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P Ř E D M L U V A 

• 

V době svých středoškolských studií jsem často toužil po 
knížce, která by mi populární a přitažlivou formou řekla 
o matematice něco více, než to, co jsem znal ze školy; 
tenkráte mnoho takových knih nebylo. Dnes je již situace 
lepší, ale vzpomínka na má studentská léta způsobila, že 
jsem se s radostí pustil do práce na knížce pro naše olym-
pioniky. Protože při matematických olympiádách se uká-
zalo, že jejich účastníci mají slabiny spíše v řešení příkladů 
než v teorii, snažil jsem se do knížky zahrnout co nejvíce 
příkladů, ať již vyřešených v textu, nebo zadaných jako 
cvičení k samostatnému stuidiu. Tato cvičení jsou velmi dů-
ležitá, neboť bez vlastního samostatného řešení příkladů 
látku nikdy dokonale neovládnete. U cvičení označených 
hvězdičkou jsou na konci knihy uvedeny správné výsledky; 
u cvičení označených kroužkem najdete vzadu heslovitá 
řešení. Vždy se však nejdříve pokuste cvičení rozřešit samo-
statně; řešení je uvedeno hlavně pro kontrolu. Neporozumí-
te-li některému příkladu, obraťte se pro pomoc k svému 
učiteli matematiky; nemusíte se však obávat, že neporozu-
míte dalšímu textu, neboť ve velké většině příkladů je další 
výklad na jednotlivých příkladech nezávislý. 

Některé pojmy, které nemusí být pro čtenáře běžné, jsou 
vyloženy na konci knihy ve vysvětlujících poznámkách. 

K pochopení podstaty důkazu matematickou indukcí 
snad úplně postačí první dva články. Ostatní je věnováno 
tomu, abyste se dozvěděli něco více než ve škole. 
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Závěrem bych chtěl poděkovat výboru Matematické 
olympiády za umožnění práce na knížce o matematické 
indukci, nakladatelství Mladé fronty za to, že vyšlo vstříc 
mým přáním a s. doc. J. Vyšínovi, který přečetl celý rukopis 
a přispěl svými připomínkami k zlepšení výkladu. 

Rudolf Výborný 
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1. t J V O D 

V této knížce se velmi často setkáme s přirozenými čísly. 
Jsou to čísla 

1, 2, 3, . . . . 

Znalost počítání s přirozenými čísly (právě tak jako základní 
poznatky o dělitelnosti) budeme předpokládat. Čtenáře 
zajímajícího se o soustavné vybudování teorie přirozených 
čísel od úplného začátku musíme odkázat na knížku Bedři-
cha Pospíšila „Nekonečno v matematice" [1]*). 

V matematice se setkáváme s tvrzeními**), která závisejí 
na přirozeném čísle. Takovými tvrzeními jsou např.: 
1. Pro přirozené číslo n je číslo 2 « + l číslo liché. 

2 . P r o p ř i r o z e n é č í s l o n j e č í s l o 2 n - j - 1 č í s l o s u d é . 
3. Je-li n přirozené číslo, není 5w2+1 úplný čtverec (tj. 
neexistuje přirozené číslo k tak, že 5ra2+1 = k2). * * 
4. Součet čtverců dvou po sobě následujících přirozených 
čísel zmenšený o jednu je dělitelný čtyřmi. 
5. Pro přirozené číslo w platí vzorec 

_L + J_ + J_ + + _ i _ = _JL.. 
1 . 2 2 . 3 3 . 4 ' " « ( « + 1 ) « + 1 

*) Viz t i ž [2] a [3] • seznamu literatury na k o n d knihy. 
**) Zde užíváme slova tvrzeni v poněkud j ín ím smyslu, než jste 

zvykli ze Školy u matematické vi ty , která má předpoklady a tvrzeni. 
Pro nás v této knížce bude tvrzením ni jaká (gramatická) vi ta . Viz 
k tomu příklady 1—5. 
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Abychom nemusili vždy opakovat, že písmeno n (resp. 
k) označuje přirozené číslo, umluvíme se, že písmeno n 
(resp. k) bude v této knížce vždy označovat přirozené číslo. 
Pak můžeme např. první tvrzení kratčeji vyslovit: Číslo 
2n + 1 je liché. A podobně u dál ích tvrzení. 

První tvrzení je zřejmě pravdivé pro každé n, druhé je 
zřejmě nepravdivé. Ale jak je to s dalšími ? Vezměme třetí 
tvrzení a dosazujme postupně za n = 1, 2, . . . : 

5.12 + 1 = 6, 
5.22 + 1 = 21, 
5.42 + 1 = 81 = 92. 

Vidíme, že pro n = 4 je 5n2 + 1 = 81, tj. je to úplný 
čtverec, tvrzení 3 tedy není správné. Mohli bychom si sice 
položit otázku, pro která n je číslo 5w2 + 1 úplný čtverec, 
ale to by nás odvedlo od našeho tématu, a proto se spoko-
jíme s tím, že tvrzení 3 neplatí pro všechna ti. 

Vyšetřujme nyní čtvrté tvrzení a opět postupně dosa-
zujme za n přirozená čísla: 

22 + l 2 - = 4, 
32 + 22 - = 12, 
42 + 32 - = 24, 
52 + 42 — = 40, 
62 + 52 - = 60, 
72 + 62 - = 84, 
82 + 72 - = 112, 
92 + 82 - = 144, 

102 + 92 - = 180. 

Vidíme, že tvrzení je správné pro prvních deset přiro-
zených čísel. Můžeme z toho usoudit, že platí pro všechna 
přirozená čísla ? Pochopitelně, že nikoli. To bychom si počí-
nali jako člověk, který desetkrát za sebou potká na cestě do 
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práce svého přítele N a potom tvrdí: „Po celý život každý 
den ráno budu potkávat na cestě do práce svého přítele N . " 
Máme sice právo se domnívat, že tvrzení 4 platí, ale chce-
me-li zaručit jeho platnost, musíme je dokázat. Jak provést 
důkaz? 

Předpokládejme, že číslo n2 + (« + l)2 — 1 je dělitelné 
čtyřmi (to je, jak víme, splněno pro n = 1, . . . , 9), a zkusme 
potom dokázat, že (n + l)2 -f (n + 2)2 — 1 je dělitelné 
čtyřmi'. Podaří-li se to, usoudíme, že tvrzení 4 je správné pro 
všechna přirozená n\ neboť naše tvrzení platí pro n = 1, 
. . . , 9; ale platí-lipro 9, platí i pro 10, platí-li pro 10, platí 
i pro 11 atd. Zbývá tedy dokázat, že z dělitelnosti čísla w2+ 
+ (« + l)2 — 1 čtyřmi vyplývá dělitelnost čtyřmi čísla 
(n + l)2 + (n + 2)2 - 1. Zřejmě je 

A„ = (n + l)2 + (n + 2)2 - 1 = 
n2 + (n + l)2 - 1 + 4« + 4. 

A„ je součtem dvou čísel n2 + (n + l)2 — 1 a 4« + 4, 
z nichž každé je dělitelné čtyřmi [první podle předpokladu 
a druhé proto, že 4« + 4 = 4 (n + 1)]; je tedy samo děli-
telno čtyřmi. 

Všimněme si, že při důkazu bylo nepodstatné to, že jsme 
ověřili platnost vyšetřovaného tvrzení pro prvých deset 
přirozených čísel; stačilo si všimnout, že tvrzení je správné 
pro n = 1 a potom dokázat větu vytištěnou kurzívou. 

Metodě důkazu, které jsme použili, se říká důkaz mate-
matickou indukcí (často se užívá též termínu úplná induk-
ce). Spočívá na této větě: 

Matematická indukce. Jestliže T„ je tvrzení závislé na 
přirozeném čísle na 

I. Tn platí pro n = 1 a 
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II. z platnosti Tn vyplývá platnost Tn+1,*) 
potom Tn platí pro všechna přirozená n. 

Důkaz matematickou indukcí sestává tedy ze dvou 
kroků. Z ověření platnosti tvrzení pro n = 1 a z důkazu 
věty II. Druhé části (důkazu věty II) se často říká závěr 
z n na n + 1. Důkazem věty o matematické indukci se 
budeme zabývat v příštím článku. Nyní užijeme matema-
tické indukce na několika příkladech a ukážeme si důleži-
tost obou částí I i II. 

P ř i k l a d 1. Dokažme správnost tvrzení 5 na str. 5 pro 
všechna n. Označme 

Í = _ L + J _ + 

" 1.2 2 .3 m(W + 1) 

Máme dokázat platnost vzorce 
_ n 

$n
 ~ « T T (l) 

pro všechna n. Užijme matematické indukce. Vzorec (1) 
platí pro n = 1, neboť 

_ 1 _ 1 
S l ~ r 2 ~ r 

Nechť (1) platí pro přirozené číslo n. Máme dokázat vzorec 

ÍB + 1 n + 2 (2) 

*) Užíváme úmluvy, že písmenem n označujeme přirozené číslo. 
Přesněji bychom II . měli vyslovit takto: je-li n libovolné přirozené 
číslo a Tn platí, potom plati i T„+1. 
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Zřejmě je 
, 1 n , 1 

í- + i ( n + l H n + 2 ) n + 1 ^ (» + 1)(«+ 2)" 

Úpravou máme 
f (« + O2 

(n + 1) (« + 2) 

To však je již vzorec (2). Důkaz je hotov. 

P ř í k l a d 2. Označme ř „ = l + 2 + . . . + w a dokažme 

_ n f r + 1 ) 
In — -2 (3) 

Vzorec je zřejmě správný pro n = 1. Předpokládejme (3) 
a vypočtěme t„+1: 

r _ ř i M i , - (" + ! ) ( » + 2) 
r« + i = ř„ + « + l ^ 

To je vzorec (3), kde místo n je dosazeno n + 1, a právě to 
jsme měli dokázat. 

P ř í k l a d 3. Určeme vzorec pro součet 

r„ = l 3 + 23 + 33 + . . . + rř. 

Vzorec pro r„ se pokusíme uhádnout tím, že vypočteme 
r„ pro několik prvních n. Potom užijeme úplné indukce. 
Máme 

r i = 1, 
r2 = 9 = 32, 
r3 = 36 = 62, (4) 
r4 = 100 = 102, 
r8 = 225 = 152. 



Z toho usuzujeme, že r„ je asi úplný čtverec, tj. r„ — k2. 
V jakém vztahu je číslo k k číslu n ? Prohlížíme-li pozorně 
vzorce (4), vidíme, že čísla na pravých stranách jsou součty 
indexů u předcházejících čísel r„. Skutečně 

1 + 2 = 3, 
1 + 2 + 3 = 6, 

1 + 2 + 3 + 4 = 10, 
1 + 2 + 3 + 4 + 5 = 15. 

To nás vede k domněnce, že ¿ = 1 + 2 + . . . + « , tedy 

(podle příkladu 2)k= n l \ takže r„ = ("4
+ 1)2. 

Dokažme to úplnou indukci. Domněnka je správná pro 
n = 1 (dokonce pro n = 1, 2, . . . , 5). Vypočtěme rn + 1. 
Zřejmě je 

r» + i = rn + (n+ If = (n + l)2 + n + l ) = 

_ (« + l)2 (w2 + 4« + 4) _ (n + l)2 (n + 2)a 

Důkaz je hotov. 

Přiklad 3 je do jisté míry pro použití indukce typický. 
Věta o matematické indukci nám nic neříká o tom, jak 
objevit novou poučku či vzorec. Nový poznatek (v našem 
případě vzorec pro součet l 3 + 23 + . . . + m3) zjistíme 
zpravidla pokusy (které nemusí být ihned úspěšné) a mate-
matické indukce užijeme pouze k důkazu. 

