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P Ř E D M L U V A 

čtenář už zajisté řešil některé jednoduché rovnice, ne-
rovnice, soustavy rovnic a pravděpodobné i soustavy ne-
rovnic. Značná část této knížky je věnována řešeni úloh, 
jejichž nedílnou součástí je řešení soustav tzv. lineárních 
nerovnic (popřípadě rovnic), tj. soustav nerovnic, které 
lze zapsat ve tvaru 

+ a22x2 + . .. + a^nxm g ó2, 

amlxl + am1x2 i" • • • + amnxn bm, 

kde xlt x2, . . . , x„ jsou neznámé a au , a12, . . . , oron, 
blt b2, .. . bm jsou daná čísla1). Jedním ze základních teore-
tických prostředků, k teré n á m umožní dokázat řadu dů-
ležitých tvrzení, je vě ta o oddělitelnosti konvexních mno-
hostěnů, jejíž obsah můžeme na tomto místě čtenáři 
přiblížit pouze tím, řekneme-li, že v rovině pro každé dva 
konvexní mnohoúhelníky, které nemají společné body, 

l) Všechna čísla, se kterými se v této knížce setkáme, budou 
čísla reálná, a budeme proto přívlastek reálný vynechávat. 
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existuje taková přímka, že uvažované mnohoúhelníky 
leží v opačných polorovinách touto přímkou určených, 
tj., že uvažované mnohoúhelníky jsou touto přímkou 
odděleny. 

Tato věta, kterou uvádíme v obecném případě bez dů-
kazu, je spolu s dalšími nutnými pojmy vyložena ve druhé 
kapitole. První kapitola má přípravný charakter — při-
pomínáme v ní některé pojmy a výsledky známé ze 
středoškolského studia a uvádíme některé nové pojmy, 
nezbytné k dalšímu výkladu, zvláště pak pojem »-roz-
měrného prostoru. Bohužel není v této knížce možné vě-
novat se podrobněji geometrii vícerozměrných prostorů; 
naštěstí můžeme odkázat čtenáře na knížku prof. Karla 
Havlíčka Prostory o čtyřech a více rozmčrech, která vyšla 
jako 12. svazek v edici Škola mladých matematiků. Dále 
se v knížce vyskytl — i když jen okrajově — pojem 
konvexní množiny. Pro hlubší seznámení s tímto pojmem 
lze čtenáři vřele doporučit knihu doc. Jana Výšina 
Konvexní útvary, 9. svazek zmíněné edice. 

Poslední, nejrozsáhlejší kapitola je věnována užití zís-
kaných teoretických výsledků v různých oblastech mate-
matiky, které už mají velmi blízko k praktickým apli-
kacím. 

Tato knížka je dalším pokusem zařadit do sbírky Škola 
mladých matematiků zpracování tématu, které výrazně 
přesahuje oblast středoškolské matematiky. Z toho také 
vyplývá způsob zpracování, který se lisí od mnoha 
předcházejících knížek, jež byly většinou sbírkami řeše-
ných úloh. 
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1. kapitola 

P f t Í P R A Y N É Ú V A H Y 

1.1. Lineární nerovnice 

Nejprve si připomeneme několik známých pojmů 
a postupů. Ěešme například tuto soustavu čtyř nerovnic 
o dvou neznámých x, y: 

— 2x — y ^ — 2, 
— « + 21/^ — 4, (1) 

x ^ 0, 
y > o, 

tj. hledejme takovou uspořádanou dvojici čísel x, y, po 
jejichž dosazení do (1) za neznámé x, y dostaneme plat-
nou soustavu nerovností. Poslední dvě nerovnice sousta-
vy (1) nám říkají, že čísla x, y mají být nezáporná; proto 
zpravidla místo o řešení soustavy (1) hovoříme o nezá-
porném řešení soustavy: 

— 2x — y <L — 2, 

— x + 2y — 4. (2) 

Množinu všech nezáporných řešení soustav}' (2) může-
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me geometricky znázornit v rovině způsobem, který je 
běžně znám ze střední školy. 

Jsou-li x, y souřadnice bodu v rovině (v pevně zvolené 
pravoúhlé soustavě souřadnic), pak všechny body (x, y), 
jejichž souřadnice vyhovují nerovnici 

— 2 x — y ^ — 2 , (3) 

leží na jedné straně od přímky, jejíž rovnice je 

y = — 2x + 2 . (4) 

Snadno také zjistíme, na které straně; stačí dosadit do 
(3) souřadnice libovolného bodu roviny, neležícího na 

Obr. 1. 
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přímce (4), např. souřadnice počátku soustavy souřadnic, 
tj. x = 0, y =0 . Odtud vidíme, že první nerovnici sou-
stavy (2) vyhovují všechny body ležící na přímce (4) 
a všechny body ležící na opačné straně od přímky (4), 
než leží počátek soustavy souřadnic. 

Množinu všech řešení první nerovnice soustavy (2) lze 
tedy znázornit šrafovanou polorovinou (obr. 1). Nezá-
porná řešení pak budou znázorněna tou částí této polo-
roviny, která leží v prvním kvadrantu (obr. 2). 

Stejným způsobem zjistíme, že body, znázorňující ne-

Obr. 2. 
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záporná řešeni druhé nerovnice soustavy (2), leží na 
opačné straně od přímky 

1 
y = — z — 2, 
" 2 

než leží počátek soustavy souřadnic, nebo na ní (obr. 3). 
Nezáporná řešení soustavy (2) jsou pak znázorněna body, 
které znázorňují zároveň nezáporná řešení první nerov-
nice i druhé nerovnice soustavy (2) (tj. body šrafované 
plochy na obr. 3). Z obr. 3 je patrné, že množina bodů 

znázorňujících nezáporná řešení soustavy (2) není ome-
zená.1) 
l) Množinu A bodů roviny nazýváme omezenov, jestliže existují 
taková čísla a, b, že pro každý bod množiny A o souřadnicích 
(x, y) platí \x\ ^ a, \y\ S b. 
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Přidáme-li k soustavě (2) nerovnici 

z + y á 6, 

bude množina znázorňující množinu všech nezáporných 
řešení této nové soustavy omezená (viz šrafovaná plocha 
na obr. 4). 

Přidáme-li ještě nerovnici 

x — 8y ^ 0, 
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bude mít vzniklá soustava pouze jediné řešení, znázorně-
r i6 2 . , 

né bodem o souřadnicích — , -— I (viz obr. 5). 

Přidáme-li nakonec ještě nerovnici 

2x + y ^2, 

dostaneme soustavu, která nemá nezáporné řešení. 
Zjistili jsme tedy na příkladech, že soustava lineárních 

nerovnic o dvou neznámých (tj. nerovnic, které mají 
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tvar ax + by < c) nemusí mít žádné nezáporné řešení, 
nebo může mít jediné nezáporné řešení, nebo může mít 
nekonečně mnoho nezáporných řešení; v posledním pří-
padě může být množina bodů roviny znázorňujících tato 
řešení bud omezená, nebo neomezená. 

O tom, že poslední z uvedených soustav, tj. soustava 

— 2x— y ^ — 2, 

— x + 2 y < — 4, 

x + y < o, (5) 
x — 8 y ^ 0, 

2x + y ^ 2, 

nemá nezáporné řešení, jsme se mohli velmi snadno pře-
svědčit takto: Vynásobíme-li druhou nerovnici třiceti 
a poslední nerovnici dvaceti, dostaneme soustavu 

— 2x — y ^ — 2, 
— 30x + 60y ^ — 120, 

x+ y ^ 6 , 

x— 8y < 0 , (6) 

40x + 20y ^ 40. 

Soustavy (5) a (6) mají zřejmě stejnou množinu nezápor-
ných řešení. Avšak soustava (C) nemá nezáporné řešení, 
neboť kdyby ho měla, bylo by toto řešení i nezáporným 
řešením nerovnice 

10x4-722/^ — 70, (7) 

která vznikne sečtením všech nerovnic soustavy (6). 
Nerovnost (7) však zřejmě nemá nezáporné řešení. 
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Podobného postupu můžeme užít i v případě soustav 
o jiném počtu rovnic a neznámých. Vyšetřujme např. 
tuto soustavu čtyř nerovnic o třech neznámých x, y, z. 

5x — y — 2 sS 1, 
— 10a; + 10y— z-g. — 3, (8) 
— 2x— y + lOz ÍS — 4, 

Ix + y + 5z ^ 2. 

Vynásobíme-li první a poslední nerovnici číslem 2, dosta-
neme soustavu 

lOx — 2y — 2z ^ 2, 
— IOJ; + 10// — z ^ — 3, 
— 2x— y + lOz ^ — 4, 

Ux + 2y + lOz g 4. 

Sečtením těchto nerovnic dostaneme nerovnici 

12x + 9y + liz £ — 1, 

která zřejmě nemá nezáporné řešení, a tedy ani původní 
soustava (8) nemá nezáporné řešení. 

Pozorný čtenář si ještě všiml, že uvedený postup je 
speciálním případem obecnějšího postupu. Dříve než 
tento postup vyložíme pro případ obecné soustavy čtyř 
tzv. lineárních nerovnic o třech neznámých, zavedeme si 
nové označení, které se nám později v mnohém vyplatí. 

Místo abychom označili neznámé písmeny x, y, z, ozna-
číme je po řadě symboly xlt x2, x3; pro koeficient, jímž je 
v první nerovnici násobena první, resp. druhá, resp. třetí 
neznámá, užijeme symbolu se dvěma indexy, např. au , 

12 



resp. i'esp. fi^', podobno symboly a2í, , «23 budou po 
řadě označovat koeficienty u neznámých OCjj vg dru-
hé nerovnici; je už zřejmé, jak budou označeny koefi-
cienty v ostatních nerovnicích. Pravou stranu první ne-
rovnice označíme blt druhé nerovnice b2, třetí a čtvrté 
nerovnice ft3 a bt. 

Na základě této dohody můžeme obecnou soustavu 
čtyř lineárních nerovnic o třech neznámých xx, x2, x3 

zapsat takto: 

^n^i + ®i2x2 + «13X3 ^ blt 

«21®! + «22*2 + a23X3 ^ h, (9 ) 

-f- ai2X2 ^ 64. 
Položíme-li např. ou = 5, o12 = —1, a13 = —1, = 1, 
dostaneme první nerovnici soustavy (8). 

Výše popsaný postup, kterým jsme se přesvědčili, že 
soustava (8) nemá nezáporné řešení, je obsažen v důkazu 
tohoto trvzení: 

Vři a A. Existují-li čtyři nezáporná čísla ylt y2, y3, yi tak, 
že platí nerovnosti 

Vian + ž/a®21 + ž/3®31 + ž/4«41 ̂  0, 
ž/1%2 + ž/2®22 + ž/3«32 + 2/4«42 ̂  0, (10) 
Vlai3 + Z/2®23 + y&Z3 + ž/4«43 ž 0 , 

a ze zároveň platí nerovnost 

V A + yA + 2/363 + yA < 0, (11) 

pak soustava (9) nemá nezáporné řešení. 
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Důkaz. Kdyby soustava (9) měla nezáporné řešení 
a kdyby existovala nezáporná čísla ylt y2, y3, yi s vlast-
nostmi uvedenými v předpokladech věty A, bylo by (pro-
tože čísla yt. »/.,, y.j, yA jsou nezáporná) toto řešení také 
řešením soustavy 

nA'h^i + "¡z-r-i + «13*3) ž yA, 

V-jfl21*1 -r «22-1-h "23^3) yA, (12) 
yÁWi -f- w:i2',:2 -1- «33̂ 3) ž yA> 
Z/4(«4i*i i- H < W a ) ^ V A ' 

a také nezáporným řešením nerovnice, která vznikne se-
čtením všech nerovnic soustavy (12). Avšak po snadných 
úpravách (po provedení naznačeného násobení čísly yx, y2, 
y3, y\ a po vytknutí neznámých xlt x2, x3) zjistíme, že 
tato nerovnke má tvar 

(.Whi + !h"n + ?y3a31 + yta41) xl + 
+ (ž/i«i2 -!- y/i22 + y*a32 + y4ai2) x2 + 
+ (ž/l«13 + ?/2«23 + ?/3«33 + yAai3) x3 g 

yJh -i- yA : uA + yA -

ze kterého je patrné, že nemůže mít nezáporné řešení, 
neboť podle předpokladu jsou koeficienty u neznámých 
nezáporná čísla, kdežto pravá strana nerovnosti je zá-
porná. 

Větu A lze vyslovit v této logicky ekvivalentní formě: 

Věta 11. Má-li soustava (9 ) nezáporné řešení, pak platí 
toto: Json-li ?/,. y2, ?/, taková nezáporná čísla, že platí 
nerovnosti ( 1 0 ) , ¡>ak také platí nerovnost 

ylbl -f y2b2 + yA + Ž/A ^ 
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Čtenář si pravděpodobně položí otázku, zda větu A 
(nebo jí ekvivalentní větu B) lze obrátit. Jak vyplyne 
z dalšího výkladu, odpověď na tuto otázku je kladná. 

1.2. Odriřlitclnost množin 

Už v předmluvě jsme se zmínili o důležitosti vět}' o od-
dělitelnosti konvexních mnohostěnů. Myšlenku této věty 
vyložíme nejdříve v rovině. 

