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1. GVOD

V tejto knizke najdete ulohy s konkrétnymi &islami.
Keby tieto ¢isla neboli prili§ velké na to, aby sa 8 nimi
dali priamo vykonavaf aritmetické opericie, boli by
mnohé z predlozenych iloh celkom trividlne. Takto su
viak obtainejSie, a na ich riesenie je potrebné pouZit
obraty obvyklé pri dokazovani matematickych viet
alebo pri riedeni dokazovych iloh. Medzi tymito dvoma
tinnostami vlastne neexistuje presna hranica. V doka-
zovych ulohach viak dasto moZno z uvadzanych pred-
pokladov usudzovat na postup, ktory pravdepodobne
privedie k cielu. V tu predkladanych ulohich to bude
niekedy obtaZnejsie, pretoZe konkrétnu vlastnosf uda-
nych ¢isel, ktord je pri rieseni potrebna, bude treba
vybrat z mnohych vlastnosti tychto &fsel, a formulacia
tlohy v6bec nemusi na tito vlastnost upozoriovat. Je
celkom mo#né, Ze pri zdanlivo malej zmene é&iselnych
parametrov tlohy sa z relativne Iahkej tlohy sf;ane
tloha prakticky nerieditelnd. Z tohto hladiska sd, tu
obzvlast nebezpeéné tlatové chyby, ktorych n;oinosf,
sa nedd celkom vyliadit. Aj predkladané ulohysﬁ ‘velmi
roznej narodnosti, od riesitelnych spamati aZz po.vyzadu-
juce umelé obraty, ktoré treba najprv najst. Autor este
poznamenava, Ze jeho zimerom bolo rozsifif sortiment
uloh z tedrie &isel o dalsie druhy, teda nie nahradit
svojimi ilohami doterajSie typy uloh. ,

Takmer v8etky tlohy v tejto knihe s} vyriesené. Od-
porudam vSak ¢itatelovi, aby sa vidyfnajprv pokusil
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o samostatné rieSenie tlohy, alebo aspon dodatodne
porozmyslal nad postupom, ktorym by tlohu sim rie-
8il. Tak mu kniha podstatne viac pomoéZe prineskorsom
riedenf inych uloh.



2. PREDPOKLADANE PROSTRIEDKY
A METODY

Predpokladame, Ze ditatel ma k dispozicii bezné ma-
tematické tabulky, a pripadne kalkulaéku. Nepredpo-
kladdéme véak samodinny poéitaé alebo programovatelni
kalkulatku; k moZnosti ich pouZitia sa vratime este
v tejto kapitole, pri analyze pojmu velkého &isla. Dalej
predpokladiame dobré matematické znalosti na trovni
strednej 8koly, a o nieto hlbsdie znalosti z tedrie é&isel.
Tieto dopliujice znalosti mozno zfskaf napriklad
z (2], [3], [10], [13], ale si zhrnuté aj v nasledujicej
kapitole tejto knizky.

Riesenie ulohy ma byf podla moZnosti kritke, ele-
gantné a elementarne. Tieto poZiadavky si aspon &iastod-
ne vzijomne odporuji, a preto nie vidy moZno uréif,
ktoré z dvoch rieseni je lepsie. (Stdle mame na mysli len
spravne rieSenia!) Ani kratkosf rieSenia nie je celkom
jednoduchy pojem. Napriklad jedno rieSenie méze byt
kratdie nez iné jednoducho preto, Ze sa pri vpraviach
robf vidy viac krokov naraz, alebo preto, Ze sa niektora
dast prehlasi za trividlnu, a jej dokaz sa vynecha. To
nemusi byt chybou, ale pri hodnoteni kratkosti riesenia
by sme mali brat do dvahy celd dlzku myslienkove;
cesty, ktorou sa dospeje k Ziadanému vysledku, a nie

u jej zépisu. Aby sme teda ditku riesenia hodnotili
celkom objektivne, musel by byt presne stanoveny po-
Zadovany stupenn podrobnosti zipisu. Nie je to sice
principidlne nemoZné, ale my sa tym rozhodne nebude-
me zaoberaf. TaZkosti pri hodnoteni elegantnosti riese-
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nia by boli este vadsie, jednak preto, Ze ide o diastolne
subjektivny pojem, a za druhé preto, Ze niekedy sa
namiesto pévodnej tlohy riesi vieobecnejSia uloha. Aj
elementarnost riefenia je zloZity (a dokonca niekedy
viacvyznamovy) pojem, tu viak mame pre riesitela
asponn takéto odporidanie: Davajte v rieSeniach iloh
prednost takym vetdm a postupom, ktoré sa bezne po-
uzivaji pri rieSenf dloh MO. Neobmedzujte sa viak na-
silne na tieto postupy, ak uZ viete viac, ale nepouzivajte
silnejsie met6édy a vysledky iba preto, aby ste ukazali, Ze
ich ovladate.

Pokial pouZivate pri rieSeni matematické tabulky,
tak im ,,bezvyhradne déverujte*. Tladové chyby sa sige
v tabulkdch mézu vyskytnut, si viak malo pravdepo-
dobné; pravdepodobnost chyby vo VaSom vypodte je
asi vadsia. Nedftajte viak z tabuliek viac, nez sa v nich
tvrdi. Ak napriklad v §tvormiestnych logaritmickych
tabulkach vytitate log 2 = 0,3010, tak to znamena len

0,30095 < log 2 < 0,30105.

Pravda, namiesto neostrych nerovnosti mozno pisaf
ostré, ale to uz nevieme z tabuliek, ale z toho, Ze log 2 je
iraciondlne ¢&islo. Pomocou &tvormiestnych tabuliek
viak moZno log 2 uréif aj presnejsie. Napriklad ak z ta-
buliek vyéitame

log 2 = log 512 = 2,7093, tak vieme, Ze
2,70925 < 9log 2 < 2,70935,
a odtial zistime
0,301027 < log 2 < 0,301039.

(Véimnite si, Ze vysledok delenia deviatimi vlavo sme
museli zaokrdhlif nadol, a vysledok delenia vpravo
nahor, bez ohladu na dalsie &fslice podielu. Inokedy uz
na to nebudeme zvlast upozortiovat.)
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Obdobne z log 2¢ = log 256 = 2,4082 vieme
2,40815 < 8log 2 < 2,40825
0,301018 < log 2 < 0,301032.
Spolu teda méme

0,301027 < log 2 < 0,301032,

%o je presnejii vysledok, nez da bezprostredné poutitie
pafmiestnych logaritmickych tabuliek. Samozrejme,
tdaje z pafmiestnych tabuliek by sme mohli spresiovat
obdobne. V3eobecne viak tento postup je len vychodis-
kom z ntdze; ak mame k dispozicii presnejsie tabulky,
tak sa radsej pozrieme do nich. Pre hladanie logaritmov
prirodzenych é&isel do 200 je napriklad vhodné tabulka
logaritmov faktoridlov v [1] (ale hodnota log 200! je
chybnad).

Stupen opravnenej dovery kalkuladke alebo poditadu
predstavuje uZ zloZitejsi problém. (Nemédme pritom na
mysli moZnost, Ze kalkulatka je pokazena, obdobne dko
sme neuvazovali moznost tlatovej chyby v matematic-
kych tabulkach.) Tu uZ zileZf na type kalkuladky, &i
podita na viac miest neZ nakoniec ukaZe na displeji
alebo nie. V druhom pripade je aspoi posledné miesto
vysledku nespolahlivé, dasto je vsak nespolahlivé aj
v prvom pripade. ZaleZi aj na zloZitosti poéditaného
vyrazu. Napriklad siéin dvoch celych &fsel bude spra-
vidla presny, pokial sa da cely zobrazit na displeji. Vy-
sledok umociiovania (aj v pripade, Ze ziklad i exponent
80 prirodzené &fsla, a presny vysledok by sa dal cely
zobrazif) v8ak uz moéZe byt nepresny, pretoze kalkuladka
ho méze poditat cez logaritmus a exponencidlnu funkciu.
Tu je fazké dat konkrétnu a vieobecne platnd radu.
Zistite si presnost Vasej kalkulatky aspori pomocou
niekolkych kontrolnych prikladov, a potom ju vyuZivaj-
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te efte s istou rezervou vodli tato zistenej presnosti. Na
tito rezervu bude treba mysliet napriklad pri odéitavani
alebo porovnavan{ dvoch skoro rovnakych ¢&isel.

Vratime sa teraz k pojmu velkych &isel, o ktorych sme/
uz hovorili v tivode ako o éislach prili§ velkych na to,
aby sme s nimi bezprostredne vykondvali aritmetické
opericie. Zrejme nejde o presne matematicky definovany
pojem. Dolezitejdie viak je, Ze tento pojem zdvisf aj od
metéd a prostriedkov, ktoré méme k dispozicii (a aj od
namahy, ktori sme ochotni pri poéitani podstigpit).
Napriklad pre potitanie spamati si u% trojcifgrné
&isla velké, ale pre potitanie na papieri alebo s kalkplag-
kou ich asi za velké nebudeme pokladaf. Na samodin-
nych potitagoch (a to i na osobnych, alebo i na yykon-
nejdich programovatelnych kalkuladkdch) si moZno
naprogramovat viacnasobni aritmetiku, a potom ani
stociferné &fsla nebudi pre nas prilifi velké. Ulohu
o poslednych &isliciach &isla 23 bude potom najjedno-
duchsie riesif tak, Ze dame stroju vypoditaf &islo 23,
a potrebny potet poslednych é&islic si pozrieme. Bude to
spravny postup, ale rozhodne nebude v intencidch auto-
ra tejto knizky; keby autor predpokladal, Ze ¢itatelia
budi maf k dispozicii samoéinné poditade, tak by zvaésil
sla v ulohach tak, aby sa obdobny sposob nedal po-
uzif.

V niektorych ilohach, napriklad s viacposchodovymi
mocninami, s uz zvolené &sla také velké, Ze ich prak-
ticky vobec nie je moZné obvyklym spdsobom dekadicky
zapisat. Ak viak abstrahujeme od praktickych ohrani-
¢eni (najma Easovych a priestorovych), ako je to v ma-
tematike beZné, moZno hovorit o ich dekadickych
zdpisoch, a urdovat niektoré ich cifry. Dekadické zapisy
realnych é&isel (aspofi niektorych) sd nekoneéné, a teda
ich vlastne nemozno celé napisat ani v principe. Napriek
tomu vsak moino hovorif napriklad o ich &isliciach,
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a (niekedy) niektoré z tychto &slic aj vypoéitat. Ulohy
o takychto &isliciach by sme mohli lahko preformulovat
tak, aby sa v nich o nekoneénych dekadickych rozvo-
joch nehovorilo, nové formulicie by viak boli menej na-
zorné.

V niektorych rieseniach najprv ,,uhddneme‘ vysledok,
a potom dokiZeme jeho spravnost. Niekedy ,,uhadne-
me* vhodné prvoéislo a podobne. Samozrejme, Ze aj
schopnost ,,uhéddnut, & aspoii odhadnit vysledok, je
vyhodna pri riedeni tlohy, sp6sob ,,uhddnutia‘‘ viak nie
je logicky nevyhnutnou ¢asfou napfsaného rieSenia tlo-
hy. Namiesto ,,uhddnutia’ mézZe v skuto&nosti ist o po-
uZitie poéditada. Ak je napriklad potrebné uvazit prvo-
&islo p = 5501, taiko moéZe fsf o ,,uhddnutie’ alebo
o ruéné preskidsanie. K prvodislu p = 19 by sme viak
takto dospiet mohli. Za riefenfm ilohy ob&as uvadzame
efte komentar, ktory uZ nie je jeho sulasfou; moze
napriklad obsahovat vysvetlenie k nejakému ,,uhddnu-
tiu“, ale méZe sa vztahovat i k nasledujicej tlohe.
Koniec vlastného rieSenia tlohy vyznadujeme znaé-

kou .



3. PREHEAD VIET
Z TEORIE (ISEL

1. ZAKLADNE 0ZNACENIA
A CISELNE SUSTAVY

Mnozinu vietkych celych nezapornych &fsel budeme
oznatovat N a mnoZinu vietkych celych kladnych &fsel
budeme oznadovat P. Pod prirodzenymi islami budeme
(na rozdiel od klasickej terminoldgie) rozumief celé
nezéporné &sla, t. j. aj 0 bude prirodzené &fslo. MnozZinu
vietkych celych, resp. realnych ¢fsel budeme oznadovat
Z, resp. R. Pokial nebude hrozit nedorozumenie, budeme
miesto ,,prirodzené ¢&islo“ alebo ,,celé islo pisat len
,,Gislo*.

Kladieme a® = 1 aj pre a = 0. Prirodzeny logaritmus
oznadujeme In, dekadicky zna&ime log, ostatné zaklady
vyznadujeme. Dolnd (teda obvykld) celd éast &fsla z
znaffme |x|, horni celd éast &isla x znadime |r|, teda
plati [r]| = —|—z|. Prex € R, n € P plati

-1 2]

V tejto kapitole jednak zavedieme oznadenia, ktoré
budeme pouzivat v daldom, a za druhé zhrnieme niekto-
ré zname fakty z elementarnej teérie &isel aj inych dasti
matematiky, ktoré mézu byt uZitoné pri riesenf tloh
v nasledujicich kapitolach. Zhrnutej latky je viac, nez
sa v daldich kapitolich bezprostredne vyuiiva. Je totiz
mozné, Ze pri inych postupoch riesenia iloh sa budid
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hodit iné matematické vety nei pri autorskych riese-
niach. Keby sa autor striktne obmedzil na vety fakticky
dalej pouZité, mohol by velmi stazif situdciu tym riesi-
telom, ktori sa budu pokiSaft o samostatné rieSenie
tloh. Citatel samozrejme nemusi pri rieseni dloh pouzi-
vat vyluéne iba prostriedky z tejto kapitoly. Podany
prehlad vysledkov ma mu slaZit iba ako pomécka. Roz-
hodne nie je ani potrebné, aby ¢&itatel najprv podrobne
prestudoval tito kapitolu a aZ potom zadal riesit dlohy.
Doporudujeme mu v3ak, aby si ju celi dopredu prezrel,
aby neskor vedel, &o a asi kde v nej moze najst.

Tato kapitola je iba prehlad, a nie udebnica. Vety
8a vyslovované bez ddékazov, a va&Sinou aj bez odkazov,
najma pokial ide o latku beZne preberand v elementér-
nych udebniciach tedrie &fsel. Ak ditatel eSte nie je
oboznidmeny s kongruenciami a ich pouZitim, doporu-
tujeme mu, aby si zvladt vsimol piaty (a pripadne
iesty) odsek tejto kapitoly a potom kapitoly 5, 6.
Aparat kongruencif mn bude uZitodny nielen pri rieSen{
uloh tejto zbierky, ale aj pri dlohach MO.

Znaky ¥, Il pouifvame pre opakovany sudet, resp.
stiéin. Pritom pre n = 0 kladieme

n
b)) a; = 0, [l a; = 1,
i=1 i=1

tito dohodu analogicky pouZivame aj pri zapisoch

a t+a+ ... +a,, a.¢. ....0a,.
Znaky ¥ , Il znamenaji stdet, resp. sifin cez véetky
psSK psK

prvotisla nepresahujice K.

Znak + budeme pouzivat vo dvoch réznych vyzna-
moch, ktoré treba rozliSovat podla kontextu. xz,, =
=2 4+ 1 znamena x, = 3, z, = 1. Naproti tomu z =:
= 2 4+ 0,05znamena 1,95 < z < 2,05.
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Dekadické zapisy celych nezapornych ¢&isel, ktoré
obvykle pouZfvame, vyjadruju &islo ako siéet nadsobkov
mocnin &fsla 10 (s koeficientmi 0 aZ 9). Napriklad

1987 = 1.10% + 9.10% + 8.101 + 7.10°;

radom nejakej &islice (presnejdie: rddom jej vyskytu)
v zdpise nejakého &isla budeme nazyvat prisluiny expo-
nent &fsla 10.

S vynimkou dekadického zépisu &isla nula obvykle
pozadujeme, aby &islica najvyssieho radu bola nenulova.
Niekedy vsak niekolko nil vpredu dopisujeme (alebo si
ich aspon predstavujeme dopisané); robime to tak na-
priklad vtedy, ked chceme mat dekadické zapisy &isel
aZ po istd hranicu rovnako dlhé.

Namiesto &isla 10 moZno pouZit Tubovolné celé &islo
z > lakazdé u € P vyjadrif v tvare

U = @p.2" + Ap_y.2"1 + ... + a;.2! 4 a4.2°,

pritom 0 < a; < z pre vietky ¢ =0, ..., n; ak eSte
Ziadame a, # 0, je toto vyjadrenie jednoznaéné. Ak
by sme mali k dispozicii &fslice pre &isla 0,1, ...,z —
— 1, mohli by sme pfsat z-adické zapisy &isel obdobne
ako dekadické. Aj zakladné poétové vykony by sa robili
v podstate rovnako. (Pravda, ,,maléd ndsobilka‘‘ by bola
ind.) Teoreticky a abstraktne viak moéZeme takéto za-
pisy uvaZovat, aj ked sa na &sliciach konkrétne nedo-
hodneme. Prakticky sa pre z << 10 obvykle pouifvaji
prisluiné dekadické &islice, pre z = 16 sa priddvaja ako
dalsie &islice pismena A az F (zaklad 16 sa niekedy po-
uziva pri samodinnych potitatoch). My budeme takmer
vyludne pracovat s dekadickymi zdpismi &sel. Iny zdklad
vidy vyslovne uvedieme.

Podotknime este, Ze z-adické rozvoje realnych &isel si
obdobnym zov3eobecnenim ich dekadickych rozvojov,
aké sme urcbili vyssie pre zapisy prirodzenych é&isel.
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Pre niektoré redlne &fsla si tieto (ako uZ aj dekadické)
rozvoje nekoneéné, nemoino ich teda celé napisat. Aj
vtedy vdak mozZno hovorit o ich jednotlivych &fsliciach,
a pripadne podftat konedné tiseky tychto rozvojov.

V textoch iloh zdsadne hovorime o é&fsliciach &fsla z
namiesto presnejsieho, no zdfhavejsieho vyjadrovania sa
o &isliciach dekadického zdpisu (resp. rozvoja) &isla z.

2. DELITECNOST
A PRAVIDLA DELITELNOSTI

Pre ka2dé dve celé &fsla a, b piSeme a|b (a &ftame ,,a de-
U b, b je ndsobkom a'‘ a pod.), ak existuje celé &slo ¢
také, Ze a.c = b. Budeme pisat atb, ak neplatf a|b.

Veta 2.1. Reldcia delstelnosti na Z je reflexivna a tran-
zttivna, 1. §. pre kadé a € Z platt aja a pre vdetky a, b,
c € Z plati ak a|d, b|c, tak aj a|c. lej, pre vdetky a, b,
¢, z,y € Zplati

(i) aka|b,a|c,takajalbz + cy;
(i) aka|d,takaz|bz;
(iii) 1|a,al—a,a|0.

Pre tedriu deliteInosti celych &fsel je velmi ddleZita
nasledujica

Veta 2.2, (Veta o delen{ so zvyskom.) Pre kafdéa € Z,
b € Pexistujiiq, r € Ztaké, 2e

a=bg+r a 0=r<b.

Pritom éisla g, r 81 Eislami a, b jednoznaéne uréené.

Cisla g, r z tejto vety nazyvame celofiselngm podielom
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a zvydkom pri (celobiselnom ) deleni &isla a &islom b. Bu-
deme pre ne pouiivat oznaéenie

g=aDIVb, r=aMODb,

(ktoré v podstate preberame z programovacieho jazyka
PASCAL). Symboly DIV a MOD su symboly giastoé-
nych opericii na mnoiine Z, a budeme ich pisat medzi
ich argumenty, obdobne ako +, —, . . Vyraza.b MOD m
budeme ‘vizdy rozumiet ako (a.b) MOD m; vo vyraze
a.(b MOD m) teda nesmieme vynechat zatvorku. Na-
proti tomu, a + 5 MOD m znamend a + (b MOD m).
Obdobna dohoda plati pre DIV. (Teda, ako obvykle,
multiplikativne operatory maji vysSiu prioritu ako
aditivne, a operatory s rovnakou prioritou sa aplikujd
zlava doprava.)

Veta 2.3. Prevdetkya,b e Z, m,n € P plati

(@ 4+ b) MOD m = ((a MOD m) + (b6 MOD m)) MOD m
(@.5) MOD m = (a MOD m).(b MOD m) MOD m

(¢.72) MOD (m.n) = (a MOD m).n

(@ MOD (m.n)) MODm = a MODm

Spoloéngm delitelom &isel a, b nazveme kazdé &islo d
také, Ze dla, d|b. Najviésim spoloénym delitelom &isel
a, b nazveme kazdy taky ich spoloény delitel, ktory je
ndsobkom kaZdého ich spoloéného delitela. Najvacsie
spolo¢né delitele ¢isel @, b sa moézu lisit len znamienkom.
Nezdporny najvacsi spolotny delitel ¢isel a, b (ten
existuje, a je jednoznaéne uréeny) budeme oznacovat
D(a, b).

Veta 2.4. Pre katdéa,b,c € Z plati

D(a, 0) = |a|,
D(a, b) = D(b, a)
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D(a, b) = D(a—b.c,b),
D(c.a,c.b) = |c|.D(a,b),
D(a, b) = D(|al, |b]).

Systematickym pouZivanfm prvych troch vzorcov
(priéom tretf pouZivame len pre a = b > 0, ¢ = a DIV
DIV b) mozno urdit D(a,b) pre kaidé a,be€ N; pre
a < 0 alebo b < 0 pouZijeme eSte najprv piaty vzorec.
Takyto postup nazyvame Euklidovym algoritmom pre
vypoéet D(a, b). Pri vhodnej tiprave ném tieZ umozni
urdéit &isla z, y z nasledujicej vety.

Veta 2.5. Ak a,be Z, a + 0 alebo b + 0, tak D(a, b)
je najmendie kladné celé ¢islo, ktoré sa dd vyjadrit v tvare
z.a +ybxyeZ Aka =5b = 0, tak D(a,b) = 0.

