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PREDMLUVA
o

V dob& svych stfedoskolskych studii jsem ¢asto touZil po
kni¥ce, kterd by mi populdrni a pfitaZlivou formou fekla
o matematice néco vice, neZz to, co jsem znal ze Skoly;
tenkrite mnoho takovych knih nebylo. Dnes je jiz situace
lepsi, ale vzpominka na ma studentska léta zpusobila, Ze
jsem se s radosti pustil do prace na kniZce pro naSe olym-
pioniky. ProtoZe pfi matematickych olympiadach se uka-
zalo, Ze jejich ucastnici maji slabiny spiSe v feSeni pnkladu
neZ v teorii, snaZil jsem se do kni’ky zahrnout co nejvice
phkladu, at jiz vyfeSenych v textu, nebo zadanych jako
cviceni k samostatnému studiu. Tato. cviceni 1sou velmi di-
leZitd, nebot bez vlasmiho samostatného feSeni pfikladl
latku nikdy dokonale neovladnete. U cvifeni oznaCenych
hvézdiCkou jsou na konci knihy uvedeny spravné vysledky;
u cviCeni oznalenych krouZkem najdete vzadu heslovitd
feSeni. VZdy se vSak nejdfive pokuste cvieni rozfesit samo-
statné; feSeni je uvedeno hlavné pro kontrolu. Neporozumi-
te-li nékterému ptikladu, obratte se pro pomoc k svému
uliteli matematiky; nemusite se viak obdvat, Ze neporozu-
mite dal$imu textu, nebot ve velké vétSiné piikladd je dalsi
vyklad na jednotlivych pfikladech nezavisly.

Nékteré pojmy, které nemusi byt pro ¢tendfe béZné, jsou
vyloZeny na konci knihy ve vysvétlujicich poznamkach.

K pochopeni podstaty dikazu matematickou indukci
sfad dplné postaci prvni dva &lanky. Ostatni je vénovidno
tomu, abyste se dozvédéli néco vice neZ ve Skole. -



Zivérem bych chtél podé&kovat vyboru Matematické
olympiddy za umoZnéni price na kniZzce o matematické
indukci, nakladatelstvi Mladé fronty za to, Ze vyslo vstfic
mym pfinim a s. doc. J. Vysinovi, ktery ptecetl cely rukopis
a ptispél svymi pfipominkami k zlepSeni vykladu.

Rudolf Vyborny



1. UvoD
[ ]

V této kniZce se velmi Casto setkame s pfirozenymi Cisly.
Jsou to Cisla
1,2,3,....

Znalost pocitani s pfirozenymi Cisly (pravé tak jako zdkladn{
poznatky o délitelnosti) budeme piedpokladat. Ctenite
zajimajiciho se o soustavné vybudovini teorie pfirozenych
¢isel od uplného zaditku musime odkizat na knizku Bed¥fi-
cha Pospisila ,,Nekone¢no v matematice™ [1]*).

V matematice se setkdvdme s tvrzenimi**), ktera zéviseji
na pfirozeném Cisle. Takovymi tvrzenimi jsou napf.:
1. Pro ptirozené cislo 7 je Cislo 2n+-1 Eislo liché.
2. Pro pnrozene Cislo 7 je &islo 2n+1 &slo sudé.
3. Je-li n pfirozené Cislo, neni 5n°+1 tGplny Ctverec (ti
neexistuje pnrozene islo k tak, Ze 5n2+1 = k2).
4. Souget ¢tvercl dvou po sOb& nésledujicich phrozenych
C¢isel zmenSeny o jednu je délitelny Ety¥mi.
5. Pro ptirozené &islo n plati vzorec

1,1, 1 1 n
R R AT S s |

*j Viz t&2 [2] a [3] v seznamu literatury na konc knihy.

**) Zde uZivime slova tvrzeni v ponékud jiném smyslu, neZ jste
zvykll ze $koly u matematické vity, kterd mé pfedpoklady a tvrzeni.
Pro nés v této kniZce bude tvrzenim néjaki (gramatickd) véta. Viz
k tomu ptiklady 1-—5.



Abychom nemusili vidy opakovat, Ze pismeno » (resp.
k) oznaluje pfirozené Cislo, umluvime se, Ze pismeno 7
(resp. k) bude v této kniZce vzdy oznacovat pfirozené &islo.
Pak miZeme napf. prvni tvrzeni kratéeji vyslovit: Cislo
2n + 1 je liché. A podobné u dal¥ich tvrzeni.

Prvni tvrzeni je ziejmé pravdivé pro kaidé n, druhé je
zfejmé nepravdivé, Ale jak je to s dalS$imi? Vezméme tfeti
tvrzeni a dosazujme postupnézan = 1,2, ...:

512+ 1= 6,
5.224+1=2],
5.4+ 1=81=9%

Vidime, Ze pro n = 4 je 522 + 1 = 81, tj. je to plny
&tverec, tvrzeni 3 tedy neni sprivné. Mohli bychom si sice
poloZit otdzku, pro kterd # je Cislo 5n% 4 1 dplny Ctverec,
ale to by nis odvedlo od naseho tématu, a proto se spoko-
jime s tim, Ze tvrzeni 3 neplati pro vSechna 7.

Vysetfujme nyni Ctvrté tvrzeni a opét postupné dosa-
zujme za n pfirozena Cisla;

2412 1= 4,
2y22_ 1= 12
4243 1= 24,
52 4 42— 1= 40,
62+5—1= 60, .
72462 — 1= 84,
82+ 72— 1 =112,
92 1 8 _ 1= 144,
102 4 92 — 1 = 180.

Vidime, Ze tvrzeni je sprdvné pro prvnich deset pfiro-
zenych Cisel. MiiZeme z toho usoudit, Ze plati pro vSechna
pfirozend &isla ? Pochopitelné, Ze nikoli. To bychom si poci-
nali jako Clovek, ktery desetkrit za sebou potka na cesté do
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price svého pfitele N a potom tvrdi: ,,Po cely Zivot kazdy
den rano budu potkavat na cest¢ do prace svého pfitele N.“
Maime sice privo se domnivat, Ze tvrzeni 4 plati, ale chce-
me-li zaruéit jeho platnost, musime je dokdzat. Jak provést
dikaz?