Mějme přímku p v rovině o. O přímce p budeme říkat, 
že odděluje navzájem množiny AI, a M2 bodů roviny Q, 
jestliže množiny řAx a M2 leží v navzájem opačných 
otevřených polorovinách určených přímkou p. 0 dvou 
množinách M1, M2 bodů roviny Q budeme říkat, že jsou 
navzájem oddělitelné, jestliže existuje přímka oddělující 
množiny a M2. 

Je zřejmé, že jsou-li množiny AI, a M2 oddělitelné, pak 
množiny Mj a M2 nemají společné body, čili, jak často 
říkáme, jsou disjunktní. Kdyby totiž bod X patřil do 
množiny Alj i do množiny M2, pak pro bod P neležící na 
přímce p, která odděluje množiny Mx a M2, by úsečka 
XP zároveň měla i neměla společný bod s přímkou p. 

Dá se snadno ukázat, že obrácené tvrzení neplatí. 
Vezmeme-li za Mj všechny body určité kružnice k a za 
A12 množinu ležící uvnitř kruhu určeného kružnicí k, do-
staneme množiny M2, nemající společný bod. Avšak 
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množiny tAu M2 nejsou oddělitelné, neboť pro každou 
přímku p nastává právě jeden z těchto dvou případů: 

1. přímka p nemá s kružnicí k žádný společný bod; 
v takovém případě leží množiny Mj, M2 ve stejné poloro-
vině určené přímkou p, a nejsou tedy přímkou p oddě-
leny; 

2. přímka p má s kružnicí k společný alespoň jeden 
bod; v takovém případě množina A11 neleží (celá) ani 
v jedné z (otevřených) polorovin určených přímkou p, 
a nemůže tedy ležet ani v polorovině opačné k polorovině 
určené přímkou p, ve které leží (leží-li tam vůbec) mno-
žina tA2. 

Hlavní myšlenka věty o oddělitelnosti konvexních 
mnohoúhelníků spočívá v tom, že v případě konvexních 
mnohoúhelníků lze výše uvedené tvrzení obrátit, tj. že 
každé dva konvexní mnohoúhelníky Kl, K2 roviny n, 
které nemají žádný bod společný, lze oddělit. Větu o od-
dělitelnosti konvexních mnohoúhelníků lze tedy vyslovit 
takto: 

Věía C. Dva konvexní mnohoúhelníky roviny Q jsou od-
dělitelné právě tehdy, jsou-li disjunktní. 

Jak jsme se už zmínili, obecnou větu o oddělitelnosti 
konvexních mnohostěnů nebudeme dokazovat; přesto 
však v tomto speciálním případě uvedeme úvahy nazna-
čující jednu z možných cest vedoucích k důkazu. 

Vzhledem k tomu, co bylo uvedeno výše, stačí doká-
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zat, že jsou-li K1, K2 dva disjunktní konvexní mnohoúhel-
níky, jsou mnohoúhelníky Kl} K2 oddělitelné. 

Nejprve dokážeme, že existuje dvojice bodů Y0 

taková, že 
1. X0 e Klt 2. Y0e K2 a 3. ]X070| ^ pro všechny 
dvojice bodů X, Y tákové, že X e Kx a Y e K2. Popíšeme 
konstrukci bodů F0 a X0. Při této konstrukci budeme 
potřebovat následující jednoduché lemma. 

L e m m a . Necht AB a CD jsou dvě libovolné úsečky ležící 
v rovině. Potom existují dva body X' a Y' tak, že 
1. X' e AB, 2. Y' e CD a 3. \X'Y'\ ^ \XY\ pro všechny 
dvojice bodů X, Y takové, že X e AB a Y e CD. 

Důkaz lemmatu lze provést snadno rozebráním jed-
notlivých typických případů vzájemné polohy úseček 
a přenecháváme jej čtenáři. 

Vraťme se nyní k důkazu věty. Nechť obvod mnoho-
úhelníka Kj sestává z úseček uít u2, . .., ur (r 3) 
a obvod mnohoúhelníka K2 z úseček vlt v2, ..., v3 (s 2: 3). 
Uvažujme nyní všechny možné dvojice úseček u{ a vjt 

kde i = 1, 2, . . . , r a j = 1, 2, . . . , s. Na základě lemma-
tu existuje ke každé dvojici u{, v} dvojice bodů X(i, j) 
a Y(i, j) tak, že X(i, j) e wi; Y(i, j) e vf a |Z(i, j) 
Y{i, j)\ ^ |XF| pro všechny dvojice X a Y takové, že 
X e Ui a y 6 Vj. Budiž nyní M množina čísel d{j = 
= |Z(i, j) Y{i, j)| (í = 1, 2, . . r ; j = 1, 2, . . s ) . Pro-
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tože M je konečná, existuje dvojice indexů j*, pro 
kterou je číslo d{. ¡. minimální, tj. platí 

dr,. = \X(i*,j*) Y(i*,j*)\ = IX(i,j) Y(i, j)|. 

(Pokud existuje takových dvojic více než jedna, vybere-
me některou z nich.) Čtenář snadno sám dokáže, že body 
X0 = X(i*, j*) a Y0 = Y(i*, j*) jsou body s nejkratší 
vzdáleností. 

K zakončení důkazu zbývá sestrojit přímku p oddělu-
jící Ki od K.,. Protože mnohoúhelníky K± a K2 nemají spo-
lečné body, je bod X0 různý od bodu F0; je tedy možné 
vést středem úsečky X0 Y0 přímku p kolmou k této úseč-
ce. Ukážeme, že kolmice p odděluje mnohoúhelníky Kv 

K2: 
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Kdyby přímka p mnohoúhelníky K1; K., neoddělovala, 
existoval by bod R, ležící na přímce p a zároveň náleže-
jící jednomu z mnohoúhelníků Klt K2. Bez újmy obecnosti 
můžeme předpokládat, že bod R náleží mnohoúhelníku 
K2 (viz obr. 6). Označíme-li Q patu výšky SQ v pravo-
úhlém trojúhelníku Y0RS (<£«S 90°), pak (protože 
body Y0, R náleží konvexnímu mnohoúhelníku K2) bod Q 
náleží mnohoúhelníku K2. Avšak 

\X0Q\ < \X0Y0\, 
neboť 

\X0Q\ < |X0S| + ISQ\ < [Xo-S'1 + \SY0\ = |Z0r0|. 

To je však ve sporu s vlastností dvojice bodů X0, Y0. 

1.3. Pojem n-rozniěrnčho prostoru 

Víme, že polohu bodu na přímce můžeme určit jedním 
číslem, polohu bodu v rovině uspořádanou dvojicí a polo-
hu bodu v prostoru uspořádanou trojicí čísel. Vyjdeme-li 
z této skutečnosti, můžeme dospět k této definici «-roz-
měrného prostoru: 

Množinu všech uspořádaných íi-tic X = (&„ x2, .. ., xn) 
reálných čísel xlt x2, . .., xn nazveme n-rozměrným 
prostorem a označíme symbolem R" . 

Přitom dvě uspořádané w-ticc X — (;e1, x.,, . . ., xn), 
Y = (yi, ijz, • • yn) považujeme za stejné (sobě-rovné), 
platí-li Xj = ylt x2 = y2, . . x u y„. Prvky množiny R" 
budeme nazývat body prostoru R"; čísla xlt x2, . .., x„ 
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budeme nazývat souřadnicemi bodu X = (xv x2, . . ., xH). 
V případě, že n = 1,2,3, budeme užívat známého geo-

metrického znázornění prostoru R11 pomocí pevně zvolené 
pravoúhlé soustavy souřadnic. Na tomto místě chceme 
čtenáře upozornit na to, že v definicích pojmů, formula-
cích vět a při provádění důkazů budeme užívat výhradně 
analytických (volněji řečeno početních) metod, které bu-
dou vycházet doslovně z definice prostoru R" jakožto 
množiny všech uspořádaných n-tic reálných čísel. Kdy-
bychom však důsledně odmítli užívat geometrických 
představ, zbavili bychom výklad veškeré geometrické 
názornosti a připravili bychom se o možnost porovnávat 
smysl definic, tvrzení a základních myšlenek důkazů se 
zkušeností, kterou jsme získali při každodenním vnímání 
prostorových vlastností světa, v němž žijeme. Z těchto 
důvodů budeme užívat „geometrické" terminologie, 
která umožňuje dávat jednotlivým definicím, větám 
a myšlenkovým postupům názorný geometrický smy-
sl. Používání geometrických představ někdy umožní 
i „uhodnout předem" přesné, nebo alespoň „přibližné" 
znění věty, popřípadě postup důkazu. Proto v poslední 
části tohoto odstavce zavedeme geometrické názvy pro 
podmnožiny prostoru R", se kterými se v dalším, výkladu 
budeme setkávat. 

Jsou-li av b daná čísla, přičemž ax j- 0, pak množinu 
prvků prostoru R', jejichž souřadnice x1 vyhovují rovnici 

= b, 

lze znázornit bodem ; je to prostě jednobodová množina. 
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Jsou-li o1( a2, b daná čísla, přičemž alespoň jedno 
z čísel a„ a2 je různé od nuly, pak množinu bodů prostoru 
R2, jejichž souřadnice x2 vyhovují rovnici 

a + a2x2 = b, 
lze znázornit přímkou. 

Jsou-li a1; a2, a3, b daná čísla, přičemž alespoň jedno 
z čísel alt a2,a3 je různé od nuly, pak množinu bodů pro-
storu R3, jejichž souřadnice xlt x2, x3 vyhovují rovnici 

a1x1 + a2x2 + <hxs = b > 
lze znázornit rovinou. 

Bude užitečné zavést pro podobné množiny (čtenář už 
tuší jaké) v prostorech R" speciální název. Dospíváme 
tak k této definici: 

Nechť alt a2, ..., a„, b jsou daná čísla, přičemž alespoň 
jedno z čísel a2, . . ., an je různé od nuly. Množinu 
bodů X = (#!, x2 xn) prostoru R", jejichž souřadnice 
xlt x2, . . ., xn vyhovují rovnici 

Gî i + + • • • + anxa = b , (13) 
nazveme nadrovinou v prostoru R". Rovnici (13) nazý-
váme rovnicí této nadroviny. 

Množinu bodů X = (xlt x2 xH), jejichž souřadnice 
vyhovují nerovnici 

«i^i + a2x2 + . . . + a„xu g i , (14) 

nazveme uzavřeným poloprostorem v prostoru R" určeným 
nerovnicí (14). Množinu bodů, jejichž souřadnice vyho-
vují nerovnici 

atxx + a2x2 + . .. -f anxn ž 6, (15) 
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nazveme rovněž uzavřeným polopostorem, a to uzavře-
ným poloprostorem určeným nerovnicí (15). 

Uzavřené poloprostor}- určené nerovnicemi (14), (15) 
nazýváme také (navzájem) opačnými uzavřenými polo-
prostory určenými nadrovinou o rovnici (13). 

Otevřenými (navzájem opačnými) poloprostory urče-
nými nadrovinou o rovnici (13) nazýváme množiny 
bodů X = (xlt x2, . .., x„), jejichž souřadnice vyhovují 
nerovnicím 

a^j + a,2x2 + ... + anxn < b, 
resp. 

Oi^i + a2x2 + ... + anxn > b. 

Jsou-li Y = (yx, y2, ..., yn), Z = (z1( z^ . . . , z j body 
prostoru R", pak úsečkou spojující body Y, Z nazýváme 
množinu těch bodů X = (xlf x2, ..., xn), pro jejichž 
souřadnice xlt x2, .. ., xu platí 

= ¿ž/i + (1 — « i , 
= hi. + (1 — A ) ^ , 

«. = hJn + (1— A) 2», 

kde X může být libovolné číslo, pro které platí 0 gj A ^ 1. 
O množině bodů prostoru R" říkáme, že je konvexníj1) 

jestliže pro libovolné dva její body do ní patří i celá 
úsečka tyto body spojující. 

*) Nft rozdíl od knížek [2] a [3] poř í táme prázdnou množinu 
mezi množiny konvexní. 
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Cvičení 

1. Dokažte, že má-li soustava lineárních rovnic o třech 
neznámých xlt x2, x3 

a3\Xl + ®32-C2 ~ 3̂ 

nezáporné řešení, pak pro každé řešení (ylt y2, y3) (nikoli 
jen nezáporné!) soustavy lineárních nerovnic 

ž/i«n + Vi<hi + VaPai ^ 0» 
ž/l«12 + l/2a22 + ž/3®32 ^ 0 » 

Vial3 + ž/2«23 + y»a33 ^ 0 

platí nerovnost 
yA + yA + yA ^ o. 

2. Uzavřeným kruhem se středem S a poloměrem r 
(r > 0) rozumíme množinu bodů X roviny Q, pro které 
platí nerovnost |<SX| ^ r\ otevřeným kruhem se středem S 
a poloměrem r (r > 0) rozumíme množinu bodů X rovi-
ny Q, pro které platí | < r. Dokažte, že 

a) jsou-li Kx a K2 uzavřené kruhy, jsou Kx a K2 odděli-
telné právě tehdy, jestliže kruhy a fQ nemají společné 
body; 

b) jsou-li Kj a K2 otevřené kruhy, jsou Kx a K2 oddělitel-
né právě tehdy, jestliže kruhy a K2 nemají společné 
body. 

Obdobné tvrzení však neplatí, je-li jeden z kruhů Kt, 
K2 otevřený a druhý uzavřený. 
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3. Nechť bod M neleží na přímce p. Které přímky 
oddělují bod M a přímku p? 