Na konkrétnom priklade @ = —162, b = 183 ukie-
me, ako moZno vhodne zapisovat Euklidov algoritmus,
ktory uréi D(a,b) i ¢&isla z, y z vety 2.5. Zapis bude
vyzerat takto

—162 183
0 1 183
—1 0 162 —1
1 1 21 —17
—8 —7 15 —1
9 8 6 —2
—26 —23 3 —2

0

Vzniké teda &iselnd tabulka zo Styroch stipcov. V 24-
hlavi prvych dvoch stipcov uvedieme é&fsla a, b; nako-
niec v tychto stlpcoch vznikni éisla z, y. Do treticho
stipca pod é&iaru vpiSeme &isla |a|, |b], & to najprv
max (|a|, |b]) (s vynimkou pripadu ab = 0; vtedy
najprv napiSeme nulu). Pre prvé tri éisla u, v, w v kaZ-
dom riadku okrem zihlavia m4i platit au + bv = w;
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v prvych dvoch riadkoch to moZno dosiahnut vhodnou
volbou u, v € {—1, 0, 1}. Kazdy dalsf riadok vznik4 pri-
potitanim vhodného nésobku posledného hotového
riadku k predposlednému. Prisluny koeficient, ktory
zapisujeme do Stvrtého stlpca, dostaneme a% na zna-
mienko celoéfselnym delenim ¢&fsel v tretom stlpci; zvy-
Sok pri tomto delenf méZeme hned zapisat do treticho
stipca. Takto postupujeme, pokial v trefom stlpci
nevznikne nula; riadok s nulou uZ nedopoditavame.
Potom na prvych troch miestach posledného riadku
méme po rade éisla z, y, D(e, b). Teda v danom pripade
je
D(—162, 183) = 3 = —26.(—162) —23.183

Najmendim spoloénym ndsobkom Cisel a, b nazveme
také &islo n, ktoré je ich spoloénym ndsobkom (t. j.
a|n, b|n) a je delitefom kazdého ich spoloéného ndsobku.
Najmensie spoloéné nasobky ¢isel a, b sa mozu lisit iba
znamienkom. Neziporny najmensi spoloény ndsobok
éisel a, b budeme oznadovat nsn(a, b). MoZno ho uréovat
podla nasledujticej vety.

Veta 2. 6. Prevetky a,b € Z plati
nsn(a, b). D(a, b) = |a].|b].
Dalej, nsn(0, 0) = 0.

Uvedieme e3te niekolko vzorcov pre najviési spolod-
ny delitel a najmensf spoloény nisobok.

Veta 2.7. Pre kadé a, b € Z si nasledujiice tri pod-
mienky ekvivalentné:

(i) a|b;
(ii) D(a,b) = |al;
(iii) nsn(a, b) = |b|.
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Veta 2.8. Previetky z, y, z € Z plati

Dz, z) = |z|

D(z,y) = D(y, z)

D(D(z, y), 2) = D(z, D(y, z))

D(z, nsn(z, y)) = |z|

D(z, nsn(y, z)) = nsn(D(z, y), D(z, z))

nsn(x, x) = |z

nsn(z, y) = nsn(y, x)

nsn(nsn(z, y), z) = nsn(zx, nsn(y, z))
nn(z, D(z, y)) = |z|

nsn'z, D(y, z)) = D(nsn(z, y), nsn(z, 2)).

Operacie D, nsn su sice bindrne, ale budeme tieZz ho-
vorif o nezipornom najvaéSom spoloénom deliteli, resp.
najmensom spoloénom ndsobku n é&fsel, a budeme ho
znabit D(z,, ..., z,), resp. nsn(z,, ..., z,). Na zdklade
vety 2.8 vieme, Ze je jedno, ako budeme zdruZovat
argumenty (a medzivysledky) do dvojic, aby sme na ne
mohli pouzit p6vodni bindru operéciu.

Celé ¢isla a, b nazveme nesudelitelnymi, ak D(a, b) =
= 1.

Veta 2.9. Nech a, b, c € Z, pridom Cisla a, b si nestideli-
telné. Potom

(i) akalc,b|c,taka.b|c;
(i) ak a|b.c,takalc.

Na zisfovanie deliteInosti pevnym &islom sa niekedy
namiesto vydelenia pouZivaji pravidld delitelnosti. Aby
sme niektoré z nich mohli sformulovat, zavedieme si dva
pojmy. Nech i, j, m € P. Potom j-ciferny sidet ¢isla m
je ¢éislo, ktoré dostaneme nasledovne. Najprv rozdelime
¢islo m (presnejsie, jeho dekadicky zdpis) od konca na
skupiny po j cifier. Potom tieto skupiny pokladdme za
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samostatné ¢isla, a vietky ich séitame. (Pripadné nuly
na zadiatkoch sk ignorujeme.) Vysledok je hladany
j-ciferny stcet; pre j=1hovorime jednoducho o cifernom
sudte. Posledné i-éislie Eisla m je &islo tvorené jeho posled-
nymi ¢ ¢éislicami (alebo vSetkymi éfslicami, ak ich m ma
menej nez i) v pévodnom poradi; pripadné nuly na za-
éiatku moézeme ignorovat. Ako priklad uvedme, Ze
dvojciferny stcet éisla 1234567 je 1 + 23 + 45 + 67 =
= 136 a posledné trojéislie je 567. Pomocou opericie
MOD moino posledné ¢-cislie ¢isla m vyjadrit v tvare
m MOD 10' a pre jeho j-ciferny sicet ¢ plati

¢ MOD(10i — 1) = m MOD(10/ — 1).

Veta 2.10. Nech m, d, ¢ € P, d|10'. Polom zvydky pri
deleni &isla m a jeho posledného i-éisla éislom d si rovnaké.
Specidlne, m je ndsobkom &isla d prive vtedy, ked jeho
posledné i-Cislie je ndsobkom d.

Veta 2.11. Nech m, d, j € P, d|(10/ — 1). Potom éislo
m a jeho j-ciferny sulet ddvajid rovnaky zvydok pri delent
éislom d. Specidlne, m je ndsobkom d prdve vtedy, ked jeho
J-ciferny sulet je ndsobkom d.

V siestom odseku tejto kapitoly uvidime, ze ku kazdé-
mu d € P nesidelitelnému s 10 existuje j potrebné do
predchadzajicej vety. Pre tie d, pre ktoré nemozno po-
uzit vetu 2.10 ani vetu 2.11, moZno pouZit nasledujice
tvrdenie:

Veta 2.12. Nech m,d,d,,d,,,j € P, d = d,.d,, d,|10,
d,|(10/ — 1). Potom Cislo m je ndsobkom Cisla d prdve
vtedy, ked jeho posledné i-éislie je ndsobkom éisla d, a jeho
J-ciferny sudet je ndsobkom éisla d,.

Pre kazdé celé éislo d > 1 moZno najst d,,d,, ¢ ,j € P,
ktoré spliiaji podmienky z vety 2.12; pritom d,, d, sd
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jednoznacne uréené. Vetu 2.12 pouZijeme len v pripade
d, > 1, d, > 1; inak je vyhodnejsie pouZit niektord
z predchadzajicich dvoch viest.

Vety 2.10 a 2.11 umoziiuji vidy jednoducko uréit i
zvysok pri deleni &islom d. Veta 2.12 to bezp ostredne
neumoznuje (okrem pripadu, ked je tento zvysok nu-
lovy). Pritom véak zvysok pri delenf ¢isla m &islom d je
jednoznaéne urceny zvyskami pri deleni m ¢éislami d,, d,.
Sposob, ako ho moino vypoditat, uvedieme v piatom
odseku tejto kapitoly.

Vety 2.10, 2.11, 2.12 platia pre [ubovolny zdklad ¢&fsel-
nej siistavy; vtedy viak pochopitelne 10 znamen4d tento
zaklad, a nie éislo desat.

Ako priklad poutitia viet 2.10, 2.11, 2.12 uvedieme
pravidld delitelnosti pre d = 16, 27 a 88 = 8.11. Pre
kazdé m € P plati:

Cislo m je delitelné 16-mi prdve vtedy, ked jeho posledné
Stvoréislie je delitelné 16-mi.

Cislo m je delitelné 27-mi prdve vtedy, ked jeho trojcifer-
nyj sulet je delitelnyy 27-mq.

Cislo m je delitelné 88-mi prdve vtedy, ked jeho posledné
trojéislie je delitelné 6smimi a jeho dvojciferny siulet je
delitelny jedendstims.

Pre d = 7 nedostivame ,,dobré‘‘ pravidlo delitelnosti,
lebo by sme museli tvorit aZ Sestciferny sddet.

8. PRVOCISLA
A ICH ROZLOZENIE

Prvotislo je také n € P, ktoré mé prive dva kladné
delitele. Existuje nekonetne mnoho prvodfsel a moino
ich zoradif do rasticej postupnosti

2,35 7,11, 13,17, 19, 23, ...
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Ak chceme o nejakom ¢isle zistit, &i je prvoéislo alebo
nie, méZeme pouZif vetu:

Veta 3.1. Celé Cislo a > 1 je prvocislo prive vtedy, ked
nemd fiadny delitel d, 1 < d < Va.

Namiesto vietkych d z uvedeného intervalu stadf ski-
maf len prvoliselné hodnoty d, &o je vhodné, ak mame
k dispozicii tabulku prvoéisel aspoii po ”/a I Ak nie,
moéZeme skimat len delitelnost &islami d = 2, 3, a dalej
éfslami d tvaru 6k 4 1. Poet deleni, ktoré urobime,
bude sice vyssi neZ pri pouZiti tabulky prvoéisel, ale len
priblizne tretinovy v porovnani s pripadom delenia
vietkymi d z vety.

Ak chceme najst vSetky prvoéisla po istd hranicu
(a nemame po ruke alebo nechceme pouzit hotové
tabulky), je vhodné tzv. Eratostenovo sito. Vypiseme si
za sebou vsetky kladné celé &isla (aZz po hranicu n,, po-
kial chceme prvoéisla zisfovat), a pretiarkneme &slo 1.
Potom opakujeme nasledujici postup: pod&iarkneme
najmensie nepodéiarknuté a nepreéiarknuté &islo, a pre-
tiarkneme vietky jeho daliie nasobky (aZ po hranicu ng;
na viacniasobnom preéiarknuti nezaleif). Takto postupne
podéiarkujeme prave vietky prvodisla v poradi podla
velkosti. Tento postup ukonéime, akonahle podéiarkne-

me prvé Cislo vadsie neZ Vﬂ;. Potom prvodisla az po n,
sd prave vetky neprediarknuté &isla.

Oznadme =n(r) polet prvoclisel neprevysSujucich =.
Plati

(3.1) lim (n(n) : 'h?’ﬁ] =1

n—-+a®

Je to hlboky ¢iselnoteoreticky vysledok, ale nemoZno
7 neho urobif Ziaden odhad hodnoty n(n) pre konkrétne
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n. MoZno ho v8ak urobit na zdklade nasledujiceho tvrde-
nia ([7], str. 406):

Veta 3.2. Pre katdén = 55 plati

n

(3.2) Inn—4

Zo vzorca (3.1) (ale aj z (3.2)) vyplyva, Ze rad prevrate-
nych hodnét prvodisel diverguje, a Ze existuji Tubovolne
dlhé koneéné postupnosti zloZenych &isel. (Ale obe tvrde-
nia sa daji dokazat omnoho elementarnejsie.) Nasledu-
jica veta hovori o tom, Ze vzdialenosti medzi za sebou
ididcimi prvodislami nemézu byt prilid velké (v porovna-
nf 8 tymito prvodislami).

Veta 3.3 a) (Bertrandov postulat.) Pre kafdé n = 2
existuje prvolislo p medzina 2n (1. j.n < p < 2n).

b) Pre kaidé m = 48 existuje prvolislo p medzt n
a ‘§ n.

c) Pre kazdé n =T leZi medzi islami n o 2n aspoi
jedno prvoéislo katdého z tvarov 3k + 1, 3k + 2, 4k + 1,
4k + 3.

d) Ezxistuje také n,, Ze pre kaZdé n = n, existuje aspon
jedno prvoéislo medzi n®a (n + 1)3.

(Pre tvrdenie b), ¢) pozri [6], str. 14.)

Este uvedieme tri vysledky numerického charakteru;
na ich formulaciu oznaé{me p, n-té prvoéislo (t. j. p, = 2,

p, = 3 atd.); toto oznadenie nebudeme pouzivat v dal’
8ich odsekoch.

Veta 3.4. a) Najmenéie prvotislo, pre ktoré plati p,,, —
— p, > 100 je p, = 370261; pre tolo prvotislo plati
Pas1 — Pn = 112,

21



b) Pre p, < 107 platl p,.1 — ps < 154, a najmendie
prvoislo, pre ktoré tu nastdva rovnost, je p, — 4662353.
c) Pre p, > 2020000 plati p,.1 — P, = P./16697.

Prvé dva vysledky st uvedené v [7], str. 318, tretf je
zo [14]. -

4. ROZKLAD
NA PRVOUINITELE

Veta 4.1. KaZdé éislo a € P sa dd vyjadrit v tvare

(4.1) G = pf'.p;’. cee s p:»,

kde p,, . .., p, 8% po dvoch rézne prvoéislaae,, ...,e, € P.
(Pre a =1 je n = 0, t. j. pravd strana (4.1) je prizdny
8idin.) Toto vyjadrenie je jednoznaéné a na poradie &ini-
telov.

Vyjadrenie (4.1) bude tplne jednoznaéné, ak budeme
tiadat p, < p; < ... < p,. Ak uvaZujeme rozklady
viacerych &isel sitasne, byva vhodné, aby postupnost
P1> - - -» Pa bola pre vietky tieto &éisla rovnaka. To moZe-
me dosiahnuf, ak pripustime aj nulové exponenty
€1, - - -, €,V (4.1). Niekedy pouZivame (4.1) aj s nulovymi
exponentmi vtedy, ked vieme sfce odhadnGf zhora
prvodisla, ktoré sa vyskytnd v rozklade nejakého &fsla,
nevieme viak, & tam budid vietky aZ po tito hranicu.

Veta 4.2. Nech a, b e P, p,, ..., p, 8t po dvoch rizne
prvotisla a nech plati (4.1) a

(4.2) b= ’p’l‘.})'z'. . .p:-,
prifome,, ..., e 1y, «. ., [s € N. Potom:
(i) a|b prdve vtedy, ked e; < f, pre véetkyi =1, ..., n;

99
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(i) a je k-tou mocninou prirodzeného &isla prdve vtedy,
ked k|e,, pre vdetkyi =1, ..., n;

(iii) D(a, b) = ppintanfn, ppintete) - point.ly)

(iV) m(a, b) — pi-nx (e,.f.)'p;mx (eg. fg) e p:-'(’n"-);

(V) @.b = ppthpgth . ... gt

Oznaéme teraz pre a € P ¢(a) podet &fsel z mnoZiny
{0, 1, ..., a — 1} nestideliteInych s a, 7(a) podet klad-
nych delitelov &isla a a S(a) sildet kladnych delitelov
¢isla a. Funkcia ¢ sa nazyva Eulerova funkeia.

Veta 4.3. Nech &islo a € P md rozklad (4.1), prifom
e, ...,e,€P.
Potom plati

¢la) =a-[l—%]-[1—% e .[1—%];

7(a) = (ey + 1).(eg + 1). ... .(ea + 1);
11 pp+1—1 P:-“_]
—1  pp—1 T p—1

Lahko zistime, %e predpoklad e,, ..., e, € P bol po-
trebny iba pre Eulerovu funkciu ¢.V daliich dvoch vzor-
coch zodpovedaji nulové exponenty &initefom 1, ktoré
neovplyviiuji vysledok.

VA
S@) =2
(a) ’

Veta 4.4. Pre ka2dé dve nesidelitelné &isla a, be P
plati

¢(a.db) = p(a).@(d), t(a.db) = t(a).z(b),
S(a.b) = S(a).S(b).

Vlastnost funkcif ¢, 7, S vyjadreni vo vete 4.4 nazy-
vame multiplikativnost.
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5. KONGRUENCIE
A ZVYSKOVE TRIEDY

Pre a,be Z, m € P hovorime, Ze a je kongruentné
8 b podla modulu m (alebo ,,modulo m*‘), a piSeme

(5.1) a = b(mod m),
ak m|(b — a). Vzfah (5.1) je ekviva.lentn)"_ s rovnostou
a MOD m = b MOD m.

Veta 5.1. Pre pevne zvolené m € P je kongruentnost mo-
dulo m reldciou ekvivalencie, t. j. pre kaidé, a, b, c€ Z
plati

(i) @ = a(mod m);
(ii) aka = b(mod m), tak b = a(mod m);
(iii) ak @ = b(mod m), b = c(mod m). tak a = c(mod m).

Ked%e kongruentnost modulo m (formélne je to mno-
Zina {(a,b) € Z x Z; a = b(mod m)}) je relaciou ekvi-
valencie na Z, zodpoveda jej isty rozklad mnoZiny Z.
Prvky tohto rozkladu nazyvame zvySkové triedy modu-
lo m. Zvy&kovi triedu modulo m méZeme uréif pomocou
ktoréhohokolvek jej prvku, spravidla ju v8ak urdujeme
pomocou toho jej prvku a, pre ktory plati 0 < a < m.
Pri dvahach o kongruencidch modulo m vaésinou zileZf
iba na zvyskovych triedach, a nie na ich konkrétnych
reprezentantoch.

Veta 5.2, Aka,b,c,d € Z,m € Pa plati
a = b(mod m), = d(mod m),
tak platt aj
a+c¢c=b+ dmodm), a —¢c =b— d(mod m),
a.c =b.d(mod m).
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Specmlne pre ¢ = d takto zistime, Ze kongruenciu
mo#no nasobif &slom. O mo%nosti dehﬁ kongruenciu
a o druhom moZnom spésobe nésobenia, resp. delenia
kongruencif hovorf nasledujica veta.

Veta 5. 3. Necha,b,c € Z. m € P. Potom

a) Ak a.c =b.c(mod m) a &isla c, m si nesidelstelné, tak
plati ¢ = b(mod m).
b) Ak ¢ # 0, tak vztahy a = b(mod m) a

a.c =b.c(mod m.|c|)
81 ekvivalentné.

Kongruencie s neznamymi rieS§ime podobne ako rov-
nice (tu nie je zauZivany Ziadny par terminov zodpoveda-
juci paru rovnost — rovnica): snaZime sa ich upravit na
taky tvar, %e nalavo je neznama, a na pravej strane ui
zndma hodnota. Pritom pouZfvame najmé vdpravy, uve-
dené v predchddzajicich vetdch. (Samozrejme, tento
postup nevedie vidy k cielu a existuji aj iné sposoby,
obdobne ako pri rovniciach.)

Niekedy moéZeme kongruenciu modulo m vyrieSit
preskimanim vsetkych m zvyskovych tried modulo m
pomocou ich reprezentantov. RieSenim kongruencii sa
nebudeme systematicky zaoberat. Uvedieme len vety
o systémoch kongruencii s jednou nezndmou, v ktorych
jednotlivé kongruencie si uZ ,,vo vyrieSenom tvare‘.

Veta 5.4. Nech m,, m, € P, a,, a, € Z. Potom sustava
dvoch kongruencii

(5.2) z = a)(mod m,), x = a,(mod m,)
md rieSenie prdve vtedy, ked
(5.3) a, = ay(mod D(m,, m,)).
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Ak je podmienka (5.3) splnend, tak existuje prdve jedno
hefo,1, ..., nsn(my, m,) — 1} také, Ze sustava (5.2) je
ekvivalentnd s kongruenciou

(5.4) z = b(mod nsn(m,, m,)).

Cislo b do vzfahu (5.4) mdZeme uréit napriklad tak,
%e Euklidovym algoritmom néjdeme d = D(m,, m,)
a celé &isla u, v také, Ze d = um, + vm, a polozime

m, My

(5.8) b= [azu. d + ayv. d ]MOD nan(m,, m,).

Veta 5.5. Sustava kongruencit
(5.6) z=a(modm), 1=1,...,n
md riedenie prdve vtedy, ked
(6.7) a; = ay(mod D(m;, m;)) pre vdetkyi,j,1 <1 <
<j =n.

Ak je podmienka (5.7) splnend, tak existuje celé &lslo b
také, Ze sustava (5.6) je ekvivalentnd s kongruenciou

(5.8) x = b(mod nsn(m,, ..., m,)).

Specidlne, stistava (5.6) je riediteInd vidy vtedy, ked
sa ¢&isla my, ..., m, po dvoch nesideliteIné. Vzorec (5.5)
by bolo mozné zovseobecnif aj na ststavu (5.6), vyhod-
nejsie je viak riedit ju tak, Ze postupne znizujeme podet
kongruencif v nej podla vety 5.4 a vzorca (5.5).

Este sa zmienime o jednej velmi jednoduchej dio-
fantickej rovnici. (Pridavné meno ,,diofanticky‘‘ pri
rovnici alebo systéme rovnic znamen4d, Ze sa zaoberdme
len celoéiselnymi, pripadne len prirodzenymi riefenia-
mi.)
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Veta 5.6. Rovnica
(5.9) ar + by =c,

kde a, b, c st celé &sla, md celobtselné riefenie prdve vtedy,
ked D(a, b) |c. Dalej, ak (a, b) # (0, 0) a (z,, y,) je jedno
celodiselné riedenie rovnice (5.9), tak vdetky jej celobiselné
riefenta motno dostal podla vzorcov

a

b p
Da, b Y=YV " D@
teZ. :

Podla tejto vety moZeme zisfovat tieZ rieSiteInost
kaZdej kongruencie tvaru ax = b(mod m) tym, Ze miesto
nej vysetrujeme diofanticki rovnicu ax + my = b.
Téato kongruencia je riefitelnd prive vtedy, ked je rie-
SiteInd uvedend rovnica, t. j. ked D(a, m)|b.

(5.10) z = x4, +

6. UMOCNOVANIE
ZVYSKOVYCH TRIED

Ak je a = b(mod m), tak pre ka?dé n € N je tiez
a* = b*(mod m). Teda takto moZno kongruencie umoc-
fovat, obdobne ako ich moZno séftavat a ndsobit. Aviak
zo vztahov

a = b(mod m), r = 8(mod m)

nevyplyva (a to ani pre r, s € P) vzfah ar = b*(mod m).
Teda tymto spdsobom kongruencie umociiovaf nemoz-
no. Uvedieme niekolko vysledkov o tom, &m moZno
podmienku r = s(mod m) vhodne nahradit.

Veta 6.1. (Mali Fermatova veta.) Ak p je prvoéislo,
tak pre katdé a € Z plati
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(6.1) a* = a(mod p).

Pokial si a, p nesidelitelné (t. j. pta), moinozo (6.1)
dostat

(6.2) @' = 1 (mod p);

zrejme aj (6.1) moZno dostat zo (6.2).

Zovseobecnenie vzorca (6.2) na pripad zloZeného mo-
dulu déva nasledujiica veta; ¢ v nej znamend Eulerovu
funkciu: pre » € P je ¢(n) podet éfsel z mnotiny {0, 1,

o, n—1} nesudelltel'nych 8 n. (Vzorec na vypoéet
@\n) je vo vete 4.3.)

Veta 6.2. (Eulerova veta.) Ak ae N, m € P a &isla a,
m su nesudelitelné, tak

(6.3) a*" = 1 (mod m).

Vzorec (6.3) je zrejme zovseobecnenim vzorca (6.2);
néjst zovieobecnenie vzorca (6.1) by bolo o nie¢o kompli-
kovanejsie.

Pokial s a, m nesudelitelné, existuje inverzny prvok
k a podla modulu m (t. j. taky prvok b, Ze plati a.b =
= 1(mod m)). Vtedy moZno zaviesf mocniny a modulo
m 8 Iubovolnym celodfselnym exponentom; Specidlne,
a! bude inverzny prvok k a. Nesmieme viak zabudnit,
ie takéto mocniny si vidy robené pre pevne zvoleny
modul m.

