

+ (—1)*teayt + (—1)ren = 0;
vyndsobfme-li tuto rovnici éfslem (—1)*, maZeme psit
(—t + e —t T+ e(—t) 2+ ...+
+eng(—t) + e =0

neboli po substituci s = —¢

(20) st et des 24 ... 8t 6 =0.
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Tato poslednf rovnice mé kofeny y; = —z; (1 = 1, 2,

.., n). Zadny z téchto kofeni nemtiZe byt nezépor-
ny, nebot po dosazeni nezidporného &fsla ¢ do levé strany
v (20) dostaneme kladné &islo a nikoliv nulu (vSechna
e; jsou kladni). Musi tedy byt y; < 0 &ili —=z; < 0, ¢ili
z;,>0prot=1,2,...,n

ITL.9. Pifklad. Necht jsou é&isla z; kladna. Pak platf
(21) exy.expu—eE<Oprok=12 ..., 2—1;
zde klademe \
(22) eo(®y, Zg, ..., ) = 1.

Pozdéji (viz tlohu VI.4) ukiZeme, Ze vztah (21) je
disledkem obecnéj$f nerovnosti; proto zde pouze na-
znadime myslenku pfimého dikazu nerovnosti (21):
Stadf si uvédomit, Ze typickym &lenem ve vyrazu
€x 1€k — € bude vyraz

(23) xza:§ ka_H_lxk_“_z ooe Tpgi ('i < k).

Tento vyraz vznikne jednak ze soudinu ex_,e;.;, jednak
ze soudinu ex.ex = ¢. V prvnim ptipads se bude na levé

strané vzorce (21) vyskytova,t[ 2 ]kra.t nebof z 2¢

»volnych® &initeld x_iyy, Zroire, .. Tuys 12 1 — 1 8-
niteld volit z ex_; a zbyvajici pak pat# do ex,,; takovych
moZnost{ mame { i 1] Ve druhém piipadé se bude
vyraz (23) vyskytovat na levé strané vzorce (21)
2: krat (a bude mit znaménko minus), nebot ¢ &initeld

z 24 poslednich lze volit z prvého e, a zbyvajici pak pati
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do druhého ¢;. Kladné &islo (23) tedy bude na levé strand
vzorce (21) opatfeno koeficientem

) 2!

’

ktery je zdporny. Na levé strané v (21) je soudet zépor-
nych ¢&fsel, a tim je nerovnost (21) dokazéna.,

IIL.10. Uloha. Dokaste: Je-li . >0 pro k=1, 2,
...,m,pakprol < i <j < n platf

(25) €16 < e8j_y.

Ndvod. Uzijte nerovnosti (21), kterou zapiSeme ve tvaru

€x—1 2
<
€x €k+1

postupnéprok =1,2,...,¢,...,4, ...,n— 1.

II1.11. Poznimka. Zvolfme-li v (25) 1 = 1 a j = n,
dostaneme vzhledem k (22) vztah

(26) en < €1€n_1.

Vztah (26) jsme odvodili z (21), a uZ p¥i dikazu této
nerovnosti jsme vidéli, Ze je velice ,,nepfesna‘’, Ze rozdil
mezi ex_,ex,, & €; je nejen zaporny, ale dokonce v absolut-
ni hodnoté ,,velky‘* — viz (24). A tak se asi dopoustime
velké chyby i pfi odhadu (26). Skutednd: uZ jen pros-
tym pohledem na souéin e.e,_, je vidét, Ze bude platit
lepsf odhad neZ (26), totiz odhad

(27) €16n_y > Ne,,
odkud (26) uZ plyne. A ani tento odhad neni nejlepsi:
plati dokonce
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(28) €16n- = Nle,.

Dikaz nerovnosti (28). Vyjdeme z nerovnosti

(29) (@t 2zt ..+ ).
(Lt 1Yo e
[m—l-l-;z— ...+x—”]_n.

(viz napk. [1], str. 29 nebo str. 52). Pfevedeme-li zlomky
v druhém é&initeli na levé strané nerovnosti (29) na spo-
le¢ného jmenovatele, bude mit tato nerovnost tvar

el.&‘— = n?,
€n
a to u je (28).
II1.12. Uloha. Doka¥te, %e pro kladns &sla x; platf

2
(30) e,,e,._,,g[:] e, k=12 ...,n -1,
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KapitolaIV.

POUZITI SYMETRICKYCH FUNKC{
DVOU PROMENNYCH

IV.1, Piiklad. Dejme tomu, Ze méme najit &fsla
x a y, ktera vyhovujf této soustavé dvou rovnic o dvou
nezndmych:
(1) 2+ yt =5,
2+ y3=09.

Podivime-li se na soustavu (1) pozornéji, snadno se ndm
podaif jedno feden{ ,,uhddnout: je to dvojice

(2) x=l: y=2,

a vzhledem k symetrii vyrazi na levych stranach sou-
stavy rovnic (1) bude feSenfm i dvojice

(3) z =2, y=1.

Jsou to viak viechna fefeni soustavy (1)? A jak by
tomu bylo, kdyby na pravych stranach v (1) stdla jind
tisla, napt. = misto 5 a log 2 misto 9? Pak by to asi
8 ,,haddnim* bylo téz8i, a tak budeme muset soustavu
(1) podrobit ponékud systemati¢téjsimu zkouméni.

VyzkouSime tedy metodu eliminaéni: pokusime se
vylouédit jednu nezndémou. Z prvé rovnice miame x* =
= 5§ — g2, z druhé 23 = 9 — 33, a tedy

28 = (56— y?)® = 125 — T5y% + 15y% — g8,
28 = (9 — )2 = 81 — 18y3 + 4.
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ProtoZe x% = 29, dostavame odtud rovnici o jedné ne-
znamsé y:
(4) 2y® —15y* — 18y® + 75y  — 44 = 0.
To je ovSem rovnice 6. stupné, a tu neumime Fesit.

Pokusme se tedy vyuZit symetrie levych stran v (1)
a naSich poznatki z kapitoly I. Na levé strans v (1) jsou
VyTazy 8; a 8y, a podle tabulky I.1 miZeme proto sou-
stavu (1) zapsat takto:
(5) & — 2, =5,

e —3ee, =9.

To je opét soustava dvou rovnic, tentokrdt oviem o ne-
znamych e,, e,. [PFipomefime, Ze

(6) e, =x+y, e=uyl]

Resme soustavu (5): Z prvnf rovnice mime
1

(7) & =5 (d—5);

dosadime-li za e, do druhé rovnice v (5), dostaneme po
tpravd kubickou rovnici pro e,:

(8) & — 15¢, + 18 = 0.

Anij takovou rovnici nenf snadné ¥esit, zde si viak po-
mit¥eme vzorei (2) & (3): vyuZijeme-li tam uvedenych
hodnot z a y, zjistime, Ze jim odpovida hodnota e, = 3,
a to je skutednd Fefenf rovnice.(8). ProtozZe

e} — 16e; + 18 = (¢; — 3) (€] + 3¢, — 6),

redukuje se fefenf kubické rovnice (8) na fefeni kvadra-
tické rovnice
e+ 3¢, —6 =0,
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ktera ma kotfeny

e = (—3+ |33) a & =5 (—3 — J39)

Vypotitame-li jestd odpovidajici e, podle vzorce (7),
zjistime, Ze soustava (5) ma t¥i fefenf, uvedena v nasle-
dujici tabulce:

1 1

- (—3—133)

ol

(—3 +V33)

ey 2 71-(11,—31/%) %(11 + 3)33)

Tab. IV.1

My vsak potfebujeme najit Fesen{ soustavy (1). Vra-
time se proto ke vzorctm (6): Jak vime z kapitoly I, jsou
z a y koteny kvadratické rovnice

tz_elt + 82 Lt O.
Utvofime proto pro kaZdou dvojici e,, ¢, z tab. IV.1 od-
povidajicf rovniei {pro druhou dvojiei je to rovnice
1 — 1 —
P — 5 (—3+ /33) ¢ + - —3)33) =0,
vytesime ji a kofeny ¢, £, budou tvotit dvojici z, y FeSenf
soustavy (1). Pfitom muZeme vzhledem k symetrii volit

=1, y=t
nebo

T =i, y="t.
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Nakonec tak zjistime, %e soustava (1) mé Sest Fedenf:
jsou to t¥t dvojice z, y z tabulky IV.2:

x| 2 %(—3 + V33 + %(——3 — V33 +

+ V=27 6V33) +il2+ eV3s)

g | %[—3 + )33 — %[—3—1/5—
— V=25 6V33) —il2 ¥ 6y33)
Tab. IV.2

a dalsf tfi dvojice, které vzniknou z piedchazejicich za-
ménou z a y.

Soustava (1) md tedy Sest Feseni. Zajimaji-li nas
oviem jen realnd FeSeni, musime posledni dvojici
v tab. IV.2 vynechat: soustava (1) pak ma ¢ty¥Fi redlnd
Tedeni.

Ptedchézejici ptiklad ukazuje, jak miZeme nékdy vy-
Fedit soustavy rovnic, v nichZ neznidmé vystupuji ve
tvaru symetrickych polynomi. VyuZivame pfitom po-
znatku z kapitoly I — pfedeviim véty 1.5 — a déle pak
nésledujicfho tvrzeni:

IV.2, Véta. Budle e,, e, dand &isla. Md-li kvadratickd
rovnice

R) 2—et+ e, =0
Fedent t,, t,, md soustava rovnic
(S) € + Yy =é,

Ty =6
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dvé Fedent:

Ty=1t, Y=t @& Ty=1"ly, Y.=¢l.
Jsou-li naopak &sla zy, y, Feleni soustavy (S), jsou tato
éisla i kofeny rovnice (R).

Dikaz je takika zfejmy. Jsou-li ¢,, ¢, kofeny rovnice (R),
plati
b+t = e, iz = €3,

a jak dvojice {t,, ¢,}, tak dvojice {t,, t,} tedy Fesi soustavu
(S). Tato soustava uz Zidné jiné fedenf nema: je-li totiz

{Zo, yo} FeSeni soustavy (8), je zy + yo = €1, ToYo = €1,
a tedy

B — el + ey =12 — (To + Yo) b + ZoYo =
= (£ —Zo) (t —¥0),
tj. 2, & y, jsou koteny rovnice (R).

IV.3. Pfiklady. (a) ReSme soustavu
(9) *+y=>5,
22—y ="1.
ProtoZe x* — 2y + y* = (v + y)? — 3zy, miiZeme sou-
stavu (9) zapsat pomocf vzorcd (6) takto:
(10) e, =5,
et — 3¢, = 1.

Tato soustava ma FeSenf e, = 5, e, = 6, a fefeni vychozf
soustavy (9) bude tedy podle véty IV.2 tvofeno kofeny
kvadratické rovnice

#—5t+6=0.
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A tak FeSenimi soustavy (9) jsou dvojice
3,2} a {2,3}.
(b) Resme soustavu
(11) r+y=1,
2 + 42 =0.

Pouzijeme-li formule (5) z kap. I, miiZeme soustavu (11)
zapsat ve tvaru

€1=1,

€ — 2¢y =0,

1
a mame tedy e, = 1, e, = - Utvofime kvadratickou

rovnici
1
2 __ = =
t t 4 ) 0

a zjistime, Ze feSenimi soustavy (11) jsou dvojice
1 . 1 . 1 . 1 .
Fa+n za—i} o fFa—n, ga+a}
(c) Re¥me soustavu
(12) 2+yyPp=7r4+y)),
2 — 1y =19z —y).

Je-lix = —y, je prvni rovnice splnéna identicky a druha
mé tvar .
223 = 38z.

Tato rovnice m4 FeSeni © =0, z = J/19, z = —Vl_ﬁ,
a dostivame tak t¥i Fefenf soustavy (12):
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(13) {o,0}, {J19, —J19}, {—V19, V13}.

Je-li x = y, je druhd rovnice v (12) splnéna identicky
a prvnf ma tvar
203 = 14z,

Tato rovnice mé fefeni z =0, z = |/7 a 2 = —/7,
a dostdvdme tak dal&f dvé FeSenf soustavy (12):

(14) 7.17) = {=V7. V7).

Jeli ¢ %2y i * # —y, muZeme rovnice soustavy (12)
zjednodusit vydélenfm (x 4 y), resp. (x — y). Dostane-
me pak soustavu

e —zy+yt =1,
z* +xy + ¥t =19,
kterou miZeme zapsat pomoci vzorci (6) takto:
(15) e2—3e, =1,
et —e, =19.

Odtud zjistime, Ze e, = 6 a e? = 25, takie FeSenimi sou-
stavy (15) jsou dvé dvojice

(5,6} a  {—5,6}.
Utvotime-li k témto dvojicim kvadratické rovnice
2—56t+6=0 a #4566+6=0,

najdeme pomoci kotent téchto rovnic dalsf éty#i Feseni
soustavy (12):

(16) {3,2} a {2,3}, {—2,—3)} a {—3,—2}.

Soustava (12) ma tedy celkem devét feSeni, uvedenych
ve vzorcich (13), (14) a (16).
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IV.4. Ulohy. (a) Re3te soustavu

rt+y=1, i;—+£—=35—-

[(3, 4} a {4, 3)]
(b) Reste soustavu

z2 yz— _
7+7—18, r+y=12.

[{4, 8} a {8, 4}].

(¢) Reste soustavu
z+y=4, zt 4 yt = 82.
[{1, 3}, {3, 1}, {2 4 5i, 2 — 5i}, {2 — 5i, 2 -+ 5i}].

(d) Reste soustavu

x+y=a, 2"+ y =a’ (areilné).
[Proa # 0 : {a, 0}, {0, a}, {%.(1 + iV§),% (1—-i]/§)}

a {—g— 1— ivg), % 1+ iV§)};proa = 0:libovolna dvo-

jice &isel z, y takovych, Ze z + y = 0.]
(e) Reste soustavu

r+y—z="17, x*+4 y*—2? =237,
24 yPt—2 =1

[Ndvod. PouZijte opét vzorci (6) a vyludte z. Zjistite,
Ze e, = 19, ¢, = 90 a z = 12, a odtud dostanete Feseni
{9, 10, 12}, {10, 9, 12}.]

Dalsf tlohy si zainteresovany &tendf jisté snadno se-
stavi sdm, a tak si radéji ukédZeme daldf moznosti vyuZiti
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poznatki z kap. I. Pozorny &tenaf si jisté viiml, Ze poly-
nom vystupujicf v druhé rovmiei soustavy z ptikladu
IV.3(c) nebyl symetricky, a Ze jsme k soustavé v symet-
rickém tvaru dospéli jistymi dpravami. Uvedeme nynf
nékolik tprav, které umoZihuji fesit i ,,nesymetrické*
soustavy éi jiné, komplikovanéjsf rovnice.