4. Ukažte, že může existovat více dvojic s vlastností 
dvojice (X0, Y0) z naznačeného důkazu věty C. V tako-
vém případě však existuje takových bodů nekonečně 
mnoho. 

5. Znázorněte v rovině množiny těch bodů X = (x„ .r2) 
prostoru R2, pro jejichž souřadnice platí: 

(a) x f -f x22 ^ 1 a zároveň x2 22 x,2, 
(b) z, ^ 1 a zároveň x^ + x22 > 1, 
(c) xt2 + x22 íS 1 a zároveň |Xj| + |x2| 1. 
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2. kapitola 

01) I) ř: LIT i: li X 0ST K O X V EX X ÍCII 
MXOllOSTfiXU 

2.1. Konvexní mnohostěny 

V tomto odstavci budeme definovat důležitou třídu 
podmnožin prostoru R", které budeme nazývat konvex-
ními mnohostěny. Konvexní mnohostěny budou pro nás 
důležité tím, že pojem konvexního mnohostěnu zobec-
ňuje v jistém smyslu pojem konvexního mnohoúhelníku 
v rovině a zároveň i pojem množiny všech řešení sousta-
vy lineárních nerovnic (popřípadě rovnic). Při výkladu 
budeme postupovat takto: Nejprve uvedeme definici 
konvexního mnohostěnu, potom ukážeme geometrickou 
interpretaci tohoto pojmu a nakonec uvedeme některé 
základní vlastnosti konvexních mnohostěnů potřebné 
v dalším výkladu. 

Soustavou m lineárních nerovnic o n neznámých 
xu x2, .. ., xu (kde m, n jsou přirozená čísla), nazýváme 
soustavu nerovnic tvaru 

«u^i + «12*2 + - . . + alnxn < bl, 
<hlXl + «22^2 + ••• +«2»®» ^ h, (16) 

amlxl + am2X2 + • • • + amuXn ^ ^m > 

kde au, a12, ..., amn, blt b2, . .., bm jsou daná čísla. 



Množinu všech bodů X == (Xj, x.z xn) prostoru Rn, 
jejichž souřadnice vyhovují všem nerovnicím soustavy 
(16) nazýváme konvexním1) mnohostěnem v prostoru R" 
definovaným soustavou (16). 

Konvexním mnohostěnem v prostoru R" je tedy každá 
taková množina K bodů prostoru R", pro kterou existuje 

" taková soustava lineárních nerovnic o n neznámých, že 
množina K představuje množinu všech řešení této sou-
stavy. 

Příklad 1. Prázdná množina je konvexním mnoho-
stěnem v prostoru R", neboť představuje množinu všech 
řešení nerovnice 

O*! + 0x2 + ... + 0xn ^ —1. 

Příklad 2. Prostor R" je konvexním mnohostěnem 
v prostoru R", neboť představuje množinu všech řešení 
soustavy 

0*! + 0x2 + . .. + 0x„ ^ 1. 

Příklad 3. V prostoru R1 jsou konvexními mnohostěny 
pouze tyto množiny: (a) prázdná množina; (b) prostor 
R1; (c) množiny těch bodů X = ( x j prostoru R1, pro 
které platí a ^ xx ^ 6, kde a, b jsou čísla, pro která je 
a 6; (d) množiny těch bodů X = (xx) prostoru R1, pro 
které platí xx ^ b, kde b je jisté číslo; (e) množiny těch 

•) To, že konvexní mnohostěn je konvexní množina, dokážeme 
později; viz věta 2. 

26 



bodů X = (Xj) prostoru R1, pro které platí a < xlt kde 
a je jisté číslo. 

Podejme si hned důkaz tvrzení obsaženého v příkla-
du 3. Je-li K konvexní mnohostěn v prostoru R1, pak K 
představuje množinu všech řešení jisté soustavy nerovnic 
tvaru: 

«11̂ 1 á 61, 
<hiZi á h . (17) 

Může nastat právě jedna z těchto dvou možností: 
1. Soustava (17) nemá řešení. 
2. Soustava (17) má řešení. 

Nastává-li první možnost, dostáváme případ (a). Stačí 
tedy dále vyšetřovat pouze druhou možnost. Nechť je 
tedy množina K neprázdná. Potom nastává právě jedna 
z těchto čtyř vzájemně se vylučujících možností: 

(2a) oix = 0 pro i = 1, 2, . . . , m; 

(2b) existují takové indexy i0, že platí 
> °> ai,i < 

(2c) aa ^ 0 pro i =1,2, .. ., rn a existuje takový index 
i0, že platí oi>x > 0 ; 

(2d) o41, ̂  0 pro i =1 ,2 , . . . , m a existuje takový index 
ť0> že platí aifl < 0. 

Nastává-li případ (2a), musí být ^ 0 pro i = 1, 2, 
. . . , m, neboť podle předpokladu soustava (17) má řeše-
ní. Avšak je-li aa = 0 a ^ 0 pro i =1 ,2 , . . . , m, je 
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řešením soustavy (17) každé reálné číslo; nastává tedy 
případ (b). 

Nastává-li případ (2b), dostáváme případ (c): Nechť 
í0, -ilt . . ., ir jsou všechny indexy, pro které platí a (1 > 
> 0, a i j • 0, . . ., , > 0, a nechť j„, ju . . ., ja jsou 
všechny indexy, pro které platí a,̂  < 0, aht <0 , . . ., 
flj t < 0. 

, h, b, 
Označíme-li písmenem a největší z čísel — , — - , . . ., 
b; , bi bi \ 

—— a písmenem b nejmensx z cisel —--, —'- , . . ., — • 
% i «¡„i ®i,i «¡ri 
je množina K tvořena všemi čísly xlt pro která platí 
a ^ í , ^ b. 

Nastává-li případ (2c) a jsou-li i0, i,, . . ., ir všechny 
indexy, pro které platí a-jtl > 0, rt, j > 0, . . ., airl > 0, 
dospíváme k pří]>adu (d), neboť množina K je tvořena 
všemi čísly .r1( pro která platí xl 6, kde b je nejmenší , K ^ K 

z ciscl - , - , . . ., . 
«/„i «¿1 « v 

Je už zřejmé, jakým způsobem dospějeme k tomu, že 
možnosti (2d) od]>ovídá případ (e). 

Poznámka. Získané výsledky můžěme shrnout také 
takto: Konvexním mnohostěnem v prostoru R1 je buď 
prázdná množina, nebo celý prostor R\ nebo průnik 
konečného počtu uzavřených poloprostorů prostoru Rl 

(uzavřené poloprostory prostoru R' je přirozené nazývat 
uzavřenými polopřímkami). 
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Příklad 4. Vyšetřujme nyní konvexní nnuilxistěiiy 
v prostoru R2. Nechť K je konvexní mnohostěn v prostoru 
R2 daný soustavou nerovnic 

® 11*̂1 "i* — y 
a2lxl + a22x2 ^ b2, (18) 

amlxl + a„,ixi á bm. 

Jestliže v nerovnici ailx1 -f ai2x2 < b{, kde i je jedno 
z čísel 1,2, ...,ra,je alespoň jedno z čísel aiv ai2 různé od 
nuly, pak je touto nerovnicí určen jistý uzavřený polo-
prostor prostoru R2 (v případě prostoru R2 je přirozené 
nazývat tento poloprostor uzavřenou polorovinou). 

Jestliže je a;i = ai2 = 0, pak buď tato nerovnice nemá 
řešení (b; < 0), nebo souřadnice libovolného bodu pro-
storu R2 jsou jejím řešením (64 2: 0). Vzhledem k tomu, 
že řešení soustavy (18) jsou představována těmi body 
prostoru R2, jejichž souřadnice vyhovují všem nerovni-
cím soustavy (18), dostáváme, že konvexní mnohostěn 
v prostoru R2 je buď množina prázdná, nebo celý prostor 
R2, nebo množina, která je průnikem konečně mnoha 
uzavřených polorovin (tento průnik může být také 
prázdnou množinou). Všimněme si ještě, že každý prů-
nik konečného počtu uzavřených polorovin je konvex-
ním mnohostěnem v prostoru R2. 

čtenář už sám nahlédne, že analogická situace nastává 
v případě konvexních mnohostěnů v prostoru R3 (pouze 
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místo o průniku uzavřených polorovin musíme hovořit 
o průniku uzavřených poloprostorů). 

Rovněž v případě konvexního mnohostěnu v prostoru 
R* zadaného soustavou (16) můžeme říci, že K je bud 
prázdná množina, nebo celý prostor (viz příklad 1 a pří-
klad 2), nebo průnik konečného počtu poloprostorů urče-
ných těmi nerovnicemi anxx + ai2x2 + .. . + ainxa sS 
6ť, ve kterých je alespoň jedno z čísel an, ai2 ain 

různé od nuly. 
Konvexní mnohostěny mají jednu důležitou vlast-

nost, kterou uvedeme bez důkazu, ale kterou budeme 
v dalším výkladu často používat. 

Uvažujme zobrazení prostoru R" do prostoru Rm, které 
je definováno tak, že bodu X = (xlt x2 x.n) prostoru 
R* přiřazuje prvek Y — (yu y2, ..., ym) prostoru Rm 

podle předpisu 

ž/l = cllxl + C l ř ^ í + • • • + > 
y2 = c21-t1 + 2̂2̂ 2 + • • • + c2,,xn> (*) 

Um — cm\xl "L Cm2X2 + • • • + cmaXn> 

kde ci;, ¿ = 1,2, . .., m, j = 1, 2, . . . , n jsou daná čísla. 
Zobrazení tvaru (*) se nazývá lineární zobrazení. 

Je-li K konvexní mnohostěn v prostoru R", pak jeho 
obrazem při zobrazení definovaném předpisem (*) je 
jistá množina L bodů prostoru R'n (bod Y = (Í/x, y2, ..., 
ym) prostoru R'" patří do množiny L, existuje-li takový 
bod X = (xlt x2, . .., x„) mnohostěnu K, že pro souřadni-
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ce bodů Y, X platí (*)). Dá se dokázat, že platí tato 
věta: 

Vři a 1. Je-li K konvexní mnohostěn v prostor u R", je 
obraz L množiny K při zobrazení určeném předpisem (*) 
konvexním mnohostěnem v prostoru Rm. 

Na závěr tohoto odstavce dokážeme ještě tuto větu: 

Yřta 2. Konvexní mnohostěn v prostoru R" je konvexní 
množinou. 

Důkaz. Nechť K je konvexní mnohostěn v prostoru R" 
určený soustavou (16) a nechť body Y = (ylt y2, . . ., yn), 
Z = (zv z2, ..., zn) prostoru R" patří do množiny K. 
Podle definice konvexní množiny stačí dokázat, že pro 
každé číslo X, pro které platí 0 X sS 1, patří bod X — 
= XVl + (1— X)zx,Xy2 + (1— X)z2, .'.., Xya + ( 1 — 
— X)zu do množiny K. Stačí tedy dokázat, že platí 

<hi(tyi + (1 — Zi) + «12(^2 + (1 — A) z2) + .. . 
••• +aln(Xy„ + (1— X)zJ 
021(^1 + (1 — X) zx) + fflía^í/a + (1 — X) z2) + . . . 
• •• + + (1 — z») ^ b2, 

«mlCtyl + (1 ~ «1) + «m2(^2 + (1 — A) Z2) + . . . 
• • • + amn{Xyn + (1 — X) zn) á b,M. 

Protože 6t = A64 + (1 — X) 6ť(i = 1, 2, . . . , m), vyplývá 
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platnost poslední soustavy z našich předpokladů náso-
bením každé nerovnice platné soustavy 

an2/i + «122/2 + • • • + amVn ^ V 

°2iž/2 + «22Ž/2 + . . . + a2nyn ^ 62, 

fflmlž/l + ««22/2 + • • • + ž í>m 

číslem 1, každé nerovnice platné soustavy 

a\\z\ + al2z2 + • • • + amzn ^ bi, 
«2121 + «22*2 + • • • + ú2nZn ž 62, 

°/nlzl + a,n2Z2 + • • • + amnZn ^ m̂ 
číslem (1 — A) a sečtením odpovídajících si nerovnic. 

2.2. O d d ř l i l e l n o s t k o n v e x n í c h 
m n o h o s t ě n ů 

Buďte Mj a Mo dvě neprázdné podmnožiny prostoru 
R*. Budeme říkat, že množiny a M2 jsou (vzájemně) 
oddělitelné, jestliže existují taková čísla nlt a2, . .., an, b, 
že alespoň jedno z čísel «!, a2, .. ., an je různé od nuly 
a že pro všechny body X = (xlf x2, . . . , xj množiny Mj 
platí 

a^ + a2x2 + .. . + <inxn > b 

a pro všechny body X = (xu x2, ..., xn) množiny M2 platí 

axXi + a2x2 + ... + anxn < b. 
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U ž i j e m e - l i t e r m i n o l o g i e z a v e d e n é v p ř e d c h o z í k a p i t o l e , 
m ů ž e m e p r á v ě v y s l o v e n o u d e f i n i c i v y j á d ř i t t a k é t a k t o : 
D v ě n e p r á z d n é p o d m n o ž i n y a M 2 p r o s t o r u R " n a z ý v á -
m e o d d ě l i t e l n ý m i m n o ž i n a m i , j e s t l i ž e e x i s t u j e t a k o v á 
n a d r o v i n a p r o s t o r u R", ž e m n o ž i n y Mt a M2 l e ž í v o p a č -
n ý c h o t e v ř e n ý c h p o l o p r o s t o r e c h t o u t o n a d r o v i n o u u r č e -
n ý c h . 