Rddom prvku a podla modulu m nazveme najmensie
r € P také, Ze @' = 1(mod m). (Tento rid je definovany
vtedy a len vtedy, ked sii @, m nesidelitelné.) Ak je r rdd
prvku a podfa modulu m, a n € N, tak plati

a* = 1{mod m) prive vtedy, ked r|n
Specidlne odtial dostivame r|g(m).
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Definicia 6.3. Hovorime, %e é&islo @, 0 <a <m je
primitivny koresi podla modulu m, ak je rdd prvku a
podla modulu m rovny g(m).

Veta 6.4. Nech m € P, m > 1. Potom primitivny koref
podla moduly m existuje prdve vtedy, ked m = 2, m = 4,
m = p alebo m = 2p¢, kde e € P a p je nepdrne prvodislo.

Zvolme teraz pevne nejaké m vyhovujice podmienke
z vety 6.4 a nejaky jeho primitivny korefi g. Najmensie
1 € N také, Ze
a = gi(mod m)

nazveme index é{sla a a oznadime ho ind (a). (Striktne
vzaté, mali by sme v oznaceni ind, ako d) v termine
»index &fsla‘‘ uvddzat aj prisluiné m a g; nerobime to,
pretoZe sme ich pevne zvolili.) Potom ind (a) je defino-
vané prive vtedy, ked su éisla a, m nesidelitelné. Dalsie
vlastnosti uvddza nasledujica veta.

Veta 6.5. Nech m spliia podmienku z vety 6.4 a g je
jeko (zvoleny) primitivny koreir. Potom pre kaZdé a, b
nesidelitelné s m plati:

(6.4) 0 < ind (@) < p(m)

(6.5) a = b(mod m) prdve vtedy, ked ind (a) = ind (b)
(6.6) ind (2.b) = ind {a) + ind (b) (mod @(m))
(6.7) ind (@*) = »n.ind (a) (mod g(m)).

Tieto vzorce ukazuji, Ze funkecia ind mé podobné
vlastnosti ako logaritmus. Ak midme k dispozicii jej
hodnoty (vo vhodnych tabulkich), tak ju méZeme aj
podobne pouZif. Pre prvodiselné m < 100 si takéto
tabulky uvedené v [10]. Na ukédZzku pomocou tychto
tabuliek vyriesime kubicki kongruenciu

z? = 13 (mod 61).

29



Zvolime m = 61 (a g = 2, pretofe tomu zodpovedaji
tabulky). Postupne dostdvame

ind (%) = ind (23),
3ind (z) = 57 (mod 60),
ind (z) = 19 (mod 20).
Teda ind (z) € {19, 39, 59}, omu zodpovedd
z = 54, 37, 31 (mod 61).

Posledny zdpis treba rozumief tak, Ze mu vyhovuju
vietky x, ktoré si kongruentné modulo 61 s niektorym
éfslom na pravej strane.

Este uvdZme kongruenciu

x% = 20 (mod 43).
Zvolime m = 43 (ag = 3). Postupne dostdvame
ind (2%) = ind (20),
3ind (z) = 37 (mod 42).
Pretoze viak kongruencia
3y = 37 (mod 42)

nemd riedenie, nemé rieSenie ani pévodnd kubickd kon-

gruencia.
Hovorime, zZe a je kvadraticky zvyéolc podla modulu m,

ak kongruencia
z? = a(mod m)

m4 riefenie. V opa¢nom pripade hovorime, Ze a je kvadra-
ticky nezvydok modulo m. Pokial existuje ind (a) (pre mo-
dul m), a je kvadraticky zvysok podla modulu m prive
vtedy, ked ind (a) je parne &islo.
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Veota 6.6. Nech m = 4, m = p° alebo m = 2p¢, kde
d € P a p je nepdrne prvobislo a nech D(a, m) = 1. Potom
a je kvadraticky zvySok podla modulu m prdve vtedy, ked

a®™2 = 1(mod m).

V porovnani s podmienkou z vety 6.4 sme vynechali
pripad m = 2, kedy je ¢(m) = 1, teda ?—%1)— nie je celé
&slo. V os‘ta,tnych pripadoch je ¢(m) zrejme pérne.

Hovorime, Ze a je kubicky zvydok podla modulu m, ak
kongruencia

z* = a(mod m)

m4 rieSenie. V opa¢nom pripade hovorime, Ze a je kubicky
nezvydok podla modulu m. Ak existuje ind (a) pre modul
m a 3|p(m), tak a je kubicky zvySok podla modulu m
préve vtedy, ked 3|ind (a). Ak m spliia podmienku z vety
6.4 a 3t @(m), tak kazdé celé &islo a nesiideliteIné s m je
kubicky zvysok modulo m. .

Veta 6.7 Nech m spliia podmienku z vety 6.4, 3|p(m)
a ¢islo a je nesidelitelné s m. Potom a je kubicky zvydok
podla modulu m prdve vtedy, ked

a*'"miB3 = I(mod m).

Preskimajme teraz, ¢ je moiné zniZif exponent
@(m) vo vzorci (6.3) v Eulerovej vete. Pokial existuje
primitfvny korefi modulo m, tak exponent ¢(m) nemoZno
zniZif. V ostatnych pripadoch ho vsak zniZif mozno.
Oznadme pre ka?dé m € P symbolom A(m) najmensi
spolo¢ny nésobok riadov podla modulu m vietkych é&isel
nesidelitelnych s m (staéi ich braf len spomedzi ¢&isel
0, 1, ..., m—1). Platf A(m)|p(m), a A(m) je najmensi
exponent, ktorym mozno ¢(m) v Eulerovej vete nahra-
dit. Cislo A(m) nazyvame univerzdlny exponent modulo m.
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Veta 6.8. (i) Ak m je mocnina nepdrneho prvobisla
lebom = 2 alebom = 4, tak A(m) = ¢(m);

(ii) Ak m je mocnina dvoch, m > 4,tak

Am) = 5 p(m) (= m);

(iit) Ak st m,, m, nesidelitelné éisla, tak
A(m,.my) = nsn(A(m,), A(m,)).

Teda ak pre ¢éislo a plati (4.1), tak
Ma) = nan(A(p}), ADy), - - ., Apin)).
Napriklad prea = 1000 plati
A(1000) = nsn(A(8), A(125)) = nan(2,100) = 100.

Vo vetdach 2.11, 2.12 o pravidlich delitelnosti sa vysky-
tovalo &islo j, nebolo viak jasné, ako ho najst (a & vobec
existuje). Vidy moZno polozit j = A(d), resp. j = Ad,),
ale nedostaneme tak vo vieobecnosti najmensie vhodnéj.
Avsak najmensie vhodné j je vidy delitelom é&fsla A(d).

7. SOUTY STVORCOV

Niektoré, no nie vietky, prirodzené &isla sa daji vy-
jadrit v tvare stiétu dvoch Stvorcov celych &isel (dalej
len ,,8tvorcov*’).

Napriklad
2 =12+4+12, 5=12+22, 13 =2+ 32,

av8ak éisla 3, 6, 7 uz obdobne vyjadrit nemoZno. O moz-
nosti tohoto vyjadrenia hovorf nasledujica veta.
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Veta 7.1. a) Prvoislo p sa dd vyjedrit v tvare sultu
dvoch $tvorcov prdve vtedy, ked p == 3(mod 4). Jeho vy-
jadrenie v tomto tvare je jednoznaéné at na poradie stitan-
cov.

b) Cislo a € P sa dd vyjadrit v tvare sidtu d1och Stvor-
cov prdave vtedy, ked v jeho rozklade na prvoéinitele (4.1)
‘nevystupuje Ziadne prvolislo tvaru 4k + 3 s nepdrnym
exponentom.

c) Cislo a € P sa dd vyjadrit v tvare sudtu dvoch neside-
telnajch Stvorcov prdve vtedy, ked nie je delitelné Ziadnym
prvotislom tvaru 4k + 3.

Ak chceme ndjst vyjadrenie nejakého &isla a € P
v tvare 8i&tu dvoch Stvorcov, stadi ndjst takéto vyjadre-
nie pre jeho prvodinitele s nepirnymi exponentmi v roz-
klade (4.1), a dalej pouZit vzorec

(7.1) (a* + b?).(c* + d?) = (ac + bd)* + (ad — bc)?.

Vyjadrovanie v tvare siétu dvoch Stvorcov siuvisi tieZ
s rozkladom na gaussovské prvodisla; pozri 8. odsek
tejto kapitoly.

Pre vyjadrovanie celych &fsel v tvare siétu styroch
Stvorcov plati nasledujica

Veta 7.2. (Lagrangeova veta.) KaZdé celé nezdporné
&tslo mokno vyjadrit v tvare subtu Styroch tvorcov.

Jednozna¢nost uZ neplati ani pre prvoéisla tvaru
4k + 3; napriklad

19 =42 + 12 4+ 12 4 12 = 32 4 33 + 11 + 02,

Ak hladdme (asponi jedno) vyjadrenie ¢isla @ € P v tvare
siétu Styroch &tvorcov, staéi ndjst takéto vyjadrenia pre
jeho prvodiselné delitele, a dalej pouzivat vzorec
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(7.2) (a + b% + c? + d?¥).(A2 + B® + C? + D?) =
= (@A —bB —cC —dD)* + (aB + b4 +
+ ¢D —dC) + (@C —bD + cA + dB)® +
+ (@D + bC — cB + dA).

Nie kazdé prirodzené ¢&fslo moZno pisat ako stdet troch
Stvorcov; takto nemoino napisaf napriklad é&fslo 15.
Pritom viak 15 = 3.5, a &isla 3, 5 moZno pisat ako siéty
troch stvorcov. Teda analégia vzorcov (7.1), (7.2) pre
sicty troch stvorcov neexistuje.

8. GAUSSOVSKE CELE CISLA

Komplexné ¢isla tvaru a + bi, kde a, b € Z, nazyvame
gaussovské celé ¢isla. Pri obvyklom znézorneni komplex-
nych ¢isel v rovine zodpovedaji tzv. mreZovym bodom,
t. j. bodom s celodiselnymi stradnicami. MnoZinu vset-
kych gaussovskych celych é&isel budeme ozna&ovat G.

Veta 8.1, Pre kaZdé a, b € G, b #* 0 existujii q, r € G
také, e

a=bg+r a |rl<|b|.

Cisla g, r vo vieobecnosti nie s jednozna&ne uréené.
(V zdvislosti od @, b moZno ¢ zvolit jednym aZ &tyrmi
sp6sobmi; potom je uZ r urdené jednoznaéne.) Pre r € G
nemusf byt |r| celé &slo, ale ||r|] = |r|* (tzv. norma
isla ) uz je celé nezépomé gislo. Vo vete 8.1 zrejme
mozZno nahradit absolhitne hodnoty normami, éo je pri-
niektorych uvahach vyhodné.

Pre a, b € G budeme pisat a|b, ak existuje c € G také,
%e a.c = b. (Pokial je a, b € Z, tak a|b v tomto novom
zmysle je ekvivalentné s a|b v pévodnom zmysle pre
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celé &fsla; preto nevadf, Ze pouzivame rovnaky symbol.)
Reldcia delitelnosti na G md obdobné vlastnosti ako
reldcia delitelnosti na Z. Napriklad veta 2.1 bude platit,
ak v nej viade nahradime pismeno Z pism:nom G.
V (iii) by sme viak mohli doplnit ¢{|a. Ktoréko'vek dve
z &fsel

a,i.a,—a = it.q,—i.a = id.a

sd z hladiska delitelnosti dplne rovnocenné; hovorime
tieZ, ze si asociované. Niekedy si zo Styroch navzdjom
asociovanych ¢isel pevne vyberdme jedno. Urobime to
aj my v nasledujtcej definicii, aby sme potom mohli
Tahsie vyslovift vetu o rozklade na prvodinitele pre
gaussovské celé &fsla.

Deflnicia 8.2. Gaussovské prvodisla si

a) éislo 1 + i;

b) kazdé (obydajné) prvoéislo tvaru p = 4k + 3, kde
ke N;

c) kazdé d&islo a + bi, kde ae€ P, be Z, a® + b? je
(obyéajné) prvodislo a |b| < a.

Teda gaussovskymi prvodislami si napriklad
14+1,3,2+14,2—1i4,7,11,3 4+ 2{,3—2i, ...
ale nie st nimi napriklad
1,1 —i,—3,1+2i5,17, ...

(aj ked niektoré z tychto ¢&isel si asociované s gaussov-
skymi prvoéfslami).

Postupnost vsetkych gaussovskych prvoéisel moino
dostat z postupnosti vietkych (obydajnych) prvoéisel
tak, Ze v nej
a) prvotislo 2 nahradime &fslom 1 + i;
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b) prvocisla tvaru 4k + 3 ponechéame;
c) kazdé prvocislo p tvaru 4k + 1 nahradime dvojicou
Cisel

a + bi,a —bitakou,zea? + b2 =pa 0 <b <a.

Jednotlivé body tohoto predpisu zodpovedaji rovnako
oznadenym bodom definicie 8.2. Cisla a 4 bi, ktoré v bo-
de c zodpovedaju prvoéislu p (tvaru 4k + 1), st tymto p
jednoznaéne uréené a plati p = (a + bi).(a — bi). Prvo-
¢éislo 2 mozno sice pisat ako (1 + i).(1 — i), ale napriek
tomu sme mu (v bode a) priradili jediné gaussovské
prvoéislo, a to 1 + i. Cislo 1 — i je totiZ uZ s nim asocio-
vané, pretoze 1 —i = i3.(1 + i), a preto sme ho nezara-
dili medzi gaussovské prvodisla. (Volbu medzi 1 + i,
1 — i sme vSak mohli urobit lubovolne.)

Veta 8.3. Ka%dé a € G — {0} sa dd vyjadrit v tvare

(8.1) a=1.q3.99 . ... . gk,
kde e € {0, 1,2, 3}, q,, ..., q; st po dvoch rézne gaussov-
ské prvocisla a e,, ...,e. € P. Rozklad (8.1) je jedno-

znaény af na poradie éinitelov.

Napriklad
1 =i°(tujek = 0),
T—4i =1°.{2 +1).(3 4+ 2i),
65 = (2 + i).(2 —1i).(3 + 2i).(3 — 2i),
8 =i.(1 +i)s.
Rozklad celého ¢fsla a # 0 na sidin gaussovskych
prvodisel (a mocniny i) podla vety 8.3 moZno urobif
tak, Ze najprv a rozloZime na sidin prvodisel v tvare

(4.1) a potom eSte rozloZime prvoéislo 2 a prvodisla tva-
ru 4k + 1, ktoré sa nachddzaji v tomto rozklade.
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9. FAKTORIALY
A KOMBINACNE CISLA

Faktoridly n! &isel n € N mdZeme definovat napriklad
rekurentne vzorcami

(9.1) oO0=1, m+ D) =nl.(n+1)
pre vietky n € N. Kombinaéné éisla [7:] mdZeme potom

pre m,n € N,n < m definovaf vzorcom

(9.2) (%)= S — o

Mozno ich viak dostat i z Pascalovho trojuholnika.
Niekedy sa definuje [7:) pre kaidé m € N, n € Z; vtedy

pre n < Oalebo n > m kladieme (1:] = 0.

Veta 9.1. (Wilsonova). Cislo n> 1 je prvodislo prdve
viedy, ked (n — 1) ! + 1 = 0(mod n).

Veta 9.2. Pre katdé n € P je éislo [2:] delitelné viet-
kymi prvobislami p,n < p < 2n.

Rozklad faktoridlov na prvocinitele mozno tvorit podla
nasledujicej vety.

Veta 9. 3. Prekatdé n € N plati
lm uj

(9.3) n! =11 prkdee, =

pEn

n

P
pre véetky p (p prebicha prvotisla nepreaahu_;uce n).
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Prakticky nemusime poéitat |log,z|, ale stadf tvorit
prisluné &leny radu pre e,, pokial si nenulové. Napri-
klad pre n = 10 bude

10 10 10

«=|z Tl+[?]=5+2“=8’
10 10

@ = _T_+I7]=3+‘=“'
10 10

g = | — =2. e:l—]:l’

N ’ 7

a preto 10! = 28,34 .52.7.
Ako désledok predchadzajicej vety dostdvame:

Veta 9.4. Pre.katdém,n € N, m < n plati

(9,4) [”] =1 ply,

[Io' nl n—m
ety = (|5 -15 -5
pre véetky p (p prebieha prvotisla nepresahujice n ).

%I —I ;—I —|‘ - ——--I moéZe nadobhidaf len

hodnotu 0 alebo 1, pri¢om hodnotu 1 nadobiida prive
vtedy, ked pri séitani &isel m, n — m v sistave o zdklade
p nastdva prenos z (k — 1)-ého do k-tého rddu. Teda f,
je podet prenosov pri stftani &sel m, n — m v ststave
o zdklade p.

Faktoridly rastd velmi rychle, a ich vypotet nédsobe-
nfim je namdhavy. Priblizne méZeme ich hodnoty poéi-
tat podla Stirlingovho vzorca

Vyraz
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(9.5) n! = V'z?n.[%]'

kde = znamend asymptoticki rovnosf: V limite pre
n — o sa podiel Iavej a pravej strany bliZi k jednej.
Pravda, z tohoto faktu samotného nemozno robif Ziadne
zdvery o presnosti vzorca (9.5). Plati vak, Ze pre n = 10

relativna chyba vysledku nepresiahne % % (teda

napriklad 1 %, pre » = 10, ale len 0,1 %, pre n = 100).
Presnejdie vzorce s napriklad: pre véetky n = 2

(9.6) Vm(%] [1 + —] <nl<

<V (o] (1+ 335)

aprevietkyn = 8

(9.7) V21m( ] [ +l_2n+ 23;1,)<n!<

< Ve (] (1 + 135 + 3ama )

Pokial je vyhodné poutit loga.nt.mus faktoridlu, méZzeme
ho pribliZne poéftat podla vzorca

(9.8) In(n!)=n.(lnn—1) + —;— In (2nn) +
1 1 1 1 1
+ 127 ~ 360n° T 1260n°  1680n7 T 1188n°

pre kaidé n = 2. MoZno v fiom vziaf Tubovolny podet
denov (ale asponi 2). Absolitna chyba nepresiahne
prvy vynechany é&len, a bude maf rovnaké znamienko.
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10. REKURENTNE POSTUPNOSTI

Vysledky tohto odseku platia vieobecne pre postup-
nosti komplexnych &sel. Ciselnd postupnost (a,, a,, a,,
...) nazveme rekurentnou postupnostou druhého stupiia,
ak existuji (komplexné) &isla p, ¢ také, Ze pre vietky
prirodzené &fsla n platf

(10.1) Quyr = P.Gpy1 + 4.0y

Na uréenie tejto postupnosti potrebujeme okrem vzorca
(10.1) poznat jej prvé dva éleny a,, @,. Ak md kvadra-
tickd rovnica ;

(10.2) 2=px+g¢q

dva rdzne korene z,, ,, tak pre kazdd postupnost vyho-
vujicu vzorcu (10.1) existujua &fsla «, v také, Ze pre kazdé
prirodzené &fslo n platf

(10.3) Ay = u.z} + v.23.
Hovorime, Ze (ay,a,,a;, ...) je linedrna kombindcia
geometrickych postupnost{

(I,II,Z%,...), (l,a:,,z%,...)

8 koeficientmi u, v. K danym a,, a, vypoditame prislusné
u, v zo vzfahu (10.3) pre » = 0, 1. Ak m4 rovnica (20.2)
dvojnésobny korei z,, tak namiesto vzorce (10.3) platf
vzorec

(10.4) 'a. = u.z} + v.nz},

t. ). (ay, @,, G5, . ..) je linedrna kombindcia postupnostf.
(L, 2,73, ...), (0, z,, 223, ...).
Koeficienty %, v sa daji vypoditat obdobne. Ak vySetru-
jeme redlnu postupnost (a,, a,, a,, ...) a rovnica (10.2)
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mé imagindrne korene z,, = r.(cos a + isin a), tak
namiesto vzorca (10.3) mozno pouzif vzorec

(10.5) a, = %,.7 cos na + v,.7" 8in na.
Teda (a,, a,, a,, ...) je linedrna kombindcia postup-
nostf

(1, r cos a, 3 cos 2a, ...), 0, r 8in a, 72 8in 2a, ...).

Koeficienty u,, v; budi redlne &isla zatial ¢o », v vo vzor-
ci (10.3) mobli vyjst imagindrne.

Postupnost (a,, a,, a,, . ..) nazveme rekurentnou postup-
nostou stupfia k, ak existuju éisla p,, p,, ..., pr_1 také,
Ze pre kazdé prirodzené » plati

(10.6)  @nitv= Pr1@nik-1 + Pro2@nik—2 + «-. + Doa
Na jej jednozna&né urcenie potrebujeme poznaf este

jej prvych k élenov ay, a,, . . ., a;_;. Ak ma rovnica
(10.7) 2 =p1 @' + P24+ ... + Py
k po dvoch réznych korenov z,, z,, ..., z;, tak kaid4

postupnost spliiajica (10.6) je linedrnou kombindciou
geometrickych postupnost{

(La,a2 ...), =12 ..., k.

Ty e
Aj v pripade, Ze rovnica (10.7) mé viacnasobné korene,
je ka¥dé postupnost splfiajica (10.6) linedrnou kombi-
néciou vhodnych % postupnosti. Dostaneme ich tak, Ze
k s-ndsobnému korenu ¢ rovnice (10.7) priradime vidy s
postupnosti

(07 ¢°, 1igl, 2ig2, 3ig®. ...),7=0,1,...,8—1.
(VSimnime si, Ze pre j = 0 priradujeme geometricki
postupnost s kvocientom g; teda pripad jednoduchych
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korefiov je tu tieZ zahrnuty.) Ak su (niektoré) korene
rovnice (10.7) imagindme, a chceme uvaZovat len redlne
postupnosti, pouZijeme postup obdobny prechodu od
(10.3) k (10.5). Podrobnosti nechdvame na rozmyslenie
titatelovi, rovnako ako sme mu ponechali zovSeobecne-
nie pojmu linedrnej kombindcie z dvoch na k postup-
nosti.

11. NIEKTORE NEROVNOSTI
Z mnohych nerovnosti v (4] pripomefime aspon ne-

rovnosf medzi aritmetickym a geometrickym prieme-
rom.

Veta 11.1. Pre vdetky kladné redine Cisla ay, a,, ...,
ey Gp(n # 0) plati .

1 & +a+ ... +an

Val.az. e 8y S -

Nerovnosti pre kombinaéné ¢&isla mozno odvodzovat
okrem iného zo Stirlingovho vzorca pre faktoridly. Casto
viak moZno postupovaf ovela elementérnejsie, napriklad

k

pre 0 < k < n sndd najlahsie dostaneme pomocou roz-
voja vyrazu (1 + 1) podla binomickej vety.