Toho, kdo by se domníval, že není třeba používat úplné 
indukce a že postačí přesvědčit se o platnosti nějakého 
tvrzení T„ závislého na čísle n pro dostatečně velký počet 
přirozených čísel, snad přesvědčí o nesprávnosti tohoto 
názoru následujíd příklady. 
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P ř í k l a d 4. Rozkládejme mnohočlen x" — 1 pro různá n. 
Dostaneme 

x — = x — 1, 
1)(*+1), x2 - = ( * -
1, 
1)(*+1), 

X3 - = ( * - 1) (** + * + 1 ) , 
X4 - = ( x - 1) (* + 1 ) (*2 + 1 ) , 
x6 - = ( * - 1) (*4 + X3 + X2 + X + 1). 

Při tom tvoříme jen takové rozklady, v nichž koeficienty 
jednotlivých činitelů jsou celá čísla. Zdálo by se, že koefi-
cienty jednotlivých činitelů rozkladu jsou buď + 1 , nebo — 1. 
To však není pravda. Těžko bychom to zjistili postupným 
dosazováním za n a rozkladem, protože teprve pro n = 105 
má mnohočlen xn — 1 v rozkladu činitele, jehož koeficient je 
- 2 . 

P ř í k l a d 5. Zvolme přirozené číslo k> 1 a vyšetřujme ne-
rovnost 

k n + $ > i + J L C5) 
kn — \ kk K ' 

a její zvláštní případ pro k = 5, 

5« + i , , 1 
5 n ^ J > + 5»' W 

Kdybychom postupně dosazovali za n čísla od 1 do 500, 
zjistili bychom, že nerovnost (6) je správná. Neplatí však 
pro všechna n. Skutečně, podle obvyklých pravidel pro 
počítání s nerovnostmi (5n — \ > 0) dostaneme 

3125 > 5 n - \ 
čili n < 625,1. 

Tato nerovnost je ekvivalentní s nerovností (6). Tedy 
k tomu, abychom postupným dosazováním zjistili, že ne-
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rovnost (6) neplatí pro všechna n, museli bychom dosazovat 
přirozená čísla až do čísla 626. To by jistě byla veliká práce 
a přitom zbytečná. Podobně bychom zjistili, že nerovnost 

(5) je splněna pro všechna n < kk-1 + . Je-li k dost velké 

(např. k = 100), je číslo na pravé straně poslední nerov-
nosti nesmírnějVeliké (např. pro k = 100 je to číslo o 199 
cifrách před desetinnou čárkou), mohli bychom celý život 
postupně dosazovat přirozená čísla od 1 počínaje a nabýt 
úplně chybného přesvědčení, že nerovnost platí pro všechna 
n. 

Příklad 5 je zajímavý ještě v jednom směru. Mysleme si, 
že nějaký náš „odpůrce" stále ještě věří, že není nutné 
užívat matematické indukce, ale že stačí ověřit jeho plat-
nost pro dosti velký počet přirozených čísel. Tohoto „od-
půrce" „porazíme" takto: Zeptáme se ho, pro kolik přiro-
zených čísel tedy stačí provést zkoušku. On řekne třeba pro 
tisíc. My se jen pousmějeme a ukážeme mu následující pří-
klad vyvracející jeho tvrzení. Nerovnost (5) je při k = 6 

splněna pro všechna n < 65 + ^ = 7776,083. To znamená, že 

prvních tisíc zkoušek nestačí, neboť nerovnost (5) je správná 
pro prvních tisíc přirozených čísel, ale neplatí pró všechna 
n. A tu třeba náš odpůrce namítne: Číslo tisíc bylo malé, já 
sám takové číslo neznám, ale možná, že existuje. My mu 
však neumožníme čestný ústup z bojiště, nýbrž ho pora-
zíme na hlavu tím, že ukážeme, že ať si zvolí jakkoli velké 
přirozené číslo N, vždy najdeme k tak, že nerovnost (5) 
bude splněna pro všechna n < N, ale nebude splněna pro 
vůbec všechna n. K tomu zřejmě stačí zvolit k tak, aby 

kk~l + 2£> N, a to je vždy možné. 

Abychom dovršili naše vítězství nad naším odpůrcem, 
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poznamenáme ještě, že nakonec je i pohodlnější provést 
důkaz indukcí než provádět velký počet zkoušek a že celý 
spor jsme s ním vedli jen proto, abychom ukázali, že jeho 
stanovisko je zásadně nesprávné. 

Ukázali jsme si, že při použití matematické indukce by-
chom se mohli dopustit hrubé chyby, kdybychom nedo-
kázali bod II. Nelze však při důkazu vynechat ani bod I. 
O tom nás poučí následující příklady, v nichž „dokážeme"*) 
(tím, že zapomeneme ověřit I) zřejmě nesprávné tvrzení. 

P ř í k l a d 6. Číslo 2n + 1 je sudé. Předpokládejme, že 
a„ = 2n + 1 je sudé. Vezměme číslo a„ + x = 2 (n + 1) + 
+1 = 2n + 1 + 2. To je sudé, neboť je součtem dvou 
sudých čísel, čísla 2 a čísla 2n + 1 (poslední číslo je sudé 
podle indukčního předpokladu). Důkaz je hotov. 

Nikdo by se asi nedopustil omylu z příkladu 6 u tak jed-
noduchého tvrzení. Ale situace může být složitější. 

P ř í k l a d 7. Číslo 23fl + 3*" je dělitelné číslem 73. 
Provedhie závěr z n na n + 1: 

23C + i) + 3«(* +1) = 8 (23n + 34n) + 73.34". (7) 

To je součet dvou čísel, z nichž každé je dělitelné číslem 
73 (první podle indukčního předpokladu).Věta je dokázána. 

Ve skutečnosti je pravý opak správný. Číslo 23n + 34" 
pro žádné přirozené n není dělitelné 73. To si dokážeme, 
tentokrát již bez chyb, matematickou indukcí. 

Pro n = 1 je 23n + 34n = 89 a toto číslo není dělitelné 
73. Tvrzení je správné pro n = 1. Učiňme závěr z n na 
n + 1. Předpokládejme, že 23n + 34n není dělitelné číslem 
73 a vyšetřme číslo 23(" + 1' + 34<" + d). T o podle rovnice (7) 
je součtem dvou čísel, z nichž prvé podle indukčního před-

*) Pochopitelně nesprávně. 
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pokladu není dělitelné číslem 73 a druhé zřejmě číslem 73 
dělitelné je. Tedy toto číslo 23<n+ ^ + 34<" + nemůže být 
dělitelné 73, c. b. d. 

C v i č e n í 

Vypočtěte (vzorec dokažte matematickou indukcí). 

1*. 1 + 3 + 5 + 7 + . . . + 2n - 1. 
2*. 2 + 4 + 6 + . . . + 2 n . 
3*. I2 + 22 + 32 + . . . + w2. 
4*. 1 . 2 + 2 . 3 + 3 . 4 + . . . + . . . + n (« + 1). 

5 * ± + J - + ± + + \ 
• 1.3 3 .5 5 .7 ••• ^ ( 2 w - 1) ( 2 / z + 1) 

5 * i í _ _i_ i 1 
"1 .5 5 .9 " " ( 4 w - 3 ) ( 4 « + l ) 

7. O Dokažte, že pro každé n je číslo 5n + 1 + 62""1 dě-
litelné číslem 31. 

8. Dokažte: Součet třetích mocnin tří po sobě následují-
cích přirozených čísel je dělitelný 9. (Postup je ob-
dobný důkazu tvrzení 4 str. 5.) 

9. Součin dvou po sobě následujících přirozených čísel je 
dělitelný dvěma. 

10. Na základě cvičení 9 dokažte znovu, avšak bez po-
užití matematické indukce, že součet čtverců dvou po 
sobě následujících přirozených čísel zmenšený o jednu 
je dělitelný čtyřmi. (Návod: n2 + (« + l)2 - 1 = 
= 2 n(n+ 1).) 

11. Součin tří po sobě následujících přirozených čísel je 
dělitelný šesti. 
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12. Dokažte a) 1 - 22 + 32 - 42 . . . + (- l)»"1«2 = 

= - í l + i ) . 

ß) 1 + 32 + 52 + . . . + (2n - l)2 = 

_ n (2n - 1) (2m+ 1) 

15 



2. P O K U S O D Ů K A Z V Ě T Y 

O M A T E M A T I C K É I N D U K C I 
• 

V matematice každou novou větu dokazujeme. Dokažme 
si větu o úplné indukci. Důkaz proveďme sporem. Nechť 
tedy platí I a II (viz sfr. 7) a předpokládejme, že T„ není 
správné pro všechna n. Mezi těmito n existuje jedno nej-
menší, to označme «„. Protože platí 7\, je n0 > 1. Položme 
k = n0 — 1, potom k je přirozené číslo menší než n0, a tedy 
TK platí. Podle II platí 7*+1, tj. T„0, to však je spor. 

Zdálo by se, že se nám důkaz podařil. Ve skutečnosti 
jsme nedokázali vůbec nic, užili jsme totiž nedokázaného 
tvrzení, že mezi těmi přirozenými čísly n, pro která Tn ne-
platí, existuje nejmenší. Takové tvrzení by bylo správné, 
kdybychom věděli, že každá neprázdná množina*) přiro-
zených čísel má nejmenší prvek. Jakkoliv se zdá tato věta 
očividná, je přece jen námi nedokázaná. 

Snaha po logicky přesném vybudování matematiky vedla 
k tak zvané axiomatické metodě. Při ní vycházíme z ně-
kolika málo základních vět — axiómů, které přijmeme bez 
důkazu a všechny další poučky z těchto základních axiómů 
(říká se též postulátů) odvozujeme logickou cestou. Na sou-
stavu axiómů klademe dva zásadní požadavky. První je tzv. 
bezespornost. To znamená, že soustava axiómů musí být 
taková, aby se z ní nedala odvodit dvě tvrzení, z nichž jedno 
tvrdí logický opak druhého (např. první tvrzení: číslo 2 je 
sudé, druhé tvrzení: číslo 2 není sudé). Druhý požadavek 
spočívá zhruba v tom, že žádáme, aby axiómů bylo co nej-

*) Vizvvysvětlivky na konci knihy. 
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méně. Přesněji, aby se žádný z axiómů nedal odvodit 
z ostatních. Jestliže tomu tak je, říkáme, že axiómy jsou 
nezávislé. 

Je zcela přirozené, že chceme mít axiómů málo. Čím 
méně tvrzení přijmeme bez důkazu, tím spíše se vyhneme 
možnosti přijmout něco nesprávného. Hlavní důvod, proč 
se snažíme mít axiómů co nejméně, je však zcela jiný. 

Představme si, že jsme některé poučky o dělitelnosti 
celých čísel odvodili z několika základních axiómů. Potom 
nebudeme musit znova dokazovat tyto poučky pro mnoho-
členy, postačí když se přesvědčíme, že pro mnohočleny 
jsou splněny ony základní axiómy*). Přitom ovšem nám 
záleží na tom, abychom nemusili ověřovat axiómů mnoho, 
ale právě naopak, aby axiómů bylo co nejméně. 

Je-li však axiómů málo a chceme-li budovat teorii 
exaktně, nevyhneme se zpravidla tomu, že musíme dokázat 
některé samozřejmé věci. Ostatně to co je samozřejmé 
(vrátíme-li se k našemu příkladu o dělitelnosti) pro celá 
čísla, nemusí být samozřejmé pro mnohočleny. 

Příkladů, kdy se neoprávněně užilo samozřejmého tvrze-
ní, zná historie matematiky mnoho. Zmiňme se o jednom 
axiómu, který ve vývoji geometrie sehrál významnou roli. 

První axiomatické vybudování geometrie pochází od 
starořeckého vědce Euklida (viz historickou poznámku na 
konci knihy). Mezi jeho postuláty byl jeden, který mate-
matiky řádně potrápil. Byl to jeho pátý postulát, tzv. postu-
lát o rovnoběžkách, který zní :**) Daným bodem lze k dané 
přímce vést právě jednu rovnoběžku. Vznikla snaha tento 
axióm z ostatních axiómů***) dokázat a mnohokrát byl 

*) Ve škole j9te ovšem touto cestou nepostupovali, protože tento 
způsob výkladu by činil slabším žákům potíže. 