P o d l e d e f i n i c e j e z ř e j m é , ž e o d d ě l i t e l n é m n o ž i n y 
n e m a j í s p o l e č n é b o d y . S n a d n o u k á ž e m e , ž e n e p r á z d n é 
m n o ž i n y , k t e r é n e m a j í s p o l e č n é b o d y , n e m u s í b ý t o d -
d ě l i t e l n é . N e c h ť n a p ř . M1 j e s j e d n o c e n í m m n o ž i n Alt A2, 
Au, A4, k d e m n o ž i n y A2, A3, Ai j s o u d e f i n o v a n ý t a k t o 
( z n á z o r n ě t e s i u v e d e n é m n o ž i n y v r o v i n ě ) : 

( t j . A j j e m n o ž i n a b o d ů , j e j i c h ž s o u ř a d n i c e s p l ň u j í p o d -
m í n k y 0 ^ x, ^ 1 a x2 = 0 ; z p ů s o b z á p i s u A2, A3 a At j e 
z c e l a a n a l o g i c k ý . U v e d e n é h o z p ů s o b u d e f i n i c e m n o ž i n Be 
v m a t e m a t i c e b ě ž n ě p o u ž í v á ) a n e c h ť m n o ž i n a M 2 j e t v o -

j e z ř e j m é , ž e m n o ž i n y M x a M 2 j s o u n e p r á z d n é a n e m a j í 
s p o l e č n é b o d y . P ř i t o m v š a k m n o ž i n y hA1 a M 2 n e j s o u o d -
d ě l i t e l n é , p r o t o ž e k d y b y existovala taková č í s l a a^, a 2 , b, 

Ai = {fai, x2) | 0 ^ x1 ^ 1, x2 = 0}, 
A2 = {(«!, x2)\0^xi^ 1, x2 = 1}, 
4i = {(«i. ! Xi = 0, 0 ^ x2 ^ 1}, 
K = {{xlt x2) I x1 = 1, 0 ^ x2 ^ 1}, 

ř e n a t ě m i t o d v ě m a b o d y : 
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že alespoň jedno z čísel olt o2 je různé od nuly a že pro 
každý bod X = (xlt x2) množiny platí 

a1x1 + a^x2 > b 

a zároveň pro každý bod X = (xlt x2) množiny M2 platí 

dyXi + a2x2 < b, 
muselo by platit 

ai + ®2 >26, 

neboť body (0,1), (1,0) patří do množiny Mt a zároveň 

a1 + a2 < 26, 

, , ( 1 1 W 3 3 ^ 
neboť body I — , — I, I —-, — I patří do množiny M2. 

Pro konvexní mnohostěny však platí tato věta (sr. 
s větou C v předchozí kapitole): 

Yěta 3. Dva neprázdné konvexní mnohostěny v prostoru 
R" jsou oddělitelné právě tehdy, nemají-li společné body. 

Jak jsme se již zmínili, od důkazu této věty upouští-
me, avšak v dalším výkladu si ukážeme některé její 
aplikace. 
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Cvičení 

1. Dokažte, že konvexní mnohostěn v prostoru R" je 
množina buď prázdná, nebo jednobodová, nebo obsahu-
jící nekonečně mnoho bodů. 

2. Znázorněte tyto konvexní mnohostěny v prostoru 
R1: 

a) 3*! g 4, b) —3XJ ^ —4, c) 3^ <T 4, 
2x1 S 10, — 2xx < 10, —2xx < —1, 
3 « ! g 13, — 13, OXi ^ 1, 

—3xx ^ 0, 
5xt ^ 8. 

3. Dokažte, že průnik dvou konvexních mnohostěnů 
v prostoru R" je konvexním mnohostěnem. 

4. Ukažte, že sjednocení dvou konvexních mnohostěnů 
v prostoru R" nemusí být konvexním mnohostěnem 
v prostoru R" . 

5. Znázorněte tyto konvexní mnohostěny v prostoru 
R2: 

a) 0xt + x2 ^ 0; 
b) xx + 0x2 ^ 0, 

0xx + x2 ^ 0; 
e) xx + ®2 ^ 1, 

x2 ^ 1, 
«! — x2 ^ 1. 
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3 . k a p i t o l a 

NĚKTERÁ UŽITÍ YĚTY 
0 OD DĚLITELNOSTI 

3 . 1 . O ř e š i t e l n o s t i s o u s t a v l i n e á r n í c h 
n c r o v n i c 

V 1. k a p i t o l e j s m e v e s p e c i á l n í c h p ř í p a d e c h z j i s t i l i , ž e 
s p o l u se s o u s t a v o u l i n e á r n í c h n e r o v n i c t v a r u 

"n-t'i + a12x2 + ... + alHxa ^ 6X, 
'hiJ'i + «22*2 + ••• + a2llxn < b2, 

(19) 
"ml ''! "i" «,„2*2 + • • • + amnXn < bm 

j e u ž i t e č n é u v a ž o v a t j e š t ě s o u s t a v u l i n e á r n í c h n e r o v n i c 
t v a r u 

!/ian + 2i + • • • + ymami ^ o, 
/ / i « i 2 + y-shí + • • • + ymaMz ^ o . 

(20) 

?/i'ha + y/ii, + • • • + ymamn > o. 

P l a t í t o t i ž t a t o v ě t a ( s r . k o n e c o d s t a v c e 1.1): 

Vola 4. Soustava lineárních nerovnic (19) má nezáporné 
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řešení právě tehdy, plalí-li pro každé nezáporné řešení 
(í/d y2, ..., ym) soustavy (20) nerovnost 

yA + yA + • • • + y,»bm ^ o. 
Důkaz. 1. Předpokládejme, že soustava (10) má nezá-

porné řešeni (xlt x2, ..., xn), a nechť [yv y2, ..., ym) je 
libovolné nezáporné řešení soustavy (20). Za těchto 
předpokladů je zřejmé, že (xlt x2, .. ., x.u) je také řešením 
soustavy 

ž/l(«ll*l + «12*2 + • • • + <hnxn) á yA . 
yÁa2ixi + «22*2 + .. • + a2llx„) <; y2b2, 

(21) 
y,Aa,nlxl + anňx2 + • • • + amnxu) = Vukm 

a tudíž také nerovnice, která vznikne sečtením všech ne-
rovností soustavy (21). Avšak po provedení naznačeného 
násobení čísly ylt y2, .. ., ym a po vytknutí čísel x}, x2, 
. .., xa zjistíme, že tato poslední nerovnice má tvar 

( ž / l « l l + ž/2ffl21 + • • • + y.nflml) X i + 

+ (2/l«12 + y & i l + • • • + Vnf lmi ) X i + 

(22) 

+ (ž/i«m + Vífhn + • • • + ymam„) xn < 

á yA + yA + • • • + yJ>m-

7i tohoto tvaru je patrné, že platí nerovnost 

yA + yA + . . . + ymbm ^ o, 
neboť podle předpokladů na levé straně nerovnice (22) 
jde o součet součinů nezáporných čísel. 



2. Zbývá dokázat, že podmínka věty je postačující 
podmínkou existence nezáporného řešení soustavy (19). 
K tomu však stačí dokázat, že neexistuje-li nezáporné 
řešení soustavy (19), není splněna zmíněná podmínka. 
Předpokládejme tedy, že neexistuje nezáporné řešení 
sousta vjr (19). Označme symbolem Kj množinu těch bodů 
(fu ř2, • • • > £,„) prostoru R"', pro jejichž souřadnice platí 

Dále symbolem K2 označme množinu bodů (f1( f2, .. ., 
£m) prostoru R"', jejichž souřadnice mají tyto vlastnosti: 
existuje takový bod x — (xlt x2, ..., x,„) prostoru R", že 

«11*1 "t" «12*2 + . . . -j- dínxa = 
«21*1 "H «'22*2 • • • ~t~ a2nXn = > 

am\xl + a„,2x2 + • • • 4~ amnXn — Íjh i 
*1 ŽO, 
Xt ^ 0, 

^ 0. 

Jinými slovy: množina K2 je množina bodů prostoru R'" 
tvaru 

(«11*1 "I- • • • «i«*«) «2i*i + . . . + «2»*7D • • • > 
«ml*l 4" • • • 4" amnx,i) > 

kde x1 ^ 0, x2 ^ 0, xlt ^ 0. 
Množiny Kj a K, jsou neprázdné konvexní mnohostěny. 

V případě množiny K, je to zřejmé, v případě množiny K2 
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je to jednoduchý důsledek věty 1. Protože neexistuje ne-
záporné řešení soustavy (19), nemají množiny Kj a K2 

společné body a jsou v důsledku věty 3 oddělitelné. 
Existují tedy taková čísla alt a2, ..., am, b, přičemž 
alespoň jedno z čísel alt a2, ..am je různé od nuly, že 
pro každý bod (f j , fa, . . . , f j množiny K2 je 

®ifi + «2^2 + . • • + < b 

a pro každý bod (ilt í2, . . . , £J množiny K2 je 

« i f i + a2%2 + . .. + a,Jm > b. 

Odtud však plyne, že číslo b je záporné, neboť bod (0,0, 
. . . , 0) patří do množiny K2, takže platí 

fl^O + a20 + ... + am0 > b. 

Dále dokážeme, že čísla au a2, ..., am jsou nezáporná: 
Je-li ait < 0 pro nějaké i0 a položíme-li 

f i = £2 = b2, . . f ^ - i = 6»,-i> = 

fi. = min b,, ! s s 2 
L ai. 

}• 
— ... — ambm 

patří bod (fi, |2> • • •» f,J do množiny Kj (viz zavedení 
množiny Kj), a musí tedy platit 

« i f i + a2Š2 + . . . + amfm < 6. 
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Přímým výpočtem však zjistíme, že platí 

fflifi + a2f2 + . •. + «m fm = 
= « ¡ A + (<*ifi • • • + o<.-I£í.-I + «¿,+ifi.n + • • • + 

+ m) ^ 
^ 6 — aA — . . . — oit_A,_i — ffli.+i^+i — . . . — 

— ambm + 
+ (a^i + . . . + a^bi.-! + ať + . . . + 

+ o, A ) = b, 

takže předpoklad ait < 0 vede ke sporu. 
Dokážeme nyní, že 

l/l = Ol. 2/2 = «2. • • • . ž/m = am 

je takové nezáporné řešení soustavy (20), že platí nerov-
nost 

?/A + Ž/2&2 + •.. + ymK < o, 

tj. že není splněna podmínka věty 4. Poslední nerovnost 
však plyne z toho, že číslo b je záporné a že bod (6lt 

62, . . . , bm) patří do množiny Kj. Zbývá tedy dokázat, že 
(Vit Ví, • • •»Vm) je řešením soustavy (20). 

Předpokládejme, že existuje index j0 tak, že platí 

Vidu, + y^hu + • • • + yma,„u < 0, 

a položme xf = 0 pro j # j0, 

b 

y^u. + y&v, + • • • + y,n«mi. 
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Potom bod ( f l t |2> • • •» fm)> kde 

řl — + . . . + ttiw^Ti > 
+ ... + a2llxn, 

im — ainlxl + «7)12*2 + • • • + amnXn 

patří do množiny K2, takže platí 

¿/Ji + y-th + • • • + y,Jm > b. 

Avšak přímým výpočtem se můžeme přesvědčit, že platí 

yJ i + y-Ji + ••• + y J m = 
= ž / l ( « l l * l + «12*2 + . . . + V » ) + 

+ («21*1 + «22*2 + . • . + «2 »*J + 

+ ž /m(«ml*l + «m2*2 + • • • + ® m A ) = 
b 

= yxaxj 1-
' 2 / i a l j , + Ž/2«2Í, + • • • + y m

a m j , 
b 

+ y&v • 1-
' yiav, + ž/2«2,, + • • • + ymami. 

+ VnAmi, ; ; ; = b. 
Vi nt + y*hi, + . • • + ymami. 

Tento spor nám říká, že index j0 s uvedenou vlastností 
neexistuje, takže (yx, y2, ..., ym) je řešením soustavy (20) 
a důkaz věty 4 je dokončen. 
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D o p o r u č u j e m e č t e n á ř i , a b y se p o k u s i l d o k á z a t j a k o 
c v i č e n í t y t o v ě t y : 

Věta 5. Soustava (19) má řešení (nejedná se tedy pouze 
o nezáporné řešení) právě tehdy, platí-li pro každé nezápor-
né řešení (y1, y2, . . ., ym) soustavy lineárních rovnic 

2/i«u + y-ia2i + • • • + ymumí = 0, 
ž/l«12 + yia22 + • • • + y„fl,n2 = 0 , 

Vî ln + y^hn + • • • + yj'',„n = o 
nerovnost 

yA + y A + ••• + z/,A, ^ o . 

Věta tí. Soustava lineárních rovnic 

aux\ + anx2 + • • • + <*> 
Oj 21̂ 1 + . . . + 

I 
amlxl am2x2 "i~ • • • + amnxn = 

má nezáporné řešení právě tehdy, platí-li pro každé (nikoliv 

jen nezáporné) řešení (yu y2, . • •, ym) soustavy (20) nerov-

nost 

yA + yA + • • • + ymK ^ o. 

