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PREDMLUVA

Ctendf uz zajisté fesil nékteré jednoduché rovnice, ne-
rovnice, soustavy rovnic a pravdépodobns i soustavy ne-
rovnic. Znaénd ¢ast této knizky je vénovéna FeSeni iiloh,
jejichz nedflnou soudisti je Fedenf soustav tzv. linedrnich
nerovnic (popfipadé rovnic), tj. soustav nerovnic, které
lze zapsat ve tvaru

ATy + Ay + ... Gz, = by,
Ay + UpZp + ... + Gy Tq = by,

Cl’m,lxl + a‘m2x2+ A + a’mnx'né bm!

kde x;,, x,, ..., x, jsou nezndmé a ay;, Gy, ..., Gy,
by, b,, . .. b, jsou dani éfslal). Jednim ze zdkladnich teore-
tickych prostiedki, které ndm umoznf dokdzat Fadu da-
lezitych tvrzeni, je véta o oddélitelnosti konvexnich mno-
hosténti, jejiz obsah miZeme na tomto mist® &tendfi
priblizit pouze tim, fekneme-li, Ze v roviné pro kazdé dva
konvexni mnohothelniky, které nemaji spole¢né body,

1)} Viechna &isla, se kterymi se v této knizce setkdme, budou
tisla redlnd, a budeme proto pfivlastek redlny vynechévat.



existuje takova pfimka, Ze uvaZované mnohothelnfky
lezf v opaénych polorovindch touto pfimkou uréenych,
tj., ze uvazované mnohothelniky jsou touto pifmkou
oddéleny.

Tato véta, kterou uviadime v obecném pifpadé bez di-
kazu, je spolu s daldimi nutnymi pojmy vyloZena ve druhé
kapitole. Prvni kapitola ma pfipravny charakter — pri-
pomindme v nf nékteré pojmy a vysledky zndmé ze
stfedoskolského studia a uvddime nékteré nové pojmy,
nezbytné k dalsimu vykladu, zvlasté pak pojem n-roz-
mérného prostoru. Bohuzel neni v této kniZce moziné vé-
novat se podrobnéji geometrii vicerozmérnych prostori;
naftésti mazZeme odkazat étendie na knfzku prof. Karla
Havli¢ka Prostory o Ctyfech a vice rozmérech, kterd vysla
jako 12. svazek v edici Skola mladijch matematiks. Déle
se v knfzce vyskytl — i kdyz jen okrajové — pojem
konvexni mnoziny. Pro hlubsi sezndmen{ s timto pojmem
lze ¢&tendfi viele doporudit knibu doc. Jana Vysina
Konvezni dtvary, 9. svazek zrainéné edice.

Posledni, nejrozsihlejii kapitola je vénovana uziti zis-
kanych teoretickych vysledki v riiznych oblastech mate-
matiky, které uz maji velmi blizko k praktickym apli-
kacim.

Tato knizka je dal§im pokusem zaiadit do sbirky Skola
mladgjch matematiks zpracovini tématu, které vyrazné
piesahuje oblast stfedoskolské matematiky. Z toho také
vyplyvéd zpiasob zpracovini, ktery se lii od mnoha
pEedchézejicich kniZek, jez byly vétdinou sbirkami fese-
nych tloh.
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1. kapitola

PRIPRAVNE UVAHY

1.1. Linearnf nerovnice

Nejprve si pfipomeneme nékolik zndmych pojmu
a postupii. ReSme napifklad tuto soustavu &ty nerovnic
o dvou nezndmych z, y:

—2r— y=—2,

— w2 s—4 (1)
= 0,
y= 0,

tj. hledejme takovou uspoiddanou dvojici éisel x, y, po
jejichZ dosazenf do (1) za nezndmé x, y dostaneme plat-
nou soustavu nerovnosti. Posledni dvé nerovnice sousta-
vy (1) ndm fikaji, Ze ¢fsla 2, y maji byt nezdpornd; proto
zpravidla misto o feSeni soustavy (1) hovorime o nezd-
porném Fesen{ soustavy:

—2r— y =—2,
— r+2y=—4 (2)

Mnozinu viech nezdpornych feSenf soustavy (2) muze-

-
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me geometricky zndzornit v rovind zptisobem, ktery je
béZné zndm ze stiednf skoly.

Jsou-li z, y souradnice bodu v roviné (v pevné zvolené
pravoihlé soustavé souradnic), pak vSechny body (z, y),
jejichZ souradnice vyhovuji nerovnici
lezi na jedné strané od piimky, jejiZ rovnice je

y=—2 +2. (4)

Snadno také zjistime, na které strané; sta¢i dosadit do
(8) soutadnice libovolného bodu roviny, nelezicfho na




piimce (4), napi'. souiadnice pocitku soustavy souiadnic,
tj. z =0,y = 0. Odtud vidime, Ze prvni nerovnici sou-
stavy (2) vyhovuji viechny body lezici na piimce (4)
a viechny body lezici na opaéné strané od piimky (4),
nez lezf poédtek soustavy souradnic.

Mnozinu vSech feSeni prvni nerovnice soustavy (2) lze
tedy zndzornit Srafovanou polorovinou (obr. 1). Nezd-
pornd feSeni pak budou znazornéna tou &asti této polo-
roviny, ktera lez{ v prvnim kvadrantu (obr. 2).

Stejnym zptsobem zjistime, Ze body, zndzoriujici ne-

y=-2x+2

Obr. 2.



zdpornd feSeni druhé nerovnice soustavy (2), leZf na
opadné strané od piimky
1 2
_—r — ’
y 2
nez, lezf poditek soustavy soufadnic, nebo na ni (obr. 3).
Nezdporn4 feSeni soustavy (2) jsou pak zndzornéna body,
které znézoriiuji zdroveii nezdpornd feSenf prvni nerov-
nice i druhé nerovnice soustavy (2) (tj. body srafované
plochy na obr. 3). Z obr. 3 je patrné, Ze mnozina bodi

yi

Obr. 3. -

zndzorinujicich nezdpornd feSen{ soustavy (2) neni ome-
zend.!)

——

1) MnoZinu A bodl roviny nazyvame omezenov, jestliZe existuji
takovd &isla a, b, %e pro kazdy bod mnoZiny A o soufadnicich
(z, y) plati |z| = a, |y| = 0.

8



Priddme-li k soustavé (2) nerovnici
x+y=6,

bude mnoZina znédzorfujicf mnozinu viech nezdpornych
Fefeni této nové soustavy omezend (viz Srafovand plocha
na obr. 4).

Obr. 4.

Priddme-li jesté nerovnici

z—8y =0,



bude mit vznikl4 soustava pouze jediné feSenf, zndzorné-

16 2
né bodem o souf‘adnicich_[? , —3—] (viz obr. 5).

Obr. 5.

Priddame-li nakonec je§té nerovnici
2r +y =2,

dostaneme soustavu, kterda nemd nezdporné fesen.
Zjistili jsme tedy na ptikladech, Ze soustava linedrnich
nerovnic o dvou neznimych (tj. nerovnio, které maji
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tvar ar + by < ¢) nemusi mit z4dné nezdporné ieseni,
nebo miZe mit jediné nezdporné reseni, nebo muze mit
nekonetné mnoho nezdpornych feseni; v poslednim pii-
padé muze byt mnozina bodd roviny zndzortujicich tato
FesSeni bud omezend, nebo neomezend.

O tom, ze poslednf z uvedenych soustav, tj. soustava

—2%— y<—2,

—x +2y=—4,
z+ y = 0, (5)
r—8y= O,
2c4 y = 2,

nemd nezaporné reseni, jsme se mohli velmi snadno pre-
svédéit takto: Vynasobime-li druhou nerovnici tficeti
a posledni nerovnici dvaceti, dostaneme soustavu

—2r— y=—2,
— 30z 4 60y = — 120,
r+ y= 6
z— 8y =< O, (6)

40x + 20y = 40.

Soustavy (5) a (6) maji zfejmé stejnoun mnezinu nezpor-
nych feSeni. AvSak soustava (6) nemé nezdporné feenf,
nebot kdyby ho méla, bylo by toto feSeni i nezipornym
fedenim nerovnice

10z + 72y < — 76, (7)
kterd vznikne sedtenim vSech nerovnic soustavy (6).

Nerovnost (7) viak ziejmé nemd nezdporné resenf.
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Podobného postupu muZeme uzit i v plipadé soustav
o jiném pocétu rovnic a neznidmych. VySetiujme napf.
tuto soustavu Gty nerovnic o tfech neznimych z, y, 2.

br— y— z= 1,
— 10z + 10y — 2z <—3, (8)
—2r— y + 10z = — 14,

c+ y+ 56z2= 2.

Vynasobime-li prvni a posledni nerovnici éislem 2, dosta-
neme soustavu

10x — 2y — 22 = 2,
— 10z 4+ 10y — 2z =< —3,
—2r— y 4102 £ —4,

14z + 2y 4+ 10z < 4.

Seltenim téchto nerovnic dostaneme nerovnici
122 + 9y + 172 £ —1,

kterd ziejmé nemd nezaporné feSeni, a tedy ani ptivodni
soustava (8) nema nezaporné fedenf.

Pozorny ¢tenal si jeSté vsiml, Ze uvedeny postup je
specidlnim pfipadem obecnéjsfho postupu. Driive neZ
tento postup vylozime pro piipad obecné soustavy étyf
tzv. linedrnich nerovnic o tfech neznamych, zavedeme si
nové oznadeni, které se nim pozdéji v mnohém vyplati.

Misto abychom oznadili nezndmé pismeny z, y, 2, ozna-
¢ime je po Fad€ symboly x,, «,, z,; pro koeficient, jimz je
v prvnf nerovnici ndsobena prvn{, resp. druh4, resp. tiet{
neznimd, uZijeme symbolu se dvéma indexy, napf. a,,,
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ICSp. @5, TeSp. @y,; podobné symboly a,y, .., a4,y budou po
fadé oznadovat koeficienty u nezndmych z,, z,, r, ve dru-
hé nerovnici; je uz ziejmé, jak budou oznaleny koefi-
cienty v ostatnich nerovnicich. Pravou stranu prvni ne-
rovnice oznaGime b,, druhé nerovnice b,, tfeti a &étvrté
nerovnice b, a b,.

Na zdkladé této dohody muZeme obecnou soustavu
¢yt linedrnich nerovnic o tiech nezndmych x,, x,, x4
zapsat takto:

Ay + QT + AT < by,
UnTy + Qg%y + AngTy < by, (9)
A3y + Gyoy + AggTy < by,
any + Gty + A%y < by.
Polozime-li napf. a,; = 5, a;, =—1, a3 =—1, b, =1,
dostaneme prvnf nerovnici soustavy (8).

Vyse popsany postup, kterym jsme se presvédéili, ze
soustava (8) nem4 nezdporné fedenf, je obsazen v diikazu
tohoto trvzenf:

V#ta A. Existuji-li étyri nezdpornd Eisla y,, 4, ¥a, Y, tak,
Ze plati nerovnosty
Y181 + Yooy + Y5051 + YsOy = 0,
Y1812 + Yolas + YsBae + Yy = 0, (10)
Y1z + Yooy + Yslas + Yulyz 2 0,

a Ze zdroven plati nerovnost

by + ¥sby + ysby +- yiby < O, (11)

pak soustava (9) nemd nezdporné fefent.
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Dikaz. Kdyby soustava (9) méla nezdporné Fefeni

a kdyby existovala nezdporna &fsla v, ¥,, y;, ¥, 8 vlast-
nostmi uvedenymi v predpokladech véty A, bylo by (pro-
toze Gisla y,. ¥, ¥4, Y4 jsOu nezdporna) toto reseni také
FeSenfm soustavy

Y@y 1 a2y o+ aT) S by,

YolAa1Ty -+ Uy -+ AggTy) < oby, (12)

Yol @y - Qs - Agg®y) < Yabs,

Yalar Ty - agy - Agely) = Yuby,
a také nezipornym fesenim nerovnice, kterd vznikne se-
Ctenim vSech nerovnic soustavy (12). Aviak po snadnych
tipravich (po provedeni naznac¢eného nasobeni &isly y,, ¥,,
Y3 ¥a & po vytknut{ nezndmych x,, a,, a,) zjistime, Ze
tato nerovnice m4 tvar

(o + a2y + Yag) + Yullgy) 2 +
- (e - Yaltey + Yslse + Yulaz) T +
+ (Y13 + Yooy + Yoy + Yalyy) Ty =
= Wb+ abs - Yebs + Yabas
ze kterého je patrné, Ze nembze mit nezdporné Feseni,
nebot podle piedpokladu jsou koeficienty u nezndmych
nezapornd ¢isla, kdeZto prava strana nerovnosti je zi-
porna.
Vétu A lze vyslovit v této logicky ekvivalentni formé:

Véta B, Ma-lv soustava (9) nezdporné fedent, j)ak plati
toto: Jsou-li y,, Ys. Yo. ¥, takovd nezdpornd é&isla, Ze plati
nerornostt (10), pak tal:é plati nerovnost

Yiby - yabs + Ysbs + yiby 2 0
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Ctendt si pravdépodobné polo#i otdzku, zda vétu A
(nebo ji ekvivalentni vétu B) lze obrdtit. Jak vyplyne
z dalsiho vykladu, odpovéd na tuto otdzku je kladné.