Predpokiddejme, Ze Cislo n® + (n + 1)* — 1 je délitelné
ctyfmi (to je,jak vime,splnéno pron =1, ..., 9), a zkusme
potom dokdzat, Ze (n+ 1* -+ (n+ 2)2 — 1 je délitelné
CtyFmi. Podafi-li se to, usoudime, Ze tvrzeni 4 je spravné pro
vSechna pfirozend n; nebot naSe tvrzeni plati pron =1,
..., 9; ale plati-li pro 9, plati i pro 10, plati-li pro 10, plati
ipro 11 atd. Zbyva tedy dokdzat, Ze z délitelnosti Cisla n®+
+ (n+ 1)> — 1 Ctyfmi vyplyva délitelnost Etyfmi Cisla
(n+ 1%+ (n+ 22 — 1. Ztejmé je

Ai=n+ 124+ n+22—-1=
n4+m4+12—1+4 4n + 4.

A, je souctem dvou Cisel n2+ (n 4 1> — 1 a 4n + 4,
z nichZ kaZdé je délitelné ¢tyfmi [prvni podle pfedpokladu
a druhé proto, Ze 4n 4+ 4 = 4 (n -+ 1)]; je tedy samo déli-
telno ¢tyfmi.

Viimnéme si, Ze pii dikazu bylo nepodstatné to, Ze jsme
ovéfili platnost vySetfovaného tvrzeni pro prvych deset
pErozenych Cisel ; staCilo si vSimnout, Ze tvrzeni je spravné
pro n = 1 a potom dokazat vétu vytiSténou kurzivou.

Metodé€ dukazu, které jsme pouZili, se fikd dikaz mate-
matickou indukci (asto se uZiva téZ terminu Uplnd induk-
ce). SpocCiva na této vété:

Matematicka indukce. Jestlize T, je rvrzeni zdvislé na
prirozeném Clsle na

I Taplatipron=1a



I1. z platnosti T, vyplyvd platnost Tni1,*)
potom T, platt pro viechna piirozend n.

Diikaz matematickou indukci sestdvd tedy ze dvou
krokld. Z ovéfeni platnosti tvrzeni pro n = 1 a z dikazu
véty II. Druhé &isti (dikazu véty II) se Casto Fika zdvér
z n na n + 1. Dikazem véty o matematické indukci se
budeme zabyvat v pfitim ¢linku. Nyni uZijeme matema-
tické indukce na nékolika pfikladech a ukdZeme si dileZi-
tost obou ¢asti I1 II.

Piiklad 1. DokaZme spravmost tvrzeni 5 na str. 5 pro
viechna n. Oznalme

1 1 1
"=12Vz3t o tamEy
Mame dokézat platnost vzorce
. n
i | )

pro viechna »n. UZijme matematické indukce. Vzorec (1)
plati pro n = 1, nebot

~1_1
"E127 7
Necht (1) plati pro pfirozené &slo #. Mdme dokdzat vzorec
s _n+ 1.
"t T 42 )

*) UZivame umluvy, Ze pismenem n oznaujeme pfirozené &islo.
Pfesndji bychom II. mé&li vyslovxt takto: je-li 7z libovolné pn.rozené
&dslo a Ty, platd, potom platf i Tp 4.
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Ziejmé je
Saay = 50 & 1 o on 1
LT 4+ D) +2) n4+ 1T a4 Dt 2)

Upravou mime

)
ST GE D0+ 2)

To viak je jiZz vzorec (2). Dikaz je hotov.

Piiklad 2. Oznaéme ¢z, =14+ 2 + ... 4+ n a dokaZme

41
= "(—"2—) )

Vzorec je zfejmé spravny pro n = 1. Pfedpoklidejme (3)

a vypoltéme Zp4;:
Iny1 = tn+n+l= (n+1)(n+2)

To je vzorec (3), kde misto # je dosazenon + 1, a pravé to
jsme méli dokazat.

P¥iklad 3. Uréeme vzorec pro soucet
ra=134+28 438 4 ... 4 nd

Vzorec pro r, se pokusime uhddnout tim, Ze vypolteme
7+ pro nékoiik prvnich n. Potom uZijeme uplné indukce.
Mime

T1 = 1,

7‘2 = 9 = 32,

r— 36= 6, @)
7 — 100 = 102,

rs — 225 — 15



Z toho usuzujeme, Ze r, je asi Gplny Ctverec, tj. r, == &2,
V jakém vztahu je ¢islo % k Cislu n? ProhliZzime-li pozorné
vzorce (4), vidime, Ze &isla na pravych strandch jsou soucty
indexti u pfedchazejicich Cisel r4. Skutecné

14+2= 3,
1+2+4+3= 6,
1+2+3+4=10,
1+2+3+4+45=15.

To nés vede k domnénce, 2e k=1+2+ ... + n, tedy

2 2

(podle plikladu 2) & — "—(”;—1) take 7, =f—(”4Ll).

DokaZme to uplnou indukci. Domnénka je sprdvnd pro
n =1 (dokonce pro n =1, 2, ..., 5). VypoCtéme 744 ,.
Ziejmé je

2
tasr="1n+ (n+ 1= (n+ 1)2(%+n+1)=

AR A+ (e D 2R
) 4

Diikaz je hotov.

Ptiklad 3 je do jisté miry pro pouZiti indukce typicky.
Véta o matematické indukci nim nic nefikd o tom, jak
objevit novou poucku ¢&i vzorec. Novy poznatek (v nasem
ptipadé vzorec pro souet 13 + 23+ ... 4 n®) zjistime
zpravidla pokusy (které nemusi byt ihned tsp&$né) a mate-
matické indukce uZijeme pouze k dikazu.