Věta 7. Soustava lineárních rovnic 

anxi c,12x2 -)-... + a± Hxn = bl, 
"I- a22x2 

+ ... + 
— 21 amlxl + am2x2 + • • • + amnXn — f>m 



má řešení právě tehdy, jestliže pro každé řešení (ylt y2, .. ., 
ym) soustavy lineárních rovnic 

Vi<hi + ž/s«2i + • • • + y„flml = O, 
ž/i«i2 + ysfhz + • • • + y„pMi = o, 

2/i«i» + y-flzn + • • • + y„,amn = O 
platí 

yA + yA + . . . + y„fim = o. 

3.2. O úlohách lineární optimalizace 

Úlohou lineární optimalizace nazýváme tuto úlohu: 
Mezi nezápornými řešeními {xx, x2 xn) (pokud 
vůbec existují) soustavy lineárních nerovnic tvaru 

«11*1 + «12*2 + • • • + «i„*,t ^ blt 

«21*1 + «22*2 + • • • + «2«*,, á í>2. (23) 
i 

®n»l*l + «7/(2*2 + . . . + «-,„„*» ^ b m 

nalézt takové, pro které nabývá daná funkce n proměn-
ných 

/(* i , *2, • • • , *7í ) — c2x2 + . . . + C„*„ (24) 
kde (Cj, c2, . . . , c„ jsou daná čísla) své největší hodnoty; 
stručně to zapisujeme symbolem 

/(*!, *2, • • •, xn) -> max1). (25) 
') Funkci / nazýváme někdy účelovou funkcí; kromd toho 
i v případě, že hledáme nejmenší hodnotu funkce /, hovoříme 
o úloze optimalizace. 

43 



Pro nezáporná řešení soustavy (23) se vžil název pří-
pustná řešení úlohy lineární optimalizace a pro přípustná 
řešení dávající největší hodnotu funkce (24) se vžil 
název optimální řešení úlohy lineární optimalizace. 

Uvedme na tomto místě alespoň jeden příklad úlohy 
z praxe, která vede na úlohu lineární optimalizace. K vý-
robě různých druhů produkce je potřeba užít jistých 
technologických postupů a určitých surovin a úlohou je 
rozhodnout, jaká množství jednotlivých druhů produkce 
máme vyrobit, abychom při použití daných technolo-
gických postupů nepřekročili dané zásoby potřebných 
surovin a abychom přitom dosáhli co největšího zisku. 

Předpokládejme, že se jedná o n druhů produkce a že 
k výrobě je třeba m druhů surovin. Označme symbolem 
c-j {j \, 2, . . ., n) zisk z výroby každého jednotkového 
množství produkce j-tého druhu a symbolem 6» (i = 1, 
2, . . ., m) zásobu i-té suroviny. Jsou-li technologické 
postupy takové, že k výrobě jednotkového množství 
j-té produkce je potřeba množství a^ ¿-té suroviny, 
a označíme-li xt hledané množství produkce ;-tého dru-
hu, pak 

podmínky nepřekročení zásob jednotlivých surovin 
lze vyjádřit soustavou (23); 
zisk z výroby lze vyjádřit vzorcem (24); 
podmínku ncjvětšího zisku lze vyjádřit podmínkou 
(25). 

Jak jsme už zjistili v l. kapitole, soustava lineárních 
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nerovnic nemusí mít žádné řešení, nemusí tedy existovat 
ani přípustné řešení úlohy lineární optimalizace. Jako 
cvičení by si měl čtenář ukázat, že i v případě, kdy sou-
stava (23) má řešení, nemusí mít nezáporné řešení. 
Ukážeme si, že i v případě, kdy úloha lineární optimali-
zace má přípustné řešení, nemusí mít optimální řešení. 

Můžeme k tomu užít soustavy (2) z 1. kapitoly, tj. 
soustavy 

— ^ 2| 
— xx + 2x2 g — 4, 

jejíž množina řešení je znázorněna na obr. 3, ze kterého 
je patrné, že tato množina není omezená. Je také zřejmé, 
že zvolíme-li pevně hodnotu neznámé xt = x3 tak, že je 
x2 > 0, bude existovat taková hodnota neznámé, x1 = 
= i j , že kromě dvojice čísel ( i j , x2) bude řešením uvažo-
vané soustavy i každá dvojice čísel ( ix, x2), pro kterou 
platí xx > i ] . Odtud však plyne, že bude-li funkce 
f(xj, x2) mít např. tvar 

/(•&i > — -f- x2, 

můžeme vhodnou volbou hodnot proměnných dosáhnout 
toho, aby funkce f(xlt x2) nabývala hodnoty větší než 
jakékoliv předem zadané číslo, a nemůže tedy funkce / 
nabývat na množině přípustných řešení své největíí 
hodnoty. 

Platí však tato věta. 

Věta 8. Existuje-li přípustné řešení úlohy (23), (24), 
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(25) a existuje-li talcové číslo M, že pro všechna přípustná 
řešení (xl,x2, .. ., x J platí 

c^i + c2x2 + • • • + cnxn £ M, 

potom, existuje i optimální řešení. 

Důkaz. Množina všech nezáporných řešení (xx, x2, ..., 

..., xlt) soustavy (23) je konvexním mnohostěnem K 

v prostoru R". Podle věty 1 je množina K všech bodů 
Z — (Zj) prostoru R1, pro které existuje takový bod 
(xlt x2, .. ., xH) mnohostěnu K, že platí 

Zj = c1x1 -)- c2x2 + • • • + cnxn, 

konvexním mnohostěnem v R1. Podle příkladu 3 kapito-
ly 2 je tedy K buď (a) prázdná množina, nebo (b) prostor 
R1, nebo (c) množina bodů ( x j prostoru R1, pro které 
platí a íS Xj 5S b, kde a, b jsou čísla, pro která je a 5S 6 
nebo (d) množina bodů ( x j prostoru R1, pro které platí 
Xj ^ b, kde b je jisté číslo nebo (e) množina bodů (xx) 
prostoru R1, pro které platí a x1; kde a je jisté číslo. 
Protože však podle předpokladu existuje přípustné ře-
šení, nemůže nastat případ (a), protože kromě toho 
existuje číslo M tak, že pro všechny body (z1) množiny K 
platí z1 s£ M, nemohou nastat ani případy (b) a (e). 
Ať už nastává kterýkoliv ze zbývajících případů, opti-
mální řešení existuje; je jím každé řešení (xlt x2, ..., x„), 
pro které platí 

cxxx + Cjx2 + ... + cnxn = b, 
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a takové řešení existuje, neboť funkce 

/(xj, x2, . . . , x j = CjXx 4- c2x2 -)- . . . 4~ c„xn 

zobrazuje množinu K na množinu K. 

Výhodné je studovat spolu s úlohou (23), (24), (25) 
i tuto úlohu: Mezi nezápornými řešeními (yi,y2, ..., ym) 
soustavy lineárních nerovnic 

Vidu + V2a2i + . . . 4- i / A 1 ̂  Ci, 
Viaiz 4- y2a22 4- . . . 4- V,„am2 ž c2, (23') 

VlO-ln + y-2a2n + • • • + V„flmrí ^ C, 

nalézt takové, pro které nabývá funkce m proměnných 
Vl y 1 • • • I Vm 

g(y1, Vi, •••, y j = \yi 4- b&t 4- . . . 4- b^ym, (24') 
své nejmenší hodnoty; stručně píšeme 

giyi.Vi y j - > m i n . (25') 
Úlohu (23'), (24'), (25') nazýváme úlohou duálni k úlo-

ze (23), (24), (25). 
Všimněme si toho, že obě úlohy jsou zadány systé-

mem čísel 
®111 al2) • • • > ®1»> > 
®211 ®22 > • • • > ®2»> , 

i 
aml i ®m2 > • • • > ®imi 6»i> 
CJ, C2, . . C„, 

a toho, že duální úloha je úlohou lineární optimalizace 
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Btejného typu jako úloha (23), (24), (25), neboť soustavu 
(23') můžeme převést na soustavu 

— ®n2/i — °2iy-i — ••• — amlym ^ — cx, 
— °i2Ž/i — «222/2 — ... — amiym ^ — c2, 

— ®i„2/i — «2,,2/2 — . . . — «m„2/m ^ — c„ 
a podmínku (25') na tvar 

— g(xlt x2, ..., xn) ->- max. 
Kromě toho čtenář snadno nahlédne, že vytvoříme-li 
k duální úloze úlohu duální, dostaneme úlohu původní; 
proto často hovoříme o dvojici vzájemné duálních úloh. 

Yěta 9. Je-li (xx, x2, . . ., xn) přípustné řešení úlohy 
(23), (24), (25) a je-li (ylty2, ...,ym) přípustné řešeni 
duální úlohy, pak platí nerovnost 

CjX, + C2x2 + • • • + Cnxn ^ biyl + 622/2 + • • • + 

+ Kym-
Důkaz. Užijeme-li postupně nerovností (23') a (23) 

a nezápornosti přípustných řešení, dostaneme 
C& + c&2 +... + ... + cHx% ^ 
^ (2/i°n + 2/2̂21 + • • • + ymami)xy. + 
+ (ž/i«i2 + y*hz + • • • + yma>„ň)x2 + 

+ (ž/i«i» + ž/2®2, + • • 4" ymamn)xn — 
= Ž/1K1X1 + OjgXg + . • + Ol«*«) + 
+ 2/2 («21̂ 1 + 022*2 "i" • • + «2**») + 

+ ž/mí®™ !̂ + «m2*2 • • + «mA ) á 
á yA + yA + • • • + yj>m-
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Vři a 10. Přípustná řešení x2, ..., £,,), (yx, ý2 

• • •> i/m) vzájemně duálních úloh (23) — (25) a (23') — 
(25'), pro která platí 

cÁ + c2x2 + ... + cnxn = + + ... + 

jsou optimální. 

Důkaz. Ukážeme např., že (xlt x2, . .., xn) je optimální 
řešení úlohy (23) — (25); to, že (y lt y2 ym) je opti-
mální řešení úlohy (23') — (25'), si čtenář zcela analogic-
ky dokáže sám. Máme dokázat, že pro libovolné přípust-
né řešení , x2, ..., xn) úlohy (23) — (25) platí nerov-
nost 

Ci*i + c2x2 + ... + cnxn ^ c^i + c2x2 + ... + cnxn. 

Avšak podle věty 9 platí 

<Vi + c2x2+ ... + v , g b^ji + b2y2 + ... + bmym 

a podle předpokladu věty 10 platí 

&jž/i + b2y2 + . . . + b,nVm — clxl + c2a;2 + • • • + cnxif 

Vři a 11. Existují-li přípustná řešení vzájemní duálních 
úloh (23) — (25) o (23') — (25'), pak existují i optimální 
řešení těchto úloh, a je-li (xltx2, ..., xn) optimální řešení 
úlohy (23) — (25) a(ylty2, ..., ym) optimální řešení úlohy 
(23') — (25'), pak platí 

C1X1 + C2X2 + . . . + c nxn = &1Ž/1 + + • • • + ¿mj/m-

Důkaz. Je zřejmé, že stačí dokázat existenci tátových 

49 



nezáporných řešení {xít x2, . .., x„), (yL, y2, ..., yní) sou-
stav 

+ «12*2 + • • • + alnxn ^ bl, 
«21*1 4~ «22*2 4" • • • «2«*» = , 

«ml*l 4" «,»2*2 4- . . . 4" amnxn — bm> 

« l l ž / l — «21Ž/2 — • • • «» l2 /m á C j , 

«12Ž/l «22Ž/2 • • • «m2Ž/m = C2, 

«l«2/l «2/íž/2 • • • amnVm — Cn> 
že platí 

(26) 

(27) 

biVi 4" KVi 4- • • • 4-
+ c,*,. (28) 

Protože však pro každé přípustné řešení platí podle věty 
9 nerovnost 

&i2/i 4- b2y2 + ... + 

bmVm — 1̂*1 4" ̂ 2*2 4" • • • 4" 

stačí místo (28) požadovat splnění podmínky 
4- b2y2 + ... + 

bMym =L ci*i 4- c2x2 + . .. -f- cnxn, 

a ta je ekvivalentní s podmínkou 
biVi + b2y2+ ... + bmym — — c2x2 — ... — 

— cnxn ^ 0. (29) 
Máme tedy dokázat, že soustava ffl + » + l nerovnic 
(26), (27), (29) o m n neznámých xltx2, ...,xn,ylt 

Vi> • • • > Vm nezáporné řešení. 
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Předpokládejme, že tato soustava nemá nezáporné 
řešení, potom podle věty 4 existují taková nezáporná 
čísla f x . f i , . . . , f,„, í?x> >72. • • •. V„> ž e P l a t í 

«11 fl + «21 f 2 + 
«12 f l "I" «22 f2 + 

+ «»ifm — CxA < 0, 
+ «m2fm — C2A ž 0, 

« l » f l + «2mf2 + 
— «ll»7l «12*72 — 

a2lVl «22^2 

• + am«£m — c j ž 0, (30) 
— «i»»?» + M ž o , 
— (hnila + M ^ 0, 

— «mlVí — ««¿2̂ 2 — . . . — «„,„*?„ + 6mA ž 0, 

a zároveň 

M i + + • • • + K fm — Cx̂ x — c2?y2 — 
— . . . — c„J7,( < 0. 

(31) 

Ukážeme nejdříve, že nemůže být X = 0. Je-li totiž 
A = 0, dostaneme, na základě (30), soustavu nerovnic 

« l l f l + «21 f 2 + 
«12 fl ~t" «22 f 2 + 

+ amxfm S; 0 
+ «m2fm ž 0 

«l7.fl + «2af 2 + 
— «ll*h «12»?2 — 

«21̂ 1 «22% 

+ am»f.n ^ 0 

— «2^» ž 0 

(32a) 

(32b) 

— «mi^i — OmiVi — . . . — amnrjlt ^ 0. 