1.2. O0ddélitelnost mnoZin

Uz v pfedmluvé jsme se zminili o diilezitosti véty o od-
délitelnosti konvexnich mnohostént. Myslenku této véty
vyloZime nejdfive v roviné.

Méjme pifmku p v roviné 0. O piimce p budeme Fikat,
ze oddéluje navzijem mnoziny M, a M, bodi roviny g,
jestlize mnoZiny M, a M, leZi v navzijem opaénych
otevienych polorovinich uréenych piimkou p. O dvou
mnozinich M;, M, bodi roviny ¢ budeme fikat, ze jsou
navzijem oddélitelné, jestlize existuje piimka oddélujicf
mnoziny M, a M,.

Je ziejmé, Ze jsou-li mnoziny M, a M, oddélitelné, pak
mnoZiny M, a M, nemaji spoleéné body, ¢ili, jak Casto
fikdme, jsou disjunktni. Kdyby totiz bod X pattil do
mnoziny M, i do mnoziny M,, pak pro bod P neleZicf na
pfimce p, kterd oddéluje mnoziny M, a M,, by ftisecka
X P zirovei méla i neméla spoleény bod s ptimkou p.

D4 se snadno ukdzat, Ze obricené tvrzeni neplati.
Vezmeme-li za M, vSechny body uréité kruZnice £ a za
M, mnozinu lezici uvnitf kruhu uréeného kruznici k, do-
staneme mnoZiny M,, M,, nemajici spoleény bod. Avsak
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mnoZiny M;, M, nejsou oddélitelné, nchof pro kazdou
primku p nastdava prave jeden z téchto dvou pripada:

1. pfimka p nemd s kruznici k Zddny spoletny bod;
v takovém pripadé lezi mnoziny M,, M, ve stejné poloro-
viné uréené piimkou p, a nejsou tedy pfimkou p oddé-
leny;

2. ptfmka p ma s kruZnici k spoledény alesponl jeden
bod; v takovém piipadé mnozina M, neleii (celd) ani
v jedné z (otevienych) polorovin uréenych piimkou p,
a nemuZe tedy lezet ani v poloroviné opatné k poloroviné
uréené ptimkou p, ve které leii (lezi-li tam vﬁbeé) mno-
Zina M,.

Hlavni myslenka véty o oddélitelnosti konvexnich
mnohoihelnik’ spoéivd v tom, Ze v piipadé konvexnich
mnohothelnikd Ize vy$e uvedené tvrzeni obratit, tj. Ze
kazdé dva konvexni mnohotihelniky K, K, roviny o,
které ncmaji Zadny bod spoleény, 1ze oddélit. Vétu o od-
délitelnosti konvexnich mnohothelnik lze tedy vyslovit
takto:

Véta C. Dva konvexni mnohoihelniky roviny o jsou od-
délitelné prave tehdy, jsou-li disjunktni.

Jak jsme se uz zminili, obecnou vétu o oddélitelnosti
konvexnich mnohosténtt nebudeme dokazovat; presto
vSak v tomto specidlnim pripadé uvedeme tivahy nazna-
¢ujici jednu z mozZnych cest vedoucich k ditkazu.

Vzhledem k tomu, co bylo uvedeno vyse, stadi doka-
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zat, Ze jsou-li K;, K, dva disjunktnf konvexni mnohoihel-
niky, jsou mnohothelniky K, K, oddélitelné.

Nejprve dokdzeme, Ze existuje dvojice boda X, Y,
takovi, Ze
1. X, €K, 2. Y,eK,a 3. |[X,Y,| =|XY]| pro vechny
dvojice bodt X, Y takové, Ze X € K, a ¥ € K,. PopiSeme
konstrukei bodd Y, a X,. Pii této konstrukei budeme
potiebovat nésledujici jednoduché lemma.

Lemma. Necht AB a CD jsou dvé libovolné dselky lefici
v roviné. Potom existuji dva body X' a Y’ tak, Ze
1. X'edB,2.YeCDa 3. | X'Y'| <|XY| pro vechny
dvojice bod@ X, Y takové, e X € ABa Y € CD.

Dikaz lemmatu lze provést snadno rozebrianim jed-
notlivych typickych pi{padi vzdjemné polohy iseéek
a pfenechdvame jej ¢tenari.

Vratme se nyni k dikazu véty. Nechf obvod mnoho-
dhelnika K; sestivd z tdsefek u;, s, ..., u, (r = 3)
a obvod mnohoihelnika K, z useéek v,, v,, ..., v, (s = 3).
Uvazujme nyni viechny moziné dvojice tisedek »; a v;,
kde:i =1,2,...,raj =1,2,...,s. Nazikladé lemma-
tu existuje ke kazdé dvojici u;, v; dvojice bodi X(3, )
a Y(i, j) tak, Ze X(i, ) ew, Y(i,j)ev; a |X(q,7)
Y(, j)] = |XY| pro viechny dvojice X a Y takové, Ze
Xew, a Y €v,. BudiZz nynf M mnozZina é&isel d; =
= |X(@)YENE=12...,1§=12,...,s). Pro-
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toze M je koneénd, existuje dvojice indexa ¢*, j*, pro
kterou je éislo d;. ;. minimdlni, tj. plati

dije == [X(I%, ) Y%, 5% = dy; = [X(,§) Y, j)].

(Pokud existuje takovych dvojic vice neZ jedna, vybere-
me nékterou z nich.) Ctenaf snadno sam dokéze, Ze body
Xo = X(@*, %) a Y, = Y(i* 7*) jsou body s nejkratsi
vzdélenosti.

K zakonéen{ ditkazu zbyva sestrojit pfimku p oddélu-
jici K, od K,. ProtoZze mnohouhelniky K; a K, nemajf spo-
leéné body, je bod X, rtizny od bodu Y,; je tedy mozné
vést stiedem tsecky X, Y, ptimku p kolmou k této tseé-
ce. Ukdzeme, Ze kolmice p oddéluje mnohotlelniky K,

K,:

Obr. 6.
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Kdyby pifmka p mnohoudhelniky K;, K, neoddélovala,
existoval by bod R, leZici na pfimce p a zaroven néleZe-
jici jednomu z mnohothelnika K;, K,. Bez ijmy obecnosti
muzZeme piredpoklddat, Ze bod R néleii mnohoiihelniku
K; (viz obr. 6). Oznaéime-li @ patu vysky SQ v pravo-
uhlém trojahelnfku Y RS (X 8 -- 90°), pak (protoze
body Y,, R nélezi konvexnimu mnohouhelniku K;) bod
nalezi mnohovhelniku K,. Avsak

|XoQ| < | XY,
nebot
lXoQ\ < IXOSI + ISQl < [XOS} + {SYOI = |X0Yo]-

To je vak ve sporu s vlastnosti dvojice boda X, Y.

1.3. Pojem n-rozmérného prostoru

Vime, Ze polohu bodu na pfimce maZeme uré¢it jednfm
Gislem, polohu bodu v roviné usporddanou dvojici a polo-
hu bodu v prostoru usporddanou trojici ¢isel. Vyjdeme-li
z této skutecénosti, mizeme dospét k této definici n-roz-
mérného prostoru:

Mnozinu v3ech usporddanych n-tic X = (¥, ay, .- ., 2,)
redlnych ¢&isel z;, a5, ..., z, nazveme mn-rozmérnym
prostorem a oznaéime symbolem R~

Pritom dvé uspofidané n-tice X = (v, xy, ..., 2,),
Y = (4, ¥5» - .., y,) povazujeme za stejné (sobé-rovné),
plati-i z, =y,, zz =, ..., z, == y¥,. Prvky mnoZiny R"
budeme nazyvat body prostoru R¢; &isla ay, «,, ..., @,
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budeme nazyvat soufudnicemi bodu X = (z, 25, ..., x,).

V piipadé, zen == 1, 2, 3, budeme uzivat znimého geo-
metrického zndzornéni prostoru R* pomoci pevné zvolené
pravoihlé soustavy soufadnic. Na tomto misté chceme
¢tendte upozornit na to, ze v definicich pojmu, formula-
cich vét a pri provadéni dikazi budeme uzivat vyhradné
analytickych (volnéji feeno pocetnich) metod, které bu-
dou vychdzet doslovné z definice prostoru R jakoZto
mnoziny vsech usporadanych n-tic redlnych éisel. Kdy-
bychom v3ak dusledné odmitli uZivat geometrickych
predstav, zbavili bychom vyklad veskeré geometrické
ndzornosti a pripravili bychom se o moznost porovnavat
smysl definic, tvrzeni a zédkladnich myslenek dikaza se
zkuSenosti, kterou jsme ziskali pfi kazdodennim vnimani
prostorovych vlastnosti svéta, v némsz zZijeme. Z téchto
davodit budeme uZivat ,,geometrické terminologie,
kterd umoziuje davat jednotlivym definicim, vétam
a myslenkovym postupim nazorny geometricky smy-
sl. Pouzivani geometrickych predstav nékdy umozni
i ,,uhodnout pfedem‘* presné, nebo alespoti ,,pFiblizné‘
znéni véty, popiipadé postup dikazu. Proto v posledni
¢asti tohoto odstavce zavedeme geometrické nizvy pro
podmnoziny prostoru R*, se kterymi se v dalsim, vykladu
budeme setkavat.

Jsou-li a,, b dand é&isla, pfiéemz a, # 0, pak mnoZinu
prvka prostoru R', jejichZ soufadnice z; vyhovuji rovnici

wx, =b,

lze zndzornit bodem; je to prosté jednobodovd mnoZina.
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Jsou-li a;, a,, b dand ¢&isla, pfitemz alesponi jedno
z ¢isel a,, @, je Tizné od nuly, pak mnoZinu bodu prostoru
R, jejichz soufadnice ,, x, vyhovuji rovnici

ax, + ayx; = b,
Ize znazornit piimkou.

Jsou-li a,, a,, a,, b dand ¢isla, piicemZ alespon jedno
z Uisel a,, a,, a, je rizné od nuly, pak mnoZinu bodu pro-
storu R3, jejichz souradnice z,, x,, z, vyhovuji rovnici

A2y -+ ATy + Gy = b,
Ize zndzornit rovinou.

Bude uziteéné zavést pro podobné mnoziny (&tenaf uz
tusi jaké) v prostorech R* specidlni ndzev. Dospivame
tak k této definici:

Necht a,, a,, ..., a,, b jsou dand &isla, pficemz alespon
jedno z &isel a,, a,, ..., a, je razné od nuly. MnoZinu
bodi X = (2, 2y, .. ., z,) prostoru R*, jejichZ souradnice
x, X, . . ., x, vyhovuji rovnici

az, + @y + ... +a,z, = b, (13)
nazveme nadrovinou v prostoru R". Rovnici (13) nazy-
vime rovnicf této nadroviny.

Mnozinu bodu X' = (z, s, ..., z,), jejichZ soufadnice
vyhovuji nerovnici

X, + axy + ... +ax, b, (14)

nazveme uzavienym poloprostorem v prostoru R uréenym
nerovnici (14). MnoZinu bodu, jejichz soufadnice vyho-
vujf nerovnici

X, + axs + ... +ax, ZH, (15)
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nazveme rovnéZ uzavienym polopostorem, a to uzavie-
nym poloprostorem uréenym nerovnici (15).

Uzaviené poloprostory urdené nerovnicemi (14), (15)
nazyvime také (navzajem) opaéngmi uzaviengmi polo-
prostory uréenymi nadrovinou o rovnici (13).

Otevienymi (navzajem opaénymi) poloprostory urée-
nymi nadrovinou o rovnici (13) nazyvdme mnoZiny
bodd X = (z, 2, ..., 2,), jejichZ soufadnice vyhovuji
nerovnicim

4T, + a2y + ... +ax, <b,
resp.
ox, + ar, + ... +a,x, > b,

Jsou-i Y = (43, Y2 -5 YUn)y Z = (24, 23, - .., 2;) body
prostoru R®, pak seckou spojujici body Y, Z nazyvime
mnozinu téch bodd X = (z,, 2, ..., x,), pro jejichz
soufadnice z,, x,, . . ., x, platf

= Ay + (1—124) 2,
Xy = 2ys + (1 — 1) 25,

X, = ) n T (1_;') Zps

kde 2 muze byt libovolné é&islo, pro které plati 0 < 21 < 1.

O mnoZiné bodu prostoru R* ikime, Ze je konvexni,!)
jestlize pro libovolné dva jeji body do nf patif i celd
usecka tyto body spojujicf.

1) Ne rozdil od knizek [2] a [3] po&itAme prdzdnou mnoZinu
mezi mnoziny konvexni.
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Cviéeni

1. Dokazte, Ze ma-li soustava linedrnich rovnic o tfech
nezndmych z,, 2,, 2,

an®, -+ 1% + @37 = by,
Aoy ®y + op®y + Qgy®y = by,
A3, %, + B3o%y + Agay = by

neziporné fefeni, pak pro kazdé feSeni (y,, ¥,, ¥,) (nikoli
jen nezdporné!) soustavy linedrnich nerovnic

Y10y + Yaley + Ysy = 0,
Yi0is + Yalas + Ysga = 0,
Y1013 + YsQay + Yallag = 0

plati nerovnost
Yiby + yaba + Ysby = 0.