IV.b. Piklady. (a) ReSme soustavu
(17) L utdv =5,
w8 4 v3 = 65,

Vyrazy na levych strandch nejsou symetrické; pouZije-
me-li viak substituce

(18) ut =z, v =1y,
bude mit soustava (17) tvar
z+y =25,
z? + y* = 65,

a tuto soustavu umfime fFeSit: zjistime, Ze mé FeSenf
{4, 1} a {1, 4}. Nyni se pomocf vztahi (18) vritime k pa-
vodnim proménnym u, v a zjistime, %e soustava (17) mé
&tyFi feSeni

{2,1}, {—2,1}, (1,4} a {—1,4}.
(b) ReSme soustavu
(19) 4y® 4 9% =5,
8ud — 270 = 9.

Také zde nejsou vyrazy na levych strandch symetrické
v proménnych u a v; pouZijeme-li vSak substituce

2u ==, —3v =y,
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dostaneme ze soustavy (19) soustavu (1). A tak najdeme
FeSeni {u, v} soustavy (19) z feSeni {x, y} soustavy (1)
pomoci vzorei

_1. 1
Y= 'TTF

(dvojice {z, y} najdeme v tab. IV.2).
(c) ReSme v oboru nezipornych &isel soustavu
(20) 6(Jw + Vo) — 5 Jww = 0,
w4+ v=13.

Zde je v prvni rovnici na levé strané sice symetricks
funkce, ale nenf to symetricky polynom, a proto nelze
uzft véty 1.5. Ale pomoci substituce

(21) z=1u, y=o
pfejde soustava (20) v soustavu

6(x + y) —bSzy =0,

24y =13,
¢ili
6e, — bey = 0,
e — 2¢, = 13.
Odtud mime
e, =05, ea=6 a e1=——1-5§-, e2=—;—:-

Druhé mo#nost v8ak nepfichdzi v dvahu, nebotf z (21)
pPlyne, Ze x i y musi byt nezdporné é&isla; z prvni dvojice
{e,, e,} dostdvame

x=2 y=3 a z=3,y=2



a z (21) plyne, Ze soustavu (20) fesi dvojice
{4, 9} a {9, 4}.

Nékteré 1lohy lze vhodnym obratem pfevést na sou-
stavy, jaké jsme zatim Fesili:

IV.6. P¥iklady. (a) Reime rovnici
(22) (22 + 17 — (22 — 1)7 = 128.
Provedeme-li naznadené umocnéni, dostaneme rovnici
12. stupné, a to neni nic p¥jemného. Jestlize viak polo-

Zime
24+ 1l=2, —(2—1)=y,

bude
x+y=2
& rovnici (22) miZeme zapsat takto:
2"+ y? = 128.

Tim jsme vSak rovnici (22) pfevedli na tlohu IV.4(d)
s a = 2 (128 = 27), a podle této ilohy méame pro x &ty¥i
mozZnosti:

xr=2, z=0, =1+il/§a. a:=1—iV§.
Reden{ rovnice (22) pak uréime z kvadratické rovnice
22=x—1,

tj. rovnici (22) fesi tyto hodnoty:

1,—1,i,—i, (1 + I)V—% (1—1i) V—%',
4 ‘
Y EE ﬁ
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(b) Resme v R rovnici

(23) 1/41+z+i/41-—-z=2.
Polozime-li
(24) a:=1/41—|—z, y=1/41.—z,
dostaneme soustavu
xt + y* = 82,
z+y=2

a ta ma tato redln4d fedeni:
{3, —1} a {—1, 3}

(zbyvajici FeSeni jsou komplexni, ovéite!). Z (24) viak
plyne, Ze ¢&sla xz i y musi byt nezapornd, a tak nem4
rovnice (23) v R Zidné Fesend.

(o) Redme v R rovnici

3
(25) VlO—z—1/3—z=1.
Polozime
3
. x=V10—z, y=—1V|3—z
a dostaneme soustavu
z+y=1,
2?4y =1,

Tu dovedeme Fesit: jejimi feSenimi jsou dvojice
{2,—1} a {—1,2},

a protoZe z = 10 — 3, zjistime, %e rovnici (25) ¥esi

hodnoty z =2 a2z = 11.
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(d) Resme v (0, 2x) rovnici
(26) sin®z + cos®z = 1.

Zde vyuZijeme zndmého vztahu sin?z 4+ cos? z = 1. Po-
loZfme-1i

T = Ccos z, y = sin 2,
dostdvame soustavu
w4yt =1,
a3+ 93 = 1;

ta m4 redlnd Fedeni {0, 1} a {1, 0} a ddle jesté komplexni
feSeni, kterd nebudeme uvazovat (zajimaji nas hodnoty
z z intervalu (0, 2x)). Dostali jsme tedy pro z rovnice

cosz =0, sinz =1
nebo
cosz=1, sinz =0,

jimZ vyhovuji v (0, 2x) jen hodnoty

k1

=5 a z=0.

2

Protoze véty 1.5 a 1V.2 ukazuji na tizkou souvislost
mezi symetrickymi funkcemi, vyrazy e, a e, a kofeny
kvadratické rovnice (R), 1ze odekavat, Ze této souvislosti
bude mozno uzit v riznych piikladech majicich néjaky
vztah ke kvadratickym rovnicim a jejich kofentm.
Uvedeme nejprve dva typické piiklady a pak jedno
takika zfejmé tvrzenf.

IV.7. Pifklady. (a) Sestavme kvadratickou rovnici,
jejimiz kofeny jsou osmé mocniny kofeni kvadratické
rovnice
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(27) 2—t+7=0.
Necht mé hledand kvadraticka rovnice tvar
(28) 24 pt+ g = 0;

méme tedy urdit koeficienty p, ¢q. Mohli bychom postu-
povat mechanicky: urdit kofeny =z, y rovnice (27)

[je z = % (1+i3)3),y = 5-(1—i 3V§)], vypotitat
x® a 9° a poloZit pak

p=—+9), g=2.9.

My vSak z a y vibec poditat nemusime: pouZijeme-li
toho, fe x +y =¢, = 1, z.y = ¢, = 7, a tabulky 1.1,
zjistime, Ze

q = (xy)® = e§ = 7® = 5 764 801,
=—(@* + %) = —s8; = —(@ — Befe, +
+ 20efez — 16elel + 2¢3) = —239,
takZe hledand rovnice ma tvar
t* — 239 + 5764 801 = 0.

(b) Sestavme kvadratickou rovnici, vime-li, Ze pro jeji
kofeny =z, y plati

(29) 2249y =0, 2*+2y+y?=86.

Opét bychom mohli spodftat dvojice z, y, které sou-
stavu (29) fesf; my vSak vime, Ze kvadratickd rovnice
uz je urdena &sly e, = x + y a e, = xy; metodou, kte-
rou jsme pouzivali na zaditku této kapitoly, zjistime, Ze
existujf tf1 dvojice {e,, e,} : {0, —6}, {3, 3} a {—3, 3}, tak¥e
nasi tlohu Fesf ¢#7 kvadratické rovnice:
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2—6=0, {2—3t+3=0,
243+ 3=0.

[Ctenat si jistd uvédomil, Ze tilohy tohoto typu jsme pri-
bézné fedili v pfikladech IV.3 i v tlohdch IV.4; neformu-
lovali jsme je oviem tak explicitné jako v pfedchazeji-
cich prikladech, protoZe konednym cilem bylo nalezenf
kotent a sestaveni kvadratické rovnice bylo jen jednou
etapou.]

IV.S. Véta. Budie e,, e, dand redlnd &isla. K tomu, aby
Fedent xz, y sousiavy

(S) z+ Yy =é&,

TY = €y
byla redlnd &isla, je nuiné a staét, aby platilo
(30) e% - 462 g 0.

K tomu, aby &isla z a y byle nezdpornd, je nuiné a stadt,
aby vedle (30) platilo jesté

e, =0, e, = 0.

Dikaz plyne z véty IV.2. Podle ni jsou &isla z, y kofeny
kvadratické rovnice {2 —e;t + e, = 0, a tedy je

g=atia—de _a—ld—t
- 2 Y= 2

Tato ¢isla z a ¥ budou redlné tehdy a jen tehdy, bude-l
diskriminant e} — 4e¢, nezdporny, a to je nerovnost
(30). — Také druhé tvrzeni véty plyne ihned z (S) a z (30):
pienechdvame je -Stendfi, ktery miiZe najit inspiraci
i v prikladu IIL.8.
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Posledni véty mizeme vyuiit opét k FeSen{ riznych
tloh. Uvedeme jich nékolik na ukizku.

IV.9. Pfiklad. Necht jsou x, y dvé nezaporni &isla.
Jaky je vztah mezi tfetf mocninou jejich aritmetického
priméru a aritmetickym primeérem jejich tfetich moc-
nin ?

Znamens, to, Ze musime porovnat &sla

2+ y) 2 4y
[2) T

2 b
. 1 ., 1 | S .
tj. tisla g s=5 (e} — 3e,e;). Pro jejich rozdil
platf
1 1 3 3
?eg——z'ei + g el = —?61(95—492) =0,

nebot ¢, = 0 (¥isla z, y jsou nezdporné) a podle (30) je
také e — 4e, = 0. Plati tedy

sty 2+
(2=
(viz téZ [1], str. 94, vzorec (II1.40) pro r =1, s = 3).

IV.10. Pfiklad. Jaké maximalni hodnoty nabyv4 funk-
ce

F(a, y) = zy(x — y)*%,
jestliZe redlné proménné z, y spliiuji podminku z + y =
= 8?
Funkéni hodnotu F(z, y) miZeme zapsat takto:
F(z,y) = e5(8,— 2¢,) = ey(e] — 4e,);
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zavedeme-li oznadeni
(31) e} —de, =1,
je pfedeviim ¢ = 0 (podle vzorce (30)) a

(32) ey = % (et —1),

takze
1
F(z,y) = ik (e —1).

VyuzZijeme-li jest8 toho, e x 4 y = ¢; = 8, mame
F(z, y) =71-t(64—t) = %—(—t’ + 64¢) =
= —i— [— (¢ — 32)% + 1024] = 256 — % (¢t — 32).

A odtud uZ je vidét, Ze
F(z, y) < 256

a %o své maximalnf hodnoty — tj. hodnoty 2566 — na-
bude F(z, y) pravé tehdy, bude-li { = 32,

A zajfma-li nds navic, pro které hodnoty z, y dosdhne
funkce F(z, y) uvedeného maxima, stadi vyuzit vztahu
(31) a Fesit soustavu

‘ ef - 4-e2 = 32’
e = 8;
zjistime, Ze dvojice z, y jsou kofeny kvadratické rovnice
22—8z2+8 =0,
tj. F(z, y) = 256 pro dvojiciz = 4 + 2]/2, y = 4 —2]/2
a pro dvojiciz = 4—2|/2,y = 4 + 2V2.
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IV.11. Poznimka. Obrat, ktery jsme pouzili v pfedcha-
zejicim piikladu, totiZ zavedeni nezaporného ¢&isla ¢
podle (31) a vyjadieni e, pomoci e, a ¢, viz (32), nebo
naopak ef ve tvaru

(33) e = 4e; 1 ¢,

se dé u tloh tohoto typu dasto vyuiit. Uvedeme jesté
dvé ukazky.

IV.12. Piiklady. (a) UkdZeme, Ze pro libovolnéd nezi-
porné ¢&isla z, y plati

(34) 2t + 22% + 223 4+ yt = 6z,
Pouzijeme-li tabulky I.1 a vzorce (33), bude
2t 4 22% + 2z2y° 4+ y* — 62%y® = 2% 4 ¥t + 2xy(x? 4+
+ y?) —6(zy)®* = 8, + 2e;8, — 6e] = € — defe, +
+ 2¢8 + 2¢4(e? — 2¢,) — 66 = e} — 2¢%e, — 8¢ =
= (dey + t)? — 2e4(dey + t) — 8e2 =12 + 6Gegt = 0,

nebot podle véty IV.8jet = 0ie, = 0.
(b) BudiZ a > 0. Platf-li pro reilna &isla z, y vztah

(35) z+y=a,
pak je
(36) 2+ 2 = % al.

PouZijeme-li totiz tabulky I.1 a vzorce (32), je

1
Byt =2 =d—2(F—0) =



R D TP

——2-61 + 7‘ 2—2- €1,
nebot podle véty IV.8 je ¢ = 0. Nerovnost (36) nyn{ ply-
ne z pfedchozi nerovnosti a z nerovnosti (35), podle ni% je
e = G.

IV.13. Ulohy. (a) Dokaizte, Ze za predpoklada ptikladu
IV.12 (b) plati

1
ot +yt =4 at,

1 a
= 128

1
— a'® atd.

T8 | ylo >
(b) DokaZte, Ze pro libovoln4 realn4 éisla z, y plati
zt + yt = 2% + xy,
' a® + yt = zby + xyf,
2+ y® = 2y + 2y,

a rozhodnéte, zda analogické nerovnosti platf i pro vyssf
hodnoty exponenti. (Viz téZ poznémku IV.14.)
(c) Dokazte, %e pro kladné &sla z;, z,, .. ., =, platf

1
37) (@ 4 2t ...+ 7) {—+ +. +x—] >,
(Viz té% poznamku ITI.11.)
Ndvod. DokaZte nejprve, Ze pro kladna &fsla z, y plat
A A
(38) i =2,

a to pomoci véty IV.8; pak provedte v (37) rozndsobenf
a vyuZijte nerovnosti (38).
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IV.14. Poznimka. Pfedpokladdme, Ze ¢tendf si pied-
chézejicf dlohy vyFesf pomoci véty IV.8, ale fada z vyse
uvedenych nerovnosti se d4 dokézat i jinymi metodami,
bez pouZiti teorie elementirnich symetrickych funkef.
Tak t¥eba nerovnost (37) je v [1] dokdzana dvojim zpa-
sobem (z toho jednou pomoci Cauchyho nerovnosti); ne-
rovnosti z Glohy IV.13 (b) plynou pro zménu zase z Hol-
derovy nerovnosti

Ty + Ty < (F + 28)V2(yf + 99",
kdep > 1,9 > 1, —;- +% = 1 (viz [1], str. 72): Zvoli-

me-li totiZ o, = 2%, , = 93, 4y, = Y, Y = %, p = -

a ¢ = 4, dostaneme prvn{ z nerovnost{ v Gloze IV.13(b).