**) Euklidův pátý postulát zněl původně jinak, to co následuje, je 
jeho ekvivalentní formulace. 

***) Nemůžeme je zde uvádět. 
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předložen „důkaz". Vždy se však ukázalo, že v „důkazu" je 
buď chyba anebo (což je vlastně totéž), že bylo užito něja-
kého „samozřejmého" tvrzení, které je s pátým postulátem 
rovnocenné. 

A podobné chyby jsme se dopustili i my při důkazu věty 
o matematické indukci. Ale čeho smíme při důkazu užít? 
Abychom tuto otázku mohli zodpovědět, musíme si něco 
povědět o axiomatickém založení teorie přirozených čísel. 
Soustavu axiómů (která je bezesporná a jejíž axiómy jsou 
nezávislé), z nichž se dají odvodit*) všechny věty o při-
rozených číslech, předložil italský matematik G. Peano (viz 
historickou poznámku na konci knihy) a jedním z těchto 
axiomů, dokonce jedním z nejdůležitějších je i matema-
tická indukce. Mluvíme proto o principu matematické 
(úplné) indukce a větu o matematické indukci na str. 7 
přijímáme bez důkazu jako axióm. 

Dokažme si nyní, že každá neprázdná množina M přiro-
zených čísel má nejmenší prvek. Protože množina M je 
neprázdná, obsahuje nějaké přirozené číslo n. Vezměme 
v úvafcu všechna přirozená čísla, která patří do M a která 
jsou nejvýše rovna n. Těch je nejvýše k, kde k š n. Kdyby-
chom měli dokázáno, že mezi k přirozenými čísly existuje 
jedno, které je nejmenší, bylo by vše hotovo. My si však 
dokážeme ještě o něco více. Mezi k reálnými čísly a2, 
. . a k existuje jedno, označme ho m, které je nejmenší, tj. 
takové, že platí m S a1} m ž a2, . . . , m á a*. Důkaz pro-
vedeme indukcí. Tvrzení je zřejmě správné pro k = 1 i pro 
k = 2. Uvažujme nyní čísla a l 5 . . . , a*, ak + Podle in-
dukčního předpokladu existuje mezi čísly a15 . . . , ak nej-
menší, označme je mv Ze dvou čísel m1 a ak +1 je jedno 
nejmenší, to označme m. Zřejmě m je i nejmenší z čísel 
a1} ..., ak + 1. Důkaz je proveden. 

*) Přitom je ovšem třeba nejen poučky dokazovat, ale i zavádět 
nové pojmy definicemi. 
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3. J I N É F O R M U L A C E 
• 

V jedné úřadovně státní banky měl pokladník k dispozici 
jen tříkorunové a pětadvacetíkorunové bankovky. Měl 
velké obavy, že při výplatě některé částky bude musit 
shánět drobné. Říkal si: „To bude ostuda, naše úřadovna 
by přece měla mít drobné." Měl však štěstí, vždy se mu 
podařilo patřičnou částku vyplatit. Večer prohlížel, jaké 
částky během dne vyplácel a zjistil, že vyplácené částky 
byly vyjádřeny v celých korunách a byly větší než 48. A tak 
si položil otázku, zda to byla náhoda, že nemusil přiznat, že 
nemá drobné, nebo zda lze každý počet korun větší než 48 
vyplatit jen s pomocí tříkorunových a pětadvacetikoruno-
vých bankovek. Udělal si následující tabulku: 

Obnos v korunách Počet tříkorun Počet 
pětadvacetikorun 

49 8 1 
50 0 2 
51 17 0 
52 9 1 
53 1 2 
54 18 0 
55 10 1 

To je jasné, řekl si pokladník, každý obnos v celých koru-
nách větší než 48 lze vyplatit použitím jen tříkorunových 
a pětadvacetikorunových bankovek. A na nás nyní je, aby-
chom to dokázali. 
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Je-li n vyplácená Částka, má platit rovnice 

n = 3x + 25y, (1) 

ve které celá nezáporná čísla x a y označují počet tříkorun, 
resp. pětadvacetikorun. Abychom se mohli stručněji vy-
jadřovat, řekneme, že přirozené číslo n je příhodné, jestliže 
rovnice (1) má řešení x,y v celých nezáporných číslech. 

Jde o to dokázat, že každé přirozené číslo n, které je větší 
než 48 je příhodné. Víme, že číslo 49 je příhodné. Dříve než 
provedeme závěr z n na n + 1, všimneme si pokladníkovy 
tabulky. K zvýšení vyplácené částky o 1 Kčs se nahradí buď 
8 tříkorun jednou pětadvacetikorunou (ze 49 na 50, z 52 na 
53, z 54 na 55) nebo se dvě pětadvacetikoruny nahradí 17 
tříkorunami (z 50 na 51, z 53 na 54). Nyní jde o to, zda lze 
jeden z těchto postupů použít ke zvýšení vyplácené částky 
o 1 Kčs při libovolném přirozeném čísle n ^ 49. Jinými 
slovy jde o to, zda rovnice 

n+ 1 = 3* + 25 y 

má vždy alespoň jedno řešení v celých nezáporných x a y, 
které dostaneme z celočíselného nezáporného řešení x0, y0 
rovnice 

n = 3x0 + 25y0 

buď podle vzorců 
x = — 8, 
y=y0+h 

(8 tříkorun nahradíme jednou pětadvacetikorunou) nebo 
podle vzorců 

* = *o + 17, 
y = y»-2> 

(dvě pětadvacetikoruny nahradíme sedmnácti tříkorunami). 
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Po této předběžné úvaze proveďme závěr z n na n + 1. 
Buď tedy n příhodné, tzn. existují celá nezáporná čísla x0 
a y0 tak, že 

n = 3x0 + 25 y0 
a nechť čísla 

x = x0 — 8, 
y = 3\> + i 

nejsou*) celočíselné nezáporné řešení rovnice 
n + 1 = 3x + 2 5y. 

Protože x a y je zřejmě celočíselné řešení (stačí dosadit) 
a y ž 1) musí x0 — 8 < 0, tj. x0 < 8 . Dokážeme nyní, že 
x = x0 + 17, y = y0 — 2 je celočíselné nezáporné řešení 
rovnice n \ = 3x + 25 y. Protože to zřejmě je ce-
ločíselné řešení (stačí dosadit) a x 17, stačí dokázat, 
že y > 0, čili y0 > 2. Protože x0 < 8 a « S 49 je 

n - 3x0 49 - 24 , 
= 25 > 25 = 

Je tedy ti + 1 příhodné, je-li n > 48 a příhodné. Z toho 
soudíme, že když 49 je příhodné, že i 50 je příhodné, když 
50'je příhodné, tak i 51 atd. Každé přirozené číslo větší 
než 48 je příhodné. 

V posledním příkladě jsme užili matematické indukce, 
ale v jiné formě než jsme vyslovili v čl. 1. Užili jsme vlastně 
této věty: 

Věta 1. Bud V„ tvrzeni závislé na přirozeném čísle n 
a nechí platí 
I*. V„ je správné pro n = n0, kde n0 je nějaké přirozené číslo, 
II*. je-li n ž w0 a V„ platí, potom platí i V„ + v 

*) Kdyby byla, není co dokazovat. 
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Potom platí tvrzení V„ pro všechna přirozená n is k0. 
Větu 1 si dokážeme z principu matematické indukce. 

Důkaz. Označme znakem 7* tvrzení Vk + « 0 _i . Zřejmě 
Tl platí, neboť T1 = V„0. Nechť tedy k je přirozené číslo 
a Tk platí, potom platí Vk + n 0 - i (neboť k + n0 — 1 
ž n0) a tedy podle předpokladu II* věty platí Vk + nD = 
= Vk + n0 -1> tj- Tk +1- Podle principu matematické 
indukce platí Tk pro všechna přirozená k, to však znamená, 
že platí Vk + «„ - x pro všechna přirozená k, neboli V„ pro 
všechna přirozená n ^ n0. 

Ukažme si ještě dva příklady na větu 1. 

P ř í k l a d 1. Dokažte, že pro n > 5 platí nerovnost 
2" > m2. (2) 

Užijeme věty 1 (nQ = 5). Nerovnost (2) platí pro n = 5 
(32 > 25). Nechť tedy (2) platí pro přirozené n > 5. Z (2) 
plyne 

2n + 1 > 2ra2 = m2 + n2. (3) 

Uvažme, že n - 1 > 4 a tedy w2 — 2n + 1 > 16 a tedy 
re2 > 2« + 1. Z toho a z nerovnosti (3) plyne 

2" +1 > w2 + 2« + 1 = (w + l)2, 
c. b. d. 

P ř í k l a d 2. Věta. Jsou-li n a. g přirozená čísla, potom 
existují celá nezáporná čísla m a r tak, že platí 

n = mq + r (4) 
a 

O á r < q. (5) 

Čísla m a r jsou čísly na q jednoznačně stanovena. 
Číslu r se říká nejmenší nezáporný zbytek při dělení čísla 

n číslem q. 
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Věta je vám dobře známa z národní školy a budete se 
možná ptát, proč ji dokazujeme. Uvědomte si však, že věta 
se vám vžila jen neustálým používáním a že jste si ji nikdy 
nedokázali. 
Důkaz. Nejdříve dokážeme existenci čísel m a r metodou 
matematické indukce (podle věty 1). Je-li n < q, lze vzít 
m = 0 a r — n. Je-li n= q, lze položit m = 1, r = 0. 
Tvrzení je správné pro n ž q. Buď n přirozené číslo, 
n ^ q a předpokládejme, že tvrzení platí pro n, tj. že platí 
(4) a (5). Máme dokázat, že existují celá nezáporná čísla m13 
rx tak, že n + 1 — m1 q + a 0 S r^ < q. Vyjdeme z rov-
nice (4); přičteme na obou stranách číslo 1, tím dostaneme 

n + 1 = mq + r + 1. (6) 

Je-li r + 1 < q, můžeme položit m = m1ar1 = r+ l 
a důkaz je hotov, není-li r + 1 < g j e r + l = g (neboť 
r < q). Potom však z rovnice (6) dostaneme 

n+l = mq+q = (m+l)q 

a lze zřejmě vzít m1 = m + 1 a rx = 0. 
Existence je dokázána. 
Nyní dokážeme jednoznačnost. Nechť tedy platí 

n = m1q + r1} 0 á rx < q, 
a 

n = m2q + r2, 0 á r2 < q. 

Předpokládejme w1>m2 . Odečtením rovnic pro n dosta-
neme: 

0 = (m2 — mj q + r2 — rx 
čili 

(mx-m2) q = r2-rx. (7) 

Avšak m1 — m2^ 1, tedy (% — m2) j ž q\ naproti tomu 
je však r2 — rx žír2 < q, a tedy 
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(mx — m2) q> q> r2 — rXi 

a to je spor s rovnicí (7). Předpoklad m1 > m2 vedl ke sporu. 
Podobně se ukáže, že i předpoklad m2 < mx vede ke sporu. 
Tedy neplatí ani m1 < m2 ani m2 < mx. To znamená, že 
platí mx = m2. 
Z rovnosti (7) pak plyne r2 = rx. 

C v i č e n í 

1. Dokažte, že pro n > 2 platí 2" > 2n + 1. 
2*. Pro která n platí 3" > w3? 
3. Každý obnos větší než 7 haléřů lze zaplatit jen tříhalé-

řovými a pětihaléřovými mincemi. 
4. O Ke každému přirozenému číslu n existuje celé nezá-

porné číslo s a celá čísla a0, ax, ..., a, tak, že 
n = as. 101 + a,-x 10'-1 + ... + ax 10 + a0 

a 
10 > a, > 1, 
10 > a , - ! > 0, 
10 > ^ 0, ' 

10 > á0 > Ó. 

Přitom čísla s, a0, ..., a, jsou číslem n jednoznačně ur-
čena. Slovy: Každé přirozené číslo se dá napsat v desít-
kové soustavě právě jedním způsobem. 