Podle předpokladu věty existuje přípustné řešení (xl, x2, 
.. ., xj úlohy (23)—(25) a přípustné řešení {y1, y2, ..., 
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ym) úlohy (23')—(25'). Vynásobíme-li /-tou nerovnici 
soustavy (32a) číslem xt a vzniklé nerovnice sečteme, 
dostaneme 

0 g *i(«nfi + «21 f2 + • • • + amiD + 
+ *2(«12Íl + «22̂ 2 + • • • + «m2fm) + 

+ *»(«i»fi + a2»f'2 + • • • + «,„,,£„,) = 
= + «12*2 + • • • + Ol»®») + 
+ £2(«21*1 + «22*2 + • • • + «2 A ) + 

+ f m ( « m l * l + «,„2*2 + . • • + « m „ * J á 
^ + f262 + .. . + Šmbm-

Vynásobíme-li ¿-tou nerovnici soustavy (32b) číslem y{ 

a vzniklé nerovnice sečteme, dostaneme obdobně 
0 S ?/l(—«11̂ 1 — «12% — . . . — «!„»? J + 

+ ž/2( «21»?! «22% — . . . — «2 ,,»?„) + 

+ « m l * h «fti2??2 • • — < W 7 » ) = 

= Vi ( — « u ž / l — «2lž/ l — • • — « , « l 2 / J + 

+ % ( «12Ž/1 — «22?/- — • • — «m2 Um) + 

+ ( — « i » ž / i «28Ž/2 • • «m**/™) ^ 

^ —»?1C1 — %C2 — . . . — í?aCw. 

Sečtením takto získaných dvou nerovnic dostaneme ne-
rovnici 

B J L + ^2^2 + • • • + C ^ ! C2?72 . . . 

— curjn ž 0, 
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která je ve sporu s nerovnicí (31); musí tedy být A > 0. 
Potom však můžeme každou nerovnici soustavy (30) 
dělit číslem A a získat tak soustavu 

«11 
Í1 
A 

+ «21 
Í2 
A 

+ .. • + «™i 
In 
A 

«12 
f i 
A 

+ «22 
f . 
A 

+ • + «,„2 
í -
A 

«1» 
l i 
7 + «2» 

f . 
J + •• • • + amn 

„ Vi , n Vt , 
®n -y + ® « + . blt 

Vi % a21 —— + a22 ——|- • + a2tt -y- ^ b2, 

Vi % Vn 
+ «m2 ̂ T + . . . + amn ~T~ — 

To však znamená, že I — , --—, . . . , —-M je přípustné 
( / / / J 

řešení úlohy (23)—(25) a že í - ^ - , , . . . , - A - 1 je pří-
V, " A / j 
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pustné řešení úlohy duální, tj. úlohy (23')—(25'). Pak 
ovšem podle věty 9 musí platit nerovnost 

, i , ^ u ^ l A ^ I 
1 T T " ' ' T 1 T 8 T " ' 

Násobíme-li poslední nerovnost číslem A, dostaneme ne-
rovnost 

CiVi + c2»?2 + • • • + cnt]n b^ + &2f2 + ... + bmim, 

která je ve sporu s nerovnicí (31). Odtud však plyne, že 
předpoklad o tom, že soustava nerovnic (26), (27), (29) 
nemá nezáporné řešení, je nesprávný, čímž je věta do-
kázána. 

Věta 11 umožňuje dokázat snadno tuto větu: 

YPla 12. Přípustná řešení {xl,x2, ..., x„), (yt, y2, ..., 
ym) vzájemně duálních úloh (23)—(25), (23')—(25') jsou 
optimálními právé tehdy, jestliže jsou splněny tyto pod-
mínky: 

je-li Xj > 0, je + a2)y2 + . .. + amiym = c,-; 
je-li yi > 0, je aAxx + ai2x2 + ... + ainxn = b{. 

Důkaz. Při důkazu věty 9 jsme ukázali, že platí ne-
rovnice 

54 



Ci*! + + ... + cnxn =s 

á (ž/l«ll + Ž/2O2I + • • • + y„flm 1) *1 + 
+ (ž/l«12 + ž/2«22 + • • • + ymam2) *2 + 

+ (2/l«l» + 2/2«2« + • • • + 2/m®«.«) * » = 
= 2/l («11*! + «12*2 + • • • + «!»*„) + 
+ 2/2 («21*1 + «22*2 + • • • + «2»*«) + 

+ '¿/mí«,,, 1*1 + «„,2*2 + • • • + «,„»*») Í5 
ž &1Ž/1 + 622/2 + • • • + ¿m2/„r 

Přitom však podle vět 10 a 11 jsou přípustná řešení ( x l t 

* 2 . * , ) , (2/1. 2/2. ••• . 2/m) optimální právě tehdy, 
platí-li 

= &1Ž/1 + b2y2 + ... + bmym, 

tj; právě tehdy, platí-li 

[Cl — (2/l«H + 2/2«21 + • • • + ž/m«/«l)] *1 + 
+ [C2 — (ž/l«12 + 2/2«22 + . . . + 2/™«m2)] «2 + 

+ [C„— (2/l«l» + 2/2«2» + • • • + 2/m®,>„.)]*„ = 0 
a 

[6i — («n^i + a12x2 + ... + alnx j ] yx + 

+ [62 — («21*1 + «22*2 + • • • + «2«**) ] 2/2 + 

+ [ & « — («mi*i + «„2*2 + • • • +am«xn)]ym = 0. 

Protože každý ze sčítanců na levé straně první rovnosti 
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je nekladný a každý ze sčítanců na levé straně druhé 
rovnosti je nezáporný, musí být pro j = 1, 2, . . n 

[c, — ( y ^ + tj./i2j + . . . + ymami)] x, = 0 

a pro ¿ = 1,2, . . . , to 

[b, — (a^ + ai2x2 + ... + auxn)] yi = 0. 

Odtud už snadno plyne tvrzení věty. 

Fř ík lad 5. Vyšetřujme tyto vzájemně duální úlohy: 

xx + 3X2 + xt ^ 4, 
2xx + x2 ^ 3 , (33) 

xx ž o, x2 ^ 0, x3 ^ 0, x4 ^ 0, 

j{x1,xi, x3,xi) = 2xx + 4x2 + x3 + xt ->• max. (34) 

y, + 2Vi ^ 2, 

3̂ 1 + Vt + y3 ^ 4, 
4ya ^ 1, (33') 

2/i + 2/a ž 1, 

ž/i ^ 0, y2 ^ 0, ^ 0, 

. 2/2. ž/s) = 4t/i + 3y2 + 3y3 -> min. (34') 

Snadno se lze přesvědčit, že |l, 1, — , o j je přípustné 

řešení úlohy (33), (34). Věty 10 a 12 umožňují rozhod-

nout, zda toto řešení je optimální. Je-li |l, 1, — , o j 
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optimální, musí podle věty 12 platit pro libovolné opti-
mální řešení (ylt yit y3) úlohy (33'), (34') 

yx + 2 y2 = 2, 

+ VÍ + 2/3=4, 
42/3 = 1. 

Snadno se lze přesvědčit, že tato soustava lineárních rov-

• - • - • - i • 11 9 1 

nic ma íedine řešení, a to y. — , y, = , y, = — . 

j 10 20 4 

Avšak snadno zjistíme, že pro přípustná řešení |l, 1, 

T ' ° ) ' ("15"' ' T ) ň l o h ( 3 3 ) ' ( 3 4 ) a ( 3 3 ' } ( 3 4 , ) p l a t í 

13 
+ 4X2 + x3 + xt = — = 4 + 3y2 + 3 y3, 

takže podle věty 10 jsou tato přípustná řešení i opti-
mální. 

3.3. O prahových funkcích 

V tomto odstavci uvedeme jednu aplikaci pojmů 
z teorie lineárních nerovnic a pojmu oddělitelnosti mno-
žin, přičemž tato aplikace se vztahuje k teoretické 
i k technické kybernetice. 

Představme si následující situaci. Určitá skupina se-
stávající z n osob se sešla proto, aby rozhodla hlasová-
ním o přijetí nějakého návrhu. Předpokládáme kvůli 
jednoduchosti, že se nikdo nemůže zdržet hlasování, tedy 
každý musí hlasovat buď pro návrh, nebo proti němu. 
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Přitom hlasy jednotlivých účastníků mohou mít různou 
„váhu" (např. v závislosti na autoritě, kterou mají podle 
své odborné způsobilosti, nebo v závislosti na mocen-
ském postavení, které zaujímají v uvažované skupině). 
Dále budeme předpokládat, že hlasující osoby jsou očís-
lovány v nějakém pevně zvoleném pořadí a že váhu 
/-tého člena lze vyjádřit nezáporným číslem At. Jeden 
z používaných způsobů pro zhodnocení výsledku pro-
vedeného hlasování spočívá v následujícím: Jestliže 
j-tý člen skupiny (s vahou hlasu At) hlasuje pro návrh, 
představujeme si, že jeho příspěvek pro přijetí návrhu 
je Af; v opačném případě pokládáme jeho příspěvek pro 
přijetí návrhu za nulový. Po skončeném hlasování se-
čteme příspěvky jednotlivých členů a získaný součet 
porovnáme s jistou hodnotou B, kterou považujeme za 
„celkový počet hlasů", jenž je nutný a postačující pro 
přijetí daného návrhu. Jestliže součet příspěvků (hlasů) 
jednotlivých členů není menší než B, považujeme návrh 
za přijatý, v opačném případě konstatujeme, že návrh 
přijat nebyl.1) 

Není těžké si rozmyslet, že lze tuto situaci popsat za-
vedením jisté funkce f n proměnných xx, x2, . . . , xn, 
přičemž každá proměnná Xj nabývá pouze dvou hodnot 

Speciálně v případě At = A2 = ... = An můžeme mluvit 
o „demokratickém" hlasování. Na druhé straně, situaci, kdy 
některý ze ělenů skupiny by chtěl prosazovat svůj názor na-
mířeným samopalem, bychom naším lineárním modelem ne-
popsali. 
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O a 1. Přitom položíme x, = 1 v tom případě, jestliže 
j-tá osoba hlasuje pro návrh a x, = 0 jestliže j-tá osoba 
hlasuje proti návrhu. Funkce /(x1; x2 x j může na-
bývat dvou hodnot, a sice hodnoty 1, jestliže návrh byl 
přijat, a hodnoty 0, jestliže návrh přijat nebyl. Z toho, 
čo bylo řečeno, je patrné, že funkce f(xl, x2, .. ., x j je 
definována tímto předpisem: 

/(fi. f . f . ) = 1, jestliže + . . . + AJ„ ž B 

a 

/(fi, ft, • • f „ ) = 0. jestliže + . . . + AJn < B. 

Přiklad 6. Položíme n = 4, At = 1, A2 = 2, A3 = 3, 
i , = 4 a í = 3. Funkce /(x1( x2, x3, x4) je definována 
předpisem: 

/(fi. f i , f i . f<) = 1, jestliže £ + 2f, + 3f, + 4f« ^ 3 
/lii, f., f.) = 0, jestliže f , + 2f, + 3f, + 4f4 < 3.* } 

Sestrojíme nyní tabulku hodnot této funkce. 

f l , f., f l . f l / ( f i , f i , f . , f < ) f l , f., f., I4 /(fl, f., f3, f<) 
0 0 0 0 0 1 0 0 0 0 
0 0 0 1 1 1 0 0 1 1 
0 0 1 0 1 1 0 1 0 1 
0 0 1 1 1 1 0 1 1 1 
0 1 0 0 0 1 1 0 0 1 
0 1 0 1 1 1 1 0 1 1 
0 1 1 0 1 1 1 1 0 1 
0 1 1 1 1 1 1 1 1 1 
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Popíšeme konstrukci tabulky. V levém sloupci jsou 
zapsány všechny uspořádané čtveřice f2, £3. &)> kde 
tj = 0 nebo f, = 1 pro j — 1, 2, 3 a 4. Snadno zjistíme, 
že počet těchto čtveřic je 24 = 16. (Každé nabývá 
dvou hodnot, a tedy celkový počet čtveřic je 2 x 2 x 
X 2 x 2 = 24.) Celkový počet čtveřic v naší tabulce je 
16, přičemž žádná čtveřice se nevyskytuje dvakrát. Z to-
ho tedy vyplývá, že v tabulce se vyskytují všechny 
čtveřice, každá právě jednou. Na pořadí, ve kterém vy-
pisujeme čtveřice, sice nezáleží (pokud ovšem odpovída-
jícím způsobem uspořádáme hodnoty funkce), pozna-
menejme však pro úplnost, že při konstrukci tabulky 
jsme použili tzv. lexikografického uspořádání. Lexiko-
graíické uspořádání je v našem případě definováno tak-
to: Nechť ( f l f £2. £3. £1) a (rltr2, r3, r4) jsou dvě libo-
volné čtveřice z nul a jedniček, čtveřice (£,, f2, f3 , £,) 
je před čtveřicí (rlt r2, r3, r4), jestliže nastává alespoň 
jeden z těchto případů: 

1 • í i = OJ Ti = 1 (ostatní a mohou být libovolná), 
2- f i = Ti. = t2 '= 1 (fa. Í4. T3 a t4 mohou být libo-

volná), 
3. = Tj, f2 = T2, f3 = 0, T3 — 1 (f4 a r4 mohou být 

libovolná) nebo 
4. LI = TLT F, = r2, f , = T,. F4 = 0 a r4 = 1. 