Uvedli jsme zatfm ndkolik ukézek, jak lze elementar-
nich symetrickych funkef ve dvou proménnych vyuZit
k feSeni Fady tloh. Nejsou tim pochopitelnd vyderpiny
viechny moZnosti jejich pouZiti: 1ze pomocf nich doka-
zovat rizné identity, upravovat sloZité algebraické
vyrazy, fedit specidlni algebraické rovnice vyssich ¥adua
i rtzné specidlni rovnice, zkoumat Fesitelnost riznych
soustav rovnic atp. Uvedeme proto spiSe namétkou
a pro ilustraci nékolik pfikladd, z nichZ posledn{ ukazuje,
Ze i poznamka 1.7 o jednoznaénosti polynomu @, urde-
ného symetrickym polynomem P, mé svij vyznam.

1V.15. Piiklady. (a) Platf tato identita:

(39) (z+y)f—2*—y° =bzy(z + y) (2" + 2y +
+ 7).
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Levou stranu lze totiz psit ve tvaru e} —g; = e} —
— (€§ — bele, + 5e,ef) = 5e,eq(e? — e,), a-poslednf vyraz
je roven pravé strané v (39).

(b) Zjednodusime vyrazy

@+yr—a—y @ty —aT—y
@+ yP—a®—y? +y)P—2*—y°

Prvni vyraz maZeme zapsat ve tvaru

e — 35
e —s,

a pomoc{ tabulky I.1 dostaneme, Ze se rovna
5 5
3 Ed—e) =5 @ +ay+y?);
podobné ukiZeme, Ze druhy vyraz je roven
L (t—e) = — (@t + xy + y?)
5t ¥ 5 :
(c) Najdeme celodfselnéa FeSeni rovnice

(40) 24y 41 =3azy:

Rovnici miZeme zapsat takto: 8, + 1 = 3e,, &ili
el — 3ee, + 1 = 3e, &ili

(62 + 1) (ef —e; + 1 —3e;) = 0.
To tedy znamenqﬁ, Ze je bud

61 + 1 = 0
nebo

(41) e—e +1—3e =0.
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Prvni eventualita znamena, %e ¢, = —1 ¢&ili x +y =
= —1, a to diavd nekoneéné mnoho dvojic FeSenf rov-
nice (40), totiZz dvojice tvaru

(42) {k, — (k + 1)}, Fkcelé.
Vysettujme tedy rovnici (41): Podle vzorce (30) je

1
—ey = —7 e, a tedy je

ef—e +1—3¢e =ef—e, + 1_'7::‘e§=
1

= —4— (81 — 2)2.

Nutnou podminkou pro platnost rovnice (41) je tedy
platnost vztahu
(e, —2)? =0¢dilie, = 2,¢8iliz+y =2,
co% ddvé opét nekonednd mnoho dvojio tvaru
{k, 2 —Fk}, k celé.
Ale dosazenim téchto dvojic do (40) nebo do (41) zjisti-
me, Ze jedind dvojice {1, 1} vyhovuje rovnici (40). Od-
povéd tedy zni: rovnici (40) fesf celodiselné dvojice
z=k y=—Fk+1), kecels,
o
z=1, y=1.
Zajimaji-li nas jen kladné celodiselnd FeSenf rovnice
(40), existuje jediné: z =y = 1.
(d) Soustava t*{ rovnio

(43) zr+y=a,
a4+ y* =b,
2 4y =o
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pro dvé nezndmé x, y (a, b, ¢ jsou dani &isla) je pfeurdend
a nemusi mit vidy fefeni. Najdeme tedy podminky na
8sla a, b, ¢, za nichZ je soustava (43) feSitelnd v oboru
komplexnich é&fsel:

Utijeme-li tabulky I.1, miZeme na8i soustavu zapsat
takto

e, =a, e—2,=05b, e —3¢e, =c.
1
Jetedy e, = - (a® — b) a z t¥eti rovnice dostaneme hle-

dany vztah mezi éisly a, b, ¢: musf byt

a®—3ab 4+ 2¢ = 0.
(e) Rovnice

(44) 24 445 — 104 + 42 + 1 =0

je rovnice osmého stupné, a ty neumime obecné fesit.
Nase rovnice je viak v jistém smyslu symeirickd: ma
stejné koeficienty u (8 i {° (totiZ 1), u 71 #! (totiz 0), u ¢®
i#? (totiz 4) a u #° i ¢® (totiz 0). MuZeme proto provést
jisty obrat hodfci se i na rovnice vyssich (ovSem sudych)
stupiid, které maji obdobnou vlastnost symetrie koe-
ficientt: vytkneme ¢* a mame

tﬁ[t‘ + 42— 10 4+ %4_ 714] =0
&ili
(45) 2 [[t‘ + ?14—] + 4[t2 + %]— 10] =0

(snadno se presvédéime, Ze ¢ = O neni kofenem nasf

vychozi rovnice). Oznadme nynf ¢ = z, —:—— = y. Pak je
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a z tabulky I.1 mdme
2 1 2 3 1 3
t +—‘;=91_‘2, t +F=31_3611
1
t‘+F=e‘{—4e§+2

atd. Specidlnd dostdvime z (45) rovnici &tvrtého
stupné o neznamé e, [tedy rovnici polovi¢ntho stupné, nez
byla ptivodni rovnice (44)]:

t9ef —4e2 + 2+ 4(e2—2)—10] =0
&ili -
t4[et — 16] = 0.
Jejf kofeny dovedeme najit:

e =2, e =—2, ¢ = 2i, ¢, = —2i.
Zbyva tedy vytesit éty¥i kvadratické rovnice
1
¢ + T =6,

z nichZ najdeme osm kofent rovnice (44):
1, —1 (oba dvojndsobné), i(1 + 2}, i(1 —V/2), i(—1 +
+ 12), i=1) —2).

(f) Rovnice
(46) 1028 4 45— 4742 — 4T3 + 2+ 10t = 0

nemd vlastnost symetrie (tj. stejné koeficienty u ¢ i ¢,
t5 i ¢! atd.), ale da se zapsat ve tvaru

51065 4 88 — 4713 — 472 4 ¢ 4~ 10) =0,
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z dehoZz je patrny jiz jeden kofen rovnice (46): ¢ = 0.
Zbyva tedy vyteSit rovnici
(A7) 108 + 48— 4T — 4T+ ¢+ 10 =0,

ktera vlastnost symetrie (tj. stejny koeficient 10 u ¢5
i#°, stejny koeficient 1 u %1 ¢! a stejny koeficient —47
u £3 1 %) uZ ma. Rovnice (47) je lichého stupné, a snadno
ge piesvédé&ime, Ze kaZda rovnice lichého stupné s uve-
denou vlastnost{ symetrie ma kofen ¢ = —1. MiZeme
tedy psit (47) takto:

105 4 ¢4 — 476 — 472 + ¢ + 10 =
= (t + 1) (10 — 9 — 382 — 9¢ + 10) = 0,
a zbyvé FeSit rovnici étvrtého stupné
1044 — 9¢° — 382 — 9¢ 4 10 = 0.

Ta je opét symetrickd a mé sudy stupefi, proto mifeme
postupovat jako v pfikladu (e): zapiSeme ji ve tvaru

ﬁ[lo[c2 +712—]—9[t + —:—]—38] =0

£2[10(e2 — 2) — 9¢, — 38] = 0,

&ili
Sili
t3[10e? — 9¢, — 58] = 0.

Kvadratickd rovnice v hranatych zdvorkich ma kofeny
29

ey =—2,¢ = 3o’ takZe zbyva Fefit dvé kvadratické
rovnice

1 1 29

— _2 —_——_————
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Nakonec zjistime, Ze pavodni rovnice (46) ma tyto ko-
Feny: 0, —1 (trojnasobny), g— &

IV.16. Pifklad. DokaZeme toto tvrzeni: Plat{-Ii pro
éisla z, y, u, v veiahy
(48) x+y=u+wv,

x4 y? = ud + o2,

pak platt pro kaZdé pFirozené &islo n vztah -
(49) ™+ = ur 4 .

Oznatme

e,=¢+y, e, =2y, e =u-+v, g =uv.

Ze vztaht (48) vyplyva fee =e} a e1 — 2¢, = &% —
— 263, &ili také e, = 3.

Je-li nyni P(z,y) libovolny symetricky polynom
v proménnych z, y, existuje podle pozndmky I.7 jedno-
znaéné uréeny polynom @ takovy, Ze P(z, y) = Q(e,, e;).
ProtoZe polynom @ je uréen jednoznaéng, je P, v) =
= Q(e}, €3); ale ¢} =e¢,a €] = e, a tedy je Q(e}, ) =
= Q(ey, e,) &ili
(50) P(z, y) = P(u, v)

pro kazdy symetricky polynom P, a specidlné tedy pro
symetricky polynom P(z, y) = x* + y™

IV.17. Poznimka. P¥edchdzejici tvrzeni jsme ovdem
mohli dokézat i bez pouZit{ pozndmky I.7: P¥i oznaden{
z pitkladu IV.16 plyne z (48), Ze

e, = e} a e, = €3,



To vSak znamend, %e jak dvojice {z,y}, tak dvojice
{u, v} je fefenim téZe kvadratické rovnice

£2—et+e, =0 Cili 2—ejt+e; =0.

Proto je bud {z, y} = {u, v}, nebo {z, y} = {v, u} a ze sy-
metrie polynomu P uZ plyne vztah (50).
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Kapitola V.

POUZITI SYMETRICKYCH FUNKCI
TR{ PROMENNYCH

Srovndnim kapitoly II s kapitolou I jsme zjistili, Ze
teorie symetrickych funkef t¥{ proménnych je jen zobec-
nénim teorie symetrickych funkei dvou proménnych,
zobecnénim, které je ndroéné spise po strance technické
neZ po strance myslenkové. A tak i ptiklady, které v dal-
8im uvedeme, budou jen podetné komplikovanéjsimi
analogiemi piikladd z kapitoly pfedchézejici.

Uvedme nejprve vétu, ktera je analogii véty IV.2
a kterou pfi FeSenf piikladid uZijeme. Jeji diikaz ptene-
chime &tenéfi; vychdzi ze vztahi mezi kofeny a koe-
ficienty kubické rovnice, jak jsme je odvodili na zadatku
kapitoly II.

V.1. Véta. Budte e,, e,, e; dand &lsla. Md-li kubsickd
rovnice
(R) 13 —eytt | et—eyg =0

felent &y, t,, t4, md soustava rovnic

(S) T+ y+z=e,
Y + yz + 22 = ey,
xYyz = ey

Sest Fefent:
x=t1,y=t2,z=t3;x=t1,y=ts,z=tg;
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T=tp, Y =1, 2 =183 % =1y Y =13, 2 = 1y;
T=1i3, Yy =t,2=1x =1,y =4,z =1I.
Jsou-li naopak isla x,, yo, 2, Feenim soustavy (S), jsou

tato &isla 1 kofeny rovnice (R).
V.2. Piiklady. (a) Redme soustavu
(1) r+y+z=a,
2+ y? + 22 =b,
©P+y 422 =c,
kde a, b, ¢ jsou dang redlna &isla.
Soustavu (1) miuZeme zapsat téz takto:
s =a, =050, s3=c¢
[viz kap. II, vzorec (9)]; vyjadiime-li symetrické poly-

nomy §;, 8, 8 pomoci elementirnich symetrickych
funkei e,, e,, e;, dostaneme z (1) soustavu

e, =a,
2 — 2, =0,
e] — 3ee; + ey = ¢
(viz tdlohu II.3), kterou dovedeme snadno vyieSit: je
1

e, =a, e =—2—(a’—b),

e, =—;—(c—a“) + —;——a(az—b).

Dosadime-li sem opét za e, ¢,, e, jejich vyjadfeni pomoci

z, ¥, 2, dostaneme soustavu tvaru (S), kterd je ekviva-
lentni soustavé (1):
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r+y+z=a,
1
vy +yz + 2w =5 (a®*—b),

zyz = 5 (c—a%) + 5 ala*—b),

a podle véty V. 1 tedy" na,]deme FesSenf soustavy (1) tim Ze
uréime kofeny kubické rovnice .

(2) O—a+ %(aﬁﬂ —‘b)t—%(c—a**)—

—%a(a”—b) = 0.
(b) Zvolme v ptedchézejicim piikladu ¢ = 2, b = 6,
¢ = 8, Pak ma rovnice (2) tvar
—22—¢t+2=0
a jeji kofeny jsou é&fsla ¢, = 2, ¢, = 1, t3 = —1, nebot
B—22 ¢+ 2=(@¢—2)@2—1).
Soustava

z+y+z=2,
2ty + 2 =6,
2+ y'+22=38
mé tedy téchto Sest FeSen{:

{2,1,—1}, {2, —1, 13}, {1,2,—1},
{1,—1,2}, {—1,2,1}, {—1, 1,.2}.

(¢) Redme soustavu
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(3) xy +yz 42w =11,
zy(® + y) + y2ly + 2) + 22(z + 2) = 48,
zy(2? + y?) + y2(y® + 2) + (2t 4 ) = 118.
Vyjddiime symetrické polynomy na levych stranich
rovnic soustavy (3) pomocf elementdrnich symetrickych
funkef e,, ¢,, e; podle véty IL.7. V prvni rovnici je vlevo
ptimo e,, ve druhé je vlevo symetricky polynom S, ,,

a ve t¥et{ symetricky polynom 8, , , [viz kap. II, vzorec
(16)]. ProtoZe podle tlohy IL.3 je

So.1.0 = 828, — 83 = €16, — 3¢y
(viz téz piiklad II.2 (e)),
8310 = 858 — 8, = efe, — 26§ — ege,,

miZeme soustavu (3) napsat takto:
(4) e; =11,

€6, — 3eg = 48,

ele, — 2¢z — e,e5 = 118.

Z obou prvnich rovnic vyjadiime e, a e4:

i
3
a dostdvame pro e, kvadratickou rovnici

11¢2 4 24¢, — 540 = 0,

(5) eg =11, e3 = e, — 16,

kterd mi kofeny e¢; =6 a ¢, = — %(1)— Odtud a z (8)

méme dvé trojice FeSeni soustavy (4):
e, = 6, e, = 11, e, =6
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e1=—-ﬁ—, 82=11, €g = —46.
Témto dvéma trojicim odpovidaji dvé kubické rovnice:
(6) $P—62+ 11t —6=0
a
90
(7 0 7 88+ 118+ 46 = 0.