2. Uzavrenym kruhem se stfedem S a polomérem r
(r > 0) rozumime mnozinu bodd X roviny g, pro které
plati nerovnost |[SX| < r; otevienym kruhem se stfedem S
a polomérem r (r > 0) rozumime mnoZinu bodid X rovi-
ny o, pro které plati |SX| < r. Dokazte, zZe

a) jsou-li K; a K, uzaviené kruhy, jsou K; a K, oddé&li-
telné pravé tehdy, jestlize kruhy K, a K, nemaji spoleéné
body;

b) jsou-li K; a K, oteviené kruhy, jsou K, a K, oddélitel-
né pravé tehdy, jestlize kruhy K, a K, nemajf spole¢né
body.

Obdobné tvrzeni viak neplati, je-li jeden z kruha K,
K; otevieny a druhy uzavieny.
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3. Necht bod M nelezi na piimce p. Které piimky
oddéluji bod M a pfimku p?

4, Ukaite, Ze muzZe existovat vice dvojic s vlastnosti
dvojice (X,, Y,) z naznaceného dikazu véty C. V tako-
vém piipadé v3ak existuje takovych bodi nekoneéné
mnoho.

b. Znizornéte v roviné mnoziny téch boda X = (z,, @)
prostoru R?, pro jejichz soufadnice plati:
(a) 2 + x,2 < 1 aziroven z, = x,2,
(b)z, =1 a zaroven xz,% + z,2 > 1,
(€) z2 + a2 < 1 azdrovei || + |2,| = 1.
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2. kapitola )
ODPELITELNOST KONVEXNICH
MNOHOSTENTU

2.1. Konvexni mnohostény

V tomto odstavei budeme definovat dileZitou tiidu
podmnozin prostoru R*, které budeme nazyvat konvex-
nimi mnohostény. Konvexni mnohostény budou pro nés
dulezité tim, Ze pojem konvexniho mnohosténu zobec-
1nuje v jistém smyslu pojem konvexniho mnohotihelniku
v roviné a zdroven i pojem mnoziny viech feSeni sousta-
vy linearnich nerovnic (popiipadé rovnic). Pii vykladu
budeme postupovat takto: Nejprve uvedeme definici
konvexniho mnohosténu, potom ukdZeme geometrickou
interpretaci tohoto pojmu a nakonec uvedeme nékteré
zdkladni vlastnosti konvexnich mnohosténtt potiebné
v dalsim vykladu.

Soustavou m lineirnich nerovnic o » nezniamych
Zy, Ty, ..., &, (kde m, n jsou plirozend éfsla), nazyvame

-soustavu nerovnic tvaru

ayx, + apx, + ... + a2, <0y,
UpyXy + Qe + ... + @, < by, (16)

amlxl + L 55 + e + Ay é bnn

kde a,y, ayyy . . -5 @y by, bs, .. ., b, jsOu dand éisla.

m
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Mnozinu viech bodu X = («,, ,, ..., «,) prostoru R®,
jejichZz soufadnice vyhovuji vSem nerovnicim soustavy
(16) nazyvdme konvexnim') mnohosténem v prostoru R*
definovanym soustavou (16).

Konvexnim mnohosténem v prostoru R* je tedy kazdd
takova mnozina K boda prostoru R*, pro kterou existuje

' takov4 soustava linedrnich nerovnic o » nezndmych, Ze
mnozina K pfedstavuje mnozinu vech feseni této sou-
stavy.

Piiklad 1. Prazdnd mmnoZina je konvexnim mmnoho-
sténem v prostoru R*, nebot pfedstavuje mnoZinu vsech
feSen{i nerovnice

Ox; + 0x, + ... 4+ 0z, < —1.

Pfiklad 2. Prostor R* je konvexnim mnohosténem
v prostoru R*, nebof pfedstavuje mnoZinu vSech Fesen{
soustavy

Ox, +0x, + ... +0x, =1,

PFiklad 3. V prostoru R! jsou konvexnimi mnohostény
pouze tyto mnoZiny: (a) prézdna mnoZina; (b) prostor
R!; (¢) mnoziny téch bodd X = (x,) prostoru R!, pro
které plati @ < x, < b, kde a, b jsou &isla, pro kterd je
a < b; (d) mnozZiny téch bodid X = (x;) prostoru R!, pro
které plati z, < b, kde b je jisté ¢&fslo; (e) mnoziny téch

1) To, Ze konvexni mnohostén je konvexni mmnoZina, dokdZeme
pozdéji; viz véta 2.
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bodi X = (z,) prostoru R, pro které plati a < z,, kde
a je jisté ¢islo.

Podejme si hned dikaz tvrzeni obsaZeného v piikla-
du 3. Je-li K konvexni mnohostén v prostoru R!, pak K
predstavuje mnozinu viech f'eeni jisté soustavy nerovnic
tvaru:

an® < b,
%y = by, (17)

Muze nastat pravé jedna z téchto dvou moznosti:

1. Soustava (17) nemé4 feseni.

2. Soustava (17) m4 feSenf.
Nastdvd-li prvni moZnost, dostdvame pFipad (a). Staéi
tedy ddle vySetfovat pouze druhou moznost. Nechtf je
tedy mnozina K neprdzdnd. Potom nastdvd pravé jedna
z téchto étyt vzdjemné se vyluéujicich moznosti:

(2a)@; =O0prot =1,2,...,m;

(2b) existuji takové indexy 2,, 7o, Ze plati
a, >0,a;, <O0;

(2¢) @, = 0pros =1, 2, ..., m a existuje takovy index
iy, Ze platia;; > 0;

(2d)a,;, £0proi =1, 2, ..., ma existuje takovy index
i, Ze platia;; < 0.

Nastdva-li pfipad (2a), musi byt b, = 0 pro¢ =1, 2,
..., m, nebot podle pfedpokladu soustava (17) md rese-
nf, AvSak jeliag, =0ab =0proi =1,2, ...,m,je
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FeSenim soustavy (17) kaidé redlné ¢&islo; nastdvd tedy
piipad (b).

Nastdvd-li piipad (2b), dostdvame piipad (c): Necht
igs &3, « . ., ¢, jsou vSechny indexy, pro které plati «;, >

>0,a,, 20, .., a4, >0, 4 necht j,, 4, ..., 4, jsou
vSechny indexy, pro které platf a,;, <0, a,, <0, ...,
a;, < 0. _ b
Oznadime-li pismenem a nejvétsi z Sisel -, —2-, ...,
a, 4,

. b, b;

ia c : ve s b i, T
-~ gu pismmenem b nejmensi z disel —-, —-, ... < -

igt aig @iy i
je mnozina K tvoiena vsemi ¢&isly x,, pro ktera plati
a <x, =b.

Nastava-li ptipad (2¢) a jsou-li ¢, ¢, ..., %, viechny
indexy, pro které plati a;; >0, a;, >0, ..., a;, >0,

dospivame k pripadu (d), nebot mnozina K je tvofena
vSemi ¢isly a;, pro ktera plati ; =< b, kde b je nejmensi

i b; bir
- »

ZCisel -, -, ...,
din Wiy

iy
Je uz ziejmé, jakym zplusobem dospéjeme k tomu, Ze
moznosti (2d) odpovidé pFipad (e).

Pozndamla. Ziskané vysledky muZeme shrnout také
takto: Konvexnim mnohosténem v prostoru R! je bud
prazdnd mnozina, nebo cely prostor R!, nebo pranik
kone¢ného poétu uzavienych poloprostorit prostoru R!
(uzavitené poloprostory prostoru R! je piirozené nazyvat
uzavienymi poloprimkami).
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Piiklad 4. VySetiujme nyni konvexni mnehostény
v prostoru R2. Necht K je konvexni mnohostén v prostoru
R? dany soustavou nerovnic

A%y + A%, < by,
A%y + A5%y < by, (18)

Aty + L) g bm-

JestliZze v nerovnici a;x, -+ a2, < b;, kde 7 je jedno
z dfsel 1, 2, .. ., m, je alespon jedno z &isel a;,, a;, ruzné od
nuly, pak je touto nerovnici urden jisty uzavieny polo-
prostor prostoru R? (v pfipadé prostoru R? je piirozené
nazyvat tento poloprostor uzavienou polorovinou).

JestliZe je a;; = a;, = 0, pak bud tato nerovnice nemd
feseni (b; < 0), nebo soufadnice libovolného bodu pro-
storu R? jsou jejim reSenim (b; = 0). Vzhledem k tomu,
zZe feSenfi soustavy (18) jsou piedstavovana témi body
prostoru R?, jejichZ soutadnice vyhovuji vSem nerovni-
cim soustavy (18), dostdvame, ze konvexni mnohostén
v prostoru R? je bud mnozina priazdnd, nebo cely prostor
R?, nebo mnozina, kterd je prinikem koneéné mnoha
uzavienych polorovin (tento prinik mize byt také
prizdnou mnozinou). Viimnéme si jesté, ze kazdy pra-
nik koneéného poétu uzavienych polorovin je konvex-
nim mnohosténem v prostoru R2.

Ctenaf uz sim nahlédne, Ze analogicks situace nastavs
v piipadé konvexnich mnohosténii v prostoru R? (pouze
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misto o pruniku uzavienych polorovin musime hovofit
o priniku uzavienych poloprostori).

Rovnéz v piipadé konvexnfho mnohosténu v prostoru
R* zadaného soustavou (16) miiZzeme fici, Ze K je bud
priazdnd mnozina, nebo cely prostor (viz piiklad 1 a pii-
klad 2), nebo prinik kone&ného poé&tu poloprostori urée-
nych témi nerovnicemi a;x, + apr, + ... + a,x, =
b;, ve kterych je alespoin jedno z éisel a;, @i, ..., Gy
rizné od nuly.

Konvexni mnohostény maji jednu duleZitou vlast-
nost, kterou uvedeme bez diitkazu, ale kterou budeme
v dalsfm vykladu ¢asto pouZivat.

Uvazujme zobrazeni prostoru R* do prostoru R™, které
je definovdno tak, Ze bodu X = (z,, x, ..., ,) prostoru
R* pfitazuje prvek Y = (y,, %, ..., ¥n) prostoru R»
podle piedpisu

Y =cCu +Cp¥y + ...+ Craa,

Yo = Cqi%; + Coy + ... + C3,%,, (*)
Y = Con®y -+ Copy + o0 Cppy,
kdecy, i =1,2,...,m,j =1,2, ..., njsou dans &sla.

Zobrazeni tvaru (*) se nazyva linedrni zobrazeni.

Je-li K konvexni mnohostén v prostoru R®, pak jeho
obrazem pii zobrazeni definovaném predpisem (*) je
jistd mnoZina L bodu prostoru R™ (bod ¥ = (y,, %, - . .,
Yn) prostoru R” patii do mnoZiny L, existuje-li takovy
bod X = (2, %, ..., x,) mnohosténu K, Ze pro soutadni-
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ce bodu Y, X plati (*)). Dd se dokdzat, Ze plati tato
veta:

Yéta 1. Je-li K konvexni mnohostén v prostoru R*, je
obraz L mnofiny K pfi zobrazeni uréeném predpisem (*)
konveanim mnohosténem v prostoru R™.

Na zavér tohoto odstavee dokdZzeme jesté tuto vétu:

Viéta 2. Konvexni mnohostén v prostoru R* je konvexnt
mnoinou.

Dikaz. Necht K je konvexni mnohostén v prostoru R*
uréeny soustavou (16) a necht body ¥ = (y;, ¥, - - ., ¥a)s
Z = (%, 2, ..., 2,) prostoru R* pati{ do mnoziny K.
Podle definice konvexn{ mnoziny sta¢i dokazat, Ze pro
kazdé &islo A, pro které plati 0 < 1 < 1, pati{ bod X =
=dn+ L —Nz b+ 1 —A2, ..., Ay, + (1 —
— A)z, do mnoziny K. Stadf tedy dokdzat, Ze platf

anlly, + (L —2)z) +ap(ly, + (1 —21) z) + ...
cee + aln(lyn + (1 _;') zfn) é bl,
an(Ay, + (1 —2)2) + alys + (1 —A) 2) + ...
oo+ a’zn(z'yn + (1 _A) zn) = bz:

anlyy + (1 —2)2) + @Ay, + (L —2)2) + ...
cee + a’mn(]'yn + (1 —)‘) Z,,) = bm'

Protoze b, = ib; + (1 —A) byt = 1, 2, ..., m), vyplyvd
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platnost posledni soustavy z naSich piedpokladt néso-
benim kazdé nerovnice platné soustavy

any, + a15Y2 + oo ey, £b,
GnYs + Aoy + ... + oYy = by,

Oty + CsYs + ... F QY by,

¢islem 2, kazdé nerovnice platné soustavy

an? + apz + ..+ Gz, by,
anzy + A2y + ...t Gzy = by,

amz + am2z2 + ... + An?n é bm

¢islem (1 — 1) a sedtenim odpovidajicich si nerovnic.