Toho, kdo by se domnival, Ze nenf tfeba pouZivat iplné
indukce a Ze postati pfesvéd¢it se o platnosti n&jakého
tvrzeni T, zavislého na Cisle # pro dostatené velky pocet
piirozenych cCisel, snad pfesv&d¢i o nespravnosti tohoto
ndzoru nésledujici pfiklady.
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Ptiklad 4. Rozklddejme mnohotlen x* — 1 pro riizné ».
Dostaneme

x —1=x—1,
2—1l=x—-Dx+1,
B—l=xx—-—1DG+x+1),
M—1=w—Dx+ 1)+ 1),

M —1=(x— D +x*+x2+ x4 1)

Pfi tom tvofime jen takové rozklady, v nichZ koeficienty
jednotlivych Cinitela jsou cela Cisla. Zdalo by se, Ze koefi-
cientyjednotlivych ¢initelii rozkladu jsoubud + 1, nebo —1.
To vsak neni pravda. TéZko bychom to zjistili postupnym
dosazovanim za 7 a rozkladem, protoZe teprve pro » = 105
ma mnoho¢len x* — 1 v rozkladu ¢initele, jehoZ koeficient je
—2.

Pfiklad 5. Zvolme ptirozené ¢islo 2> 1 a vySetfujme ne-
rovnost

kn+ 1} 1
a jeji zvlastni pfipad pro & = 5,
5n 4+ % 1
St T (6)

Kdybychom postupné dosazovali za # Cisla od 1 do 500,
zjistili bychom, Ze nerovnost (6) je spravnd. Neplati viak
pro viechna n. Skute¢né, podle obvyklych pravidel pro
poditéni s nerovnostmi (52 — 4 > 0) dostaneme

3125> 51— }
&lin < 625,1.

Tato nerovnost je ekvivalentni s nerovnosti (6). Tedy
k tomu, abychom postupnym dosazovianim zjistili, Ze ne-

11



rovnost (6) neplati pro viechna n, museli bychom dosazovat
ptirozena Cisla aZ do Cisla 626. To by jisté byla velikd prace
a pfitom zbyteénd. Podobné bychom zjistili, Ze nerovnost

(5) je splnéna pro viechna n < k*-! % Je-li 2 dost velké

(napf. £ = 100), je Cislo na pravé strané posledni nerov-
nosti nesmirné veliké (napk. pro £ = 100 je to ¢islo o 199
cifrich pfed desetinnou Cirkou), mohli bychom cely Zivot
postupné dosazovat pfirozena Cisla od 1 pocinaje a nabyt
uplné chybného presvédceni, Ze nerovnost plati pro viechna

n

Ptiklad 5 je zajimavy jesté v jednom sméru. Mysleme si,
Ze n&jaky na§ ,,odpurce” stile jeSté vé, Ze neni nutné
uZivat matematické indukce, ale Ze staCi ovéfit jeho plat-
nost pro dosti velky pocet pfirozenych Cisel. Tohoto ,,0d-
purce® ,,porazime* takto: Zeptame se ho, pro kolik pfiro-
zenych Cisel tedy staCi provést zkouSku. On fekne tieba pro
tisic. My se jen pousméjeme a ukdZeme mu nasledujici p¥i-
klad vyvracejici jeho tvrzeni. Nerovnost (5) je pti 2 = 6

splnéna pro viechnan << 65 4 é =777 6,083. Toznamen4, Ze

prvnich tisic zkousek nestaci, nebot nerovnost (5) je spravna
pro prvnich tisic pfirozenych lisel, ale neplati pro viechna
n. A tu tfeba n4§ odpiirce namitne: Cislo tisic bylo malé, ja
sam takové ¢islo nezndm, ale moZna, Ze existuje. My mu
viak neumoZnime Cestny ustup z bojiSté, nybrZz ho pora-
zime na hlavu tim, Ze ukiZeme, Ze at si zvoli jakkoli velké
ptirozené &islo N, vidy najdeme % tak, Ze nerovnost (5)
bude splnéna pro viechna » < N, ale nebude spilnéna pro
viibec viechna #. K tomu zfejmé stadi zvolit % tak, aby
kF1 4 2Lk> N, a to je vidy moZné.

Abychom dovrsili nase vitézstvi nad na$im odptrcem,
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poznamendme jeSt€, Ze nakonec je i pohodln&j§i provést
dikaz indukci neZ providét velky pocet zkousek a Ze cely
spor jsme s nim vedli jen proto, abychom ukizali, Ze jeho
stanovisko je zdsadné nesprdavné.

Ukazali jsme si, Ze pfi pouZiti matematické indukce by-
chom se mohli dopustit hrubé chyby, kdybychom nedo-
kazali bod II. Nelze viak pfi dikazu vynechat ani bod I.
O tom nas poudi nasledujici pfiklady, v nichZ ,,dokiZeme**)
(tim, Ze zapomeneme ovéfit I) zfejmé nespravné tvrzeni.

P¥iklad 6. Cislo 2z + 1 je sudé. Predpokladejme, Ze
an = 2n + 1 je sudé. Vezméme Cislo an 4, = 2 (n D+
+1=2n+41-+ 2. To je sudé, nebot je soutem dvou
sudych Cisel, Cisla 2 a ¢isla 2n + 1 (posledni Cislo je sudé
podle indukéniho piedpokladu). Dikaz je hotov.

ledo by se asi nedopustll omylu z prlkladu 6 u tak jed-

vvvvvv

Pfiklad 7. Cislo 2% 4 3% je délitelné &islem 73.
Provedme zdvér znnan + 1:

23+ 1) 4 34+ 1) = 8 (2% 4 3n) 4 73,34, )

To je soudet dvou Cisel, z nich? ka?dé je délitelné ¢islem
73 (prvni podle indukéniho pfedpokladu). Véta je dokdzana.

Ve skuteénosti je pravy opak spravny. Cislo 23 4 34n
pro Zidné pfirozené » neni délitelné 73. To si dokdZeme,
tentokrit jiz bez chyb, matematickou indukci.

Pro n =1 je 2% | 3% = 89 a toto Cislo neni délitelné
73. Tvrzeni je sprivné pro n» = 1. Udifime zavér z » na
n + 1. Pfedpokladejme, Ze 2%% 4+ 3% neni délitelné Cislem
73 a vySetfme Cislo 23 +1)  34@ + 1)) To podle rovnice(7)
je souétem dvou &isel, z nichZ prvé podle indukéniho pfed-

*) Pochopitelné nespravné.
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pokladu neni délitelné &islem 73 a druhé ziejmé Cislem 73
délitelné je. Tedy toto Cislo 23+ 1 4 34 +1) nemiiZe byt
délitelné 73, c. b. d.