Nerovnosti v nasledujiicej vete spresiuji niektoré
tzv. priblizné vzorce, ktoré sa ¢asto ndjdu v priru¢kdch
(,,spravodnikoch‘‘), pripadne i v tabulkéch, ale nie vidy
8 uvedenim oboru platnosti (ktory zavisf aj od poZado-
vane]j presnosti). Ak je éitatel obozndmeny so zdkladmi
diferencidlneho podtu, zaiste zbadd, Ze vadéiina koe-
ficientov pri mocnindch z v uvedenych nerovnostiach
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vzniké z Taylorovych radov pre odhadované funkcie.
Ostatné koeficienty (napriklad ——% v odhade pre

sin z) 8si zvolené v tvare zlomkov s malymi menova-
telmi, aj za cenu istého oslabenia odhadov. Odhady s
tym presnejSie, t. j. dolny a horny odhad st k sebe
tym bliZSie, ¢m mensie je . (Okrem toho by sme ich
mobli spresnif, keby sme uvaZzovali mensf interval pre z.)

Veta 11.2, Pre kaié redlne &islox,0 < x < 1, plati

1 1
_ —xt _ - _ 2
1 x+2x<1 a:<l xr + 73,
1

1 1 —_ 1
PP ey — a2
1+2a: 8:1: <V1+z<l+2z 121,

1 1 —_— 1 1
— e gt — N
1 2:: 2:1: <V1 r <1 2:c 8::,
x l:::’<ln(l+:t:)<:c: 3::’
2 107’
x? r?
—1—2(—1_—:)<ln(1——z)<—x—?,

1
l+x+§z’<e’<l+x+%x’,
1 1
l—x+§z’<e'2<l—z+ix”,
. lxa ) 1 .
8 <sinz <x 7:!:,
1 4
1—-2—a:’<cosx<l——§x’,

1 4
I+§I"<tga:<x+7x’-
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Uvedieme efte obdobné vzorce pre dekadicky logarit-
mus a funkeciu 10#, avBak u% s koeficientmi v dekadickom
zépise a zaokriblenymi vhodnym smerom.

Veta 11.3. Pre kaZdé redlne &islo z, 0 < z < 1, platt
0,43420x — 0,222 < log (1 + ) < 0,4343z

2
— 0,43437 — 0'22'1%::‘ < log (1 —z) < — 0,43429z

1 4+ 2,30258z < 10v < 1 + 2,30259z + 6,7z
1 —2,30259x < 10= < 1 — 2,30258x + 2,7x2.
Veta 11.4. Ak pre redine &isla y, 2z, z, a, b platia nerov-

nosti 0 < ly| < 0,02,0 < |z] <2.105,0<z<1,0<
< a < b,tak

0,43.[y| < [log (1 + )| < 0,44.]y],
0,43429. |z| < |log (1 + z)| < 0,4343. 2],
(1 —x).loga + z.logh < log((l —zx).a + z.b) <

b—aYy
<(l—=z).loga + z.log b + 0,0543.[ P ] .

Posledny vzorec sa d4 pouZit pri interpoldcii hodnét
z logaritmickych tabuliek. Napriklad pri beZnom pouZitf
b —2 < 0,00001, tedn
interpolovani hodnotu uréfme s chybou najviac 5. 1074
+ 0,0543.0,000912 < 5,05.107°.

V nasledujicej vete péjde o odhady si¢inov mnohych
¢initelov blizkych k 1. Ako navod pre ¢&itatela, ktory by
si chcel vetu dokazat, uviddzame: Pri pevne zvolenom
¢isle x (a pevhom n) st uvedené sidiny minimélne, ak

logaritmickych tabuliek [1] je
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n — 1 éinitelov je rovnych jednej a maximélne, ak sii
vietky &initele navzdjom rovné. Dolné odhady uZ vyjdi
trividlne, pre horné treba esdte pouZif binomickd vetu
a dalej odhadovat éleny, ktoré vznikni.

Veta 11.6. Ak si ay, a,, ..., a, neziporné redlne étsla

a pre ich silet x =a, +a, + ... +a,plati 0 <z <
< 1, tak

l1+z=(144a).(1 ta). ... (1+a)<
1 3 o
< +x+"4—x’
l—z=<(1—a).(1—a,). ... . (l—a)<

1
<l—x+§x2.
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4. NEROVNOSTI
S MOCNINAMI

Uloha 4.1. Usporiadajte podla velkosti &sla

A=5"B=8"0=6",D=0"
Riedenie I (8 kalkulatkou alebo tabulkami). Platf
log log A = log (6% log 5) = 6° log 6 + log log 5 =
= 36305,27 a obdobne log log B = 29592,41,log log C =
= 133563,3, log log D = 6260,76.
Rozdiely medzi vypoditanymi ¢islami si dostatoéné na
to, aby sme mobli usidif

loglog D < loglog B < loglog A < loglogC,

atedaD < B<A<C.QO

Pre vypoéet s tabulkami by bolo vyhodné logaritmo-
vat edte raz (t. j. poéitat log loglog 4 atd.), priom by
sme uvézili, Ze |loglog 5| < 1, teda vplyv tohto sé&i-
tanca na vysledny logaritmus je maly; skuto¢ne, podla
vzorca

log (z + y) = log = + log [l + %],
méme
log loglog A = 6log 6 + log log 6 +

log log 5].

+ log [1 + 6% log 6
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Posledny séitanec je (zdporny a) v absolitnej hodnote

mensf neZ

log log 5|
6°.log 6

Odhady pre B, C, D (s ¢fslami 8, 6, 9 namiesto 5) by

vysli podobne.

0,44. < 3.107¢,

Riedenie II (bez pouZitia kalkuladky a tabuliek).
Platf

4 4 4.

9.04 <6 o 8"" < g1 < 8.wooo < 8“10000 _
14 5

— gl - go® - ge?" - g% 4 teda D < B.

8"5 < 25,0“ - 5,,,3-3“ _ 523.2154 < 5,1ooooo —

— RO sgtw00 5,210’ — 5,(03)2 _

(] N
=5%,ateda B < 4.

Najta2sf odhad, ktory sme potrebovali, bol 216 = 32768 <
< 33333. Véetky ostatné sa daji overit spamati. Nako-
niec

5 < 6" <6 — 0" <6 ateda d < C.

Spolutedaméme D < B < 4 < C. O

Pri druhom riedenf sme potrebovali ,,uhddnuf‘ pora-
die ¢fsel podla velkosti. Inak by sme sa mohli napriklad
pokisaf o d6kaz nerovnosti B < D (o by sa ndm, samo-
zrejme, nevydarilo) alebo o dékaz nerovnosti D < C
(o by sa ndm asi podarilo, ale nakoniec by bolo zbytod-
né). Namiesto hddania sme véak mohli (,,tajne“) pouZit
prvé rieSenie; z neho sme tiez mohli usudzovat, aké jem-
né odhady asi budi potrebné.
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Uloha 4.2. Uréite, ktoré z disel
4=7"B=¢"
je vadsie.
Riefenie I (s kalkulatkou). Plati
log log A = 40403562, loglog B = 41077010,96,
apretod < B. [J

Riedenie I1. Platf
98 = 312 = 531441 > 524288 = 21°
(mé6Zeme to zistif priamym vypoétom alebo z tabuliek),
a preto

22%7 2227+1 < G.o(a”u)/m _ 6"(28'2-"_1)'“

= 6

90-266.0%10 6,1530.0“/10 < 6,51-0‘ _ 6,99

7 g
< 6

teda 4 < B. O

Rozdiel medzi log log A4, log log B sice staéil na prvé
riedenie, je vSak prili§ maly na to, aby sme zistili 4 < B
vyuZitim odhadu 32 > 23, (Keby sme v B nahradili
niZdiu deviatku osmidkou, dostali by sme uz é&islo men-
Sienez A.)

H

Uloha 4.3. Zistite, ktoré z &sel

2126743

4 =2 , B=3

2370.‘\35
je vadsie.

Riefenie. Oznacme C = 2125783 ) — 37335 Zrejme
A # B, C # D. UkdZeme, Ze A < B prive vtedy, ked
C < D.Skutoéne, ak C < D, tak zrejme

A =22 <222 320 = B
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Obritene, ak C > D,takC = D + 1, a potom
B =320 < 420 — 210+ <920 _ 4

teda A > B. Preto stalf len zistif, ktoré z &is:l C, D je
vidsie. Z tabulky 37-miestnych logaritmov zokrihle-
nim dostaneme

log 2 = 0,301029995664 + 5.10°13,
log 3 = 0,477121254720 4 5.10713.
Preto platf
log C = 125743 log 2 = 37852,414744778 + 7.107¢,
log D = 79335 log 3 = 37852,414743211 + 5.107*

a odtial uz vidno log C > log D, teda C > D, a teda aj
4 >B.0

Keby sme poéitali na kalkulatke (konkrétne
SHARP PC 1211, ale bez pouZitia programovania),
dostali by sme

log C = 125743 log 2 = 37852,41474
log D = 79335log 3 = 37852,41474,

teda éfsla C, D by sme nevedeli porovnat. VyuZitim
,,sSkrytych miest* by sme dostali

125743 log 2 — 79335 log 3 = 16.1077

a teda C > D, ,skryté miesta’ viak vo vSeobecnosti
nemusia byt spolahlivé, a teda ani uréenie znamienka
&isla log C — log D tymto spdsobom nie je spolahlivé.

Viimnime si tieZ, %¥e z ndsho rieSenia dostivame
logC —log D = 157.107"% 4 13.10°®, teda relativna
chyba, s ktorou je uréené ¢islo log C — log D, je znatné
(presahuje 8 %,). Zobrat hodnoty log 2, log 3 napriklad
s presnostou na 10 desatinnych miest by uZ zrejme ne-
stadilo.
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Uloha 4.4. N4jdite najvadsie celé &slo z, pre ktoré
plati

= < 100190,

Riedenie. Platiz = 4, pretoie
455 — 4256 - 4300 _ §4100  ](Q100
Na druhej strane, z < 5, pretoze
5° > 538 — (598 —= 125125 > 10010,
Preto hladané éislo jexz = 4. J

Uloha 4.6. Nijdite najvadéSie celé é&isla z, y, z, pre
ktoré plati

2t < 10010 44! < 100190, 44° < 10010,
Riedenie. Podla predchddzajicej dlohy vieme z = 4,
y = 4,z = 4. Z odhadov
4% > 48 > 4e0 — (44180 — 256150 > 100100

potom vidime y = 4, z = 4. Ostdva uréit z, Platf x = 6,
pretoZe

6 — gLee — (64)% < 1300% = 101%3,]1,3% <
< 10193 ] 7% < 10198 318 - 10192 10% = 10019,
Na druhej strane, z < 7, pretoZe
P TR TR (74)% > 20008 = 10198 28¢ > 1012,
L(219)¢ > 10198, (10%)¢ = 10%1° > 1001,
Pretoz = 6. (J
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Cislo  sme mohli najst aj tak, %e by sme najprv vyrie-
§ili rovnicu w* = 100, odkial lahko dostaneme

% = 0,78125. Pretoze u ¢ N je vysled-

kom z = |u|. Z tabuliek zistime
log 6 = 0,77815, log 7 = 0,84510

teda = 6. PretoZe log « je podstatne bliZsie k log 6 nez
k log 7, boli v pévodnom riesenf pre dékaz x = 6 po-
trebné presnejsie odhady nez pre dokaz x < 7.

logu =

Uloha 4.6. Nijdite najvacsie celé &islo x, pre ktoré
platf
2™ < 10001000
Riedenie. Plati x = 5, pretoze
5 — 5 < 5P st 0010t
Na druhej strane, x < 6, pretoZe
6‘“ - 6“30'“2 - 6,_,30000 = ( 6“)“30)1000 > 1 00010001000.

Teda hladané &islo jex = 5. [

Uloha 4.7. Nijdite najvadsie celé &islo z, pre ktoré
plati

1]
2 < 100019001%°

Riedenie. Podla predchddzajiicej dlohy vieme z = 5.
Na druhej strane

5
60 — oI - ga(g01000 _ ( 60)(00)1000 ~ 10001001

"Teda hladané é&islo jez = 5. [
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Uloha 4.8. Nijdite najvadsie celé &islo z, pre ktoré
plati

2% < 1000100010

Riedenie. Plati
1010 — 0PI — 10100l 001000100
Preto x < 10. Pre vypocet s * = 9 najprv odhadneme
325 — (35)4.35 < 2504.256 = 250%.4% = 1000¢.
S pomocou tohto odhadu dostdvame
9.55 _ 903125 — 9(325)250 < 9(10004)250 — glmlm <
< 10001000"

Preto hladané éislojexz = 9. O
Citatela asi napadlo, Ze teraz by mala nasledovat dloha
ndjst najvaésie celé éislo x také, Ze

5
° < 1000100

Moze sa o to pokusif, ale asi nebude maf dost trpezli-
vosti na dokonéenie vypoétu. Dobre urobi, ak najskér
skiisi uréit poéet cifier vysledku.

Uloha 4.9. Nijdite najvadsie celé ¢islo x také, Ze
= <
Riedenie. Plati
80,,080 < 44,390_1090 - 44.390_100020.100 < 422~24o+2oo+7

509 955 n
= 4" < 4" < qv
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teda z = 80 eite danej nerovnosti vyhovuje. Aby sme
ukézali, 2e z = 81 uZ nevyhovuje, dokdime najprv
nerovnost 32 > 21°, Plat{

729)? 729)¢ 729 ¥
12 — 2 — 2’, —— ] =218 — ] =
3 729 51 [512) [512 (513
27)\¢ 729
—9o [ 2] _ 918 18 9 __ 919
2 [ 19] 218 361 > 218 2 — 219,

S vyuZitim tohto vzfahu odhadujme
BIOT <, gm® _ ot _ G 19

P g 4‘4‘.
Teda hladané éislo je z = 80.

Nebolo logicky nutné, aby sme v riesenf ukdzali, ako
sme vysledok z = 80 nasli; staéi, Ze sme ho ,,uhadli®,
a potom overili. Teraz viak ukdZeme, ako sme mohli x
ndjst. Najprv upravme

4‘4‘ — 4a%80 _ 4uswa
. ) 256
odtial vidime z < Imax(4, 64, ]J = 85.

Z druhej strany mame

2510 23510/7
?

= 256!

5
a odtial vidnoz = mm[256 128, —;2] = 72. Teda uz

vieme 72 < z < 85. Tento interval pre 2 méZeme dalej
zuZovat. Napriklad, ak odhadneme .

' — 256" — 25610u" - 256101 - 256107

4
4 = 4+ — 256
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vidime # = 76. Keby sme boli odhadli
2510 — 2240 9270 _ 80 ](2427 > 880 ]08! > 8080,

dostali by sme nerovnost x = 80. Dalej skiisime &fslo
priblizne zo stredu zvysujiceho intervalu. Plati, napri-
klad

8282 —_— 82.(828)27 > 20.(219)27 — 20+10.27 —_
— 9519 ~, 4260 _ 444’
4

a preto 82%2" > 4%*" Teraz uz vieme, %e rieSenim tlohy
je = 80 alebo x = 81. Stadi teda skisit, éi pre x = 81
dand nerovnost plati alebo nie.

Cim viac sa pribliZujeme hladanej hodnote z, tym
presnejSie odhady potrebujeme. Okrem toho sme videli,

ze zaklad moZno vadsinou odhadovat hrubo, kym expo-
nenty, a to zvlast najvyssie, treba odhadovat jemnejsie.

Uloha 4.10. N4jdite najvadsie celé é&fslo z, pre ktoré

plati
xzao < 4444 )

Riedenie. Na dokaz x < 84 dopredu odhadnime

3.8480 —= 3,480 2]80 > 3 480 44040 > 3, 480 2120,
.5510 > 3.4110_3000%0 = 3,440 260 37520 — 3, 4170,

(_g;z ]20.490 - 4250.3.[——222]20> 47031 46% >

> 4250 3.2 1210 — 4255 3 1 0610 > 4256 3. 1,6 >
> 4285 4 — 44,

4
Potom dostévame 84%4%° > 6484%° — 43450 - 44"



Na dékaz nerovnosti * = 83 najprv odhadnime
832 — 6889 < 213, a preto 83 < 4194 = 4325 Dalej
3,25.83%0 < 3,25.(64.1,297)80 = 4210 3 25,1,29780 <
< 4210 3 25,1 682310 < 4200 3 25 2 83120 < 4240 3 25.
.8,01510 < 4200 3 25 230 ] 00210 — 4255 3 25.1,0021° <
< 4255.3,25.1,03 < 42554 — 44,
Teraz uzlahko zistime

838" < 43-25-8380 < 44“.

Pretox = 83. O

Uloha 4.11. Najdite najvadsie celé Cislo x, pre ktoré
plati

2% < ¢t

Riedenie I (s kalkulackou). Zre]me plati x = | a], kde
a je korefiom rovnice

80 266
a®" = 447,

Teda

a — 43°5083%0 _ 4(419/535)18 . 252,918,

apretox = 252. [

Dost umeld tprava exponentu pri vypoéte a bola po-
trebnd, aby nedoslo k preplneniu (na kalkula¢ke poéi-
tajicej s éislami mensimi nez 10'°® nemoZno priamo vy-
poditat 4200)

Riedenie II (s tabul’kami [l]) Plati = = |a), kde

a = 4% teda loga = log 4. Z tabulky Loga-

8380
ritmy faktoridlov zistime
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log 4 = log 4! — log 3! = 0,60206 + 1078,
log 83 = log 83! — log 82! = 1,9190781 + 1078,
a preto
4256 _
log 555 = 0,601112 £ 4.107.
Dalej plati (s uvdZzenim vietkych chyb)
log log 4 = 0,779642 — 1 + 6.107°,

a preto
log log a = 0,380754 + 1075,

2,4029 < loga < 2,4031,
252,8 < a < 253.
Pretoz = 252. []

Uloha 4.12. Nech postupnosti (a,, a,, @, ...), (be, b,
b,, . ..) si definované rekurentnymi vzorcami

ao = l,a,.+1 = 2“1!, bO = l, bn+1 = 6bn.
Najdite prirodzené ¢&islo », pre ktoré plati

b, < ayp0 < bpia-

Riedenie. DokdaZeme, Ze pre vietky prirodzené n = 2
plati

(l) Gbn < an+3 < bn+l;

z toho uZ bude bezprostredne vyplyvat n = 97.
Pren = 2 mdme

Gb, — 67 < 820000 - 205536 _ 432768 - (32768 6% — by;
pretoze 20533 — 22'° — g plati 6b, < ag < by. Dalej
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dokazujeme matematickou indukciou; nech (1) platf pre
nejakén = 2. Potom

6b,.+1 — 6b"+l < 23bn+3 < 260" < 2aM3 = Gy,
Apyg = 20,”3 < 6¢n+3 < 6b”+l = bﬂ+2l

teda 6b,., < a,,, < b,,2, 6o bolo treba dokdzat. (J
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5. POSLEDNE CISLICE
MOCNIN

Pripominame, e pod poslednymi &islicami nejakého
prirodzeného ¢&isla vidy myslime posledné &fslice jeho
dekadického zapisu, pokial vyslovne neuvedieme iny
zdklad. Ani pri zmene zdkladu viak nemenfme vyznam
éislicOaz 9.

Uloha 5.1. Nijdite poslednii &islicu &isla A = 41234567,

Riedenie I. Indukciou dokdzeme, Ze pre kaidé n € N
konéf 42#*! &fslicou 4. Pre n = 0 to zrejme plati. Ak uZ
vieme, Ze 42**1 kondf ¢&islicou 4,'t. j. Ze plati 422" =
= 4(mod 10), tak Tahko zistime (poditame modulo 10)

4:m*D¥1L — 428*1 16 = 4.6 = 4 (mod 10),

teda aj 420*1)*1 konéf ¢&islicou 4. Tym je do6kaz indukciou
ukonéeny. Podla prive dokazaného tvrdenia, ktoré
pouZijeme pre n = |1234567/2| = 617283, kondf aj 4
Gislicou 4. [

Riedenie 11. DokdZeme, Ze 10|(4 — 4). Pretoie A je
pérne, plati 2{(4 — 4), a treba este dokdzaf 5|(4 — 4).
Potitajme modulo 5

A—4 = (—1)34567 _ 4 — ] 4=
= —5 = 0 (mod 5),
teda skutoéne 5|(4 — 4). Potom 10|(4 — 4), a teda 4
koné{ éfslicou 4. [J
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Této uloha bola takd lahkd, Ze ju &itatel zaiste vedel
vyrie8it spamati. Pravdepodobne pritom postupoval
podla prvého rieSenia, ale indukciu urobil intuitivne:
v&imol si pravidelné striedanie &islic 4, 6 v postupnosti
mocnfn §tvorky. Uvedené rieSenia, najma prvé z nich
mali skdr upozornit &itatela na princfpy, ktoré sim po-
uzfiva, neZ naudif ho niedo nové. V daliich tlohdch uZ
nevypisujeme riesenia tak podrobne.

Uloha 5.2. Néjdite poslednii &fslicu &sla B = 74567890,

Riesenie. Cfsla 7, 10 si nestdelitelné, ¢(10) = 4,
a preto podla Eulerovej vety plati (poéitame modulo 10)

B = 74567890 MOD ¢ — 72 = 9 (mod 10).

Teda posledn4 é&fslica &isla B je 9. [J
Uloha 5.3. Najdite poslednii #slicu &sla ¢ = 131",

Riedenie. PouZijeme Eulerovu vetu a poéitame modulo
10

C = 31" — g17"%0p+¢ _ 310D« _ 31 _ 3 (mod 10).
Teda posledné &fslica &isla C je 3. [

all

Uloha 5.4. N4jdite poslednt &fslicu &fsla D = 1718

Riedenie. PouZijeme Eulerovu vetu a poditame modu-
lo 10. Platf

D = 7is¥"Mon s _ 73137 'MOD 230 ¢ _ mslMoD 4 _
= 73 = 3 (mod 10).
Teda hladand posledns &fslica je 3. (J
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Nechime ditatelovi na rozmyslenie, Ze vysledok by sa
nezmenil, keby sme k ,stvorposchodovej mocnine*
ktorou je dané éislo D, na dalsie ,,poschodia‘ pmdall
napriklad 9, 7, 5.

Uloha 5.6. Nijdite posledné dvojdislie &fsla 7198,

Riedenie. Treba vlastne uréit 7%¢¢ MOD 100. |
PretoZe 7* MOD 100 = 2401 MOD 100 = 1, plati
71986MOD 100 = 7449+2MOD 100 = (74 MOD 100)1°¢,
.(7t MOD 100) MOD 100 = 14%_49 MOD 100 = 49.
Teda hladané posledné dvojéislie je 49. (J
Keby sme hladali posledné dvojéislie &isla 71988, vyslo

by ndm obdobnym vypoétom &slo 1; hladané dvojéislie
by potom bolo 01.

Uloha 5.6. Nijdite najmensie celé kladné &islo n také,
ze

327%*1 = 327 (mod 1000).

Riedenie. Pretoze D(327, 1000) = 1, je uvedend kon-
gruencia ekvivalentnd s kongruenciou

327% = 1 (mod 1000).

Tito kongruencia je zasa ekvivalentnd so systémom
kongruencii

327 = 1 (mod 8), 327* = 1 (mod 125);

tu sme vyuZili rozpis 1000 = 8.125, pricom (8, 125) =
= 1. Druh4 kongruencia diva

(1) 77 = 1 (mod 125).
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PretoZe ¢ (125) = 100, podla Eulerovej vety dostivame
7719 = 1 (mod 125).