2.2, 0dd&litelnost konvexnich
mnohosténu

Budte M, a M, dvé neprazdné podmnozZiny prostoru
R*. Budeme fikat, Ze mnoziny M; a M, jsou (vzdjemné)
oddélitelné, jestlize existuji takova &isla aj, a,, ..., a,, b,
Ze alesponi jedno z é&isel a,, a,, ..., a, je razné od nuly
a Ze pro vSechny body X = (z,, ,, ..., x,) mnoZiny M,
plati

ax, +axs + ... +ax, >b

a pro viechny body X = (z, 2,, . . ., ,) mnoziny M, plati
ax, + ax, + ... +azx, <b.



Utzijeme-li terminologie zavedené v pfedchozi kapitole,
mizZeme pravé vyslovenou definici vyjadfit také takto:
Dvé nepriazdné podmnoziny M, a M, prostoru R* nazyvi-
me oddélitelnymi mnozinami, jestliZe existuje takova
nadrovina prostoru R*, Ze mnoZiny M, a M, leii v opaé-
nych otevienych poloprostorech touto nadrovinou urée-
nych.

Podle definice je zfejmé, Ze oddélitelné mnoZiny
nemaji spoleéné body. Snadno ukdzeme, Ze neprazdné
mnoZiny, které nemaji spoleéné body, nemusi byt od-
délitelné. Necht napt. M, je sjednocenim mnoZin A, A,
A, A,, kde mnoziny A;, A;, A,, A, jsou definoviny takto
(zndzornéte si uvedené mnoziny v roving):

A1={(x1,x2)|0 =x =1, x, = 0},
A={x, )0 <1, x, = 1},
A = {(z,, %,) | 2, =0,0=<z, <1},
A = {(z), 2,) | % =10=<z, <1},

(tj. A, je mnoZina bodd, jejichz soufadnice spliuji pod-
minky 0 <z, <1 a 2, = 0; zplisob zdpisu A,, A; a A, je
zcela analogicky. Uvedeného zptisobu definice mnozin se
v matematice bézné pouzivi) a necht mnoZina M, je tvo-

"1 1 3 3
fena témito dvéma body: (— , ——) , (— , —] .
4 4 4 4

Je ziejmé, Ze mnoziny M, a M, jsou neprdzdné a nemaji
spoleéné body. Pfitom vSak mnoziny M, a M, nejsou od-
délitelné, protoZe kdyby existovala takovd &éisla ay, a,, b,
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Ze alespori jedno z éisel a,, a, je rizné od nuly a Ze pro
kazdy bod X = (z,, ,) mnozZiny M, plati

a,x, + a,x; >b
a zaroven pro kazdy bod X = (z,, x,) mnoZiny M, plati

a,x, + ax, < b,
muselo by platit
a, + a, > 2b,

nebot body (0,1), (1,0) patii do mnoziny M, a zdroven
a, +a, < 2b,
, 1 1 3 3 . ..
nebot body (—4— , T) , [Z_ , T] patii do mnoziny M,.

Pro konvexni mnohostény vsak plati tato véta (sr.
s vétou C v predchozf kapitole):

Véta 3. Dva neprdzdné konvexni mnohostény v prostoru
R~ jsou oddélstelné prdvé tehdy, nemagji-li spoleéné body.

Jak jsme se jiZ zminili, od dikazu této véty upousti-

me, avSak v dal§im vykladu si ukdZeme ndkteré jejf
aplikace.
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Cvideni

1. Dokazte, Ze konvexni mnohostén v prostoru R* je
mnozina bud prdzdnd, nebo jednobodovéa, nebo obsahu-
jici nekoneéné mnoho bodi.

2. Zndzornéte tyto konvexni mnohostény v prostoru
Rt:

a) 3z, < 4, b)—3z, =—4, ¢ 3z = {4,
2z, < 10, —2z;, <10, —2z, < —1,
3z, <13, —3z, < —13, or, = 1,

—3z, = 0O,
5z, < 8.

3. Dokazte, Ze pranik dvou konvexnich mnohosténi
v prostoru R* je konvexnim mnohosténem.

4, Ukazte, Ze sjednoceni dvou konvexnich mnohosténi
v prostoru R® nemusi byt konvexnim mnohosténem
v prostoru R".

b. Znizornéte tyto konvexni mnohostény v prostoru
R2:

a)0z, + x, = 0;

b) z, + 0z, =0,

0, + 2, 20;

c) x; + 2 =1,

z, =1,

T— T, =1.



3. kapitola

NEKTER A UZITI VETY
0 ODDELITELNOSTI

3.1. O ieSitelnosti soustav linearnich
nerovnie

V 1. kapitole jsme ve specidlnich piipadech zjistili, Ze
spolu sc soustavou linedrnich nerovnic tvaru

Uty + @ + ... +anx, b,
(o y + Aoy + ... + a2z, = by,
.............................. , (19)
Ay = @poy + ... + @z, =0,

je uziteéné uvazovat jesté soustavu linedrnich nerovnic
tvaru

Y0y + Yooy oo+ Yl = 0,
YiGs + Yooy + « o + Yol = 0,

Yy, + ?/Zazn + e + yma’mu g 0.

Plati totiz tato véta (sr. konec odstavee 1.1):

Véta 4. Soustuva linedrnich nerovnic (19) md nezdporné
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fedent prdvé tehdy, plati-li pro kaidé nezdporné fedeni
(Y1 Yo» - -« - » Yu) SOUStavy (20) nerovnost

ylbl + ?Izbz + e + ?/mbm 2 0.

Dikaz. 1. Pfedpoklddejme, Ze soustava (19) md nezd-
porné feSeni (x,, %y, ..., %,), & necht (yy, ¥s, ..., ¥.) je
libovolné nezdporné feSeni soustavy (20). Za téchto
pledpokladu je zfejmé, Ze (&, ,, . . ., z,) je také FeSenfm
soustavy

han®, + apt + ... + &%) = yiby,
Yol@nZy + Gy + ... T 03,%,) = Ysby,
............................. , (21)
ym(a’mlxl + @y + ... + a'nmxfn) = ?/mbm

a tudiZ také nerovnice, ktera vznikne seétenim viech ne-
rovnosti soustavy (21). Aviak po provedeni naznaceného
ndsobeni &sly y,, ¥a, ..., ¥, & po vytknuti &isel z,, x,,
..., x, zjistime, Ze tato posledni nerovnice m4 tvar

@y + Yoty + - F Yullma) %y -+
+ (e + Yooz + -+ Yulus) T2 +
+ (yla],n + ?/zafzu + LI + ymam'n) .'L'n g
g ylbl + y2b2 + ... + ymbm .

Z tohoto tvaru je patrné, %e plati nerovnost

b by + Yobe + ...+ Yuba 20,

nebof podle piedpokladi na levé strané nerovnice (22)
jde o souéet soudini nezédpornych &isel.
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2. Zbyva dokazat, Ze podminka vety je postadujici
podminkou existence nezaporného feSeni soustavy (19).
K tomu vsak stac¢f dokdzat, Ze neexistuje-li nezdporné
TeSen{i soustavy (19), neni splnéna zminéni podminka.
Predpoklidejme tedy, Ze neexistuje nezdporné reSen
soustavy (19). Oznaéme symbolem K, mnozinu téch bodua
(&, &, ..., &,) prostoru R», pro jejichZ soufadnice platf

Elgbhg‘ngb""sm ébm'

Dile symbolem K, oznatme mnozinu bodu (&, &, ...,
&,.) prostoru R, jejichz soufadnice maji tyto vlastnosti:
existuje takovy bod x = (x,, zs, .. ., x,) prostoru R*, Ze

%)+ Gy -+ ...+ AT, = &y,
Ay + Qs + oo + Ay, = &,

A,y T @0t + . X, = ‘Em’
z =0,
r =0,

Jinymi slovy: mnoZina K, je mnoZina boda prostoru R™
tvaru

(apx, + ... +apx,, a2y + .00 4+ Gy o0y
”’mlxl —i_ L] + amnxu)’
kdez; 20,2, =20, ..., 2, 2 0.

Mnoziny K, a K, jsou neprazdné konvexni mnohostény.
V piipadé mnoziny K| je to zfejmé, v pfipadé mnozZiny K,
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je to jednoduchy disledek véty 1. ProtoZe neexistuje ne-
ziporné FeSeni soustavy (19), nemaji mnoziny K, a K,
spoleéné body a jsou v disledku véty 3 oddélitelné.
Existuji tedy takovd ¢&isla ay, a,, ..., a,, b, pfidemZ
alesponi jedno z ¢isel ay, as, ..., @, je rizné od nuly, Ze
pro kazdy bod (&,, &, . . ., £,) mnoZiny K, je

01161 + a2‘52 + e + a’mEm < b
a pro kazdy bod (&,, &, . . ., £,) mnoZiny K, je
a1£1 + a’2£2 + e + am‘Em > b‘

Odtud vSak plyne, Ze &islo b je zdporné, nebof bod (0,0,
..., 0) patii do mnoZiny K,, takZe platf

20 +a0+ ... +a,0 >b.

m

Dale dokdzeme, Ze éisla a,, a,, ..., @, jsou nezdpornd:
Je-lia; < 0 pronéjaké i, a poloZime-li
Ei=0b, &=by, ..., Ei.—l = bi,—p 5i,+1 = bio-{-]’ sy
Em = bm’
. b—ab — ... —a; by — ;b —
£i. = min I:bi., A 0 a (] 0
a;
(]
— ... —a,b,
. mny,
a;,

patif bod (&, &, ..., &,) do mnoZiny K, (viz zavedenf
mnoziny K;), a mus{ tedy platit

b +ad + .. Fad, <b.



PHimym vypodtem viak zjistime, Ze plutf

a6 + ak, + ... Fa,b, =
=a. & t{ad ... + 60+ GuEa+ ..+

+ aufn) =
=b— a/l_b_l T ies ™ a‘._lbg._l _ a¢.+1b,-.+1 — ee. —
- a’mb-m +
+ (@b + ... +ag by + @b+
+ ambm) = b,

takZze predpoklad a; < 0 vede ke sporu.
Dokazeme nyni, ze

Y =0y, Yo =y, .., Y, =0y

je takové neziporné FeSeni soustavy (20), Ze plati nerov-
nost

by + by + ... +yub, <O,

tj. Ze nenf splnéna podminka véty 4. Posledni nerovnost
vSak plyne z toho, Ze &slo b je zdporné a Ze bod (b,
b, ..., b,) patif do mnoZiny K;. Zbyva tedy dokdzat, Ze
(Y1s Yoy - - -+ Ym) je FeSenim soustavy (20).
Ptedpoklidejme, Ze existuje index j, tak, zZe plati

ylau', + Yoo, + .ot y‘mami. < 0)

a poloZzme z; = 0 proj # jo,

b
:EJ-. = .
yla’li. + yﬂaﬂi. + o + ym"’mi.
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Potom bod (&,, &, . . ., &,), kde

& =ayr, +apx, + ... + a2,
b2 =an®, + apTy + ... + a7,

En =07 +t a2+ ... +a,2,
patif do mnoZiny K;, takZe plati
nE 4+ b+ ... +yub. >0b.
Avsak pfimym vypottem se mizZeme plesvédcit, ze plati

3/151 + yzfz + .. + ym£m =

= y(an® + ap% + ... 4 a,z,) +

+ yo(@n®, F G2y + ... 4 ag2,) +

+ ym(a’mlxl + a’mzz2 + LI + anmxu) =
b

= Y,Qy;
Y1 Y1y, + Yuy;, + oo Y,
b

+ Yeaq;, :
“ Y18y, + Yooy, + - .+ Yuluj,

.................................

Tento spor nam iikd, Ze index j, s uvedenou vlastnost{
neexistuje, takZe (y,, ¥, . . ., ¥,) je FeSenfm soustavy (20)

a dikaz véty 4 je dokonden.
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Doporudujeme 6&tendfi, aby se pokusil dokdzat jako
cviceni tyto véty:

Véta 5. Soustava (19) md FeSeni (nejednd se tedy pouze
o nezdporné fedent ) pravé tehdy, plati-li pro kaZdé nezdpor-
né Fedend (Yy, Ys - - -, Y.) SOustavy linedrnich rovnic

ylall + y2a’21 + e + ymaml = 0)
Y1t + Yoy + ...+ Ynlinz = O)

Y1Q1n + Yollyy + ... + Yulbpn = 0
nerovnost

ylbl + ?lzbz + e + ymbm 2 0.

Yéta 6. Soustava linedrnich rovnic
an®; + apr, + ... + ayx, = by,
A%y + Ay + ... + 03, %, = by,
a’mlx1+ amzxz+ oo @@y, = bm

md nezdporné redent pravé tehdy, plati-li pro kazdé (nikoliv
jen nezdporné) fesent (yy, Y, . . ., Y.,) soustavy (20) nerov-
nost

ylbl + y2b2 + v + ymbm g 0.

Yéta 7. Soustava linedrnich rovnic

A%y + @y 4 ... + 0%, = bl)
X212y + ¥y + ... + Aop®, = b2s

@y + Ay + LICI + Ay = bm
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md fefent pravé tehdy, jestlie pro kadé feseni (yy, ¥s, - - -,
¥,.) soustavy linedrnich rovnic

?/1“11 + ?/zazl + M + ymaml = 01
Y1012 + Yol + o0+ Ynlipz = O:

il T Yooy + -0+ Yulbn = 0
plate

ylbl + y2b2 + e + ymbm = 0.