Cvideni

Vypoététe (vzorec dokaZte matematickou indukci).

2244464 ...+ 2n

TR LIS SR

#1.242.343. 44 ..+ ... +n(m+1).
111 1

M atistsat o tmooearn
1 1 1

“i5ts5et T @mH @D

7. O Doka’te, Ze pro kazdé n je Cislo 57+! + 621 dé-
litelné &islem 31.

8. Doka’te: Souclet tietich mocnin tfi po sob& nasleduji-
cich ptirozenych cisel je délitelny 9. (Postup je ob-
dobny dikazu tvrzeni 4 str. 5.)

9. Soudin dvou po sobé ndsledujicich pfirozenych ¢isel je
délitelny dvéma.

10. Na zdkladé cviceni 9 dokaZte znovu, aviak bez po-
uZitf matematické indukce, Ze soucet ¢tverct dvou po
sobé ndsledujicich pfirozenych Cisel zmenseny o jednu
je délitelny étyfmi. (Névod: n2 + (n + 12 — 1 =
=2n(n+ 1))

11. Soulin tfi po sobé nésledujicich pfirozenych Cisel je
délitelny Sesti.

14



12. Dokaztea) 1 —- 22432 — 42 ... 4+ (—1p-n? =

= (~1ypa A D) )

B)1 4 3%+ 5%+ ...—|—(2n—1)2=
_n@Cn—1D0Cn+1)
= 5 .
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2. POKUS O DUKAZ VETY
O MATEMATICKE INDUKCI

V matematice kazdou novou vétu dokazujeme. DokaZme
si vétu o uplné indukci. Ditkaz provedme sporem. Necht
tedy plat1 Tall(vizsfr.7)a predpoklade]me, Ze T, neni
spravné pro viechna n. Mezi témito n existuje jedno nej-
mensi, to oznaéme #,. ProtoZe plati T3, je n, > 1. PoloZme
k = n, — 1, potom % je pfirozené {islo mensi nez n,, a tedy
T} plati. Podle II plati Ty, tj. Th., to v3ak je spor.

Zdailo by se, ze se ndm dikaz podafil. Ve skutednosti
jsme nedokazali viibec nic, uZili jsme totiz nedokdzaného
tvrzeni, Ze mezi témi pfirozenymi Cisly n, pro kterd T, ne-
plati, existuje nejmensi. Takové tvrzeni by bylo spravné,
kdybychom védéli, Ze kaZzdd neprazdnd mnoZina*) pfiro-
zenych (isel ma nejmensi prvek. Jakkoliv se zdd tato véta
ofividnd, je pfece jen ndmi nedokidzand.

Snaha po logicky pfesném vybudovéini matematiky vedla
k tak zvané axiomatické metod€. Pfi ni vychizime z né-
kolika mdlo zakladnich vét — axiémi, které pfijmeme bez
dtikazu a vSechny dalsi poucky z téchto zdkladnich axiému
(Fika se téZ postulatil) odvozujeme logickou cestou. Na sou-
stavu axiomi klademe dva zasadni poZadavky. Prvni je tzv.
bezespornost. To znamend, Ze soustava axiomu musi byt
takova, aby se z ni nedala odvodit dvé tvrzeni, z nichZ jedno
tvrdi logicky opak druhého (napf. prvni tvrzeni: Cislo 2 je
sudé, druhé tvrzeni: Cislo 2 neni sudé). Druhy poZadavek
spociva zhruba v tom, Ze Zidame, aby axiému bylo co nej-

*) Viz.vysvétlivky na konci knihy.

-
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méné. Piesngji, aby se Z4dny z axiémi nedal odvodit
z ostatnich. Jestlize tomu tak je, fkime, Ze axidmy jsou
nezavislé.

Je zcela ptirozené, %e chceme mit axiémti malo. Cim
mén¢ tvrzeni piijmeme bez dikazu, tim spiSe se vyhneme
moznosti pfijmout néco nespravného. Hlavni divod, pro¢
se snaZime mit axiémi co nejméné, je viak zcela jiny.

Ptedstavme si, Ze jsme nékteré poucky o délitelnosti
celych ¢isel odvodili z nékolika zdkladnich axiému. Potom
nebudeme musit znova dokazovat tyto poucky pro mnoho-
Cleny, postali kdyZ se pfesvédCime, Ze pro mnohocCleny
jsou splnény ony zikladni axiémy*). Pfitom oviem nim
zdleZi na tom, abychom nemusili ov&fovat axiémi mnoho,
ale pravé naopak, aby axiému bylo co nejméné.

Je-li vak axiému madlo a chceme-li budovat teorii
exaktn&, nevyhneme se zpravidla tomu, e musime dokazat
nékteré samoziejmé véci, Ostatné to co je samoziejmé
(vritime-li se k naSemu pfikladu o délitelnosti) pro celd
¢isla, nemusi byt samozfejmé pro mnohocleny.

Pfikladi, kdy se neopravnéné uZilo samoziejmého tvrze-
ni, zna historie matematiky mnoho. Zmifime se o jednom
axiému, ktery ve vyvoji geometrie sehril vyznamnou roli.

Prvni axiomatické vybudovini geometrie pochazi od
starofeckého v&dce Euklida (viz historickou poznidmku na
konci knihy). Mezi jeho postulity byl jeden, ktery mate-
matiky ¥ddné potrapil. Byl to jeho paty postulat, tzv. postu-
lat o0 rovnobé&zkach, ktery zni:**) Danym bodem lze k dané
ptimce vést pravé jednu rovnobéZzku. Vznikla snaha tento
axiém z ostatnich axiéma***) dokdzat a mnohokrit byl

*) Ve %kole jste oviem touto cestou nepostupovali, protoZe tento
zpusob vykladu by ¢inil slabsim Zikam potiZe.

**) Euklidiiv paty postulit znél ptivodn# jinak, to co nisleduje, je
jeho ekvivalentni formulace.

*%x) NemiZeme je zde uvadét.
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pfedloZen ,,dukaz®. VZdy se vSak ukdzalo, Ze v ,,diikazu* je
bud chyba anebo (coZ je vlastné totéz), Ze bylo uZito néja-
kého ,,samoziejmého’* tvrzeni, které je s patym postuldtem
rovnocenné.