Kofeny rovnice (6) nalezneme snadno: jsou to ¢fsla ¢, =
=1,¢ =2 a t; =3, z nichi dostaneme Sest fesenf
soustavy (3) podle véty V.1. Také kofeny rovnice (7)
miZeme spolitat, oviem uZ ne tak.snadno: uZijeme
Cardanovych vzorct a pii oznadeni

— (37 648)* — [ 1369 \°

’

o= ﬁ ]/—37 648 + D,

3
g = —11T |/—s7648 — VD

miZeme kofeny rovnice (7) zapsat takto:

30
t, = a+ﬂ——ﬁ'.
1 30 i —
b = —?(G‘Fﬂ)—ﬁ"l‘?(“—ﬂ)v:;»

1 30 i -
ty = —7(a+ﬂ)—ﬁ—? («a—p) V3.
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Podle véty V.1 pak z tdchto kofenid dostdvame dalsfich
Sest fefenf soustavy (3), kterd tak mé celkem dvanéct
FeSeni.

Druha &ast poslednfho p¥ikladu naznaduje, Ze pti po-
uZit{ elementdrnich symetrickych funkef t¥{ proménnych
muZeme narazit na znaéné potiZe pfi konkrétnich vy-
pottech kofeni kubickych rovnic. Zajimaji-li nds ovéem
tieba jen celodiselnd fedenf, mohou byt metody,
o nichz zde hovofime, efektivni.

Soustavy, které jsme zatim vysSetfovali, obsahovaly
symetrické polynomy. Ale podobné jako v pFipadd
dvou proménnych Ize i zde Fedit nékteré obecnéjsi sou-
stavy (tfeba s nesymetrickymi vyrazy), pouZijeme-li
vhodnych obrati.

V.3. Priklady. (a) ReSme soustavu
(8) u— 3v— 5w =a,
u? 4+ 90 4 25w? = b,
ud — 27v® — 1253 = ¢,
kde a, b, ¢ jsou dana realna &isla.

Vyrazy na levych strandch v (8) nejsou symetrioké;
pouZijeme-li viak substituce
(9) zT=u, y=—3, 2z=—bw,
pfejde soustava (8) v soustavu (1) z piikladu V.2 (a),
a Fefenf soustavy (8) dostaneme z fedeni soustavy (1)
pomoci vzorei (9).

Zvolime-li napf. a = 2, b = 6, ¢ = 8, dostaneme po-
moof vysledkd pfikladu V.2(b) tato FeSeni soustavy (8):

1 1 1 1 2 1
{2’ —?’ ?}v {2, ?, - _5'}) {1’ —?9 F},
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(b) Reme soustavu

(10) r+y+z=286,
2y +yz + zx = 11,
(—y) (x—2) (y —2) = —2.
Zde nent symetrickd leva strana tfetf rovnice; povysi-
me-li vfak tfeti rovnici na druhou, dostaneme vlevo
symetricky polynom
(@ —y)* (& —2)* (y —2)® = —4ele; + eief +
+ 18e,e,e, — 4¢3 — 2763,
ktery by se mél rovnat 4. ProtoZe z obou prvnich rovnic

soustavy (10) mame e, = 6, e, = 11, ddvi tieti rovnice
(po umocnéni!) kvadratickou rovnici pro e,:

et — 12, + 36 =0,

kters mé jeden (dvojnisobny) kofen e; = 6. Redenf
%, y, z soustavy (10) tedy najdeme pomoci kofent ku-
bické rovnice

#—62 - 114—6 =0,

tj. pomocf &sel ¢, = 1, t, = 2, t; = 3. Témto kofentim
odpovida Sest trojic x, y, z, ty oviem fesf nikoliv sou-
stavu (10), nybrzZ soustavu, v niZ je tiet{ rovnice umoc-
néna. Musfme se proto jesté pfesvéddéit, kters z uvede-
nych Sesti trojic vyhovuje t¥eti rovnici v (10), a najdeme
nakonec t#i FeSenf soustavy (10):

{1,2,3}, {2,3,1} a {3,1,2}.
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(c) Redme v oboru redlnych &sel sodstavu
(11) 8(u +v+w) =173,
ww = 1,
Vo + Vo + Vo = Vo + Yo + Vi,
Zde méme co &init se symetrickymi funkcemi, ale u tfetf
rovnice to nejsou symetrické polynomy. PoloZime-li viak
(12) u=ud v=y>, w=28

dostaneme z (11) soustavu

(13) 8(z® + y® + 2%) = 73,
2oy = 1,
r+y+z=2y+ yz + zx, *)

kterou mizZeme zapsat téZ takto:
833 = 73 (¢ili 8(ed — 3e,e, + 3ey) = 73),
e = 1(%ilieg = 1),

61 = €y.

*) Zde jsme poutili (a i v dalsim pouZijeme) toho, Ze pro
redlné &islo r definujeme tfeti odmocninu z r opét jako redlné
&islo, specidlnd tedy klademe pro r€ R

8__
Vr" =r.
Cinfme tal, aby nade ivahy byly pokud mo#no jednoznaéné;
dtendl ovSem vi, %e tfeti odmocninu z jedné lze definovat
trojim zpusobem:
3_ 1. )3 1 )3
Vl =1 nebo—"? + 1—2-neb0—--§-—lT-
Kdybychom ptipustili tuto ,,trojznaénost*‘, nase uvahy by se
znad&nd zkomplikovaly. (Presvédéte se o tom na pfikladu, ktery
préavé poditdte!)
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To vede na kubickou rovnici pro e,:

(14) 8¢} — 2462 — 49 = 0.
. : 7 1 33 .
Jeji kofeny jsou e, = sra=—,+ g ba=
1 33

4 4
novych vzorcd, nebo tim, Ze prvni fefenf uhddneme
[sta¢f napsat rovnmici (14) ve tvaru (2¢,)® — 6(2¢,)?—
—49 =0 s Fefenfm 2¢, = 7] a mfsto (14) pak Fesime
kvadratickou rovnici.

Tim dostdvame tfi trojice e,, e,, 5, pomoci nichZ miu-
Zeme utvotit t¥i kubické rovnice:

7 7
P— gt 5t—1=0,

1 3)3 1 3|3
3 : 2 4 —
3 +(—4———4 l]t —[-—4— 4 1]#—1—0,

ta+[;+¢i),=_[i+$i):_l=o.

i a najdeme je bud opét pomoci Carda-

4

Z téchto rovnic nis zajima pouze prvni, protoZe hledame
realn4 fedenf soustavy (13). Uvedend kubickd rovnice

mi Fefeni ¢, =1, t, =2, §, = takZe . Sest trojic

z, y, z feSeni soustavy (13) Vznikie riznymi permuta-
cemi trojice ¢&fsel 1, 2, % Sest trojic u, v, w redlnych Fese-
nf soustavy (11) pak dostaneme podle vzorcit (12) riaz-
. nymi permutacemi trojice &sel 1, 8, 5
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(d) Redme soustavu

(15) z+y+z=2a,

22+ oyt — 2? =gt

2%+ y® 4 2% — Jzyz = —a?,
kde a je redlné &islo, a # 0. Zde nenf symetrickym poly-
nomem leva strana druhé rovnice, ale ptesto na§ béiny
postup povede k cfli — oviem pfedeviim diky vhodné
konstelaci polynomi na levé strand a konstant na pravé

strand soustavy (15): ZapiSeme-li druhou rovnici ve
tvaru

2 4 y® + 22 = a® + 22%,
dostaneme z (15) soustavu
e, = 2a,
szl = a? + 222 (Gili e — 2¢, = a2 + 22%),
8y — 3e; = —a? (bili e? — 3e,e, = —ad).

Z prvni rovnice méme

(16) el = 2a,
z tieti rovnice pak najdeme
3
=2 42
(17) ei 2 as,

a z druhé rovnice plyne koneéné
4a2 —3a® =a% 4 222 &li 2z =0.
Dostali jsme tak soustavu
z+y=2a,

xy =—g—a2,
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jejiz Fefenf uréfme pomocf kofend #, ¢, kvadratické
rovnice

82 — 2at + —g—tﬁ =0

(viz kap. IV). Sousta.va, (15) mé tedy dvé feSeni

e+ o= of
b2« (2

V.4. Uloha. Uvédomte si, kde jsme pti fedenf pFedché-
zejiciho piikladu vyutZili toho, Ze a # 0, a naleznéte fe-
enf soustavy (15) pro a = 0.

Je z¥ejmé, Ze vlastnosti elementirnich symetrickych
funkef lze vyuZit p¥i riznych ulohich souvisejicich
8 kubickymi rovnicemi a jejich kofeny. Dile se tyto
funkce hodi ptfi zjednodusovani sloZitych vyrazid, pH
dokazovani riznych identit apod. Uvedeme nyni né-
kolik typickych p¥ikladi.

V.5. Piiklad. Sestavme kubické rovnice, jejichZ kofeny
jsou druhymi, resp. tfetfmi mocninami kofent kubické
rovnice

(18) 1165 4 90¢2 + 121¢ + 506 = 0.

Mohli bychom kofeny této rovnice vypolitat, umocnit
je na druhou, resp. na tiet{ a sestavit ptisluiné kubické
rovnice; to by viak bylo dosti ndroéné [kofeny rovnice
jsme uZ nasli — viz pfiklad V.2 (c): nase rovnice (18)
je totiZz rovnice (7)]. Misto toho vSak vyuZijeme toho,
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Ze kubickd rovnice, jejiz kofeny jsou druhé, resp. t¥eti
mocniny kofeni z, y, z rovnice (18), ma tvar

#—pt+g—r=0,

kde
p=2+ 9+ 2% q =2+ y2 + %P,
r = xy2?,
resp.
p p— xa + ys + zs’ q — xays + yazs + zaxa’
r = x5
ProtoZe

22+ Yyt + 2P = e} — 2e,,
T+ gt + 28 = o Sy = o (F—0)) = —2es6s,
r%y%? = ef
28 4 y% 4 28 = &8 — 3ejey 4 3¢y,
2y + Y2 + 2%° = %‘ Ss.30 = % ('9% — ) =

= ¢e§ 4 3¢ — 3e,e,¢,,
32 = ¢}

(ovéite tyto formule!), a protozZe

90
61 = ——11 , ez = 11’ es =——46’*
zjistime nakonec, Ze hledané kubické rovnice maji tvar
5438 6949
3 2 - —_— 3
3 — 121 t 11 ¢ 2116 0,
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resp.
553 308

MR D =
AT — 47416 + 97336 = 0.

6+

V.6. Piiklady. (a) Necht 2 + y + z = 0. DokéZeme,
%e pak plati tyto identity:

(19) z8 4 o3 4 2° = 3uyz,

(20) ' + yt + 2 = 2(zy + yz + 22)?,

(21) Iﬁ+y5+z5—x3+ya+zsz2+y2+22
[ - 3 ’ 2 )

Ditkaz vyuZivé vzorct z dlohy I1.3. ProtoZe e, = 0 (t;j.
z + y + z = 0), vypadaji vzorce pro soulty s,, 8; 8,
8 8 takto:

8, = —2e¢,,

83 = 3eg [to je vzorec (19)],
8, = 2¢§ [to je vzorec (20)],

8, 8
85 = —€y8; + eg8y = —DBegey = 5.?2-—3”-
[a to je vzorec (21)].

(b) DokizZeme, Ze kdyzZ z + y + 2 =22 4+ y? 4 22 =
=z%+ ¢® + 2® = 1, pak zyz = 0.

Je tedy e, = 8, = s; = 1. ProtoZe s, = ¢} — 2¢, =
= 1, plyne odtud, %é ¢, = 0, a protoZe 8; = e} — 3¢,e, +
-}- 8¢, = 1, plyne odtud ey = 0. To je v3ak vztah zyz = 0.

(¢) DokéZeme, Ze pro redlnd é&isla a, b, ¢ plati vztah

(@a—b + (b—cP + (c—a) =
=3a—2>b)(b—c)(c—a).
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Plyne to z (19), kde poloifme x =a—b, y =b—e¢,
2 = ¢ — a. Podminka x + y + z = 0 je zfejmé splnéna.

(d) RozloZime v soudinitele vyraz

P(z,y,2) =28 4+ y* 4 24 — 22%y® — 29922 —
— 22%2,

JeP=8‘—SQ_2,o=8‘_(a§—8l)=284-—8§=
= 2(ef — defes + 26§ + deje;) — (6] — 2¢))* = ¢f —
— dele, -+ Bee; = e,(ed — 4deje; + 8¢,). To znamend, Ze
jednfm ze soudiniteld v P je vyraz ¢; = (¢ + y + 2).
PfSeme-li nynif — z misto x (resp. — y misto y, resp. —z
misto z), nezméni se vyraz P(z, y, z), nebof obsahuje jen
sudé mocniny proménnych #, y, 2. Proto je soudinitelem
vPi(—+y+2),(zx—y+ 2)a(x+ y—2). To zna-
mena, e
(22) Pz,y,2) =(c+y+2)(=+yt+2)=—y+

+ z) (:D + y‘—z)-Z,

kde zbyvajici &initel Z musi byt konstantou, protoze P
je polynom &tvrtého stupné a soudin &tyt troj&lenit na
pravé strand je také polynom é&tvrtého stupnd. Vztah

(22) musf platit pro véechna z, y, z; dosadime-li tam
napf. z = 0, y = 0, z = 1, zjistime, e Z = —1, a tedy

o+ gt + 2t — 22yt — 29%% — 2% =
——@+y+a(—r+y+)E@—y+2) @+
+y—2).
(e) Zjednodusime vyraz

V= z® 4 Y3 + 2% — Bzyz )
@—9P+G—2 + c—aP
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Zde je v titateli symetricky polynom
83— 3ey = e} — 3e,e, = e,(e2 — 3ey),
ve jmenovateli symetricky polynom
28y — 2ey = 2¢} — de; — 2¢, = 2¢} — 6e; =
= 2(e§ — 3ey);

je-li tedy ef — 3e, # 0, miZeme timto d&initelem kritit
& mime

V.7. Uloha. Dokalte toto tvrzeni: Plat{-Ii pro &isla
z, ¥, 2, 4, v, w vziahy

z+y+z=u+t+v+w,
2+ o+ 2? = 4 v? + w?,
23 4 o® 4 2 = ud + % 4w,
pak pro katdé prirozené &islo n platt
o+ Y+ =+ ot

Ndvod. Jedni se o analogii pffkladu IV.16; vyuzueme
piitom poznamky II.9.