3.2, 0 ldlohach linedrni oplimalizace

Ulohou linedrni optimalizace nazyvime tuto tlohu:
Mezi nezdpornymi fefenimi (z,, ,, ..., x,) (pokud
vibec existuji) soustavy linedrnich nerovnic tvaru

an®y + ap®y + ... + 0,2, < by,
ATy + Gy + ... + Gy, %, S by, (23)

Ty + 1) + e + Qs g bm
nalézt takové, pro které nabyva dans funkce n» promén-
nych
f(xl’ Loy - - -y x‘n) =017 + Cyty + .o+ Culy (24)
kde (¢,, ¢, ..., c, jsou dana &sla) své nejvétsi hodnoty;
stru¢né to zapisujeme symbolem
f(xy, zo, ..., x,) — max?). (25)

1) Funkei f nazyvdme nékdy wucelovou funkei; kromé toho
i v pfipadd, e hleddme nejmensi hodnotu funkce f, hovofime
o uloze optimalizace.
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Pro neziporna feSeni soustavy (23) se vizil ndzev pri-
pusind fefeni ulohy linearnf optimalizace a pro ptipustnd
feSeni ddvajici nejvétsi hodnotu funkce (24) se viil
ndzev optimdlni fefeni Glohy linedrni optimalizace.

Uvedme na tomto misté alespori jeden piiklad dlohy
z praxe, kterd vede na tlohu linedrnf optimalizace. K vy-
robé riznych druht produkce je potieba uzit jistych
technologickych postupi a uréitych surovin a dlohou je
rozhodnout, jaké mnozstvi jednotlivych druhi produkce
méame vyrobit, abychom pii pouziti danych technolo-
gickych postupt nepiekrocili dané zdsoby potiebnych
surovin a abychom pfitom dosdhli co nejvétsiho zisku.

Predpoklidejme, Ze se jednd o n druhi produkee a Ze
k vyrobé je tieba m druhil surovin. Oznaé¢me symbolem

¢; (j 1,2, ..., n)zisk z vyroby kazdého jednotkového
mnozstvi produkee j-tého druhu a symbolem b; (i =1,
2, ..., m) zisobu i-té suroviny. Jsou-li technologické

postupy takové, Ze k vyrobé jednotkového mnozstvi
j-té produkce je potieba mnozstvi a; ¢-té suroviny,
a oznalime-li x; hledané mnoistvi produkee j-tého dru-
hu, pak

podminky nepfekroceni zdsob jednotlivych surovin
lze vyjadrit soustavou (23);

zisk z vyroby lze vyjidfit vzorcem (24);

podminku nejvétsiho zisku lze vyjadfit podminkou
(25).

Jak jsme uZ zjistili v 1. kapitole, soustava linedrnich
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nerovnic nemusf mit Zadné refen{, nemusf tedy existovat
ani pripustné reSeni ulohy linedrni optimalizace. Jako
cvideni by si mél &tendt ukdzat, Ze i v piipads, kdy sou-
stava (23) md FeSeni, nemusi mit nezdporné reSenf.
UkéZeme si, Ze i v piipadé, kdy tloha linedrni optimali-
zace m4 piipustné FeSeni, nemusi mit optimélni feSen.
Mizeme k tomu uiit soustavy (2) z 1. kapitoly, tj.
soustavy
— 2z, — z, = —2,
— 2 + 2, = — 4,

jejiz mnozZina feSeni je zndzornéna na obr. 3, ze kterého
je patrné, Ze tato mnozina nenf omezend. Je také ziejmé,
%e zvolime-li pevné hodnotu nezndmé z, = z, tak, Ze je
2, > 0, bude existovat takovi hodnota nezndmé, x, =
= r,, 2e krom# dvojice &isel (,, 2,) bude feSenim uvazo-
vané soustavy i kazdd dvojice &fsel (z,, ), pro kterou
plati z, > &,. Odtud vSak plyne, %e bude-li funkce

f(zy, ;) mit napt. tvar
[y, ) = 2 + 2y,

muzeme vhodnou volbou hodnot proménnych dosdhnout

toho, aby funkce f(z,, x,) nabyvala hodnoty vétsi nez

jakékoliv pfedem zadané &fslo, a nemuze tedy funkce f

nabyvat na mnoZiné piipustnych feSeni své nejvEetéf

hodnoty. "
Plati vsak tato véta.

Vita 8. Existuje-li pfipustné fedeni dlohy (23), (24),
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(25) a existuje-li takové &islo M, e pro viechna pfipustnd
feSeni (x,, x,, ..., x,) plati

ey + €y + ...+, S M,

potom. existuje ¢ optimdlni Fedent. .

Dakaz. MnoZina vSech nezdpornych feSeni (z,, ,, ...,
..., x,) soustavy (23) je konvexnim mnohosténem K
v prostoru R*. Podle véty 1 je mnozina K vSech bodi
Z = (z,) prostoru R!, pro které existuje takovy bod
(z,, s, - - ., z,) mnohosténu K, Ze plati

2 =0% + ¢ + ... +C2,

konvexnim mnohosténem v R!. Podle prikladu 3 kapito-
ly 2 je tedy K bud (a) prazdnd mnozina, nebo (b) prostor
R, nebo (c¢) mnozina bodu (x,) prostoru R!, pro které
plati @ < x, < b, kde a, b jsou &sla, pro kterd je a < b
nebo (d) mnozina boda (x,) prostoru R!, pro které plati
z, < b, kde b je jisté ¢islo nebo (e) mnozina boda (z,)
prostoru R!, pro které plati a < z,, kde a je jisté dislo.
Protoze vSak podle predpokladu existuje pFfipustné re-
Seni, nemuZe nastat pfipad (a), protoze kromé toho
existuje ¢islo M tak, Ze pro viechny body (2,) mnoZiny K
plati z, < M, nemohou nastat ani pfipady (b) a (e).
At uz nastdva kterykoliv ze zbyvajicich pripadi, opti-
malni feSeni existuje; je jim kazdé reseni (z,, z,, ..., z,),
pro které plati

6% L ex, + ... +ex, =b,
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a takové feSeni existuje, nebof funkce
flxy, 2, ..., 2,) =c@ +cx + ... +c,2,

zobrazuje mnozinu K na mnozinu K.

/yhodné je studovat spolu s tlohou (23), (24), (25)
i tuto tilohu: Mezi nezdpornymi feSenimi (y,, 5, ..., ¥,)
soustavy linedrnich nerovnic

Yy + Yooy + ..o+ Yuloy = €4,
Yilie + Yooz + ... + Yuluz = Ca, (23")

Yy, + Yooy + - T Yulln =€,
nalézt takové, pro které nabyva funkce m proménnych
Y:Y20 - -2 Ym
91> Y25 -+ > Yu) =biyy + by + ...+ buy,  (24)
své nejmensf hodnoty; struéné piseme
g(ylv Yo - - ym) —> min. (25I)
Ulohu (23'), (24’), (25’) nazyvéame tlohou dudln{ k tlo-
ze (23), (24), (25).
Vsimné&me si toho, Ze obé dlohy jsou zadiny systé-
mem &fsel
@11y Gy - - -5 Gras by
A1, Qops - -+ Oay, by,

@1y Byzs -« o9 Qpyps bnn
cl! 02, LIRS ] cn’

a toho, Ze dudlni dloha je dlohou linedrnf optimalizace
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stejného typu jako tloha (23), (24), (25), nebot soustavu
(23’) muZeme pievést na soustavu

— @Y — Yy — s — QY S —Cy,
— Yy — Al — .. — Qpaliy = — Cas
.................................. ,
—OyY— QY — .o - — QyqlYnm é —Cy
a podminku (25') na tvar
—glx,, 25, ..., 2,) > max.

Kromé toho ¢tenai snadno nahlédne, Ze vytvorime-li
k dudlnf tdloze tdlohu dudlni, dostaneme tlohu pivodni;
proto &asto hovoiime o dvojici vzdjemné dudinich iiloh,

Yéta 9. Je-li (zy, 2, ..., 2,) pfipustné fefeni ulohy
(23)’ (24)1 (25) a :).G-l’l: (ylv Yo, - - -,.?lm) Wpu'Stné fedend
dudlni +ilohy, pak plati nerovnost

ey + e+ ..+ 62, oy + by + ...+
+ bl
Ditkaz. UtZijeme-li postupné nerovnosti (23') a (23)

a nezdpornosti pfipustnych feSenf, dostaneme
O+ 6+ oo+ Fex, S
S (M + Y + - Yalaa)Ty +
+ (e + Yooz + -+ YuBua)Te +
+ (yla]n + Ytn + ... + ymamn)xn =
=eu® + G + ... + a,T,) +
+ %(@n® + 0% + ... 4 ayT,) +
+ ym(amlxl + Aoy + v + amnx'n) é
S by + b + oo 4 Yuba
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Vila 10. Pripustnd feSeni (zy, X3, + - . Z)s Wi Yo» - - o
v ey Un) vZdjemné dudlnich dloh (23) — (25) a (23') —
(25"), pro kterd plati
€y + €Ty + oo Ty =by, + by + ... + bpYn

jsou optimdlni.

Dakaz. UkdZeme napf., Ze (2, 2,, . . ., Z,) je optim4ln{
fedenf tlohy (23) — (25); to, Ze (¢y, Yz» - - ., Ym) j@ Opti-
mélnf{ fedeni Glohy (23') — (25'), si étendf zcela analogic-
ky dokdZe sdm. Mdme dokdzat, Ze pro libovolné piipust-
né fefenf (z,, =, ..., z,) ilohy (23) — (25) platf nerov-
nost

€ty + Gty oo G, S 6Ty ..+ Caye
Aviak podle véty 9 plati

ey + @ + oo+ Gty Shy bty + ... + bufm
a podle predpokladu véty 10 plati

by + bzi/z + oo bl =y + s + .. T

yéla 11. Ezistuji-li pripustnd fefeni vzdjemné dudlnich

uloh (23) — (25) a (23') — (25'), pak existuji ¢ optimdini
redent téchto iloh, a je-li (xy, z,, ..., x,) optimdIni Fedent

tlohy (23) — (25) @ (Y1, Yas - - - » Ym) OPtimdInd Fedend dlohy
(23') — (25'), pak plati

Glx1+62z2+ <o +cnz1|=b1y1+bayz+ cen +bmym'
Dikaz. Je ztejmé, Ze stadf dokdzat existenci takovych
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nezapornych feseni (z,, €, ..., 2,), U1, Y25 - - -5 Y.u) SOU-
stav

an®y + @y + ...+ apr, < by,
gy + ooy + ...+ a2, = by,
.............................. s (26)
a’mlxl + a’m2x2 + L + a"mnxn g bms
— Ot — Ao — . — CYn = —Cy,
— Ol —CpYo— ... — Aol = —Cg,
.................................. , (27)
— GyYy — Ao, Y2 — - — @pnYm = — Cp»

Ze plati
by +byo + ... +bYn =07 Lo+ ... +
+ ez, (28)

ProtoZe viak pro kaidé piipustné FeSenf platf podle véty
9 nerovnost

by, + by + .. + by 02 T + . G,
stati misto (28) pozadovat splnéni podminky
by +boys + .. by S0y 0y + ...+ 6y,

a ta je ekvivalentnf s podmfinkou
blyl + b2y2 + L + bmym_clxl_c2x2— e T
—cz, < 0. (29)

Méme tedy dokdzat, Ze soustava m -+ n -+ 1 nerovnic
(26), (27), (29) o m + n nezndmych z,,2,, ..., %, ¥;,
Yas - - -» Y M4 nezdporné. reseni.
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Predpoklidejme, Ze tato soustava nemd neziporné
FeSeni, potom podle véty 4 existuji takovd nezdpornd
éiSl& Elr 52’ MRS ] Em’ N1s 772: s nlm Z-: ie Plati

ané +ané + ... +a,é6,—cd =0,
Arby + Gnbs + ...+ Bk —Ch 20,

a’1n§1 + a2n§2 'I" LACE + a’mn'sm c, }* = 0 (30)
— @y — Gl — - — Gy, + 04 20,
— My — Gy — ... — g7, + A =0,

..................................