5. Ke každému přirozenému číslu n existuje celé nezáporné 
číslo s a čísla a0, . . . , a„ která jsou buď 0 nebo 1 tak, že 

n = a, 2' + a,-x 2 '"1 + ax 2 + a^. 
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(Vyjádření přirozeného čísla v dvojkové soustavě.) 
6*. Číslo 137 vyjádřete ve dvojkové soustavě. 
7. Dokažte větu. Jsou-li n a q přirozená čísla, q = 2 k, 

potom existuje celé nezáporné číslo m a celé číslo r tak, 
že 

n = mq + r 
a 

—k<r^k. 

(Návod. Můžete užít buď věty z příkladu 2, nebo provést 
důkaz indukci podobně jako to bylo uděláno v příkladě 2.) 
8. Dokažte. Každé přirozené liché číslo větší než 2 je 

tvaru 4 k — 1 nebo 4 A + 1, kde k je přirozené číslo. 
(Návod. Použijte věty z cvičení 7 pro q = 4.) 

9. Dokažte: Každé prvočíslo*) větší než 4 je tvaru 
6k — 1 nebo 6 & + 1, kde k je přirozené číslo. (Ná-
vod. Použijte věty z cvičení 7 pro q = 6 a vyšetřujte 
různé možnosti pro r.) 

10. Ukažte, že neplatí věta obrácená k větě z cvičení 9. (Ná-
vod. Položte k = 4.) 

Nyní si vyslovíme, objasníme a dokážeme větu, která je 
s principem matematické indukce ekvivalentní. Jinými 
slovy: dokážeme ji z principu matematické indukce, a dále 
ukážeme, že z předpokladu, že tato věta platí, vyplývá 
platnost principu matematické indukce. 

Věta 2. Bud M množina přirozených čísel, která má tyto 
dvě vlastnosti: 

T. 1 e M. 

*) Viz vysvětlující poznámku na konci knihy. 
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II ' . Jestliže neM, potom n + 1 e M. 
Potom množina N1 obsahuje všechna přirozená čísla. 

Objasněme si větu 2. Přirozená čísla si představme 
(např.) jako kaménky a množinu AI jako sáček. Do tohoto 
sáčku nevidíme, víme však (podle I ' a II'), že v něm je 
kamének znázorňující číslo 1 a jestliže ze sáčku vytáhneme 
kamének znázorňující číslo n, jsme si jisti, že v sáčku je 
rovněž kamének znázorňující číslo n + 1. Naše věta nám 
říká, že sáček obsahuje všechny kaménky. 

Někdo by se mohl domnívat, že je zbytečné se zabývat 
větou 2, protože je rovnocenná s principem matematické 
indukce, a nic nového nám neříká. To by však byl omyl. 
Mnohdy je k důkazu některé matematické poučky výhod-
nější užít této věty než principu matematické indukce v pů-
vodní formě. Jsou však ještě další důvody, proč formulovat 
větu 2, nemůžeme se však jimi v této elementární knížce za-
bývat. Uvidíme, že věta 2 se nám bude hodit později při 
důkazu věty 4. 

Důkaz. Použijeme principu matematické indukce. Označ-
me T„ toto tvrzení: 

Množina M obsahuje číslo n. 
Podle I ' je 7\ správné. Z II ' vyplývá, že z T„ plyne 

T„ + 1. Tedy platí I. a II. z principu matematické indukce. 
Z toho usuzujeme, že T„ platí pro každé přirozené n, tj. 
M obsahuje všechna přirozená čísla c. b. d. 

Předpokládejme nyní, že věta 2 platí a ukažme, že potom 
platí věta o matematické indukci. Ponechme označení 
z důkazu věty 2, tj. T„ je výrok: Množina M obsahuje 
číslo n. Předpokládejme I a II. Potom 1 e M a dále, platí-li 
T„, tj. neM, potom platí T„ + 1, tj. n + 1 eM. Cíli platí 
I ' a II ' . Podle věty 2 obsahuje M všechna přirozená čísla, 
čili pro každé přirozené n platí neM, jinými slovy T„ platí 
pro všechna n. 
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P ř í k l a d 3. Věta. Každé přirozené číslo lze napsat jako 
2 k nebo 2 k — 1, kde k je přirozené číslo. 

Důkaz. Do množiny M dejme ta přirozená čísla, která se 
dají zapsat ve tvaru 2 k nebo 2 k — l, kde k je přirozené 
číslo. Zřejmě 1 e M , neboť 1 = 2 . 1 — 1. Nechť n e M , 
potom n = 2 k nebo n = 2 k — 1. V prvním případě 
« + 1 = 2 ^ + 1 = 2 (A + 1) — 1, čiliw + 1 e M ; v dru-
hém případě n + 1 = 2 k, čili n + 1 6 M. Podle věty 2 
obsahuje M všechna přirozená čísla, c. b. d. 

Podobně jako z principu úplné indukce jsme odvodili 
větu 1, lze z věty 2 snadno odvodit větu malinko obecnější. 

Věta 3. Bud M množina přirozených čísel, taková, že 
I J e M . 
II. Je-li n S k a « e M , potom n + 1 e M. 

Potom M obsahuje všechna přirozená čísla větší nebo rovná 
číslu k. 

Platnost věty 3 je zřejmá, snadný formální důkaz přene-
chávám čtenáři. Podobně jako věta 2 byla jen jinou formu-
lací principu úplné indukce, je věta 3 jen jinou formulací 
věty 1. 

Než přistoupíme k další větě, probereme jeden příklad. 

P ř í k l a d 4. Věta. Každé přirozené číslo « ž 2 je dělitelné 
nějakým prvočíslem. 

Pokusme se větu dokázat úplnou indukcí (přesněji po-
mocí věty 1). Věta je správná pro n = 2, neboť 2 je prvo-
číslo. Tedy I* je správné. Buď tvrzení věty správné pro 
n a pokusme se je dokázat pro n + 1. Buď je n + 1 prvo-
číslo, potom není co dokazovat. Nebo je n + 1 číslo slo-
žené; n + 1 = r.s, kde 1 < r < w + 1, 1 < s < « + 1. 
Kdybychom mohli nyní užít indukčního předpokladu pro 
r nebo pro s, důkaz bychom snadno dokončili (rozmyslete 
si to!), ale to nemůžeme, neboť nevíme, zda r nebo s je 
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rovno re. Dokonce můžeme s jistotou očekávat, že r 4= re 
a s =(= re. Důkaz se nám tedy nepodařil, ale nyní jistě uzná-
me, že by se nám hodila tato věta. 

Věta 4. Bud T„ tvrzení závislé na čísle n a necht 
I. pro přirozené číslo r platí Tr. 
II. z platnosti Tk pro všechna čísla k, r ^ k < n vyplývá 

platnost T„. 
Potom platí T„ pro všechna přirozená n ^ r. 

Důkaz. Utvořme si množinu /VI takto. Číslo re e M, 
jestliže Tk platí pro všechna přirozená k, r ^ k < re. 
Zřejmě r + 1 e M. Dále z n e M plyne re + 1 e M. Tedy 
podle věty 3 obsahuje M všechna přirozená čísla větší nebo 
rovná r -f 1, tedy Ťn platí pro všechna re, c. b. d. 

Důkaz věty z příkladu 4 provedeme nyní pomocí věty 
4. Buď Tn tvrzení: Číslo re je dělitelné nějakým prvočíslem. 
Zřejmě T2 platí. Nechť platí Tk pro 2 á k < re, čili před-
pokládáme, že každé přirozené k, 2 S k < re je dělitelné 
nějakým prvočíslem. Číslo re je buď prvočíslo nebo číslo 
složené. Je-li prvočíslo, není co dokazovat, je-li složené, je 
dělitelné nějakým přirozeným číslem s, menším než re. 
Číslo i je však dělitelné prvočíslem podle indukčního před-
pokladu, tedy i číslo re je dělitelné tímto prvočíslem. To 
však znamená, že T„ platí. Tedy podle věty 4 platí T„ 
pro všechna re S 2, čili každé přirozené číslo re větší nebo 
rovné 2 je dělitelné nějakým prvočíslem. 

V příkladě 2 jsme si vyslovili a dokázali větu o dělení 
čísel se zbytkem, o které jste se učili již na nižším stupni 
(ovšem bez důkazu). Podobně jako se dají dělit (se zbytkem) 
přirozená čísla lze dělit mnohočleny*). 

Ukažme si nejdříve na číselném příkladě, jak se celý 
výpočet provádí a pak si teprve dokážeme příslušnou větu. 

*) Viz vysvětlující poznámky na konci knihy. 
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P ř í k l a d 5. Má se nalézt částečný podíl a zbytek při dělení 
mnohočlenu 2 x3 — 6 x2 + 2 x + 3 mnohočlenem x — 3. 

Výpočet provádíme takto. Podíl členů nejvyšších stupňů 
bude prvním členem částečného podílu (2x3 : x = 2 x2), 
tímto členem znásobíme dělitele a odečteme od dělence. 
Výpočet zapisujeme takto: 

(2 x3 - 6 x2 + 2 x + 3) : (x - 3) = 2 x2  

- 2 x3 qF 6 x2 

0 0 
Sepíšeme další členy, celý postup opakujeme, až nakonec 
zbytek je menšího stupně než dělitel. Postup výpočtu je 
jasně patrný ze zápisu 

(2 x3 - 6 x2 + 2 x + 3) : (x - 3) = 2 x2 + 2 
- 2 x3 =F 6 x2 

0 0 + 2 x + 3 
— 2x=F 6 

9 
Částečný podíl je 2 x2 + 2 a zbytek je 9. 

Nyní přistupme k větě. ' 

P ř í k l a d 6. Věta. Jsou-li p (x) a d(x) mnohočleny s reál-
nými koeficienty, d(x) 0 0, potom vždy existují mno-
hočleny q(x)zr (x) tak, že 

p(x) = d (x) q(x) + r (x) 

a přitom stupeň r (x) je buď menší než stupeň mnohočlenu 
d (x) nebo je r (x) = 0 pro všechna x. 

Důkaz provedeme indukcí. Přitom budeme v podstatě 
dělit (avšak obecně) mnohočlen p (x) mnohočlenem d (x), 
provedeme však jen první krok dělení a místo dalšího dělení 
užijeme indukčního předpokladu. Ale teď již k věci. 
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Důkaz provedeme indukcí podle stupně mnohočlenu p. 
Nejdříve však musíme vyřídit případ p (x) = 0 (neboť 
nulový mnohočlen nemá žádný stupeň). Všimneme si 
zvláštního případu p (x) rovno nule. Zde lze položit 
q (x) = 0, r (x) = 0 a věta platí. 

Nechť tedy p (x) je stupně n, d (x) stupně m a 
p (x) = an x" + an-x x"-1 + . . . + a0, a» + 0, 
d (x) = bm xT> + bmx"-1 + ... + b0,bm * 0. 

Věta platí, je-li n < m, neboť v tom případě lze zvolit 
q (x) = 0, r (x) = p (x). Věta rovněž platí pro n — tn, neboť 
v tom případě mnohočlen 

P(x)~Pd(x) (bm + 0) 
Dm 

je buď nulový nebo stupně nižšího než m. Lze tedy položit 

1 (x) ~ ir a r(x) = P Cr) ~'rL d W- (Povšimněte si, že 
bm bm 

nyní jsme postupovali jako v příkladě 5.) Víme tedy, že 
věta platí pro všechny polynomy stupně 1, 2 , . . . , m. Před-
pokládejme nyní, že věta platí pro všechny polynomy stup-
ně k, kde m k<n a dokažme její platnost i pro polynomy 
stupně n. Vezměme mnohočlen 

P ( x ) - p * - » d(x). 
bm 

(Postupujeme opět jako v příkladě 5. Od dělence p (x) 
odčítáme dělitele d (x) znásobeného podílem členů nejvýš-

Cln Jf" \ 
ších s tupňů-7—-•) To je mnohočlen stupně nižšího než 

bm X 

n (nemusí být stupně n — 1, protože se mohou, podobně 
jako v příkladě 5, zrušit i některé další členy, nejenom členy 
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nejvyšších stupňů). Podle indukčního předpokladu existují 
mnohočleny q(x) a ř (x) tak, že 

p(x)-^x»-»>d(x) = d(x) q (x) + ř (x) (8) 
um 

a přitom stupeň ř (x) je buď menší než stupeň d (x) nebo 
je ř (x) = 0. 
Úpravou rovnice (8) dostaneme 

p (x) = ( g + q (*)) d(x) + r (x). 