Preto najmensie kladné rieSenie » kongruencie (1) je
delitefom é&isla 100. Cislo n vSak nie je delitelom é&isla 20
ani éfsla 50, pretoZe (poéitame modulo 125)

779 — (75 4+ 2) = [210].75.2m 4 2% = 0 4 (29) =
= 242 = 76 &= 1 (mod 125),
779 — (15 + 2)%0 = [510].75.2" 4250 = 0 4 (20)5 =
= 245 = (25— 1)s = + [f].25.14— 15 =

= —1 == 1 (mod 125).
Teda najmensie kladné riesenie kongruencie (1) je n =
= 100, a to zrejme vyhovuje aj prvej kongruencii (tej
vyhovuje kazdé pédrne prirodzené n). Teda n = 100 je a)
rieSenim ulohy. (O

Uloha 5.7. Dokéite, e neexistuje celé kladné &islo n
také, ze 7516n*! konéi Stvorcislim 7516.

Riedenie. Plati 4|7516, 8|42, a teda 8|7516%*! pre kazdé
celé kladné n. Avsak Ziadne &islo kondiace Stvordislim
7518 nie je deliteIné 6smimi. (]

Uloha 5.8. Urtite poslednych Sest &fslic &sla 4 =

- 5013"01”‘

Riedenie. Treba uréit &islo A MOD 10¢, a na to najprv
uréfme 4 MOD 2%, 4 MOD 5% Pretoze D(5, 64) =1

61



a ¢ (64) = 32, podla Eulerovej vety plati 532 = 1 (mod
64), a potom zrejme aj A = 1 (mod 64). Dalej zrejme
plati 5%| 4, a preto pre B = 4 MOD 107 plati

B = 1(mod 64), B = 0 (mod 15625)

(mocniny 2%, 5% sme vypocitali). Tieto kongruencie
spolu s nerovnosfou 0 < B < 10% jednoznaéne uréuja B.
Z druhej kongruencie vieme B = 15625c pre nejaké
celé ¢islo z; Tahko zistime 0 < r < 64. Dosadenim do
prvej kongruencie dostdvame

15625z = 1 (mod 64),
92 = 1 (mod 64),
—63z = —7 (mod 64),
z = 57 (mod 64),

teda vzhladom na nerovnost pre r dostdvame x = 57,
a potom

B = 57.15625 = 890625.
Teda posledné Zestéislie &isla A je 890625. [
Kongruenciu pre r sme mohli tiez upravif takto
52 =1 (mod 64),
x = 5% (mod 64),
58¢ = 5%2 (mod 109).
Pretoze B = 5%, plati
B = 5%MOD 10¢ = 25!5MOD 10¢ =
= 625°MOD 10¢ = 390 625*MOD 10¢ =
= 890 6252 MOD 10°® = 890 625.
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V poslednom vypoléte sme potrebovali paf umocnenf
na druhii, pretoZe 32 = 25. Jedno (a to posledné) umoc-
nenie sme si mohli usetrit pomocou vzfahu 5! =

(mod 64), ktory sice nevyplyva z Eulerovej vety, ale
Tahko ho dostaneme napriklad z binomického rozvoja

pre (4 + 1)t.
Uloha 5.9. Urédte posledné trojéfslie &fsla 4 = 9*°.

Riedenie I (s tabulkami). PretoZe ¢(1000) = 400, bu-
deme potrebovat 9° MOD 400. Priamo z tabuliek zisti-
me, %e posledné S&tvordislice &isla 9° je 0489, teda
9° MOD 400 = 89. Potom plati (poé¢itame modulo 1000)

A = 98 = 3178 = 33 (336)F = 27.707% =
= 27.1015.75 = 27.501.807 = 27.307 =
= 289 (mod 1000).

Teda A4 MOD 1000 = 289, ¢o je hladané posledné

trojéislie. (J

Poznamenajme, Ze namiesto ¢(1000) = 400 sme mohli
uvazovat A(1000) = 100, teda 91 = 1 (mod 1000). Ex-
ponent 89 by sme tym viak neznfZili.

Riedenie 11. Najprv zistime 9°MOD 100.
Poéitame modulo 100 a pouZivame binomicku vetu, pri-
¢om ndsobky 100 uz vynechavame.

9% = (10— 1)°* = [?].10—1 = 89 (mod 100).

ot 1]
Teraz Tahko zjistime posledni éislicu éisla [92 ), pretoze

(poéitame modulo 10)

M ow—1
[2]_9. o = 9.4 = 6 (mod 10).
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Dalej znova pouiivame binomicki vetu, ale poditame
modulo 1000:

9 = (10— 1) = —(9;). 100 + [9;). 10—1=

= —600 + 890 — 1 = 289 (mod 1000).

Teda posledné trojéislie &isla 9% je 289. ]
Iny moZny postup by bol uréit, Ze

A MOD 125 = 39, AMODS8 =1
a pomocou tychto hodnét uréit 4 MOD 1000.

Uloha 5.10. Urite posledné trojéislie &isla B = 8%°.

Riedenie. VyuZijeme rozklad 1000 = 125.8. Aby sme
mohli ur¢if B MOD 125, uréime najskor 88MOD 100.
Plati (poditame modulo 100)

8% = 64¢ = 4 0962 = (—4)* = 16 (mod 100).
Preto (teraz poditame modulo 125)
B = 88%MoD100 — gl8 _ 248 _ 2568 = @% —
= 2162 = (—34) = 1 156 = 31 (mod 125).
Potom plati
BMOD 1000 = 31 + k.125
pre nejaké celé &islo k; zrejme 0 < k < 7. PretoZe
(BMOD 1000) MOD 8 = BMOD 8 = 0,
méame
31 + k.125 = 0 (mod 8),
5k = 1 (mod 8),
k = 5 (mod 8),
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a teda k = 5. Potom
B MOD 1000 = 31 + 5.125 = 656.
Teda hladané posledné trojéislie &isla B je 6£6. []

Uloha 6.11. Uréte posledné trojéislie &sla C' = 7°°.

Riedenie. Budeme poéitat C MOD 1000, priéom vy-
uZijeme Eulerovu vetu pre moduly 8 a 125 a skutoénost,
Ze

nan(p(8), p(125)) = 100.
Potitajme modulo 1000 ; plati
C = 75°M0oD 100 — 7512%M0D 100 _ 712°MOD 100 _ 728 _

= 24017 = (400 + 1)? = 7.400 + 1 = 801 (mod 1000).
Teda éfslo C kondi trojéislim 801. [

Uloha 5.12. Uréte poslednu &fslicu sedmidkového z4-
pisu &sla 4 = 10",

Riedenie. Mame vlastne uréif 4 MOD 7. Pri poéitani
modulo 7 plati

A =39 = 310''%0D6 _ 34 — 4 (mod 7).

Teda hladana posledna &islica je Stvorka. [

Uréenie poslednej é&islice z-adického zdpisu éfsla A
pre ostatné ziklady mensie nez 10 je edte [ahsie, a Citatel
by to mal bez fazkosti spravif i spamati.

Uloha 5.13. Uréte posledné trojéislie deviatkového
ol?

zépisu &isla 4 = 10",
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Riedente. Budeme poéftat modulo 9% a pouzivat bino-
micki vetu; zrejmé ndsobky 9° budeme ihned vyneché4-

10
vat, a vyuZijeme tiez 9|(101° — 1), tedy aj gl[l(; ’

10 1
A= (9 + N E[lg ).92 +[1(1”].9 +1 =

=0+1010.9+1=(9+1)09+41=
=(10.9+1).94+1=1.92+1.9 + 1 (mod 9).

Teda posledné trojéislie deviatkového zdpisu éfsla A
je 111. O

Uloha 5.14. Uréte posledné trojéislie sedmidkového
]
zdpisu disla 4 = 101",

Riedente. Budeme pocitat modulo 72 = 343 a vyuii-
vat Eulerovu vetu. Pocas vypoétu pouzivame dekadické
zdpisy. Naprv uréime 10'°*MOD ¢(343), t. j. 101°MOD
294. Vyuzijeme rozklad 294 = 6.49. Plati

10°MOD 49 = 1005MOD 49 = 25MOD 49 = 32,

a preto 101°MOD 294 = 32 + 49 k pre vhodné celé &is-
lo k. Pretoze 101°MOD 6 = 4, mé byt aj (32 4+ 49kx)MOD
6 = 4, teda (2 + k) MOD 6 = 4, odkial vyplyva k = 2
(mod 6).

PretoZe viak zrejme 0 <k < 5, mame k = 2 a

101°MOD 294 = 32 4+ 49.2 = 130.
Teraz potitajme modulo 343. Plati
A = 1010'°MoD 204 _ 1130 — 1085 — 4821 5085 —
= 4.(7 4 1)21,(49 + 1)8 = 4.[[221].72 +21.7 + 1].
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(65.49 + 1) =4.(0 +3.72 + 1).(2.72 + 1) =
=4.(5.724+1) =20.72 + 4 =
=6.72 + 0.7 + 4 (mod 343).

Teda posledné trojéislie sedmi¢kového zdpisu ¢isla A4 je
604. [
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6. DELITELNOST

Uloha 6.1. Dokaste, Ze
43|3*° + 4¢*,

Riedenie. Vypoltom podla modulu 43 s vyuZitim malej
Fermatovej vety dostdévame
33 4 g4' — 327 4 4eeMOD 42 — 33 16 | 44 =
=3.(—58+256=153—2=(—11P—2=
=—11.121— 2 = —11.(—8) — 2 = 86 =
= 0 (mod 43),

teda 43|3* + 4. O

Uloha 6.2. Dokazte, Ze
73|9°° + 10",
Rielenie. PouZijeme mali Fermatovu vetu. Dopredu
si vypocitame ¢isla
u = 9°MOD 72, v = 10"°MOD 72,

pridom vyuzijeme rozklad 72 = 8.9 a nestdeliteInost
&isel 8, 9. Plati

«MOD8 =9°MODS8 =1, «uMOD 9 = 9°MOD 9 = 0.
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Z druhého vzfahu (a z nerovnosti 0 < u < 72) vyplyva
u = 9k pre nejaké celé ¢&slo k, 0 < k < 8. Dosadenim
do prvého vztahu dostdvame 9k MOD 8 = 1, k = 1(mod
8), a teda k = 1. Preto u = 9. Pre &fslo v plati

v MOD 8 = 101°MOD 8 = 0,
vMOD 9 =10°MOD 9 = 1.
Z prvého vzfahu (a z nerovnosti 0 < v < 72) vyplyva

v = 8k pre nejaké celé k, 0 < k < 9. Dosadenim do dru-
hého vzfahu dostdvame

8cMOD9 =1, 8k =1 (mod?9), k = 8 (mod 9),
ateda k = 8, v = 64.
Teraz budeme politat modulo 73
9 1 101" = gosop72 | JQro'®woD 7z _
= 9% 4 10% = 9% 4 100% = 9° 4 27% =
— 7295 4 72916 = (—1)® + (—1)! = 0 (mod 73),
a teda 73|19 + 10°°. O
Odteraz nebudeme vypolty obdobné vypodtom ¢Eisel
u, v rozpisovat tak podrobne. Poznamendvame, Ze » sme
mohlilahsie vypoéitat vyuZitim vzfahu 92 = 9 (mod 72);

len z in§truktivnych dévodov sme dali prednost vieobec-
ne pouZitelnému postupu.

o010

Uloha 6.3. Dokéite, %e
go|11m" 4 19122

Riedente. Plati
11MMODS8 =3, 11MMOD 11 =0,
odkial Tahko zistime 111 MOD 88 = 11.

69



Obdobne

122 MOD8 =0, 122MOD 11 =1,
odkial vyplyva 122 MOD 88 = 56. Dalej poéitajme
modulo 89; plati

1t L p912!* — ) n'l'mopss | 1912'*MoD s
= 11" 4 125 = 111! 1442 = 1111 | 55% =
= 111 (1 4 5%.1117) = 1111, (1 + 6257.11.121%) =
= 11" (1 4 27,11.,32%) = 111 (I 4 39.11.256%) =
1M (1 4 39.11.(—11)%) = 1112 (1 — 39.11%) =
= 1111, (1 — 39.1331%) = 11 (1 — 39.(—4)?) =

— 1111,(—623) = 1111.0 = 0 (mod 89)
Teda plati 89|111" 4 12122,

Uloha 6.4. Dokiite, Ze
11]138" 4 14M%,

Riedente. Poéftajme modulo 11, 8 vyuZitim malej Fer-
matovej vety:

133" | 141 = 1319"mop 10 | jquttmMoD 10
=132 4+ 140 =23+ 38 =8 4+ 52=8 + 3 =
= 0 (mod 11),
a preto 11133 1 144"
Uloha 6.5. Dokéite, Ze

111]10%" 4 111",
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Riedenie. Oznaéme A é&islo vpravo od znaku delitel-
nosti. Pretoze 111 = 3.37 (a 3, 37 si prvodisla, teda
D(3, 37) = 1), stadi dokazovat 3|4, 37| 4. Najprv poéi-
tajme modulo 3. Plati

100" L It = po8opz | on'monz _
=1+ 2 =0 (mod 3),
a preto 3|A. Pre prvodislo 37 najprv uvdime, Ze plati
101 MOD 9 =1, 101 MOD 4 = 0,
a preto 101 MOD 36 = 28. Obdobne
1111 MOD 9 = 21 M0 6 MOD 9 = 5,
1111 MOD 4 = 3,

a preto 1111 MOD 36 = 23. Teraz pocitajme modulo 37;
plati

101" + 111 — j010*®oD 38 + 111 Mon 36 _
= 102 4+ 112 = 10.1000° +- 11.121" =
= 10.1° 4+ 11.10"! = 10 + 1100.1000% =
=10 4 1100 = 1110 = 0 (mod 37).
Preto plati 37| A. Predtym sme zistili 3|4, spolu teda
mame 111|4. O

Uloha 6.6. Dokaite, Ze
483|44* 4 5°,
Riedenie. Oznadme A é&islo vpravo od znaku deliteInos-
ti. Pretoze 483 = 21.23 = 3.7.23 a 3, 7, 23 8l prvo-

¢isla, stadi dokdzat 3|4, 7|4, 23| 4. Vypoéet modulo 3
déva ‘

A =14 4 25%oD2 — | | 2 = 0 (mod 3).

71



Vypocet modulo 7 ddva
A =: 4+*Mopa + 55°MODe _ 44 455 =
i (—3)8 — (—2)5 = 81 — 32 = 49 == 0 (mod 7).
Nakoniec, vypocet modulo 23 ddva
A = g¥'Mop 2 | 5fMoD22 _ 414 4 gs2sPMoD22
— 414 | 5o9°MOD 22 . 92MOD 22 | 5eMOD 22
=26 4 51 = 64 + 5 = 69 = 0 (mod 23).
Preto plati 3|4, 7|4, 23|4,atedaaj3.7.23 = 483|4. O
Uloha 6.7. Dokdite, Ze
17422 + 3%
Riedenie. Pocitajme modulo 17, s vyuZitim malej
Fermatovej vety. Plati
922 + 3% — o 4 32MOD 16 _ 16 4 311 —
=164 9.277 =16 4+ 9.10° = 16 + 90.100 =
=16 4+ 5.(—2) = 6 (mod 17),
teda 17422 + 3. O

Uloha 6.8. Dokaite, e
37 4 4 et L 55

Riedenie. V tlohe 6.1 sme zistili, Ze plati 43]3”a 4 44,
Teraz ukdZme, Ze 43 t 44 + 5%
Najprv zistime

5°MOD 42 = 125.25 MOD 42 =
— (—1).25 MOD 42 = —25 MOD 42 = 17.
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Teraz poéitajme modulo 43 a s vyuZitim malej Ferma-
tovej vety. Plati

48 | 58 = gs'Mop ez | 5fmoD ez _ g4 4 F17
= 256 + 25.1255 = 256 + 25.(—4)5 =
= 256.(1 — 25.4) = 26 (MOD 43).

Teda 43t 44 + 5 | a tym skor 3%° + 44 144 1 58°. O
Samozrejme, Gplné riesenie dlohy 6.8 by sa nemalo
odvoldvat na ilohu 6.1. Prvoéislo p = 43 sme mohli

,;uhddnut’, resp. ndjst postupnym vypoétom d&isel
(3 + 4*)MOD p, ale vypotty pre p < 43 nemusime

v koneénom riefeni uvddzat. Uviedli by sme len vypo-
det pre p = 43, t.j. v podstate odpisali rieenie dlohy 6.1.

(uoha 6.9. Dokazte, e
8%° 1 99° o9 | ou°

Riedenie. Poéitajme lavi i pravid stranu podla modu-
lu 5, s vyuZitim malej Fermatovej vety. Plati

8%° 4 99°= 3s®moD« | go®moD4 _ 30 | 41 —
=14+ 4 = 0(mod 5),
9 + 100" = 0 = 41 = 4 (mod 5).
Teda plati 5/8%° + 9°°, 519° + 10", a preto
8 + 049" + 10",

Niekolko nasledujicich iloh nechdvame &itatelovi ako
cvidenie.

Uloha 6.10. Dokéite, Ze
1381 4 1404t gt 5t
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Uloha 6.11. Dokite, Ze
12171 | 130" 130 4 e,

Uloha 6.12. Dokézte, Ze
LD bl B PIUNES 1L

Uloha 6.13. Dokéite, Ze
55 1 6°p6* 4 77,

Uloha 6.14. Dokiite, ze
6 L 77T 48

Posledné tri dlohy neodporidame riefif bez pouZitia
samodinného poéitaca. Este viac by sa takéto odpori-
¢anie tykalo nasledujicej dlohy, keby sme pre iiu nemali
celkom iny postup.

Uloha 6.15. Dokéazte, Ze
77 4+ 8% 8% 4 90,

Riedenie. Cislo vpravo mozno pisat v tvare a® - b2,
kde a = 8*%", b = 3* s nestdeliteIné celé ¢isla; preto
nemé Ziadneho prvodinitela tvaru 4k + 3. Cislo vlavo
viak je tvaru 4k + 3, a preto mé aspon jedného prvo-
¢initela tohto tvaru. (Prvocislo 2 neprichadza do ivahy,
a 8iéin lTubovolného poétu prvoéisel tvaru 4k + 1 je tieZ
tvaru 4k + 1.) Preto plati

7 1818 Lo O

Rovnakym postupom moZno vyrieSit aj nasledujice
dve tlohy.
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Uloha 6.16. Dokazte, Ze
22t | 3%} 99° | 100

Uloha 6.17. Dokéite, e
6° + 777} 8%° 4 9o,

Uloha 6.18. Dokiite, Ze
6°° + 8° 477" 1 o,

Riedenie. Oznaéme A é&islo vlavo, B ¢islo vpravo od
znaku §. Zrejme 2%°| A, a teda stadi dokdzat 2¢° t B. Na to

poditajme podla modulu 128
7 [
7T =(8—1) = —%—l—).sz +7.8—1=

=—64 + (77MOD 16).8 — 1 = —64 +

+(7.49°MOD 16).8 —1 = —64 + 7.8 —1 =
= —9 (mod 128),

. o 9°.(9°—1) _

P ="T e e8] =

= 0.64 + (9°MOD 16).8 + 1 = (9.81¢ MOD 16).
.8 +1=29.8+1=173(mod 128).

Preto plati
B =—9 + 73 = 64 (mod 128),

teda 1284 B, a tym skor 2¢°t B, teda aj At B. O
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7. MOCNINY

Slovo ,,mocnina‘ v textoch iloh tejto kapitoly treba
chipat ako »»mocnina, ktorej zdklad je prirodzené éislo
a exponent je prirodzené &slo vaddie nez 1. Teda na-
priklad spomedzi ¢&isel od 1 do 20 mocninami sd 1, 4, 8,
9, 16. Pripominame, Ze obdobne .sa pouZiva slovo
,,8tvorec' pre drubdi mocninu (a v rustine a anglitine
aj ekvivalent slova ,,kocka‘* pre tretiu mocninu; u nds to
znie trochu neobvykle). Vo vadsine tiloh pdjde o dékaz
toho, Ze nejaké velké &fslo nie je mocninou.

Uloha 7.1. Nech &fslo
A = 100101102 . .. 998999

vznikne tak, Ze na,piéeme- za sebou vsetky trojciferné
¢isla v poradi podla velkosti. DokéZte, Ze A nie je moc-
nina. -

Riedenie. Uréme najprv 4 MOD 999. Na to stadf 4
rozdelit na 3-ciferné skupiny (od konca, ale tu na tom
nezéleZf), a urdit ich stéet S. Potom plati 4 MOD 999 =
= S MOD 999; ak bude S velké, moZno postup zopako-
vat. Takto dostdvame

A MOD 999 = (450.(100 + 999))MOD 999 = 45
PretoZe 999 = 27.37, dostaneme odtial Iahko
A MOD 27 = 18.
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Odtial vidno, ze 9|4, 27t 4, teda exponent prvoéisla 3
v rozklade A je rovny dvom. Preto 4 neméze byt vyssou
nez druhou mocninou. AvsSak zrejme platf 4 =
= 3 (mod 4), teda A nie je ani dtvorec. []

Uloha 7.2. Nech é&islo

B = 12345 ... 999910000

vznikne tak, Ze napiSeme za sebou vSetky prirodzené
¢éisla od 1 po 10000 v poradi podla velkosti. Dokézte, Ze
B nie je mocnina.

Riedenie. KedZe B kondéi styrmi nulami, tak keby B
bolo mocninou, bolo by aj 8tvorcom (kazdd Stvrtd moc-
nina je sdiéasne Stvorec). Potom by aj éislo B/10000
bolo Stvorcom, ale to nie je moZné, pretoze

B[10000 = 3 (mod 4). (J

Uloha 7.3. Nech &islo
= 1000010001 ... 9999899999
vznikne tak, Ze napiSeme za sebou vsetky patmiestne
¢isla vo vzostupnom poradi. Dokdite, Ze ¢islo C nie je
mocnina.
Riedenie. Uréme najprv C MOD 999. Plati
99900
C—= S .105-0998-0
i=10000

Kaidé patmiestne ¢&islo ¢ moZno jednoznadne vyjadrit
v tvare 10000 + k + 35,0 <k 2,0 <j; < 29999,
a preto

2 20900
C=3X X (10000 + k + 3j). 10580000 k=3,
k=0 j=0
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Pretoie 10 =1 (mod 999), moZno pri urlovani
C MOD 999 exponenty (so zikladom 10) zniZif o ndso-
bok 3. Pretoze

5.(89999 —k — 3j) = 2. (2—k) (mod 3),

moéZeme dosiahnuf, Ze exponenty nebudu zivisief od j
a prislusné ¢initele mozno vybraf pred druhi sumu. Tak
dostaneme

2 200090
C=3X102¢b_ % (10 + k + 3j) (mod 999),
k=0 i=0

2
C = I 104~% _(30000.(10 + k) + 3.29999.15000)
k=0
(mod 999),

2
C = I 104~% (300 + 30 k + 3.29.15) (mod 999).

k=0
Dalej poéitajme modulo 999.
2
C =X 10072 ,(300 + 30 k + 1305) =

k=0

= 10.606 + 100.(606 + 30) + 1.(606 + 60) =

— 6060 + 63600 + 666 = 66 + 663 + 666 =
= 1395 = 396 (mod 999).