Čtenář snadno ověří, že pořádí čtveřic v tabulce sku-
tečně odpovídá lexikografickému uspořádání 1—4. 

Při konstrukci lexikograficky uspořádané posloupnosti 
čtveřic lze použít následujícího mechanického postupu: 
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Každé čtveřici f = , f2 , f3 , f4 ) přiřadíme ohodnocení 

«'(|) + fs.2* + f3.2 l -f f4.2" 

a čtvcrico uspořádáme vzestupně podle rostoucích w(£). 

Po této krátké exkurzi do čistě kombinatorických otá-
zek sc vrátíme k funkci f(x¡, x2, x.j, x4). Funkce f(xlt x2, 
xa, x i ) je definována vztahy (*) a její hodnoty lze přečíst 
z tabulky. Ze vztahů (*) nebo z tabulky se lze přesvědčit 
o tom, že v uvažovaném příkladě je návrh přijat při 
všech možných hlasováních s výjimkou těchto tří pří-
padů : 

1. Nikdo nehlasuje pro návrh; 2. pro návrh hlasuje 
pouze první účastník; 3. pro návrh hlasuje pouze druhý 
účastník. Idealizovaná situace s hlasováním nás přivádí 
k pojmu tzv. prahové funkce. Zatím jsme předpokládali, 
že čísla Alt A2, . . . , A„ jsou nezáporná; tento předpo-
klad souvisel s konkrétní povahou naší „hlasovací" 
situace. Obecně však tento předpoklad nemá opodstat-
nění, neboť prahové funkce se vyskytují i v jiných apli-
kacích matematiky, jako např. v neurofyziologii, v sla-
boproudé elektrotechnice, při konstrukci počítačů, v psy-
chologii, sociologii, toxikologii, teorii baletu aj. 

Definice. Prahovou funkcí n proměnných budeme rozu-
mět funkci f(x1,x2, ...,xn) definovanou na množině 
všech uspořádaných n-tic z jedniček a nul a zobrazující 
tuto množinu do množiny {0, 1}, přičemž musí být splně-
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na tato podmínka: Existují reálná čísla A1, . . A„ a B 

tak, že platí: 

Čísla Alt ..., An se nazývají vahami a číslo B prahem. 

Z definice prahové funkce je patrné, že je to funkce 
dosti speciální struktury. V matematické logice a jejích 
aplikacích se definují tzv. logické funkce. Uvedeme tuto 
definici. 

Definice. Logickou funkcí n proměnných (označení 
F(xx x,), budeme rozumět zobrazení množiny 
všech uspořádaných w-tic z nul a jedniček do množiny 

Poznámka. Termín logická funkce pochází od toho, že 
proměnné x,- i hodnotu funkce F(x1, ..., xn) lze interpre-
tovat jako logické výroky; přitom 1 interpretujeme jako 
pravdivý výrok „ano" a 0 jako nepravdivý výrok „ne". 
K ilustraci pojmu logické funkce viz cvičení 8 na konci 
kapitoly. Srovnáním obou dvou definic dostáváme tuto 
zřejmou větu: 

Vři a 13. Každá prahová f unkce je logickou funkcí. 

Obrácené tvrzení však neplatí, jak vyplývá z následu-
jícího příkladu. 

1, jestliže A + . . . + A Jlt ^ B, 

0, jestliže AJ, + . . . + A j n < B. 

(35) 

{0, 1}. 
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Příklad 7. Mějme logickou funkci (p(x1, x2, x3), defino-
vanou takto:9>(0, 0, 0) = y ( l , 1,1) = 1, <p(£it f2> f3) = 0, 
jestliže S„ ís) # (0, 0, 0) a ( f l f £t, f3 ) ^ (1, 1, 1). 
Dokážeme, že funkce <p{xltx2, x3) není prahová, tj. že 
neexistují ěísla Alt A2, A3 a B tak, aby platilo 

(t t e \ í 1, j e s t l i ž e ^ á ^ j + A2£2 + AJ3 ^ B, 
^ ' ' ™ | o , jestliže AJt + AJ2 + AJ3 < B. 

Důkaz provedeme sporem. Kdyby totiž taková ěísla 
existovala, musela by splňovat nerovnosti 

Ax+ A2+ A3^B, {q> (1, 1, 1) = 1), 
0 ^B, (<p (0, 0, 0) = 1), 

—A, > — B , fo (1,0,0) = 0), 
— A2 >—B, (<p (0, 1, 0) = 0), 

- A 3 > - B , (<p (0, 0, 1) = 0). 

Nyní druhou nerovnost vynásobíme dvěma a všechny 
nerovnosti takto vzniklého systému sečteme. Tím do-
stáváme nerovnost 0 > 0, která však znamená spor. 

Z příkladu 7 tedy vyplývá, že ne každá logická funkce 
je prahová. Na druhé straně, jestliže nějaká logická 
funkce f(xx, ..., xn) je prahová, nejsou koeficienty a pra-
vá strana ve vztazích (35) určeny jednoznačně. Ukážeme 
si tuto skutečnost na prahové funkci tří proměnných 
v následujícím příkladu. Důkaz v obecném případě si 
čtenář lehce provede samostatně. 
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Příklad 8. Vyšetřujme prahovou funkci tří proměn-
ných y>(x1, x2, xa) definovanou takto: 

Není těžké ověřit, že funkce xp{xí, x2, x3) je definována též 
např. takto: 

Poslední dva příklady nás přivádějí k myšlence, že jedna 
z nejdůležitějších otázek, který vznikají v teorii praho-
vých funkcí, je následující: Je dána logická funkce F 
n proměnných. Máme rozhodnout, zda tato funkce je 
prahová, a v kladném případě nalézt alespoň jedno vy-
jádření ve tvaru (35). Tato otázka je v celé své šíři znač-
ně složitá a lze říci, že doposud nebyla ani zdaleka uspo-
kojivě dořešena. V našem výkladu se omezíme na to, 
že ukážeme, jak poslední otázka souvisí s pojmem oddě-
litelnosti, a jako důsledek vyslovíme jedno kritérium. 
Logická funkce je podle definice definována na množině 
všech uspořádaných w-tic ( f j , f2 , • • •> f»)> kde f, = 0 
nebo f, = 1 pro j — 1 , 2 , .. ., n. Každá taková n-tice 
je bodem n-rozměrného prostoru Ra. Všecky tyto body 
tvoří jistou konečnou množinu v R". Označme poslední 
množinu symbolem B"'). Označme dále symbolem 

') Množina fl™ jo množinou vrcholů n-rozměrné jednotkové 
krychle (viz [1] str. 69—70). 

> > — 
1, jestliže fx + f , + f , ^ 2, 
0, jestliže f j + £2 + f , < 2 . 

1, jestliže lOft + i u 2 + 12f3 ^ 20, 
0, jestliže lOfi + l l f 2 + 12£3 <20. 
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F 1(0) množinu všecli bodů ( f i , .. ., f j z B", pro něž 
platí = 0, a symbolem F - I ( l ) množinu 
všech bodů ( f t , f2 , . . . , f J, pro něž platí . . . , f J = 
= 1, tj. symbolicky (tohoto typu symboliky bylo už 
použito v odst. 2.2): 

F_ ,(0) = { ( f i , . . . , f . ) e B J J í f , f . ) - 0 } 
F-'(l) ^ { ( f x , . . . , f j e B.IF& f . ) = 1}. 

(Množiny F~1(0) resp. F _ 1 ( l ) se obvykle nazývají vzory 0, 
resp. 1 při zobrazení pomocí funkce F.) 

Nyní je jasné, že zadáním funkce F{x1, ..., x„) jsou 
jednoznačně určeny množiny F_1(0) a F _1 (l ), a obráceně, 
ze znalosti množin F_ I(0) a F _ 1 ( l ) lze jednoznačně určit 
funkci F. (K určení funkce F stačí ovšem znát jednu 
z množin F~'(0) nebo F - 1 ( l ) ) . 

Předpokládejme nyní, že F(x1, ..., x j je prahová 
funkce, a nechť platí 

F({x, . . ., ÍJ = 1, jestliže AJ, + . . . + AJN > B, 

F(Š!, . . . , f„) = 0, jestliže A& + . . . + < B. 

(35) 

Poslední vztahy lze přepsat ekvivalentním způsobem 
takto: 

( f i , . . •, f . ) 6 M l ) , jestliže A& + ... AJH ^ B, 
( f i f.) e F_1(0), jestliže + . . . + ¿„£„ < B. 

(35') 
Tím je však dokázána následující 
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Věla 14. Funkce F (xlt . . . , x„) je prahová právě tehdy, 
jestliže nastává alespoň jeden z těchto dvou případu: 
a) alespoň jedna z množin F_1(0) a F - 1 ( l ) je prázdná, 
b) množiny F_1(0) a F _ 1 ( l ) jsou neprázdné a oddělitelné. 

Abychom mohli vyslovit zajímavější kritérium pro to, 
že funkce F je prahová, zavedeme pojem konvexního 
obalu konečné množiny bodů prostoru R". V dalším 
textu používáme často pro součet ax + a2 + ... + aT 

r 

symbolického zápisu ^ a .̂ 
i 

Definice. Nechť A je konečná neprázdná množina 
bodů prostoru R®. Nechť množina A obsahuje body 

(«i1', ~ ( 1 ) 
• • » xn 1' 

« • TtZ)) 
• • > )> 

x f , . 

Konvexním obalem množiny A (označení K(A)) budeme 
rozumět množinu definovanou takto: K(A) obsahuje 
každý takový bod (xx x j e R", pro který existuje 
&-tice čísel X2, . . . , Xk tak, že l x ^ 0 (x =1,2, ..., k), 

k k 
Xj = KXT P r o 7 = 1. 2, . . n a ^ = 1 . 

Příklad 8. Nechť body (x^yj, (x2, y2), ... (xk, yk) jsou 
vrcholy konvexního mnohoúhelníka M. Položme P = 
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= , Ví), (x2,y2), ..., y,)}, takže P je jistá konečná 
množina. Snadno lze ukázat, že platí 

K(P) = M . 
Dále platí zřejmé 

Lemma. Platí K(A) D A. 

Důkaz přenecháváme čtenáři. (Návod: Položte A1 = 
= 0, . . . , A ^ = 0, Ax = 1, = 0 . • • h = 0 po-
stupně pro x = 1 , 2 , . . . , k). 

V í t a 15. Konvexní obal K(A) je konvexním mnohostěnem 
v Rn. 

Důkaz. Uvažujme množinu S těch bodů (A l t . . . , A A . ) 6 
e Rk, pro jejichž souřadnice platí Ax ^ 0 (x = 1, 2, 

k 
. . . , a ^ Ax = 1. S je zřejmě konvexním mnohostě-

X=1 
nem v Rk. 

Zobrazení definované vzorci 

x,. = £ A^* > 
X=1 

je lineární zobrazení Rk do R\ které zobrazuje S na K(A). 

K zakončení důkazu nyní zbývá použít věty 1. 

Nyní jsme schopni zformulovat a dokázat větu: 

Věta 16. Logická funkce F(xlt ..., x„) je prahovou 
funkcí právě tehdy, jestliže je splněna následující podmín-
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ka: Bud platí F '(0) == 0, nebo F '(1) — 0, nebo množiny 
F~'(0) a F '(1) jsou obS neprázdné a, platí 

K(F->(0)) n K(F"'(1)) - 0 . (30) 

Důkaz. A. Postačitelnost podmínky. Nechť je splněna 
podmínka věty. Rozlišíme tyto dvě možnosti: 
1. Platí buď F~'(0) - 0, nebo F"J(I) - 0. V tomto 
případě je funkce F prahová na základě věty 14. 
2. Platí F_1(0) j 0 a F-'(l) ^ 0, a tedy též vtah (35'). 
Konvexní mnohostěny K(F_1(0)), a K(F~](1)) jsou tedy 
na základě věty 3 oddělitelné, tj. existují čísla Al, A2, 
.. ., An a B tak, že platí: 

+ . . . + A J „ < 5 pro ( ^ . . . . ¿ J e K(F-'(0)) 
A& + ... +A^„ ^BVvo(£l,...,i;,l)eK(F-i(\)){ ' 

Jestliže si však uvědomíme, že platí (viz lemma) 
K(F-1(0)) =5 F-'(0) a K(F_1(1)) Z> F^ l ) , přicházíme k zá-
věru, že množiny F_1(0) a F~'(]) jsou také oddělitelné, 
což bylo třeba dokázat. 

B. Nutnost podmínky. Nechť funkce F je prahová, tj. 
nechť existují čísla A1 A„ a B tak, že platí vztahy 
(35). Jestliže jedna z množin F_1(0) nebo F_1(l) je prázd-
ná, není už co dokazovat. Předpokládejme tedy, že 
platí F"'(°) ^ 0 a F ] ( I ) -j 0. Dokážeme, že platí ne-
rovnice (37), čímž bude důkaz dokončen. Dokážeme, že 
platí první ze vztahů (37). Druhý se dokáže zcela ana-
logicky. Nechť množina F~'(l) obsahuje body 

(vi!) ->.Oh (,•<•») ÍT-(AI flk<\ , . . . , j . u ), . . . , , . . . , ), . . . , , . . . , ). 
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Podle předpokladu platí 

(38) 

pro x = 1, 2, . . ., k. Budiž nyní (xít . .., xn) e K(F~J( 1)). 
Z nerovností (38) dostáváme 

k 

AlXl + ... + Anxn = W + • • • + 

+ At 2 W = Ž UAi*[K) + • • • + ž 
X=1 X=1 

>2KB = B 2K = B, 
x=l x=l 

což bylo třeba dokázat. 