Nyní je zřejmé: položíme-li 

q{x) = ~ X + q (x), r (*) = r (x) 
Vm 

je pro tyto mnohočleny splnčno tvrzení věty, c. b. d. 

Poznámka. Podiskutujme chvíli opět s naším odpůrcem, 
kterému z počátku není jasné, v čem tkví hlavní význam 
věty. Pokusíme se mu vysvětlit, že význam věty spočívá 
v tom, že zaručuje existenci polynomů q (x) a r (jc) a on 
nám hned namítne: Proč by takové polynomy neměly 
existovat? Trpělivě mu vysvětlíme, že by se měl spíše ptát: 
Proč by měly existovat? Neboť pro mnohočleny pouze 
s celočíselnými koeficienty obdobná věta neplatí jak uka-
zuje následující příklad p (x) = x +1, d (x) = 5. Kdyby 
totiž existovaly polynomy q a r tak, že 

* + 1 = 5 q(x) + r (x), 
a r (x) byl stupně 0 nebo r (x) = 0, musel by zřejmě q (x) 
být stupně prvního q (x) = a x + b, kde a a b jsou celá 
čísla. Potom by však 5 a = 1 (koeficienty u * si musí být 
rovny); to však je spor. 
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Poznámka. Podobně jako v příkladě 2 se dokázalo, že čísla 
q a r jsou určena jednoznačně, lze dokázat, že polynomy 
p(x)ar (x) z příkladu 6 jsou jednoznačně určeny polynomy 
q(x) a d (x) (viz k tomu cvič. 4). 

C v i č e n í 

11. Rozmyslete si, že větu 4 lze vyslovit tímto ekvivalentním 
způsobem: BudM množina přirozených čísel taková, že 
I. přirozené číslo r patří do M, 
II. jestliže pro všechna přirozená k, r ^ k < n platí-
keM, potom neM. 
Potom M obsahuje všechna přirozená čísla n^r. 

12. Každé přirozené číslo je součinem konečného počtu 
prvočísel. (Návod. Užijte věty 4 a postupujte obdobně 
jako v příkladě 4.) 

13*. Najděte částečný podíl a zbytek při dělení mnohočlenu 
p (x) mnohočlenem d (x) pro 
a)/>(x) = jc5 + jc2 + 5, d(x) = x + 1; 
b)p(x) = x* + 2*?, d(x) = x*+ 1. 

14. o Dokažte. Polynomy q(x) a r (x) z příkladu 6 jsou 
jednoznačně určeny polynomy p (x) a d (x). 

15. o Je-li a reálné číslo a p (x) polynom s reálnými koefi-
cienty, potom existuje polynom q (x) tak, že platí 

p(x) = (x~a)q(x)+p(a). 
(Návod: Užijte příkladu 6 pro d (x) — x — a.) 

16. Číslo a nazýváme nulovým bodem polynomu p (x) 
(nebo též řešením algebraické rovnice p (x) = 0), 
jestliže/) (a) = 0. Dokažte: je-li číslo a nulovým bodem 
polynomu p {x), potom p (x) je dělitelný dvojčlenem 
x — a. (Návod: Užijte cv. 15.) 
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17*. Víte-li, že polynom p (x) má nulový bod a, určete 
všechna řešení rovnice p(x) = 0 pro 
x)p(x) = x3 - 2x2 - 9x + 18, a= —3; 
(3)p (*) = x6 - 2 x* - 10 x3 + 20 x2 + 9 * - 18, 

a = 2; 

Y ) / > ( x ) = * » + 1 , fl = —1. 
18. Dokažte úplnou indukcí pro * 4= 2 k n rovnosti 

. n + 1 . n x 
sm—^—* s m~2" 

a) sin x + sin 2 x + . . . + sin n x = x 
s i n 2 
. 2 « + l s m — = — * 

P) £ + cos x + cos 2 x + . . . + cos n x = 
2 s i n | 

19. o Dokažte znovu (použitím věty 4 a věty z příkladu 2) 
cvič. 4. (Návod: Vezměte q = 10 a užijte indukčního 
předpokladu pro m.) 
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4. P Ř Í K L A D Y Z A L G E B R Y 

Protože čtenáři je již princip úplné indukce běžný, ne-
budu v tomto článku podrobně rozvádět všechny detaily 
a budu postupovat rychleji. 

P ř i k l a d 1. V matematice se často používá této tzv. Ber-
noulliho nerovnosti 

(1 + *)" ž 1 + n (1) 

která platí pro všechna reálná * ^ — 1 a každé přirozené n. 
Čtenář znalý tzv. binomické poučky si Bernoulliho ne-

rovnost snadno zapamatuje. Pravá strana této nerovnosti 
jsou prvé dva členy součtu, který dostaneme výpočtem 
levé strany podle binomické poučky. Její důkaz provede-
me takto: Pro n = 1 platí zřejmě rovnost. Nechť tedy 
(1) platí. Dokážeme, že platí (1 + x)n + 1 ^ 1 + (« + 1)*. 
Bud je 1 + x = 0 nebo je 1 + x > 0. V obou případech 
smíme násobit nerovnost (1) číslem 1 + x a tato nerovnost 
zůstane správná. Tak dostaneme 
(1 + + (1 + n * ) ( l + * ) = 1 + (» + 1 ) * + 

+ n x2 ž 1 + (n + 1) x. 

P ř í k l a d 2. Je-li 0 <a <b, potom 0 < a" < b". 
Důkaz. Pro n = 1 je tvrzení zřejmě správné. Nerovnost 

0 < a" < b" znásobíme kladným číslem a. Dostaneme 
0 <an + 1 <abn. Nerovnost a < b znásobíme kladným 
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číslem b". Dostaneme a b" <bn + 1. Celkem tedy máme 
0 < an + 1< abn < bn+1, c. b. d. 

P ř i k l a d 3. Pro reálná kladná čísla a, b, a 4= b, platí 
2«-i(an+ b") > (a + b)n. ( 2 ) 

Důkaz indnkcí. Nerovnost (2) platí zřejmě pro n = 2. 
Předpokládejme a =t= b, a, b > 0 a dále to, že (2) platí. Zná-
sobme (2) číslem a + b a dostaneme 

(a + bf + 1 < 2" " 1 (a»+ b-) (a + b). (3) 

Nyní stačí dokázat nerovnost 

2" - »(a" + b") (a + b) <2n(an + 1 + b»+ »). (4) 

neboť potom 

(a + + 1 < 2" (a" + 1 + é" + % 

a to je nerovnost (2) s n + 1 místo s n. 
Nerovnost (4) je však ekvivalentní s nerovnostmi 
2-1 - 1 (an + 1 _j_ fy, + 1) + 2« - 1 (abn + ba") < 

< 2" (an +1 + b" + 
abn + ban < an + 1 + bn + ^ 
0 <(an — b") (a — b). 

Poslední nerovnost je však správná, neboť činitelé na pravé 
straně jsou buď oba kladní, nebo oba záporní. Tedy platí 
(4), c. b. d. 

P ř í k l a d 4. Věta. Jsou-li xu x2, ..., x„ kladná čísla 
xx x2 ... x„ = 1, potom xx + x2 + ... + xn S n. 

Důkaz. Věta je správná pro n = 1 (platí rovnost). Nechť 
tedy platí pro přirozené číslo n. Uvažujeme n + 1 kladných 
čísel xu . . . , £ „ + i takových, že xx x2 ... x„ + \ = 1. Mů-
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žeme předpokládat *x š x2 ž ... ž x„ + i (v případě po-
třeby čísla XÍ přečíslujeme). Označme 
yx = xx x„ +1, y2 = x2, ...,y„=x„. Čísla yt(i= 1, ...,») 
jsou kladná, platí y1 ... y„ = 1, tedy podle indukčního 
předpokladu yx+ y2 + ... +yn ^ n, čili xx x„+\ + x2 + 
+ . . . + * „ S «. Tuto nerovnost nyní upravme ekviva-
lentními úpravami 

*»+ i + x2 + ... + x„ > n, 
+ *2 + • • • + x„ + i > n + 1 — 1 + *i + 

+ xn + i — xx x„ +1. 
Avšak 

(1 — JCi) (x„ + X — 1) = Xx + xn+ 1 — 1 — X„ + X, 
tedy 

*! + * , + . . . + * . + i ž n + l + ( l - * i ) ( * « + i - l ) - (5) 
Dokážeme-li t — xx > 0, xn+ x — 1 > 0 čili xx ž 1, *„+iž 1; 
bude závěr z n na n + 1 dokončen, neboť součin na 
pravé straně nerovnosti (5) bude nezáporné číslo. Důkaz 
nerovnosti ^ š 1 provedeme sporem. Nechť xx > 1, po-
tom xxx2 ... x„ xn+i ž * i n + 1 > 1, a to je spor s předpo-
kladem xxx2... xn+\ = 1-. Podobně se dokáže, že xn+i ^ 1. 
Věta je dokázána. 

C v i č e n í 

1. Věta. Pro dvojmoc součtu ^ (n > 2) platí 
(*i + *a + • • • + *„)2 = *i2 + + • . . + x* + 
+ 2 (*! *a + + . . . + Xx Xn + *2 + • • • + 
+ + . . . + X„-1 x„). 

2. O Věta. Pro reálná čísla ax, av ..a„, bx, b2, .. .,b„ 
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platí vždy nerovnost (ax bx + a2 b2 + ... + a„ b„)2 á 
Si (ax* + ai + . . . + fl»2) ( V + bi + . . . + b\). 

3. o Jsou-li ax, ..., a„ nezáporná čísla, potom čísla 
n 

<*1 + a2 + . . . + On 1 / 
a = ^ a g = \Jaxa2... On 

nazýváme po řadě aritmetickým průměrem* čísel 
alt.. - i a„ a geometrickým průměrem čísel ax . . . On. 
Dokažte nerovnost 

n 
< + + ... + On 

(Návod. Je-li g = 0, je věc jasná, pro g > 0 položte 

xx = y , = y> • • •> = y - a použijte příkladu 4.) 

4. o V nerovnosti z příkladu 4 nastává rovnost (jest-
liže ovšem xx ... x„ = 1, ^ > 0, x2 > 0, ..., x„ > 0) 
jen pro xx = x2 = ... = x„ = 1. Dokažte! 

5. o V nerovnosti z cvičení 3 nastává rovnost jen 
v případě ax = a2 = ... = a„. Dokažte! 

6. O Dokažte tvrzení cvičení 3 přímo indukci. (Návod. 
Vyjádřete n ve tvaru n = 2k — s, nejdříve dokažte 
pro s = 0 indukcí podle k.) 

7. Mezi všemi obdélníky, které mají daný obvod s, existuje 
jeden, který má největší plošný obsah. Obdélník nej-
většího obsahu je čtverec. (Návod. Užijte nerovnosti 
z cvičení 3 pro n = 2.) 

8. Mezi všemi obdélníky daného plošného obsahu P 
existuje jeden (je to opět čtverec), který má nejmenší 
obvod. 

9*. Ze všech obdélníků vepsaných do kružnice poloměru 
r = 3j/2" najděte ten, který má největší obsah. 
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10. Z cvičeni 3 a 5 odvoďte: Součin n kladných čísel, 
jejichž součet se nemění, je největší tehdy, jsou-li si 
všechna čísla rovna. 

11. o Mezi všemi válci vepsanými do koule poloměru 
YH najděte ten, který má největší objem. 