— 0T Quelle — -0 T QT + b }‘ = 0
a zdroven
bi& + bk + .. 4 b —eom—eme—  (31)
— ... —cn, <O0.
UkédZeme nejdiive, Ze nemuZe byt 1 = 0. Je-li totiz
= 0, dostaneme, na zdkladé (30), soustavu nerovnic

ané +ané + ... Fanmé, =0,
apt, +apé 4+ ... +a,.8, =0, (32a)

.............................

a’lnél + a2n§2 + L + a’mngm g 0

— A — el — .. A5, =0,
— QM — Gyl — ... — Gy, =0, (32b)

T O el < oo T Ayl = 0.
Podle piedpokladu véty existuje piipustné reseni (z,, z,,
.., %,) tilohy (23)—(25) a ptipustné Feseni (y,, ¥,, - ..,
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y,) tulohy (23)—(25’). Vyndsobime-li j-tou nerovnici
soustavy (32a) &fslem x; a vzniklé nerovnice seéteme,
dostaneme

0 é xl(a'llel + a’21£2 + LEC + amlsm) +
+ Zo(@108; + Agbe + ...+ 308) +

+ xn(aMlEl + azufz + ... + amu‘sm) =
= §lan®, + a2 + ... +a3) +
+ &A@ + Gty + ...+ Gy7,) +
+ 'Em(a’mlzl + amzxz + . + amnxu)

_S_ Elb + £2b2 + Embm

Vynésobime-li i-tou nerovnici soustavy (32b) &islem y;
a vzniklé nerovnice seGteme, dostaneme obdobné
0 =p(—aum —apn— ... —ayun,) +

+ Yo(—Cn — Qe — ... — A7) +
+ ym(_a'ml"h — Qe — ... — amu’]n) ==
=m(—enh —an¥ — ... — G ¥n) +

+ M (Aol — Caslys — ... — QoY) +

+ /I (“‘ﬂm?h — Q3 Yy — ... — am’uym) g

S MG — Mla— -+ o — Nylan
Seétenim takto zfskanych dvou nerovnic dostaneme ne-
rovnici

&, 40+ b —e—py— .. —
— M, =0,
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kterd je ve sporu s nerovnicf (31); musi tedy byt 1 > 0.
Potom vSak miZeme kazdou nerovnici soustavy (30)
délit ¢islem A a ziskat tak soustavu

3 & 5".

u'}%‘}‘an—;‘"‘ st — 2 =c¢,
& & m

Q52 ; +az272+ + G.—— =0,
£ & En

1n Tl + 2n ‘f‘ + . + Dyan g Cp»

h 72 N
— — . —=b
21 2 + Az 2 + + Qi F] m
To vsak znamend, Ze [ 21 , 37;—, cees Z”] je pripustné
feSeni ulohy (23)—(25) a Ze [—ii, —ii y ey -E—Z'—] je pri-
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pustné feseni tlohy dudlni, tj. 1lohy (23')—(25’). Pak
oviem podle véty 9 musi platit nerovnost

" & &
clﬂl‘—+c2%+... +c,,"7 gblT‘+sz2+...
E"l
.+ b )
+ 0 n

Nésobime-li posledni nerovnost éislem 4, dostaneme ne-
rovnost

e F e+ oo F e 08 + 086+ ...+ b6,

kterd je ve sporu s nerovnici (31). Odtud vsak plyne, Ze
predpoklad o tom, Ze soustava nerovnic (26), (27), (29)
nemd nezdporné reseni, je nesprivny, éimz je véta do-
kizana.

Véta 11 umoziuje dokdzat snadno tuto vétu:

Véta 12, PAipusing fedent (x,, x,, - .., %), (Y1, Yss - - -»
Y,.) vzdjemné dudlnich iloh (23)—(25), (23')—(25') jsou
optimdlnimi pravé tehdy, jestliZe jsou splnény tyto pod-
minky:

je-lt 7; > 0, je ayyy + do¥s + ...+ Bl = Cj;
je-lt y; > 0, je ayx, + aur, + ... + @,z = b

Dikaz. Pii dikazu véty 9 jsme ukézali, Ze plati ne-
rovnice
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6y %y + ... 0, S
= (hay + Yol + -0+ Yully) T+
+ (a1 + Yolloe + + oo+ Yulu2) T2 +

+ (ylalu + Yoz, .0+ ymamu) T, =
=y @y, + apZ + ... + a,,x,) +
+ Y2 (@) + Qo + ... + ay,7%,) +

+ ym(amlxl + Q2% + . + amuxn)é
Sbhy + by + ..+ by

Pritom vSak podle vét 10 a 11 jsou piipustnd fedeni (z,,

Xy, oony Tp)y (Y1, Y35 +--» Yn) Optimdlni privé tehdy,
plati-li

Oy + 6%y + ... F 6T, = by + by + ...+ by,
tj. prdavé tehdy, plati-li

ley — (@1 + Yol + ... + YnBua)] 2 +
+ee— W11z + Yolos + ... + Yu0m2)] T2 +

-I'-[G” - (ylal'n + Yooy + ... + yma’nm)]xn =0

[b, — (@@ + a2, + ... + @, 2,)] Yy +
+[by — (@1 Ty + Aoy + ... + @, x,)] Y2 +

+[bm_ (a’mlxl + D2y + ... +amnxn)]ym =0,
ProtoZe kaZdy ze séitancd na levé strand prvni rovnosti
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je nekladny a kaidy ze s¢itanci na levé strané druhé
rovnosti je nezaporny, musi byt proj =1, 2, ..., n
[6i — 1@y + 9200 + -+ + Yulmi)] 7 = 0
aproi=1,2,...,m
(6, — (ay2) + apr, + ... + a,2,)]y: = 0.

Odtud uz snadno plyne tvrzeni véty.

Priklad 5. VySetiujme tyto vzdjemné dualni dlohy:

x + 3z, + oz =4,

2z, + x, <3, (33)
z, + dr, + =z, <3,

2, 20,2, =20,2; 0,2, =0,

f(y, 2o, @y, ) = 23, + 42, + %, + 7, > max. (34)

Y+ 2y, =2,
3y + Yo+ Y =4,

4y, 21, (33)
0N + Yy =1,

$1 =0, =0,y, =0,
9 Yoo ¥o) = 491 + 3y + 3y, > min.  (34')

1
Snadno se lze piresvdddit, Ze (1, 1, - O) je pripustné
Fefeni tlohy (33), (34). Véty 10 a 12 umoziiuji rozhod-

1
nout, zda toto FeSenf je optimilni. Je-li [1, 1, - O}
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optimdlni, musf podle véty 12 platit pro libovolné opti-
maln{ Fedeni (y,, ., y;) ulohy (33'), (34')

h+ 2?/2 = 2,
3y1 + Y2 + Ys = 4:
4y, = 1.
Snadno se 1ze piesvéddéit, Ze tato soustava linedrnich rov-
11 9 1
nic mé jediné feSenf, atoy, = — , 4y = ——, Yy = —.
J % 10 Y2 20 Ya 4

Avsak snadno zjistime, Ze pro piipustnd feSeni [1, 1,

1 0 I 9 ! iloh (33), (34 33') (34') plati
—E‘y -W’%9T ulo ( )!( )a'( )( )Pa‘l

13
22, + 4%, + 23 + 24 =T =4y, + 3y + 3y,,

takie podle véty 10 jsou tato pifpustnd FeSenf i opti-
maélni.

3.3. 0 prahovyeh funkeieh

V tomto odstavci uvedeme jednu aplikaci pojmii
z teorie linedrnich nerovnic a pojmu oddélitelnosti mno-
Zin, pridemZz tato aplikace se vztahuje k teoretické
i k technické kybernetice.

Predstavme si nasledujici situaci. Uréitd skupina se-
stavajicf z n osob se seSla proto, aby rozhodla hlasova-
nim o prijeti néjakého navrhu. Piedpoklidime kvili
jednoduchosti, Ze se nikdo nemiize zdrZet hlasovini, tedy
kaZdy musi hlasovat bud pro névrh, nebo proti nému.
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Pritom hlasy jednotlivych uéastnikti mohou mit rtiznou
., vahu (napf. v zdvislosti na autorité, kterou maji podle
své odborné zpiisobilosti, nebo v zavislosti na mocen-
ském postaveni, které zanjimajf v uvaZované skupiné).
Déle budeme piedpoklidat, Ze hlasujici osoby jsou oéis-
lovdny v néjakém pevné zvoleném pofadi a Ze véhu
j-tého €lena lze vyjadrit nezdpornym éislem A;. Jeden
z pouzivanych zpisobt pro zhodnocenf vysledku pro-
vedeného hlasovani spoéivd v nasledujicim: Jestlize
j-ty €élen skupiny (s vahou hlasu A,) hlasuje pro néivrh,
predstavujeme si, Ze jeho prispévek pro piijeti ndvrhu
je A;; v opatném piipadé poklidame jeho prispévek pro
pfijeti ndvrhu za nulovy. Po skonéeném hlasovani se-
¢teme piispévky jednotlivych Glenti a ziskany soudet
porovname s jistou hodnotou B, kterou povazujeme za
,,celkovy potet hlasi®, jenz je nutny a postaéujici pro
plijeti daného ndvrhu. Jestlize soudet piispévki (hlast)
jednotlivych élent neni mensi nez B, povaZzujeme ndvrh
za plijaty, v opaéném pripadé konstatujeme, Ze ndvrh
prijat nebyl.))

Neni tézké si rozmyslet, Ze lze tuto situaci popsat za-
vedenim jisté funkce f n proménnych z,, z,, ..., z,,
plidemz kazd4d proménné x; nabyva pouze dvou hodnot

1) Specidlng v plipaddé 4, = A, = ... = A, muZeme mluvit
o ,,demokratickém‘‘ hlasovédni. Na druhé strang, situaci, kdy
ndktery ze é&lent skupiny by chtél prosazovat svij ndzor na-
mifenym samopalem, bychom na3im linedrnim modelem ne-

popsali.

&8



0 a 1. Pfitom poloZime a; = 1 v tom piipads, jestliZe
j-td osoba hlasuje pro navrh a x; = 0 jestliZe j-t4 osoba
hlasuje proti ndvrhu. Funkee f(z,, z., .. ., ,) muZe na-
byvat dvou hodnot, a sice hodnoty 1, jestlize ndvrh byl
piijat, a hodnoty 0, jestlize ndvrh pfijat nebyl. Z toho,
¢o bylo fedeno, je patrné, Ze funkce f(z,, z,, ..., z,) je
definovédna timto predpisem:

f(&:1, &, ..., &) =1, jestlize A& + ... + 4,5, =B
a

f(&1, &, ..., &) =0, jestlize A% + ... + A,&, <B.

Pifklad 6. Polozime n =4, 4, =1, 4, =2, 4, = 3,
A, =4 a B = 3. Funkee f(z,, 2,, 23, 7;) je definovina
predpisem:
f(&1s &, &5, &) = 1, jestlize &, + 26, + 38, + 46, =3 *)
f(&, &, &, &) = 0, jestlize & + 2&, + 3&, + 48 < 3.

Sestrojime nyni tabulku hodnot této funkce.

517 52’ 53! EA Il(flr 52’ ‘539 54) ‘51’ 52, 53’ 54 I f('El’ Ezs Sts’ EA)
0000 0 1000 0
0001 1 1001 1
0010 1 1010 1
0011 1 1011 1
0100 0 1100 1
0101 1 1101 1
0110 1 1110 1
0111 1 1111 1
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Popiseme konstrukei tabulky. V levém sloupci jsou
zapsany viechny uspofddané étvefice (&, &, &;, &), kde
& =0nebo & =1proj =1, 2, 3 a4. Snadno zjistime,
Ze poclet téchto étvefic je 2* = 16. (Kaidé &; nabyva
dvou hodnot, a tedy celkovy podet étvefic je 2 x 2 X
X 2 X 2 = 21.) Celkovy pocet ¢tvetic v nasi tabulce je
16, pridemz z4dn4 Etverice se nevyskytuje dvakrat. Z to-
ho tedy vyplyva, Ze v tabulce se vyskytuji vSechny
étverice, kazdd prdavé jednou. Na poradi, ve kterém vy-
pisujeme &tvefice, sice nezadlezi (pokud oviem odpovida-
jicim zptisobem uspoiddime hodnoty funkce), pozna-
menejme viak pro tuplnost, Ze pfi konstrukei tabulky
jsme pouzili tzv. lexikografického usporfdddni. Lexiko-
grafické uspofddéni je v nasem pfipadé definovino tak-
to: Necht (&, &, &, &) a (71, T3, T, 7,) jsou dvé libo-
volné &tvetice z nul a jednicek. Ctveiice (&,, &, &, &)
je pred Ctvefict (T,, 7Ty, Ty, 7,), jestlize nastdva alespori
jeden z téchto piipadii:

1. £ =0, 7, = 1 (ostatni & a v; mohou byt libovolnd),

2.8 =1,,8& =0,7, =1 (&, &, 7, a 7, mohou byt libo-
volnd),

3.5 =17,8=1,56=0, 1, =1 (£ a 7, mohou byt
libovoln4) nebo

4.6, =7,6=7,§ =7, & =0a7 =1

Ctenat snadno ovéH, Ze poiadi dtvefic v tabulce sku-
tené odpovidd lexikografickému usporddinf 1—4.

Pri konstrukei lexikograficky uspotidané posioupnosti
dtveric 1ze pouzit nasledujicfho mechanického postupu:
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Kazdé étvefici & = (&, &, &, &) ptifadime ohodnoceni
w(E) = &.28 | £,.9 4 £.90 4 £ 20

a Gtvelice uspotidddme vzestupné podle rostoucich w(g).