Teda zistili sme C MOD 999 = 306.
PretoZe 27|999, plati

C MOD 27 = 396 MOD 27 = 18.

Z toho vyplyva 32|C, 3% { C, teda C nemébze byt vyssou
ne# druhou mocninou. Stvorcom vaak tiez nie je, pretoZe
C =3(mod4). O
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Uloha 7.4. Nech &fslo
D = 10001001 ... 99989999

vznikne tak, e napifeme za sebou vietky Stvormiestne
prirodzené ¢&sla vo vzostupnom poradi. Dokéite, e D
nie je rocnina.

Riedenie. Uréime D MOD 999. Platf

9000
D= 3 4.1040080%)
1=1000
Ak ka%dé ¢ vyjadrime v tvare 1000 + k + 3j, 0 < k <
=< 2, dostaneme

2 2000
D=3X X (1000 + k + 3j). 104e000 k-3,

k=0 j=0

Znfienim exponentov o nisobky troch a vybratim &ini-
tela nezdvislého od j pred druhi sumu dostaneme

- 2 2099
D=3X10+* X (1 +k+ 3j) (mod 999).
k=0 =0

Dalej poditajme modulo 999:

D= 1027%_ (3000 + 3000k + 3.2999.1500) =

e Wbﬂu

1027k (12 + 3k) = 1200 + 150 + 18 =

= 369 (mod 999).

PretoZe 27|999, plati D MOD 27 = 369 MOD 27 = 18,
a preto 33D, 3*t D. Teda D nemdéie byt vysSia nei
druhd mocnina. D vak nie je ani §tvorec, pretoze D =
= 3 (mod 4). J
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Uloha 7.5. Nech &islo 4 vznikne tak, Z¢ napiSeme za
sebou dekadické zdpisy prirodzenych éisel od 1 po 6666
v Iubovolnom poradi (ale kazdé prave raz). Dokdite, Ze
A nie je mocnina.

Riedenie. PretoZe 10 = 1(mod 9) pre kazidé celé
nezdporné k, plati (poditame modulo 9)

4466
A= i —=6667.3333 = 7.3 = 3 (mod 9).

i=1

Preto 3| A4, 32t A, teda 4 nie je mocninou. ]

Uloha 7.6. Dokaézte, Ze pri Ziadnej volbe znamienok nie
je ¢islo
X = 60%% 4 58%%° L 565 4 ... 4 4 4 2

mocnina.

Riedenie. Plati 24| X, 25t X. Teda keby ¢islo X bolo
mocninou, bolo by aj &tvorcom. Aby sme ukdzali, Ze X

nie je Stvorcom, ozna¢me Y = 0300 .

Zrejme X # Y2 (napriklad preto, Ze 32 X a 32| Y?).
Ak feraz ukéZeme, 7e X sa nachddza medzi (Y — 1)2
a (Y + 1)?, bude to znamenat, Ze X nie je Stvorec, pre-
toZe jediny Stvorec medzi tymito ¢islami je Y2, Na to
odhadujme:

X — Y?| < 58%% 1 568" 1 ... 4! 4 9? <
< 29.60%% < V.
Odtial uZ Iabko vyplyva
(Y—12 <Y?P—Y <X <Y+ Y <(Y+1p,
teda X naozaj nie je &tvorec. Podla ivahy na zadiatku

rieSenia potom X nie je mocnina. []
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Uloha 7.7. Dok4zte, e &islo

B = 187" 4 18"
nie je mocnina.

Riedenie. Pretoze 1719 > 19'7, moino &islo B napisat
v tvare
B = 18W7 (1870 4 1),

Cinitele vpravo si navzédjom nestideliteIné. Preto keby
B bolo mocninou, bolo by aj devatnastou mocninou,
a aj druhy &initel vpravo by bol deviatndstou moceninou.
UkéZeme vsak, Ze je deliteIny piatimi, no uZ nie je deli-
telny 5° (a tym skor 5').

Plati (po¢itame modulo 125):

1810 — (20 — 2)10 = —[190].20.2" + 210 =

=210 (—10.10 + 1) = 24.26 = 252 — 1
= —1 (mod 125),

a preto 182 = 1 (mod 125). Preto exponent 171° — 1917
budeme smief redukovat modulo 20; urobme to dopredu
(poéitame modulo 20):

1719 — 917 = ]719MOD & __ ()17 = 173 4 | =
= (—3)* + 1 = —26 = 14 (mod 20).
Preto plati (poéitame modulo 125)
18711917 ] — 1814 1 1 = 1810184 + 1 =
=—32424+1=—5124+1=-—2601 4+ 1 =
= 25 (mod 125).
Odtial vidime, Ze druhy ¢initel je deliteIny 52, ale nie 5°.
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Preto tento ¢&initel nemdZe byt 19. mocnina, a teda B
nie je mocnina. [J

Samozrejme, plati tiez 52| B, 5°{ B. Keby sme riede-
nie zacali takto, zistili by sme tym, Ze B moZe byt na-
najvys druhd mocnina. Dalej by sme molili zistif, Ze
exponent dvojky v rozklade B je neparny; pritom by
sme ani nepotrebovali zistovaf, & 17'®* > 1917, Dosli
by sme k obdobnému sporu ako vyssie. Ind moZnost by
bola vypoéitat

BMOD 7 = (187'*sops | 1g1''s0oD6) MOD 7 —
=(4%* + 4y MOD 7 = (21* + 4)MOD 7 =
= (2* + 4 MOD 7 = 6.

Potom ¢&islo B nemodze byt stvorec, pretoze 6 je kvadra-
ticky nezvysok modulo 7.

Uloha 7.8. Dokézte, Ze &slo

C = 17" 4 19187

nie je mocnina.

Riedenie. Oba séftance v C sii nepérne Stvorce, a teda

CMOD 8 = (1 4+ 1) MOD 8 = 2.
Potom 2|C, 4t C, a preto C neméZe byt mocnina. (]

Obdobnym spésobom, teda vypoé¢tom modulo 8, moz-
no riesit nasledujice dve ulohy.

Uloha 7.9. Doké#te, Ze &fslo
179 4 179" 187 18wt 19 | g9t
nie je mocnina.
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Uloha 7.10. DokéZte, Ze &islo
3 +3° +6° +6” +9° +9°

nie je mocnina.

Uloha 7.11. DokéZte, Ze &slo

D =4" + 4 + 6* + 6" + 8¢+ 8¢

nie je mocnina.

Riedenie. Najprv zistime exponent prvoéfsla 2 v roz-
klade D. Exponenty prvoé&isla 2 v jednotlivych séitan-

coch s
2.6%, 2.8% 48 84 3.49 3.64.

Z tycbto &isel je najmensSie posledné; vSetky ostatné si
vidsie. Preto exponent prvolfsla 2 v rozklade D je
3.64 = 35.24; teda ak D je mocninou, tak je i druhou
alebo trefou mocninou. Poéftajme teraz D MOD 7, pri-
¢om exponenty hned zredukujeme vzhladom na vzfahy

42 =6 = 8! =1 (mod 7).
Plat{

DMOD7=.(4°+41+1+1+1+1)M0D7=2.

PretoZe 2 je kubicky nezvysok modulo 7 (t. j.: kongru-
encia z* = 2 (mod 7) nemé riedenie), nemdZe byt D tre-
tou mocninou. Vypoditajme eite D MOD 17. Pretoze
@(17) = 16 deli exponenty vietkych &iestich séftancov
v &sle D a 17 nedelf 4, 6, 8, platf

DMOD17=(14+1+1+41+1+41)MOD 17 = 6.
Cislo 6 je kvadraticky nezvysok modulo 17, pretoZe
68 = 364 = 24 = 16 = 1 (mod 17),
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a preto D nemoéZe byf Stvorec, teda D nie je mocni-

nou. ]
V predloZenom rieSeni sme nepoéitali vyrazy

D MOD 3, DMOD 5, D MOD 11, D MOD 13.

Pri hladani riedenia (,,na koncepte*) by sme asi aj tieto
vyrazy vypo¢itali, pretofe by vSak nevyladili Ziaden
z dvoch zostdvajicich pripadov, bolo by zbyto&né ich
do rieSenia uvidzaf.

Z doterajsich uloh ¢itatel mohol ziskat dojem, Ze
,,velké &isla‘‘ asi nie st mocninami, ak len nie s priamo
ako mocniny zadané. Potom budid nasledujicie tlohy
trochu prekvapenim.

Uloha 7.12. Nijdite aspoir jednu trojicu po dvoch
réznych celych é&isel z, y, z valésich neZz 1 a takych, Ze

xyl_l_zgv

je mocninou.
PretoZe tato Gloha mé rieSenie dokonca v ]ednoclfer-
nych é&islach, nechdme ich ndjdenie &itatelovi.

Uloha 7.13. Nsjdite asponi jednu devaticu po dvoch
roznych celych &isel a, b, ¢, d, e, f, g, h, i va&iich neZ 1
a takych, Ze

a* + d¢ = g¥.

Riedenie. Polpime g = 2*, kde n = l (87 + 1);

je » = 233017, ale ndm staéf vedief len neP,n>4.
Dalej polozme b = 3, ¢ = 2. Potom plati

g = (20) = 2¢" ' = 2,987 — g 2™
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Cislaa, b, c, d, e, f budeme volif tak, aby
a* = de = 2%
Plati
922l _ 92248 _ 4105, offl _ 98278 _ 95ast

a z toho uz vidno jednu z moZnosti pre a, b, c, d, ¢, f.
Vietky ¢isla @ aZ ¢+ moZno vyéitat zo vzorca

4% 4 256 — (2233011)”_ O

Cislo g sme pochopitelne neuviedli v dekadickom z4-
pise; ten by mal viac nez 70 000 &fslic, dal by sa ndjst
len pomocou poéitaca a bol by aj tak celkom neprehlad-
ny a nevhodny.



8. OLOHY
S FAKTORIALMI

V tychto tlohéch sa budi okrem iného vyskytovat
faktoridly faktoridlov. Budeme ich znaéif opakovanim
vykriénfka, bez priddvania zdtvoriek. (Teda n!! u nds
znamena (n')!.)

Uloha 8.1. N4jdite najvadsie prirodzené &islo z, pre
ktoré plati

!t < 100",
Riedenie. Plati
1211 < 10°! < (1091 = 101 < 101",
Na druhej strane podla Stirlingovho vzorca =! >
> [2)", a preto
e
1311 > (4.109)! > (L0%)+10° — gmee® |10t
Teda hladané &islo je z = 12.

Uloha 8.2. Nijdite najvadsie prirodzené &islo x, pre
ktoré plati

2! < 300"

Riedenie. UkdZme najprv, Ze pre x = 15 uZ plati opaé-
na nerovnost; na to staéi ukazaf, ze

log (15!!) > 2019 ]og 30.
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PretoZe log 30 < 1,478 a 20'° = 1,024.10'3, staéf doka-
zovat
log (15!!) > 1,024.1,478.103,

Plati viak
15! > 1,3076.102 a 1,024.1478 < 1,514,

teda stadi dokazovat
log (1,3076.1012!) > 1,514.1013,

Zo Stirlignovho vzorca vyplyva

log n! > n.log%
a preto

12
log [(1,3076.101)1] > 1,3076. 1012, log >0 0- 10

> 1,3076.10'2.11,6821 > 1,52.10" > 1,514.101.

Teda é&fslo z = 15 uZ ilohe nevyhovuje.
Pre x = 14 plati

141! < 1011 < (101! = Joue10l? o200 _
= 10" < 30",
HIadané é&islo teda je z = 14. [

Doékaz nerovnosti < 15 bol ovela ndrodnejsi neZ
dékaz nerovnosti z = 14. Je dost pravdepodobné, Ze
pri samostatnom riedenf tilohy by ¢itatel najprv nasiel
nerovnosti * < 16, z = 14 a k sprivnej nerovnosti pre
¢éislo 15 by prisiel aZ po niekolkych pokusoch. Neuspesné
pokusy vsak nie je potrebné v definitivnom riedenf uvd-
dzaf.
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Uloha 8.3. N4jdite najvadsie prirodzené é&slo z, pre
ktoré plati

x!! < 10™

Riedente. Plati log 34! > 38,47, a teda 34! > 2,9.10%,
Preto

1 y9¢r .
B> (%] > (102)2010% > 1g0f0 > 08'010%
= 10800% — jow*,

a teda r < 34. Na druhej strane log 33! < 36,94, teda
33! < 10%, a preto

3311 < 33188 (1081)1037 < 1010°10% < 102019 _
= 100",

a teda 2 = 33. Preto 2 = 33. [
Uloha 8.4. Zistite, na kolko niil kondf &fslo 1988!.

Riedenie. Exponent prvoéisla 5 v rozklade &fsla 1988!

je
1988 | [ 1988 ] | 1988 | 1988
5 T | Tz | e | T

=397 +79 + 15+ 3 = 494,

exponent prvodisla 2 je vadsi (napriklad preto, Ze
1988 > 494]. Preto 1988! je delitelny &fslom 10494,
no nie 104, g teda konéi (v dekadickom zdpise) 494 nu-
lami. [J
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Uloha 8.5. Nidite najmensie prirodzené &islo z také, Ze

10|z,

Riefenie. Pre = musi platit 2:°°|z! a 5‘°l°|a:!; vyuZi-
vajme najprv druhi podmienku. Exponent prvoéisla 5
v &fsle z! je

z 4 2
H+[2—51 |125]+ <5t atimt

4 b

a preto %> 10!*, teda x > 4.10°, Oznadme y =

= 4.10 a pocitajme exponent prvoéisla 5 v rozklade
ésla y!. Dostaneme ho ako stiet patndstich ¢isel, z kto-

rych prvé je I-";— = 8.10° a ka¥dé dalsie vznikne z pred-

chidzajiceho celo¢iselnym delenim piatimi. (Podet ¢&fsel
nemusime dopredu uréovat; jednoducho ich prestaneme
tvorit, ked by zaéali vychddzaf nuly.) Tento exponent
vyjde 9999999997. Exponent prvoéisla 5 v &fsle x! mé
byt o 3 viédsi, éize x > y, a v rozklade éisla

T+ D)yt ... =)z

sa musf prvodislo 56 nachddzat s exponentom (aspori) 3.
Prvé tri Cinitele napravo delitelné piatimi sd y + 5,
y+ 10, y + 15 (a pritom 25%(y + 5), 26 (y + 10),
teda naozaj potrebujeme tfi linitele). Preto musi byt
z2y+15=4.10° 415 Pre z =4.10° + 15 jeo
5|21, a zrejme aj 2'9"°|z! (naprfklad preto, Ze plati
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x

3 10“’], a teda aj 10"""|z!. Teda hladané islo je

z = 4.10° 4 15 = 40 000 000 015. O

—

Uloha 8.6. Najdite posledné tri &islice &isla 1000! pred
jeho koncovymi nulami.

Riedente. Najprv uréime podet mil na konci 1000!.
Tychto nil je

1000 1000 ‘1000 1000
5 25 125 625
!
Preto naSou ilohou je vlastne uréif ¢islo x = —li(())(zlg

MOD 1000. VyuzZijeme pritom rozklad 1000 = 23.5% =
= 8.125, uréime najprv ¢&isla x MOD 8, « MOD 125
a z nich potom z.

Pretoze 225¢1000!, zrejme plati x MOD 8 = 0. Na uréo-

!
vanie x MOD 125 uré{me najprv ¢&islo 1—(5)% MOD 125.
Pritom budeme vyuzivat vzorec
(5k + 1).(5k + 2).(5k + 3).(5k + 4) =
= 24 (mod 125)

pre kaidé k€ Z (ktory sa lahko overi roznisobenim
Tavej strany). Zostdvajice éisla deliteIné piatimi kratime
s pitkami v menovateli. Postupne dostivame (pocéitame
modulo 125):

1000! 200! 40!

- 200
5249

= ST 94200 9440 U0
24 50 5o
8!
= 24200.24“’.249.31— = 24248 ,24.6.7.8 =
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— 24250 14 = (25— 1)250. 14 = (—1)250_ 14 =
= 14 (mod 125).

Znova poditajme modulo 125.

Platf
1000! 1000! 1000!
= '*low‘ = 2300.W = 251, 5240 = 251.14 =
= 250,28 = 245.28 = (256 — 1)5.28 = —1.28 =

= 97 (mod 125).

T z = 97 + 125y pre nejaké celé éislo y; pritom
0 <y <17 pretoze 0= =< 999. Vieme viak
zMOD 8

97 + 125y = 0 (mod 8),
5y = —1 (mod 8),
y = 3 (mod 8).

Teda y = 3, a potom z = 97 + 3.125 = 472. Posledné
trojéislie é&fsla 1000! pred jeho koncovymi nulami teda
je 472. O

Uloha 8.7. Uréte zvysok pri delenf &sla 1000! &fslom
1009.

Riedente. 1009 je prvoéfslo, a preto podla Wilsonove;j

vety
1008! = —1 (mod 1009).

Odtial postupne dostdvame
8
1000!. I (1000 + §) = —1 (mod 1009),
(L)
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1000!. .ﬁ, (i — 9) = —1 (mod 1009),
1000!.40320 = —1 (mod 1009),
1000!.(—40) = —1 (mod 1009),
1000!. (—9080) = —227 (mod 1009),
1000! = 782 (mod 1009).
Teda hladany zvy#ok je 782. ()

Uloha 8.8. Uréte zvydok pri delenf &sla 1000! fslom
1007.

Riedente. Plati 1007 = 19.53|1000!, teda hladany
zvysok je 0. [J

Uloha 8.9. Nech z, y st kladné reslne &sla také, Ze
= = 3, — 3,

Zistite, ktoré z ¢&isel z, y je vatdie.

Riedenie. Zrejme z> 1, y > 1. Oznalme 4 = =,
B = .1/"", C = y®. Najprv ukd’ieme y < 3. Skutoéne,

C = 31! = 72011 < 72070) < (720™0)™™ _
— 7207”721 < 729,,.121 — 3._,‘-721 < 3".72108 <
<3 <

Teraz stadf uvaZif, ¢ umocfiovanie je pre argumenty
vidie nez 1 monoténna operécia. Teraz ukidZeme sporom
y > z. Keby bolo y < z, tak B < 4 a potom
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AW

a to je spor. (Vyuzili sme zrejmi nerovnost 4 =9
a Stirlingov vzorec.) [J]
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9. CISLICE 0KOLO
DESATINNEJ CIARKY

Ulohy v tejto kapitole by sa dali principidlne vyriesit
tak, Ze by sme prisludné éfsla vyrdtali s dostatoénou
presnosfou; pre 2 ¢fslice za desatinnou ¢iarkou by spravi-
dla (no nie vidy) stacila presnost na jednu tisicinu.
Praktické tazkosti viak znova nastdvaji preto, Ze uva-
Zované &fsla su prilid velké. Ukdzeme niektoré obraty,
ktorymi sa moZno priamemu vypoétu vyhnit. Keby sa
niekomu nep4aéili formulécie dloh, v ktorych ide o neko-
necéné (a teda vlastne nenapisateIné) desatinné rozvoje,
mozZe si kazda tdlohu

,,Ur¢it ¢ miest pred desatinnou ¢iarkou a j miest za de-

satinnou ¢iarkou v éisle X
preformulovat na idlohu

, Uréit é&fslo [107. X | MOD 1044,

Uloha 9.1. Uréte dve &islice pred a dve &islice za de-

satinnou ¢&iarkou ¢isla
4 =13 13"
Riedenie. Zrejme platf
A> V;;F — 1/329-39 — ge8a®
a na druhej strane
(323 1 0,01)2 > 3°%° 4 0,02.3°%" >
~ 3¢ + 32%3%4 - ge® + g-02® - g¢® ga3a® _
= 3" 4 3%
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Spolu teda mame

32°3° - 4 < 39 | 001,

Teda prvé dve ¢islice za desatinnou &iarkou &fsla A sii nuly,
a posledné &islice pred desatinnou &iarkou si také ako

posledné dve &islice disla 32**°. Eite teda musime urdit
3253 MOD 100 = 32%3%MOD nsnie2s), ¢4 MOD 100 —
— g2%3%0D 20 MOD 100 = 3@.27%M0D 20 MOD 100 =
= 3uesmon 20 MOD 100 = 38 MOD 100 = 61.

Teda hladané éislice ¢isla A4 sa ...61,00....]

Uréovanie vatsieho poétu é&fslic za desatinnou éiarkou
by tento raz nerobilo problémy; skiste uréit napriklad
tisic tychto ¢fslic. S kalkula¢kou (alebo tabulkami) viak
moéZieme bez priliSnej ndmahy vyriesit aj nasledujicu
dlohu.

Uloha 9.2. Zistite prvi nenulovi &fslicu za desatinnou
¢iarkou ¢isla

PR T )
Riedenie. Oznaéme z zlomkovi Gast Gisla 4. PretoZe
| 4] = 3**%° podla predchédzajicej ilohy, méme
(32%' + 2)® = 3¢ + 3
a po uprave
2.32%9° 4 4 42 — 39
Pretoze 0 < z < 1, dostavame odtial

3 1 3%
o g ST S e
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Logaritmus pravej strany je
(9% — 28.3°%).log 3 —log 2 = —2150 579,984 =
= 0,016 — 2 150 580
V ramci danej presnosti je aj logaritmus lavej strany,
a teda aj log z, rovnaky. Teda
z = 1,04.10-2150560,

¢iZe prva nenulova ¢islica za desatinnou ¢iarkou v éisle 4
je 1. O

Sitdasne sme zistili aj poéet nil medzi desatinnou
éiarkou a prvou nenulovou é&fslicou; je ich 2 150 579.
Poznamenajme, Ze log 3 a log 2 treba vziat dostatodne
presne (napr. na 10 des. miest); éislo 1,04 vzniklo za-
okrihlenim z 1,03 ..., ale trojka uZ nie je spolahlivo
urdend.

Uloha 9.3. Zistite Styri ¢islice pred a Styri &islice za

desatinnou éiarkou &fsla
1]

B=|5" +¢"
Riedenie. NapiSme B v tvare 5279% 4 4
Pretoze (5:*°) = 5, platf « > 0. Na druhej strane
(67" + z)) =59 + 6,
5" + 9.(57*f.x < 5 + 6",

6"
£< 9. (57
Ale
675 25715 5_o0 ob 93,42,
9.(57%°f U 2573 < 95T
= 25" <1074,
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teda hladané ¢islice za desatinnou ¢&iarkou si nuly. Pre
éislice pred desatinnou éiarkou musime uréit « =

= | B| MOD 104, kde | B| = 5*"%°. Zrejme | B]MOD 5¢ = 0
a dalej

| B| MOD 2¢ = 523 MOD 16 =
= (5 MOD 16)®*3*MOD 16 = 1.