12. O Do daného kužele vepište válec největšího objemu. 
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5. U Ž I T Í I N D U K C E 

V G E O M E T R I I 
• 

Matematická indukce se v geometrii nejvíce používá 
k důkazům tvrzení o n bodech, n přímkách, k důkazu vět 
o «-úhelnících, «-stěnech a podobně. Nejlépe celou věc 
osvětlí příklady. 
P ř í k l a d 1. Je-li n ž 2, potom n různých přímek ležících 
v jedné rovině a procházejících jedním bodem dělí rovinu 
na 2 n dutých úhlů. 
Důkaz. Dvě různoběžky dělí rovinu na čtyři duté úhly. 
Nechť tedy n přímek jdoucích jedním bodem dělí rovinu 
na 2 n částí. Vezměme n + 1 ní přímku jdoucí průsečíkem 
n předchozích přímek. Tato přímka rozdělí dva z těchto 
dutých úhlů opět na dvě části, tedy celkem n + 1 
přímek jdoucích jedním bodem rozdělí rovinu na 
2 « + 2 = 2 ( « + 1) dutých úhlů, c. b. d. 

P ř í k l a d 2. Určit součet vnitřních úhlů konvexního 
«-úhelníka. 

Trojúhelník má součet vnitřních úhlů 180° = 2 R. 
Čtyřúhelník rozdělíme úhlopříčkou na dva trojúhelníky. 
Součet vnitřních úhlů čtyřúhelníka je roven celkovému 
součtu vnitřních úhlů obou trojúhelníků, tj. 2 .2 R = 4 R. 
To nás vede k domněnce, že součet vnitřních úhlů kon-
vexního «-úhelníka je 2 (n — 2) R. Tuto hypotézu do-
kažme nyní indukcí. Víme již, že je správná pro n = 3 a 4. 
Nechť tedy platí pro konvexní «-úhelníky a uvažujme kon-
vexní « + 1-úhleník o vrcholech Alt A2, ..., A„, A„+ i. 
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Úhlopříčka AX AS rozdělí tento n + 1-úhelník na troj-
úhelník A1 A2 A3 a «-úhelník AXA3A4 ... A„ + i (kresle-
te si obrázek!). Součet vnitřních úhlů n + 1-úhelníka bude 
roven součtu vnitřních úhlů troj úhelníka AX A2 A3 a «-úhel-
níka AXA3 . . . A„+ i, t j . 2 R + 2(m - 2 )R = 2 ( « - 1 )R 
= 2 (« + 1 - 2) R c. b. d. 
Poznámka. Pro konvexní «-úhelník lze větu o součtu 
vnitřních úhlů dokázat i jinak (jak? dokažte!); příklad 3 
nám posloužil hlavně jako úvod k dalšímu příkladu, o němž 
dokážeme, že součet vnitřních úhlů libovolného (tedy i ne-
konvexního) «-úhelníka je 2 (« — 2) R. Nejdříve si však 
musíme říci, co je to mnohoúhelník (nekonvexní). 

Mějme v rovině dáno « bodů ALR A2, ..., A„ v určitém 
pořadí. (Zvolte si určité «, např. n = 7 a kreslete si ke 
všemu obrázky.) V dalším vždy pořadí bodů bude 
patrné ze zápisu. Množinu všech bodů, které leží na úseč-
kách AX A2, A2 A3) A3 AI} ..., A„ - i A„ nazýváme lome-
nou čarou, body AX, A2, ..., A„ jejími vrcholy. Tuto lo-
menou čáru budeme označovat AXA2... A„. Za sousední 
pokládáme vrcholy, které za sebou následují v pořadí, tedy 
např. vrcholy AX A2, AT AS atp. jsou sousední. Za sousední 
úsečky považujeme úsečky A k - i A k a Ak Ak + x pro 
k = 2, . . . , « — 1. Nepatří-li žádný bod lomené čáry do 
dvou úseček s jedinou výjimkou společného vrcholu dvou 
sousedních úseček, nazýváme lomenou čáru jednoduchou. 
Jinými slovy: lomená čára je jednoduchá, jestliže sama 
sebe neprotíná. 
Jestliže úsečka A„AX nemá s jednoduchou lomenou čarou 
AX A2 ... A „ žádný společný vnitřní bod, nazýváme 
lomenou čáru AXA2 ... AN AX jednoduchou uzavřenou 
lomenou čarou. U uzavřené lomené čáry považujeme i body 
AN a AX za sousední. Dá se dokázat*), že jednoduchá uza-

*) Zde to nebudeme provádět. 
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vřená lomená čára rozdělí rovinu na dvě části tak, že každé 
dva body ležící v téže části lze spojit lomenou čarou, která 
celá v této části leží. Každá lomená čára spojující dva body 
ležící v různých částech nutně původní jednoduchou uza-
vřenou lomenou čáru protne. Pouze jedna z těchto částí 
obsahuje nějakou přímku roviny. Tu nazveme vnějškem 
lomené čáry Ax A2 ... An A1. Druhá je vnitřek. Nyní 
definujeme: 

Všechny body, které leží buď ve vnitřku (budeme 
též někdy říkat, že leží uvnitř) jednoduché uzavřené lo-
mené čáry nebo na ní, tvoří «-úhelník, «-úhelník vytvo-
řený lomenou čarou Ax A2 ... A„ Ax budeme označovat 
P(A 1} ..., A„). Místo «-úhelník budeme též někdy říkat 
mnohoúhelník. Úsečky A1A2, A2Aa, ...,A„A1 se na-
zývají strany «-úhelníka. 

Zaveďme ještě pro bod A1 označení A„ +1 a pro bod 
An označení A0. Při tomto označení přísluší ke každému 
vrcholu*) A k {k = 1, . . . , n) «-úhelníka dva sousední 
vrcholy Ak-X a Ak + i. Mnohoúhelníky, pro něž je některý 
úhel A k - i A k A k + i přímý, vyloučíme v dalším z našich 
úvah. 

Nyní vždy existují dva" body P, Q na polopřímkách 
AkAk-i a Ak Ak + i tak, že žádný vnitřní bod R úseč-
ky PQ neleží na lomené čáře AXA2 ... An Av (K tomu 
stačí zvolit body P, Q dosti blízko k Ak.) Jsou dvě 
možnosti, buď trojúhelník PAkQ je částí «-úhelníka 
P (Ax, ..., An), nebo není. V prvém případě prohlásíme 
dutý úhel Ak~ i Ak Ak+ \ za vnitřní úhel «-úhelníka 
P (Ax,..., An), v druhém případě prohlásíme za vnitřní 
úhel mnohoúhelníka P (Ax ,..., A„) vypuklý úhel 
A k - i A h A k + i (viz. obr. 1 a, b). 

*) Vrchol n-úhelnika definujeme jako vrchol příslušné lomené čáry. 
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Obr. 1 

P ř í k l a d 3. Součet vnitřních úhlů libovolného re-úhelníka 
je 2 (re-2) R. 

Důkaz provedeme opět matematickou indukcí. Ověření 
platnosti věty pro re = 3 je očividné. Rovněž pro čtyř-
úhelník P (Au A2, Aa, A4) lze větu snadno dokázat. 
Alespoň jedna z úhlopříček rozdělí totiž tento čtyřúhleník 
na dva trojúhelníky (obr. 2). Potíž nastane při závěru z re na 
re + 1. Tentokrát totiž nevíme, zda úhlopříčka Ax Ag oddělí 
z re + 1- úhelníka P ( A t . . , A„+ i) trojúhelník, neboť 
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úsečka Ax Aa může ležet 
(ovšem vyjma krajní bo-
dy) ve vnějšku uvažované-
ho n-úhelníka nebo může 
i vícekráte lomenou čáru 

Obr. 4 

A\ A2 ... An An + i A i 
protnout (obr. 3). Důkaz 
proto povedeme takto: Vez-
meme n ž 4 a budeme 
předpokládat, žé součet 
vnitřních úhlů libovolné-
ho ¿-úhelníka, kde k <rt, 
je roven 2 (k—2) R. Vez-
meme vnitřní úhel A1 A2 As n-úhelníka P (A1} ..., A„). 
Uvažujme nyní polopřímku p s počátečním bodem A2, 
která leží uvnitř vnitřního úhlu A± A2 Aa. Tato polo-
přímka protne lomenou čáru Aa ... An Alt buď X ten 
průsečík (průsečíků může být více), který je nejblíže bo-

Obr. 3 

43 



du A2, tj. takový, že celá úsečka A2 X leží v P (AU ..., A„). 
Množinu všech takových bodů X označme X . Jsou dvě 
možnosti: 

1. Množina X obsahuje nějaký vrchol Ak mnohoúhelníka 
P(AX, ...,AN){obr. 4). 

2. Množina X neobsahuje žádný vrchol mnohoúhelníka 
P(AU . . .,A„) (obr. 5). 

1. Úhlopříčka AKA2rozdělí mnohoúhelník P(ALY..., A„) 
na dva mnohoúhelníky. Má-li jeden z těchto mnohoúhel-
níků k vrcholů, má druhý n — k + 2 vrcholů*) (body Ak 
a A2 je třeba počítat do obou í-úhelníků). Přitom součet 
vnitřních úhlů těchto mnohoúhelníků je roven součtu 
vnitřních úhlů mnohoúhelníka P (AU ..., A„). Podle in-
dukčního předpokladu je tento součet 

2 (k-2) R + 2 (« - k + 2 - 2) R = 2 (k - 2) R. 
Zbývá vyšetřit druhou možnost. 

2. V tomto případě můžeme zřejmě předpokládat, že 
<£ Ax A2 A3 je dutý. Nejdříve dokážeme, že trojúhel-
ník A AX A2 AS je částí P (AT, ..., A„). Předpokládej-

Obr. 5 

*) Je třeba vzít v úvahu, že úhel při vrcholu Ak může být v někte-
rém z těchto mnohoúhelníků přímý. 
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Q e A Ax A2 Aa (viz obr. 6). Označme R ten z průsečíků 
polopřímky A2 Q s čarou A3A4 ... A„ Als který je nejblíže 
bodu A2. Takový bod existuje, neboť vzhledem k tomu, že 
Q non e P (Au ..., A„), Qe A A1A2A3 polopřímka A2 Q 
protíná čáru A3A4 ... A„ Ax. Zřejmě Re A Ax A2 Aa. 
Bod R leží na některé straně P (Á1} ..., A„); budiž to 
strana Ar Ar+1. Alespoň jeden z bodů Ar Ar+1 leží v úhlu 
Ax A2A3; v opačném případě by úsečka Ar Ar+l proťala 
čáru Ax A2 A3, a to není možné. Nechť tedy např. bod 
Ar leží v úhlu Ax A2 As (viz obr. 6). Podle předpokladu 
Ar non e X . Tedy na úsečce A2 Ar leží nějaký bod T e X . 
Opakujeme dále úvahu pro bod R nyní pro bod T . Po 
konečném počtu kroků dospějeme k vrcholu, který není 
„zastíněn" žádnou stranou a patří do X — spor. Je 
tedy A -¿i ¿2 A3 částí P (Ax, A2, A3, ..., A„), a tedy 
součet vnitřních úhlů tohoto mnohoúhelníka je roven 
součtu vnitřních úhlů A A1 A2 Aa a mnohoúhelníka 
P(A1} Aa, ..., An), t j .2 R + 2 (w — 3) R = 2 (n — 2)R. 
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P ř í k l a d 4. n přímek v rovině rozdělí tuto rovinu na části, 
které lze vybarvit černou a bílou barvou tak, že dvě sou-
sední části (tj. takové, které se dotýkají podél úsečky*) 
jsou různě vybarveny. 

