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1. ťJVOD 

V tejto knižke najdete úlohy s konkrétnými číslami. 
Keby tieto čísla neboli příliš veTké na to, aby sa s nimi 
dali priamo vykonávat aritmetické operácie, boli by 
mnohé z předložených úloh celkom triviálně. Takto sú 
však obťažnejšie, a na ich riešenie je potřebné použit 
obraty obvyklé pri dokazovaní matematických viet 
alebo pri riešení dókazových úloh. Medzi týmito dvoma 
činnosťami vlastně neexistuje přesná hranica. V dóka-
zových úlohách však často možno z uvádzaných pred-
pokladov usudzovať na postup, ktorý pravděpodobně 
privedie k cieíu. V tu předkládaných úlohách to bude 
niekedy obťažnejšie, pretože konkrétnu vlastnost uda-
ných čísel, ktorá je pri riešení potřebná, bude třeba 
vybrat z mnohých vlastností týchto čísel, a formulácia 
úlohy vóbec nemusí na túto vlastnost upozorňovat. J e 
celkom možné, že pri zdanlivo malej zmene číselných 
parametrov úlohy sa z relativné Tahkej úlohy stkané 
úloha prakticky neriešiteťná. Z tohto hradiska sú, tu 
obzvlášť nebezpečné tlačové chyby, ktorých n^ožnost 
sa nedá celkom vylúčiť. Aj predkladané úlohy velmi 
róznej náročnosti, od riešitelných spamáti až po vyžadu-
júce umělé obraty, ktoré třeba najprv nájst. Autor ešte 
poznamenáva, že jeho zámerom bolo rozšířit sortijnent 
úloh z teorie čísel o ďalšie druhy, teda nie nahradit 
svojimi úlohami doterajšie typy úloh. 

Takmer všetky úlohy v tejto knihe aýé vyriešené. Od-
porúčam však čitatefovi, aby sa vždy/najprv pokúsil 
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o samostatné riešenie úlohy, alebo aspoň dodatočne 
porozraýšral nad postupom, ktorým by úlohu sam rie-
šil. Tak mu kniha podstatné viac pomóže prineskoršom 
riešení iných úloh. 
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2. PŘEDPOKLÁDANÉ PROSTRIEDKY 
A METÓDY 

Předpokládáme, že čitatel má k dispozícii běžné ma-
tematické tabuTky, a připadne kalkulačku. Nepředpo-
kládáme však samočinný počítač alebo programovatelná 
kalkulačku; k možnosti ich použitia sa vrátíme ešte 
v tejto kapitole, pri analýze pojmu velkého čísla. Ďalej 
předpokládáme dobré matematické znalosti na úrovni 
strednej školy, a o niečo hlbšie znalosti z teorie čísel. 
Tieto doplňujúce znalosti možno získat například 
z [2], [3], [10], [13], ale sú zhrnuté aj v nasledujúcej 
kapitole tejto knižky. 

Rieáenie úlohy má byť podia možnosti krátké, ele-
gantné a elementárne. Tieto požiadavky si aspoň čiastoč-
ne vzájomne odporujú, a preto nie vždy možno určit, 
ktoré z dvoch riešení je lepáie. (Stále máme na mysli len 
správné riešenia!) Ani krátkost riešenia nie je celkom 
jednoduchý pojem. Například jedno riešenie móže byť 
kratáie než iné jednoducho preto, že sa pri úpravách 
robí vždy viac krokov naraz, alebo preto, že sa niektorá 
čast přehlásí za triviálnu, a jej dókaz sa vynechá. To 
nemusí byt chybou, ale při hodiiotení krátkosti riešenia 
by sme mali brat do úvahy celu dížku myšlienkovej 
cesty, ktorou sa dospěje k žiadanému výsledku, a nie 
dlžku jej zápisu. Aby sme teda dížku riešenia hodnotili 
celkom objektívne, musel by byť presne stanovený po-
žadovaný stupeň podrobnosti zápisu. Nie je to sice 
principiálně nemožné, ale my sa tým rozhodne nebude-
me zaoberat. Ťažkosti pri hodnotení elegantnosti rieše-
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nia by boli ešte váčšie, jednak preto, že ide o čiastočne 
subjektivný pojem, a za druhé preto, že niekedy sa 
namiesto póvodnej úlohy rieši všeobecnejši» úloha. Aj 
elementárnost riešenia je zložitý (a dokonca niekedy 
viacvýznamový) pojem, tu však máme pře riešitela 
aspoň takéto odporúčanie: Dávajte v riešeniach úloh 
přednost takým větám a postupom, ktoré sa bežne po-
užívajú při riešení úloh MO. Neobmedzujte sa však ná-
silné na tieto postupy, ak už viete viac, ale nepoužívajte 
silnejšie metódy a výsledky iba preto, aby ste ukázali, že 
ich ovládáte. 

Pokial používáte pri riešení matematické tabulky, 
tak im „bezvýhradne dóverujte". Tlačové chyby sa sícje 
v tabulkách móžu vyskytnúť, sú však málo pravděpo-
dobné; pravděpodobnost chyby vo Vašom výpočte je 
asi váčšia. Nečítajte však z tabuliek viac, než sa v nich 
tvrdí. Ak například v štvormiestnych logaritmických 
tabulkách vyčítáte log 2 = 0,3010, tak to znamená len 

0,30095 ^ log 2 ^ 0,30105. 

Pravda, namiesto neostrých nerovností možno písať 
ostré, ale to už nevieme z tabuliek, ale z toho, že log 2 je 
iracionálně číslo. Pomocou štvormiestnych tabuliek 
však možno log 2 určit aj presnejšie. Například ak z ta-
buliek vyčítáme 

log 2® =• log 512 = 2,7093, tak vieme, že 
2,70925 ^ 9 log 2 ^ 2,70935, 

a odtiaT zistíme 
0,301027 ^ log 2 ^ 0,301039. 

(Všimnite si, že výsledok delenia deviatimi vřavo sme 
museli zaokrúhlit nadol, a výsledok delenia vpravo 
nahor, bez ohladu na ďalšie číslice podielu. Inokedy už 
na to nebudeme zvlášt upozorňovat.) 
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Obdobné z log 28 = log 256 = 2,4082 vieme 
2,40815 á 8 log 2 ^ 2,40825 

0,301018 ^ log 2 ^ 0,301032. 
Spolu teda máme 

0,301027 ^ log 2 ^ 0,301032, 

čo je presnejší výsledok, než dá bezprostředné použitie 
páťmiestnych logaritmických tabuliek. Samozrejme, 
údaje z páťmiestnych tabuliek by sme mohli spresňovat 
obdobné. Všeobecne však tento postup je len východis-
kom z núdze; ak máme k dispozícii presnejšie tabulky, 
tak sa radšej pozrieme do nich. Pre hladanie logaritmov 
prirodzených čísel do 200 je například vhodná tabulka 
logaritmov faktoriálov v [1] (ale hodnota log 200! je 
chybná). 

Stupeň oprávnenej dóvery kalkulačke alebo počítačů 
představuje už zložitejší problém. (Nemáme přitom na 
mysli možnost, že kalkulačka je pokažená, obdobné dko 
sme neuvažovali možnost tlačovej chyby v matematic-
kých tabulkách.) Tu už záleží na type kalkulačky, či 
počítá na viac miest než nakoniec ukáže na displeji 
alebo nie. V druhom případe je aspoň posledné miesto 
výsledku nespolehlivé, často je však nespolahlivé aj 
v prvom případe. Záleží aj na zložitosti počítaného 
výrazu. Například súčin dvoch celých čísel bude spra-
vidla přesný, pokial sa dá celý zobrazit na displeji. Vý-
sledok umocňovania (aj v případe, že základ i exponent 
sú prirodzené čísla, a přesný výsledok by 3a dal celý 
zobrazit) však už móže byť nepřesný, pretože kalkulačka 
ho móže počítat cez logaritmus a exponenciálnu funkciu. 
Tu je tažké dat konkrétnu a všeobecne platnú radu. 
Zistite si presuosť Vašej kalkulačky aspoň pomocou 
niekolkých kontrolných príkladov, a potom ju využívaj-
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te eňte s istou rezervou v oči tato zistenej přesnosti. Na 
tuto rezervu bude třeba myslieť například pri odčítavaní 
alebo porovnávaní dvoch skoro rovnakých čísel. 

Vrátíme sa teraz k pojmu verkých čísel, o ktorých sme 
už hovořili v úvode ako o číslach příliš veTkých na to, 
aby sme s nimi bezprostredne vykonávali aritmetické 
operácie. Zře jme nejde o presne matematicky definovaný 
pojem. Ddležitejšie však je, že tento pojem závisí a j od 
metód a prostriedkov, ktoré máme k dispozícii (a a j od 
námahy, ktorú sme ochotní při počítaní podstúpit). 
Například pře počítanie spamáti sú už trojcn^rné 
čísla verké, ale pře počítanie na papieri alebo s kaltyplač-
kou ich asi za veíké nebudeme pokladat. Na samočin-
ných počítačoch (a to i na osobných, alebo i na yýkon-
nejších programovatelných kalkulačkách) si možno 
naprogramovat viacnásobnú aritmetiku, a potom ani 
stociferné čísla nebudu pře nás příliš vefké. Úlohu 
o posledných čísliciach čísla 2®°° bude potom najjedno-
duchšie riesiť tak, že dáme strojů vypočítat číslo 2800, 
a potřebný počet posledných číslic si pozrieme. Bude to 
správný postup, ale rozhodne nebude v intenciách auto-
ra tejto knížky; keby autor předpokládal, že čitatelia 
budú mat k dispozícii samočinné počítače, tak by zváčáil 
čísla v úlohách tak, aby sa obdobný spósob nedal po-
užit. 

V niektorých úlohách, například s viacposchodovými 
mocninami, sú už zvolené čísla také vefké, že ich prak-
ticky vóbec nie je možné obvyklým spdeobom dekadicky 
zapísat. Ak však abstrahujeme od praktických ohrani-
čení (najma časových a priestorových), ako je to v ma-
tematike běžné, možno hovořit o ich dekadických 
zápisoch, a určovat níektoré ich cifry. Dekadické zápisy 
reálných čísel (aspoň niektorých) sú nekonečné, a teda 
ich vlastně nemožno celé napísat ani v principe. Napriek 
tomu však možno hovořit například o ich čísliciach, 
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a (niekedy) niektoré z týchto číslic aj vypočítat. Úlohy 
o takýchto čísliciach by sme mohli Tahko přeformulovat 
tak, aby sa v nich o nekonečných dekadických rozvo-
joch nehovořilo, nové formulácie by však boli menej ná-
zorné. 

V niektorých riešeniach najprv „uhádneme" výsledok, 
a potom dokážeme jeho správnost. Niekedy „uhádne-
me" vhodné prvočíslo a podobné. Samozrejme, že aj 
schopnost „uhádnut", či aspoň odhadnut výsledok, je 
výhodná při riesení úlohy, spósob „uhádnutia" však nie 
je logicky nevyhnutnou častou napísaného riešenia úlo-
hy. Namiesto „uhádnutia" móže v skutočnosti íst o po-
užitie počítača. Ak je například potřebné uvážit prvo-
číslo p = 5501, tažko móže íst o „uhádnutie" alebo 
o ručné preskúšanie. K prvočíslu p = 19 by sme však 
takto dospiet mohli. Za riešením úlohy občas uvádzame 
ešte komentár, ktorý už n ;e je jeho súčastou; móže 
například obsahovat vysvetlenie k nějakému „uhádnu-
tiu", ale móže sa vztahovat i k nasledujúcej úlohe. 
Koniec vlastného riešenia úlohy vyznačujeme znač-
kou • . 
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3. PREHEAD VIET 
Z TEÓRIE ČÍSEL 

1. Z Á K L A D N É O Z N A t ' E N I A 
A Č Í S E L N É S C S T A V Y 

Množinu všetkých celých nezáporných čísel budeme 
označovat N a množinu všetkých celých kladných čísel 
budeme označovat P. Pod prirodzenými císlami budeme 
(na rozdiel od klasickej terminologie) rozumieť celé 
nezáporné čísla, t. j. a j 0 bude prirodzené číslo. Množinu 
všetkých celých, resp. reálných čísel budeme označovat 
Z , resp. R. Pokial1 nebude hrozit nedorozumenie, budeme 
miesto „prirodzené číslo" alebo „celé číslo" písat len 
„číslo". 

Kladieme a" = 1 aj pře a = 0. Prirodzený logaritmus 
označujeme ln, dekadický značíme log, ostatné základy 
vyznačujeme. Dolnú (teda obvyklú) celu část čísla x 
značíme |a;J, hornú celú část čísla x značíme |x | , teda 
platí | z | = —|—x | . Pře x e R, n e P platí 

ITWI-KW1?! 
V tejto kapitole jednak zavedieme označenia, ktoré 

budeme používat v dalšom, a za druhé zhrnieme niekto-
ré známe fakty z elementárnej teórie čísel aj iných častí 
matematiky, ktoré možu byť užitočné pri riešení úloh 
v nasledujúcich kapitolách. Zhrnutej látky je viac, než 
sa v dalších kapitolách bezprostredne využívá. Je totiž 
možné, že pri iných postupoch riešenia úloh sa budú 
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hodit iné matematické vety než při autorských rieše-
niach. Keby sa autor striktně obmedzil na vety fakticky 
ďalej použité, mohol by velmi sťažiť situáciu tým rieši-
ťelom, ktorí sa budú pokúšať o samostatné riešenie 
úloh. Čitatel samozrejme nemusí při riešení úloh použí-
vat výlučné iba prostriedky z tejto kapitoly. Podaný 
přehrad výsledkov má mu slúžiť iba ako pomócka. Roz-
hodne nie je ani potřebné, aby čitater najprv podrobné 
preštudoval túto kapitolu a až potom začal riešiť úlohy. 
Doporučujeme mu však, aby si ju celú dopředu prezrel, 
aby neskór vedel, čo a asi kde v nej móže nájsť. 

Táto kapitola je iba přehrad, a nie učebnica. Vety 
sú vyslovované bez dókazov, a váčšinou aj bez odkazov, 
najma pokiaF ide o látku bežne preberanú v elementár-
nych učebniciach teorie čísel. Ak čitater ešte nie je 
oboznámený e kongruenciami a ich použitím, doporu-
čujeme mu, aby si zvlášť všimol piaty (a připadne 
šiesty) odsek tejto kapitoly a potom kapitoly 5, 6. 
Aparát kongruencií mu bude užitočný nielen pri riešení 
úloh tejto zbierky, ale aj pri úlohách MO. 

Znaky E, II používáme pre opakovaný súčet, resp. 
súčin. Přitom pre n = 0 kladieme 

£ at = 0, ri a, = 1; 

túto dohodu analogicky používáme aj pri zápisoch 

a, + a2 + • • • f «„, an. 

Znaky S , n znamenajú súčet, resp. súčin cez všetky 
P S * PŠÍT 

prvočísla nepresahujúce K. 
Znak ± budeme používat vo dvoch róznych význa-

moch, ktoré třeba rozlišovat podia kontextu. xU2 — 
= 2 ± 1 znamená ^ = 3, x2 = 1. Naproti tomu x 
= 2 ± 0,05 znamená 1,95 ^ x g 2,05. 
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Dekadické zápisy celých nezáporných čísel, ktoré 
obvykle používáme, vyjadrujú číslo ako súčet násobkov 
mocnin čísla 10 (s koeficientmi 0 až 9). Například 

1987 = 1.103 + 9.102 + 8.101 + 7.10°; 

rádom nejakej číslice (presnejšie: rádom jej výskytu) 
v zápise nějakého čísla budeme nazývat příslušný expo-
nent čísla 10. 

S výnimkou dekadického zápisu čísla nula obvykle 
požadujeme, aby číslica najvyššieho rádu bola nenulová. 
Niekedy však niekorko núl vpředu dopisujeme (alebo si 
ich aspoň představujeme dopísané); robíme to tak na-
příklad vtedy, keď chceme mať dekadické zápisy čísel 
až po istú hranicu rovnako dlhé. 

Namiesto čísla 10 možno použit Tubovolné celé číslo 
z > 1 a každé MĚP vyjádřit v tvare 

u = <zn.z" + an_x.zn~l + . . . + a , . z 1 + a0-z°> 

pričom 0 s; a; < z pře všetky i = 0, ..., n\ ak ešte 
žiadame a„ # 0, je toto vyjadrenie jednoznačné. Ak 
by sme mali k dispozícii číslice pře čísla 0,1 z — 
— 1, mohli by sme písať z-adické zápisy čísel obdobné 
ako dekadické. Aj základné počtové výkony by sa robili 
v podstatě rovnako. (Pravda, „malá násobilka" by bola 
iná.) Teoreticky a abstraktně však móžeme takéto zá-
pisy uvažovat, aj ked sa na čísliciach konkrétné nedo-
hodneme. Prakticky sa pre z < 10 obvykle používajú 
příslušné dekadické číslice, pre z = 16 sa pridávajú ako 
ďalsie číslice písmená A až F (základ 16 sa niekedy po-
užívá pri samočinných počítačoch). My budeme takmer 
výlučné pracovat s dekadickými zápismi čísel. Iný základ 
vždy výslovné uvedieme. 

Podotknime ešte, že z-adické rozvoje reálných čísel sú 
obdobným zovšeobecnením ich dekadických rozvojov, 
aké sme urobili vyššie pre zápisy prirodzených čísel. 

12 



Pře niektoré reálne čísla sú tieto (ako už a j dekadické) 
rozvoje nekonečné, nemožno ioh teda celé napísať. Aj 
vtedy však možno hovořit o ich jednotlivých čísliciach, 
a připadne počítat konečné úseky týchto rozvojov. 

V textoch úloh zásadné hovoříme o čísliciach čisla x 
namiesto presnejšieho, no zdlhavejdieho vyjadrovania sa 
o čísliciach dekadického zápisu (resp. rozvoja) čísla x. 

2. D E L I T E E N O S Ť 
A P R A V I D L A D E L I T E E N O S T I 

Pre každé dve celé čísla a, b píšeme a|6 (a čítáme „a dě-
lí b", „b je násobkom a" a pod.), ak existuje celé číslo c 
také, iea.c = 6. Budeme pisat a 16, ak neplatí a\b. 

Veta 2.1. Relácia dělitelnosti na Z je reflexivita a tran-
zitivna, t. j. pre každé a 6 Z platí ala a pre v&etky a, b, 
c e Z platí ak a|6, 6|c, tak aj a\c. Dalej, pre vietky a, b, 
c, x, y e Z platí 
(i) ak a 
(ii) ak a 

b,a\c,takaja\bx + c y\ 
b, takax\bx ; 

(iii) l | a , o | — a , a | 0 . 

Pre teóriu dělitelnosti celých čísel je velmi dóležitá 
nasledujúca 

Veta 2.2. (Veta o delení so zvyškom.) Pre každé a e Z, 
6 e P exÍ8tujú q,r e Z také, že 

a = b.q + r a 0 f^r <b. 

Přitom Čísla q, r sú číslami a, b jednoznaóne určené. 

Čísla q, r z tejto vety nazývame celočíselným podielom 
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a zvyškom pri (celocíselnom) delení čísla a číslom b. Bu-
deme pře ne používat označen ie 

q = a DIV b, r=aMOBb, 
(ktoré v podstatě preberáme z programovacieho jazyka 
PASCAL). Symboly DIV a MOD sú symboly čiastoč-
ných operácií na množině Z, a budeme ich písať medzi 
ich argumenty, obdobné ako + , —, . . Výraz a. b MOD m 
budeme vždy rozumieť ako ( o i ) MODm; vo výraze 
a.(ĎMODm) teda nesmieme vynechat zátvorku. Na-
proti tomu, a + 6 MOD m znamená a + (6 MOD m). 
Obdobná dohoda platí pře DIV. (Teda, ako obvykle, 
multiplikativně operátory majů vyššiu prioritu ako 
aditivně, a operátory s rovnakou prioritou sa aplikujú 
zTava doprava.) 

Veta 2.3. Pre všetky a,b e Z, rn, n e P platí 
(a + b) MOD m = ((a MOD m) + (b MOD m)) MOD m 
(a. 6) MOD m = (a MOD m). (b MOD m) MOD m 

(a.n) MOD (m.n) = (aMODm).n 
(a MOD (m.n)) MOD m = a MOD m 

Spolocným delitelom čísel a, b nazveme každé číslo d 
také, že d\a, d\b. Najváčžím spolocným delitelom čísel 
a, b nazveme každý taký ich spoločný deliter, ktorý je 
násobkom každého ich spoločného delitela. Najváčšie 
spoločné delitele čísel o, 6 sa móžu lišit len znamienkom. 
Nezáporný najváčší spoločný delitel čísel a, b (ten 
existuje, a je jednoznačne určený) budeme označovat 
D(a, b). 

Veta 2.4. Pre každé a,b,c e Z platí 
D(a, 0) = |a|, 
D(a, b) = D(b, a) 
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D(a, b) = D(a — b.c,b), 
D(c.a, c.b) = \c\.D(a, b), 
D(a,b) = JH\a\, |6|). 

Systematickým používáním prvých troch vzorcov 
(pričom třetí používáme len pře a ^ b > 0, c = a DIV 
DIV 6) možno určit D(a,b) pre každé a, 6 e N; pře 
a < 0 alebo 6 < 0 použijeme este najprv piaty vzorec. 
Takýto postup nazývame Euklidovým algoritmem pre 
výpočet D(a, b). Pri vhodnej úpravě nám tiež umožní 
určit čísla x, y z nasledujúcej vety. 

Veta 2.5. Ak a, b e Z, a ^ 0 alebo 6 ^ 0 , tak D{a, b) 
je najmenšie kladné celé ¿íslo, ktoré sa dá vyjádřit v tvare 
x.a + y.6, x, y e Z. Ak a = 6 = 0, tak Dia, b) = 0. 

Na konkrétnom příklade a = —162, 6 = 183 ukáže-
me, ako .možno vhodné zapisovat Euklidov algoritmus, 
ktorý určí D(a, b) i čísla x, y z vety 2.5. Zápis bude 
vyzerat takto 

—162 183 
0 1 183 

—1 0 162 —1 
1 1 21 —7 

—8 —7 15 —1 
9 8 6 —2 

—26 —23 3 
0 

—2 

Vzniká teda číselná tabulka zo štyroch stlpcov. V zá-
hlaví prvých dvoch stlpcov uvedieme čísla a, b; nako-
niec v týchto stípcoch vzniknú čísla x, y. Do tretieho 
stípea pod čiaru vpíáeme čísla |a|, |b|, a to najprv 
max( |a | , |6|) (s výnimkou případu ab = 0; vtedy 
najprv napíšeme nulu). Pre prvé tri čísla u, v, w v kaž-
dom riadku okrem záhlavia má platit au + bv = w\ 
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v prvých dvoch riadkoch to možno dosiahnuť vhodnou 
vorbou u, v e {—I, 0, 1}. Každý další riadok vzniká při-
počítáním vhodného násobku posledného hotového 
riadku k predposlednému. Příslušný koeficient, ktorý 
zapisujeme do štvrtého stlpca, dostaneme až na zna-
mienko celočíselným delením čísel v treťom štipci; zvy-
šok pri tomto delení móžeme hned zapísať do treticho 
stlpca. Takto postupujeme, pokiar v treťom štipci 
nevznikne nula; riadok s nulou už nedopočítavame. 
Potom na prvých troch miestach posledného riadku 
máme po řade čísla x, y, D(a, b). Teda v danom případe 
je 

D(—162, 183) = 3 = — 2 6 . ( — 1 6 2 ) — 2 3 . 1 8 3 

Najmenším spoloóným násobkom čísel a, b nazveme 
také číslo n, ktoré je ich spoločným násobkom (t. j. 
a\n, 6|w) a je delitelom každého ich spoločného násobku. 
Najmenšie spoločné násobky čísel a, b sa móžu líšiť iba 
znamienkom. Nezáporný naj menší spoločný násobok 
čísel a, b budeme označovat nsn(a, b). Možno ho určovať 
podia nasledujúcej vety. 