Teda plati v = 625k pre nejaké celé éfslo k, 0 < k < 186,
a sicéasne ¥ = 1 (mod 16), teda 625k = 1 (mod 16), k =
= 1(mod 16), a teda k£ = 1. Potom u = 625. Preto
hladané &islice é&isla B st ...0625,0000... ]

Uloha 9.4. Urdte tri &fslice pred a tri &slice za desa-
tinnou &iarkou ¢isla

C = i/gooo + 4006
Riedenie. Plati

3 3
9666 _ V§ss <C < Vgses 1+ 3.4%66 | 3 206 | | —
— 2606 4 ]

a preto |C]| = 2%9. Oznaéme z zlomkovi dast &sla C.
Plati

(2008 + 2) = 8%88 | 4o,
8966 4 3 4866 4 373 2866 4 23 _ gess | gese
3x.4900 | 3x3 2088 | 3 — 4066
Qdtial s vyuZitim 0 < z < 1 dostdvame

1 4088 3 2688 ] 1
3 4008 <z<§-
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Druhy c¢initel Iavej strany je vdak blizky k 1 (ndm staéi,
ze je medzi 0,999 a 1), a preto hladané é&islice za de-
satinnou ¢iarkou sd trojky. Pre urcenie ¢islic pred de-
satinnou ¢iarkou uréime 2¢¢ MOD 1000. Najprv poéi-
tajme modulo 125; plati ¢(125) = 100, a preto

2006 = 265 — (27)9 23 = 39 23 — 543 = (350 + 4)° =
= 3.50.4% + 4% = 2464 = 89 (mod 125).

Preto 2%6 — 89 + k.125 pre nejaké prirodzené &islo k.
Pritom ale 2%¢ = 0 (mod 8), teda

89 + k.125 = 0 (mod 8).

Odtial mime 1 4 5k = 0 (mod 8), a teda k£ = 3 (mod 8).
Potom plati 2% = 89 4 (3 4 8n).125 pre nejaké
prirodzené (islo %, a teda 298 = 89 4 375 =
= 464 (mod 1000).

Preto hladané ¢islice Cisla C su .. .464,333... O

Uloha 9.5. Najdite dve &islice pred a dve dislice za de-
satinnou Ciarkou c¢isla

D = |7 o,
Riedente. Polozme D = 3% 4 z, Pretoie D? > 9903,
plati z > 0. Dalej plati
(3003 + 1)2 — 9003 + 9300’
9003 + 21.3003 + zz p— 9‘03 + 3Cll'
27.3003 | 23 — 3oz

39 __ 22 3-w3

r = 3
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9
Odtial (a z z > 0) dostdvame 2 < -5-, a potom aj

Preto hladané ¢islice za desatinnou &iarkou st 49. Pre
¢islice pred desatinnou éiarkou uvazime, Ze pla.i

9 3
|2] MOD 100 = 1—3;] MOD 100 — Ile MOD 100 =

- 1_96831 MOD 100 — 41,
3903 MOD 100 — 3330040 MOD 100 =
— 32 MOD 100 — 27,

(lz] + 3%3) MOD 100 = 68, a preto hladané &islice ¢isla
Dsi ...6849... O

Uloha 9.6. Uréte dve &islice pred a styri Gislice za de-
satinnou ¢&iarkou ¢isla

E — |7 5,

Riedenie. Polozme E — 7' + x; zrejme x > 0. Dalej
plati
(7175 + x)d — 7700 _+_ 7800’
TI0 | 4z 755 L 6a?. I - 423, TV 4 ob =
— 7700 4 7600
7600 U 6z2. 7350 J— 42:3. 7175 I‘

= 4.75%

75
QOdtial (a z podmienky = > 0) dostivame z < 7— a po-

775
tom =z > "4— -_ 0,0001
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775
Plati 775 MOD 4 = 3, teda zlomkova dast Cisla & %

¢ina 75, a zlomkova cCast éisla x (a teda aj E) zalina
¢islicami 7499. Pre urdenie ¢islic pred desatinnou éiarkou
uréime || MOD 100, na ¢o najprv potrebujeme

775 MOD 400 = 7918+3 MOD 400 =
= ((7* MOD 400)®.73) MOD 400 =
= (118,73) MOD 400 = 343.

Potom

75
|| MOD 100 :| B IMOD 100 :|
= I 313] = 85.
Dalej uréime

7175 MOD 100 = ((74 MOD 100)#.73) MOD 100 =
= 343 MOD 100 = 43.

Preto |[E| MOD 100 = (85 + 43) MOD 100 = 28, a hla-
dané déislice ¢isla E st ...28,7499... [

775 MOD -lOOJ
— =

Uloha 9.7. Uréte 7 éislic pred a 7 &islic za desatinnou
ciarkou v disle

7
F = 1/7700 1 7800,

Riefenie. Oznaéme u = 7.(F — 7'%); potom F =
u

= 7100 —
7100 7
1 7
Pretoze (70)' < F* < (7% + -] plati 0 < < 1.
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Uréime u presnejsie. Platf
(7100 + %]7 <TI0 4 g 7800 | 7500,

Posledny ¢len na pravej strane je totiz vadsi neZ sudet
zvysnych &lenov z binomického vzorca, t. j.

7 Y 7 AN TR Y
()= E)+(5) (5] + -+ (3)
(dal by sa este zmensit). Preto platf

7700 | 7900 | 7300 3 7700 | 7600,

nevo __ 7500

u>7T=l—7‘1°°.

Z toho pre F vyplyva
7100 | 771 _7-100 - F o~ 7100 4 7-1

a odtial (a z toho, Ze % nem4 v desatinnom rozvoji
na 8. mieste nulu) zasa plynie, Ze F m4 hladané cislice
rovnaké ako &islo 7190 ; . Pre éfslice pred desatin-
nou &iarkou pocitajme modulo 107:

7100 — (743 — (2400 4 1)* = [225].24002 + [215].

.2400 + 1 = 25.12.2400% + 25.2400 + 1 =
= 12.12 000% + 60 000 + 1 =
= 8000 000 + 60 000 + 1 = 8 060 001 (mod 107).

(Vynechané &leny v rozvoji (2400 + 1)25 boli nasobkami
10%.) Cfslice za desatinnou &iarkou [ahko ziskame dele-
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nim. Teda hladané é&fslice &fsla F si ...8 060 001,
1428571... O

Uloha 9.8. Urdte dve &islice pred a dve &fslice za de-
satinnou &iarkou v éfsle

A =(2 + }3)™.

Riefenie. Budeme uvaZovat postupnost (a,, a,, a4, . ..)
dand predpisom

a=(2+ V3 +(2— V3L,
(Jej Eleny 81 celé &fsla a platf A = a,000.)
Cisla 2 + |/3, 2 — |/3 sii korene kvadratickej rovnice

»—4xr +1=0,

preto postupnost (a,, a,, a,, ...) vyhovuje rekurentné-
mu predpisu

oy = 480y — @y
Tento predpis spolu 8 rovnostami
a. = 2, a]. = 4

dani postupnost jednoznaéne uréuje. Teraz uréime
@y000 MOD 100 tak, Ze budeme poéitat &isla b, = a, MOD
100. Pritom zrejme b, = 2, b, = 4 a

busz = (4bs, — ba) MOD 100

pre vietky n. Cleny postupnosti b, budeme poé&itat a%
dovtedy, kym nezistime opakovanie.

n|] 01 2 3 4 5 6 7 8 9 10 11
b.!24l452942428434527444
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n|12 13 14 15 16 17 18 19 20 21 22 23
b,.l 2 64 54 52 54 64 2 44 74 52 34 84

n| 24 25 26 27 28 29 30 31
b 2 24 94 52 14 4 2 4

Vidime teda, Ze plati
bao = bo’ bal = bl .

Preto%e kazdy ¢&len postupnosti (b,, b,, b,, ...) je urce-
ny dvoma predchddzajacimi ¢&lenmi, matematickou
indukciou dostdvame

bn +30 = b:n

a potom aj b, = b, mop 30 pre kazdé prirodzené cislo n.
Specidlne, pre n = 1000 mame @5, MOD 100 = b,,,0 =
= b,y = 74. Dalej plati

@000 — 0,01 < @y000 — (2 — Vﬁ,“m = A4 < G4 -

Preto hladané ¢&islice &fsla A st ...73,99... O

NajnamdhavejSou é&asfou rieSenia predoslej ilohy
bolo doplnenie tabulky hodnét b,. Numerickd chyba
by znehodnotila cely dalf vypoéet. Preto by bolo dobré
maf nejaké prostriedky na kontrolu. Jedna z moZnosti
je, aby sme podftali tdplne rovnakym spdésobom
@900 MOD 25, @,090 MOD 4, a potom pomocou nich &islo
b0 OVerili. Vyhoda by tiez bola v tom, e namiesto pe-
riédy 30 by sme dostali periédy 15 a 2, teda staéilo by
pocitat mensi podet &lenov. (Nové vypoéty by mohli byt
pouZité aj samostatne na vypodet &isla b, g, & nielen na
skiSku sprdvnosti povodného vypoétu.) Iné moinost
tspory v podte poéitanych &lenov b, bola viimnif si,
Ze pre n = 2 platf

b_, = (4ba_, — b,) MOD 100.
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PretoZe plati b,y = byg, vychddza odtial b5, = b5
pre 0 < k < 15, teda ¢leny b,, aZ by, sa dali doplnif bez
poditania. Obe metédy mozno pouzif sidasne, ak defi-
nujeme (nezmenenym vzorcom) &, pro vietky celé =
a vypotitame ¢&isla ¢, = a, MOD 25 pre n = —1 az 8.
Pretoze vyjde c_, = ¢,, ¢4 = ¢,, platf c_, = ¢,, €150 = ¢,
pre vietky n, z éeho odvodime ¢, = ¢; = 24.

Uloha 9.9. Zistite dve &islice pred a dve &islice za de-
satinnou ¢iarkou v disle

B =(Ve +Vz)™
Riedenze. Plati

B =((V& + V2F)° = (8 + 4 V3)".
PoloZme
a,=(8 +4)3)r +(8—4)3)
a skimajme postupnost (a,, a,, a,, ...).
PretoZe 8 + 4 V3, 8§ — 4 V3 st korene kvadratickej rov-
nice
2 — 16z + 16 = 0,

vyhovuje postupnost (e, @,, @,, ...) rekurentnému
predpisu

a”+2 = 16a"+1 - 16041..
Dalej vieme a, = 2, a, = 16. Znova oznadéme b, =
= a, MOD 100 a poditajme ¢leny postupnosti (b,, b,
by, ...) az pokial nezistime opakovanie:
nl] 0 1 2 3 4 5 6 7 8 9 10 11
b,,l 2 16 24 28 64 76 92 56 24 88 24 76
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nf12 13 14 15 16 17 18 19 20 21 22 23
b..]32 96 24 48 84 76 72 36 24 8 44 76

n|24 25 26 27 28 290 30 31 32
b,(12 76 24 68 4 176 52 16 24

Vidime teda

by = by, by = b,,
a preto pre vietky n = 1 plati
bniso = ba.
Specidlne bg, = by = 24, a preto
B +(8—4]3)" = 24 (mod 100).
Vypoétom na kalkulagke zistime
(8 —4 J/3)° = 32,0348

(stadf ném zistit 32,03 < (8 —4 |/3)° < 32,04), a po-
tom uZ [ahko zistime, Ze hladané &islice éisla B sa ...91,

9... O
PredloZené rieSenie ilohy 9.9 je samostatné, nezi-

vislé od rieSenia predchddzajiicej uloby 9.8. S vyuZitfm
tohto riesenia sme si mohli znacéni éast vypodtov use-
trit. Plati totiz '

B=(V6+V2)" =(8 + 4)3)" = a=.(2 + |3)"
a z rieSenia dlohy 9.8 vieme

(2 + V3)° +(2—V3)° = 74 (mod 100).
Ak tito kongruenciu vyndsobime &islom 4%, dostaneme

B + 4%.(2 — |/3]° = 4%.74 (mod 100)
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a odtial po uprave
B +(8—4]/3)° = 24 (mod 100).

Uloha 9.10. Zistite tri &islice pred a tri &slice za desa-
tinnou &iarkou v ¢fsle

¢ =(Vz + Vs)*™
Riedenie. Oznaéme
A=(V2+ V50" + (V2 —V5)™

Podla binomickej vety plati

500 1000
— 500 —k
A= 2.30 ok ).2 Bk,

teda A je celé é&islo. Uréme 4 MOD 1000.

Na to najprv zistime, ktoré &leny sumy vpravo sdi né-
sobkami 500. Zrejme sl také vietky &leny pre 3 <k <
< 498; na to stadi uvaZit priamo vypisané exponenty
tisel 2, 5 v tomto vyraze. Avsak aj ¢leny pre k = 1, 2,
499 sti ndsobkami 500, pretoZe prisludné binomické koefi-
cienty si nasobkami 250. Preto platf

A = 2.(250 4 559) (mod 1000).

Aby sme uréili A MOD 1000, vyuZijeme rozklad 1000 =
= 8.125 (a nesidelitelnost &fsel 8, 125). Pri poéitani mo-
dulo 8 dostdvame

A = 2.(200 4 550) = 2 2510 = 2, 1250 = 2 (mod 8).

Pri poditani modulo 125 s vyuZitim KEulerovej vety
dostdvame

A = 2.(2500 | 5500) — 2501 — Q501 MOD 100 —

= 2 (mod 125).
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Teda platf 8/(4 — 2), 125/(4 — 2), a teda aj 1000|(4 —
—2), t. j. A MOD 1000 = 2.
Teraz vyuZijeme rovnost

C=a—(JZ—V5)™

a odhad 0 <|}2— 5" < [2,3 — 1,410 < 0,001.
Preto hladané &islice &isla C st ...001,999... O

Uloha 9.11. Urtit dve &islice pred a dve &islice za de-
satinnou &iarkou &fsla

D = (3 + V5)"™.
Riedenie. Plat{ D = (8 + 2 [/16). UvaZujme po-
stupnost (a,, a,, @,, ...) dani predpisom

a, = (8 + 2|15 + (8 — 2 J/15]".
Pretoze &fsla 8 + 2 /15, 8 — 2 }/15 sii korene kvadra-
tickej rovnice
xt = 162 — 4,
vyhovuje postupnost (a,, a,, @,, ...) rekurentnému
predpisu
Gnye = 16a,,, — 4a,.
Tento predpis spolu s rovnostami
' a, = 2, a, = 16
jednoznaéne urduje postupnost (a,, a,, ay, ...).

Aby sme uréili ag; MOD 100, poéfitajme ¢&isla b, =
= a, MOD 100, a2 kym nezistime opakovanie. Cleny
postupnosti (b,, b,, by, ...) budeme potitat podla re-
kurentnébo predpisu
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bn+2 = (16bn+1 - ”) MOD 100.
n| 0 1 2 3 4 5 6 7 8 9

10

11

b,,' 2 16 48 04 72 36 88 64 72 96
n|12 13 14 15 16 17 18 19 20 21

48
22

b,,’52 96 28 64 12 36 28 04 52 16

48

84

Plati teda b,, = b,, b,, = b;, a preto pre vietky » = 1
Platf by ,n = b,. Preto by = bgginaz0 = by = 52. Teda

plati

D + (8 — 2 )15 = 52 (mod 100).
Dalej odhadneme

0 <(8—2)15f < (8—2.3,8)%0 — 0,450 < 0,01.

Teda hladané &islice &fsla D sid ...51,99... (J
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10. ALGEBRAICKE
ROVNICE

Uloha 10.1. Zistite, ¢ méi kvadratickéd rovnica
22+ 8 .2+ 9 =0
redlne korene.
Riedenie. Diskriminant tejto rovnice je
D=8 4.7 9°
UkédZeme, Ze D < 0; na to odhadujme
g2 - 4929 — qealt - q2ald _ g2aMS _ ge@Bf _
=70 7 g P9
teda D < 0 a rovnica nem4d redlne korene. [J
Uloha 10.2. Dokaite, %e kvadratickd rovnica
5% 22+ 6%.x + 4% =0
m4a dva rézne redlne iraciondlne korene.
Riedenie. Diskriminant tejto rovnice je
D=6 —4.5" 4" > 6.6".6" —4.5".4¢ >0,

teda rovnica ma redlne korene. Tieto korene sl racionédl-

ne prave vtedy, ked |/ D je racionélne (a teda prirodzené)
¢&islo, t. j. ked D je stvorec. UkdZeme viak

109



(6 —1) < D <(6*}.
Pravé nerovnost je zrejméd a na dékaz lavej stadi uvdZit
(6" _ 1]’ < 6% 6“ < 6"" _ 61‘“5"‘ —
=6 —6.6".6¢ <6 —4.5". 44 = D.

Teda D lezf medzi dvoma po sebe idiicimi &tvorcami, &iZe
nemoéze byt stvorec. Preto si korene danej rovnice ira-
ciondlne. (J

Uloha 10.3. Dokéite, Ze kvadraticks rovnica
6.2+ Mz 48" =0
mé dva rozne redlne iraciondlne korene.
Riedenie. Diskriminant tejto rovnice je
D=m7%"_4.6"8" 40" —4.48"
Aby sme dokézali D > 0, musime dokédzat

49y
| [4_8] >4
Na to stadf odhad
49 )" 1y’ g°
[E) =(1+4—8) >l+ﬁ>4'

Teda plati D > 0 a rovnica mé dva redlne korene. Eite
treba dokdzat, Ze tieto korene nie sii raciondlne. Na to
stadf ukdzaft, Ze ]/D je iraciondlne éfslo, teda Ze D nie je
Stvorcom. Na to uréime D MOD 5. Pretofe ¢(5) = 4,
9°MOD4 =1 (a 49, 48 nie si ndsobky 5), plati
D MOD5 = (49'— 4.48Y) MOD 5 =(4— 12) MOD 5= 2.
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Aviak 2 je kvadraticky nezvyfok modulo 5, preto D
nie je Stvorec. [J

Ulohs 10.4. DokéZte, Ze rovnica
(1 7.8 +8%.28 + 9.2+ 10 =0
mé prive jeden redlny koreii.

Riedenie. Oznadme f(x) Iavi stranu rovnice (1). Funk-
cia f(z) redlne premennej z je spojitd, /E‘—IO"l .) <0
a f(0) > 0, teda rovnica (1) mé redlny korefi (medzi
—10""° & 0). NemdZe mat viac reslnych korefiov, pre-
toZe funkcia f(z) je rastiica.

Jej derivicia
f@=37.2+282z+9
je totiZ kladnd, pretoZe f(0) > 0 a rovnica f'(z) = 0 md
diskriminant
(2.8 —4.3.77.9° <88 9 <0,
teda nem4 redlné korene. [J

V niekolkych dalsich tlobhdch sa budeme zaoberaf
rovnicou (1) a jej korefimi. Pokial budeme pracovat
s komplexnymi &islami, nebudeme vidy terminologicky

rozliSovat tieto &isla a ich obrazy v rovine komplexnych
&fsel.

Uloha 10.5. DokéZte, e obrazy korefiov rovnice (1)
z predchéddzajicej dlohy nie si vrcholy rovnostranného
trojuholnika.

Riedenie. Odvodime nutni podmienku na to, aby ko-
rene rovnice

(2) A2® + B + Cz + D =0
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boli vrcholy rovnostranného trojuholnfka a potom uké-
Zeme, Ze rovnica (1) ju nespliia. Nech korene z,, z,, z,
rovnice (2) sd vrcholy rovnostranného trojuholnika

at =% (z, + z, + x,) je jeho taZisko. Cisla z, —¢,

z; —t, z; — ¢ maju rovnaké absohitne hodnoty a ich
amplitudy sa liSia o ndsobky 120°. Ich tretie mocniny sa
potom navzédjom rovnaji, preto x,, x,, Z, 84 pre nejaké
komplexné éislo u korene rovnice (z — t)® = u, teda po
dprave

8 — Jx® 4 3trx — (12 4+ u) = 0.

Rovnica (2) je A-ndsobkom poslednej rovnice (pretoe
obe tieto kubické rovnice maji rovnaké korene), a teda
—A.3% =843 =C,—A.(t* +u) = D.

Preto
B = (4.3t)* = 34.4.3t*2 = 34C.

Nédjdend nutnd podmienka B2 = 34C v pripade rovni-

ce (1) déva
.88 = 3.7 9%,

éo zrejme neplati, napriklad preto, Ze lava strana je
pirna a prava neparna. Teda korene rovnice (1) nie si
vrcholy rovnostranného trojuholnika. O

Nutnd a postalujica podmienka na to, aby korene
rovnice (2) boli vrcholy rovnostranného trojuholnika, je

B = 34C a BC # 94D.

Pridanie druhého vzfahu zabezpeduje, Ze (2) je kubicka
rovnica (t. j. 4 # 0), a Ze nem4a trojndsobny koreri.

V nasledujicej Glohe ukdZzeme, Ze trojuholnik, ktorym
sme sa zaoberali, je ,,skoro rovnostranny‘‘.
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Uloha 10.6. Dokézte, e velkosti uhlov trojuholnika
s vrcholmi v korerioch rovnice (1) z dlohy 10.4 sa lfSia
od 60° 0 menej ne% 1",

Riedenie. Nech korene rovnice (1) st a, b + ic, kde a,
b, ¢ sl redlne éfsla, ¢ > 0. (Tu uZ vyuZivame rieSenie
tlohy 10.4.) Oznadme

a8 0 1010

S ==

Zo vztahov medzi korenimi a koeficientmi normovanej
kubickej rovnice (ktori dostaneme z (1) predelenim

&slom 77") méme
a—+2b =—R, 2ab + b 4 c2 =8,
a.(b® 4 ¢?) = —T.
UvaZovany trojuholnik je rovnoramenny, so ziklad-

fiou kolmou na redlnu os a hlavnym vrcholom a. Nech
velkost uhla pri hlavnom vrchole je 2a. Potom tg a=

¢t 1 3t—(b—a)
b—ap 3 3(b—ap
_ 4.(3¢2— (b—a)?)

T 3.(2b—2a¢

Aviak ¢ = 8 — 2ab — b2, 2b — 24 = —R — 3a, a pre-
to
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1 4.(35 —6ab— 3b* —b* + 2ab —a?) _

tgta— 3 = 3.(—F — 3y
_ 4.(38—4b*—4ab—a?) 4.(3S—(2b +a)) _
3.(R + 3a) 3.(R + 3a
_ 128 —4Rr
" 3.(R + 3ap®
Platf

90 =77 s-asi
195 — 4R — 12.9%.7 4.8 >

72-77

99’ - 8"95"

>0

1
a preto tg? a —3 > 0. Na odhad z druhej strany naj-

prv odhadneme éislo a; na to oznad¢fme f(x) lavii stranu
rovnice (1); z tlohy 10.4 uZz vieme, Ze f(x) je rastica
funkcia redlnej premennej z. Platf

S 1/7] =7"(-T + R.T/T‘ﬁ—s.i/T +7T)=
— 8’8,(101010)2”.(777)'2’3 _ 9,0 .'(10‘010)1/3.(7,1)-1/3 -
> 101" — 1041 > 0 = f(a),

3 _
a preto a < — VT . Dalej plati
Ry — g 737 gl g7 o qqut? 77"

3 —
a preto R < VT . Z dokézanych vzfahov vyplyva
3 [ T
IR + 3a| 23.]a) —R >3.|T—R >2.|T.