Po této kratké exkurzi do ¢isté kombinatorickych ota-
zek sc vratime k funkei f(2,, @,, 2,, ;). Funkee f(z,, ,,
x,, 2,) je definovina vztahy (*) a jeji hodnoty lze preéist
z tabulky. Ze vztahi (*) nebo z tabulky se lze presvédéit
o tom, Ze v uvaZovaném piikladé je ndvrh pfijat pfi
vsech moZnych hlasovanich s vyjimkou téchto tff pii-
padi:

1. Nikdo nehlasuje pro ndvrh; 2. pro nivrh hlasuje
pouze prvni idastnik; 3. pro navrh hlasuje pouze druhy
ucastnik. Idealizovand situace s hlasovinim nds privadi
k pojmu tzv. prahové funkce. Zatim jsme predpokladali,
Ze ¢isla 4, 4,, ..., 4, jsou neziporni; tento predpo-
klad souvisel s konkrétni povahou nasi ,hlasovaci*
situace. Obecné vSak tento pfedpoklad nemd opodstat-
néni, nebot prahové funkce se vyskytuji i v jinych apli-
kacich matematiky, jako napf. v neurofyziologii, v sla-
boproudé elektrotechnice, pii konstrukei poéitaéa, v psy-
chologii, sociologii, toxikologii, teorii baletu aj.

Definice, Prahovou funkei n proménngjch budeme rozu-
mét funkei f(x,,z,, ..., x,) definovanou na mnoziné
vSech uspordidanych n-tic z jedniéek a nul a zobrazujici
tuto mnozinu do mnoziny {0, 1}, pri¢emz musi byt splné-
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na tato podminka: Existuji redlnd éisla 4,, ..., 4,a B
tak, Ze plati:

e gy - [Ldestlie 4\ 4+ .. + AL, 2 B,
(€15 -2 5a) =1 0, jestlize 4,¢, + ... + 4.6, <B.
(35)

Cisla 4,, ..., 4, se nazyvaji vahami a &islo B prahem.

Z definice prahové funkce je patrné, Ze je to funkce
dosti specidln{ struktury. V matematické logice a jejich
aplikacich se definujf tzv. logické funkce. Uvedeme tuto
definici.

Definice. Logickou funkci n proménnych (oznadeni
F(z,, ...,z,), budeme rozumét zobrazeni mnoZiny
viech uspofddanych n-tic z nul a jedniéek do mnoziny
{0, 1}.

Pozndmka. Termin logicka funkce pochdzi od toho, Ze
promeénné z; i hodnotu funkce F(z,, ..., z,) lze interpre-
tovat jako logické vyroky; pfitom 1 interpretujeme jako
pravdivy vyrok ,,ano* a 0 jako nepravdivy vyrok ,,ne.
K ilustraci pojmu logické funkce viz cviéenf 8 na konci
kapitoly. Srovndnim obou dvou definic dostavame tuto
-zlejmou vétu:

V&a 13. KaZdd prahovd funkce je logickou funlkcs.

Obricené tvrzeni viak neplatf, jak vyplyvd z nasledu-
jicfho prikladu.
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Piiklad 7. Méjme logickou funkei ¢(z,, z,, x,), defino-
vanou takto: ¢(0, 0, 0) =¢(1,1,1) =1, ¢(&,, &, &) =0,
jestlize (&, &, &) # (0, 0, 0) a (&,, &, &) # (1, 1, 1).
Dokézeme, Ze funkce ¢(x,, ., z;) neni prahovi, tj. Ze
neexistuji ¢isla 4,, 4,, 4, a B tak, aby platilo

(&, &, &) = 1, jestlize 4,&, + 4,8, + A,¢, = B,
P e &l T O,jestliieAlgl + 4,6, +A3§3 < B.

Dukaz provedeme sporem. Kdyby totiz takovi ¢isla
existovala, musela by spliiovat nerovnosti

Al +A2+A3 = B, (?’(1»1:1)=1):
0=B, (9(0,0,0)=1),

—4, >—B, (¢(1,0,0)=0),
- AZ > —B’ (‘P (0’ 1: O) = 0)!
—4,>—B, (¢(0,0,1) = 0)

Nyni druhou nerovnost vyndsobime dvéma a viechny
nerovnosti takto vzniklého systému seéteme. Tim do-
stdvame nerovnost 0 > 0, kterd viak znamend spor.

Z pifkladu 7 tedy vyplyv4, Ze ne kazda logickéd funkce
je prahovid. Na druhé strané, jestlize néjaki logickd
funkee f(z,, ..., z,) je prahov4, nejsou koeficienty a pra-
vé strana ve vztazich (35) uréeny jednoznaéné. UkdZeme
si tuto skutednost na prahové funkei tif proménnych
v nésledujfcim piikladu. Dukaz v obecném pifpadé si
étendf lehce provede samostatnd.
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Priklad 8. Vy3etiujme prahovou funkei tif promén-
nych y(z,, z,, ,) definovanou takto:

1, jestlize & + & + & = 2,

y;(xl, ¥y, xa) = {O, jestliie &+ &+ & <2,

Nenf tézké ovérit, ze funkcee p(x,, x,, x;) je detinovina téz
napf. takto:

) = 1, jestlize 10&, + 11§, -+ 12§, = 20,
YTy, Tp, Ty) = 0, jestlize 10&, + 11§, + 12£, < 20.

Posledni dva piiklady nds privadéji k myslence, Ze jedna
z nejdulezitéjsich otazek, ktery vznikaji v teorii praho-
vych funkef, je ndsledujici: Je dana logickd funkce ¥
n proménnych. Mdme rozhodnout, zda tato funkce je
prahova, a v kladném piipadé nalézt alespori jedno vy-
jad¥eni ve tvaru (35). Tato otdzka je v celé své sffi znac-
né slozitd a lze fici, Ze doposud nebyla ani zdaleka uspo-
kojivé dofesena. V nasem vykladu se omezime na to,
ze ukaZeme, jak posledni otdzka souvisi s pojmem oddé-
litelnosti, a jako dusledek vyslovime jedno kritérium.
Logicks funkce je podle definice definovdna na mnoziné
viech uspofddanych n-tic (&, 6, ...,&,), kde & =0
nebo & =1 proj =1, 2, ..., n. Kaidd takovd n-tice
je bodem n-rozmérného prostoru R*. VSecky tyto body
tvori jistou koneénou mnozinu v R*. Oznaéme posledn{
mnozinu symbolem B*1!). Oznalme dile symbolem

1) Mnozina B® je mnoZinou vrcholtt n-rozmérné jednotkové
krychle (viz [1] str. 69—70).
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F~1(0) mnozinu v&ech bodu (&,, &, ..., &,) z B*, pro néz
plati F(&,, ..., &,) =0, a symbolem F~!(1) mnozinu
v8ech bodi (&,, &, ..., &,), pronéz plati F (§,, ..., &,)=
=1, tj. symbolicky (tohoto typu symboliky bylo uz
pouzito v odst. 2.2):

F10) ={(&, ..., &) € B, [F(&, ..., &) =0}
Fr(1) ={(&, ..., &)e B, |F(&, ..., &) =1}

(Mnoziny F~1(0) resp. F71(1) se obvykle nazyvaji vzory 0,
resp. 1 pii zobrazeni pomoci funkee F.)

Nyni je jasné, ze zaddnim funkce F(z,, ..., z,) json
jednoznaéné uréeny mnoziny F1(0) a F71(1), a obracens,
ze znalosti mnozin F7(0) a F1(1) lze jednoznaéné uréit
funkei F. (K uréeni funkce F stadi ovSem zndt jednu
z mnozin F~1(0) nebo F1(1)).

Predpoklidejme nyni, Ze F(z,,...,x,) je prahovi
funkce, a necht platf

F(&, ..., &) =1, jestlite 4,6, + ... + A,£, = B,
F(&, ..., £) =0, jestlize A&, + ... + A&, <B.
(35)

Posledni vztahy lze pfepsat ekvivalentnim zpiisobem
takto:

(51) ev ey Ew) € F—l(l), jesujie A1£1 - A,‘E" 2 B,
(&, ..., &) € F1(0), jestlize 4, + + 4,t, < B.
(35")

Tim je v8ak dokdzédna nésledujici



Viéta 14, Funkce F (x,, ..., z,) je prahovd prave tehdy,
jestliZe nastdvd alespori jeden z téchto dvou pripadi:
a) alespori jedna z mnozin F1(0) a F7Y(1) je prdzdnd,
b) mnofiny F71(0) a F(1) jsou neprdzdné a oddélitelné.

vy,

Abychom mohli vyslovit zajimavéjsi kritérium pro to,
ze funkce F' je prahovi, zavedeme pojem konvexniho
obalu koneéné mnozZiny boda prostoru R*. V dalsim
textu pouzivdme Casto pro soudet a, +a, + ... + a,

symbolického zipisu > a.
=1
Definice. Necht A je koneénd neprdézdnd mnoZina
bodu prostoru R®. Necht mnozZina A obsahuje body

(1) (1) 1)
(xl ’x?.""’zﬂ ))
(2) (2) (2)
(2, 2, o 2)),

Konvexnim obalem mnofiny A (oznaleni K(A)) budeme

rozumét mnoZinu definovanou takto: K(A) obsahuje

kazdy takovy bod (z,, ..., z,) € R*, pro ktery existuje

k-tice &fsel A,, 43, ..., A, tak,2ed, =0(x =1,2, ..., k),
k k

%; =§2,‘z,‘-"’proj= 1, 2, ...,nagln =1

Priklad 8. Necht body (z,, #,), (2, ¥2), - . . (%x, ¥,) jSOu
vrcholy konvexnfho mnohodhelnfka M. Polozme P =
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= {(xl ’ ?/1), (272, ?/z). ey (xm yn)}: takie P je jiSt’é’ koneéné’
mnozina. Snadno lze ukdzat, Ze platf

K(P) = M.
Diéle plati zfejmé
Lemma. Plati K(A) D A.
Dikaz prenechivime é&tendfi. (Ndavod: Poloite 4, =

=0, ...y Ay =0,4, =1, 24,,=0, ..., 4 =0 po-
stupné prox =1, 2, ..., k).

Yéta 15. Konvexnt obal K(A) je konvexnim mnohosténem
v R*,
Dikaz. Uvazujme mnoZinu S téch bodi (4,, ..., 4,) €
€ R%, pro jejichi soufadnice plati 4, =0 (x =1, 2,
k
...,k)a >4, =15 je zfejmé konvexnim mnohosté-
x=1
nem v Rk
Zobrazeni definované vzorci

k
T = 2 any‘)
x=1

je linedrnf zobrazenf R* do R*, které zobrazuje S na K(A).
K zakondenf dikazu nynf zbyvé pouizit véty 1.

Nyni jsme schopni zformulovat a dokdzat vétu:

Véta 16. Logickd funkce F(z,, ...,z,) je prahovou
funkci prdvé tehdy, jestliZe je splnéna ndsledujici podmin-
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ka: Bud plati F~1(0) == ¥, nebo F'(1) == 4§, nebo mnofiny
F~1(0) @ F(1) json obé neprdzdné a plati

K(F1(0)) Ny K(F*(1)) — 0. (36)

Dikaz. A. Postacitelnost podminky. Necht je splnéna
podminka véty. Rozlisime tyto dvé moznosti:
1. Plati bud F7(0) = ¢, nebo FI(1) = #. V tomto
ptipadé je funkce F prahovi na zdkladé véty 14.
2. Plati F71(0) # 6 a F71(1) # @, a tedy téZ vtah (35').
Konvexni mnohostény K(F~'(0)), a K(F71(1)) jsou tedy
na zdkladé véty 3 oddélitelné, tj. existuji éisla 4,, 4,,
..., A, a B tak, ze plati:

A+ ...+ A4,& <Bpypro(&,...,¢&,) e KF(0)
)

At + ...+ A&, =Bpro (&,...,8) € KF(1) (37)

JestliZe si viak uvédomime, Ze plati (viz lemma)
K(F(0)) D F1(0) a K(F~*(1)) D F(1), ptichazime k z4-
véru, ze mnoziny F71(0) a F'(1) jsou také oddélitelné,
coz bylo tfeba dokdzat. ‘

B. Nutnost podminky. Necht funkce F je prahovi, tj.
necht existuji ¢isla 4,, ..., A, a B tak, Ze plati vztahy
(35). Jestlize jedna z mnozin F71(0) nebo F1(1) je prazd-
na, neni uZz co dokazovat. Predpoklidejme tedy, Ze
plati F71(0) == 0 a FI(1) # 0. Dokdzeme, Ze plati ne-
rovnice (37), ¢imz bude dikaz dokonéen. Dokdzeme, Ze
plati prvni ze vztahti (37). Druhy se dokaZe zcela ana-
logicky. Necht mnozina F7I(1) obsahuje body

@O, oL 2®), L @, 2y, L @, L 2.
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Podle predpokladu plati
AaP + ... + Az =B (38)

prox = 1,2, ..., k. BudiZ nyni (z,, ..., 2,) € K(F(1)).
Z nerovnosti (38) dostavame

Az, + ... +4,x, = 4, ZZ ¥ 4+ ...

x=1

+ 4, Z Aay = 2 Ada? + ... + Aay) =

coz bylo tieba dokézat.

Z podaného dtikazu vsak vyplyvd ndsledujici véta,
kterd mé daleko obecnéjsi platnost nez pouze v teorii
prahovych funkei.