Veta 2. 6. Pre všetky a,b e Z platí 
nsn(a, b). D{a, b) = \a \. \b \. 

Dalej, nsn(Q, 0) = 0. 

Uvedieme ešte niekolko vzorcov pře najváčší spoloč-
ný deliter a najmenší spoločný násobok. 

Veta 2.7. Pre každé a, b e Z sú nasledujúce tri pod-
mienky ekvivalentné: 
(i) a\b; 
(ii) D(a,b)=\a\-
(iii) nsn(a, b) = |6|. 
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Veta 2.8. P%e všetkyx, y,z e Z platí 
D(x, x) = |x| 
D(x, y) = D(y, x) 
D(D(x, y), z) = D(x, D(y, z)) 
D(x, nsn(x, y)) = |x| 
D(x, nsn(y, z)) = nsn(D(x, y), D(x, z)) 

nsn(x, x) = |x| 
nsn(x, y) = nsn(y, x) 
nsn(nsn(x, y), z) = nsn(x, nsn(y, z)) 
nsn(x, D(x, y)) = |x| 
nsn'x, D(y, z)) = D(nsn(x, y), nsn(x, z)). 

Operácie D, nsn sú sice binárně, ale budeme tiež ho-
vořit o nezápornom najváčšom spoločnom deliteli, resp. 
najmenšom spoločnom násobku n čísel, a budeme ho 
značit D(xu . . ., x„), resp. nsn(xlt . . ., x„). Na základe 
vety 2.8 vieme, že je jedno, ako budeme združovat 
argumenty (a medzivýsledky) do dvojíc, aby sme na ne 
mohli použit póvodnú bináru operáciu. 

Celé čísla a, b nazveme nesúdelitdnými, ak D(a, b) = 
= 1. 

Veta 2.9. Nech a,b,ce Z, pričorn čísla a, b sú nesúdeli-
telné. Potom 

(i) ak a 
(ii) ak a 

Na zistovanie dělitelnosti pevným číslom sa niekedy 
namiesto vydelenia používajú pravidlá deliternosti. Aby 
sme niektoré z nich mohli sformulovať, zavedieme si dva 
pojmy. Nech i, j, m e P. Potom j-ciferný súéet čísla m 
je číslo, ktoré dostaneme nasledovne. Najprv rozdelíme 
číslo m (presnejšie, jeho dekadický zápis) od konca na 
skupiny po j cifier. Potom tieto skupiny pokládáme za 

c,b\c, taka.b\c\ 
b.c, tak a\c. 
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samostatné čísla, a všetky ich sčítáme. (Případné nuly 
na začiatkoch skupin ignorujeme.) Výsledok je hladaný 
j-ciferný súčet; pre j = 1 hovoříme jednoducho o cifernom 
súcte. Posledně i-číslie čísla m je číslo tvořené jeho posled-
nými i číslicami (alebo všetkými číslicami, ak ich m má 
menej než i) v póvodnom poradí; případné nuly na za-
čiatku móžeme ignorovat. Ako příklad uveďme, že 
dvojciferný súčet čísla 1234567 je 1 + 23 + 45 + 67 = 
= 136 a posledné trojčíslie je 567. Pomocou operácie 
MOD možno posledné í-číslie čísla m vyjádřit v tvare 
m MOD 10' a pře jeho j-ciferný súčet c platí 

c MOD(10* — 1) = m MOD(l()> — 1). 
Veta 2.10. Nech m, d, i e P, d \ 10'. Potom zvySky pri 

delení čísla m a jeho posledného i-čísla číslom d sú rovnaké. 
Speciálne, m je násobkom čísla d právě vtedy, ked jeho 
posledné i-číslie je násobkom d. 

Veta 2.11. Nech m, d, j e P, d|(10> — 1). Potom číslo 
m a jeho j-ciferný súčet dávajú rovnaký zvyšok pri delení 
číslom d. Speciálne, mje násobkom d právě vtedy, ked jeho 
j-ciferný súčet je násobkom d. 

V šiestom odseku tejto kapitoly uvidíme, že ku každé-
mu d e P nesúdelitďnému s 10 existuje j potřebné do 
predchádzajúcej vety. Pre tie d, pre ktoré nemožno po-
užit vetu 2.10 ani vetu 2.11, možno použit nasledujúce 
tvrdenie: 

Veta 2.12. Nech m, d, dlt d2, i,jeP,d = d1.d2, djIlO*, 
d2|(10>— 1). Potom číslo m je násobkom čísla d právě 
vtedy, ked jeho posledné i-číslie je násobkom čísla dl a jeho 
j-ciferný súčet je násobkom čísla d2. 

Pre každé celé číslo d > 1 možno nájst dl7 d2, i ,j e P, 
ktoré spíňajú podmienky z vety 2.12; přitom dlt d2 sú 
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jednoznačne určené. Vetu 2.12 použijeme len v případe 
dl > 1, d2 > l ; inak je výhodnejšie použit niektorú 
z predchádzajúcich dvoch viest. 

Vety 2.10 a 2.11 umožňujú vždy jednoducho určit i 
zvyšok při delení číslom d. Veta 2.12 to bezp ostredne 
neumožňuje (okrem případu, keď je tento zvyšok nu-
lový). Přitom však zvyšok pri delení čísla m číslom d je 
jednoznačne určený zvyškami pri delení m číslami du d2. 
Spósob, ako ho možno vypočítat, uvedieme v piatom 
odseku tejto kapitoly. 

Vety 2.10, 2.11, 2.12 platia pře lubovolný základ čísel-
nej sústavy; vtedy však pochopitelné 10 znamená tento 
základ, a nie číslo desat. 

Ako příklad použitia viet 2.10, 2.11, 2.12 uvedieme 
pravidlá dělitelnosti pře d = 16, 27 a 88 = 8.11. Pre 
každém € Pplatí: 

Číslo m je delitelné 16-rai právě vtedy, ked jeho posledné 
Stvorčíslie je delitelné 16-mi. 

Číslo m je delitelné 27-mi právě vtedy, keď jeho trojcifer-
ný súČetje delitelný 27-mi. 

Číslo m je delitelné 88-mi právě vtedy, ked jeho posledné 
trojlíslie je delitelné ósmimi a jeho dvojciferný svíel je 
delitelný jeden ástimi. 
Pre d = 7 nedostáváme „dobré" pravidlo dělitelnosti, 
lebo by sme museli tvořit až šestciferný súčet. 

8. P B V O C l S L A 
A I C H B O Z L O Z E N I E 

Prvočíslo je také ra e P, ktoré má právě dva kladné 
delitele. Existuje nekonečne mnoho prvočísel a možno 
ich zoradit do rastúcej postupnosti 

2, 3, 5, 7, 11, 13, 17, 19, 23, . . . 
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Ak chceme o nejakom čísle zistiť, či je prvočíslo alebo 
nie, móžeme použit vetu: 

Veta 3.1. Celé číslo a > 1 je prvočíslo právě vtedy, ked 
nemá íiadny delitel d, 1 < d 

Namiesto všetkých d z uvedeného intervalu stačí skú-
mať len prvočíselné hodnoty d, čo je vhodné, ak máme 
k dispozícii tabulku prvočísel aspoň po [Jla | . Ak nie, 
móžeme skúmaí len delitďnosť číslami d = 2, 3, a ďalej 
číslami d tvaru 6k ± 1. Počet delení, ktoré urobíme, 
bude sice vyšší než pri použití tabulky prvočísel, ale len 
přibližné třetinový v porovnaní s prípadom delenia 
vsetkými d z vety. 

Ak chceme nájst všetky prvočísla po istú hranicu 
(a nemáme po ruke alebo nechceme použiť hotové 
taburky), je vhodné tzv. Eratostenovo síto. Vypíšeme si 
za sebou všetky kladné celé čísla (až po hranicu n0, po-
kiar chceme prvočísla zisťovať), a prečiarkneme číslo 1. 
Potom opakujeme nasledujúci postup: podčiarkneme 
najmenšie nepodčiarknuté a neprečiarknuté číslo, a pre-
čiarkneme všetky jeho dalšie násobky (až po hranicu n0; 
na viacnásobnom prečiarknutí nezáleží). Takto postupné 
podčiarkujeme právě všetky prvočísla v poradí podia 
velkosti. Tento postup ukončíme, akonáhle podčiarkne-
me prvé číslo váčšie než ]/n0. Potom prvočísla až po n0 
sú právě všetky neprečiarknuté čísla. 

Označme n(n) počet prvočísel nepřevyšujúcich n. 
Platí 

(3.1) lim in(n) : - - - 1 = 1 . 
[ ln n) 

Je to hlboký číselnoteoretický výsledok, ale nemožno 
z neho urobiť žiadcn odhad hodnoty n(n) pře konkrétné 
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n. Možno ho však urobit na základe nasledujúceho tvrde-
nia ([7], str. 406): 

Veta 3.2. Pre kaídé n ^ 55 platí 
n , . n 3.2 —-<n(n)<-ln n + 2 ln n — 4 

Zo vzorca (3.1) (ale aj z (3.2)) vyplývá, že rad prevráte-
ných hodnot prvočísel diverguje, a že existujú lubovolne 
dlhé konečné postupnosti zložených čísel. (Ale obe tvrde-
nia sa dajú dokázat omnoho elementárnejšie.) Nasledu-
júca veta hovoří o tom, že vzdialenosti medzi za sebou 
idúcimi prvočíslami nemóžu byť příliš veíké (v porovna-
ní s týmito prvočíslami). 

Veta 3.3 a) (Bertrandov postulát.) Pre kaídé n ^ 2 
existuje prvočíslo p medzi n a In (t. j. n < p < 2n). 

b) Pre kaídé n 2: 48 existuje prvočíslo p medzi n 
9 a - n . 

c) Pre každé n 7 leží medzi číslami n o In aspoň 
jedno prvočíslo každého z tvarov 3k + 1, 3k + 2, 4k + 1, 
4 k + 3. 

d) Existuje také n0, ze pre kaídé n ^ n0 existuje aspoň 
jedno prvočíslo medzi n3 a (n + 1 )3. 

(Pre tvrdenie b), c) pozři [6], str. 14.) 
Ešte uvedieme tri výsledky numerického charakteru; 

na ich formuláciu označíme pn n-té prvočíslo (t. j. pl = 2, 
pt = 3 atď.); toto označenie nebudeme používat v dal-
ších odsekoch. 

Veta 3.4. a) NajmenSie prvočíslo, pre ktoré platí pn+1 — 
— pn > 100 je p„ = 370261; pre toto prvočíslo platí 
Pn+l—P« = H2. 

21 



b) Pre p„ < 107 platí pn+í — pn ší 154, a najmeniie 
prvočíslo, pre ktoré tu nastáva rovnost, je pn = 4652353. 

c) Pre pn > 2020000 platí pn+l-p„ g pj 16597. 

Prvé dva výsledky sú uvedené v [7], str. 318, třetí je 
zo [14]. 

4. R O Z K L A D 
NA P R V O f l N I T E L E 

Veta 4.1. Každé číslo a e Psa dá vyjádřit v tvare 

(4.1) O = 

kde Px pnsú po dvoch rózne prvočísla a e„ .. .,e„ e P. 
(Pře a = 1 je n = O, t . j. pravá strana (4.1) je prázdny 
súčin.) Toto vyjadrenie je jednoznačné až na poradie čini-
telov. 

Vyjadrenie (4.1) bude úplné jednoznačné, ak budeme 
žiadaf p, < pt < ... < p„. Ak uvažujeme rozklady 
viacerých čísel súčasne, býva vhodné, aby postupnost 
plt ..., pn bola pre vfietky tieto čísla rovnaká. To móže-
me dosiahnut, ak připustíme a j nulové exponenty 
elr ..., e„ v (4.1). Niekedy používáme (4.1) a j s nulovými 
exponentmi vtedy, ked vieme sice odhadnúť zhora 
prvočísla, ktoré sa vyskytnú v rozklade nějakého čísla, 
nevieme však, či tam budú všetky až po túto hranicu. 

Veta 4.2. Nech a, b e P, p„ . . . , pm sú po dvoch rózne 
prvočísla a nech platí (4.1) a 

(4-2) b = p>i.p>{ pU, 
pričom e„ . . . , e„ / „ . . . , / „ e N. Potom: 
(i) a\b právě vtedy, kede< sS /, pre vSetky i = 1, , n; 
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(ii) a je k-tou mocninou prirodzeného 6ísla právě v tedy, 
kedk\eu pre všetky i = 1, ...,»; 

(iii) D(a, b) = pmta^./.l.pndnlí,./.) pjnln(«„./„,. 
íiv) nsn(a, b) = .pp* «.•>.> p j " «„•'.>; 
(v) o.6 = 

Označme teraz pře a e P <p(a) počet čísel z množiny 
{0, 1, . . . , a — 1} nesúdelitelných s a, r(o) počet klad-
ných delitelov čísla a a S(a) súčet kladných deliteTov 
čísla a. Funkcia <p sa nazýva Eulerova funkcio. 

Veta 4.3. Nech číslo a e P má rozlehá (4.1), pričom 
ex e„ e P. 
Potom platí 

( ' - i * 

r(a) = (el + l).(et + 1) (c. + 1); 
p ^ l ^ l 

Pi— 1 PÍ—1 P— 1 

Eahko zistíme, že předpoklad e„ . . . , Í , E P bol po-
třebný iba pre Eulerovu funkciu <p. V dalších dvoch vzor-
coch zodpovedajú nulové exponenty činiterom 1, ktoré 
neovplyvňujú výsledok. 

Veta 4.4. Pre každé dve nesúdelitelné čísla a, b 6 P 
platí 

<p(a. b) = <p(a). <p(b), R(O. b) = T (o). T(6) , 
S(a.b) = S(o).S(6). 

Vlastnost funkcií <p, x, S vyjadrenú vo vete 4.4 nazý-
vame multiplikatítmosC. 
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5. K O N G R U E N C I E 
A Z V Y g K O V É T E I E D Y 

Pře a,b e Z, m e P hovoříme, že a 7'e kongruentné 
a b podia modulu m (alebo „modulo m"), a píšeme 
(5.1) a = 6(mod m), 
ak m\(b — a). Vzťah (5.1) je ekvivalentný s rovnoaťou 

a MOD m = b MOD m. 

Veta 5.1. Pre pevne zvolené m € P je kongruentnosť mo-
dulo m reláciou ekvivalencie, t. j. pre každé, a, b, c e Z 
platí 
(i) a -- o(mod m); 
(ii) aka = 6(mod m), tak b = a(mod m); 
(iii) aka = 6(mod m), b = c(mod m). tak a = c(mod m). 

Keďže kongruentnosť modulo m (formálně je to mno-
žina {(a, b) e Z x Z; a = 6(mod m)}) je reláciou ekvi-
valencie na Z, zodpovedá jej istý rozklad množiny Z. 
Prvky tohto rozkladu nazývame zvyškové triedy modu-
lo m. Zvyškovú triedu modulo m móžeme určiť pomocou 
ktoréhohokolvek jej prvku, spravidla ju však určujeme 
pomocou toho jej prvku a, pre ktorý platí 0 ^ a < m. 
Při úvahách o kongruenciách modulo m váčšinou záleží 
iba na zvyškových triedach, a nie na ich konkrétných 
reprezentantoch. 

Veta 5.2. Aka,b,c,d e Z , m e P a platí 
a = 6(mod m), c = á ( m o d m ) , 

tak platí aj 
a + c = b + d(mod m), a — c = b — d(mod m), 

a.c = 6.d(mod m). 
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Špeciálne, pře c = d takto zistíme, že kongruenciu 
možno násobit číslom. O možnosti deliť kongruenciu 
a o druhom možnom spósobe násobenia, resp. delenia 
kongruencií hovoří následujúca veta. 

Veta 5. 3. Nech a, b, c e Z. m e P. Potom 

a) Ak a.c = 6.c(mod m) a čísla c, m sú nesúdelitetné, tak 
platí a E= 6(mod m). 
b) Ak c 0, tak vztahy a = 6(mod m) a 

a.c = 6.c(mod m. |c|) 
sú ekvivalentné. 

Kongruencie s neznámými riešime podobné ako rov-
nice (tu nie je zaužívaný žiadny pár termínov zodpoveda-
júci páru rovnost — rovnica): snažíme sa ich upravit na 
taký tvar, že nafovo je neznáma, a na právej straně už 
známa hodnota. Přitom používáme najma úpravy, uve-
dené v predchádzajúcich větách. (Samozrejme, tento 
postup nevedie vždy k cielu a existujú a j iné spósoby, 
obdobné ako pri rovniciach.) 

Niekedy móžeme kongruenciu modulo m vyriešit 
preskúmaním váetkých m zvýikových tried modulo m 
pomocou ich reprezentantov. Riešením kongruencií sa 
nebudeme systematicky zaoberat. Uvedieme len vety 
o systémoch kongruencií s jednou neznámou, v ktorých 
jednotlivé kongruencie sú už ,,vo vyriešenom tvare". 

Veta 5.4. Nech m1( m2 e P, a„ a2 e Z. Potom sústava 
dvoch kongruencií 

(5.2) x = o^mod m t), a; = o^jmod m2) 

má rieSenie právě vtedy, ked 
(5.3) a1 = a2(mod Z>(m,, mt)). 
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Ak je podmienka (5.3) splněná, tak existuje právě jedno 
h e (O, 1, ..., nsn(mlt m2) — 1} také, £e sústava (5.2) je 
ekvivalentná s kongruenciou 

(5.4) x = 6(mod Jisn(mlt m2)). 

Číslo b do vztahu (5.4) móžeme určit například tak, 
že Euklidovým algoritmom nájdeme d = D(m1, m2) 
a celé čísla u, v také, že d = uml + vm2 a položíme 

( TTt vrt 1 

a2u.-~ + axv.-£-1 MOD nsn(m1, m2). 
Veta 5.6. Sústava kongruencií 

(5.6) x = «¡(mod rrii), i = 1 n 

má rieSenie právě vtedy, ked 

(5.7) Oj = a^mod D(mit m,)) pre všetky i, j, 1 ^ i < 
<j ž w. 

Ak je podmienka (5.7) splněná, tak existuje celé číslo b 
také, le sústava (5.6) je ekvivalentná. s kongruenciou 

(5.8) x = 6(mod nsn(m1 mn)). 

Špeciálne, sústava (5.6) je riesitelná vždy vtedy, ked 
sú čísla mx, . , . , « „ po dvoch nesúdeliteTné. Vzorec (5.5) 
by bolo možné zovšeobecnif aj na sústavu (5.6), výhod-
nejáie je však riešit ju tak, že postupné znižujeme počet 
kongruencií v nej podia vety 5.4 a vzorca (5.5). 

Ešte sa zmienime o jednej velmi jednoduchej dio-
fantickej rovnici. (Přídavné meno „diofantický" při 
rovnici alebo systéme rovnic znamená, že sa zaoberáme 
len celočíselnými, připadne len prirodzenými riešenia-
mi.) 
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Veta 5.6. Rovnica 

(5.9) ax + by = c, 

kde a, b, c sú celé Osla, má celočíselné rie&enie právě vtedy, 
keď D(a, b) |c. Ďalej, ak (a, b) ^ (O, 0) a (x0, y0) je jedno 
celočíselné rieienie rovnice (5.9), tak všetky jej celočíselné 
rieSenia možno dostal podia vzorcov 

( 5 . 1 0 ) x = x 0 + y = yo-D^b)1' 

te Z . 

Podia tejto vety móžeme zistovat tiež riešitelnosť 
každej kongruencie tvaru ax = 6(mod m) tým, že miesto 
nej vyšetřujeme diofantickú rovnicu ax + my = b. 
Táto kongruencia je riešitelná právě vtedy, keď je rie-
šitelná uvedená rovnica, t. j. keď D(a, m)\b. 

6. U M O C S O V A N I E 
Z V T S K O V t C H T R I E D 

Ak je a = 6(mod m), tak pře každé n e N je tiež 
a" = 6"(mod m). Teda takto možno kongruencie umoc-
ňovat, obdobné ako ich možno sčítavat a násobit. Avšak 
zo vztah o v 

a = 6(mod m), r = «(mod m) 

nevyplývá (a to ani pře r, s e P) vztah aT = 6'(mod m). 
Teda týmto spósobom kongruencie umocňovat nemož-
no. Uvedieme niekolko výsledkov o tom, čím možno 
podmienku r = #(mod m) vhodné nahradit. 

Yeta 6.1. (Malá Fermatova veta.) Ak p je prvočíslo, 
takpre každé a e Z platí 
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(6.1) a? = a(mod p). 

Pokial 8Ú a, p nesúdeliteTné (t. \.p\a), možno zo (6.1) 
dostat 

(6.2) a?'1 = 1 (mod p); 
zrejme aj (6.1) možno dostat zo (6.2). 

Zovšeobecnenie vzorca (6.2) na případ zloženého mo-
dulu dáva následujúca veta; <p v nej znamená Eulerovu 
funkciu: pře n e P je <p(n) počet čísel z množiny {0, 1, 
..., n — 1} nesúdelitelných s n. (Vzorec na výpočet 
7>(n) je vo vete 4.3.) 

Veta 6.2. (Eulerova veta.) Ak a e N, m e P a iísla a, 
tn sú nesúdelitelné, tak 

(6.3) o»( "> = 1 (mod m). 

Vzorec (6.3) je zrejme zovšeobecnením vzorca (6.2); 
nájst zovšeobecnenie vzorca (6.1) by bolo o niečo kompli-
kovanejšie. 

Pokial sú o, m nesúdeliteTné, existuje inverzný prvok 
k a podia modulu m (t. j. taký prvok b, že platí a.b = 
= l(modm)). V tedy možno zaviesť mocniny o modulo 
m s lubovolným celočíselným exponentom; špeciálne, 
a - 1 bude inverzný prvok k a. Nesmieme však zabudnút, 
že takéto mocniny sú vždy robené pře pevne zvolený 
modul m. 

Rádom prvku a podia modulu m nazveme najmenšie 
r e P také, že ar = l(mod m). (Tento rád je definovaný 
vtedy a len vtedy, ked sú o, m nesúdeliteTné.) Ak je r rád 
prvku a podia modulu m,&ne N, tak platí 

o" = l(mod m) právě vtedy, kecf r\n. 

Špeciálne odtial dostáváme r\q>(m). 
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Deflnicia 6.3. Hovoříme, že číslo a, 0 < a < m je 
primitivný kořeň podia modulu m, &k je rád prvku a 
podia modulu m rovný <p(m). 

Veta 6.4. Nech m e P, m > 1. Potom primitivný kořeň 
podia modulu m existuje právě vtedy, ked m = 2, m = 4, 
m = p' alebo m = 2pe, kde e e P ap je nepárne prvočíslo. 

Zvolme teraz pevne nějaké m vyhovujúce podmienke 
z vety 6.4 a nějaký jeho primitivný kořeň g. Najmenšie 
ť € N také, že 

a = ¡7'(mod m) 
nazveme index čísla a a označíme ho ind (a). (Striktně 
vzaté, mali by sme v označení ind, ako áj v termíne 
,,index čísla" uvádzat aj příslušné m a g; nerobíme to, 
pretože sme ich pevne zvolili.) Potom ind (a) je defino-
vané právě vtedy, keď sú čísla a, m nesúdelitelné. Ďalšie 
vlastnosti uvádza nasledujúca veta. 

Veta 6.5. Nech m spíňa podmienku z vety 6.4 a g je 
jeho (zvolený) primitivný kořeň. Potom pre každé a, b 
nesúdelitelné s m platí: 
(6.4) 0 ^ ind (a) < <p(m) 
(6.5) a = 6(mod m) právě vtedy, ked ind (a) = ind (b) 
(6.6) ind (a.b) = ind (a) + ind (b) (mod <p(m)) 
(6.7) ind (aB) = ».ind (o) (mod f(m)). 