A podobné chyby jsme se dopustili i my pfi diikazu véty
o matematické indukci. Ale ¢eho smime pri dikazu uzit?
Abychom tuto otdzku mohli zodpovédét, musime si néco
povédét o axiomatickém zaloZeni teorie pfirozenych Cisel.
Soustavu axiéomi (kterd je bezespornd a jejiZz axidmy jsou
nezavislé), z nichZ se daji odvodit*) vSechny véty o pfi-
rozenych cislech, predlozil italsky matematik G. Peano (viz
historickou poznamku na konci knihy) a jednim z t€chto
axiomd, dokonce jednim z ne]dulezué]smh je i matema-
tickd indukce. Mluvime proto o principu matematické
(4plné) indukce a vétu o matematické indukci na str. 7
ptijimame bez dikazu jako axiom.

DokaZme si nyni, Ze kazdi neprazdna mnoZina M pfiro-
zenych Cisel ma nejmensi prvek. ProtoZe mnoZina M je
neprazdni, obsahuje néjaké pfirozené Cislo #. Vezméme
v uvahu vechna pfirozena Cisla, ktera patii do M a ktera
jsou nejvyse rovna n. Téch je nejvyse k, kde £ < n. Kdyby-
chom méli dokdzino, Ze mezi & pEirozenymi Cisly existuje
jedno, které je nejmensi, bylo by vie hotovo. My si viak
dokdZeme jesté o néco vice. Mezi k redlnymi Cisly ay, a,,
.. -5 a4 existuje jedno, ozna¢me ho m, které je nejmensi, tj.
takové, Ze platim = a;,, m < a,, ..., m = ap. Dikaz pro-
vedeme indukci. Tvrzeni je zfejmé spravné pro & = 11 pro
k = 2. UvaZujme nyni Cisla a;, ..., az, ar,. Podle in-
dukéniho pfedpokladu existuje mezi Cisly ay, ..., ax nej-
mensi, oznatme )e my. Ze dvou Cisel m; a Gk 41 1e jedno
nejmensi, to ozname m. Ziejm& m je i nejmensi z Cisel
a;, ..., ax 1. Dilkaz je proveden.

*) Pfitom je oviem .tfeba nejen poucky dokazovat, ale i zavadét
nové pojmy definicemi.
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3. JINE FORMULACE

V jedné ufadovné stitni banky mél pokladnik k dispozici
jen tiikorunové a pétadvacetikorunové bankovky. MEél
velké obavy, Ze pfi vyplaté nékteré Castky bude musit
shanét drobné. Rikal si: ,, To bude ostuda, nase ufadovna
by piece méla mit drobné.” Mél viak Stésti, vidy se mu
podafilo patfi¢nou Castku vyplatit. Vecer prohliZel, jaké
Castky béhem dne vyplécel a zjistil, Ze vyplicené Castky
byly vyjadfeny v celych korunich a byly vétsi nez 48. A tak
si poloZil otdzku, zda to byla ndhoda, Ze nemusil pfiznat, Ze
nemd drobné, nebo zda lze kaZdy pocet korun vétsi nez 48
vyplatit jen s pomoci tfikorunovych a pétadvacetikoruno-
vych bankovek. Udélal si nasledujici tabulku:

Obnos v korunich Pocet tfikorun péta dI\)rgiziikorun
49 8 1
50 0 2
51 17 0
52 9 1
53 1 2
54 18 0
55 10 1

To je jasné, fekl si pokladnik, kaZdy obnos v celych koru-
nach vétsi nez 48 lze vyplatit pouZitim jen tfikorunovych
a pétadvacetikorunovych bankovek. A na nis nyni je, aby-
chom to dokazali.
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Je-li n vyplécen4 ¢4stka, m4 platit rovnice
n = 3x + 25y, (1)

ve které celd nezapornd Cisla x a y oznaluji pocet tfikorun,
resp. pétadvacetikorun. Abychom se mohli stru¢ngji vy-
jadfovat, fekneme, Ze pfirozené Cislo # je pfihodné, jestlize
rovnice (1) ma feSeni x, y v celych nezdpornych Cislech.

Jde o to dokazat, Ze kaZdé pfirozené Cislo #, které je vEtsi
neZ 48 je pfihodné. Vime, Ze Cislo 49 je pfihodné. Diive nez
provedeme zivér z # na n» 4 1, viimneme si pokladnikovy
tabulky. K zvySeni vypldcené ¢dstky o 1 K¢s se nahradi bud
8 tfikorun jednou pétadvacetikorunou (ze 49 na 50, z 52 na
53, z 54 na 55) nebo se dvé pé&tadvacetikoruny nahradi 17
tfikorunami (z 50 na 51, z 53 na 54). Nyni jde o to, zda lze
jeden z téchto postupt pouZit ke zvy3eni vypldcené Cistky
o 1 K& pfi libovolném pfirozeném Cfsle n > 49. Jinymi
slovy jde o to, zda rovnice

n+1=3x+25y

m4 vidy alespoti jedno feSeni v celych nezipornych x a y,
které dostaneme z celoCiselného nezaporného feSeni x,, ¥,
rovnice
n = 3x0 + 25y0
bud podle vzorct
X = xo hand 8,
y=x-+15

(8 tfikorun nahradime jednou pétadvacetikorunou) nebo
podle vzorcl '

x=x,+ 17,
Yy=%—2
(dvé pétadvacetikoruny nahradime sedmndcti t¥ikorunami).
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Po této pfedbéiné Gvaze provedme zavér z n na n + 1.
Bud tedy » pfihodné, tzn. existuji celd neziporni Cisla x,
a y, tak, Ze

n= 3):0 + 25yo
a necht Cisla
X = xo _ 8,
y=3+1

nejsou*) celoiselné nezdporné feSeni rovnice
n+ 1 = 3x + 25y.