‘éta 17, Necht A a B jsou dvé neprdzdné koneéné mno-
Finy bod# v prostoru R™. Potom jsou mnofiny A a B oddéli-
telné pravé tehdy, jestlize plats

K(A) N\ K(B) =
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3.4. OrozliSovani objekti

Téma tohoto odstavce se uzce pfimyka k tématu pred-
chézejiciho odstavee. Povime si néco o klasifikaci tdaju.
V procesu soudasné védeckotechnické revoluce se velks
pozornost vénuje vyzkumam souvisejicim s perspekti-
vou automatického teSeni tzv. intelektudlnich uloh, je-
jichZz feseni mohl podle tradi¢nich nazorad provadét
pouze ¢lovék. Tak napf. poditade hraji Sachy, uzivaji
se PP predpovidani pofasi, k rozlisovini zvukt Fedi,
k automatickému ¢teni . rukopist, k nalézani diagndz
v mediciné aj.

Mnohé z téchto uloh vyzaduji schopnost klasifikovat
(rozliSovat) velké mnoZstvi adaju, popisujicich zkouma-
né objekty, popiipadé celé situace. Viimnéme si napf.
principu, na kterém pracuji smyslové organy ¢lovéka
a Zivodichit. JestliZe pozorujeme néjaky predmét, pro-
bihd v podstaté tento proces: Jednotlivé svételné signa-
ly prichazeji na sitnici oka a prinaseji informaci o roz-
mérech, tvaru, velikosti, vzddlenosti, barvé a prostoro-
vém umisténi objektu. Tato informace se piendsi pro-
stfednictvim nervové soustavy do prislusnych center
a tam se vytvaii obraz pozorovaného objektu. Tento
mechanismus zrakového vnimani ndm umoziiuje rozli-
sovat velmi mnoho navzdjem raznych objekti (rozli§ime
stal, knihu, ¢lovéka atd.). Jako ilustraci matematickych
metod a problému, které vznikaji v souvislosti s proble-
matikou rozlisovani objektti, popiSeme jisty jednoduchy
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matematicky model, ktery budeme nazyvat klasifikd-
torem objekta.

Predstavme si, ze mame k dispozici jistou obdélniko-
vou desti¢ku a kousek kridy. Kiidou mizZeme na destiéku
kreslit riizné obrazce — objekty, napf. pismena latinské
abecedy. Clovék drzici kiidu napiSe néjaké pismeno,
potom toto pismeno smaZe a napise néjaké jiné pismeno
atd. Nasim tkolem je diskutovat existenci zaiizent,
které by umoziiovalo automaticky rozhodovat, které
pismeno je na destiéce vyobrazeno. Situace je zde totiz
komplikovana tim, Ze riznfi lidé pisi napf. pismeno A4
razné a dokonce ani tyz ¢lovék nenapiSe dvakrit za se-
bou dvé stejnd pismena A. Zatizeni, které chceme na-
vrhnout, musf predevsim ,,umét ¢ist* napsand pismena.
Kazdé pismeno na destiéce je zobrazeno vlastné tim, Ze
nékteré body na desti¢ce jsou bilé (lez{ na nich vrstva
kiidy), ostatni jsou c¢erné. Dokonalé zafizeni by tedy
muselo reagovat na jednotlivé body desticky, coZ je




oviem neuskuteénitelny poZadavek, odporujici ziklad-
nim fyzikdlnim faktim.

Abychom nalezli vychodisko z této situace, rozdélime
obdélnfkovou tabulku na koneény podet oblasti, oznade-
nych feknéme 0,, O,, ..., O, (viz obr. 7.). Nynf kazdé-
mu objektu na desti¢ce pfifadime jistou podmnozZinu
mnoziny {0;, O, ..., 0,}, a sice mnozZinu téch oblastf,
jejichZ vnitikem prochazi ¢ara objektu. Dile predpokla-
déme, Ze oblasti O; odpovid jisté zafizeni, které vytvarii
signél hodnoty a;, jestliZe vnitikem oblasti prochdzi ¢ira
pismene, a vytvari signdl nula v opaéném pripadé. Jestli-
Ze je tedy na desticce jisty objekt, vznikne jist4 mnozina
signali. Tyto signdly, pomocf nichZ je objekt zakddo-
vén, prichdzeji ddle do centrélniho zafizeni, jehoZ dko-
lem je provést klasifikaci objektu.

ProtoZe ndm jde o pouhé vysvétlen{ principd, piijme-
me dale je$té tento zjednodusujici predpoklad: Zaiizeni
bude rozliSovat navzajem pouze dvé tridy objekti,
napf. typ 4 od typu B. Nakonec ndm tedy zbyva popsat
schéma prace centrilniho zafizeni. Toto zafizeni bude
sestavat ze dvou ,,sériové zapojenych® &dsti: zarizent
na s&itdni signdle a klasifikujici zafizeni. ZaFizeni na
séitani signdld prijimd jednotlivé signily z desti¢ky a na
jeho vystupu se objevuje signél, jehoz hodnota je rovna
souc¢tu hodnot jednotlivych signili. Klasifikujicf zaff-
zeni srovndvi hodnotu signdlu-souétu s jistou danou
hodnotou a, nazyvanou prakem: Jestlize hodnota signalu
neni mensi nez prih, pak patii objekt do jedné tridy,
v opaéném piipadé patii objekt do druhé tiidy. Sche-
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maticky je popsany klasifikitor zndzornén na obr. 8.

Nyni napiSeme nerovnosti, popisujici funkei klasifikd-
toru. Za tim 1ddelem oblasti O; ptifadime dvouhodnoto-
vou promeénnou x; (j =1, 2, ..., n), pfiéemz poloZime
x; = 1, jestlize objekt prochdz{ wmitikem O; a z; =0
v opalném pripadé. Timto zplsobem je tedy objekt

N a

,’F\\ D: Z 2 _l-— \$

Obr. 8.

na desti¢ce popsén n-tici (z,, ,, ..., x,). ProtoZe zafi-
zeni neni schopno rozlisit jemnéjsi rozdily mezi objekty,
muzZeme jednoduse ztotoznit objekty na destiGce s n-tice-
mi (x,, &, ..., ¢,). Z tohoto diivodu budeme misto
,,objekt popsany n-tici (z,,x,, ..., x,) Fikat prosté
,,objekt (z,, z,, ..., 2,). Objekt nyni patii do prvnf
tidy, jestlize plati

Saz =a, (39)
i=1
a patiti do druhé tiidy, jestlize

2 ag;<a. (40)
=1



Popsany klasifikdtor tedy rozdéli danou mnozinu objek-
ti na dvé tiidy. !

Nyni budeme zkoumat mnozinu klasifikdtort popsa-
ného typu pii pevné zvoleném rozkladu na systém oblas-
ti {0,}, avSak pii libovolné volitelnych hodnotdch vah
a; a prahu a.

Zformulujeme problém syntézy klasifikdtoru. Je dana
jistda mnoZina objektt € = {(z,, z,, ..., z,)} C B” (viz
str. 64) a jeji rozklad na dvé podmnoZiny:

C—AUB, AN DB = .

Problém zilezi v nalezeni vah a; a prahu a tak, aby
odpovidajici klasifikitor rozlisoval mnozinu A od B.
(Mnozina € je obvykle vlastni podmnozinou!) B*.)

Je ziejmé, Ze k redeni posledniho problému je nutno
FeSit soustavu linedrnich nerovnosti (39), (40). My se
viak — podobné jako v piedechdzejicim odstavei —
omezime na otdzku existence. Z véty 17 predchozfho
odstavee vyplyva nsdledujicf

Véta 18. Klasifikdtor (tj. koeficienty a,, ..., a, a a)
rozlisujici dvé tridy objekti N a B existuje pravé tehdy,
jestlife je splnéna jedna z téchio dvou podminek:

a) alespoti jedna z mnoZin N a B je prdzdnd,

b) obé dvé mnoZiny jsou neprizdné a plati

K@) N K(B) = 0.

1) Rikdme, e M je vlastni podmnoZinou mnoZiny N, jestlize

MCNaM #N.
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Doufédme, Ze se ndm v tomto odstavci alespon ¢dstecné
podafilo ukdzat, v éem spoéivd problematika rozliso-
vini objektd. Poznamenejme, Ze celd problematika i me-
tody fedeni jsou podstatné slozitgjsi. Tak predevsim
obvykle jde o rozlideni nékolika téfd objekti, jak jsme
ostatné uvddéli na zaddtku tohoto odstavce. Za druhé

2 ws

v uvaZzovaném nejjednodus$im piipadé se vytvaii prosty

n
soudet signalit > a,x;, zatimco v obecném piipadé se po-
i1
uziva i slozitéjsich (nelinedrnich) zdvislosti na promén-
nych x;, coZ ptirozené mi za nasledek zvétseni rozliso-
vacich schopnosti klasifikdtoru.

Nakonec nejdilezitéjsi poznamka. MnoZina rozliso-
vanych objekta nebyva zpravidla a priori znima, nebo
obsahuje ,,ptili§ mnoho* prvkd, nebo je sloZitd apod.
V takovych ptipadech se k syntéze klasifikdtort obvykle
pouzivd metod adaptace (ucéeni). Tyto metody spo-
¢ivajf v tom, Ze na klasifikator prichdzi v néjaké posloup-
nosti pouze jistd podmnoZina ,,typickych‘ objektu,
u nichz je zndmo predem, do které téidy prislusny objekt
pat¥i. Na zakladé ucici posloupnosti objektt se uréi
parametry klasifikdtoru.

a1
(-1}



Cviceni

Ve cvifenich 1—5 je 2; = 0.
1. Dokaite, Ze tiloha linedrni optimalizace

2r, + 55, = 3,
—3z, + 8z, < —35,
3z, — 2z, - max.

nemd piipustné feseni.
2. Dokazte, Ze 1loha linedrni optimalizace

—3x;, + 2z, = —1,
rn— T, = 2
r, + x, > max

m4, piipustnd FeSeni a nemd optimalni reseni.

3. Bez primych vypoétu dokaite, Ze tiloha dudilni k dloze
ze cvifeni 2 nemd piipustné feseni.

4. Dokaite, Ze tloha linedrni optimalizace

y +x2 §4:
3t =1,
e +x3§l,
Zy +x3 él’
T3+ x, =3,
r, -+ %y + 3 + x4 > max

mé optim&lnf fefeni z;, =1, z, =1, 23 = 0, z, = 1.
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5. Dokaite, Ze tloha linedrni optimalizace

—2x, + x, < 2,
2y + 2, <2,
r + 2, =5,
z, — @, — max

m4 optimaln{ feSeni x, = 4, x, = 1.

6. V odstavci 1.3 jsme definovali pojem konvexni mno-
ziny. Necht K je libovolnd konvexni mnoZina obsahu-
jici koneénou a neprizdnou mnozinu bodé M prostoru
R™. Potom plati K D K(M) (tento fakt se téZ nékdy vy-
jadtuje slovné: Konvexni obal je ,,nejmensi‘ konvexni
mnoZina obsahujici danou mnozinu).

7. a) Urdete podet prvki mnoZiny B" — viz str. 64.
(Odpovéd: 2*.) b) Urdete pocet vech logickych funkei n
proménnych. (Odpovéd: 22".) (Navod: Viimnéte si, Ze
tento podet se rovnd podtu prvki mnoziny B*.)

8. (Ilustrace pojmu logické funkce.) Necht A, B, C
oznaduji libovolné vyroky. Témto vyroktm piifadime
dvouhodnotové proménné a:A,‘ Zg, ¥ definované takto:
x, =1, jestlize je vyrok A pravdivy, z, = 0, jestliZe
je nepravdivy; zcela analogicky je vyznam proménnych
xg a x¢. Necht nyni vyrok C vznikne operaci disjunkce
(logického souétu), symbolicky to zapisujeme ¢ = A V
V B, tj. C = A V B je pravdivy pravé tehdy, jestlize
je pravdivy alespori jeden z vyroka A nebo B. V tomto
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pripadé je x logickou funkci proménnych z, a x5, po-
loime

Zg = fo y B (Xa, Zp)-

a) Sestrojte tabulku hodnot funkee f,. (x4, zy).
b) Ukaite, Ze plati

Ty =max (T, ¥p) =, + Ty — TuZp-

9. Piifadme kaZdé uspoiddané &étvefici z nul a jednidek
(51) Ezy an 64) éfBlO

A&y, &, &, &) = £,2° + £2° + £2! + &,
Ukazte, Ze lexikograficky uspofddané posloupnosti &tve-

tic odpovida rostouci posloupnosti &isel d(&,, &,, &, &,).

10. UvaZujme mnozinu vsech uspoiddanych n-tic (&,
&, ..., &)z nul a jednicek. Kazdé n-tici (§,, &, ..., &)
prifadime dislo

A&, 6y o 6) = E2TT 52T+ L+ &

Na mnoziné vSech n-tic definujeme vztah lexikografické-

ho uspofiddni: Budeme iikat, Ze n-tice (&, &, ..., §,)
je pred n-tici (,, ...,7,) a zapiSeme to symbolicky
(El! 52) LR Eu) < (771’ 772) ey 77"), jestliie

d(&, &, o0 &) <dny,mes oo .m).

Ukaite zpusob konstrukce lexikograficky uspofddané
posloupnosti n-tic, analogicky popsanému zptisobu uspo-
Fadani Ctvefic.
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