Tieto vzorce ukazujú, že funkcia ind má podobné 
vlastnosti ako logaritmus. Ak máme k dispozícii jej 
hodnoty (vo vhodných tabulkách), tak ju móžeme aj 
podobné použit. Pre prvočíselné m < 100 sú takéto 
tabulky uvedené v [10]. Na ukážku pomocou týchto 
tabuliek vyriešime kubickú kongruenciu 

x3 = 13 (mod 61). 
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Zvolíme m = 61 (a g = 2, pretože tomu zodpovedajú 
tabulky). Postupné dostáváme 

ind (x3) = ind (23), 

3 ind (x) 57 (mod 60), 
ind (x) = 19 (mod 20). 

Teda ind (x) e {19, 39, 59}, čomu zodpovedá 

x = 54, 37, 31 (mod 61). 

Posledný zápis třeba rozumieť tak, že mu vyhovujú 
všetky x, ktoré sú kongruentné modulo 61 s niektorým 
číslom na právej straně. 
ESte uvážme kongruenciu 

x3 - 20 ímod 43). 

Zvolíme m = 43(a g = 3). Postupné dostáváme 
ind (x3) = ind (20), 

3 ind (x) = 37 (mod 42). 
Pretože však kongruencia 

3y = 37 (mod 42) 

nemá ríešenie, nemá riešenie ani póvodná kubická kon-
gruencia. 

Hovoříme, že a je kvadratický zvyšok podia modulu m, 
ak kongruencia 

x2 = a(mod m) 

má ríeáenie. V opačnom případe hovoříme, že a je kvadra-
tický nezvyiok modulo m. PokiaT existuje ind (a) (pre mo-
dul m), a je kvadratický zvyáok podia modulu m právě 
vtedy, keď ind (a) je párne číslo. 



Veta 6.6. Nech m = 4, m = p' alebo ra = 2pe, kde 
de P a pje nepárne prvočíslo a nech D(a, m) = 1. Potom 
a je kvadratický zvyšok podia modulu m právě vtedy, ked 

arim>i2 = i (modra) . 

V porovnaní s podmienkou z vety 6.4 sme vynechali 

případ m = 2, kedy je <p(m) = 1, teda S^L nie je celé 

číslo. V ostatných prípadoch je <p(m) zrejme párne. 
Hovoříme, že a je kubický zvyšok podia modulu m, ak 

kongruencia 
x3 = a(mod m) 

má ríeáenie. V opačnom případe hovoříme, že a je kubický 
nezvyšok podia modulu m. Ak existuje ind (a) pře modul 
m a 3|<p{m), tak a je kubický zvyšok podia modulu m 
právě vtedy, ked 31 ind (o). Ak ra spíňa podmienku z vety 
6.4 a 3 f <p(m), tak každé celé číslo a nesúdelitelné s m je 
kubický zvyšok modulo m. 

Veta 6.7 Nech m spíňa podmienku z vety 6.4, 3| <p(m) 
a číslo a je nesúdelitelné s m. Potom a je kubický zvyšok 
podia modulu m právě vtedy, ked 

a<punU3 = i ( m odm) . 

Preskúmajme teraz, či je možné znížiť exponent 
<p(m) vo vzorci (6.3) v Eulerovej vete. Pokial existuje 
primitivný kořeň modulo ra, tak exponent <p(m) nemožno 
znížiť. V ostatných prípadoch ho však znížiť možno. 
Označme pre každé ra e P symbolom X(m) naj menší 
spoločný násobok rádov podia modulu ra všetkých čísel 
nesúdelitelných s ra (stačí ich brať len spomedzi čísel 
0, 1 ra— 1). Platí X(m)\<p(m), a A(ra) je naj menší 
exponent, ktorým možno <p(m) v Eulerovej vete nahra-
dit. Číslo A(ra) nazývame univerzálny exponent modulo m. 
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Yeta 6.8. (i) Ale m je mocnina nepárneho prvočísla 
lebo m = 2 alebo m = 4, tak A(m) = <p(m); 

(ii) mje mocnina dvoch, m > 4, 

(iii) sú mj, m2 nesúdelitdné čísla, tak 
Á(ml.m2) = nsn^m^, X(m2)). 

Teda ak pře číslo a platí (4.1), tak 

k(a) = 7WW(A(^), A(í)'20, ...,*(?'»)). 

Například pře a = 1000 platí 

A(1000) = w«n(A(8), A(125)) = nsn(2,100) = 100. 

Vo větách 2.11, 2.12 o pravidlách dělitelnosti sa vysky-
tovalo číslo j, nebolo vsak jasné, ako ho nájsť (a či vóbec 
existuje). Vždy možno položit j = X(d), resp. j = X{d2), 
ale nedostaneme tak vo všeobecnosti najmenšie vhodnéj. 
Avšak najmenšie vhodné j je vždy delitelom čísla A(d). 

Niektoré, no nie všetky, prirodzené čísla sa dajú vy-
jádřit v tvare súčtu dvoch štvorcov celých čísel (dalej 
len „štvorcov"). 
Například 

2 = l2 + l2 , 5 = l2 + 22, 13 = 22 + 32, 
avšak čísla 3, 6, 7 už obdobné vyjádřit nemožno. O mož-
nosti tohoto vyjádřen i a hovoří následuj úca veta. 

S Ú C T Y Š T V O R C O V 
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Veta 7.1. a) Prvočíslo p sa dá vyjádřit v tvare súčtu 
dvoch štvorcov právě vtedy, ked p 3(mod 4). Jeho vy-
jadrenie v tomto tvare je jednoznačné až na poradie sčítan-
cov. 

b) Číslo a e P sa dá vyjádřit v tvare súčtu di och štvor-
cov právě vtedy, ked v jeho rozklade na prvočinitele (4.1) 
nevystupuje íiadne prvočíslo tvaru ák + 3 s nepárnym 
exponentom. 

c) Číslo a e P sa dá vyjádřit v tvare súčtu dvoch nesúde-
telných štvorcov právě vtedy, ked nie je delitelné íiadnym 
prvočíslom tvaru 4lc + 3. 

Ak chceme nájsť vyjadrenie nějakého čísla a e P 
v tvare súčtu dvoch štvorcov, stačí nájsť takéto vyjadre-
nie pre jeho prvočinitele s nepárnymi exponentmi v roz-
klade (4.1), a dalej použiť vzorec 
(7.1) (a2 + 62).(c2 + d2) = (ac + bdf + (ad — bc)K 

Vyjadrovanie v tvare súčtu dvoch štvorcov súvisí tiež 
s rozkladom na gaussovské prvočísla; pozři 8. odsek 
tejto kapitoly. 

Pre vyjadrovanie celých čísel v tvare súčtu štyroch 
štvorcov platí následuj úca 

Veta 7.2. (Lagrangeova veta.) Každé celé nezáporné 
číslo možno vyjádřit v tvare súčtu štyroch štvorcov. 

Jednoznačnost už neplatí ani pre prvočísla tvaru 
4k + 3; například 

19 = 42 + 1« + P + 1» = 3« + 32 + l1 + O2. 

Ak hladáme (aspoň jedno) vyjadrenie čísla a e P v tvare 
súčtu štyroch štvorcov, stačí nájsť takéto vyjadrenia pre 
jeho prvočíselné delitele, a dalej používat vzorec 
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(7.2) (a2 + b2 + c2 + d*).(A2 + B* + C* + D*) = 
= (aA —bB — cC — dDf + (aB + bA + 
+ cD — dC)2 + (aC — bD + c^ + ¿B)2 + 
+ (aD + bC — cB+ dA)». 

Nie každé prirodzené číslo možno písať ako súčet troch 
štvorcov; takto nemožno napísat například číslo 15. 
Přitom však 15 = 3.5, a čísla 3, 5 možno písat ako súčty 
troch štvorcov. Teda analógia vzorcov (7.1), (7.2) pře 
súčty troch štvorcov neexistuje. 

8. G A U S S O V S K É C E L É Č Í S L A 

Komplexné čísla tvaru a + 6i, kde a,b e Z, nazývame 
gaussovské celé éísla. Pri obvyklom znázornění komplex-
ných čísel v rovině zodpovedajú tzv. mreíovým bodom, 
t. j. bodom s celočíselnými súradnicami. Množinu všet-
kých gaussovských celých čísel budeme označovat G. 

Veta 8.1. Pre každé a, b e G, 6 # 0 exiatujú q, r e G 
také, že 

a = b.q + r a |r| < |6|. 

Čísla q, r vo všeobecnosti nie sú jednoznačne určené. 
(V závislosti od a, b možno q zvolit jedným až fityrmi 
spósobmi; potom je už r určené jednoznačne.) Pre r e O 
nemusí byť |r| celé číslo, ale |[r|| = |r|* (tzv. norma 
čísla r) už je celé nezáporné' číslo. Vo vete 8.1 zrejme 
možno nahradit absolútne hodnoty normami, čo je při 
niektorých úvahách výhodné. 

Pre a,be G budeme písať al6, ak existuje c e G také, 
že a.c = 6 . (Pokiar je a, b e Z., tak a\b v tomto novom 
zmysle je ekvivalentně s a\b v póvodnom zmysle pre 
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celé čísla; preto nevadí, že používáme rovnaký symbol.) 
Relácia dělitelnosti na G má obdobné vlastnosti ako 
relácia dělitelnosti na Z. Například veta 2.1 bude platiť, 
ak v nej všade nahradíme písmeno Z písm< nom G. 
V (iii) by sme však mohli doplnit i\a. Ktoréko-vek dve 
z čísel 

a, i.a, —a = i*.<z, —i.a = i3 .a 

sú z hladiska deliteTnosti úplné rovnocenné; hovoříme 
tiež, že sú asociované. Niekedy si zo štyroch navzájom 
asociovaných čísel pevne vyberáme jedno. Urobíme to 
aj my v nasledujúcej definícii, aby sme potom mohli 
Tahšie vyslovit vetu o rozklade na prvočinitele pre 
gaussovské celé čísla. 

Deflnícia 8.2. Gaussovské prvočísla sú 

a) číslo 1 + i; 
b) každé (obyčajné) prvočíslo tvaru p = 4k + 3, kde 

k e N; 
c) každé číslo a + 6i, kde a e P, 6 € Z, ai + 6a je 

(obyčajné) prvočíslo a |6| < o. 

Teda gaussovskými prvočíslami sú například 

1 + i, 3, 2 + i, 2 —i, 7, 11, 3 + 2i, 3 — 2i 

ale nie sú nimi například 
1, 1—i , —3, 1 + 2i, 5, 17, . . . 

(aj ked niektoré z týchto čísel sú asociované s gaussov-
skými prvočíslami). 

Postupnost všetkých gaussovských prvočísel možno 
dostat z postupnosti všetkých (obyčajných) prvočísel 
tak, že v nej 
a) prvočíslo 2 nahradíme číslom 1 + i; 
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b) prvočísla tvaru 4k + 3 ponecháme; 
c) každé prvočíslo p tvaru 4k + 1 nahradíme dvojicou 

čísel 
o + bi, a — bi takou, že o2 + b2 = p a 0 < 6 < a . 

Jednotlivé body tohoto předpisu zodpovedajú rovnako 
označeným bodom definície 8.2. Čísla a ± bi, ktoré v bo-
de c zodpovedajú prvočíslu p (tvaru 4k + 1), sú týmto p 
jednoznačne určené a platí p = (a + bi). (a — 6i). Prvo-
číslo 2 možno sice písať ako (1 + i).(l — i), ale napriek 
tomu sme mu (v bode a) přiřadili jediné gaussovské 
prvočíslo, a to 1 + i. Číslo 1 — i je totiž už s ním asocio-
vané, pretože 1 — i = i3. (1 + i), a preto sme ho nezařa-
dili medzi gaussovské prvočísla. (Vorbu medzi 1 + i, 
1 — i sme vsak mohli urobit Tubovoíne.) 

Veta 8.3. Každé a e G — {0} sa dá vyjádřit v tvare 
(8.1) o = i « . í J . g ř qe

kk, 

kde e e {0, 1, 2, 3}, qu ..., qk sú po dvoch rdzne gaussov-
ské prvočísla a ex, ..., ek e P. Rozklad (8.1) je jedno-
značný až na poradit činitelov. 

Například 

1 = i® (tu je k = 0), 
7 — 4i = i3.(2 4- i).(3 + 2i), 

65 = (2 + i). (2 — i). (3 + 2i).(3 — 2i), 
8 = i. (1 + i)8. 

Rozklad celého čísla o # 0 na súčin gaussovských 
prvočísel (a mocniny i) podra vety 8.3 možno urobit 
tak, že najprv a rozložíme na súčin prvočísel v tvare 
(4.1) a potom ešte rozložíme prvočíslo 2 a prvočísla tva-
ru 4k + 1, ktoré sa nachádzajú v tomto rozklade. 
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9. F A K T O R I Á L Y 
A K O M B I N A Č N Ě Č Í S L A 

Faktoriály n\ čísel n e N móžeme definovat například 
rekurentne vzorcami 

(9.1) 0! = 1, (n + 1)! = n\.(n + 1) 

pře m,ne N, n ^ m definovat vzorcom 

(9'2) (w) = n\.(m — n)\ 

Možno ich vsak dostat i z Pascalovho trojuholníka. 

Niekedy sa definuje j ^ j p r e každé m e N, n e Z; vtedy 

pře n < 0 alebo n > m kladieme = 0. 

Veta 9.1. (Wilsonova). Číslo n > 1 je prvočíslo právě 
vtedy, ked(n — 1) ! + 1 = 0 (mod n). 

Veta 9.2. Pre každé n e P je číslo ( ^ j delítelné všet-
kýmíprvočíslamip,n <p sS 2n. 

Rozklad faktoriálov na prvočinitele možno tvořit podia 
nasledujúcej vety. 

l'"VJ I n 
Veta 9. 3. Pre každé n e N platí 

(9.3) n! = i! p'« kde ep = Š . . 
PŠn fc-l | Pk_ 

pre vietky p (p prebíeha prvočísla nepresahujúce n). 
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Prakticky nemusíme počítat |logpnJ, ale stačí tvořit 
příslušné členy radu pře ep, pokiaí sú nenulové. Napří-
klad pre n = 10 bude 

H T H - 1 * 1 -
apreto 10! = 2».34.5«.7. 

Ako ddsledok predchádzajúcej vety dostáváme: 

Veta 9.4. Prekařdé m,ne N ,m ^ n platí 

( M ) í * ) = n p f , t 
Pán 

pre vietlcy p (p prebieha prvočísla nepresahujúce n). 

Výraz I ~ I — I I — I — - -r—-1 móže nadobúdat len 
IH IH I P> \ 

hodnotu 0 alebo 1, pričom hodnotu 1 nadobúda právě 
vtedy, ked při sčítaní čísel m, n — m v sústave o základe 
p nastáva přenos z (Jfc —- l)-ého do A-tého rádu. Teda fp 
je počet prenosov při sčítaní čísel m, n — m v sústave 
o základe p. 

Faktoriály rastů velmi rýchle, a ich výpočet násobe-
ním je namáhavý. Přibližné móžeme ich hodnoty počí-
tat podTa Stirlingovho vzorca 

38 



kde = znamená asymptotická rovnost: V limite pre 
n -*• oo sa podiel lávej a právej strany blíži k jednej. 
Pravda, z tohoto faktu samotného nemožno robit žiadne 
závěry o přesnosti vzorca (9.5). Platí však, že pre n ^ 10 
relatívna chyba výsledku nepresiahne ^ ^ % (teda 

n 
například 1 % pre n = 10, ale len 0,1 % pře n = 100). 
Presnejšie vzorce sú například: pre všetky n S: 2 

,9 .6) + < < 

< ^ C H , + . L ) 
a pre všetky n ^ 8 

Pokial je výhodné použit logaritmus faktoriálu, móžeme 
bo přibližné počítat podia vzorca 

(9.8) ln (»!) = ».(In » — 1) + — ln (2tzn) + 
Z» 

1 1 1 1 1 
+ 1 2 » _ 3 6 0 » ' + 1260»* ~~ 1680» 7 + T l 8 8 n 9 _ ' ' ' 

pre každé » ^ 2. Možno v ňom vziat lubovoTný počet 
členov (ale aspoň 2). Absolutna chyba nepresiahne 
prvý vynechaný člen, a bude mat rovnaké znamienko. 
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10. R E K U R E N T N Ě P O S T U P N O S T I 

Výsledky tohto odseku platia všeobecne pře póstup-
nosti komplexnýcb čísel. Číselnú postupnost (o0, o„ a2, 
. . . ) nazveme rekurentnou postupnostem drahého stupňa, 
ak existujú (komplexně) čísla p, q také, že pře všetky 
prírodzené čísla n platí 
(10.1) 0.+2 = p.On+i + q.a*. 

Na určenie tejto postupnosti potřebujeme okrem vzorca 
(10.1) poznat jej prvé dva členy o,, a,. Ak má kvadra-
tická rovni ca 
(10.2) x*=p.x + q 
dva rózne kořene xlt xs, tak pre každú postupnost vyho-
vujúcu vzorců (10.1) existujú čísla u, v také, že pre každé 
prírodzené číslo n platí 
(10.3) o, = it.x? + «.x^. 
Hovoříme, že (o,, ai, at, ...) je lineárna kombinácia 
geometrických postupností 

(1 , X|, Xf, . . . ) , (1, X2, XJ, . . . ) 

s koeficientmi u, v. K daným a0, ax vypočítáme příslušné 
u, v zo vztahu (10.3) pre n = 0, 1. Ak má rovni ca (20.2) 
dvojnásobný kořeň xlt tak namiesto vzorca (10.3) platí 
vzorec 
(10.4) o, = u.xf + ».71X7» 

t. j. (a0, Oj, a2, ) je lineárna kombinácia postupností. 
(1, x„ xf, . . . ) , (0, x„ 2xf, ...). 

Koeficienty u, v sa dajú vypočítat obdobné. Ak vyšetřu-
jeme reálnu postupnost (a0, au o2, . . . ) a rovnica (10.2) 
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má imaginárně kořene xht = r.(cos a. ± i sin a), tak 
namiesto vzorca (10.3) možno použiť vzorec 
(10.5) o* = . r" cos nx + vx. r* sin na.. 

Teda (a0, a1, a„ . . . ) je lineárna kombinácia postup-
ností 

(1, r cos a., r% cos 2«, . . . ) , 0, r sin <x, r2 sin 2<*, . . . ) . 
Koeficienty uu vt budú reálne čísla zatiaT čo u, v vo vzor-
ci (10.3) mobli vyjsť imaginárně. 

Postupnost (o0, au a2, ...) nazveme rekurentnou postup-
nostou stupňa k, ak existujú čísla p0, px pk_i také, 
že pre každé prirodzené n platí 
(10.6) an+k ř= Pk-lGn+k-l + Pk-20«+)fc-2 + . . . + í>o°n 

Na jej jednoznačné určenie potřebujeme poznat ešte 
jej prvých k členov o0, alt . . . , ak_x. Ak má rovnica 

(10.7) a* = pk-ix*-1 + Pk-**-2 + ... + Po 
k po dvoch róznych koreňov xlt x2, . . . , xk, tak každá 
postupnost spíňajúca (10.6) je lineárnou kombináciou 
geometrických postupností 

( l , x „a f , ...), j = 1,2, ...,k. 

Aj v případe, že rovnica (10.7) má viacnásobné kořene, 
je každá postupnost spíňajúca (10.6) lineárnou kombi-
náciou vhodných k postupností. Dostaneme ich tak, že 
k «-násobnému koreňu q rovnice (10.7) přiřadíme vždy s 
postupností 

(07 l ' g \ 2>g2, 3igř. ...), j = 0, 1, . . . , s — 1. 

(Vsimnime si, že pre j = 0 priradujeme geometrickú 
postupnost s kvocientom q\ teda případ jednoduchých 
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koreňov je tu tiež zahrnutý.) Ak sú (niektoré) kořene 
rovnice (10.7) imaginárně, a chceme uvažovat len reálne 
postupnosti, použijeme postup obdobný přechodu od 
(10.3) k (10.5). Podrobnosti necháváme na rozmysleme 
čitatelovi, rovnako ako sme mu ponechali zovšeobecne-
nie pojmu lineárnej kombinácie z dvoch na k postup-
ností. 

Z mnohých nerovností v [4] připomeňme aspoň ne-
rovnost medzi aritmetickým a geometrickým prieme-
rom. 

Veta 11.1. Pre vSetky kladné reálne čísla alt a2, ..., 
..., an(n =/= 0) platí 

Nerovnosti pre kombinačné čísla možno odvodzovať 
okrem iného zo Stirlingovho vzorca pre faktoriály. Často 
však možno postupovat ovela elementárnejšie, například 
nerovnost 

pre 0 ^ k < n snáď najlahšie dostaneme pomocou roz-
voja výrazu (1 + 1)B podia binomickej vety. 

Nerovnosti v nasledujúcej vete spresňujú niektoré 
tzv. přibližné vzorce, ktoré sa často nájdu v příručkách 
(„spravočnikoch"), připadne i v tabulkách, ale nie vždy 
s uvedením oboru platnosti (ktorý závisí aj od požado-
vanej přesnosti). Ak je čitatel oboznámený so základmi 
diferenciálneho počtu, zaiste zbadá, že váčšina koe-
ficientov pri mocninách x v uvedených nerovnostiach 

1 1 . N I E K T O R É N E R O V N O S T I 

n a1 + g 2 + . . . + a, 
n y<Zj. a 2 a„ ^ 'n 
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vzniká z Taylorových radov pře odhadované funkcie. 

Ostatné koeficienty (například — y v odhade pre 

sin x) sú zvolené v tvare zlomkov s malými menova-
telmi, a j za cenu istého oslabenia odhadov. Odhady sú 
tým presnejšie, t. j. dolný a horný odhad sú k sebe 
tým bližšie, čím menšie je x. (Okrem toho by sme ich 
mohli spresniť, keby sme uvažovali menáí interval pre x.) 

Veta 11.2. Pre kaíié reálne číslo x, 0 < x < 1, platí 

1 — x + \ x* < — < 1 — x + x*, 2 1 + x 

1 + — | x 2 < V l + x < l + J2X*> 

1 1 . , 1 1 . 
1 - - X - - X * <)/l-x < l - - x - - x * , 

1 3 
x — — x2 < ln (1 + x) < x — x2, 

< l n ( l — x) < — x — 2(1 — x) x ' 2 

l + x + ^ x 2 < e * < l + x + ~ x 2 , 

1 . , 1 , 
1 — x + — x2 < e'x < 1 — x + — x2, 

1 , 1 , x — — x3 < sin x < x — x3, 
0 7 
1 4 

1 — x2 < cos x < 1 xa, z y 

1 , 4 , 
Z + - g X 3 < t g X < X + y X 3 . 
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Uvedieme ešte obdobné vzorce pre dekadický logarit-
mus a funkciu 10", avšak už s koeficientmi v dekadickom 
zápise a zaokrúblenými vhodným smerom. 

Veta 11.3. Pre každé reáine číslo x, 0 < x < 1, platí 
0,43429* — 0,22xl < log (1 + x) < 0,4343x 

x* 
— 0,4343a- — 0,22. j-—^- < log (1 — x) < — 0,43429x 

1 + 2,30258x < 10" < 1 + 2,30259x + 0,7x* 

1 — 2,30259x < 10"» < 1 — 2,30258x + 2,7x*. 

Veta 11.4. Ak pre reálne čísla y, z, x, a, b platía nerov-
ností 0 < |i/| < 0,02, 0 < |z| < 2.10"®, 0 < x < 1, 0 < 
< a < b, tak 

0,43.\y\ < |log (1 +y)\ < 0 , 4 4 . | y | , 

0,43429. |z| < jlog (1 + 2 ) | < 0,4343. |z|, 

(1 — x).log o + x.log b < log ((1 — x ) . a + x.6) < 

< (1 — x).logo + x.log b + 0 ,0543 .^ • 

Posledný vzorec sa dá použit při interpolácii hodnot 
z logaritmických tabuliek. Například pri bežnom použití 

b — a 
logaritmických tabuliek [1] je < 0,00091, teda 

O 
interpolovanú hodnotu určíme s chybou najviac 5 . 1 0 _ , + 
+ 0,0543.0,000912 < 5,05.10"*. 