Tvrzení je správné pro jednu přímku; jednu polorovinu 
vybarvíme bíle a druhou černě. Nechť tvrzení je správné pro 
n přímek, uvažujme rovinu rozdělenou n + 1-ní přímkami. 
Odstraňme jednu přímku a proveďme správné vybarvení (to 
lze podle indukčního předpokladu), n + 1-ní přímka rozdělí 
rovinu na dvě poloroviny; v prvé z nich nechrne původní 
vybarvení a v druhé polorovině vyměňme všade bílou barvu 
za černou a naopak. Tím docílíme správného vybarvení 
i pro rovinu rozdělenou n + 1 přímkami. 
Poznámka. Příklad 4 je velmi speciálním případem jedné 
věty, která hovoří o vybarvení rovinných map. Jde o to, 
s kolika barvami vystačíme při vybarvování rovinných 
„map", jestliže sousední „státy" mají být vybarveny různý-
mi barvami. Podařilo se dokázat, že vždy lze vystačit s pěti 
barvami, ale dosud nebyl nalezen příklad takové mapy, 
kde by se nevystačilo pouze se čtyřmi. Otázka, zda stačí čtyři 
barvy, je dodnes otevřený problém. 

P ř í k l a d 5. V rovině bud dán trojúhelník, jehož vrcholy 
jsou očíslovány čísly 1, 2, 3. Tento trojúhelník je rozdělen 
na menší trojúhelníky tak, že každé dva z těchto menších 
trojúhelníků bud nemají společný bod, nebo mají společný 
vrchol, nebo mají společnou stranu (celou). Všechny 
vrcholy trojúhelníků rozkladu jsou očíslovány čísly 1, 2, 3, 
přičemž vrcholy ležící na některé straně původního troj-
úhelníka jsou očíslovány některým z čísel, kterým jsou 
označeny krajní body této strany (obr. 7). 

Má se dokázat, že alespoň jeden z malých trojúhelníků je 
rovněž očíslován čísly 1, 2, 3. 

*) resp. polopřímky resp. přímky. 
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1 2 
Obr. 7 

2 

Důkaz provedeme indukcí podle počtu n malých troj-
úhelníků. Pro n = 1,2 je tvrzení správné (nakreslete si obrá-
zek). Předpokládejme, že tvrzení je již správné pro všechny 
rozklady na menší počet trojúhelníků nežli n a uvažujme 
rozklad na n trojúhelníků. Jsou-li všechny trojúhelní-
ky rozkladu očíslovány různými čísly, není co dokazovat. 
V opačném případě existuje trojúhelník, jehož dva vrcholy 
mají táž čísla. např. 3, 3. Strana 3 3 je stranou buď dvou 
(obr. 7) (jestliže strana leží uvnitř základního trojúhelní-
ka) nebo jednoho trojúhelníka (obr. 8) (jestliže strana 

Obr. 8 
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leží na straně základního trojúhelníka). Stáhneme nyní 
stranu 3 3 na bod. Tím odstraníme z rozkladu buď dva 
(v prvém případě) nebo jeden (v druhém případě) troj-
úhelník., vždy však snížíme počet trojúhelníků rozkladu. 
Podle indukčního předpokladu existuje nyní trojúhelník, 
který je očíslován různými čísly. Tedy takový trojúhelník 
existoval i v rozkladu na n trojúhelníků, c. b. d. 
Poznámka. Probraný příklad je velmi zvláštní případ tzv. 
Spernerovy věty. 

C v i č e n i 

1. n rovin procházejících jednou přímkou dělí prostor na 
2 n části. 

2. O Dokažte, že n rovin jdoucích jedním bodem, z nichž 
žádné tři nemají společnou přímku dělí prostor na 
n (n - 1) + 2 částí. 

3. Dokažte, že rovinnou „mapu", která je tvořena kruž-
nicemi lze vybarvit bílou a černou barvou tak, že 
každé dva sousední „státy" jsou různě vybarveny. 

4. o Úsečka, jejíž koncové body jsou označeny čísly 1, 2 
je rozdělena na několik menších úseček tak, že kon-
cové body těchto úseček jsou číslovány čísly 1, 2. Do-
kažte, že existuje úsečka rozkladu, která je očíslována 
různými čísly. 

5. o Na přímce leží n úseček, z nichž každé dvě mají 
společný bod. Potom existuje bod, který leží ve všech 
těchto úsečkách. 
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6. D E F I N I C E I N D U K C Í -
• 

Matematické indukce lze užít tahé k definicím. Tak např, 
abychom definovali těžnici a těžiště «-úhelníka, postačí, 
definujeme-li tyto pojmy pro trojúhelník, a určíme*), 
co rozumíme těžištěm a těžnicemi n + 1-úhelníka 
P(A1} ...,A„+i) na základě těžnic a těžišť «-úhelníků 
P (Ai, ..., A„), P (A2, ..., A„+ i), P (A3, An, A„+ i,A1) 
atd. Podobně k tomu, abychom pro každé přirozené « defi-
novali symbol an (tj. «-tou mocninu čísla a), postačí, defi-
nujeme-li a1 = a a an + 1 = a . a". Přitom zpravidla mu-
síme věty o pojmech zavedených indukcí dokazovat pomocí 
principu úplné indukce. 

P ř í k l a d 1. Mějme dvě čísla a, d. Položme at = a, 
a„+ i = a„-\- d. Tím je pro každé n definováno číslo a„. 
O číslech au a2, a3, . . . , takto definovaných, říkáme, že 
tvoří aritmetickou posloupnost. Dokažme nyní, že platí 
a„ = a + (n — 1) d. Pro « = 1 to platí. Nechť dokazovaný 
vzorec platí pro n. Potom an+i = aJ

r{n— 1) d d = 
= a -f (« + 1 - 1) d, c. b. d. 
Poznámka. Definice indukcí lze užít též v této formě: Věc, 
kterou zavádíme definicí, definujeme pro « = 1 a potom ji 
definujeme pro přirozené číslo n za předpokladu, že již byla 
definována pro všechna přirozená k < n. 

Definici indukcí se též někdy říká rekurentní definice. 

*) Zde to neprovádíme. 
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C* v r 

v i c e n i 

1. Definujte geometrickou posloupnost indukcí. 
2. Dokažte vzorec pro re-tý člen geometrické posloupnosti. 
3. Je-li ax = 2, a2 = 3 a On + i = 3 a„ — 2a„ _ i (podle zá-

věrečné poznámky tohoto článku je a„ definováno pro 
všechna n) potom a„ = 2" ~ 1 + 1. 

4. Dokažte, že A„ = cos w «9, jestliže Ax = cos yí2 = 
= cos 2 # a pro každé k> 2 )eAk = 2Ak-i cos & — 
— Ak-2-

5. Definice symbolu n! (čti n faktoriál). Pro n = 1 je 1! = 
= 1, (« + 1)! = «! • (« + 1). Vypočtěte 3!, 4!, 5!. 
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7. D V O J I T Á I N D U K C E 

Někdy je třeba dokázat nějaké tvrzení 7*, „ závislé na 
dvou přirozených číslech k i n . Například takovým tvrze-
ním Tk, n může být věta z příkladu 2 čl. 3: Ke každým dvě-
přirozeným číslům m k existují celá čísla m&r tak, že platí 

n = mk + r 
a 

0 á r < k. 

Důkaz této věty lze vést tak, že se dokáže, že Tk, i platí 
pro každé i a z toho, že Tk, n platí pro každé k se odvo-
dí, že platí Tk,n + i P r 0 každé k.*) Tak lze mnohdy postu-
povat při důkazu tvrzení Tk, „, někdy však je potřebné pro-
vádět indukci podle obou čísel kin. 

Ve cvičeních 9 a 11 čl. 1 se tvrdí, že součin dvou po so-
bě jdoucích přirozených čísel je dělitelný číslem 2 = 2! 
součin tří po sobě jdoucích přirozených čísel je dělitelný 
číslem 6 = 3!. To nás vede k domněnce, že součin k po 
sobě jdoucích přirozených čísel je dělitelný číslem k! 
P ř í k l a d 1. Pro každé přirozené n a k je číslo A*,„ = 
= n(n+ 1 ) . . . (n-j- k— 1) dělitelné k!. Tvrzení je správné 
pro n = l a každé k. Uvažujme nyní součin 
Ak.n + 1 =(»+-l) ... (» + *) = 
= » ( n + l ) . . . (n + & - l ) + £(w + l) . . . (« + ¿ - 1 ) = 
= = Ak,n + kAk-l, „+i. (1) 
S předpokladem, že Ak,n je pro každé k dělitelné k\ nevy-

*) Proveďte sami. 
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stačíme, neboť v rovnici (1) se na pravé straně vyskytuje 
člen Ak-1, n + i s indexem n + 1. Snadno se nahlédne, že 
ani indukce podle k pro každé n nám nepomůže. K důkazu 
užijeme této věty: 

Věta 5. Bud Tk, n tvrzení závislé na dvou přirozených čís-
lech takové, že 

I. a) T\, n platí pro každé n, 
p) Tk,i platí pro každé k, 

11. jsou-li k, n přirozená čísla k > 1, n > 1, potom z plat-
nosti Tr,, pro čísla r, s, r S k, s š n a taková, že v alespoň 
jedné z těchto nerovností platí ostrá nerovnost, vyplývá 
platnost Tk, n • 
Potom Tk.n platí pro všechna přirozená n, k. 

Pomocí této věty lze snadno dokončit důkaz. Skutečně 
Ai,„ je vždy dělitelné číslem 1! a Ak, i = k\ je pro každé k 
dělitelné číslem k\ Dále pro Ak, „ platí (k > 1 ,n> 1) (je 
to vlastně rovnice (1) s n místo n + 1) 

Ak,n = Ak,„-1 + kAk-i,n. (2) 

Učiníme-li nyní indukční předpoklad II je Ak,n-i děli-
telné číslem k! a Ak~i, „ dělitelné číslem (¿—1)! a kAk-i,n 
tedy číslem k\ Oba sčítanci na pravé straně rovnosti (2) jsou 
dělitelní číslem k\. tedy i Ak, „ je dělitelné číslem k\. 

C v i č e n í 

1. o Dokažte větu 5. 
2. Dokažte úplnou indukcí binomickou poučku 

(a + b)»= 2 ( £ ) a""* 6*. 
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3. Dokažte tzv. polynomickou poučku 

( « ! + . . . + ak)n = 

a / 1 . . . a1*, 

ÍJ+Í2+ • • • = « 
Í.SO 

kde 
r n 1 w! 
Lfi »•••»**] iilsJ ... sk\' 

4. Vypočtěte ( * + 1 + 
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8. H I S T O R I C K É P O Z N Á M K Y 

• 

O osobě Euklidově není mnoho známo. Víme, že žil okolo 
roku 300 před naším letopočtem v Alexandrii, kde v této 
době bylo vědecké středisko s ohromnou knihovnou. 
Euklid shrnul tehdejší geometrické poznatky v jednotný 
logicky ucelený systém. Vycházel při tom z několika zá-
kladních pojmů (bod, přímka, atd.), které definoval a z ně-
kolika základních nedokazovaných tvrzení, které rozdělil 
do dvou skupin (axiómy a postuláty). Pro nás je rozdíl mezi 
nimi nepodstatný. 

Systém axiómů, postulátů, definic a pouček z Euklido-
vých základů se vývojem zdokonaloval, rozrůstal a časem se 
ustálil pro něj název euklidovská geometrie. Ta je dodnes 
náplní „školní" geometrie. Logické základy euklidovské 
geometrie byly podrobeny kritice a revisi v 19. století. Byly 
vytvořeny dokonalejší soustavy axiómů, na základě kterých 
lze vybudovat euklidovskou geometrii tak, že jsou uspoko-
jeny všechny požadavky zvýšené přesnosti a logické správ-
nosti, jak je klade moderní matematika. 