V.8. Pfiklad. Pro ktera reilnd &isla « je v oboru reél-
nych &fsel Fefitelnd soustava

(23) Ver1—Vs—=5=Vr=y,
(z+1)(y—58)(x—y) =a?

75



Oznadme
(24) z4+1=ud 5—y=10% y—zx=ud
Pik je predevsim

(25) ud 4 v3 4 wd =6,
prvni rovnice soustavy (23) ma tvar v + v = —w ¢&ili
(26) u+v+w=0

a druhd rovnice soustavy (23) ma tvar u%*w® = a &ili

(27) ww = Va

(viz pozndmku pod &arou na str. 68). VyuZijeme-li for-
mule (19) z pfikladu V.6 (a), musf vzhledem k podmince

(26) platit u® + v3 4 w? = Buvw &ili 6 = 31/5. Nutnou
podminkou Fesitelnosti soustavy (23) je tedy podminka

a =8.

Hledejme nyni fedenf soustavy (23) (se = 8). Vyjdeme
ze soustavy (25), (26), (27) a zjistime, Ze z ni plyne e, = 0,
e; = 2, zatimco na e, Zidnou podminku neklademe.
ﬁeéeni %, v, w soustavy (25)—(27) tedy uréime podle
véty V.1 pomoci kofent kubické rovnice

(28) 5+ ef—2=0.
Oznaéme
D=1+ [&]’
3
Pak plati:

pro D > 0 (tj. pro e; > —3) m4 rovnice (28) jeden
realny kofen a dva komplexné sdruzené koteny,
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pro D < 0 (tj. pro e, < —3) m4 rovnice (28) t¥i redlné
kofeny.

Protoze hledime reilnd Fefenf, omezfme se na druhy
pfipad. Zvolme t¥eba e, = —3. Pak mi rovnice (28)
kofeny ¢, = 2, t, = t; = —1. Soustava (25) — (27) mé
tri FeSeni.{u, v, w}:

{2,—1,—1}, {—1,2,—1}, {—1,—1,2}

(podle véty V.1 je téchto fedeni Sest, ale opakuji se po
dvou), a témto trojicim odpovidaji podle vzorca (24) ¢t
FeSen{ soustavy (23):

=17, y=6; z=—2, y=—3 =8
x=—2, y=_86.
Podobné bychom postupovali i pro e; < —3.

V.9. Poznamka. Uvédomte si dileZitost poznamky
pod darou na str. 68! MaZeme si to 1lustrova.t na pii-
kladu soustavy

@8 Jari-—ly=s=3+5—y,
(+1)(y—5)(r—y) =8,

ktera se od soustavy (23) li§f (pro ¢ = 8) ,,jen’* séitan-

cem 3 na pravé strané prvni rovnice. Budeme-li postu-

povat stejnd jako v pfikladu V.8, dojdeme nakonec ke
kubické rovnici

(28%) P—3+3%—2=0,

kterd je analogif kubické rovnice (28). Pomoof jejich
kokenti uréime trojice u, v, w, takie napf. méame

1+ i3 1—il3
—., w=.——2_.

2

u =2 9=
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Této trojici odpovidd podle vzorci (24) dvojice feseni
soustavy (23%*)
z =1, y=26.

Tato dvojice vSak Fesi i soustavu (23) (pro a = 8), takZe
dochézime ke sporu. Kde je tedy chyba? NapiSme si
prvni rovnici soustavy (23*) pro nase hodnoty z, y:

E—Vr-s+V1

Tato rovnost neni splnéna, definujeme-li VT jako 1

(a tedy 1/5 jako 2), je viak splnéna, definujeme-li tfeba
1/§ jako 2, T/T vlevo jako —% —i —3, vpravo jako

1 . )3
—3Tig
odmocniny.

, tj. ,,vyuZijeme-li’* nejednoznaénosti tieti

Oblibenou tlohou 8kolské matematiky je odstrafova-
nf iraciondlnich vyrazi ze jmenovatele zlomku. Mdme-li
napf. upravit zlomek

1
"1z + 13
tak, aby v jmenovateli bylo é&slo raciondln{, vyndso-

bime ¢itatele i jmenovatele vyrazem Vf— V§ a uZijeme
vzorce pro rozdil étverct. Pak bude

==V s

1

Hor3f je to u zlomki, v nichZ je ve jmenovateli soudet
tH séitanci. I zde lze vyuZit vzorce pro rozdil &tverci,
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ktery pouZijeme (pfi vhodném uzivorkovanf) dvakrit,
muZeme si viak vypomoci také elementarnimi symetric-
kymi funkcemi.

V.10. P¥iklad. Upravme zlomek

1
r = — — —
Vu+ Yo+ Vw
Oznadme Vu =z, Vv =1y, VE = 2. Pak je jmenovatel
roven e¢,, a abychom se zbavili odmocnin, musfme e,
vynisobit vhodnym vyrazem tak, aby vznikly soudin
obsahoval jen sudé mocniny proménnych z, y, z, tedy
napf. vyrazy s, nebo s,. ProtoZe

8y = e — 2e,,
8y = e} — defe, 1 dejey 1 263,

vidime, Ze v obou vyrazech vystupuje e, jako &initel
viude kromé poslednfho séitance. Je tedy tfeba oba
vyrazy vhodné zkombinovat — tak, aby jejich posledn{
séitance zmizely. Utvofme tedy vyraz

(29) & — 28, = e} — defe, + de3 — 2(ef — defe, +
+ dejes + 263) = e,(—e} + 4eje, — 8ey);

ihned vidime, Ze stadf vyndsobit &itatele i jmenovatele
zlomku r &islem

de,eq — €} — 8ey =4(x 4+ y + 2) (xy + yz + zx) —
—(z+y+2°—8ayz = 4(u+ v+
+ V) (Yuv + Vow + Vow) — (Vu + Vo + Jw)* —
— 8}/uww,
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a dostaneme zlomek, v jeho% jmenovatéli bude vyraz
f—28 = (2 +y? 4 222 — 2 + ¢t + 24) =
= (u + v + w)? — 2(u® + 0 + w?).

Tento vyraz uZ neobsahuje Ziddné odmocniny.

V.11. Poznimky. (a) Upraveny tvar zlomku r z ped-
choziho piikladu sice nema ve jmenovateli odmocniny,
ale pFili§- pFehlednd nevypada — zvlasté ditatel. Mizeme
se sice pokusit o dalsf ipravy, napf. ditatel lze psat i ji-
nak, nebot

de.e, — €} — Bey = ¢,e, — 83 — Dey,

ale obecnd tyto dpravy uZ velké zjednoduseni nepfine-
sou.

(b) Ctenaf si jistd sém odvodi postup, jimz Ize postu-
povat pii usmériiovani zlomkw, u nichz je v &itateli vy-

n n n
raz VE + 1/5+ VE pron = 3,4, ... . Pro procvideni do-
porudujeme podrobnéji vysettit alespon ptipady n = 3
an =4.
(¢) Upravy, o nich? jsme hovofili, se nehodi jen u zlom-
kii. Cheeme-li napiiklad upravit rovnici

(30) Vu+Vo+Vw=0

tak, aby neobsahovala odmocniny, muZeme uZit vy-
sledkt z ptikladu V.10. Rovnice (30) ma totiZ tvar

e, =0

(pti oznadeni x = VE, Yy = V17, z = VE;); vynasobime-li
tuto rovnost vyrazem 4e,e, — e — 8e,, pfejde nade rov-
nice v dusledku vzorce (29) v rovnici

8 —23, =0,
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tj. v rovnici
(v + v + w)? — 2(u® 4+ v? + w?) =0,

ktera neobsahuje odmocniny.

Ptejdeme nyni k nerovnostem pro symetrické funkce
téf proménnych a k jejich vyuZiti pfi FeSeni réiznych
tloh. Pfedevsim plati pro kaZdou trojici , y, z kladnych
¢fsel nerovnost
(31) ee; = 9ey;

je to specidlni p¥ipad nerovnosti (28) kap. III pro» = 3
(viz poznamku III.11). Zato nerovnost

e? g 4627
kterou jsme pro dvé proménné odvodili ve vété IV.8,
pro tii proménné neplati. Plati viak nerovnost jina:
V.12, Pifklad. Jsou-li z, y, z redln4 &isla, pak plati
(32) i = 3e,,

pfidem? rovnost zde nastava pravé tehdy, jelliz =y =
= z. Déle plati

(33) & = 3ese,,
a pro kladnj &fsla 2, y, z pak navic
(34) el = 27e,,
(35) @ = 2763,
Nerovnost (32) je disledkem zfejmého vztahu

@—yP+y—2’+ (r—2)? 20.
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Tuto nerovnost, v niZ rovnost nastdvéd pravé pro z =
= y = 2, miZeme totiZ pro rozndsobenf zapsat ve tvaru

28, —2¢, 20
¢ili
2(e2 —2¢)) —2¢, = 0

a odtud uZ méme (32).
PoloZime-li nyni ¢ = v, y = vw a z = wu, mi ne-
rovnost (32) tvar

(wv + vw + wu)? = I(uwvPw + wvw? + utvw)
dili
(wv + vw + wu)® = 3uwvwu + v + w),

a to nenf nic jiného neZ nerovnost (33).
Z nerovnosti (32) a (31) plyne

et = 6%6% g e§362 = 381’(6162) g 361933 = 276183

a po vykriceni ¢, midme odtud (34) (vSechna e; jsou
kladné, nebot z, y, z jsou kladni).
Podobné odvodime i nerovnost (35) z (33) a (31): Je

& = eyef = ey3e165 = 3es(ese,) = 3ey9e5 =
= 278%.

V.13. Uloha. Nerovnosti (32) a (33) jeme dokézali
ptimo, bez pouZiti nerovnosti (31). Dokazte, e naopak
nerovnost (31) je disledkem nerovnostf (32) a (33).
Ndvod. Znésobte obd uvedené nerovnosti.

V.14. PHklady. (a) Pro libovoln4 redlnd &fsla z, y, z platf

(38) Syt Rzgtyt
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(37) (2% + y* + 2% Zayelz + y + 2).

Nerovnost (36) lze totiZ zapsat ve tvaru s, = —;—ef,
a protoZe 8, = e} — 2e,, plyne (36) ihned z (32).
Nerovnost (37) Ize pa.k psit ve tvaru %Sz.zo = ee5,

a protoZe — SM_0 - (8§ — 8;) = €& — 2e,e4 (Viz nap¥.
ptiklad V.5 nebo V.6 (d)), plyne (37) ihned z (33).
" (b) Pro kladni &fsla z, y, z plati
(38) =+ y) (y + 2) (z + 7) = 8zyz,
— _z+yt+z
(39) —3

TYz =

Nerovnost (38) md na levé strand vyraz S, , 4 2¢, =
= 8,8 — 8 + 205 = (6] — 2e;) ¢; — (e} — 3ee, +-
+ 3e;) + 2¢3 = e,e, — e3 a na pravé strand vyraz 8ey;
je tedy disledkem nerovnosti (31).

Umocnime-li nerovnost (39) na tfetf, md tvar ¢; <

= L e, a to je nerovnost (34).

(c)Jeh:c+y+z-—0 jo 2y + yz + zz < 0. Plyne
to ihned z nerowvnosti (32), uvédomime-li si, e zadani
¥ké: je-lie, = 0, je ey = 0.

V.15. Piklad. Jsou-li @, b, ¢ strany trojthelnfka, platf
(40) (@*+ b2+ c)(a+ b+ c) > 2(a® + b3 + ¢3).
PoloZime-li totiZ x =a +b—c¢, y=a—b+e¢ 2=

. 1 1
=—o8+b+te je a=5@+y), b=5@E+2),
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¢ = -;— (y + 2) a po dosazenf téchto vyrazi do (40) do-

staneme po tpravach nerovnost
1 1 3 s
- (83 + e5) e, > 5 53 + TS“'" Gili  ejep + 3¢5 > 0.

Posledni nerovnost viak zfejmé plati, nebot z > 0, y >
> 0,z > 0 (pro&?).

V.16. Uloha. Dokaite, Je pro strany a, b, ¢ trojihel-
nfka plati

41) @+b—c)(b+c—a)(c+ a—2b) < abe.

Ndvod. Postupujte jako v pifkladu V.15 a vyuZijte
nerovnosti (38).

V.17. Pfiklad. Jaké maximdlni hodnoty nabyva
funkce '

F(x’y’z)=(1+x)(l+y)(1+z)’

jestlize npzdporné proménné z, y, z spliluji podminku
z+y+z=1°

ProtoZe F(x,y,2z) =1+ ¢, + e+ e =24 e;+ e,
(je totiz e, = 1), dostaneme pomoci nerovnosti (31)
a (32)

1 1
Flz,y,2) =2+ e+ geea=2+e+ 6=

9 9
10 101 , 10 64
=2ty esitgyga=ttyg =gy
rovnost zde nastane pravé tehdy, bude-li x = y = 2, tj.
1 1

1
proz =—o, y =3, 2=
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V.18. Uloha. Necht z, y, z jsou kladn4 &fsla a necht
kladna ¢&fsla u, v, w leZi mezi nejmensim a nejvétiim
z &fsel 2, y, z. Necht plati

(42) z+yt+z=utv+ w.
Dokaite, Ze pak je

(43) TYyz < uvw
8
(44) wy + yz + 22 < wv + vw + wu.

(Pozndmka. Uloha V.18 byla pouzita v I. kole kategorie
A XIII. roéniku MO.)

V.19. Priklad. Jsou-li «, 8, y thly ostrodhlého troj-
dhelnika, pak plati

1
8

(45) €0s a.cos f.cos y =

Zvolime-li totiZ z = 2bccos &, y = 2accos f, z =
= 2abcosy, u =a? v =1"0%a w=c? kde a, b, ¢ jsou
strany trojuhelnika, pak jsou splnény pfedpoklady idlohy
V.18 (je dokonce z + y + 2z = » + v + w — dokaitel).
Nerovnost (45) je pak disledkem nerovnosti (43).

Jiny dikaz spodiva ve vyuZiti nerovnosti (38): vyjadii-
me cos a, cos f a cos ¥ pomoci kosinové véty a uZijeme
(38) sx=b2+c2—a?, y=c*+4a*—b?az=n0a®+
+ b2 — ¢? (provedte!).

V.20. Poznimka. Vratme se na zavér této kapitoly
k nerovnosti ¢ = 4e,, kterd nim tak poslouZila v kapi-
tole IV a kterd pro elementirni symetrické funkce ti
proménnych neplati. Tuto nerovnost jsme odvodili ve
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vétd IV.8 na zikladé vlastnostf diskriminantu D kvadra-
tické rovnice
tz_‘elt+ 82 = 0,

ktera ma kofeny z, y: je
(46) D = el —de, = (x + y)* — day = (z —y)*.