V nasledujúcej vete pojde o odhady súčinov mnohých 
činitelov blízkých k 1. Ako návod pre čitatela, ktorý by 
si chcel vetu dokázat, uvádzame: Pri pevne zvolenom 
čísle x (a pevnom n) sú uvedené súčiny minimálně, ak 
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n — 1 činiteFov je rovných jednej a maximálně, ak sú 
všetky činitele navzájom rovné. Dolné odhady už vyjdu 
triviálně, pre horné třeba ešte použit binomickú vetu 
a dalej odhadovat členy, ktoré vzniknú. 

Veta 11.5. Ak sú Oj, o2, ..., a„ nezáporné realne čísla, 
a pre ieh súiet x = ox + o2 + . . . + o„ platí 0 < x < 
< 1, tak 

1 + x ^ (1 + 0 l ) . ( l - t o2) (1 + o„) < 
3 , 

< 1 + X + - X» , 
4 

1 — x ^ ( 1 — f f l l ) . ( l — o 2 ) ( 1 — o„) < 

< 1 — x + 



4. NEROVNOSTI 
S MOCNINAMI 

tJIoha 4.1. Usporiadajte podia velkosti čisla 

A = 51'", B = 888t, C = 63'7, D = 99 '4. 

Rieéenie I (s kalkulačkou alebo tabulkami). Platí 
log log A = log (6,e log 5) = 6* log 6 + log log 5 = 
= 36305,27 a obdobné log log B = 29592,41, log log C = 
= 133563,3, log log D = 6260,76. 

Rozdiely medzi vypočítanými číslami sú dostatečné na 
to, aby sme mohli usúdit 

log log D < log log B < log log A < log log C, 

a teda D < B < A < C. • 
Pře výpočet s tabulkami by bolo výhodné logaritmo-

vat eite raz (t. j. počítat log log log A atd.), pričom by 
sme uvážili, že |log log 5| < 1, teda vplyv tohto sčí-
tanca na výsledný logaritmus je malý; skutočne, podia 
vzorca 

log (x + y) = log x + log ( l + f ) . 

máme 

log log log A = 6 log 6 + log log 6 + 
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Posledný sčítanec je (záporný a) v absolútnej hodnotě 
menší než 

0 , 4 4 . M i ^ Í l < 3 .10 - . 
6*.log 6 

Odhady pře B, C, D (s číslami 8, 6, 9 namiesto 5) by 
vyšli podobné. 

Rieienie II (bez použitia kalkulačky a tabuliek). 
Platí 

9,b4 < 64*®4 = 8*-*'4 < 8*'4+1 < 8*inoo° < 8"10000 = 

= 8!4000° < 8" i a m < 8"214 < 8"s\ a teda D < B. 

88«4 < 2 5 ^ = 5 2 a3 '8Í = 523 2 l t < 1 < 5*100000
 = 

= 6a22oono ^ g94iooo ^ 582ie2
 = 5«<«s)!

 = 

= 5**', a teda B < A. 
Najťažši odhad, ktorý sme potřebovali, bol 216= 32768 < 
< 33333. Všetky ostatně sa dajú overiť spamáti. Nako-
niec 

54'4 < e*6' < 6'6 ' = * < 6S '7, a teda A < C . 

Spolu teda máme D < B < A < C. • 
Pri druhom riešení sme potřebovali „uhádnut" pora-

die čísel podia velkosti. Inak by sme sa mohli například 
pokúšat o dókaz nerovnosti B < D (io by sa nám, samo-
zrejme, nevydařilo) alebo o dókaz nerovnosti D < C 
(čo by sa nám asi podařilo, ale nakoniec by bolo zbytoč-
né). Namiesto hádania sme však mohli („tajné") použit 
prvé riešenie; z neho sme tiež mohli usudzovat, aké jem-
né odhady asi budú potřebné. 
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Úloha 4.2. Určité, ktoré z čísel 

A = 7a 8 \ B = 6»'8 

je váčsie. 

Riešenie I (s kalkulačkou). Platí 
log log A = 40403562, log log B = 41077010,96, 

a preto A < B. • 

Riešenie II. Platí 
9« = 3 " = 531441 > 524288 = 2» 

(móžeme to zistiť priamym výpočtom alebo z tabuliek), 
a preto 

7**9 < 6í.2*87
 = 6 i» , 7 ' i < 6.•(a í7'i>/i. = gi«(tí-»,,-l)/l» < 

^ g,«i 25« »6/i» _ gjisaa «"/!» ^ gBei 96 _ g9»9 

teda A < B. O 
Rozdiel medzi log log A, log log B sice stačil na prvé 

riešenie, je však příliš malý na to, aby sme zistili A < B 
využitím odhadu 32 > 23. (Keby sme v B nahradili 
nižšiu deviatku osmičkou, dostali by sme už číslo men-
šie než A.) 

Úloha 4.3. Zistite, ktoré z čísel 
ol2A743 «78336 

A = 22* , B = 2? 
je váčšie. 

Riešenie. Označme C = 2125743, D = 37B33S. Zrejme 
A ^ B, C ^ D. Ukážeme, že A < B právě vtedy, ked 
C < D. Skutočne, ak C < D, tak zrejme 

A = 2*c < 2tD < 3«® = B. 
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Obrátene, ak C > D, tak C > D + 1, a potom 

B = 3*° <4*° = 2*d+1 = A, 
teda A > B. Preto stačí len zistit, ktoré z čís> 1 C, D je 
váčšie. Z tabulky 37-miestnych logarítmov z vokrúhle-
ním dostaneme 

log 2 = 0,301029995664 ± 5 .10-" , 
log 3 = 0,477121254720 ± 5.10~". 

Preto platí 
log C = 125743 log 2 = 37852,414744778 ± 7.10-*, 
log D = 79335 log 3 = 37852,414743211 ± 5.10"* 

a odtial už vidno log C > log D, teda C > D, a teda aj 
A >B. • 

Keby sme počítali na kalkulačko (konkrétné 
SHARP PC 1211, ale bez použitia programovania), 
dostali by sme 

log C = 125743 log 2 = 37852,41474 
log D = 79335 log 3 = 37852,41474, 

teda čísla C, D by sme nevedeli porovnat. Využitím 
„skrytých miest" by sme dostali 

125743 log 2 — 79335 log 3 = 16.10~7 

a teda C > D, „skryté miesta" však vo všeobecnosti 
nemusia byt spolahlivé, a teda ani určeme znamienka 
čísla log C — log D týmto spdsobom nie je spolahlivé. 

Všimnime si tiež, že z nááho riešenia dostáváme 
log C — log D = 157.10 « ± 13.10-*, teda relatívna 
chyba, s ktorou je určené číslo log C — log D, je značná 
(přesahuje 8 %). Zobrat hodnoty log 2, log 3 například 
s presnostou na 10 desatinných miest by už zrejme ne-
stačilo. 
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Úloha 4.4. Nájdite najváčšie celé číslo x, pře ktoré 
platí 

x* < 1001 0 0 . 

Riešenie. Platí x ^ 4, pretože 

4®6 = 4258 < 4300 = 64100 < ÍOO100. 

Na druhej straně, x < 5, pretože 

5&s > 5 3 .5» = (53)6» = 1 2 5 1 2 5 > h j o « » « . 

Preto hladané číslo je a; = 4. • 

Úloha 4.5. Nájdite najváčšie celé čísla x, y, z, pře 
ktoré platí 

X < 100100, 4»4 < 1001 0 0 , 4«' < 1001 0 0 . 

Riešenie. Podia predchádzajúcej úlohy vieme x 2: 4, 
y ^ 4, z ^ 4. Z odhadov 

4*s > 4&< > 4*°° = (44)140 = 256150 > 100100 

potom vidíme y = 4, z = 4. Ostává určit x, Platí x ^ 6, 
pretože 

6«« = 6«.«« = (6«)»4 < 1300m = 101M. 1,3M < 
< 101M. 1,7M < 101 M .3" < 101M.10« = 100100. 

Na druhej straně, x < 7, pretože 

7«4
 = 74.«« = (7«)«« > 2000*4 = 1 0 1 M . 2 4 4 > 1 0 1 M . 

. (2 1 0 ) 6 > 1 0 1 M . ( 1 0 a ) 4 = 10«° > 100 1 0 0 . 

Preto x = 6. • 
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Číslo x sme mohli nájsť aj tak, že by sme najprv vyrie-
šili rovnicu u** = 100100, odkial lahko dostaneme 
log u = -ggg = 0,78125. Pretože u ^ N je výsled-

kom x = | u\. Z tabuliek zistíme 

log 6 = 0,77815, log 7 = 0,84510 

teda x = 6. Pretože log u je podstatné bližšie k log 6 než 
k log 7, boli v póvodnom riešení pre dókaz x ¡g 6 po-
třebné presnejšie odhady než pře dókaz x < 7. 

Úloha 4.6. Nájdite najváčšie celé ČÍ3I0 x, pre ktoré 
platí 

x*1* < ÍOOO10™1000. 

Riešenie. Platí x ^ 5, pretože 

gs® 5
 = 5 5 3 1 2 6

 < 5 6 4 8 0 0 _ 592580« ^ 1 ( ) 0 ( ) i n n o i o o o 

Na druhej straně, x < 6, pretože 

68®4 = 6836 '382 > 68-834000 = (69) (83e ,100° > iooo100°1000 

Teda hladané číslo je x = 5. • 

Úloha 4.7. Nájdite najváčšie celé číslo x, pře ktoré 
platí 

x**5 < ÍOOO100»1000. 

Riešenie. Podia predchádzajúcej úlbhy vieme x ¡g 5. 
Na druhej straně 

6«« 5
 = g e , l ř M > 6«.(.«)iooo = ( 6 6 ) ( 99)iooo > 1 0 0 0 i o o o i ° o o 

Teda hladané číslo je x = 5. • 
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Úloha 4.8. Nájdite najváčáie celé číslo x, pře ktoré 
platí 

x*6& < 1000 l ň o o l o o°. 

Riešenie. Platí 

jqIO®5
 = ] Ql«3 1 8 5 _ jQlo m - lon« 1 0 0 0 ^ 1 0 0 0 , ooo i«»o 

Preto x < 10. Pře výpočet s x = 9 najprv odhadneme 

3 " = (35)4.35 < 2504.256 = 2504.44 = 10004. 

S pomocou tohto odhadu dostáváme 

9»s5
 = 9«3125

 = q(32S)250 ^ 9(loon4)250 = gjooo»«» < 

< íooo10001000. 

Preto hTadané číslo je x = 9. • 
CitateTa asi napadlo, že teraz by mala nasledovať úloha 

nájsť najváčáie celé číslo x také, že 

x»5" < ÍOOO10001000. 

Móže sa o to pokúsiť, ale asi nebude mať dosť trpezli-
vosti na dokončenie výpočtu. Dobré urobí, ak najskór 
skúsi určíť počet cifier výsledku. 

Úloha 4.9. Nájdite najváčáie celé číslo x také, že 

x*T < 4 4 4 \ 

Riešenie. Platí 
gQBO80

 < 4 4 . 8 8 0 1 0 8 n
 = 4 4 8 8 0 1 0 0 0 2 s 1 0 0 < 4 2 * * 2 « > * 2 8 0 + 7 _ 

= 42«- < 44 '« < 4 « ^ 
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teda x = 80 ešte danej nerovnosti vyhovuje. Aby sme 
ukázali, že x = 81 už nevyhovuje, dokážme najprv 
nerovnost 3 " > 2". Platí 

(27 729 

T 9 j = 2 1 8 - 3 6 T > 2 1 8 - 2 = 219-
S využitím tohto vztahu odhadujme 

8181»l > 4«81 = = 4(312)8' > 4(8«)« = 

= 4*813 > 4*264 = 4«4\ 

Teda hTadané číslo je x = 80. • 
Nebolo logicky nutné, aby sme v riešení ukázali, ako 

sme výsledok x = 80 našli; stačí, že sme ho „uhádli", 
a potom ověřili. Teraz však ukážeme, ako sme mohli x 
nájst. Najprv upravme 

= = 464256/3 . 

odtiaT vidíme x g | m a x ^ 4 , 64, j j = 85-

Z druhej strany máme 

4««4
 = 4«.««» = 256®61° = 25612®610'7, 

a odtiaT vidno x ^ |min|^256, 128, ^ p j j = 7 2 T e d a 

vieme 72 ^ x ^ 85. Tento interval pre x móžeme da 
zužovat. Například, ak odhadneme 

4**4 = 256*810 = 25610mH > 256l°153 > 25610°78, 

uz 
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vidíme x ^ 70. Keby sme boli odhadli 
25io = 22«O.2«'° = 8 8 0 . 1024 2 7 > 8 8 0 . 1081 > 80 8 0 , 

dostali by sme nerovnost x 80. Ďalej skúsime číslo 
přibližné zo středu zvyšujúceho intervalu. Platí, napří-
klad 

828 2 = 82 . (82 3 ) 2 7 > 2 9 . (2 1 9 ) 2 7 = 29+19-27 = 

= 2619 > 425a = 4*4, 

a preto 828282 > 44* . Teraz už vieme, že riešením úlohy 
je a; = 80 alebo x = 81. Stačí teda skúsiť, či pře x — 81 
daná nerovnost platí alebo nie. 

Cím viac sa přibližujeme hladanej hodnotě x, tým 
presnejšie odhady potřebujeme. Okrem toho sme viděli, 
že základ možno váčšinou odhadovat hrubo, kým expo-
nenty, a to zvlášť najvyššie, třeba odhadovat jemnejsie. 

Úloha 4.10. Nájdite najváčšie celé číslo x, pře ktoré 
platí 

80 .«44 

x* < 44 . 

Riešenie. Na dókaz x < 84 dopředu odhadnime 
3 . 8480 = 3 . 480 . 2 180 > 3 . 480.44040 > 3 . 480 . 2120. 

.5540 > 3.4140.300020 = 3.4140.2a0.37520 = 3.4170. 
( 375 A20 ( 37 5 "i20 

' U š e ) - 4 8 ° = 4250 3 ( 2 5 6 j ^ 4260.3. 1,4620 > 
> 4250.3.2,1210 = 4255.3. 1,0610 > 4256 . 3.1,6 > 

> 42SB.4 = 444. 

Potom dostáváme 8484®0 > 648480 = 43 8480 > 4 4 ' \ 
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Na dókaz nerovnosti x ^ 83 najprv odhadnime 
832 = 6889 < 213, a preto 83 < 413'4 = 4325. Dalej 

3,25.83B0 < 3,25.(64.1.297)80 = 4240.3,25. l,297so < 
< 4240.3,25.1,682340 < 4240.3,25.2,83120 < 4240.3,25. 
.8,01510 < 4240.3,25.230.1,00210 = 425S.3,25.1,00210 < 

< 4255.3,25.1,03 < 425S.4 = 44*. 
Teraz už Tahko zistíme 

gg63 8 n ^ 43.25-8380 ^ 

Preto x = 83. • 

ťíloha 4.11. Nájdite najváčšie celé číslo x, pře ktoré 
platí 

a*3*0 ^ 4 4 4 ' . 

Rieéenie I (s kalkulačkou). Zrejme platí x = [aj, kde 
a je koreňom rovnice 

a * i w
 = 4 4 2 6 « 

Teda 
a = 44 2 M /83 8" = 4(4W/83®)1« ^ 252,918, 

a preto a; = 252. • 
Dosť umělá úprava exponentu při výpočte a bola po-

třebná, aby nedošlo k preplneniu (na kalkulačke počí-
tajúcej s číslami menšími než 10100 nemožno priamo vy-
počítat 426e). 

Riešenie II (s tabulkami [1]). Platí x = [oj, kde 

a = 442S6/8S80
) teda log o = ^ log 4. Z tabuíky Loga-

00 
ritmy faktoríálov zistíme 
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log 4 = log 4! — log 3! = 0,60206 ± 10"9, 

log 83 = log 83! — log 82! = 1,9190781 ± 10"8, 

a pře to 
4S56 

l o g 83BO = 0,601112 ± 4 . 1 0 - « . 

Ďalej platí (s uvážením všetkých chýb) 

log log 4 = 0,779642 — 1 i 6.10"8 , 

a pře to 
log loga = 0,380754 ± 10~6, 

2,4029 < logo < 2,4031, 
252,8 < a < 253. 

Pretox = 252. • 

Úloha 4.12. Nech postupnosti (a0, o,, a2, . . . ) , (b0, 61( 
b ) sú definované rekurentnými vzorcami 

®o = an+\ = 2"n, b0 = 1, 6„+ i = 6"». 

Nájdite prirodzené číslo n, pře ktoré platí 

b„ ^ o100 ^ bn+i. 

RieSenie. Dokážeme, že pře všetky prirodzené n 2 
platí 

(1) 66„ < o n + 3 < 6 „ + , ; 

z toho už bude bezprostredne vyplývat n = 97. 
Pře n = 2 máme 

6b2 = 67 < 820000 < 265538 = 4si78B < 632788 < 64® = 63; 

pretože 2«SS38 = 2*16 = o5, platí 6b2 < as < b3. Ďalej 
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dokazujeme matematickou indukciou; nech (1) platí pře 
nějaké n Si 2. Potom 

66„+i = 6"-+1 < 23b'+3 < 286» < 2a"+3 = an+i, 

an+ 4 = 2°"+3 < 6"»+3 < 6b»+i = bn+2, 

teda 66b+i < a,+i < 6B+2, čo bolo třeba dokázat. • 
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5. POSLEDNĚ ČÍSLICE 
MOCNÍN 

Připomínáme, že pod poslednými číslicami nějakého 
prirodzeného čísla vždy myslíme posledné číslice jeho 
dekadického zápisu, pokiaí výslovné neuvedieme iný 
základ. Ani při zmene základu však nemeníme význam 
číslic 0 až 9. 

Úloha 5.1. Nájdite poslednú číslicu čísla A = 41M4587. 

Riešenie I. Indukciou dokážeme, že pre každé n e N 
končí 42n+1 číslicou 4. Pre n = 0 to zrejme platí. Ak už 
vieme, že 42n+1 končí číslicou 4, t. j. že platí 4'2n+1 = 
= 4(mod 10), tak lahko zistíme (počítáme modulo 10) 

42Í.+D+1 = 42H+1.16 = 4.6 = 4 (mod 10), 

teda aj 42|B+1,+I končí číslicou 4. Tým je dókaz indukciou 
ukončený. Podra právě dokázaného tvrdenia, ktoré 
použijeme pre n = |1234567/2| = 617283, končí aj A 
číslicou 4. • 

Riešenie II. Dokážeme, že 10| (̂ 4 — 4). Pretože A je 
párne, platí 2|(^4 — 4), a třeba ešte dokázať 5 | (4 — 4). 
Počítajme modulo 5 

A — 4 e= ( _ 1 ) h 3 4 5 « 7 _ 4 = — 1 — 4 = 

= —5 = 0 (mod 5), 
teda skutočne 5|(^4 — 4). Potom 10|(^4 — 4), a teda A 
končí číslicou 4. • 
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Táto úloha bola taká Tahká, že ju čitatel zaiste vedel 
vyriešiť spamáti. Pravděpodobně přitom postupoval 
podia prvého riešenia, ale indukciu urobil intuitivné: 
všimol si pravidelné striedanie číslic 4, 6 v postupnosti 
mocnin štvorky. Uvedené riešenia, najma prvé z nich 
mali skór upozornit čitatela na principy, ktoré sám po-
užívá, než naučit ho niečo nové. V dalších úlohách už 
nevypisujeme riešenia tak podrobné. 

Úloha 5.2. Nájdite poslednú číslicu čísla B = 74667890. 

Riešenie. Čísla 7, 10 sú nesúdelitelné, <p( 10) = 4, 
a preto podia Eulerovej vety platí (počítáme modulo 10) 

B = 746Í7890 MOD « = 7« = 9 ( m 0 d 10). 

Teda posledná číslica čísla B je 9. • 

t loha 5.3. Nájdite poslednú číslicu čísla C = 1317". 

Riešenie. Použijeme Eulerovu vetu a počítáme modulo 
10 

C = 317" = 31?19mod « = 3I1»MOD « = 31 = 3 ( m o < i 1 0). 

Teda posledná číslica čísla C je 3. • 

Cloha 5.4. Nájdite poslednú číslicu čísla D = n " 1 3 " . 

Riešenie. Použijeme Eulerovu vetu a počítáme modu-
lo 10. Platí 

D = 7 « 1 3 l l M O D 4 _ 7 3 1 3 1 1 m o d 2 M O D 4 - 7 3 ^ 0 0 4 _ 

= 73 = 3 (mod 10). 

Teda hladaná posledná číslica je 3. • 
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Necháme čitatelovi na rozmyslenie, že výsledok by sa 
nezmenil, keby sme k „štvorposchodovej mocnině", 
ktorou je dané číslo D, na ďalšie „poschodia" přidali 
například 9, 7, 5. 

Úloha 5.5. Nájdite posledné dvojčíslie čísla 71989. 

RieSenie. Třeba vlastně určiť 71999 MOD 100. 
Pretože 7« MOD 100 = 2401 MOD 100 = 1, platí' 

7 lM,MOD 100 = 74 499+2MOD 100 = (74 MOD 100)499. 
.(7* MOD 100) MOD 100 = 1498.49 MOD 100 = 49. 

Teda bradané posledné dvojčíslie je 49. • 

Keby sme hladali posledné dvojčíslie čísla 71988, vyšlo 
by nám obdobným výpočtom číslo 1; hladané dvojčíslie 
by potom bolo 01. 

Úloha 5.6. Nájdite najmenšie celé kladné číslo n také, 
že 

327»+1 = 327 (mod 1000). 

RieSenie. Pretože D(327, 1000) = 1, je uvedená kon-
gruencia ekvivalentná s kongruenciou 

327» = 1 (mod 1000). 

Táto kongruencia je zasa ekvivalentná so systémom 
kongruencií 

327» = 1 (mod 8), 327» = 1 (mod 125); 
tu sme využili rozpis 1000 = 8.125, pričom D(8, 125) = 
= 1. Druhá kongruencia dáva 

(1) 77» = 1 (mod 125). 
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Pretože <p (125) = 100, podia Eulerovej vety dostáváme 
77100 = 1 (mod 125). 

Preto najmenšie kladné riešenie n kongruencie (1) je 
delitelom čísla 100. Číslo re však nie je delitelom čísla 20 
ani čísla 50, pretože (počítáme modulo 125) 

7720 = (75 + 2)20 = j ^ j ^ ^ 1 9 + 220 = 0 + (210)2 = 

= 24« = 76={s 1 (mod 125), 

7760 = (75 + 2)50 = + 250 = 0 + (2,0)s = 

= 245 = (25— l)5 = + | j j . 2 5 . 1 4 — l s = 

s — 1 + 1 (mod 125). 

Teda najmenšie kladné riešenie kongruencie (1) je n = 
= 100, a to zrejme vyhovuje aj prvej kongruencii (tej 
vyhovuje každé párne prirodzené n). Teda n = 100 je a j 
riešením úlohy. • 

Úloha 5.7. Dokážte, že neexistuje celé kladné číslo n 
také, že 7516"+1 končí štvorčíslím 7516. 

Riešenie. Platí 4| 7516, 8| 42, a teda 8| 7516»+1 pře každé 
celé kladné n. Avšak žiadne číslo končiace štvorčíslím 
7516 nie je deliterné ósmimi. • 

Úloha 5.8. Určité posledných šest číslic čísla A = 

Riešenie. Třeba určit číslo A MOD 10\ a na to najprv 
určíme A MOD 2«, A MOD 5». Pretože D( 5, 64) = 1 
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a cp (64) = 32, podia Eulerovej vety platí 532 = 1 (mod 
64), a potom zrejme aj A = 1 (mod 64). Ďalej zrejme 
platí 59\A, a preto pře B = A MOD 10' platí 

B = 1 (mod 64), B = 0 (mod 15625) 

(mocniny 2", 56 sme vypočítali). Tieto kongruencie 
spolu s nerovnosťou 0 < B < 10® jednoznačne určuj ú B. 
Z druhej kongruencie vieme B = 15625x pře nějaké 
celé číslo x; Iahko zistíme 0 ^ x < 64. Dosadením do 
prvej kongruencie dostáváme 

15625x = 1 (mod 64), 

9x = 1 (mod 64), 

—63x —7 (mod 64), 

x = 57 (mod 64), 
teda vzhladom na nerovnost pre x dostáváme x = 57, 
a potom 

B = 57.15625 = 890625. 