ProtoZe x a y je zfejmé& celoliselné feSeni (stadf dosadit)
ay=1, musi x, — 8 <0, tj. x, < 8. DokdZeme nyni, Ze
x =129+ 17,y = y, — 2 je celoliselné neziporné feSeni
rovnice n + 1 = 3x 4+ 25y. ProtoZe to zfejmé& je ce-
loiselné feSenf (sta¢i dosadit) a x = 17, staéi dokézat,
Zey=0, Cili yo= 2. ProtoZex, <8ang 49je

_n—3xy  49—24
N="%5 7T BT

Je tedy n 4 1 piihodné, je-li n > 48 a pfihodné. Z toho
soudime, Ze kdyZ 49 je pfihodné, Ze i 50 je pfihodné, kdyz
50 je ptihodné, tak i 51 atd. Kazdé pfirozené Cislo vétsi
neZ 48 je pfihodné.

V poslednim pfikladé jsme uZili matematické indukce,
ale v jiné formé& neZ jsme vyslovili v ¢l. 1. UZili jsme vlastné
této vety:

L.

Vé&ta 1. Bud V, tvrzend zdvislé na pFirozeném sle n
a necht plarf
I*. V., je sprdvné pron = ny, kde ny je néjaké pfirozené Cislo,
II*. je-li n = ny a Va plati, potom plati i V, .. ,.

*) Kdyby byla, nenf co dokazovat.
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Potom plati tvrzent V., pro viechna pfirozend n = n,.

Vétu 1 si dokdZeme z principu matematické indukce.
Ditkaz. Oznatme znakem T} tvrzeni Vi, _,. Ziejmé
T, plati, nebot T} = V, . Necht tedy % je pfirozené Cislo
a T plati, potom plati Vi 4w, _; (nebot 2 +n, — 1 =
=n,) a tedy podle pfedpokladu II* véty plati Vi s, =
= Viin,_1 . Try4, Podle principu matematlcké
indukce plati T% pro vSechna pfirozena &, to viak znamend,
ze plati Vk+,,° 1 pro viechna pnrozené k, neboli V, pro
viechna piirozend n = 7.

Ukazme si je$t& dva priklady na vétu 1.

Ptiklad 1. DokaZte, ¥e pro n = 5 plati nerovnost

2" > n )
UtZijeme véty 1 (n, = 5). Nerovnost (2) plati pro n =5
(32 > 25). Necht tedy (2) plati pro pfirozené n = 5. Z (2)

plyne
2+l 202 =n? + nk 3)

UvaZme, 2e n — 1 =4 atedy n* — 2n 4 1 = 16 a tedy
n® > 2n + 1. Z toho a z nerovnosti (3) plyne

tls p24 2n+ 1= (n+ 173
c. b.d.

Piiklad 2. Vé&a. Jsou-li » a ¢ pfirozend ¢isla, potom
existuji celd nezaporni Cisla m a r tak, Ze plati

n=mq+r C))
0=r<ayg )

Cisla m a r jsou &isly 7 a ¢ jednoznaéné stanovena.
Cislu r se ¥ik4 nejmensi nezporny zbytek pti déleni &isla
n Cislem gq.

a
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Véta je vim dobfe zndma z nirodni Skoly a budete se
moZna ptat, pro¢ ji dokazujeme. Uvédomte si viak, Ze véta
se vam vZila jen neustdlym pouZivanim a Ze jste si ji nikdy
nedokazali.

Diikaz. Nejdfive dokdZeme existenci-Cisel m a r metodou
matematické indukce (podle véty 1). Je-li n < g, kze vzit
m=0ar=n Jeli n=gq, lze polozit m=1, r=0.
Tvrzeni je sprivné pro n = q. Bud » pfirozené dislo,
n = q a pfedpoklddejme, Ze tvrzeni plati pro , tj. Ze plati
(4) a (5). Mame dokazat, Ze existuji celd nezdporni Cisla m,,
ritak,Z2en + l=m, ¢+ r,a0 = r, < ¢q. Vyjdeme z rov-
nice (4); pfi¢teme na obou strandch ¢islo 1, tim dostaneme

n+1l=mqg+r+ 1. (6)

Je-li r+ 1 < g, miZeme poloZit m=miar,=r+1

a dikaz je hotov, neni-li r + 1 < ¢ je r + 1 = ¢ (nebot

r < ¢). Potom v3ak z rovnice (6) dostaneme
n+l=mg+q=m-+1gq

a lze zfejmé& vzitmy =m + lar, = 0.
" Existence je dokdzana.
Nyni dokéZeme jednoznacnost. Necht tedy plati

n=mq-+ry, 0=r<g
n=myq -+ ry 0=r, <gq

Pfedpoklddejme m,>m,. Odectenim rovnic pro » dosta-
neme:

&l

O=(my—m) qg+r,—n

(my—my) g=r1ry— 1, 0

Aviak m, — m, = 1, tedy (m, — m,) ¢ = ¢; naproti tomu
jeviak r, — r, =1, < g, a tedy
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(m—my)q=gq>r,—ry,

a to je spor s rovnicf (7). Pfedpoklad m, > m, vedl ke sporu.
Podobné se ukaZe, Ze i pfedpoklad m, < m, vede ke sporu.
Tedy neplati ani m; < m, ani my <m,. To znamend, Ze
plati m;, = ms,.

Z rovnosti (7) pak plyne r, = ;.

Cvileni .

1. Doka’te, Ze pro n > 2 plati 2* > 2n 4 1.
2*, Pro kterd n plati 3* > »®?

3. KaZdy obnos vétsi nez 7 halér lze zaplatit jen tfihalé-
fovymi a pétihaléfovymi mincemi.

4. 0 Ke kaZdému pfirozenému Cislu 7 existuje celé nezé-
porné Cislo s a cela Cisla g, ay, . .., a, tak, Ze

n=a.106: + a,_; 10°-2 + ... 4+ @, 10 + g,

a
10>a =1,
10> a;-, =0,
10>a, =0

10> a =0.

Pfitom ¢&isla s, ay, ..., a,jsou Cislem n jednoznacné ur-
ena. Slovy: Kazdé ptirozené Cislo se dd napsat v desit-
kové soustavé pravé jednim zptisobem.