G. Peano , italský matematik, žil v letech 1858—1932. 
Od roku 1890 byl profesorem university v Turíně. Zabýval 
se formálně logickými základy matematiky, např. axioma-
tikou geometrie, axiomatickým založením přirozených 
čísel atp. Dosáhl však významných objevů i v jiných od-
větvích matematiky. 
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9. V Y S V Ě T L I V K Y 

• 
1. Prvočísla Přirozené číslo m je dělitelné přirozeným 
číslem r, jesdiže existuje přirozené číslo s tak, že m = r.s. 
Tak např. číslo (m = ) 18 je dělitelné číslem (r = ) 3, neboť 
18 = 3.6 (i = 6). Jestliže přirozené číslo m je dělitelné 
přirozeným číslem r, říkáme, že číslo r je dělitelem čísla m. 
Každé přirozené číslo m je zřejmě dělitelné číslem 1 
i číslem m. Tito dělitelé čísla m se nazývají samozřejmí 
dělitelé. Přirozené číslo větší než jedna, které má pouze 
samozřejmé dělitele, se nazývá prvočíslo. Jinými slovy: 
Přirozené číslo p > 1 je prvočíslem, jestliže není dělitelné 
žádným přirozeným číslem r takovým, že 1 <r <p. 

Často se vyšetřuje dělitelnost v oboru celých čísel (má to 
své výhody), potom např. i číslo —2 je prvočíslo a každé 
celé číslo m má čtyři samozřejmé dělitele, totiž čísla 1, — 1, 
m a — m. V této knížce se však důsledně zabýváme jen 
dělitelností přirozených čísel. 

2. Množiny. V matematice pro souhra nějakých věcí za-
vádíme zvláštní název množina. Množiny zde značíme 
velkými a tučnými latinskými písmeny. Uveďme si několik 
příkladů množin: 

množina všech reálných čísel 
množina sudých čísel M2 
množina všech domů na Václavském náměstí v Praze M3 
množina všech čtenářů této knížky M4 
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množina těch, kterým se tato knížka bude líbit . . . Ms 
množina těch, kterým se tato knížka nebude líbit . . Me 

Patří-li nějaká věc x do množiny M, říkáme, že x je prvek 
množiny M (nebo též, že xpatří do M) a označujeme to 
xeM. Neplatí-li to, píšeme x non e M. Tak např.: 3 e M1} 
3 non e M2, čtenář této knížky e A14. Je účelné zavěsti tzv. 
množinu prázdnou, tak budeme nazývat množinu, která 
nemá žádný prvek. Účelnost pojmu prázdné množiny jasně 
vysvitne, jakmile si uvědomíme, že množiny M4, MB, Me 
nemusí obsahovat žádný prvek. Může se stát, že mkdo tuto 
knihu nebude číst (M4 bude prázdná), rovněž je myslitelné, 
že se nikomu nebude líbit (M6 bude prázdná), je však 
možné, že se bude všem líbit (M6 bude prázdná). Autor je 
nezvratně přesvědčen, že množina M4 nebude prázdná, 
nevěří příliš v prázdnotu množiny Me, ale .doufá, že i Ms 
bude neprázdná (tj. nebude prázdná). 

3. Funkce a mnohočleny. Ze školy znáte některé jed-
noduché funkce např. funkci lineární a nepřímou úměrnost 
apod. Funkce je pravidlo, které každému x patřícímu do 
jisté dané množiny M přiřazuje právě jedno číslo y. Mno-
žina M se nazývá definiční obor funkce. Funkce zpravidla 
označujeme malými latinskými písmeny / , g, h, p apod. 
Číslo přiřazené funkcí / prvku x označujeme často / (x). 
Dvě funkce / a g považujeme za stejné (sobě rovné), jestliže 
mají stejný definiční obor a přiřazují každému x e M tutéž 
hodnotu / (x) = g (x). 

Tak např. rovnicemi/» (x) = 2x + 3, g (x) = x2, h (x) = 
= 5 x4 + 1 jsou (pro všechna reálná x) definovány funkce 
p, g, h. Tyto funkce jsou zvláštním případem tzv. mnoho-
členů. Obecně definujeme: Funkce / definovaná před-
pisem 

f ( x ) = Or> X" + On- ! X"" 1 + . . . + í20, 
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kde n je přirozené číslo, a0, alt ..., a„ jsou reálná (resp. 
racionální) čísla, se nazývá mnohočlen s reálnými (resp. 
racionálními) koeficienty. Číslům a, se říká koeficienty. 
Stručně budeme říkat mnohočlen. Místo mnohočlen užívá 
se též slova polynom. Je-li a„ + 0 říkáme, že mnohočlen/ 
je n-tého stupně; tak např. p je stupně prvního,£ je stupně 
druhého a h stupně čtvrtého. Pozor. Číslo různé od nuly 
lze tedy považovat za mnohočlen stupně nultého, avšak 
číslo 0 (přesněji mnohočlen, který každému x přiřazuje 
hodnotu 0) nemá žádný stupeň. 

Dva mnohočleny / a g jsou si rovny, jestliže přiřazují 
témuž * tutéž hodnotu f ( x ) = g (x) (definiční obor je 
u všech mnohočlenů stejný, je to množina, všech reálných 
čísel). Dá se ukázat (důkaz zde neprovedeme), že potom 
oba mnohočleny mají tytéž koeficienty. 
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10. V Ý S L E D K Y K C V I Č E N Í M 

1. Ú v o d 

1. n2. 2. n (« + 1). 3. j n (n + 1) (2 n + 1). 

4. ! » ( » + l)(n + 2). 5. g ^ - j . «. j ^ . 

7. Pro « = 1 je 5n + 1 + 62" - 1 = 31; 5fr+l>+1 + 
+ 62(n+i)-i = 5(5"+i -(- 62" - 1) + 31 . 6 2 " - 1 . 

3. J i n é f o r m u l a c e 

2. Pro n = 1, 2 a pro n ^ 4. 4. Existence čísel s a a0, 
a1} . . . , a,: Pro « = 1 je s = 0 a a0 = 1. Závěr z n 
na n + 1 : n + 1 = a, 10' + . . . + a0 + 1. Je-li 
OQ -f 1 < 1 0 není co dokazovat, je-li a0 + 1 = 10 jsou 
dvě možnosti: a) m+ 1 = 10 pro ť — 0, 1, . . . , s; 
(i) existuje k sš s tak, že <u + 1 = 10 pro i < k a 
ak + 1 < 10. V případě a) n + 1 = 10»+S v případě 0) 
n + 1 = as 10' + a,-i 10'-1 + . . . + (a* + 1) 10*. Exis-
tence je dokázána. Jednoznačnost podobně jako v příkl. 2. 
Viz ještě cvič. 19. 6. 137 = 27 + 23 + 1, stručně 10001001. 
13. a) q O) = *4 - + x2, r (x) = 5; b) q (x) = r(x) = 
= 2Í? — x. 14. Nechť existují q1} rx a q2, r2. Potom rx — 
— r2 = d(q2— ?i). Kdyby q2— qx nebyl nulový polynom, 
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byl by v této rovnosti mnohočlen na pravé straně vyššího 
stupně než mnohočlen na levé straně. Je tedy qx = q2 
a tím i rx = r2. 15. p (x) = (x — á) q(x) + r (jc). r (x) je 
buď nula nebo mnohočlen nultého stupně. V každém 
případě je r (x) = c, kde c je číslo. Tedy p (x) = 
= (x—a) q (x) + c. Dosazením x = a je p (á) = c, čili 
p(x)= = (x-a)q (x) + p (a). 17. a) 2, 3, - 3 . fl 1, 
— 1, 2, 3, —3. y) i (1 ± i V3). 19. n = 10m + a0 a na m 
lze užít indukčního předpokladu m = a, 1C,_1 + . . . + «i-
Dosazením za m do n = 10 m + a0 dostáváme tvrzení. 

4. P ř í k l a d y z a l g e b r y 

2. n = 1 zřejmé. Označme A„ - y ^ 2 + ... + a„2, B„ = 

= y V + • • • + bn- Ze známé nerovnosti 2xy š x2 + y2 

plyne 2a„ + 1 bn+1 A„ B„ ž bn+1
2 A„2 + a„+1 B„2. Jest 

( f l j +... + a„ + x bn+1)2 = ¿>! + ... + On b„)2 + 
+ 2íl„+1 ¿>n+1 ¿»! + . . . + On b„) + a„+!2 ¿B + 12 ž 
+ 2an+1 b„ A„B„ + A„2 B„2 + bn+12 Af

 2 + 
+ fln+12 B2 + 0„+1

2 b„+1
2 = (A2 + fln+12) (Bn2 + ¿n+i2). 

3. gl + g 2 + . . . + g ! ! ^ w č i l i a i + - - - + a " č ; g . g g g n 
4. Nejsou-li si všechna x, rovna, platí v (5) ostrá nerovnost. 
5. Je-li g = 0 musí zřejmě ax = a2 = . . . = o» = 0. Je-li 

A • a \ I a2 I . al a2 i 
¿ > 0 , j e + . . + - = « a . - . . . - = 1, 

£ g g g g g 
z toho — = — = . . . = — = 1 , čili všechna <u jsou stejná. g g g 

6. s = 0: pro k = 1 zřejmé; 2* x = a, + . . . + a2*. 
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2ky = a2k + i + ... + a2k + i, ^ t l s ]/x.y ; 

í + 0: doplníme počet členů na 2k, 

(2fc-s) a = ax + ... + a2k-,,g = , 

fll + . . . + o 2 * - , + M ^ y a i . . . a 2 * _ , a S z toho plyne 

a žig. 

9. Čtverec o straně 6. 11. Označme x poloměr podstavy, 
y výšku. Potom y = 2 ]/ 6 - x2. V — 2n x2 \ 6 - x2. 

x4 

Objem bude největší, když bude největší z = (6 — x2) = 

= 2" 2" (6 — x2). Součin tří čísel y , ^ a 6 - i a , které 

mají součet 6, bude největší, jestliže ~ = y = 6 — x2, 

z toho x2 = 4, x = 2. 
12. Buď © výška kužele, r poloměr základny, x poloměr 
podstavy válce, y výška válce. Z podobnosti trojúhelníků 

V TZ V 

plyney = — (r — x). Objem V = — x2 (r — x). Součin 

x x 
tří čísel y , y , r — x (jejichž součet je r) bude největší, 

x x 2 
jestliže 2 " = 2 " = , = r — x> čili x = r. 
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5. Indukce v geometr i i 

2. Nechť n rovin dělí prostor na n (n — 1) + 2 částí. 
n + 1-ní rovinu označme n. Rovina n protíná každou 
z předchozích rovin v přímce a tyto přímky rozdělují n na 
2n dutých úhlů (příklad 1). Každý z těchto dutých úhlů 
rozděluje jednu z částí prostoru, na které prvních n rovin 
dělí prostor, na dvě části. Celkem tedy n . + 1 rovin dělí 
prostor na n (ti — 1) + 2 + 2n = n (ti + 1) + 2 částí. 
4. Postupujte jako v příkladě 5 a stáhněte úsečku 11 (resp. 
22) na bod. 5. Mějme na přímce n + 1 úseček wl5 u2, ..., 
u„+1. Podle indukčního předpokladu existuje bod, který 
leží ve všech úsečkách wl5 u2, . . . , u„. Společnou část úse-
ček uu u2, ..., u„ označme u. u je buď bod nebo úsečka. 
Předpokládejme nyní, že u nemá společný bod s Un+\. 
Potom existuje bod A, který leží mezi u a u„+1. Avšak každá 
z úseček u1} u2, . . .,Un obsahuje u a nějaký bod z m„ + 1 , 
musí tedy obsahovat bod A, tj. A patří do u. Tento spor 
dokazuje, že u„ +1 má společný bod s u a tento bod je spo-
lečný bod všech úseček u1}u2, ..., u„ + 1. 

7. Dvoj i tá indukce 

1. Utvořme množinu přirozených čísel M takto: Číslo t 
patří do M, jestliže t = k ti a Tk, n neplatí. Předpoklá-
dejme, že M je neprázdná—odvodíme spor. Buď t0 nejmenší 
prvek z M, pak existují k0 a w„ tak, že t0 = k0 + n0 a 
Tko,no neplatí. Je k0> 1 , « „ > 1. Je-li nyní r S k0 a í S n0 
a alespoň v jedné z těchto nerovností platí ostrá nerovnost 
je r + í < ř0, tedy Tr, , platí (podle definice čísla r0). Podle 
II platí Tko,„o — spor. 
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