Teda posledné šesťčíslie čísla A je 890625. • 

Kongruenciu pře x sme mohli tiež upravit takto 

59x = 1 (mod 64), 

x = 529 (mod 64), 

59x = 532 (mod 109). 

Pretože B = 59x, platí 
B = 532MOD 109 = 2519MOD 109 = 

= 6258MOD 109 = 390 6254MOD 109 = 
= 890 6252MOD 109 = 890 6 25. 
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V poslednom výpočte sme potřebovali páť umocnění 
na druhů, pretože 32 = 25. Jedno (a to posledně) umoc-
nenie sme si mohli ušetřit pomocou vztahu 51* = 1 
(mod 64), ktorý sice nevyplývá z Eulerovej vety, ale 
Tahko ho dostaneme například z binomického rozvoja 
pře (4 + 1)". 

Úloha 5.9. Určte posledně trojčíslie čísla .<4=9**. 

Riešenie I (s tabulkami). Pretože <p(1000) = 400, bu-
deme potřebovat 99 MOD 400. Priamo z tabuliek zistí-
me, že posledně štvorčíslice čísla 9* je 0489, teda 
9» MOD 400 = 89. Potom platí (počítáme modulo 1000) 

A = 989 = 3178 = 33. (335)5 = 27 . 707® = 
= 27.1015.75 = 27.501.807 = 27.307 = 

= 289 (mod 1000). 

Teda A MOD 1000 = 289, čo je hladané posledně 
trojčíslie. • 

Poznamenajme, že namiesto qp(1000) = 400 sme mohli 
uvažovat A(1000) = 100, teda 9100 = 1 (mod 1000). Ex-
ponent 89 by sme tým však neznížili. 

Riešenie II. Najprv zistíme 99MOD 100. 
Počítáme modulo 100 a používáme binomickú vetu, pri-
čom násobky 100 už vynecháváme. 

99 = (10— l)9 = | y j . l 0 — 1 = 89 (mod 100). 

Teraz Tahko zjistíme poslednú číslicu čísla ^ ̂  j> pretože 

(počítáme modulo 10) 
/-q»\ QB i 

I = 99.——-— = 9.4 = 6 (mod 10). 
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f)alej znova používáme binomická vetu, ale počítáme 
modulo 1000: 

9»' = (10 - 1)*® = - ( 9 J ] . 100 + 1 0 — 1 = 

= —600 + 890— 1 = 289 (mod 1000). 
Teda posledné trojčíslie čísla 9»» je 289. • 

Iný možný postup by bol určit, že 
A MOD 125 = 39, A MOD 8 = 1 

a pomocou týchto hodnot určit A MOD 1000. 

Úloha 5.10. Určte posledné trojčíslie čísla B = 88*. 

Rieáenie. Využijeme rozklad 1000 = 125.8. Aby sme 
mohli určit B MOD 125, určíme najskór 89MOD 100. 
Platí (počítáme modulo 100) 

88 = 64« = 4 096« = (—4)* = 16 (mod 100). 
Pře to (teraz počítáme modulo 125) 

B = 888mod,°° = 8W = 2** = 256* = 6* = 
= 2162 = (—34)* = 1 156 = 31 (mod 125). 

Potom platí 
B MOD 1000 = 31 + k. 125 

pre nějaké celé číslo k; zrejme 0 ^ k ^ 7. Pretože 

(B MOD 1000) MOD 8 = B MOD 8 = 0, 
máme 

31 + k. 125 = 0 (mod 8), 
5k = 1 (mod 8), 
k = 5 (mod 8), 
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a teda k = 5. Potom 

B MOD 1000 = 31 + 5.125 = 656. 
Teda hladané posledně trojčíslie čísla B je 6í 6. • 

tíloha 5.11. Určte posledně trojčíslie čísla C = 

Rieienie. Budeme počítat C MOD 1000, pričom vy-
užijeme Eulerovu vetu pre moduly 8 a 125 a skutočnost, 
že 

nan(<p(%), <p( 125)) = 100. 

Počítajme modulo 1000 ; platí 

C = 7 S 9 M O D 1 0 0 = 7-'>I-3MOD IOO _ "YI-^MOD ÍOO _ 72« _ 

= 24017 = (400 + l)7 = 7.400 + 1 = 801 (mod 1000). 

Teda číslo C končí trojčíslím 801. • 

Úloha 5.12. Určte poslednú číslicu sedmičkového zá-
pisu čísla A = 10l0,°. 

Rieienie. Máme vlastně určiť A MOD 7. Pri počítaní 
modulo 7 platí 

A = 3 lol° = 3>O10"OD 8 = 3« = 4 (mod 7). 

Teda hladaná posledná číslica je štvorka. • 
Určenie poslednej číslice z-adického zápisu čísla A 

pre ostatně základy menšie než 10 je ešte Taháie, a čitatel 
by to mal bez ťažkostí spravit i spamáti. 

tíloha 5.13. Určte posledně trojčíslie deviatkového 
zápisu čísla A = 10loin. 
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Riešenie. Budeme počítat modulo 9S a používat bino-
mickú vetu; zřejmé násobky 93 budeme ihned vynechá-
vat, a využijeme tiež 9|(1010— 1), tedy aj 9 no 1 0» { 2 i " 

^ = ( » + „ « ^ ^ ( T ) - 9 - + ( ' D - 9 + 1 s 

= 0 + 1010.9 + 1 = (9 + l)10.9 + 1 = 
= (10.9 + 1).9 + 1 E= 1.9* + 1.9 + 1 (mod 93). 

Teda posledné trojčíslie deviatkového zápisu čísla A 
je 111. • 

Úloha 5.14. Určte posledné trojčíslie sedmičkového 
zápisu čísla A = 101"10. 

Riešenie. Budeme počítat modulo 73 = 343 a využí-
vat Eulerovu vetu. Počas výpočtu používáme dekadické 
zápisy. Naprv určíme 1010MOD <p(343), t. j. 1010MOD 
294. Využijeme rozklad 294 = 6.49. Platí 

1010MOD 49 = 1005MOD 49 = 25MOD 49 = 32, 

a preto 1010MOD 294 = 32 + 49 k pre vhodné celé čís-
lo k. Pretože 1010MOD 6 = 4, má byť aj (32 + 49fc)MOD 
6 = 4, teda (2 + k) MOD 6 = 4, odkial vyplývá k = 2 
(mod 6). 
Pretože však zrejme 0 k sS 5, máme k = 2 a 

1010MOD 294 = 32 + 49.2 = 130. 

Teraz počítajme modulo 343. Platí 

A = 101o1°mod 294 = 10130 = 10085 = 4.821.5065 = 

= 4.(7 + 1)21.(49 + 1)«® ^ 4-((2
2

1)"72 + 2 1 / 7 + 1 ) -
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.(65.49 + 1) = 4.(0 + 3.7* + 1).(2.72 + 1) = 
E= 4. (5.72 + 1) = 20.72 + 4 = 
= 6.72 + 0.7 + 4 (mod 343). 

Teda posledně trojčíslie sedmičkového zápisu čísla A je 
604. • 
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6. DELITELNOSŤ 

Úloha 6.1. Dokážte, že 

43|3aS + 4 4 \ 

Rieáenie. Výpočtom podia modulu 43 s využitím malej 
Fermatovej vety dostáváme 

33® 4** = 3 « 425« MOD 42 - 3 3 8 i * 44 = 

= 33. (—5)6 + 256 = 753 — 2 = ( - 1 1 ) 3 — 2 = 

= — 1 1 . 1 2 1 — 2 = — 1 1 . (—8) — 2 = 86 = 

= 0 (mod 43), 

teda 43|3a8 + 44 \ • 

Úloha 6.2. Dokážte, že 

7319»9 + 10l°10. 

RieSenie. Použijeme malú Fermatovu vetu. Dopředu 
si vypočítáme čísla 

u = 9» MOD 72, v = 1010 MOD 72, 
pričom využijeme rozklad 72 = 8.9 a nesúdelitelnosť 
čísel 8, 9. Platí 

u MOD 8 = 9® MOD 8 = 1, u MOD 9 = 9» MOD 9 = 0. 
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Z druhého vztahu (a z nerovnosti 0 u < 72) vyplývá 
u = 9k pře nějaké celé číslo k, 0 ^ k < 8. Dosadením 
do prvého vztahu dostáváme 9k MOD 8 = 1 ,k = l(mod 
8), a teda k = 1. Preto u = 9. Pre číslo v platí 

v MOD 8 = 1010MOD 8 = 0, 
»MOD 9 = 1010MOD 9 = 1. 

Z prvého vztahu (a z nerovnosti 0 ^ v < 72) vyplývá 
v = 8k pre nějaké celé k, 0 ^ k < 9. Dosadením do dru-
hého vztahu dostáváme 

Hk MOD 9 = 1, 8/fc = 1 (mod 9), k = 8 (mod 9), 

a teda k = 8, v = 64. 
Teraz budeme počítat modulo 73 

9** -)- l O 1 " 1 0 = 9»*MOD72 _)_ JQ10 , 0MOD72 _ 

= 9» + 10«« = 9* + 100" = 9» + 27»* = 
= 729s + 729" = (—1)» + (—l) u - 0 (mod 73), 

a teda 7319** + ÍO1®10. • 
Odteraz nebudeme výpočty obdobné výpočtom čísel 

u, v rozpisovat tak podrobné. Poznamenáváme, že u sme 
mohli Tahšie vypočítat využitím vztahu 9* = 9 (mod 72); 
len z inštruktívnych dóvodov sme dali přednost váeobec-
ne použitelnému postupu. 

t loha 6.3. Dokážte, že 

89 | l l l i n + 121*1*. 

RieSenie. Platí 

l l1 1 MOD 8 = 3, 11» MOD 1 1 = 0 , 

odkiaT Tahko zistíme 11» MOD 88 = 11. 
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Obdobné 
1212 MOD 8 = 0, 12li MOD 11 = 1, 

odkiar vyplývá 12" MOD 88 = 56. Ďalej počítá jme 
modulo 89; platí 

H l l " _)_ 1 2 , í W = ll" l lMOD88 _j_ |212,8MOD88 _ 

= ll»1 + 12s« = 11» + 144" = 11» + 55« = 
= 11».(1 + 5**. II1 ') = 11".(1 + 625'. 11.121«) = 

= 11».(1 + 2'.11.32«) s 11».(1- +'39.11.256s) = 
= 11».(1 + 39.11.(—II)5) = 11».(1 —39.11«) = 
= 11».(1 — 39.1331«) = 11».(1 — 39.(—4)2) = 

= 11».(—623) = 11".0 = 0 (mod 89). 

Teda platí 8 9 | l l » u + 12"12. • 

Úloha 6.4. Dokážte, že 

ll |1313 , s + 14"u . 

Rieienie. Počítajme modulo 11, s využitím malej Fer-
matovej vety: 

J 3 l 3 U 1 4 l « 1 4 = 1 3 1 3 I 3 M O D 1 0 J 4 1 4 1 4 M O D 10 _ 

= 13» + 14« = 2» + 3« e= 8 + 5* = 8 + 3 = 
= 0 (mod 11), 

a preto 11113"18 + 14mM. • 

Úloha 6.5. Dokážte, že 

1111101®10 + l l » " . 
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RieSenie. Označme A číslo vpravo od znaku dělitel-
nosti. Pretože 111 = 3 . 3 7 (a 3, 37 sú prvočísla, teda 
D(3, 37) = 1), stačí dokazovat 'i\A, 37\A. Najprv počí-
tajme modulo 3. Platí 

101®10 + l i 1 1 " = 11010MOD2 2"UMOD2 _ 

= 1 + 2 = 0 (mod 3), 
a preto 3\A. Pře prvočíslo 37 najprv uvážme, že platí 

1010 MOD 9 = 1 , 1010 MOD 4 = 0, 

a preto 1010 MOD 36 = 28. Obdobné 

11» MOD 9 = 2» mod • MOD 9 = 5, 
11» MOD 4 = 3, 

a preto l l 1 1 MOD 36 = 23. Teraz počítajme modulo 37; 
platí 

JQlO10 J I « » = 101O1OMOD36 ]lll»MOD36 _ 

= 1028 + l l 2 3 = 10.1000® + 1 1 . 1 2 1 » = 

= 1 0 . 1 9 + 1 1 . 1 0 » = 10 + 1 1 0 0 . 1 0 0 0 3 = 

= 10 + 1100 = 1110 = 0 (mod 37). 
Preto platí 371A. Predtým sme zistili 3|^4, spolu teda 
máme 111 \A. • 

t loha 6.6. Dokážte, že 
4831444 + 5®6. 

RieSenie. Označme A číslo vpravo od znaku dělitelnos-
ti. Pretože 483 = 21.23 = 3.7.23 a 3, 7, 23 sú prvo-
čísla, stačí dokázat 3|^4, 7|A, 23|^4. Výpočet modulo 3 
dáva 

A = l*4 + 25<ÍMOD2 = 1 + 2 = 0 (mod 3). 
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Výpočet modulo 7 dáva 

A f j 4«4M«nn 4- 5 - ^ 0 0 8 _ 44 55 = 

- (—3)4 — (—2)s = 81 — 32 = 49 - 0 (mod 7). 

Nakoniec, výpočet modulo 23 dáva 

A = 4'4MOD 22 5.r,6MOD 22 _ 414 55.25^00 22 _ 

= 41 4 + 5S.32MOD22 = 22 8 M O D 22 4" 5*MfOI)22 = 

= 2« + 51 = 64 4- 5 = 69 = 0 (mod 23). 
Pretoplatí 3 1 , 1\A, 2 3 | ^ , a t e d a a j 3.7.23 = 4831.4. • 

Úloha 6.7. Dokážte, že 

17 | 22® 4- 3A3. 

Riešenie. Počítajme modulo 17, s využitím malej 
Fermatovej vety. Platí 

2«4 4. 3»® = 24 4- 327M01> 14 = 16 4- 311 

16 • 9.273 = 16 4- 9.103 = 16 + 90.100 = 
= 16 + 5.(—2) = 6 (mod 17), 

teda 17 t 2®2 4- 3aS. • 

Úloha 6.8. Dokážte, že 

33S + 4** t 44* + 5s6. 

Rieáenie. V úlohe 6.1 sme zistili, že platí 43| 3"3 4- 44*. 
Teraz ukážme, že 43 I 444 + 58&. 
Najprv zistíme 

5S MOD 42 = 125.25 MOD 42 = 
= (—1).25 MOD 42 = —25 MOD 42 = 17. 
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Teraz počítá jme modulo 43 a s využitím malej Ferma-
to ve j vety. Platí 

4:** 5 ' 5 = 4*4MOD 42 55®MOD 42 _ 44 5I7 _ 

= 256 + 25.1255 = 256 + 25. = 
= 256.(1 — 25.4) = 26 (MOD 43). 

Teda 43 I 4<4 + 5 sB , a tým skór 3s3 + á** i 44' + 5"s. • 
Samozrejme, úplné riešenie úlohy 6.8 by sa nemálo 

odvolávat na úlohu 6.1. Prvočíslo p = 43 sme mohli 
„uhádnut", resp. nájst postupným výpočtom čísel 

+ 44*J MOD p, ale výpočty pře p < 43 nemusíme 
v konečnom nesení uvádzat. Uviedli by sme len výpo-
čet pre p = 43, t.j. v podstatě odpísali riešenie úlohy 6.1. 

tíloha 6.9. Dokážte, že 

8®8 + 9** \ 9®8 + 10Iffll°. 

Riešenie. Počítajme lavú i pravú stranu podTa modu-
lu 5, s využitím malej Fermatovej vety. Platí 

g88 9 » ® = 38®MOD 4 4»*MOD 4 _ 30 4 1 _ 

= 1 + 4 = 0 (mod 5), 
90» + 1 0 ioM = 9»® = 41 = 4 ( m o ( i 5 ) . 

Teda platí 5|8B® + 9®8, 51 9®8 + 101"10, a preto 

8®8 + 9®9 \ 9®9 + 1010~°. • 

Niekolko nasledujúcich úloh necháváme čitatelovi ako 
cvičenie. 

Úloha 6.10. Dokážte, že 

1313ls + 14M" \ 14"m + 15"". 
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Úloha 6.11. Dokážte, že 

12"12 + 131S,S | 13i,1!l + 1414". 

Úloha 6.12. Dokážte, že 

11"" + 12 I í l l t 1212" + 13»". 

Úloha 6.13. Dokážte, že 

5*5 + 64 ' \ 6®* 4 

Úloha 6.14. Dokážte, že 

6* + 77? í 77' + 88'. 

Posledně tri úlohy neodporúčame riešit bez použitia 
samočinného počítača. Este viac by sa takéto odporú-
čanie týkalo nasledujúcej úlohy, keby sme pře ňu nemali 
celkom iný postup. 

Úloha 6.15. Dokážte, že 

77? + 8®8 t 8®8 + 9**. 

Riešenie. Číslo vpravo možno písat v tvare o2 + 62, 
kde o = 84 , b = 3'" sú nesúdelitelné celé čísla; preto 
nemá žiadneho prvočinitela tvaru 4k + 3. Číslo vIavo 
však je tvaru 4 i + 3, a preto má aspoň jedného prvo-
činitela tohto tvaru. (Prvočíslo 2 nepřichádza do úvahy, 
a súčin Tubovorného počtu prvočísel tvaru Ak + 1 je tiež 
tvaru 4k + 1.) Preto platí 

77? + 8®8 \ 8®8 + 99'. • 

Rovnakým postupom možno vyriešiť aj nasledujúce 
dve úlohy. 
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Úloha 6.16. Dokážte, že 

2* + 3®3 \ 9®e + 10,ol°. 

Úloha 6.17. Dokážte, že 

6*9 + 7'71 88" + 9°°. 

Úloha 6.18. Dokážte, že 

6"a + 8®8 t 77? + 9®". 

Rieáenie. Označme A číslo vlavo, B číslo vpravo od 
znaku \. Zrejme 2**\A, a teda stačí dokázat 2*' \ B. Na to 
počítajme podia modulu 128 

7'7 = (8 — 1)7? = — 7 7 ' ( 7 ?
9 ~ -8» + 7 ' .8 — 1 = 

= —64 + (77 MOD 16). 8 — 1 = —64 + 
+ (7.49" MOD 16).8 — 1 = —64 + 7.8 — 1 = 

= —9 (mod 128), 

9®* = (8— 1)*' = 9 * ' ( 9 >
9 ~ .8' + 98 .8 + 1 = 

= 0.64 + (9® MOD 16).8 + 1 = (9.81* MOD 16). 
.8 + 1 = 9.8 + 1 = 73 (mod 128). 

Preto platí 

B = —9 + 73 = 64 (mod 128), 

teda 128 | B, a tým skór 2*\| B, teda aj A \ B. • 
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7. MOCNINY 

Slovo „mocnina" v textoch úloh tejto kapitoly třeba 
chápat ako „mocnina, ktorej základ je prirodzené číslo 
a exponent je prirodzené číslo vačšie než 1". Teda na-
příklad spomedzi čísel od 1 do 20 mocninami sú 1, 4, 8, 
9, 16. Připomínáme, že obdobné .sa používá slovo 
„štvorec" pře druhů mocninu (a v ruštině a angličtině 
a j ekvivalent slova „kočka" pre tretiu mocninu; u nás to 
znie trochu neobvykle). Vo váčsine úloh pójde o dókaz 
toho, že nějaké velké číslo nie je mocninou. 

t l o h a 7.1. Nech číslo 

A = 100101102 . . . 998999 

vznikne tak, že napíšeme za sebou všetky trojciferné 
čísla v poradí podfa verkosti. Dokážte, že A nie je moc-
nina. 

Riešenie. Určme najprv A MOD 999. Na to stačí A 
rozdělit na 3-ciferné skupiny (od konca, ale tu na tom 
nezáleží), a určit ich súčet S. Potom platí A MOD 999 = 
= S MOD 999; ak bude S velké, možno postup zopako-
vat. Takto dostáváme 

A MOD 999 = (450.(100 + 999))MOD 999 = 45 

Pretože 999 = 27.37, dostaneme odtiaT lahko 

A MOD 27 = 18. 
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OdtiaT vidno, že %\A, 27M, teda exponent prvočísla 3 
v rozklade A je rovný dvora. Preto A nemóže byť vyášou 
než druhou mocninou. Avšak zrejme platí A = 
= 3 (mod 4), teda A nie je ani stvorec. • 

Úloha .7.2. Nech číslo 

B = 12345 . . . 999910000 
vznikne tak, že napíšeme za sebou všetky prirodzené 
čísla od 1 po 10000 v poradí podra velkosti. Dokažte, že 
B nie je mocnina. 

Riešenie. Kedže B končí štyrmi nulami, tak keby B 
bolo mocninou, bolo by aj štvorcom (každá štvrtá moc-
nina je súčasne štvorec). Potom by aj číslo B/10000 
bolo štvorcom, ale to nie je možné, pretože 

5/10000 = 3 (mod 4). • 

Úloha 7.3. Nech číslo 

C = 1000010001 . . . 9999899999 

vznikne tak, že napíšeme za sebou všetky páťmiestne 
čísla vo vzostupnom poradí. Dokážte, že číslo C nie je 
mocnina. 

Riešenie. Určme najprv C MOD 999. Platí 
99999 

C = E i. ÍO5-'99989- '1. 
>=10000 

Každé páťmiestne číslo i možno jednoznačne vyjadriť 
v tvare 10000 + k + 3j, 0 ^ k ^ 2, 0 ^ j ^ 29999, 
a preto 

2 29099 
C = S E (10000 + k + 3j). 105.(89999-a 

k=0 i= 0 
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Pretože 103 = 1 (mod 999), možno při určovaní 
C MOD 999 exponenty (so základom 10) znížit o náso-
bok 3. Pretože 

5.(89999 — k — 3j) = 2. (2 — k) (mod 3), 

móžeme doaiahnuť, že exponenty nebudu závisieť od j 
a příslušné činitele možno vybrat pred druhů sumu. Tak 
dostaneme 

2 29009 
C = 2 lo2-^-*). 2 (10 + k + 3 j) (mod 999), 

k=0 j = 0 

2 
( 7 = 2 1 0 « ( 3 0 0 0 0 . (10 + k) + 3.29999.15000) 

*=o 
(mod 999), 

C = 2 10«"^.(300 -f 30 A + 3.29.15) (mod 999). 

Ďalej počítá jme modulo 999. 
2 

C = 2 10«-«*. (300 + 30Jfc + 1305) = 
k — 0 

= 10.606 + 100.(606 + 30) + 1.(606 + 60) = 
- 6060 + 63600 + 666 = 66 + 663 + 666 = 

= 1395 = 396 (mod 999). 
Teda zistili sme C MOD 999 = 396. 
Pretože 271999, platí 

C MOD 27 = 396 MOD 27 = 18. 

Z toho vyplývá 3*|C, 331 C, teda C nemóže byť vyášou 
než druhou mocninou. Štvorcom však tiež nie je, pretože 
C = 3 (mod 4). • 
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t loha 7.4. Nech číslo 

D = 10001001 . . . 99989999 

vznikne tak, že napíšeme za sebou všetky štvormiestne 
prírodzené čísla vo vzostupnom poradí. Dokážte, že D 
nie je mocnina. 

Riešenie. Určíme D MOD 999. Platí 

D = IT »'. io«.(M®»-<). 
i =1000 

Ak každé i vyjádříme v tvare 1000 + k + 3j, 0 ^ k á 
^ 2, dostaneme 

2 2009 
D = E E (1000 + k + 3j). io*-«»<»-*-«>. 