Diskriminant kvadratické rovnice je duleZitym pomoc-
nym prostfedkem pro jeji FeSeni; vdimnéme si proto
vzorce (46) a hledejme jeho analogie pro kubické rov-
nice.

Méjme tedy kubickou rovnici
(47) P—eit?+et—e; =0,

kterd mé koteny z, y, z, a definujme diskriminant D rov-
nice (47) jako vyraz

(48) D=@x—ylly—2@E—2a)7
Lze snadno ukizat, Ze (viz téZ pitiklad V.3 (b))
(49) D = —4dele, + €%k + 18¢,e,6, — 4€8 — 27¢3.

Maime-li kubickou rovnici (47) s redlnymi koeficienty
e,, €5, €3, miZeme pomocf znaménka diskriminantu klasi-
fikovat koteny. Cten4¥ si jistd pomoci formule (48) snad-
no dokéZe, %e

(a) je-li D > 0, jsou vdechny kofeny rovnice (47) redlné

a rizné;

(b) je-li D = 0, jsou alespoii dva kofeny rovnice (47)
80b¢& rovné;

(c) je-lt D < 0, md rovnice (47) jeden redlny a dva kom-
plexné sdruené kofeny.

Tato klasifikace nenf tiplna: v pfipads, e D = 0, ne-
vime, zda kofen ndhodou neni trojndsobny. Zde existuje
dalsf pomicka — symetricky polynom
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(50) D* = ¢ — 3e,.
Je totiZ
2D* = (z—y)* + (y— 2 + e — 2P

(dokaZte!) a bod (b) nasi vyse uvedené klasifikace mi-
Zeme upfesnit takto:

(b,) je-lt D = 0 a D* #* 0, md rovnice (47) jeden dvoj-
ndsobnyj kofen;

(by) je-li D = 0 ¢ D* = 0, md rovnice (47) trojndsobnsyj

en.

Odtud u% plyne toto tvrzeni, které je analogii véty
IV .8:

Budie e,, e,, e, dand redind &isla. K tomu, aby fedeni
z, ¥, 2 soustavy

(51) r4y+z=e,
zy + yz + 22 = e,
Yz = e,
byla redlnd, je nutné a staéi, aby platilo
(52) D=o0.

K tomu, aby &sla z, y, z byla nezdpornd, je nuiné a stast,
aby vedle (52) platilo jesté

e, =0, e; =20, ¢ =0.
V.21. Piiklad. Jsou-li z, y, z takovd redlnad ¢&isla, Ze

zyz >0 a z+y+2z>0,
pak
»+y+22>0

pro ka%dé pFirozené éislo n.
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ProtoZe &fsla z, y, z jsou realnd, je D = 0. Podle pfed-
pokladu je e; > 0 a e; > 0; pokud jde o e,, jsou dvé
moznosti:

(a) e, = 0: Pak jsou podle vyse uvedeného tvrzeni
véechna ¢&fsla z, y, z nezdporna, a protoZe e, > 0, jsou
dokonce kladna. Je tedy i 2* 4+ y» + 2» > 0.

(b) e, << 0: VyuZijeme rekurentnf{ formule
(53) 8p = €87y — €384 _s + €384
(viz lohu II.3), kde viechny koeficienty e,, —e, a e, jsou
kladné. ProtoZe

$=xz+y+2>0,
8, =x+ 142+ 2 >0,
83 = 3¢ — 3eje, + 3¢, > 0,

plyne z (53) matematickou indukef, %e s, > 0 pro viech-
na pfirozend &isla n, a nade tvrzenf je dokdzano.
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Kapitola VI.

SYMETRICKE PRUMERY

¥ wsw

Tato kapitola je ponékud obtiZnéjsi neZ kapitoly pted-
chézejici a bude vyZadovat shovivavou a trpélivou spo-
lupraci. Doporudujeme proto &tenafi, aby si jednotlivé
vztahy, s nimiZz se v daldim setka, podle moZnosti
konkretizoval, aby si je rozepsal pro razné konkrétn{
hodnoty parametrd =, k atp. Véfime, Ze to ptispdje
k snazsimu pochopen{ latky, o jejiZ uZitednosti — a to
nejen pro feSenf dloh matematické olympiady — nepo-
chybujeme.

Budeme se nyni zabyvat elementidrnimi symetrickymi

funkcemi » proménnych x,, z,, ..., ,. Zavedeme nej-
prve oznadeni, které zkratf zdpis: uspofadanou n-tici &-
sel z,, %, ..., %, oznadime tudnym pismenem x:

X = (xhxm .. .,3:,.);
x = 0 bude znamenat, %e z; = 0proi = 1,2, ..., n;
x > 0 bude znamenat, e z; > Opros = 1,2, ..., n;

pro x > 0 oznadime

1_[1 1 1
x_ .

z, 3 @
8 Ppro X = (T4, Ty, ..., Za), Y = (%1, Y2 - - -, Yu) bude.
X4+y=(@+y2+ Y -, T+ Yn)-
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Budeme-li chtit zdidraznit proménné, z nichZ jsou
symetrické funkee vytvofeny, zapiSeme to takto:

e = ex(X).

Vztah (17) z kap. III muZeme pi# naSem oznadenf
zapsat takto:

(1) eny(@) = e,.(x).e;(%], 1=12 ...,n—1.

Oznaéime-li tuénym e uspofddanou n-ticie,, e,, . . ., e,, tj.
e =(e,és -..,¢€),

plati podle pfikladu II1.8 tato ekvivalence:

(2) e>0ex>0.

A koneéné zavedme pro plnost jesté funkei ey: polo-
Z{me identicky

(3) es() = 1

a formule (1) pak pla.ti proi=0,1,

naf, ktery znd pojem a.ntmetlckého a geometric-
kého prﬁméru Ay(x) a Gu(x) (viz napt. [1], str. 15), si
jisté vsiml, Ze

@ 4= g = oo

ProtoZe n je pravé podet séitanch v elementarni symet-
rické funkei e,, je % skutednd aritmeticky primér vdech

slltanct v e,. Zobecnéme tento poznatek: Jak jsme uké-
zali (8i spiSe konstatovali) na zaditku kap. III, je podet
stitancl v k-té elementdrnf symetrické funkei e; roven
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n

Sislu [k]

séitanch v e, a oznatéme

. Utvofme tedy aritmeticky prumér vsech

ek(x)
)
k
VL1. Definice. Funkci pi(x) nazveme k-tyjm elementdr-
nim symetrickym pramérem.

(6) Pr = Pr(X) = k=01,...,n.

Funkce pi(x) je zfejmé opét symetrickym polynomem.
Viimneme si nyni bliZe jejich vlastnosti. Pfedeviim lze
vztahy (4) zapsat takto:

(8) pu(X) = Au(Xx),  pa(X) = [Ga(x)]*;

je totiz 7; =na (:] =1, Z formule (1) a z vlastnost{

kombinadénich &fsel pak plyne pro «; 20 (1 =1, 2, ...,
..., ) rovnost

(M) Pasi(X) = Pa(X). P [71(—], i=0,1,...,n.

V1.2. Uloha. BudiZ x = (z,, z,, . . ., #,) 8 0znadme X =
= (2, Zg, - - -, Tn_y).- Déle budte
- - ~ !
,,=ek(x) & pk=—[n—_kl—-, k=0,1,.-.,7h-—-1
k

elementarni symetrické funkce a symetrické priméry,
odpovida]ici uspofadané (n — 1)-tici X. Ukazte, Ze pro
k=12, , n — 1 plati
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n—k .

(8) ex=¢ + %y, D= P + — x,.pk-

(jeex = ex(x) a pr = Pu(X)). Deﬁnu]eme li ]este =10
at, =0, platf vzorce (8)iprok = 0ak = n.
A% pi‘fkla.du III.9 jsme naznadili dikaz nerovnosti

9) Ck16kyy =€ pro k=12 ...,n—1.

UkéZeme, %e analogickd nerovnost plati i pro funkce p,:

VL.3. Piiklad. Budiz x > 0. Pak plat{
(10) Pr_ypPrsy =pF pro k=1,2,...,n—1.

Rovnost v (10) nastane pravé tehdy, je-liz, =z, = ...
vo = B
Toto tvrzenf dokd%eme matematickou indukei vzhle-
dem k poétu proménnych n. Nerovnost (10) plati piede-
véim pro n = 2: je to pak jedin4 nerovnost

(11) DoP2 = 15,
a protoZze podle (6) je p,(x) = G%(X) a p,(x) = A,(x)
a protoZe plati identicky py(x) = 1, nenf (11) nic jiného
ne% druhd mocnina znimé nerovnosti

0 < G,y(x) < 4,(x)

mezi geometrickym a aritmetickym primérem kladnych
disel z,, x,. V této nerovnosti nastava rovnost, praveé kdyz
%, = Z,, a tim je tvrzeni pro n = 2 dokazéno.

Ptedpokladejme nyni, Ze tvrzeni plati pro n — 1. P¥i
oznadeni z dlohy VL2 je tedy

(12) PP =T pro j=1,...,n—2

s rovnosti pravé tehdy, jeliz, =z, = ... = ,_,. Pro-
toZe z (12) plyne
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p;ls pa

P P’
dostavame odtud volbou §j = 1, 2, ... sérii nerovnost{
B b Py P P
" P P Pn— Pn1’
aprol €7 <7 <n—1 tedy mdme
(13) DisD; = D1

UtZijeme-li nyni vzorci (8), zjistime, e prok =1, 2, ...
.., n — 1 platf

DePe — Vi = A + Bz, + Cx},

kde
—k2—1_ _ —k)? .
n—k—1Ek—1) . .

B = { nz)( ) Prrrlrs +
n—k+DVES) o~ 2 — k) k .
+( +n’)( + )pkp-l_(n—z)pkpk-lr

kB—1_ ke,
C = — 5 Db — 5 Fir-

PouZijeme-li zde nerovnosti (12) proj =ka j=k—1
a nerovnosti (13) pros =k —1, j = k + 1, dostdviame

2 .
4 = —'—Pﬁ: B §‘;"EPI:PI¢-1: C S_'—ﬁ—ls
takZe nakonec je

1 Lot o~ Lavd
(14) peaPr —Pf < — ol (P2 — 22aDeDp1 + TaPe—) =
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1 -
=T (Pr — ToPp1)* = 0.

To v8ak u% je nerovnost (10). — Je-liz, =2, = ... =
= &n, j& pp =2} & v (10) zfejmé plati rovnost. Jsouli
alespon dvé z éisel Zy, Ty, -+ ., Ta_y TOZNA, plati podle
indukéntho pfedpokladu ostré nerovnosti v (12) a (13),
a je tedy ostrd i nerovnost (14). Je-liz, =z, = ...

= &n_;, j& Pr = %,Py,; NErovnost (14) pak mé. tva.r

k-
x%( 1)

nz

DesPro — Dp = — (2, — )2 =0

a je ostra pravé tehdy, je-li z, = z,.
VI.4. Uloha. DokaZte nerovnost (9).

Ndvod. VyuZijte definice funkef px pomocf e, nerov-
nosti (10) a vlastnosti binomickych &fsel.

VLS. Poznimky. (a) Z nerovnosti (10) nyn{ plyne
(18) PiaP; = PPy, 1 S1 =)=,

a to stejnym zplsobem, jakym plyne vzorec (13) z ne-
rovnosti (12). PoloZime-li v (15) ¢ = 1, dostdvdme vzhle-
dem k (6) odhad pro aritmeticky primér A4,:

16 A =-P®_ 19
o A= e
(b) Nerovnost (10) jsme dokézali za pfedpokladu, Ze
x > 0. Divod je v prvnim indukénim kroku: abychom
mohli nerovnost Gy(x) < 4,(x) povysit na druhou, mu-
sfme mit zarudeno, %e x, = 0 i #, = 0. Ctené¥ se oviem
snadno pfesvédéi pfimym vypodtem, Ze nerovnost (11)
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plati i bez pfedpokladu x > 0, a tak platf i nerovnost
(10) nezavisle na znaménkach é&fsel ,, z,, ..., 2,.

(c) Nerovnost (10) lze za pfedpokladu, Ze viechna x,
jsou nenulové, dokdzat jesté jednim zplisobem — vyuZi-
tim nésledujicfho tvrzenf, které uvedeme bez dilkazu:

Bud?’i m prirozené &islo, ¢y, ¢y, -- ., Cn redlnd Eisla,
a oznaéme
(17) F(8,8) = cos™ + ;8™ % + cpsm %2 + ... +
+ Cn_s8UP 2 - Cp1SIP 7L + Cpl™.
[Funkce ¢ ™F(s, t) je polynom m-tého stupné v proménné

%; kofeny tohoto polynomu nazveme kofeny i:— rovnice

F(s,t) = 0.] Pak plati: Jsou-li vechny kofeny % rovnice
F(s,t) = 0 rediné, jsou redlné ¢ viechny kofeny rovnic
Fy(s,t) =0, Fys, t) =0,
kde
Fy(s, 8) = meg™t + (m — 1) c,s™7% +
+ (m— 2) czsm-stz + oo + 20m_28t"‘_2 + cm_lt"'—l,
Fy(8,8) = 6™ 4 26,8m2% 4 ... +
+ (m— 2) ¢p_o8%™ 3 + (m — 1) €y 18672 + Mey ™1,

[Funkce F,(s, t), resp. Fy(s, t) vznikne z F(s, ¢) derivo-
vénim podle s, resp. podle £.]
Pouzijeme tohoto tvrzeni pro specilni vyraz

F(s,t) = (8 + zyt) (8 + 2at) ... (8 + zub);
zde je m. = n a pro koeficienty ¢, plati

c—e—n ;
i—i—iph
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kofeny % rovnice F(s,¢{) = 0 jsou redlnd &fsla —z,,

—y, ..., —%y. Podle vySe uvedeného tvrzeni jsou tedy
redlné i kofeny odpovida.jicich polynomi F,, F, (té&chto
kofent je nejvyse n — 1). Nyni postupujeme takto: za
vychozi polynom (17) povaiujeme F,, resp. F, (tj. kla-
deme mj. m = n — 1) a vytvofime k nému odpovida]ici

polynomy F,,, Fy,, resp. F,,, F,,, které maji opét ves-
més realné kofeny (jichZ je nejvyse n — 2). Pokradu-
jeme-li v tomto postupu, dojdeme nakonec k polyno-
mim tvaru

(18) Ci(Pr—18® + 2pi8t + Prsat®)
(k=1,2,...,n—1; C} je jistd nenulova konstanta).
Polynomy (18) maji jen redlné kotfeny —':—; to viak zna-

mena, Ze diskriminant kvadratické rovnice

0% (pea (3] + 25+ o) = 0
je nezdporny:
4P} — 4px_1Preny = 0,
a to je nerovnost (10).
VIL.6. Piiklad. UvaZujme opét x > 0. Pak z nerov-
nosti (10) plyne, Ze
(19) pzpfzp®z... 2090 20"

rovnosti zde platf privé tehdy, je-liz, =z, = ... = z,.
Podle nerovnosti (10) je totiz

(PoP2) (P1P3)? (PaPa)? - - - (PraPrnr)t =
< pipips - .. D
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protoZe na levé strand je vlastnd vyraz

DuDIPEDS - - - PR P,
méme po vykracen{

me < pEh Gl pi* = pllc{l(-’i.'-
(k=12,...,n—1)a odtud uz (19) plyne.