114



Preto plat{

tgra Lo 125 —4R 128
2 - — ==
3TRE A T LY

St

< 10%°.1.107%" < 1010,

101" )—z/n _ g '(7,7)-1/:! ( lomloJ—m <

Spolu méme
tga >0 0< tg’a—% < 10710,
a z tychto nerovnosti Iahko zistime

1 1
V3 <tga < V3 +

1
Pl'et:oie O < a<< 90°, tg 300 = W a
tg 30° + tg 0,5"
1 — tg 30°.tg 0,56”

tg (30° + 0,5") = > tg 30° +

" 1 T 1 -10

+ tg 0,5” > V§ + 2180 607 = V§ + 10710,
mdme 30° < a < 30° 4 0,5, teda velkost 2a uhla pri
hlavnom vrchole je medzi 60° a 60°0'1"". Potom velkosti
uhlov pri zédkladni si medzi 59°59'59,5"' a 60°, teda tieZ
sa li%ia od 60° o menej nez 1.

Odhad v tlohe 10.6 sme dosiahli s velmi velkou re-
zervou; na miesto jednej uhlovej sekundy mohla byt
v jej texte napriklad triliéntina ublovej sekundy bez

toho, aby sa rieSenie muselo podstatne zmenit.
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Nasledujtica tloha sa dd vyrieS§if rovnako ako ulohy
10.4 az 10.6, preto ju nechivame na riesenie ditatelovi.
(Pritom bod b) vlastne nemusi robit, ak vyriesi bod c)
tak ako bola rieSend tloha 10.6.)

Uloha 10.7. UvaZujme rovnicu
(3) M. + 8la? o+ 9z 4 10! = 0.

a) Dokazte, Ze rovnica (3) m4a prive jeden redlny korefi.
b) Dokéite, Ze obrazy korefov rovnice (3) v komplex-
nej rovine nie sit vrcholy rovnostranného trojuholni-

ka.
c¢) Uréte uhly tohoto trojuholnika s presnostou +1".

Uloha 10.8. Dokazte, %e redlny korefi rovnice (1)
z ulohy 10.4 je iracionalny.

Riedenie. Predpokladajme obratene, Ze rovnica (1)
mé racionalny koren a : je jeho zikladny tvar (t. j.
reZ, s€ P, D(r,s) = 1). Po dosadeni do (1) a vyna-
sobeni s® dostdvame
(4) 770 + 8 0% 4 99 xs? + 10053 = 0.

Vsetky Gleny okrem prvého si nasobkami ¢isla s, a preto

aj prvy ¢len je nisobkom s, t. j.

s77.73, Avsak D(r,s) = 1, a preto s.7". Rovnako

mozno dokazat aj r 10, Z tychto vatahov a z toho,

e redlny koren rovnice (1) je ziporny, vyplyva.
r=—2m5" s="T7

pre nejaké celé éisla m, n, p také, zZe

0=m =109 07 <1010 0<p =7
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Ak plati 0 <n << 102, tak n + 1 < 2n,n + 1 < 1010,
a preto 5°*1 deli kazdé z &isel 77" .73, 8% .72, 101" g3,
Potom aj 5°*1'9% rs2, ale 519 5ts (pretoze 5|r),
a teda 5"*!|r, Go je spor.
Preto » = 0 alebo = = 10
Upiné obdobne, ak plati 0 < m < 1019, tak 2’"“]9”'.7'32,
ale 21 9°, 2¢s a teda 2m*1|y, €o je spor. Preto m = 0
alebo m = 10,

Teraz pocitajme modulo 3. KedZe m, n sk péarne
a7 = 1 (mod 3), plati

r=—2m5"=—1.1=—1(mod3), s =17 =

= 1 (mod 3).
Z rovnice' (4) potom dostdvame
1.(—1)8 +1.(—1)2.1 + 0.(—1).12 4+ 1. 13 =
= 0 (mod 3),

teda 1 = 0 (mod 3), a to je spor. Preto rovnica (1)
nem4 racionalny korei. 0

Akonahle sme zistili, Ze plati n = 0 alebo = = 1019,
mohli sme spor so (4) dostat tieZ nasledujicimi odhadmi:

Ak n =0, tak r = —2“"0, a potom
778 4 89 g2 4 99 pg2 o 1OV 3
> 77,2300 | g g0 o1 27 4 o0
> — 9310 4 g 77 geeteiteedl gt
> — 9132418 __ 93.5.10° + 101%° >
> — 1o420° __ g8’ 4 gt 5 g
Ak n =10 tak — 10"’ <r < — 59, 4 potom
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77 .90 4+ 8% 2% 4 9% s o+ 101782 <
< — 775019 4 g 10219 77 4 0 4 100777 <
—— ]”.7740-0“-8-1010 + 1080'2-1010477 + O + 1010“’03.77 <
< — 102084107 + 102003107 + lomol.xo" < 0.

Teda (4) neplati, a preto rovnica (1) nemé raciondlny
koreh.
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11. INE ULOHY

Uloha 11.1. Dokéite, Ze existuje 10" po sebe idicich
zlozenych prirodzenych &sel mensich nez 101",

Riedenie I. Pre kaz?dé prirodzené é&islo x oznaéme P(x)
siéin vietkych prvoéisel nepresahujicich z. UvaZujme
koneéni postupnost

P(101%) — 101 — ], P(10%) — 10, ...,
P(10%) — 3, P(1019) — 2.
PretoZze zrejme P(10%°) > 2.10° + 1, si vietky jej
¢leny celé éisla vadsie nez 10'°. Kaidy z nich mé prvo-
&iselny delitel men&f nez 10'° (pre prvy ¢len mdZeme

vziat 101 a pre kaZidy dalsf ¢élen P(101%) — 3 niektory
prvoéiselny delitel é&isla ¢), si to teda zloZené ¢éisla.

Ostéva len ukézat, Ze st mensie nez 101"° a na to staéi
dokézat nerovnost P(101%) < 101",
Pre katdé prirodzens &islo m jo Eislo [ ]delltel'né

vietkymi prvoéislami p medzi z a 2n. Skutoéne, ak <
n)!

)y’
VyuZitim tejto vlastnosti a nerovnosti [n] < 2% pre
n = 5.10° 25.10% a 125.107 postupne dostdvame

< p < 2n, tak p|(2n)!, ale pta!, a preto p|——r (2
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1010

PQo®) = (5. 10°

].P(5.10°) < 2" P(5.10°) <

5. 100
< g.ono.[2)5 11)08]'”25' 108) < 20'5:10° pos 108) <

IA

5.108
215.10"_[122"_ 107]_13(125. 107) < 2175.103.1)(125. 107).
5.

Pre kazdé & = 1 je z 30 po sebe idicich ¢isel 30k + 1,
0 < ¢ < 29 najviac ¢(30) = 8 prvocisel; kazdé z ostat-
nych 22 ¢isel totiz je delite[né dvoma, tromi alebo piati-
mi. Preto podet prvoéisel mensich nez 125.107 nepresa-
huje

125.10
30 +I—?530- -——|.8 < 30 + 42.108.8 < 34.107,

teda plati

P(125.107) < (125.107)24107 < (]0mo)34107 — Jqae10°,
Spolu potom dostdvame
P(10Y) < 9175-10% ] ()34-108 < g80-108 ) gaa-108 <
< 1080-108+34.108 < 101010’

Go bolo treba dokazat. J

RieSenie by sme mohli podstatne skratit vyuZitim
vzorca P(n) = 4" platného pre vSetky n € P; podstatni
ideu z jeho dékazu sme v riesenf vlastne uviedli. Dalgie
rieSenie, ktoré uvedieme, bude kratSie a dosiahneme
podstatne silnejsie tvrdenie nez sa Ziada v tlohe. Jeho
nevyhodou vdak je, Ze sa v nom pouZivaju podstatne
silnejsie matematické vety. Preto napriklad v MO a po-
dobnych sitaZiach by bolo vhodnejsie prvé riedenie.
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Riedenie 11. Oznadme A podet prvocisel mensdich nez
B = 10™"°, Tieto prvotisla rozdelia ostatnych B — A
prirodzenych é&isel nepresahujucich B do A neprazdnych
intervalov po sebe iducich celych &isel (meczi 2, 3 je
totiZz prazdny interval). Teda asponi jeden z nich obsahu-

. | B—4 B . .
je asponl— Y _[»;4 |—] ¢isel. Avsak
A=< mBT4" a preto
I.g.l_lg;—~ —1=|InB|—5 =
InB—4

=[10"In 10| — 5 = 2,3.10%,

Teda existuje aspon 2,3.10!° po sebe idicich zlozenych
prirodzenych &sel mensdich nez 10", O

Uloha 11.2. Dokite, Ze &slo B + 1, kde B = 101",
nem4 prvodiselny delitel mensi nez 12 000.

Riedenie. Predpokladajme, %e p je prvodislo, p|(B + 1).
Potom platf 10" == —1 (mod p), 102" = 1 (mod p).
Zrejme D(10, p) = 1, a potom z malej Fermatovej vety
vyplyva 107! = 1 (mod p). Podla KEuklidovho algo-
ritmu existuju celé éisla z, y také, Ze plati

D3.101%, p—1) =x.2.101°—y . (p — 1);

Tahko moino tieZ zariadif z, y € N.
Potom plati

105210 — Jou.trD (mod p),
a odtial .
]01)('.'.10‘0.1"1) =1 (mod p)-
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Na druhej strane mame

10209'%.2-0 &= | (mod p), lebo 10 &= 1 (mod p),
a preto
D101, p — 1) # D(2.10°, p — 1).

To je mozné len tak, Ze plati 2'!|(p — 1), t. j. p je tvaru
2048k + 1. Avsak Ziadne &fslo tohto tvaru menSie neZ
12 000 (t. j. pre k < 5) nie je prvoéislo, pretoZe

3/2049, 174097, 5/6145, 3|8193, 7|10 241.

Preto p = 2048.6 + 1 > 12 000, &0 bolo treba uké-
zaf. O -

Keby sme chceli odhad 12000 zvysit na 24 000,
museli by sme okrem iného dokazat, Ze 12 289 a 18 433
nie su delitele ¢isla B + 1. To by sme mohli najlahsie
urobif tak, Ze by sme vypoéitali ¢isla B MOD 12 289,
BMOD 18 433 za predpokladu, Zze 12289, 18 433 sd
prvodisla. Pri tychto vypoétoch by sme pouzili mald
Fermatovu vetu. Pritom by sme nemuseli overovat, Ze
12 289, 18 433 st skutoéne prvoéisla; ak by totiZ boli
zloZzené, uréite by nedelili ¢islo B + 1.

Uloha 11.3. Dokéite, e &slo B + 1, kde B = 101",
mé aspon jedendst réznych prvoéiselnych delitelov.

Riedenie. Oznadme A; = 102"5 (teda B = 4,,).
Pre kazdé 7 € N platf

A+ 1 =(A—A) + A4F— A, +1).(4;+ 1)

(my vsak tento rozklad potrebujeme len pre i = 9, 8,
..., 0). Oznatme C; = A} — A} + A} — A; + 1. Platf

Ci— (4] — 24} + 34, — 4).(4; + 1) = 5,

122



teda ak nejaké prvocislo p deli C; aj A4; + 1, tak p!5,
tedap = 5. Avak 5} A; 4 1, a preto si &isla 4; + 1, C;
nesideliteIlné. Potom je C; nesideliteIné aj s kazdym
delitelom é&fisla A; + 1. Teda

B + 1 = CyC0,0CCCsCCC,. (44 + 1)

je rozklad éisla B + 1 na jedendst po dvoch nesideli-
teInych é&initelov (zrejme viaésich neZ 1). KaZzdy z nich
mé prvodéiselny delitel, pricom tieto delitele si po dvoch
rézne. Teda B + 1 m4é asponi jedendst prvodiselnych de-
litelov. O

Uloha 11.4. Nech. B = 10" a ¢ znamena Eulerovu
funkciu. Rozhodnite, ktoré z ¢&isel @(B), (B + 1) je
vidgie.

Riedenie. Pre kazdé z € N plati

w2 1= )

(siéin sa berie cez vietky prvodiselné delitele z). Podla
tohoto vzorca

B=B[1—1 [1—' 2B
wB) = ( _2]' 3]"3 '
Odhadneme teraz ¢(B + 1) zdola. Na to rozloiime

mnoZinu Q vietkych prvodiselnych delitelov &fsla B + 1
do Atyroch mnozin

Q ={peQ;p=10%Q, ={peQ;10* < p < 108},
Q, ={peQ;10° <p <10"};,Q, = {p €Q; 10*° < p}.
Potom zrejme plati
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. ll _},,]. I 1_,.‘,_).
PEQ, PJ) reaq, r
Odhadneme siéiny na pravej strane; budeme pritom
vyuzivat vysledok ziskany v ilohe 11.2, Ze kaZdy prvo-

Giselny delitel éisla B + 1 je tvaru 2048k + 1 a vadsi
nez 10 000. Podla toho moZno kaZdy éinitel v prvom

. . . 1 ..
sucine odhadnut zdola éislom 1 — Jok ’ ¢initele v ostat-

nych troch s@éinoch moino po rade zdola odhadnit
.o . 1 1 1

dislami 1 — Jo5’ 1— Jos ° 1— Toie - Vzhladom na
vysSieuvedeny tvar prvociselnych delitelov &isla B + 1
mohutnosti mnozin Q,, Q,, Q, po rade neprevysia 500,
5.104, 5.10% Mohutnost » mnoZiny Q, odhadneme

zo vzfahu Il p < B + 1. Odtial vyplyva (10 < B,
€ Q,
teda 10n g' 1019, teda n < 10° Preto plati

@B -+ 1) > (B + ]).[1 _’]?F)m(l . i:)‘_)s.m“.

1 st 1 \e®
'[‘— 'ms] -[1——@3] ’
500 5.108
o(B 4 1) > (B + 1).(1 — '107‘]'[1 _ ‘ﬁr]'
L] 9
.(1_21!1 .(1_,_‘,& ,
109 1010
@B + 1) > (B + 1).
[ 500 510t 5100  '10°
( 100 T ”7’1’0(‘—76’——W]’
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PB+1)> 5 (B+1)> 2B
Teda plati ¢(B + 1) > ¢(B). O

Uloha 11.5. Pre &slo B = 10" doké¥te nerovnost
(B + 1) > 0,98.(B + 1).

Tito ilohu nechdme na vyriedenie éitatelovi. Jedna
z moinosti zlepsovania odhadu z predchédzajicej tilohy
je rozdelif mnoZinu Q na viac podmno%fn. Dalej moZno
vyuiif, Ze niektoré z &fsel tvaru 2048k + 1 maju deli-
tela 3 alebo 5.

Uloha 11.6. Zistite, kolkokrat sa dislo B = 10*"'* na-
chddza v Pascalovom trojuholnfku.

Riedenie. Mime vlastne zistit pofet usporiadanych
dvojic (x, y) takych, Ze 0 <y <x a

(-

Také su zreyme dvojice (B, 1), (B, B— 1). UkdZeme, Ze
dalsie dvojice (x, y) uZ nevyhovuji; z dévodov symetrie
Pascalovho trojuholnika sa moéZeme obmedzif na pri-
pad 0 <2y <z Pripad y = 0 zrejme nevyhovuje
a pripad y = 1 diva r = B (¢o uzZ médme). Preto stadi
skimat y = 2.

PretoZe 5“"0’(:], pri séftani é&isel x — y, y v sistave

|
o zdklade 5 nastdva aspor 10'° prenosov, a teda ¢islo x
je v tejto sistave aspont (10 + 1)-ciferné, t. j. r =
> (5""°). Potom viak y = 2 ddva
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4

teda takto nedostaneme dalSie vyskyty &isla B. Preto
sa ¢islo B nachadza v Pascalovom trojuholniku prave
dvakrit, a to ako

B
(ﬂaako[B_ l]' O
10 000

Uloha 11.7. Zistite, kolkokrat sa &islo 4 = ( 3 000

nachddza v prvych 50 000 riadkoch Pascalovho trojuhol-
nika.

Riedenie. Mame vlastne zistit poéet usporiadanych
dvojic (x, y) takych, Ze x < 50 000 a (;} = A. Dve také

dvojice si (10 000, 3000) a (10 000, 7000), a .pre x =
= 10 000 uz dalsie také dvojice zrejme neexistuji. Uka-
Zeme sporom, Ze neexistuji ani pre ostatné xr < 50 000.

Na to predpokladajme (;] = A a oznaéme z = r — y,

zrejme smieme predpokl;a,daf, y < z. Teraz rozlisme dva

pnpady podla toho, &i je x men&ie alebo vaésie nez 10 000.

Pripad I. Ak x < 10 000, tak y > 3000; inak by bolo
(;) < A. Uvdime teraz prvocislo p = 3001. PretoZe

’

lOOOOJ | 7000] I 3000

plati p| A4, a teda aj p'[ 'z' .
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Aviak z = y = p, a preto p|y!, p|z!, a teda p3|z!, teda
z = 3p = 9003.
Teraz uvdime prvodislo ¢ = 6997. PretoZe

Iloooo - l(_)ogl |3000

(a ¢* > 10 000, teda ndsobky cisel ¢, ¢%, ... sa tu ne-
vyskytni), platf ¢t 4. Aviak q|z!, a preto ¢|y! alebo
q|z!. Pretoie z = y, plati ¢|z!, a teda z = g = 6997.
Teraz znova uvdime p = 3001. Plati z = 2p, a preto

pt|z!. Kedie p|y! a p‘ musi platit p* z!. Teda

121’
z = 4p, a to je spor s predpokladom z < 10 000.

Pripad 11. Nech teraz z > 10 000; potom y < 3000.
UvéZime teraz prvoéislo p = 7001. Plati p|4, plz!,
a preto p?|z!, teda z = 2p = 14 002. (Opakuju sa Gvahy
z pripadu I, preto ich uZ zapisujeme struénejsie.)

Teraz uviime prvoéislo p, = 9973. Pretoze z =
=z —y > p,, plati p,|z!. Aviak p,|A4, a preto pz?:r'
teda z = 2p, = 19 946.

Uz vieme z = 19 946 — 2999 = 16 947. Uvdime teraz
prvodislo p, = 8467. Plati z = 2p,, teda pj|z!, a pretoZe
p,|A plati p}|z!, teda z = 3p, = 25 401.

Dalej uvailme prvoéislo P, = 9967. Plati z =
= 25401 — 2999 > 2p,, teda pf|z!, Keide ps| 4, mame
pa|z!, teda z = 3p, = 29 901. Teraz polozme p, = 8967.
Znova pla.ti P4 A a pretofe z = x —y = 26 902 > 3p,,
plati p3|z!, a potom pi|z!, teda z = 4p, = 35 868.

Uplne obdobne pre p; = 8209 zistime p5|z' pt|z!, a teda
z = 5p, = 41 045. Teraz zvolime p; = 9511 a zistime
pi|z!, pi|z!, teda z = 5p, > 47 555. Nakoniec zvolme
Py = 8 93. Pretoze z = 5p,, plati p?|z, a pretoe p,|4,
plati potom p$|z!, teda z = 6p, > 50 000. Ani tento
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pripad teda neddva Ziadne daliie vyskyty ¢&isla A4
v prvych 50 000 riadkoch Pascalovho trojuholnfka.
Teda v uvedenych riadkoch sa &slo A nachédza

) . 10 000 10 000
prave dvakrat, a to ako ( 3000 ] [ 7000

Nebolo by prili§ fazké dalej zvySovat dolny odhad
pre x a dokdzaf napriklad, Ze &slo A sa uZ dalsfkrdt
nenachddza v prvych 100 000 riadkoch Pascalovho troj-
uholnika. Vystadili by sme pritom s tabulkou prvodisel
do 10 000 akq doteraz. S vyuzitim istého faktu z odseku
3.3 v8ak mozno d6jst podstatne dalej.

10 OOO]
a na-

Uloha 11.8. Dokaite, Ze &slo 4 =| 0
chédza v prvych desiatich miliénoch riadkov Pascalovho
trojuholnika prdve dvakrit.

Riedenie. Nech z, y, z maji rovnaky vyznam ako v rie-
Seni predchadzajicej tlohy. Z tohto rieSenia vieme, Ze
pre z < 14 000 existuji pridve dve rieSenia rovnice

[;] = A. (Teda z pripadu II ndm staéi len tvaha
s p = 7001.) Nech odteraz 14 000 < x < 107, Pretoze

107
7\1 — 1078 3000
(2)= (1) < a0y = 100 < gon <
10 000 9999 7002 7001 _ (10 000
3000 2999° """ 2 1 ~ |3000

musi Byﬁ y > 154. Podla vety 3.4, bod b vSak potom
existuje prvodislo p, r — y < p < x. Potom p’[i], ale
ptA (pretoze p > x— y > 14 000 — 3000 > 10 000),
a preto [;] # A. Teda Sislo A sa od 14 000-ho po 107-ty
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riadok Pascalovho trojuholnika uz nenachddza, &o bolo
treba dokdzat. [

Toto rieSenie je kratSie neZ vysSieuvedené rieSenie
(Tahsej) tlohy 11.7. ale vyuZfivali sme v fom isty fakt
o prvoéfslach, ktorého overenie bez potitata by bolo
naméhavé, aj keby sme mali k dispozicii tabulky prvo-

¢isel po 107,

Pre nasledujiicu ulohu pripomeiime, Ze mreZzové body
v rovine (s danou pravouhlou stGradnicovou sistavou)
si jej body s celoéiselnymi siradnicami.

Uloha 11.9. Uréte podet mrezovych bodov na kruZnici

s polomerom B = 10" a stredom v zadiatku stradni-
covej sistavy.

Riedenie. Rovnica uvaZovanej kruZnice je z2? + y* =
= B®*. Ak obvyklym spdsobom priradime komplexné
¢isla bodom roviny, tak mdme vlastne uréit poéet gaus-
sovskych celych éisel a + bi takych, Ze a* + b2 = B2,
t. j. |a + bi| = B.

Rozklad ¢isla B? na gaussovské prvoéisla je
B = (1 4 )¢ (2 4 )10 (2 — j)210',
Ak a?® 4 b2 = B?, tak (a -+ bi)| B2, preto
a + bi =ik (1 +i)y.(2 +1).(2—i)
pre nejaké celé éfsla k, 7, g, ¢,
0=k=<30=7r=<4.101 0<s =2.10,
0t <2.10%

(Pritom toto vyjadrenie je jednoznaéné.)
Dalgiu podmienku na r, s, ¢ dostaneme zo vzfahu

a—bi = (—if.(1 —i)y.2(—i).(2 + i)
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potom
B? = (a + bi).(a — bi) = 2r.5'",
Odtial vidno r = 2.10%, ¢ = 2.10!° — 3. Teda vo vy-
jadrenf pre @ + bi moZno volif len k, &; parametre r, zt
sd uZ potom jednoznacne urdené. MoZnost{ pre volbu
k, s spolu je
4.(2.10"° + 1) = 8.101 + 4,

a [ahko sa preveri, Ze kaid4 uZ vyhovuje. Teda na kruz-

nici s polomerom B a stredom v zadiatku siradnicovej
sistavy lezi 8.10'® + 4 mreZovych bodov. ]
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