4 = 0 i=0 
Z nížením exponentov o násobky troch a vybratím čini-
t d a nezávislého od j před druhů sumu dostaneme 

2 2000 
D = E 102-*. E (1 + k + 3j) (mod 999). 

t=o j=0 

Ďalej počítajme modulo 999: 

D = t 10*-*.(3000 + 3000& + 3.2999.1500) = 
*=o 

= Ě ÍO8"* (12 + Sk) = 1200 + 150 + 18 = 
*=o 

= 369 (mod 999). 

Pretože 271999, platí D MOD 27 = 369 MOD 27 = 18, 
a preto 3*j/>, 3*1 D. Teda D nemóže byť vyššia než 
druhá mocnina. D však nie je ani štvorec, pretože D = 
= 3 (mod 4). • 

79 



Úloha 7.5. Nech číslo A vznikne tak, že napíšeme za 
sebou dekadické zápisy prírodzených čísel od 1 po 6666 
v lubovolnom poradí (ale každé právě raz). Dokážte, že 
A nie je mocnina. 

Riešenie. Pretože 10* = 1 (mod 9) pre každé celé 
nezáporné k, platí (počítáme modulo 9) 

«««e 
A = Z i = 6667.3333 = 7.3 = 3 (mod 9). 

<=i 
Preto 3 3 2 \ A, teda A nie je mocninou. • 

Úloha 7.6. Dokážte, že pri žiadnej voTbe znamienok nie 
je číslo 

X = 60<í,6n ± 58M&8 ± 565,S* ± . . . ± 4*4 ± 22Ž 

mocnina. 

Riešenie. Platí 2*\X, 251 X. Teda keby číslo X bolo 
mocninou, bolo by aj štvorcom. Aby sme ukázali, že X 
nie je štvorcom, označme Y = eo3080®9. 

Zrejme X Y* (například preto, že 32 | X a 321 71). 
Ak teraz ukážeme, že X sa nachádza medzi (Y — l)2 

a (Y + l)2, bude to znamenat, že X nie je štvorec, pre-
tože jediný štvorec medzi týmito číslami je Y*. Na to 
odhadujme: 

\X — y | ^ 58mM + 56M" + . . . + 44< + 2ai < 
< 29.60"" < Y. 

Odtial už Tahko vyplývá 

(Y— l)2 < Y2— y < Z < 7 2 + y < ( 7 + 1)», 

teda X naozaj nie je štvorec. PodTa úvahy na začiatku 
riešenia potom X nie je mocnina. • 
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tJloha 7.7. Dokážte, že číslo 

B = 1817" + 181®17 

nie je mocnina. 

Riešenie. Pretože 171B > 1917, možno číslo B napísat 
v tvare 

B = 1819l7.(l8171"-"17 + l). 

Činitele vpravo sú navzájom nesúdelitelné. Preto keby 
B bolo mocninou, bolo by a j devátnástou mocninou, 
a a j druhý činitel vpravo by bol devátnástou mocninou. 
Ukážeme však, že je delitefný piatimi, no už nie je deli-
telný 53 (a tým skór 519). 
Platí (počítáme modulo 125): 

1810 = (20 — 2)10 = — P g ° j . 2 0 . 2 B + 21 0 = 

eh 210.(—10.10 + 1) = 24.26 = 252 — 1 = 
= —1 (mod 125), 

a preto 182® = 1 (mod 125). Preto exponent 1719 — 1917 

budeme smieť redukovat modulo 20; urobme to dopředu 
(počítáme modulo 20): 

171« _ 1917 = 171« MOD 4 _ ( 1)17 = 17« + i = 

= (—3)» + 1 = —26 = 14 (mod 20). 

Preto platí (počítáme modulo 125) 

1 8 i7i»-i»« + j _ 1 8 i 4 + i = 1810.18« + 1 = 

= —324« + 1 = —51« + 1 = —2601 + 1 = 
= 25 (mod 125). 

Odtial vidíme, že druhý činitel je delitefný 52, ale nie 53. 
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Preto tento činitel nemóže byť 19. mocnina, a teda B 
nie je mocnina. • 

Samozrejme, platí tiež 5 2 |5 , 5 3 \ B . Keby sme riese-
nie začali takto, zistili by sme tým, že B móže byť na-
najvýá druhá mocnina. Ďalej by sme mohli zistiť, že 
exponent dvojky v rozklade B je nepárny; přitom by 
sme ani nepotřebovali zisťovať, či 17" > 1917. Došli 
by sme k obdobnému sporu ako vyšsie. Iná možnosť by 
bola vypočítat 

B M O D 7 = ( i gi71*MOD s + 18IB17MOD8] M Q D 7 = 

= (45 + 41) MOD 7 = (210 + 4) MOD 7 = 

= (24 + 4) MOD 7 = 6. 

Potom číslo B nemóže byť štvorec, pretože 6 je kvadra-
tický nezvyšok modulo 7. 

Úloha 7.8. Dokážte, že číslo 

C = 171®1® + 1918" 

nie je mocnina. 

Rieáenie. Oba sčítance v C sú nepárne štvorce, a teda 
C MOD 8 = (1 + 1) MOD 8 = 2. 
Potom 2| C, 4 \C, a preto C nemóže byť mocnina. • 

Obdobným spósobom, teda výpočtom modulo 8, mož-
no rieáiť následujúce dve úlohy. 

Úloha 7.9. Dokážte, že číslo 

171®1' + 171,18 + 1817'* + 18"" + 19"18 + 1918" 

nie je mocnina. 
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Úloha 7.10. Dokážte, že číslo 

3* + 3** + 6»* + 6** + 9*' + 9*" 

nie je mocnina. 

Úloha 7.11. Dokážte, že číslo 

D = 4? + 4** + + 6»4 + 8**+ S* 

nie je mocnina. 

Rieienie. Najprv zistíme exponent prvočísla 2 v roz-
klade D. Exponenty prvočísla 2 v jednotlivých sčítan-
cocb sú 

2.6», 2.8*, 4», 8«, 3.4«, 3.64 . 

Z týcbto čísel je najmen£ie posledně; všetky ostatně sú 
váčšie. Preto exponent prvočísla 2 v rozklade D je 
3.64 = 3S.24; teda ak D je mocninou, tak je i druhou 
alebo trefou mocninou. Počítajme teraz D MOD 7, pri-
čom exponenty hned zredukujeme vzhladom na vztahy 

43 = 6* = 81 = 1 (mod 7). 
Platí 

D MOD 7 = (4° + 4 l + 1 + 1 + 1 + 1) MOD 7 = 2. 

Pretože 2 je kubický nezvyfiok modulo 7 (t. j.: kongru-
encia x3 = 2 (mod 7) nemá rieáenie), nemóže byť D tre-
fou mocninou. Vy po čí ta jme ešte D MOD 17. Pretože 
9>(17) = 16 delí exponenty všetkých šiestich sčítancov 
v čísle D a 17 nedelí 4, 6, 8, platí 

DMOD 17 = ( 1 + 1 + 1 + 1 + 1 + 1) MOD 17 = 6. 

Číslo 6 je kvadratický nezvyfiok modulo 17, pretože 

6» = 364 s 24 = 10 + 1 (mod 17), 
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a preto D nemóže byť štvorec, teda D nie je mocni-
nou. • 

V predloženom nesení sme nepočítali výrazy 

D MOD 3, D MOD 5, D MOD 11, D MOD 13. 

Pri hladaní riešenia („na koncepte") by sme asi aj tieto 
výrazy vypočítali, pretože by však nevylúčili žiaden 
z dvoch zostávajúcich prípadov, bolo by zbytočné ich 
do riešenia uvádzaf. 

Z doterajších úloh čitatel mohol získat dojem, že 
„velké čísla" asi nie sú mocninami, ak len nie sú priamo 
ako mocniny zadané. Potom budú nasledujúcie úlohy 
trochu překvapením. 

Úloha 7.12. Nájdite aspoň jednu trojicu po dvoch 
róznych celých čísel x, y, z váčších než 1 a takých, že 

x»1 + x1* 
je mocninou. 

Pretože táto úloha má riešenie dokonca v jednocifer-
ných číslach, necháme ich nájdenie čitatelovi. 

Úloha 7.13. Nájdite aspoň jednu deváticu po dvoch 
róznych celých čísel a, b, c, d, e, f , g, h, i váčších než 1 
a takých, že 

a v + ď> = g*. 

Riešenie. Polpžme g = 2n, kde n = (87 + 1); 

je w = 233017, ale nám stačí vedieť len n e P, n > 4. 
Dalej položme h = 3, i = 2. Potom platí 

ghi = (2»)' - 2«7+l = 2 . 2 8 ' = 2.2*1. 
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Čísla a, b, c, d, e, / budeme volit tak, a by 

a" -- d'' = 2 8 \ 

Platí 

2*21 = 2*44 * = 4líS, 2fil = 28 * = 2568' 

a z toho už vidno jednu z možností pře o, b, c, d, e, f . 
Vietky čísla a až i možno vyčítat zo vzorca 

41*" + 256"* = (2»»>")í2. • 

Číslo g sme pochopitelné neuviedli v dekadickom zá-
pise; ten by mal viac než 70 000 číslic, dal by sa nájst 
len pomocou počítača a bol by aj tak celkom neprehlad-
ný a nevhodný. 
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8. ÚLOHY 
S FAKTORIÁLMI 

V týchto úlohách Ba budú okrem iného vyskytovat 
faktoriály faktoriálov. Budeme ich značit opakovaním 
výkričníka, bez přidávania zátvoriek. (Teda n\\ u nás 
znamená (ra!)!.) 

Úloha 8.1. Nájdite najváčšie prirodzené číslo x, pře 
ktoré platí 

x!! < ÍO1®10. 
RieSenie. Platí 

12!! < 10°! < (10»)l°* = 10,l°* < ÍO1®10. 

Na druhej straně podia Stirlingovho vzorca n\ > 

> , a preto 

13!! > (4.10»)! > (ÍO*)410' = 108410* > ÍO1®10. 
Teda hladané číslo je x = 12. • 

Úloha 8.2. Nájdite najváčšie prirodzené číslo x, pre 
ktoré platí 

x!! < 302®10. 

RieSenie. Ukážme najprv, že pre x = 15 už platí opač-
ná nerovnost; na to stačí ukázat, že 

log (15!!) > 2010.log 30. 
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Pretože log 30 < 1,478 a 2010 = 1,024.101S, stačí doka-
zovat 

log (15!!) > 1,024.1,478.10»». 

Platí však 

15! > 1,3076.10»* a 1,024.1,478 < 1,514, 

teda stačí dokazovat 

log (1,3076.10»«!) > 1,514.10»». 

Zo Stirlignovho vzorca vyplývá 

log n\ > ra.log 
a préto 

log [(1,3076.10»)!] > 1,3076.10».log 1 ' 3 0 7 * - 1 0 " > 

> 1,3076.10». 11,6821 > 1,52.10» > 1,514.10». 
Teda číslo x = 15 už úlohe nevyhovuje. 
Pře x = 14 platí 

14!! < 10»! < (10") l°u = 10»»"1»10 < lo*10«10 = 

= ÍO"10 < 30«010. 

HTadané číslo teda je x = 14. • 
Dókaz nerovností x < 15 bol ovda náročnější než 

dókaz nerovnosti x ž 14. Je dost pravděpodobné, že 
prí samostatnom ríešení úlohy by čitatel najprv našiel 
nerovnosti x < 1 6 , x Sr 14 a k správnej nerovnosti pre 
číslo 15 by príšiel až po niekoíkých pokusoch. Neúspešné 
pokusy však nie je potřebné v definitívnom riešení uvá-
dzat. 
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tíloha 8.3. Néjdite najváčáie prirodzené číslo x, pře 
ktoré platí 

z ! ! < 1 0 " " . 

Riešenie. Platí log 34! > 38,47, a teda 34! > 2,9.10»», 
Preto 

34M > (10M)«...io»<» > ¡ o » " > 108'® io»« = 

= L O ^ I « 3 0 = I O ^ , 

a teda x < 34. Na druhej straně log 33! < 36,94, teda 
33! < 1037, a preto 

33!! < 33!33! < (ÍO*7)1®37 < ÍO10'1®30 < ÍO*3®1"30 = 

= ío*®30, 

a teda x ž 33. Preto x = 33. • 

tíloha 8.4. Zistite, na koíko núl končí číslo 1988!. 

Riešenie. Exponent prvočísla 5 v rozklade čísla 1988! 
je 

11988 I I 1988 I | 1988 I I 1988 I 
— J + 1 - 2 6 - J + [-125-J + I w J = 

= 397 + 79 + 15 + 3 = 494, 
exponent prvočísla 2 je vačší (například preto, že 

1988 I 1 
— — > 4941. Preto 1988! je deliteTný číslom 10494, 

no nie 10496, a teda končí (v dekadickom zápise) 494 nu-
lami. • 
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Úloha 8.5. Nádite najmenšie prírodzené číslo x také, že 

10lfllo|x!. 

RieSenie. Pře x musí platit 2*°10|x! a 5 l o l 0 |x ' ; využí-
vá jme najprv druhů podmienku. Exponent prvočísla 5 
v čísle z! je 

I X I I X I I X I X X X 

s J + H + l m h < 5 + ¥ 5 + 1 2 5 + 

a preto — > 101*, teda x > 4.1010. Označme y = 
- 4.1010 a počítá jme exponent prvočísla 5 v rozklade 

čísla y\. Dostaneme ho ako súčet patnástich čísel, z kto-

rých prvé je | ^ | = 8.10*, a každé dalšie vznikne z pred-

chádzajúceho celočíselným delením piatimi. (Počet čísel 
nemusíme dopředu určovat; jednoducho ich přestaneme 
tvořit, keď by začali vychádzat nuly.) Tento exponent 
vyjde 9999999997. Exponent prvočísla 5 v čísle x! má 
byt o 3 váčší, čiže x > y, a v rozklade čísla 

~ - = (y + i).(y + 2) ( x - i ) . x 

sa musí prvočíslo 5 nachádzat s exponentom (aspoň) 3. 
Prvé tri činitele napravo deliterné piatimi sú y + 5, 
y + 10, y + 15 (a přitom 251 (y + 5), 25 J (y + 10), 
teda naozaj potřebujeme tři činitele). Preto musí byt 
x ^ y + 15 = 4.10»® + 15. Pre x = 4.1010 + 15 je 

a zrejme a j 214^ |x! (například preto, že platí 
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| |J ^ 1010j, a teda aj 10lflin|x!. Teda hTadané číslo je 
x = 4. 1010 + 15 = 40 000 000 015. • 

Úloha 8.6. Nájdite posledně tri číslice čísla 1000! před 
jeho koncovými nulami. 

Riešenie. Najprv určíme počet núl na konci 1000!. 
Týchto núl je 

Preto našou úlohou je vlastně určit číslo x = JQJÍ9 

MOD 1000. Využijeme přitom rozklad 1000 = 23.53 = 
= 8.125, určíme najprv čísla x MOD 8, x MOD 125 
a z nich potom x. 
Pretože 2«" 11000!, zrejme platí x MOD 8 = 0. Na určo-

vanie x MOD 125 určíme najprv číslo ' MOD 125. 
d 

Přitom budeme využívat vzorec 

pře každé ke Z (ktorý sa Iahko ověří roznásobením 
lávej strany). Zostávajúce čísla delitelné piatimi krátime 
s patkami v menovateli. Postupné dostáváme (počítáme 
modulo 125): 

1000 
5 

I I 1000 | I 1000 I I 1000 I 

M 25 | | .25 M 625 ] 
= 249. 

1000! 

(ok + 1). (5k + 2).(5k + 3).(5k + 4) = 
= 24 (mod 125) 
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= 242&0.14 = (25 — I)250.14 = ( — l p ° . 14 = 
= 14 (mod 125). 

Znova počítajme modulo 125. 
Platí 

1000! „,„„ 1000! „ „ 1000! , , 
x = = 2300 = 251 = 2S1 14 = 10249 " ' 10249 ' 5249 

= 250.28 = 24®. 28 = (25— 1)5.28 = —1.28 = 

= 97 (mod 125). 

Teda x = 97 + 125y pře nějaké celé číslo y\ přitom 
0 ^ y ^ 7, pretože 0 ^ x ^ 999. Vieme však 
x MOD 8 = 0, a preto 

97 + 125y = 0 (mod 8), 

5y = —1 (mod 8), 

y = 3 (mod 8). 

Teda y = 3, a potom x = 97 + 3.125 = 472. Posledné 
trojčíslie čísla 1000! pred jeho koncovými nulami teda 
je 472. • 

Úloha 8.7. Určte zvyšok pri delení čísla 1000! číslom 
1009. 

RieSenie. 1009 je prvočíslo, a preto podia Wilsonovej 
vety 

1008! —1 (mod 1009). 

Odtial postupné dostáváme 

1000!. n (1000 + i) = —1 (mod 1009), 
i - i 
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1000!. n (i — 9) = — 1 (mod 1009), 
1=1 

1000!. 40320 = —1 (mod 1009), 
1000!. (—40) = —1 (mod 1009), 

1000!.(—9080) = —227 (mod 1009), 
1000! -- 782 (mod 1009). 

Teda hTadaný zvyáok je 782. • 

Úloha 8.8. Určte z vy šok při deleni čísla 1000! číslom 
1007. 

Rieienie. Platí 1007 = 19.5311000!, teda hladaný 
zvyšok je 0. • 

Úloha 8.9. Nech x, y sú kladné reálne čísla také, že 

x«** = 3!!!, y*"* = 3!!!!. 

Zistite, ktoré z čísel x, y je váčáie. 

Rieienie. Zrejme x > 1, y > 1. Označme 
B = ý»1, C = y». Najprv ukážeme y < 3. Skutočne, 

C = 3!!!! = 720!! < 720™»! < (720T»)"*7" = 

= 7207í°7il < 7297»m = 3* ** ™ < tf* ™'* < 

Teraz stačí uvážit, že umocňovanie je pre argumenty 
váčfiie než 1 monotónna operácia. Teraz ukážeme sporom 
y > x. Keby bolo y ^ x, tak B ^ A a potom 
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A\ = C = y* •g.y* < & < < A\, 

a to je spor. (Využili sme zrejmú nerovnost A ^ 9 
a Stirlingov vzorec.) • 
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9. ČÍSLICE OKOLO 
DESATINNEJ Cl ARKY 

Úlohy v tejto kapitole by sa dali principiálně vyriešiť 
tak, že by sme příslušné čísla vyrátali s dostatočnou 
presnostou; pre 2 číslice za desatinnou čiarkou by spravi-
dla (no nie vždy) stačila přesnost na jednu tisícinu. 
Praktické tažkosti však znova nastávajú preto, že uva-
žované čísla sú příliš verké. Ukážeme niektoré obraty, 
ktorými sa možno priamemu výpočtu vyhnúť. Keby sa 
niekomu nepáčili formulácie úloh, v ktorých ide o neko-
nečné (a teda vlastně nenapísateíné) desatinné rozvoje, 
móže si každú úlohu 

„Určit i miest pred desatinnou čiarkou a j miest za de-
satinnou čiarkou v čísle X" 

přeformulovat na úlohu 
„Určit číslo |I0>.X| MOD l O V 

Úloha 9.1. Určte dve číslice pred a dve číslice za de-
satinnou čiarkou čísla 

A = ] /3 - + 39'. 

Rieienie. Zrejme platí 

a >y ¥ = y š*» 5 = z* »9 

a na druhej straně 
(S2®3" + 0,01)2 > 3 2 ' 3 ' + 0,02.3^"3* > 

> 3' ' + 328-39r4 > 3«9
 + 3'2«-4».39 > 3«9

 + 3»3
 = 

= 38' + 3**. 
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Spolu teda máme 

3í8'3* < A < + 0,01. 

Teda prvé dve číslice za desatinnou čiarkou čísla A sú nuly, 
a posledné číslice pred desatinnou čiarkou sú také ako 
posledné dve číslice čísla S2*3'. Ešte teda musíme určit 

32».3* M O D 1 0 0 = 3(28.:)8)MOU n.n(9(25). ^ O D 1 0 0 = 

= 3-8 : , , M 0 I > M O D 100 = 3<-r'n -73)MOD 20 M O D 100 = 
= 3(I«.»)MOD2O MOD 100 = 3* MOD 100 = 61. 

Teda hladané číslice čísla A sú . . .61,00 • 
Určovanie váčšieho počtu číslic za desatinnou čiarkou 

by tento raz nerobilo problémy; skúste určit například 
tisíc týchto číslic. S kalkulačkou (alebo tabulkami) však 
móžeme bez prílišnej námahy vyriešit aj nasledujúcu 
úlohu. 

Úloha 9.2. Zistite prvú nenulovú číslicu za desatinnou 
čiarkou čísla 

A = }/ 38® + 3''. 
Rieienie. Označme x zlomkovú časť čísla A. Pretože 

= 3283* podia predchádzajúcej úlohy, máme 

O2®"9 + x)2 = 38' + 3"' 

a po úpravě 

2.3*>-a\x + x2 = 38". 

Pretože 0 < x < 1, dostáváme odtial 

3»* _ i 3'" 
2 ^ 3 2 8 < x < ~2.3283* ' 
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Logaritmus právej strany je 
(9« — 28.38).log 3 —log 2 = —2150 579,984 = 

= 0,016—2 150 580 
V rámci danej přesnosti je aj logaritmus lávej strany, 
a teda aj log x, rovnaký. Teda 

x = 1 ,04. ÍO"2 1 5 0 5 8 0 , 

čiže prvá nenulová číslica za desatinnou čiarkou v čísle A 
je 1. • 

Súčasne sme zistili aj počet núl medzi desatinnou 
čiarkou a prvou nenulovou číslicou; je ich 2 150 579. 
Poznamenajme, že log 3 a log 2 třeba vziať dostatočne 
presne (napr. na 10 des. miest); číslo 1,04 vzniklo za-
okrúhlením z 1,03 ..., ale trojka už nie je spolahlivo 
určená. 

tíloha 9.3. Zistite štyri číslice před a ětyri číslice za 
desatinnou čiarkou čísla 

9 

B = j / 5 ' 7 + 6 ' 5 . 

RieSenie. Napišme B v tvare 52''sS + x. 
Pretože (s2'"5)9 = 5 a ' ) platí x > 0. Na druhej straně 

(52? »6 + xf = 5*7 + 6'5, 
5®7 + 9 . (5 2 7 a 7.x < 5*7 + 67Í, 

67* x < 

Ale 
6 7 í < = 257S-29 »5 < 257S"73 ' 2 < = 

9.(527-87 52l0afi 

= 25"3-7S < 10 
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teda hladané číslice za desatinnou čiarkou sú nuly. Pře 
číslice před desatinnou čiarkou musíme určit u = 
= | B\ MOD 104, kde = 5*7 3\ Zrejme [£J MOD 54 = 0 
a dalej 

MOD 2* = 52? sS MOD 16 = 

= (54 MOD í e ^ M O D 16 = 1. 

Teda platí u = 625k pře nějaké celé číslo k, 0 ^ k < 16, 
a súčasne u = 1 (mod 16), teda 625k = 1 (mod 16), k = 
= 1 (mod 16), a teda k = 1. Potom u = 625. Preto 
hradané číslice čísla B sú . . .0625,0000... • 

Úloha 9.4. Určte tri číslice pred a tri číslice za desa-
tinnou čiarkou čísla 

3 
c = |/86«8 + 4®94. 

Rieáenie. Platí 
3 3 

2««« . j/gí«« < C < |/8666 + 3.4888 + 3.2888 + 1 -
= 288 9 + 1, 

a preto |CJ = 2898. Označme x zlomkovú časť čísla C. 
Platí 

(2998 + x)3 = 8988 + 4***, 
g««« + 3a;.4«66 + 3x».28M + x3 = 8"* + 4***, 

3X.4888 + 3x*.2MÍ + x3 = 4—. 
Odtiar s využitím 0 < x < 1 dostáváme 

1 4 « 6 _ 3 2 « m — 1 1 
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Druhý činitel lávej strany je však blízky k 1 (nám stačí, 
že je medzi 0,999 a 1), a preto hladané číslice za de-
satinnou čiarkou sú trojky. Pre určenie číslic před de-
satinnou čiarkou určíme 2888 MOD 1000. Najprv počí-
tajme modulo 125; platí <p( 125) = 100, a preto 

2866 2«s = ( 2 ' ) » .2 3 = 3 9 . 2 3 = 54 3 = (50 + 4)3 = 

= 3.50.42 + 43 = 2464 E= 89 (mod 125). 