5. Ke kazdému pfirogenému Cislu 7 existuje celé nezdporné
Cislo sa éisla qq, ..., as, kterd jsou bud O nebo 1 tak, Ze

n=a2+a_,2"1 4 a,2 + a,
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(Vyjadfeni pfirozeného Cisla v dvojkové soustavé.)
6*. Cislo 137 vyjadiete ve dvojkové soustave.
7. DokaZte v&tu. Jsou-li » a ¢ pfirozena Cisla, ¢ = 2 &,
potom existuje celé nezdporné Cislo m a celé Cislo r tak,
Ze
n=mq-+r
a
—k <r=k

(Névod. MiZete uZit bud véty z pfikladu 2, nebo provést

dtikaz indukci podobné jako to bylo udélino v pfikladé 2.)

8. DokaZte. Kazdé pfirozené liché Cislo vétsi neZ 2 je
tvaru 4k — 1 nebo 4 k2 + 1, kde % je pfirozené ¢islo.
(Néavod. Poutzijte véty z cviteni 7 pro ¢ = 4.)

9. Dokaite: Kaidé prvolislo*) vétSi neZ 4 je tvaru
6k — 1 nebo 6%+ 1, kde % je pfirozené Cislo. (Na-
vod. PouZijte v&ty z cviCeni 7 pro ¢ = 6 a vySetfujte
rizné moZnosti pro r.)

10. Ukazte, Ze neplati véta obricena k vété z cviceni 9. (N4-
vod. PoloZte £ = 4.) '

Nyni si vyslovime, objasnime a dokdZeme vétu, ktera je
s principem matematické indukce ekvivalentni. Jinymi
slovy: dokaZeme ji z principu matematické indukce, a déle
ukdZeme, Ze z predpokladu, Ze tato véta plati, vyplyvd
platnost principu matematické indukee.

Véta 2. Bud M mmozina prirozenych &isel, kterd md tyto
dvé vlastnosti:

I'l e M.

*) Viz vysvétujici poznidmku na konci knihy.
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II'. Jestlize ne M, potomn + 1 e M.
Potom mnoZina M obsahuje vsechna prirozend Cisla.

Objasnéme si vétu 2. Prirozena Cisla si pfedstavme
(napf.) jako kaménky a mnoZinu M jako sicek. Do tohoto
sdku nevidime, vime v3ak (podle I' a II'), Ze v ném je
kamének zndzoriujici Cislo 1 a jestliZze ze sicku vytadhneme
kamének znazorfiujici Cislo », jsme si jisti, Ze v sidCku je
rovnéz kamének zndzornujici Cislo #» + 1. NaSe véta ndm
fika, Ze sacek obsahuje vSechny kaménky. '

Nékdo by se mohl domnivat, Ze je zbytecné se zabyvat
vétou 2, protoZe je rovnocennd s principem matematické
indukce, a nic nového nim nefikd. To by vSak byl omyl.
Mnohdy je k dukazu né&které matematické poucky vyhod-
néjsi uzit této véty neZ principu matematické indukce v pti-
vodni formé. Jsou vsak jesté dalsi dtivody, pro¢ formulovat
vétu 2, nemiiZeme se viak jimi v této elementdrni kniZce za-
byvat. Uvidime, Ze véta 2 se ndm bude hodit pozd¢ji pfi
dukazu véty 4. ‘

Diikaz. PouZijeme principu matematické indukce. Oznaé-
me T, toto tvrzeni:

MnoZina M obsahuje Cislo #.

Podle I' je T, spravné. Z II' vyplyva, Zze z T, plyne
T, ;. Tedy plati I. a Il. z principu matematické indukce.
Z toho usuzujeme, Ze T, plati pro kaZdé pfirozené n, tj.
M obsahuje viechna pfirozena Cisla c. b. d. ‘

Piedpoklddejme nyni, Ze véta 2 plati a ukaZme, Ze potom
plati véta o matematické indukci. Ponechme oznaceni
z diikazu véty 2, tj. T, je vyrok:- MnoZina M obsahuje
Cislo n. Pfedpoklddejme I a I1. Potom 1 € M a dile, plati-li
Ts, tj. neM, potom plati T, 4, tj. n + 1 e M. Cili plati
I’ a IT". Podle véty 2 obsahuje M vSechna pfirozena Cisla,
¢ili pro kaZdé pfirozené » plati » € M, jinymi slovy T, plati
pro vSechna .
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Pfiklad 3. Véta. KaZdé pfirozené Cislo lze napsat jako
2 k nebo 2 & — 1, kde % je pfirozené islo.

Diikaz. Do mnoZiny M dejme ta pfirozena Cisla, kterd se
daji zapsat ve tvaru 2 & nebo 2 & — 1, kde % je pfirozené
¢islo. Zfejmé 1eM, nebot 1 =2.1 — 1. Necht neM,
potom n= 2%k nebo n=2%k — 1. V prvnim ptipadé
n+1=2k+1=2(k+1)— 1dlin+ 1eM;vdru-
hém piipadé n + 1 = 2k, &ili n + 1 eM. Podle véry 2
obsahuje M vSechna pfirozeni (isla, ¢. b. d.

Podobné jako z principu uplné indukce jsme odvodili
vétu 1, 1ze z véty 2 snadno odvodit vétu malinko obecnéjsi.

Véta 3. Bud M mnoZina pFirozenych Cisel, takovd, Ze

LEkeM.

II. Je-lin = k a neM, potom n + 1 M.

Potom M obsahuje viechna piirozend &isla vétst nebo rovnd
Cislu k.

Plamnost véty 3 je zfejmad, snadny formalni dikaz pfene-
chivim C¢tendfi. Podobné jako véta 2 byla jen jinou formu-
laci principu Uplné indukce, je véta 3 jen jinou formulaci
véry 1.

Nez ptistoupime k dalii vét€, probereme jeden pfiklad.

Pfiklad 4. Véta. Kazdé pfirozené Cislo » = 2 je délitelné
néjakym prvocislem.

Pokusme se vétu dokizat dplnou indukci (pfesnéji po-
moci véty 1). Véta je spravna pro n = 2, nebot 2 je prvo-
Cislo. Tedy I* je spravné. Bud tvrzeni véty spravné pro
n a pokusme se je dokédzat pro » + 1. Bud je » 4 1 prvo-
¢islo, potom neni co dokazovat. Nebo je n 4- 1 Cislo slo-
Zené; n+1l=rs, kdel <r<n+1, 1 <s<n+4+ 1.
Kdybychom mohli nyni uZit indukéniho pfedpokladu pro
r nebo pro s, dikaz bychom snadno dokon¢ili (rozmyslete
si to!), ale to nemiZeme, nebot nevime, zda r nebo s je
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rovno n. Dokonce muZeme s jistotou olekavat, Ze r + n
a s + n Diikaz se ndm tedy nepodaftil, ale nyni jist€ uzni-
me, Ze by se nam hodila tato véta.