VL.7. Pozndmka. Podivame-li se na vzorce (6), vidime,
%e na zadatku nerovnostf (19) stoji aritmeticky primér
A, (x), na konci pak geometricky pramér ,(x). Z (19)
tedy jednak plyne ndm uZ znidmé nerovnost

Aa(x) 2 Gn(x),

jednak je vidét, kolik riznych vyrazi se da jesté mezi
oba pruméry vloZit.

VLS. Uloha. Necht x = 0 a necht alespoii dvé z &fsel
Zy, Ly, - - -, T, jSou riznd. MiZeme tedy predpokladat,
Ze

ST, S .. S Xy S,

a e alespoii jedna z t&chto nerovnostf je ostra. Zvolme
piirozené &slo & pevné (1 £k < n) a oznadme p =
= [p(x)JVx.

Utvoime nyni z n-tice x novou n-tici y = (y,, ¥, . . -

. » Yn) takto: Zvolime y, = p, &isla x,, x,, . . ., x,_, po-
nechame beze zmény, tj. poloZime y, = x,, y; = ,, ...
vee s Yny = Tn_y, & konednd zvolime y, takové, aby bylo
ply) = p(X) = P~

Dokaizte, Ze pak plati

(20) pily) = pi(x) proi = k.
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Ndvod. Oznadme e elementirni symetrické funkce
n — 2 proménnych z,, 2,, ..., Z,;, a budi

. -
" )

Podobné jako v tloze VI.2 klademe ¢} = 1, e*;, = 0.)
( ] 0
Ukaite, e prok =1, 2, .., n plati

n

(21) () 200 = et =
= Ty@ni-a + (@1 + Ta) €64 + €

(porovnejte se vzorci (8)!). VyuZijte toho, Ze pi(x) =
= pi(y) = p*, & odhadnéte znaménko vyrazu

(7) twn — w0

VL.9. Pozndmky. (a) Pomoci vysledkd dlohy VI.8 mi-
Zeme opét dokazat nerovnosti (19): Zachovejme ozna-
éeni z Glohy VI.8, vyjdéme z n-tice x, k ni sestrojime
n-tici y a k té opét sostrojime stejnym zpiisobem =-tici z
(tj. nejmensi z é&fsel ¥, ¥,, ..., Yy, nahradime &slem p
a misto nejvétitho z téchto éisel dame takové &islo z,, aby
p(Z) = pe(y) = 9%}, k mn-tici z sestrojime stejnym
zpisobem n-tici v atd. Po nejvyse n — 1 krocich dojde-
me k n-tici w = (p, p, ..., p); pFitom bude

(%) = pr(y) = Pu(Z) = pu(V) = ... = pu(W) = p*
a pro ¢ = k bude podle (20)

2X) = pily) S pilz) = plv) = ... S (W) = pi.
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Odtud plyne, Ze pro ¢ = k je

(PO < p == [pi(x)]"%.

Ctend¥, ktery zna publikaci [1], si mo#ni uvédomil, Ze
metoda diitkazu nerovnosti (19), kterou jsme praveé
pouZili, je analogii &tvrtého dtkazu nerovnosti mezi
aritmetickym a geometrickym primérem (viz [1], str.
26).

(b) Vzoroe (21) a (8) uvadséji do souvislosti elementarn{
symetrické funkce, resp. elementirni symetrické pri-
méry pro n» proménnych z,, x,, ..., z, s tymiZ funkcemi
pro , kratdi* vektory — pro (n — 1)-tice a (n — 2)-tice.
Tyto vzorce lze zobecnit: Budi

n=1i+7,
kde i, j jsou pfirozend &fsla; bez Gjmy na obecnosti lze
pfedpokladat, Ze ¢ = j. Oznadme pro x = (z,, Z, ..., Ts)
symboly X a X tuto uspofédanou i-tici a j-tici:
X = (T, Tpy ++ 5 %), K = (Tiyy, Tisgs - - -5 Tn),

a budi?
ek=ek(x), ,G=0, ,2,...,n,

T=a®, £k=012...,1,
ég=e,,()‘(), k=0, 1,2,...,7'.
Pak platf

o + Cugfy + - .. + G
prok=0,1,...,9,

I O AT A
(22)  a=\"" k=i 1,540, ..., i,

Eték-i"l"é'i-léb—l-!-_l + . + & &
{ prok=t+1,++2,...,%.
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Doporudujeme Stendfi, aby se pokusil vztahy (22) doka-
zat.

VIL.10. Uloha. Zvolme pevné p¥irozené &islo k, k& < n,
a oznadme pro X = (¥, &y, ..., ¥;) symbolem x% uspo-
Fadanou ¢-tici

x = (x,, %,, ..., ), 1< n.

Dokaite, %e plati: Je-li 0 <z, <z, < ... <=, je pro
izk

Pe(X®) < pp(x67V) < ... S pu(x®) = pu(x).

Ndvod. Pomoci druhého vzorce v (8y a pomoci nerov-
nosti (16) (pouzité oviem pro vektor x®*-1) dokaZte, Ze
za pfedpokladu =, = z; pro s =1, 2, ..., n— 1 platf
nerovnost

pk(x(n)) = pe(xiD),

Je ihned vidét, Ze pro libovolné n-tice x a y platf
identita

(23) el(X + y) = e;(X) + ey(y).

Tato identita je charakteristickd pravé pro prvnf ele-
mentdrni symetrickou funkei e, a pro zbyvajici funkce e;
obecnd neplati — je napf. (X + y) = eo(X) = eq(y) =
= 1. Za p¥edpokladu x >0, y > 0 vsak plati pro
viechny funkce e; nerovnost

(24) [ec(x + y)}'* = [e(X)]'* + [ex(y)]"™

(k=1,2,...,n). Doporudujeme &tendfi, aby se pokusil
o dikaz nerovnosti (24) pfimou cestou: my ji zde od-
vodime z nerovnosti obecnéjsi.
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VI.11. Poznimka. Pro x > 0, y > 0 plati nerovnost

alx +y) o _efx) ex(y)
(X 4+ y) T exy(x) ex1(y)

(k=1,2,...,n). Nebudeme ji dokazovat: jeji odvozen{
je trividlni pro k=1 a k=2, pro k > 2 ji pak lze
(pracnym zpisobem) odvodit z prvni formule v (8),
pouzité pro (n — 1)-tice vzniklé vidy vymechanim i-té
slozky v n-tici x (¢ =1, 2, ..., n). Z (25) ovSem plyne:

(25)

VL.12. Tvrzeni. Budif x >0, y > 0; pro pfirozend
é&isla r, k, n nechf plati

1Z8rk€n.
Pak je

(26) [

L [ek (x) 1/r [ek(Y) 1/r.

ek—r(x + Y) e —r(X) er_.(y)

Dikaz. MiZeme psat

€x & G Cr—r+a Ek—r+1

Cx—r €1 Cr—2 €e—r+1  Cr-r

Odhadneme-li ka¥dy souéinitel vpravo podle (25), dosta-
neme nerovnost

[ = <)
.[ek-l()() ek_l(y)]_ .(e,,_,ﬂ(x) ex—raa(y) ]1,,

€x—2(X) e:-2(Y) er(X) ex+(Y)
Vyraz vpravo je geometricky primér souttu dvou uspo-

tadanych r-tic E = (&;, &g, .-+ &)y = (s M2y <+ M),
kde
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g = €k —1+1(X) ;= ex—t+1(Y)
ep—i(x) '’ ei(y) ' _
ProtoZe pro geometricky primér plati
GH(€ + ) = G,(E) + G:(n)
(viz napf. [1], str. 33), plyne odtud vztah (26), nebot
/ /e
6®) = [ 2051, qum = [20]".

€, () ek—r(Y)

VI.13. Poznidmka. Nerovnost (24) plyne z (26) volbou
r==F.

1=1,2...,r

Zavedeme nynf toto oznadeni: pro x = (x,, %,, . . -, Tn),
X > 0, a realné &islo r, r = 0, oznadime :

(27) X = (25,2}, ...,a).
Déle ptipomeiime oznadeni aritmetického priméru:
T+ %+ ...+ T

n

A,,(X) =

VI.14. Deflnice. Pro x > 0 a » 5= 0 oznadme
M, (x) = [Aa(x")]V,

tj.
ﬂ+ﬂ+-u+%rﬂ

(28) M,(x) = [

n
pro r = 0 definujeme
(29) My(x) = Go(x) = [2,25 . .. ZpJ".

de‘rzmetriokou funkei M,(x) nazveme pramérem r-tého
fddu.
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VI.15. Uloha. Dokaite, Ze pro kladns #sla r, s plati

1
(30) M fx) = —=,
()
(31) Mr.a(x) = [Ml(x')]ll'!
(32) M_(x) < My(x) < M(x).

Ndvod. Prvni dva vzté,hy plynou p¥imo z definice pri-
méra r-tého Fddu, tfeti je disledkem nerovnosti mezi
aritmetickym a geometrickym primérem.

VI1.16. Pozndmky. (a) Priméry r-tého fadu zobectiuji
pojmy aritmetického priméru A4,(x), geometrického
priméru G,(x) a harmonického priméru H,(x) (viz [1],
str. 15): je totiZ

My(x) = Au(x), M(X) =Gn(x), M_(x) = Hy(x).

(b) Nerovnost (32) miZeme zobecnit: jsou-li r, s redlnd
¢isla, r < s, pak platf

(33) M(x) < M,(x).

K diikazu této nerovnosti se jeité vritime. Zatim jen
poznamenejme, Ze z ni plyne toto tvrzeni: Pro0 < r <1
je
An(x) = M,(x) = G.(x)

(dokazte!). Je tedy viddt, Ze mezi aritmeticky a geomet-
ricky pramér je mozno zafadit nekonedné mnoho primsé-
ri 7-tého ¥4du s r€ (0, 1) (srv. se vzorcem (19) a pozndm-
kou VL.7).
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Zobecnime nyni ponékud pojem praméru M,. Budiz
tedy @ = (a,, s, ..., a,) uspofadana n-tice nezdpornych
¢isel a necht je

(34) ay+ap+ ... +ay=1.

VI.17. Deflnice. BudiZ x > 0, a = 0, necht plati (34)
a necht je r redlné é&fslo. PoloZme

(0,7f + a2} + ... + agzf)Vr
pror # 0,
(35) My (x; a) =
g S I pror = 0.

Funkei M,(x; a) nazveme wvdfenym pramérem r-tého
Fddu (8 vahou a).

BAVI.18. Poznimky. (a) ViZené priméry M,(x; a) obec-
né nejsou symetrickymi funkcemi (dokaZte!). Volime-1i
1

oviem a, = a, = ... =an=7,je

M (x; @) = M(x),

a pak se jedna o symetrické funkce. Pro specidlni volbu
r = 1 a r = 0 miZeme oznadit

Mi(x; @) = Au(x; @), My(x; @) = Gy(x; a)

a nazvat tyto funkce vdZenym aritmetickim, resp. viZe-
ngm geometrickym priamérem.

(b) CtenéF se snadno presvédéf, Ze i pro vaZené pri-
méry plati vzorce analogické vzorcim (30) a (31). Ana-
logii vzorce (32) oviem muZeme dokizat jen za pied-
pokladu, Ze plati analogie nerovnosti mezi aritmetickym
a geometrickym primeérem, tj. nerovnost

(36) A,(%; @) = Gu(x; a).
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VI.19. Uloha. Dokazte nerovnost (36).

Ndvod. PouZijte matematické indukce. Pro n = 2 je
nerovnost (36) dokizana nap¥. v [1], str. 70, vztah
(II1.2). Pro (» -+ 1)-tice X = (zy, Xy, . - -, Ty, Tpyy), & =
= (ay, &g, . .., &n, &nyy) Prejdéte k n-ticim y = (y,, y,,
cesYa)y B = (B P --.,Pa) definovanym takto: je
Yi=z a fi=a;, prot=1 2, ..., n—1 a y, =
= a::"’ g ﬂ.x:_'ﬂl/ %n; vyusijte indukéniho p¥edpokladu.

VI.20. Véta. Budizx > 0,a =20, a; + a, + ... +
+ an = 1, r < 8. Pak plati

(37) M.(x; @) < M,(x; a).
Dikaz. (a) Pro r = 0, 8 = 1 nenf (37) nio jiného nez (36).
(b) Pro r = 0, 3 > 0 plyne (37) z nerovnosti (36), po-
uzité oviem pro n-tici xe:
My(x; @) = [M(xt; a)]t < [M(x; )V = My(x; a).
(c) Od kladnych hodnot r resp. s pfejdeme k zipor-
nym pomocf vzorce

M (x; ) = ——

(viz pozn. IV.18 (b)); stadi tedy dokazat (37) pro 0 <
< r < 8. Zde vyuZijeme Hoélderovy nerovnosti ve tvaru
uvedeném napt. v [1], str. 85, vztah (I11.25): ProtoZe je
0 < r < s, lze psit r = s.¢, kde 0 < ¢ < 1. Oznadfme

a,—x{=u,~, a = v; (1:=1,2,...,n).
Pak je

_ _ 10 _ 001
ax] = oy = (axf)°. a0 = ufv;™,

105



podle zminéné Hdélderovy nerovnosti je
n n cf n 1—c
Suni~<(Zuf( 2]
=1 i=1 i=1

a odtud uz mime (37), nebot

S upl= = 3 ] = [M,(x; @),
=1

fou]

[é: ui]c (é;vi]l_c B ( ﬁ aix:]rl"l = [My(x; a)]".