Preto 2686 = 89 + £.125 pre nějaké prirodzené číslo k. 
Přitom ale 288b = 0 (mod 8), teda 

89 + k. 125 = 0 (mod 8). 

Odtiar máme 1 + 5k = 0 (mod 8), a teda k = 3 (mod 8). 
Potom platí 2888 = 89 + (3 + 8n). 125 pre nějaké 
prirodzené číslo w, a teda 2888 = 89 + 375 = 
= 464 (mod 1000). 
Preto hladané číslice čísla C sú . . . 464,333.. . • 

tíloha 9.5. Nájdite dve číslice pred a dve číslice za de-
satinnou čiarkou čísla 

D = y 9"03 + 9soa. 

Rieienie. Položme D = 3803 + x. Pretože D* > 9*03, 
platí x > 0. Ďalej platí 

(3803 + x)* = 9808 + 9308, 
9*03 + 2x. 3803 + x2 = 9803 + 34", 

2x. 3*03 + x* = 3*", 

3» — x1.3_M» 
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3® OdtiaT (a z x > 0) dostáváme x < a potom aj 
39 3-585 

x > 2 8 
Preto hladané číslice za desatinnou čiarkou sv 49. Pře 
číslice před desatinnou čiarkou uvážme, že pla. í 

| x j MOD 100 = MOD 100 = |-?~-J MOD 100 = 

- I - ' " - ] MOD 100 = 41, 

3903 MOD 100 = 3«o3 MOD 40 MOD 100 = 
= 33 MOD 100 = 27, 

( |xj + 3803) MOD 100 = 68, a preto hladané číslice čísla 
D BIÍ . . .68,49.. . • 

Úloha 9.6. Určte dve číslice pred a štyri číslice za de-
satinnou čiarkou čísla 

4 
E = j/7700 + 7900. 

Riešenie. Položme E = 7I7S + x; zrejme x > 0. Ďalej 
platí 

( 7 1 7 5 + X Y = 7 7 0 0 + 7 6 0 0 J 

7700 4x.7525 + 6x2.7350 H- 4x3. 7175 + x4 = 
_ 7 7 0 0 7600 

76OO 7 3 5 0 4 J - 3 7 1 7 5 X I 

X ' 4 . 7 5 2 S ' 
775 

Odtial (a z podmienky x > 0) dostáváme x < —— a po-
7 7 5 

tom x > 0,0001. 
4 
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775 
Platí 7" MOD 4 = 3, teda zlomková časť čísla za-

4 
čína 75, a zlomková časť čísla x (a teda aj E) začína 
číslicami 749Í). Pre určenie číslic před desatinnou čiarkou 
určíme |.r| MOD 100, na čo najprv potřebujeme 

775 MOD 400 = 7418+3 MOD 400 = 
- ((7J MOD 400)18. 73) MOD 400 = 

= (118.73) MOD 400 = 343. 
Potom 

I 7 7 5 I I 775 MOD 400 I 
4 MOD 100= J i u u 4 u u | 

343 I 
4 | -

Ďalej určíme 
7175 MOD 100 = ((74 MOD 100)43.73) MOD 100 = 

= 343 MOD 100 = 43. 
Preto [E\ MOD 100 = (85 + 43) MOD 100 = 28, a hía-
dané číslice čísla E sú . . .28,7499... • 

Úloha 9.7. Určte 7 číslic pred a 7 číslic za desatinnou 
čiarkou v čísle 

7 
J P = | / 7 7 0 0 4 . 76OO 

Riešenie. Označme u = 1 .(F — 7100); potom F 
= 7100 + • 

Pretože (7100)' < F1 < ^7100 + ý j ' , platí 0 < u < 1. 
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Určíme u presnejšie. Platí 

7700 m > 7 « 0 0 7S00 (710° + T i 
Posledný člen na právej straně je totiž váčší než súčet 
zvyfiných členov z binomického vzorca, t. j. 

(dal by sa ešte zmenšit). Preto platí 
7 7 0 0 H . 7 M 0 7»oo 7 7 0 « 7*00^ 

7 »00 750« 
u > = 1 — 7~100. 

7 «00 

Z toho pře F, vyplývá 
7 1 0 0 7 - 1 7 - 1 0 1 7 1 0 0 7 - 1 

a odtial (a z toho, že y nemá v desatinnom rozvoji 
na 8. mieste nulu) zasa plynie, že F má hladané číslice 
rovnaké ako číslo 7100 + — . Pře číslice před desatin-
nou čiarkou počítá jme modulo 107: 

7100 = (7«)í6 - ( 2 4 0 0 + 1 ) " = P 2
5 J . 2 4 0 0 2 + ( 2 ! 5 ] -

.2400 + 1 = 25.12.24002 + 25.2400 + 1 = 
= 1 2 . 1 2 0 0 0 2 + 60 0 0 0 + 1 = 

= 8 000 000 + 60 000 + 1 = 8 060 001 (mod 107). 
(Vynechané členy v rozvoji (2400 + l)25 boli násobkami 
10".) Číslice 

za desatinnou čiarkou fahko získáme dele-
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nim. Teda hladané číslice čísla F sú . . . 8 060 001, 
142 857 1 . . . • 

Úloha 9.8. Určte dve číslice před a dve číslice za de-
satinnou čiarkou v čísle 

A = ( 2 + y a j 1 0 0 0 . 

Riešenie. Budeme uvažovat postupnost (a0, a, , a t , . . . ) 
danů predpisom 

a . = ( 2 + V 3 ) - + (2 - 1/3)- . 

(Jej členy sú celé čísla a platí A = a1000.) 
Čísla 2 + \ 3 , 2 — 1/3 sú kořene kvadratickej rovnice 

ar» — 4x + 1 = 0, 

preto postupnost (a0, Oj, ait ...) vyhovuje rekurentné-
mu předpisu 

= 4a»+1 — dn. 

Tento předpis spolu s rovnostami 

o, = 2, = 4 
danů postupnost jednoznačné určuje. Teraz určíme 

MOD 100 tak, že budeme počítat čísla bm = a , MOD 
100. Přitom zře jme b0 = 2, 6 t = 4 a 

b.+i = (46,+1 — 6») MOD 100 

pre všetky n. Cleny postupnosti b„ budeme počítat až 
dovtedy, kým neziatíme opakovanie. 

n | 0 1 2 3 4 5 6 7 8 9 10 11 
6. | 2 4 14 52 94 24 2 84 34 52 74 44 
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n I 12 13 14 15 16 17 18 19 20 21 22 23 
b„ \ 2 64 54 52 54 64 2 44 74 52 34 84 
n l 24 25 26 27 28 29 30 31 
b„ | 2 24 94 52 14 4 2 4 
Vidíme teda, že platí 

630 = b0 > 6 3 1 = f>l • 

Pretože každý člen postupnosti (b„, 6,, bt, .. .) je urče-
ný dvorná predchádzajúcimi členmi, matematickou 
indukciou dostáváme 

6n +30 = 6,1, 

a potom aj 6„ = 6„ MOD SO pře každé prirodzené číslo n. 
Špeciálne, pře n = 1000 máme a1000 MOD 100 = 61000 
- b10 = 74. Ďalej platí 

Oiooo — 0,01 < o 1 0 0 0 — ( 2 — J / 3 / 0 0 0 = A < a 1 0 0 0 . 

Preto Wadané číslice čísla A sú . . . 73, 99 . . . • 
NajnamáhavejSou častou riešenia predošlej úlohy 

holo doplnenie tahuTky hodnot 6„. Numerická chyba 
by znehodnotila celý další výpočet. Preto by bolo "dobré 
mať nějaké prostriedky na kontrolu. Jedna z možností 
je, aby sme počítali úplné rovnakým spósobom 
°iooo MÓD 25, a1000 MOD 4, a potom pomocou nich číslo 
61000 ověřili. Výhoda by tiež bola v tom, že namiesto pe-
riódy 30 by sme dostali periódy 15 a 2, teda stačilo by 
počítať menší počet členov. (Nové výpočty by mohli byť 
použité a j samostatné na výpočet čísla 61000, a nielen na 
skúšku správnosti póvodného výpočtu.) Iná možnosť 
úspory v počte počítaných členov bn bola všimnúť si, 
že pre n ^ 2 platí 

bn-1 = (46fl_, — 6„) MOD 100. 
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Pretože platí &I4 = ¿>16, vychádza odtiaT blb+k = b15_t. 
pře 0 si k ^ 15, teda členy ó17 až b30 sa dali doplniť bez 
počítania. Obe metody možno použit súčasne, ak defi-
nujeme (nezmeneným vzorcom) an pro všetky celé n 
a vypočítáme čísla c„ = an MOD 25 pre n = —1 až 8. 
Pretože vyjde c_, = c,, cg = c7, platí c_„ = c„, c15_„ = r.„ 
pre všetky n, z čeho odvodíme c1U00 = c5 = 24. 

Úloha 9.9. Zistite dve číslice před a dve číslice za de-
satinnou čiarkou v čísle 

B = (1/6 + V2)1 0 0 . 

Riešenie. Platí 

B = ((|/6 + 1/2J70 = (8 + 4 f a f . 
Položme 

a„ = (8 + 4 1/3)" + (8 — 4 1/3)" 
a skúmajme postupnost (a0, alt a2, ...). 
Pretože 8 + 4 1/3, 8 — 4 ]/.3 sú kořene kvadratickei rov-
nice 

x 2— 16x + 16 = 0, 

vyhovuje postupnost (a0, alt a2, . . . ) rekurentnému 
předpisu 

Ďalej vieme a0 = 2, a, = 16. Znova označme b„ = 
= a„ MOD 100 a počítajme členy postupnosti (60, b1, 
b2, . . . ) až pokiaí nezistíme opakovanie: 

71. | 0 1 2 3 4 5 6 7 8 9 10 11 
fe„ | 2 16 24 28 64 76 92 56 24 88 24 76 
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n ¡12 13 14 15 16 17 18 19 20 21 22 23 
bH 132 96 24 48 84 76 72 36 24 8 44 76 

to 124 25 26 27 28 29 30 31 32 
b„ | 12 76 24 68 4 76 52 16 24 

Vidíme teda 

&31 = » &3í = f>2 > 

a preto pře všetky n ^ 1 platí 

bt1+30 = b„. 
Špeciálne 6,0 = 6ao = 24, a preto 

B + (8 — 4 J/3 P = 24 (mod 100). 

Výpočtom na kalkulačke zistíme 

(8 — 4 y š p = 32,0348 

(stačí nám zistiť 32,03 < (8 — 4 |/3 f < 32,04), a po-
tom už Iahko zistíme, že hladané číslice čísla B sú . . . 91, 
96 . . . • 

Předložené riešenie úlohy 9.9 je samostatné, nezá-
vislé od riešenia predchádzajúcej úlohy 9.8. S využitím 
tohto riešenia sme si mohli značnú časť výpočtov uše-
třit. Platí totiž 

B = (]/6 + V * ) " = (8 + 4 l / 3 f = 450.(2 + J/s)50 

a z riešenia úlohy 9.8 vieme 

(2 + l / 3 f + (2 — l / 3 f = 74 (mod 100). 
Ak túto kongruenciu vynásobíme číslom 450, dostaneme 

B + 4S0.(2 — l / 3 f = 450.74 (mod 100) 
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a odtiaT po úpravě 

B + (8 — 4 yí)6 0 = 24 (mod 100). 

Úloha 9.10. Zistite tri číslice před a tri číslice za desa-
tinnou čiarkou v čísle 

teda A je celé číslo. Určme A MOD 1000. 
Na to najprv zistime, ktoré členy sumy vpravo sú ná-
sobkami 500. Zrejme sú také všetky členy pře 3 & <í 
^ 498; na to stačí uvážit priamo vypísané exponenty 
čísel 2, 5 v tomto výraze. Avšak a j členy pre k = 1, 2, 
499 sú násobkami 500, pretože příslušné binomické koefi-
cienty sú násobkami 250. Preto platí 

Aby sme určili A MOD 1000, využijeme rozklad 1000 = 
= 8.125 (a nesúdelitelnosť čísel 8, 125). Pri počítaní mo-
dulo 8 dostáváme 

A = 2. (2500 + 5600) = 2.25aso = 2.1«° = 2 (mod 8). 

Při počítaní modulo 125 s využitím Eulerovej vety 
dostáváme 

A = 2. (25 0 0 + 5&oo) = 2 M 1 - 2 6 0 1 M 0 D 100 = 

= 2 (mod 125). 

C = {]/2 + 1/5 f00. 

Rieáenie. Označme 

A = 2.(2800 + 5600) (mod 1000). 
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Teda platí 8|(^4 — 2), \25\(A — 2), a teda a j 1000|(4 — 
— 2), t. j. A MOD 1000 = 2. 
Teraz využijeme rovnost 

c = a —(^2 — yš)1000 

a odhad 0 < | |/2 — ]/5 |in0° < |2,3 — 1,4|100« < 0,001. 
Preto hladané číslice čísla C sú . . .001,999.. . • 

Úloha 9.11. Určit dve číslice pred a dve číslice za de-
satinnou čiarkou čísla 

D = ( y š + i/sy™. 

Rieienie. Platí D = {8 + 2 yiš)500. Uvažujme po-
stupnost (o0, a , , a ) danů predpisom 

an={8 + 2 y i š > + (8 — 2 y i6>. 

Pretože čísla 8 + 2 y i5 , 8 — 2 y i 5 sú kořene kvadra-
tickej rovnice 

x* = 16a; — 4, 

vyhovuje postupnost (a0, a1, at, . . . ) rekurentnému 
předpisu 

On+2 = 16a„ + i — 4a„. 

Tento předpis spolu s rovnostami 
a0 = 2, ^ = 16 

jednoznačne určuje postupnost (o0, alt at, ...). 
Aby sme určili a ^ MOD 100, počítajme čísla bK = 
= a„ MOD 100, až kým nezistíme opakovanie. Cleny 
postupnosti (ó0, blt 6S, . . . ) budeme počítat podia re-
kurentnébo předpisu 
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bn+ 2 = (166n+1 — 46.) MOD 100. 
n | 0 1 2 3 4 5 6 7 8 9 10 11 
bn | 2 16 48 04 72 36 88 64 72 96 48 84 

Ti, | 12 13 14 15 16 17 18 19 20 21 22 
b„ | 52 96 28 64 12 36 28 04 52 16 48 
Platí teda ó21 = blt bM = ba, a preto pře všetky » ^ 1 
platí 620+n = b„. Preto bsoo = bi0+it.i0 = bw = 52. Teda 
platí 

D + [8 — 2 j/TŠ]800 = 52 (mod 100). 

Ďalej odhadneme 

0 < (8 — 2 j / l 5 r < (8 — 2.3,8)»®° = 0.48®® < 0,01. 
Teda hfadané číslice čísla D sú . . . 51,99... • 
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10. ALGEBRAICKÉ 
ROVNICE 

Úloha 10.1. Zistite, či má kvadratická rovnica 

l a ' . a ř + 8»7.X + 9'8 = 0 

reálne kořene. 

RieSenie. Diskriminant tejto rovnice je 

D = 82'*' — 4 . 78* .97*. 

Ukážeme, že D < 0; na to odhadujme 
g ? V 49«» 7 - 743 1 4 ^ ^2-31S _ ^2.(33)5 ^ •y2-(25)6 _ 

= 72* < 72" = 78* < 4.78 ' . 97", 

teda D < 0 a rovnica nemá reálne kořene. • 

Úloha 10.2. Dokážte, že kvadratická rovnica 

5s\x2 + 68 ' .x + 4«4 = 0 

má dva rózne reálne iracionálně kořene. 

RieSenie. Diskriminant tejto rovnice je 

D = g2 9® — 4. 5&6. 4*4 > 6. 6SÍ. 6<4 — 4.58 ' . 44< > 0 , 

teda rovnica má reálne kořene. Tieto kořene sú racionál-
ně právě vtedy, keď ]/Ď je racionálně (a teda prirodzené) 
číslo, t. j. keď D je itvorec. Ukážeme však 
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K - l ^ D c K ) 2 . 

Pravá nerovnost je zřejmá a na dókaz Tavej stačí uvážit 

(fl8* — l) 2 < 62 — 6 4 ' < 6 Í 8 ' — 61 4 j 5 +*4 = 

= 6t 8* — 6. 6*6.64* < 6ř 8 ' — 4. 5*8.44* = D. 

Teda D leží medzi dvoma po sebe idúcimi čtvorcami, čiže 
nemóže byť štvorec. Preto sú kořene danej rovnice ira-
cionálně. • 

Úloha 10.3. Dokážte, že kvadratická rovnica 

e ^ . x 2 + 7**.x + 8*' = 0 

má dva rózne reálne iracionálně kořene. 

Rieáenie. Diskriminant tejto rovnice je 

D = 72 — 4.6**. 8** = 49"* — 4.48*V 
Aby sme dokázali D > 0, musíme dokázat 

Teda platí D > 0 a rovnica má dva reálne kořene. Ešte 
třeba dokázat, že tieto kořene nie sú racionálně. Na to 
stačí ukázat, že ]/Z) je iracionálně číslo, teda že D nie je 
štvorcom. Na to určíme D MOD 5. Pretože <p(5) = 4, 
9» MOD 4 = 1 (a 49, 48 nie sú násobky 5), platí 
D MOD5 = (491 — 4.481) MOD 5 =(4 —12) MOD 5 = 2 . 
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Avšak 2 je kvadratický nezvyšok modulo 5, preto D 
nie je ětvorec. • 

Úloha 10.4. Dokážte, že rovnica 

(1) V1 .ař + Sf.x* + + 101*10 = 0 
má právě jeden reálny kořeň. 

Rieienie. Označme f(x) lavú stranu rovnice (1). Funk-
cia f(x) reálne premennej x je spojitá, f[—ÍO"1®} < 0 
a /(O) > 0, teda rovnica (1) má reálný kořeň (medzi 
—1010 a 0). Nemóže mat viac reálných koreňov, pre-
tože funkcia f(x) je rastúca. 
Jej derivácia 

f'(x) = 3.7l7.x* + 2.8*".x + fl** 

je totiž kladná, pretože /(O) > 0 a rovnica f'(x) = 0 má 
diskriminant 

(2 .8 8 8 J Í — 4 . 3 . 7 7 ? V < 8 ř + — V* < 0, 

teda nemá reálné kořene. • 
V niekorkých dalších úlohách sa budeme zaoberat 

rovnicou (1) a jej koreňmi. Pokial budeme pracovat 
s komplexnými číslami, nebudeme vždy terminologicky 
rozlišovat tieto čísla a ich obrazy v rovině komplexných 
čísel. 

Úloha 10.5. Dokážte, že obrazy koreňov rovnice (1) 
z predchádzajúcej úlohy nie sú vrcholy rovnostranného 
trojuholníka. 

Rieienie. Odvodíme nutnú podmienku na to, aby ko-
řene rovnice 
(2) Ax3 + Bx* + Cx + D = 0 
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boli vrcholy rovnostranného trojuholníka a potom uká-
žeme, že rovnica (1) ju nespíňa. Nech kořene xlt x2, x3 
rovnice (2) sú vrcholy rovnostranného trojuholníka 

a t = — (Xj + x2 + x3) je jeho ťažisko. Čísla x t — t, ó 
x2 — t, Xj — t majů rovnaké absolútne hodnoty a ich 
amplitúdy sa líiia o násobky 120°. Ich tretie mocniny sa 
potom navzájom rovnajú, preto x}, xa, x3 sú pre nějaké 
komplexné číslo u kořene rovnice (x — ť)3 = u, teda po 
úpravě 

x3 — 3tx* + 3ť*x — (<3 + u) = 0. 
Rovnica (2) je .¿4-násobkom poslédnej rovnice (pretože 
obe tieto kubické rovnice majů rovnaké kořene), a teda 

—A. 3t = B,A.3t* = C, —A.(t3 + u) = D. 
Preto 

B* = (A.3t)* = 3A.A.W = 3AC. 
Nájdená nutná podmienka B* = 3AC v případe rovni-

ce (1) dáva 
g*-8" = 3.7t7.9*9, 

čo zrejme neplatí, například preto, že lavá strana je 
párna a pravá nepárna. Teda kořene rovnice (1) nie sú 
vrcholy rovnostranného trojuholníka. • 

Nutná a postačujúca podmienka na to, aby kořene 
rovnice (2) boli vrcholy rovnostranného trojuholníka, je 

B* = 3AC a BC 9AD. 

Pridanie druhého vztahu zabezpečuje, že (2) je kubická 
rovnica (t. j. A 0), a že nemá trojnásobný kořeň. 

V nasledujúcej úlohe ukážeme, že trojuholník, ktorým 
sme sa zaoberali, je „skoro rovnostranný". 
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Úloha 10.6. Dokážte, že velkosti uhlov trojuholníka 
s vrcholmi v koreňoch rovnice (1) z úlohy 10.4 sa líšia 
od 60° o menej než 1". 

Riešenie. Nech kořene rovnice (1) sú a, b ± ic, kde a, 
b, c sú reálne čísla, c > 0. (Tu už využíváme riešenie 
úlohy 10.4.) Označme 

8®8 9»9 101"10 

R = = 7T ' ' t = 

Zo vzťahov medzi koreňmi a koeficientmi normovanej 
kubickej rovnice (ktorú dostaneme z (1) predelením 
číslom 77?) máme 

a + 26 = —R, 2 ab + b2 + c2 = S, 
a.(b2 + c2) = —T. 

Uvažovaný trojuholník je rovnoramenný, so základ-
ňou kolmou na reálnu os a hlavným vrcholom a. Nech 
velkost uhla při hlavnom vrchole je 2«. Potom tg « = 

= ., —¡-, a preto 
| o — a\ 

1 c2 1 3c2 — (6 — a)2 

T" -tg2 a - -- = 3 (6 — a)2 3 3(6 — a)2 

_ 4.(3c2 — (6 — o)2) 
~ 3.(26 — 2a)2 

Avšak c2 = S — 2a6 — 62, 26 — 2a = —iř — 3a, a pre-
to 

113 



t 1 _ 4.(35 — 6o6 — 36« — 6« + 2ab — o«) tgicc-- = 3 3.(—R — 3a)* 

4.(35 —46« —4o6 —a«) 4.(35 — (26 + a)») 
3.(iř + 3o)« 3.(R + 3a)* 

_ 125 — 4iř*  
_ 3.(R + 3a)* ' 

Platí 

<jti7 

g»* g2.B8M 
> > O, 

a preto tg« a — > 0 . Na odhad z druhej strany naj-ó 
prv odhadneme číslo a; na to označíme f(x) Iavú stranu 
rovnice (1); z úlohy 10.4 už vieme, že /(x) je rastúca 
funkcia reálnej premennej x. Platí 

3 ' 9 3 

/(_ ]/ť) = r\{—T + R.]/¥* — S.]/Ť + T) = 

= 8®8. (1 o1®10)*'3. (7 7 ' ) - 2 ' 3 - 9»';(lO'® , 0)1 ,S ( 7 7 T l ' S > 

> 10610» _ 10410* > o = f { a y 

3 
a preto a < — \T. Ďalej platí 

R* = 83-88 .7-3-77 < 8 t 0 1 0
> 7 - 7 7 < 1 0 l O , 0

- 7 - 7 7
 = rp 

3 
a preto R < ]/T. Z dokázaných vzťahov vyplývá 

s » 
|iř + 3o| ^ 3.|o| — R > 3.]/T — R > 2 . ] /T . 
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Preto platí 

x , 1 125 —4iř* 125 
t g * « „ — —--=r ——- < — 
o O O / D i Qn\3 

3 3.(iř + 3a)» 
12 VT* 

1-21» 

< 1 0 l o * . 1 . 1 0 " , w * < 10"1 0 . 