Z podaného důkazu však vyplývá následující věta, 
která má daleko obecnější platnost než pouze v teorii 
prahových funkcí. 

Věta 17. Necht A a 8 jsou dvě ne-prázdné konečné mno-
žiny bodů, v prostoru Rn. Potom jsou množiny A a B odděli-
telné právě tehdy, jestliže platí 

K(A) n K(B) = 0. 
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3.1. O roz l iSování ob jektů 

Téma tohoto odstavce se úzce přimyká k tématu před-
cházejícího odstavce. Povíme si něco o klasifikaci údajů. 
V procesu současné vědeckotechnické revoluce se velká 
pozornost věnuje výzkumům souvisejícím s perspekti-
vou automatického řešení tzv. intelektuálních úloh, je-
jichž řešení mohl podle tradičních názorů provádět 
pouze člověk. Tak nápř. počítače hrají šachy, užívají 
se při předpovídání počasí, k rozlišování zvuků řeči, 
k automatickému čtení rukopisů, k nalézání diagnóz 
v medicíně aj. 

Mnohé z těchto úloh vyžadují schopnost klasifikovat 
(rozlišovat) velké množství údajů, popisujících zkouma-
né objekty, popřípadě celé situace. Všimněme si např. 
principu, 11a kterém pracují smyslové orgány člověka 
a živočichů. Jestliže pozorujeme nějaký předmět, pro-
bíhá v podstatě tento proces: Jednotlivé světelné signá-
ly přicházejí na sítnici oka a přinášejí informaci o roz-
měrech, tvaru, velikosti, vzdálenosti, barvě a prostoro-
vém umístění objektu. Tato informace se přenáší pro-
střednictvím nervové soustavy do příslušných center 
a tam se vytváří obraz pozorovaného objektu. Tento 
mechanismus zrakového vnímání nám umožňuje rozli-
šovat velmi mnoho navzájem různých objektů (rozlišíme 
stůl, knihu, člověka atd.). Jako ilustraci matematických 
metod a problémů, které vznikají v souvislosti s proble-
matikou rozlišování objektů, popíšeme jistý jednoduchý 
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matematický model, který budeme nazývat klasifiká-
torem objektů. 

Představme si, že máme k dispozici jistou obdélníko-
vou destičku a kousek křídy. Křídou můžeme na destičku 
kreslit různé obrazce — objekt}', např. písmena latinské 
abecedy. Člověk držící křídu napíše nějaké písmeno, 
potom toto písmeno smaže a napíše nějaké jiné písmeno 
atd. Naším úkolem je diskutovat existenci zařízení, 
které by umožňovalo automaticky rozhodovat, které 
písmeno je na destičce vyobrazeno. Situace je zde totiž 
komplikována tím, že různí lidé píší např. písmeno A 
různě a dokonce ani týž člověk nenapíše dvakrát za se-
bou dvě stejná písmena A. Zařízení, které chceme na-
vrhnout, musí především „umět číst" napsaná písmena. 
Každé písmeno na destičce je zobrazeno vlastně tím, že 
některé body 11a destičce jsou bílé (leží na nich vrstva 
křídy), ostatní jsou černé. Dokonalé zařízení by tedy 
muselo reagovat 11a jednotlivé body destičky, což je 

Obr . 7. 
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ovšem neuskutečnitelný požadavek, odporující základ-
ním fyzikálním faktům. 

Abychom nalezli východisko z této situace, rozdělíme 
obdélníkovou tabulku na konečný počet oblastí, označe-
ných řekněme 0 1 ( 02, . . . , 0 ( [ (viz obr. 7.). Nyní každé-
mu objektu na destičce přiřadíme jistou podmnožinu 
množiny {O j , 02, . . . , 0,,}, a sice množinu těch oblastí, 
jejichž vnitřkem prochází čára objektu. Dále předpoklá-
dáme, že oblasti 0y odpovídá jisté zařízení, které vytváří 
signál hodnoty a,-, jestliže vnitřkem oblasti prochází čára 
písmene, a vytváří signál nula v opačném případě. Jestli-
že je tedy na destičce jistý objekt, vznikne jistá množina 
signálů. Tyto signály, pomocí nichž je objekt zakódo-
ván, přicházejí dále do centrálního zařízení, jehož úko-
lem je provést klasifikaci objektu. 

Protože nám jde o pouhé vysvětlení principů, přijme-
me dále ještě tento zjednodušující předpoklad: Zařízení 
bude rozlišovat navzájem pouze dvě třídy objektů, 
např. typ A od typu B. Nakonec nám tedy zbývá popsat 
schéma práce centrálního zařízení. Toto zařízení bude 
sestávat ze dvou „sériově zapojených" částí: zařízení 

na sčítání signálů a klasifikující zařízení. Zařízení na 
sčítání signálů přijímá jednotlivé signály z destičky a na 
jeho výstupu se objevuje signál, jehož hodnota je rovna 
součtu hodnot jednotlivých signálů. Klasifikující zaří-
zení srovnává hodnotu signálu-součtu s jistou danou 
hodnotou a, nazývanou prahem: Jestliže hodnota signálu 
není menší než práh, pak patří objekt do jedné třídy, 
v opačném případě patří objekt do druhé třídy. Sche-
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maticky je popsaný klasifikátor znázorněn na obr. 8. 
Nyní napíšeme nerovnosti, popisující funkci klasifiká-

toru. Za tím účelem oblasti 0t přiřadíme dvouhodnoto-
vou proměnnou x,- ( j = 1, 2, . . . , n), přičemž položíme 
Xj = 1, jestliže objekt prochází vnitřkem 0, a x; = 0 
v opačném případě. Tímto způsobem je tedy objekt 

na destičce popsán n-ticí (x1; x2, . . . , x,„). Protože zaří-
zení není schopno rozlišit jemnější rozdíly mezi objekty, 
můžeme jednoduše ztotožnit objekty na destičce s n-tice-
mi (xt, x2, . . . , x„). Z tohoto důvodu budeme místo 
„objekt popsaný w-ticí (x1,x2> . . . , x j " říkat prostě 
„objekt (x1, x2, . . . , x,,)". Objekt nyní patří do první 
třídy, jestliže platí 

n 

^ aiXi ^ a> (39) 

a patří do druhé třídy, jestliže 
n 

2 < a. (40) 
j=i 
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Popsaný klasifikátor tedy rozdělí danou množinu objek-
tů na dvě tříd}'. 1 

Nyní budeme zkoumat množinu klasifikátorů popsa-
ného typu při pevně zvoleném rozkladu na systém oblas-
tí {0 ; } , avšak při libovolně volitelných hodnotách vah 
ai a prahu a. 

Zformulujeme problém syntézy klasifikátorů. Je dána 
jistá množina objektů E = {(a^, x2, .. ., a;,,)} C B" (viz 
str. 04) a její rozklad na dvě podmnožiny: 

6 = 91 U 93, « D » = 0. 

Problém záleží v nalezení vah at a prahu a tak, aby 
odpovídající klasifikátor rozlišoval množinu 91 od 93. 
(Množina E je obvykle vlastní podmnožinou1) B".) 

Je zřejmé, že k řešení posledního problému je nutno 
řešit soustavu lineárních nerovností (39), (40). My se 
však — podobně jako v předcházejícím odstavci — 
omezíme na otázku existence. Z věty 17 předchozího 
odstavce vyplývá nsáledující 

Věta 18. Klasifikátor (tj. koeficienty ax, . . ., aa a a) 
rozlišující dvě třídy objektů, 91 a 93 existuje právě tehdy, 
jestliže je splněna jedna z těchto dvou podmínek: 

a) alespoň jedna z množin 91 a 23 je prázdná, 
b) obě dvě množiny jsou neprázdné a platí 

K(9l) 0 K(93) = fl. 

' ) Říkáme, že M jo vlastní podmnožinou množiny N, jestliže 
M C N a M # N. 
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Doufáme, že se nám v tomto odstavci alespoň částečně 
podařilo ukázat, v čem spočívá problematika rozlišo-
vání objektů. Poznamenejme, že celá problematika i me-
tody řešení jsou podstatně složitější. Tak především 
obvykle jde o rozlišení několika tříd objektů, jak jsme 
ostatně uváděli na začátku tohoto odstavce. Za druhé 
v uvažovaném nejjednodušším případě se vytváří prostý 

n 
součet signálů £ ajxf, zatímco v obecném případě se po-

i 
užívá i složitějších (nelineárních) závislostí na proměn-
ných Xj, což přirozeně má za následek zvětšení rozlišo-
vacích schopností klasifikátoru. 

Nakonec nejdůležitější poznámka. Množina rozlišo-
vaných objektů nebývá zpravidla a priori známa, nebo 
obsahuje „příliš mnoho" prvků, nebo je složitá apod. 
V takových případech se k syntéze klasifikátorů obvykle 
používá metod adaptace (učení). Tyto metody spo-
čívají v tom, že na klasifikátor přichází v nějaké posloup-
nosti pouze jistá podmnožina „typických" objektů, 
u nichž je známo předem, do které třídy příslušný objekt 
patří. Na základě učící posloupnosti objektů se určí 
parametry klasifikátoru. 
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Ve cvičeních 1—5 je x-t 0. 

1. Dokažte, že úloha lineární optimalizace 

2x1 + 5x2 ^ 3, 
—3xx + 8X2 ^ —5, 

3Xj — 2x2 -> max. 

nemá přípustné řešení. 

2. Dokažte, že úloha lineární optimalizace 

—3xx + 2x2 ^—1 , 
Xj x2 ^ 2, 
xx + x2 max 

má přípustná řešení a nemá optimální řešení. 

3. Bez přímých výpočtů dokažte, že úloha duální k úloze 
ze cvičení 2 nemá přípustné řešení. 

4. Dokažte, že úloha lineární optimalizace 

Xj + x2 ^ 4, 
x3 + x4 g 1, 
3-2 
xx + x3 ^ 1, 
x3 -)- x4 sS 3, 

+ x2 + x3 + x4 -y max 

má optimální řešení x1 = 1, x2 = 1, x3 = 0, x4 = 1. 
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5. Dokažte, že úloha lineární optimalizace 

—2a;! + x2 

Zi + 2x2 ^ 2, 
xx + x2 

x i —" x2 -*• max 

má optimální řešení xx = 4, x2 = 1. 

6. V odstavci 1.3 jsme definovali pojem konvexní mno-
žiny. Nechť K je libovolná konvexní množina obsahu-
jící konečnou a neprázdnou množinu bodů M prostoru 
R". Potom platí K K(M) (tento fakt se též někdy vy-
jadřuje slovně: Konvexní obal je „nejmenší" konvexní 
množina obsahující danou množinu). 

7. a) Určete počet .prvků množiny B" — viz str. 64. 
(Odpověď: 2".) b) Určete počet všech logických funkcí n 
proměnných. (Odpověď: 22\) (Návod: Všimněte si, že 
tento počet se rovná počtu prvků množiny B2".) 

8. (Ilustrace pojmu logické funkce.) Nechť A, B, C 
označují libovolné výroky. Těmto výrokům přiřadíme 
dvouhodnotové proměnné xA, xB, xc definované takto: 
xA = 1, jestliže je výrok Á pravdivý, xA = 0, jestliže 
je nepravdivý; zcela analogický je význam proměnných 

Nechť nyní výrok C vznikne operací disjunkce 
(logického součtu), symbolicky to zapisujeme C = A V 
V B, tj. C = A V B je pravdivý právě tehdy, jestliže 
je pravdivý alespoň jeden z výroků A nebo B. V tomto 
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případě je xc logickou funkcí proměnných xA a xB, po-
ložme 

XC = /A V » (IX'A> XIT)-

a) Sestrojte tabulku hodnot funkce /Av lJ (a;A, xu). 

b) Ukažte, že platí 

xc = max (x ,̂ Xjj) - Xj^ -J- ^ — xxxB* 

9. Přiřaďme každé uspořádané čtveřici z nul a jedniček 
( f i , fa, f3> f « ) číslo 

fa, fa, W = fi23 + f22a + f.2* + f 4 . 

Ukažte, že lexikograficky uspořádané posloupnosti čtve-
řic odpovídá rostoucí posloupnosti čísel d(£ l t f2 , f3 , f4). 

10. Uvažujme množinu všech uspořádaných »-tic 
f2 , . . . , z nul a jedniček. Každé «,-tici ( f i , f2 , . . ., f„) 
přiřadíme číslo 

fa, • . f„ ) = fiS":1 + fa2"-2 + • • • + f„. 

Na množině všech w-tic definujeme vztah lexikografické-
ho uspořádání: Budeme říkat, že n-tice ( f 1 ; f2 , . . . , f„) 
je před w-ticí (tj1, ...,?;„) a zapíšeme to symbolicky 
( f i , fa, • • f j <(VI' VÍ' • • •>*?»)> jestliže 

<í(fi, fa, • • •, f j <d(ih,Vi, •••,»?,)• 

Ukažte způsob konstrukce lexikograficky uspořádané 
posloupnosti n-tic, analogický popsanému způsobu uspo-
řádání čtveřic. 
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