1 i=1

VI.21. Poznamka. Nerovnost (33) je nyni specidlnim
pfipadem nerovnosti (37): s pfihlédnutim k poznamce
VI1.18(a) ji dostaneme specidlnf volbou a; = ay = ... =
1
=0y = —-
n

Jak uZ jsme Fekli, nejsou vaZené primeéry obecné sy-
metrické funkce. Vratme se tedy k symetrickym vyra-
zim a zobecndme elementirni symetrické priaméry
Dr(X).

Budi? [y, 5, ..., %,] permutace n-tice [1, 2, ..., n].
Takovych permutaci je n!, a to znamend, Ze pro dané
n-tice X = (%, 2, ..., %) > 02 a = (a, ag, ..., a5} =
= 0 miZeme utvofit n! disel tvaru

T o
AL AR A

Utvorme tedy aritmeticky priimér vSech téchto n! &fsel:

VI.22. Definice. Pro x > 0, a = 0 poloZme
1 X, Ay a.
(38) P(x; a) = T le.’ TS m
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pridemz sditime pies vSechny moZné permutace [i,,
gy - - .5 8] Cisel 1,2, ..., n. Funkeci #(x; a) nazveme sy-
metrickym pramérem.

VI1.23. Poznimka. Z definice symetrického priméru je
vidét, Ze kdyZ n-tice § = (84, B, - . ., f») vznikne z n-tice
a = (a, &, ..., ay) permutact, bude

P(x; a) = P(x; B).
Symetricky primér £(x; a) tedy zivisi jen na hodnoté

¢isel «;, ay, ..., ap, nikoliv na tom, jak jsou sefazena.

VI.24. Piiklady. (a) Zvolme e = (r,0,0, ..., 0),r > 0.
Pak se v (x; a) objevi (n — 1)!-krat &islo ] — toti% ve
tvaru «f 2, 2f, ... 2, kde [i, ¢, ...,%,] je jedna
z (n — 1)! moZnych permutaci &isel 2, 3, ..., n. Podobné
bude v #2(x; a) vystupovat (n — 1)!-krat d&islo xf, 2]
atd., takze

(39) ?x;r0,0,...,0) =

u_ @+ 2+ ... +2) = [Mx)].

Specialné pro r = 1 méme
(40) 2(x;1,0,0, ...,0) = M,(x) = A,(x).

(b) Zvolime-lia = (v, 7,7, ..., r),r > 0, budou viech-
ny stitance v (32) stejné: budou mit tvar xj«f ... zi.
ProtoZe téchto sditanch je n!, bude
(41) P(X;r, 0,0 ., r) =0} ... 2 =

= [Gu(x)]*" = [Ga(x")]".
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Speciainé bude pro r = %-

(42) .@[x;%,%, -717) — Gu(x).

VI.25. Uloha. Ptipomeneme-li si vzorce (6), miizeme
formule (40) a (41) (pro r = 1) zapsat takto

2(x;1,0,0, ...,0) = p,(x);
PZ(x;1,1,1, ..., 1) = p,(x).
Ukazte, Ze plati
(43) P(x;1,1,...,1,0,0, ... 0) = px),
k=12 ...,n; '
n-ticea =(1,1,...,1,0,0, ..., 0) zde obsahuje & jedni-
dek a » — k nul.
VI.26. PFiklad. Ze vzorcu (39) a (41) plyne, Ze
(44) A (x*) — Gu(x*) = #(x;n,0,0, ...,0) —
—2(x;1,1,...,1),

Vynechme u symetrickych priméria £(x; a) pismeno x
a popfipadé pro jednoduchost i nuly na poslednich
mistech n-tic . Pak lze psat

Pn,0,0,...)—P(1,1,1,...,1) =
= [?(n,0,0,...)—Pn—1,1,0,...)]+
+[Pn—1,1,0,...)—Pn—2,1,1,0,...)] +
1+ [Pn—2,1,1,0...)—Pn—3,1,1,1,0,...)] +
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+ (22, 1,1,...1,00— 21, 1,1, ... 1)].

Vsimnéme si nyni vyrazi v hranatych zavorkich; vy-
uZijeme pfitom toho, Ze symetricky primér se nemén{ pfi
permutaci sloZek n-tice a, a Ze tedy napt. #(n,0,0, ...) =
=20,n,0, ...),?n—1,1,0, ...) = P1,n — 1,
0, ...) atd. (viz poznamku VI.23). Pak je

P(n,0,0,...)—Pn—1,1,0,...) =
=%{ﬂmmm“”y+9wnum.ny—
— Pmn—1,1,0,...)—P(1,n—1,0, ...)} =

1
= 2nl Z (@, + 2, — 2", —z ) =

— D =)
Pn—1,1,0,0,...)—Pn—2,1,1,0,...) =
:}%WW—LQLQHJ+9mn—LLQ”J—
—Pm—2,1,1,0,...)—P(1L,n—21,0,...)} =

1

_ —1 n—lyp ___ n—2 I n—2. —
2! 2 (@, + o, — ey, — a2

1
= Sl Z(x?.'z—”’?."z) (@, —x,) 2
#n—2,1,10,0,...)—Pn—3,1,1,1,0,...) =
=é4mn_zq1Jm““)+
+2(0,n—2,1,1,0,...) —P(n—3,1,1,1,0, ...) —
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—2(1,n—3,1,1,0,...)} =

1
~ 2al Z (@ — 27~ (w, — 3 ) 2,7,

atd., a% konedné
22,1,1,...,1,0)—2(1,1,...,1) =

=%{gv(2,o,1,1,...,1)+

+200,2,1,1,...,1)—22(1,1,...,1)} =

1
= W z (x;l -—-331,)2 X, %y ... xin;
viude se s&fta pies viechny permutace [i,, ¢,, . . ., ¢,] ¢isel

1,2, ..., n.
ProtoZe z;, = 0, je (44) soudtem nezédpornych ndsobki
nezapornych vyraza tvaru

(45) (x;‘l—a;;‘.) (xil—xi.), =12 ...,n—1,
a tedy je #(n,0,0, ...)— 2(1,1, ...,1) = 0 ¢&ili
A, (xr) = G (xn).

Tim jsme dokazali opét (po kolikdté uz ?) nerovnost mezi
aritmetickym a geometrickym primérem. Rovnost
v posledni nerovnosti nastane pravé tehdy, budou-li
viechny vyrazy tvaru (45) nulové, tj. pro z;, = x;, ¢ili
Proz;, = 2, = ... = X,

Viimneme si nyni vzidjemného vztahu symetrickych
pruméra Z(x; a) a #(x; B) v zavislosti na chovani n-tic
a a PB. Specidlné nis bude zajimat, kdy pro vSechny
n-tice x > 0 plati
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(46) 2(x; a) = 2(x; B).

ProtoZe symetrické priméry nezivisi na poradi éisel a;,
resp. B, budeme viude v daldim predpoklidat, Ze

(47) G Za=... 2a 20, ﬂlgﬁzg
=...=28=20.
Uvedeme bez diikazu toto tvrzeni:

VI.27. Tvrzeni. Nerovnost (46) plati pro vSechna x > 0,
jsou-li splnény vedle podminky (47) jesté tyto podminky:

48) aytaz+ ... F+an=8+p+ ... + bu,
mtoat . .Fugsh+thht...+ b
prok=12...,n—1,

Rovnost v (46) nasidvd pravé lehdy, je-li bud a = B, nebo

X, =2y = ... = &.

Pro platnost nerovnosti (46) je tedy podstatna plat-
nost soustavy nerovnosti (48). Existuji kritéria, ktera
umoziiuji ovéfit platnost vztahit (48):

'VI.28. Uloha. Budiz @ =0 a necht je n-tice a =

= (ay, &y, ..., ay) ddna vzorei
(49) a,-=zci,-ﬂ,-, 7::1,2,...,”,
i=1
kde n? danych &isel ¢;; {1, = 1, 2, ..., n) m4 tyto vlast-
nosti: Pros,§ =1,2, ..., nje
n n

(50) c,—,-gO, 20,~,-=1 a 207'1;=1.

i=1 i=1



Dokaizte, Ze pak n-tice @ a B spliiuji podminky (48).

Predchézejicich tvrzeni nyni vyuZijeme k dikazu této
véty:

VI.29. Véta. Budif vy =0, p, - v, + ... + yu = L.
Pak plati pro kaZdou n-tici x > 0

(51) G(X) S P Y) S Aufx).

Dikaz. Protoze podle (42) je Q,(x) = .@lx; —71,'-, %, cens

1 3 z LY W4
cey —;L—], stadf ukdzat, Ze existuji &isla ¢; vyhovujici pod-
minkdm (50) a takova, Ze
n
1 .
(62) - = ) Ciltis =12 ...,n.
i=1

Pak totiZ plyne prvni nerovnost v (51) z (46), kde oviem

klademe (%, %, R %] misto & a y misto f. Podminky

(60) i vztah (52) vSak plati zfejmé pro c¢; = % @7 =

=12 ...,n).
Druh4 nerovnost v (51) pak ma tvar
(53) 2(x;y) = 2(x;1,0,...,0)

— viz (40). Volime-li tedy v (46) « = v, = (1,0, ..., 0),
pak plati vztah (49) s &isly c; definovanymi takto: c; je
j-ty prvek v i-tém sloupci ve étvercovém schématu
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Xy, Ky &Kgy « -y Ay_q, Ay,

Az, Ay, Qg « ooy Opy LS T)
X3, 0y, &3y ) &y Xa,
an—l, 2% al) LI ] an—ar aﬂ—2r

X,y Ky Ky o ooy En_gy Kn_y.

Podminky (50) jsou v tomto piipadd opét spinény, a plati
tedy i nerovnost (53).

V1.30. Piiklad. UvaZujme n-ticea = (1, 0, 0, ..., 0),
1 1 1 1 1

B - [—2—’ ?, O, ---,O], Y = (?’ —3—, '?,0, ey O]a:trd.,

obecnd

1 1 1
u_—_['z'vI)-";'76_)010:"';O]ik:4l5!""
k-krét (n-k)-krét

Ziejmsé je
aytagt+ ... F+oan=p+B+ ... +
+hh=...=0+x%+ ... +x. =1,
o > >y >0 >,
ata=PF3f+h>ynty.>...>u% 1K,
g tastag=p+ht+h=nty+
4y > ... > x;, + %y + %, atd., obecnd tedy
ot . tanZzfhF Btz 2
Zx+ %+ oot A

(m=1,2,...,n—1).Jsou tedy splnény podminky (48)
a z tvrzeni V1.27 pak plyne
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Px;u) £ ... < P(x;¥) = P(x; B) S P(x; a).

P(x; a) = A,(x) a P(x; n) =
= P(x 1,1, ..., 1,0, ...,0) = px¥)
Thkrdt  (m-k)kréb
— viz (43) —, ukézali jsme, Ze
(54)  An(x) = py(X) = py(x12) Z py(x!) = ... =
= pr(XVE) Z Pryy(XVEHD) Z L. = pu(xVR) = Gu(x).

Porovnejme tuto formuli s formuli (19) (viz téZ poznim-
ku VI.7).

VI.31. Uloha. Plati n&jakd nerovnost mezi vyrazy
Pi(x¥*) z (54) a [p(x)]"* z (19)?

Ndvod. Uvédomte si, %e pro k =1 a k = n se jednd
o tytéz vyrazy. Pron =3 a k = 2 je

1
pal3?) = o (Jziza + Vawws + Vo) [p0)]2 =
_ Vxlxz + T,T3 + 47y

3
a z Cauchyho nerovnosti (viz napi. [1], str. 45) plyne,
Ze

I.Vxlxz + I-V%‘*‘ I-V‘lﬁé
= V§ Vxle + 2.3 + 2574,

Da(x'?) = [po(x)]V2,
a podobné lze postupovat i pro » > 3.

¢ili
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VI.32. Cloha. Ukaste, e pro kladné &islo r plati
Z(x; a) = .@[xf; i],

‘@(x;a1+r’“2+r’ ""“n+r) =
=P(x;r, 7, ..., 1) P(x; a).

V1.33. Uloha. Polotme @ = (3, 50,0, ..., 0).  ~

3 1 1
=[?, ?, ?, O, ...,0].Paka1+a2+ [P —I—a,, =ﬂ1—|—
+ 8.+ ... 4 Ba =1, a jak pramér £(x; a), tak pramér
P(x; B) leii podle véty VI.29 mezi 4.(x) a G,(x). Obé
n-tice spliiuji prvni podminku v (48), nikoliv vSak dru-
hou, nebot «; < f,, ale a; + «, > B, + B,. Nemiizeme
proto zaruéit, Ze by pro viechna x platila nerovnost
(46) nebo nerovnost opaéna. Naleznéte n-tici x takovou,
aby bylo Z(x; a) < 2(x; B), & jinou n-tici y, aby bylo
P(y; a) > 2(y; B). [Pro n = 3 lze volit x = (1, 1, 219),
y =(1,1,2719)]

VI.34. Uloha. V [1], str. 82, je doké4z4na tzv. Schurove
nerovnost
(55) 2Hx—y)(z—2) +yly—=)(y—2) +
+2dz—2a)(z—y) =0

(¢isla z, y, z jsou nezaporna, 1 je redlné). Provedeme-li
nisobeni naznadené v (55), muiZeme tuto nerovnost
zapsat takto:

%(xz+z + yx+2 + z}.+2)_%(xﬂ.+1y + x}.+1z + y}.+1x +
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+ Aty 4 Aty - 2Aly) 4 % (x*yz + 2y’z + xy2*) = 0
neboli pomoci symetrickych priméria pro n = 3 a trojici
u = (z, y, 2) takto:
P(u; 24 2,0,0) —2%(u; 2+ 1,1,0) 4
+ P(u;4,1,1) = 0.

Dokazte, Ze Schurovu nerovnost lze rozifkit (s j tyml
omezujicimi pfedpoklady) i na pfipad » > 3, tj. uk
e pro X = (&, 3 ..., %) > 0,4 =0 6>0

= (og, & - -, o) = 0 plati
P(x; 4+ 28,0,0, a) — 22(x; A+ 8,8,0, ) +
+ P(x; 2,0, 4, a) = 0.
VL.35. Na zavér jedna snadné tloha: BudiZz » = 3;
necht m4 rovnice
a* +aprtt+agn it ... Fa it +a, =0
(@g # 0) jen kladné kof'eny. Dokaite, Ze plati

laoa| = — |a1r1,, -
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