Spolu máme 

tg a > 0 , 0 < t g » « - l < 10-", 

a z týchto nerovností lahko zistíme 

^ < t g a < 7 í + 1(r10-
Pretože 0 < « < 90°, tg 30° = ^ L a 

tg (30- + 0,5-, - > « g 3 0 - + 

+ ' « 0 ' 6 " > - p - + X i ^ 6 0 T > y j + 1 0 " 1 ' 

máme 30° < at < 30° + 0,5", teda veTkosť 2« uhla při 
hlavnom vrchole je medzi 60° a 60°0'1". Potom velkosti 
uhlov při základní sú medzi 59°59'59,5" a 60°, teda tiež 
sa líšia od 60° o menej než 1". • 

Odhad v úlohe 10.6 sme dosiahli s velmi veTkou re-
zervou; na miesto jednej uhlovej sekundy mohla byť 
v jej texte například trilióntina uhlovej sekundy bez 
toho, aby sa riešenie muselo podstatné zmeniť. 
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Nasledujťica úloha sa dá vyriešiť rovnako ako úlohy 
10.4 až 10.6, preto ju necháváme na riešenie čitatelovi. 
(Přitom bod b) vlastně nemusí robit, ak vyrieši bod c) 
tak ako bola riešená úloha 10.6.) 

Úloha 10.7. Uvažujme rovnicu 
(3) 7!!.x3 + 8!!.z2 + 9!!.x + 10!! = 0. 
a) Dokážte, že rovnica (3) má právě jeden reálny kořeň. 
b) Dokážte, že obrazy koreňov rovnice (3) v komplex-

nej rovině nie sú vrcholy rovnostranného trojuholní-
ka. 

c) Určte uhly tohoto trojuholníka s presnosťou ±1" . 

Úloha 10.8. Dokážte, že reálny kořeň rovnice (1) 
z úlohy 10.4 je iracionálny. 

Riešenie. Predpokladajme obrátene, že rovnica (1) 
r , 

má racionálny kořeň a je jeho základny tvar (t. j. 
r € Z, s e P, D(r, s) = 1). Po dosadení do (1) a vyná-
sobení s3 dostáváme 

(4) 77?. r3 + 8s8. r2s + 9,9.r52 + 101(,in.s3 = 0. 

Všetky členy okrem prvého sú násobkami čísla s, a preto 
aj prvý člen je násobkom s, t. j. 
s |77 ' .r3 . Avšak D(r,s) = 1 , a preto s 7'7. Rovnako 
možno dokázat aj r 101"10. Z týchto vzťahov a z toho, 
že reálny kořeň rovnice (1) je záporný, vyplývá. 

r = —2m.5", s = 7" 
pre nějaké celé čísla m, n, p také, že 

0 m 1010, 0 ^ n ^ 1010, 0 ^ p ^ 77. 

966 



Ak platí O < n < 1010, tak n + 1 ^ 2n, n + 1 ^ 1010. 
a preto 5"+1 delí každé z čísel V\r3, 8**.r2s, 101<)in.s3. 
Potom aj 5«+19"'.rs2, ale 5 t 9®®, 5\s (pretože 5|r), 
a teda 5n+1 |r, čo je spor. 
Preto n = 0 alebo n = 1010. 
Úplné obdobné, ak platí 0 < m < 1010, tak 2"'+1|99®.r52, 
ale 2 f 99®, 2 I s a teda 2'"+1| r, čo je spor. Preto m = 0 
alebo m = 10i0. 

Teraz počítajme modulo 3. Kedže m, n sú párne 
a 7 = 1 (mod 3), platí 

r = —2'". 5" = — 1 . 1 = —1 (mod 3), 5 = 7" = 
= 1 (mod 3). 

Z rovnice (4) potom dostáváme 

l . ( — l ) 3 + l . ( — 1 ) 2 . 1 + 0 . ( — l ) . l 2 + l . l 3 = 

EE 0 (mod 3), 

teda 1 = 0 (mod 3), a to je spor. Preto rovnica (1) 
nemá racionálny kořeň. • 

Akonáhle sme zistili, že platí n = 0 alebo n = 10l°, 
mohli sme spor so (4) dostat tiež nasledujúcimi odhadmi: 

Ak n = 0, tak r ^ —21®10, a potom 

7 7 \ r > + 8 ® 8 . r 2 s + 9 9 , . r « 2 + Í O 1 " 1 0 . « 3 > 

> _ 7 7 ' 2 3 1 0 , 0 + o — 9 9 ® . 2 l o l o . 7 2 ? 7 + Í O 1 ® 1 0 . 1 > 

2 s . i o 1 0 3 7 ' 2 4 , ® + l o l 0 + < ' 7 7 4 - Í O * ® 1 0 > 

2
i s- í 4 '1 0 8 23'5'10® + ÍO1"10 > 

> _ lo« » »«' — 10» w* + 10 l° l° > 0. 

Ak n = ÍO10, tak — ÍO1®10 ^ r ^ — 51®10, a potom 
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V\r* + 8*'.r*a + 9**.rs* + ÍO1®10.«3 < 

< _ 7 ' 7 . 5 J i° l n + 8 8 * .10 í , ° w . 7 7 7 + O + ÍO1®10.7Í 7? < 
] _J_ JQ8*«2.IO10-T77 _J_ Q JQIOW+S.T7

 < -

< _ io«>»« >°7 -f 1 0 * w i°7 + io»«» < 0. 

Teda (4) neplatí, a preto rovníca (1) nemá racionálny 
kořeň. 
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11. INÉ ÚLOHY 

Úloha 11.1. Dokážte, že existuje 1010 po sebe idúcich 
zložených prirodzených čísel menších než ÍO1®10. 

Riešenie I. Pře každé prirodzené číslo x označme P(x) 
BÚčin všetkých prvočísel nepresahujúcich x. Uvažujme 
konečná postupnost 

P(101®) — 1010 — 1, P(10>°) — 101®, . . 
P(1010) —3, P(1010) — 2. 

Pretože zrejme P(1010) > 2.1010 + 1, sá všetky jej 
členy celé čísla váčšie než 1010. Každý z nich má prvo-
číselný deliter menší než 1010 (pře prvý člen móžeme 
vziať 101 a pře každý další člen P(1010) — i niektorý 
prvočíselný delitel čísla i), sú to teda zložené čísla. 
Ostává len ukázat, že sú menšie než ÍO1"10 a na to stačí 
dokázat nerovnost P(1010) < 101®1". 

Pre každé prirodzené číslo n je číslo deliteTné 

všetkými prvočíslami p medzi n a 2n. Skutočne, ak n < 

< p < 2 n, tak p\(2n)\, ale plni, a preto p\ • 

Využitím tejto vlastnosti a nerovnosti < 2*» pre 

n = 5.10», 25.10* a 125.107 postupné dostáváme 

969 



P(10l°) ^ ( ^ i o « ) - ^ 5 - 1 0 9 ) < 2 in ,n.P(5.109) ^ 

- ^ " " ' ( i '°8 ) < 2 ln lP '51°B- 'P(25-1°9) ^ 

^ 2 ,51°9.í 25,' 1 0").P(125.10') < 21751°8.P(125.107). 
V, I ¿0 . I U ) 

Pre každé k S I je z 30 po sebe idúcich čísel 30k + i, 
0 i ^ 29 najviac <p(30) = 8 prvočísel; každé z ostat-
ných 22 čísel totiž je delitelné dvoma, tromi alebo piati-
mi. Preto počet prvočísel menších než 125.107 nepřesa-
huje 

1125 107 I 

" 30 I ' 8 < 3 0 + 4 2 ' l ° 6 ' 8 < 3 4 1 07 ' 
teda platí 

P(125. 107) < (125.107)34 107 < (ÍO10)3410' = 10M1°B. 

Spolu potom dostáváme 

P(10 l ° ) < 21761°8 lO341"8 < 860 1n9 J034 1°8 < 

^ iQ6n.io8+Mio8 ^ io1 ( , l n 

čo bolo třeba dokázat. • 
Riešenie by sme mohli podstatné skrátiť využitím 

vzorca P(n) sS 4" platného pre všetky n e P; podstatná 
ideu z jeho dókazu sme v riešení vlastně uviedli. Ďalšie 
riešenie, ktoré uvedieme, bude kratšie a dosiahneme 
podstatné silnejšie tvrdenie než sa žiada v úlohe. Jeho 
nevýhodou však je, že sa v ňom používajú podstatné 
silnejšie matematické vety. Preto například v MO a po-
dobných sáťažiach by bolo vhodnejšie prvé riešenie. 
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Riešenie 1J. Označme A počet prvočísel menších než 
B = ÍO1®1". Tieto prvočísla rozdelia ostatných B — A 
prirodzených Čísel nepresahujúcich B do A neprázdných 
intervalov po sebe idúcich celých čísel (meczi 2, 3 je 
totiž prázdny interval 

B — A 
je aspoň 

In B 
B 
A 

— 1 > 

A 
a preto 

B 

Teda aspoň jeden z ni< h obsahu-
B I 

— 1 čísel. Avšak 

B — 1 = | ln B | — 5 = 

ln B — 4 
= 11010 ln 101 — 5 ^ 2,3. IO10. 

Teda existuje aspoň 2,3.1010 po sebe idúcich zložených 
prirodzených čísel menších než IO1"10. • 

Cloha 11.2. Dokážte, že číslo B + 1, kde B = 10loln, 
nemá prvočíselný delitel1 menší než 12 000. 

Riešenie. Predpokladajme, ž e p je prvočíslo,p\(B + 1). 
Potom platí IO1"10 - —1 (mod p), Io21010 = i ( m o d p). 
Zrejme Z>(10, p) — 1, a potom z malej Fermatovej vety 
vyplývá 10""1 = 1 (mod p). Podia Euklidovho algo-
ritmu existujú celé čísla x, y také, že platí 

£)(3.1010, p — 1) = x .2 .101 0 — y-(p — 1); 

Tahko možno tiež zariadif x, y e N. 
Potom platí 

lO^.io1 0 s (modp), 

]0Í>«.I»ío.P-I) = ] (mod p). 
a odtiaf 
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Na druhej straně máme 

l<P(io10."-i) + 1 (mod p), lebo ÍO1®10 ^ 1 (mod p), 
a preto 

D(1010,p— 1) ^ D(2.1010, p — 1). 

To je možné len tak, že platí 2 n | (p — 1), t. j. p je tvaru 
2048& + 1. Avšak žiadne číslo tohto tvaru menšie než 
12 000 (t. j. pre k íS 5) nie je prvočíslo, pretože 

312049, 1714097, 5|0145, 3|8193, 7| 10 241. 

Preto p ž 2048.6 + 1 > 12 000, čo bolo třeba uká-
zat. • 

Keby sme chceli odhad 12 000 zvýšit na 24 000, 
museli by sme okrem iného dokázat, že 12 289 a 18 433 
nie sú delitele čísla B + 1. To by sme mohli najfahšie 
urobit tak, že by sme vypočítali čísla B MOD 12 289, 
B MOD 18 433 za předpokladu, že 12 289, 18 433 sú 
prvočísla. Pri týchto výpočtoch by sme použili malú 
Fermatovu vetu. Přitom by sme nemuseli ověřovat, že 
12 289, 18 433 sú skutočne prvočísla; ak by totiž boli 
zložené, určité by nedelili číslo B + 1. 

Cloha 11.3. Dokážte, že číslo B + 1, kde B = 101®10, 
má aspoň jedenást róznych prvočíselných delitďov. 

Rieáenie. Označme A{ = ÍO210'5' (teda B = 
Pre každé i e N platí 

Ai+1 + 1 = (A* — A\ + A? — A{ + 1).(Í4, + 1) 
(my však tento rozklad potřebujeme len pre i = 9, 8, 
. . . , 0). Označme C, = Af — Af + Af — A{ + 1. Platí 

Ci — (A\ — 2A? + ZA. — 4).(At + 1) = 5, 
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teda ak nějaké prvočíslo p delí C{ a j A{ + 1, tak p\5, 
teda JJ = 5. Avšak 5 I At + 1, a preto sú čísla A{ + 1, Ct 
nesúdeliteTné. Potom je C; nesúdeliteíné a j s každým 
delitelom čísla A{ + 1. Teda 

je rozklad čísla B + 1 na jedenásť po dvoch nesúdeli-
teíných činitelov (zrejme váčších než I). Každý z nich 
má prvočíselný delitel, pričom tieto delitele sú po dvoch 
rózne. Teda 5 + 1 má aspoň jedenásť prvočíselných de-
litelov. • 

Úloha 11.4. Nech. B = ÍO1®10 a <p znamená Eulerovu 
funkciu. Rozhodnite, ktoré z čísel <p(B), q>(B + 1) je 
váčšie. 

Riešenie. Pre každé x e N platí 

(súčin sa berie cez všetky prvočíselné delitele x). Podia 
tohoto vzorca 

Odhadneme teraz <p(B + 1) zdola. Na to rozložíme 
množinu Q všetkých prvočíselných delitefov čísla 5 + 1 
do štyroch množin 

Qi = {? 6 Q; p á ÍO«}, Q2 = {p e Q; 10* < p ^ 10«}, 
Q, = | í>eQ; 10» < p ú 10W};Q4 = { P e Q ; 10" < p ) . 

B + 1 = C.CgC/WW^C.C.. (A, + 1) 

, ( 5 ) = 5 . ( l - i ) . ( l - - i ) 
o 

Potom zrejme platí 
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. „ i , 1 1 . „ ( , _ > ) . 
p e Q , v. PJ veQ.\ Pf 

Odhadneme súčiny na právej straně; budeme přitom 
využívat výsledok získaný v úlohe 11.2, že každý prvo-
číselný deliter čísla B + 1 je tvaru 2048k + 1 a váčší 
než 10 000. Podia toho možno každý činiter v prvom 

súčine odhadnut zdola číslom 1 ; činitele v ostat-

ných troch súčinoch možno po řade zdola odhadnúf 

číslami 1 — 1 — ,0« • 1 — 1510 • Vzhradom na 
vyššieuvedený tvar prvočíselných delitefov čísla B + 1 
mohutnosti množin Qj , Q ž , Q s po řade neprevýšia 500, 
5.104, 5.10". Mohutnost n množiny Q4 odhadneme 
zo vztahu II p ^ B + 1. Odtial vyplývá (1010)n g B, 

teda lOre ^ 1010, teda n ^ 10». Preto platí 

( ] i6 0 0 ( 1 1«10Í 

rf* + ! ) > ( * + , ) . ( , _ - - ) ( i - , , . ) • 

. í i - 1 r 4 - í i — - f 
1 10« J { 10»® J ' 

<P(B + 1) >(B + l ) . [ l -

. í i - i ^ U i - J 0 9 - ) 

{ ío8 ) [ io»°y 
<p{B + 1) > (B + 1). 

í 500 _ 5.104 5.10' _ '10» \ 
'{ ÍO4 ÍO« ÍO8 10»® J * 
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<p(B + 1) > -4 (B + 1) > B. 

Teda platí <p(B + 1) > q>(B). • 

t loha 11.5. Pře číslo B = 10loin dokéžte nerovnost 

Túto úlohu necháme na vyriešenie čitaterovi. Jedna 
z možností zlepšovania odhadu z predchádzajúcej úlohy 
je rozdělit množinu Q na viac podmnožin. Ďalej možno 
využit, že niektoré z čísel tvaru 2048fc + 1 majů deli-
teTa 3 alebo 5. 

t loha 11.6. Zistite, koíkokrát sa číslo B = 1010'0 na-
chádza v Pascalovom trojuholníku. 

RieSenie. Máme vlastně zistiť počet usporiadaných 
dvojíc (z, y) takých, že 0 ^ y ^ x a 

Také sú zrejme dvojice (B, 1), (B, B — 1). Ukážeme, že 
dalšie dvojice (x, y) už nevyhovujú; z dóvodov symetrie 
Pascalovho trojuholníka sa móžeme obmedzií na pří-
pad 0 ^ 2 y ^ x. Případ y = 0 zrejme nevyhovuje 
a případ y = 1 dáva x = B (čo už máme). Preto stačí 
skúmat y ^ 2. 

Pretože 51®10 j ̂  X j , při sčítaní čísel x — y, y v sústave 

o základe 5 nastáva aspoň 1010 prenosov, a teda číslo x 
je v tejto sústave aspoň (1010 + l)-ciferné, t. j. x 
Sí (51<|10). Potom však y Si 2 dáva 

q>(B + 1) > 0 , 9 8 . ( 5 + 1). 
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c n n -
2 

teda takto nedostaneme rfalšie výskyty čísla B. Preto 
sa číslo B nachádza v Pascalovom trojuholníku právě 
dvakrát, a to ako 

( f ) a a k ° U - i ) - n 

Úloha 11.7. Zistite, korkokrát sa číslo A = ^'.j^jjj^J 
nachádza v prvých 50 000 riadkoch Pascalovho trojuhol-
níka. 

Riešenie. Máme vlastně zistiť počet usporiadaných 
dvojíc (x, y) takých, že x < 50 000 a = A. Dve také 
dvojice sú (10 000, 3000) a (10 000, 7000), a pře x = 
= 10 000 už ďalsie také dvojice zrejme neexistujú. Uká-
žeme sporom, že neexistujú ani pře ostatné x < 50 000. 

Na to predpokladajme = A a označme z = x — y\ 
zrejme smieme predpokladať y ís z. Teraz rozlišme dva 
případy podia toho, či je x menšie alebo váčšie než 10000. 

Případ I. Ak x < 10 000, tak y > 3000; inak by bolo 

< A. Uvážme teraz prvočíslo p = 3001. Pretože 

10 000 I 17000 1 13000 
P I> I P l I P 

I 
platí p\A, a teda aj p fXl = -X', 

I \y) yW-
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Avšak 2 ^ y ^ p, a preto í>|y!, í>|z!, a teda p*\x\, teda 
x ^ 3j> = 9003. 
Teraz uvážme prvočíslo <7 = 6997. Pretože 

(a q* > 10 000, teda násobky čísel q . . . sa tu ne-
vyskytnu), platí q i A. Avšak q|x!, a preto q\y\ alebo 
q\z\. Pretože z y, platí q\z\, a teda z ^q = 6997. 
Teraz znova uvážme p = 3001. Platí z a preto 

x\ 
-r-^, musí platit p4|x!. Teda 
!Z! 

p2|z!. Kedže p\y\ a p 
y\z 

x > 4p, a to je spor s predpokladom x < 10 000. 

Pripad II. Nech teraz x > 10 000; potom y < 3000. 
Uvážme teraz prvočíslo p = 7001. Platí p\A, p\z\, 
a pretop*\x\, teda x ^ 2p = 14 002. (Opakujú sa úvahy 
z případu I, preto ich už zapisujeme stručnejšie.) 

Teraz uvážme prvočíslo p, = 9973. Pretože z = 
= x — y > p l t platí Pi\z\. Avšak py\A, a preto p\\x\, 
teda x ^ 2p, = 19 946. 

Už viemez ^ 19 946 — 2999 = 16 947. Uvážme teraz 
prvočíslo pt = 8467. Platí z 22 2p2 , teda p\\z\, a pretože 
pt\A, platí p| |x!, teda x ^ 3p2 = 25 401. 

Ďalej uvažime prvočíslo p3 = 9967. Platí z 
^ 25 401 — 2999 > 2pa, teda p\\z\, Kežde p3\A, máme 

p\\x\, teda x ^ 3p, = 29 901. Teraz položme pt = 8967. 
Znova platí pt\A a pretože z = x — y ^ 26 902 > 3pA, 
platí í»J|z!, a potom p\\x\, teda x ^ 4p t = 35 868. 
Úplné obdobné pře p& = 8209 zistíme p\\z\,p\|x!, a teda 
x ^ 5ps = 41 045. Teraz zvolíme ps = 9511 a zistíme 
p\\z\, J»j|x!, teda x Si 5p t > 47 555. Nakoniec zvolme 
p, = 8893. Pretože z 5p7, platí p\\z, a pretože PI\A, 
platí potom p*|x!, teda x 2; 6p7 > 50 000. Ani tento 
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případ teda nedává žiadne ďalšie výskyty čísla A 
v prvých 50 000 riadkoch Pascalovho trojuholníka. 

Teda v uvedených riadkoch sa číslo A nachádza 
, , A , n o oooi n o 0001 

pravé dvakrat, a to ako I „ _ „ I a I I. • ' l 3000 J l 7000 I ^ 
Nebolo by příliš tažké ďalej zvyšovat dolný odhad 

pře x a dokázat například, že číslo A sa už ďalšíkrát 
nenachádza v prvých 100 000 riadkoch Pascalovho troj-
uholníka. Vystačili by sme přitom s tabuTkou prvočísel 
do 10 000 akq doteraz. S využitím istého faktu z odseku 
3.3 však možno dójsť podstatné ďalej. 

Úloha 11.8. Dokážte, ze číslo 3OQ0 | s a n a " 
chádza v prvých desiatich miliónoch riadkov Pascalovho 
trojuholníka právě dvakrát. 

Ritšenie. Nech x, y, z majů rovnaký význam ako v rie-
šení predchádzajúcej úlohy. Z tohto riešenia vieme, že 
pre x íS 14 000 existujú právě dve riešenia rovnice 

= A. (Teda z případu II nám stačí len úvaha 

s p = 7001.) Nech odteraz 14 000 < x ^ 107. Pretože 

(154) = ( ¡ Q < ( 1 0 ' ) 1 M = 101078 < 33000 < 
10 000 9999 7002 7001 _ / 10 000"l 

< 3 000"' "2999 2 f ~ ~ l 3 000 J ' 

musí byť y > 154. Podra vety 3.4, bod b však potom 
existuje prvočíslo p, x — y < p ^ x. Potom a ' e 

p I A (pretože p > x — y > 14 000 — 3000 > 10 000), 
a p ř e t o p j # A. Teda číslo A sa od 14 000-ho po 107-ty 
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riadok Pascalovho trojuholníka už nenachádza, čo bolo 
třeba dokázat. • 

Toto riešenie je kratšie než vyššieuvedené riešenie 
(Iahšej) úlohy 11.7. ale využívali sme v ňom istý fakt 
o prvočíslach, ktorého overenie bez počítača by bolo 
namáhavé, aj keby sme mali k dispozícii tabuTky prvo-
čísel po 107. 

Pre nasledujúcu úlohu připomeňme, že mrežové body 
v rovině (s danou pravouhlou súradnicovou sústavou) 
sú jej body s celočíselnými súradnicami. 

Úloha 11.9. Určte počet mrežových bodov na kružnici 
s polomerom B = 101®10 a stredom v začiatku súradni-
covej sústavy. 

Riešenie. Rovnica uvažovanej kružnice je x2 + y* = 
= B*. Ak obvyklým spósobom přiřadíme komplexné 
čísla bodom roviny, tak máme vlastně určit počet gaus-
sovských celých čísel a + bi takých, že a2 + b2 = B2, 
t. j. |a + 6i| = B. 
Rozklad čísla B2 na gaussovské prvočísla je 

B2 = (1 + i)41®10. (2 + i)2',0,0.(2 — i)21®10. 
Ak a2 + b2 = B2, tak (a + bi)\B2, preto 

a + bi = i*.(l + i)r. (2 + i)'.(2 —i)' 

pre nějaké celé čísla k, r, s, t, 
0 ^k ^ 3 , 0 ^ r ^ 4.101®, 0 ^ s ^ 2.101®, 

0 ^ t ^ 2.101®. 

(Přitom toto vyjadrenie je jednoznačné.) 
Ďalšiu podmienku na r, s, t dostaneme zo vztahu 

a — bi = (—i)*.(l— i) r-2(— i)'. (2 + i ) ' ; 
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potom 
B* = (a + 6i).(a — 6i) = 2'.5'+l. 

Odtiar vidno r = 2.1010, t = 2.1010 — a. Teda vo vy-
jádření pře a + 6i možno volit len k, a; parametre r, zt 
sú už potom jednoznačne určené. Možností pře volbu 
k, a spolu je 

4.(2.1010 + 1) = 8.1010 + 4, 
a lahko sa preverí, že každá už vyhovuje. Teda na kruž-
nici s polomerom B a stredom v začiatku súradnicovej 
sústavy leží 8.1010 + 4 mrežových bodov. • 
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