Vé&ta 4. Bud T, rorzeni zdvislé na étsle n a necht

L. pro p¥irozené &islo r plati T..

IL. z platnosti Ti pro vsechna éisla k, r < k < n vyplyvd
platnost T,

Potom plari T, pro viechna pFirozend n = r.

Diikaz. Utvofme si mnoZinu M takto. Cislo neM,
jestlize T plati pro vSechma pfirozend %, r < k <n.
Ziejmé& r + 1eM. Dile z ne M plyne n + 1 e M. Tedy
podle véty 3 obsahuje M vSechna pfirozena Cisla v&tsi nebo
rovnd r -+ 1, tedy 7, plati pro viechna n, c. b. d.

Diikaz véty z piikladu 4 provedeme nyni pomoci véty
4. Bud T, tvrzeni: Cislo 7 je d&litelné néjakym prvocislem.
Ziejmé T, plati. Necht plati T pro 2 = k < n, ¢ili pfed-
poklddiame, Ze kazdé pfirozené %, 2 = k& < n je délitelné
né&jakym prvocislem. Cislo 7 je bud prvoéislo nebo ¢&islo
sloZené. Je-li prvodislo, neni co dokazovat, je-li sloZené, je
délitelné néjakym pfirozenym Cislem s, menSim neZ n.
Cislo s je viak délitelné prvocislem podle indukéniho pred-
pokladu, tedy i Cislo # je délitelné timto prvodislem. To
viak znamend, Ze T, plati. Tedy podle véty 4 plati T,
pro viechna n = 2, ¢ili kazdé pfirozené Cislo n vétsi nebo
rovné 2 je délitelné né&jakym prvocislem.

V ptikladé 2 jsme si vyslovili a dokdzali vétu o déleni
Cisel se zbytkem, o které jste se ufili jiZ na niZ$im stupni
(oviem bez ditkazu). Podobné jako se daji délit (se zbytkem)
pHrozena cisla 1ze délit mnohocCleny®).

UkaZme si nejdfive na Ciselném pfikladé, jak se cely
vypocet providi a pak si teprve dokdZeme pfisluSnou vétu.

*) Viz vysvétlujicf poznamky na konci knihy.
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Piiklad 5. M4 se nalézt ¢astecny podil a zbytek pfi déleni
mnohodlenu 2 x®* — 6 x2 4+ 2 x 4 3 mnohollenem x — 3.
Vypocet provadime takto. Podil ¢lent nejvyssich stupid
bude prvnim ¢lenem &dsieCného podilu (2x3 : x = 2 x?),
timto ¢lenem zndsobime délitele a odecCteme od délence.
Vypocet zapisujeme takto:
2x—6x2+2x+3):(x—3)=2x
—2x3F 6x2
0 0
SepiSeme dalsi Cleny, cely postup opakujeme, aZ nakonec

zbytek je mensiho stupn€ neZ délitel. Postup vypoctu Je
jasné patrny ze zapisu

Rx®—6x2+2x+3):(x—3)=2x*+2
—2x3F 6«2
0 0 +2x+3
9

Cisteény podil je 2 x® - 2 a zbytek je 9.
Nyni pfistupme k vété. ‘

P¥iklad 6. Véta. Jsou-li p (x) a d (x) mnohoCleny s redl-
nymi koeficienty, d (x) % 0, potom vidy existuji mno-
hotleny ¢ (x) a r (x) tak, Ze
px)=d(x)g(®x)+r(x)
a pfitom stupes r (x) je bud mensi neZ stuperi mnoho¢lenu
d (x) nebo je r (x) = 0 pro viechna x.
Diikaz provedeme indukci. Pfitom budeme v podstaté
délit (aviak obecn¢) mnohoflen p (x) mnohoclenem 4 (x),

provedeme v3ak jen prvni krok déleni a misto dalSiho déleni
wZijeme indukénfho pfedpokladu. Ale ted jiZ k véci.
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Dikaz provedeme indukci podle stupné mnohodlenu p.
Nejdfive vSak musime vyfidit pfipad p (x) =0 (nebot
nulovy mnohoClen nema Zadny stupefl). VSimneme si
zvlaStmiho pifipadu p (x) rovno nule. Zde lze poloZit
g(x)=0, r(x) =0 a véta plati.

Necht tedy P (x)je stupné n, d (x) stupné m a

Pp(x)=anx"+ an_, x"! .+ ag an + 0,

d(x)—b,,.x"'-{—b.,,lx"'l—i— .+ bgy bm £ 0.

Véta plati, je-li » < m, nebot v tom piipadé lze zvolit
g (x) = 0,7 (x) = p (x). Véta rovnéZ plati pro n =m, nebot
v tom pfipadé mnoho¢len

P@—d@  Gat0)
je bud nulovy nebo stupné niZSiho neZ m. Lze tedy poloZit
g(x) = Z—" ar(x)=plk— Z—" d(x). (Povsimnéte si, Ze

nyni jsme postupovali jako v pfikladé 5.) Vime tedy, Ze
véta plati pro vsechny polynomy stupné 1, 2,. .., m. Pfed-
pokladejme nyni, Ze veta plati pro vsechny polynomy stup-
né k, kdem = k < n a dokaZme jeji platnost i pro polynomy
stupné n. Vezméme mnohodlen

P = amd ().

(Postupujeme opét jako v piikladé 5. Od délence p (x)
od¢itame délitele d (x) zndsobeného podilem ¢lend nejvys-

Sich stupﬁu ) To je mnoho¢len stupné niZ§iho neZz

bm

n (nemusi byt stupné n — 1, protoZe se mohou, podobn¢
jako v pfikladé 5, zrusit i nékteré dal3i Cleny, nejenom ¢leny
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nejvyssich stupiitl). Podle indukéniho pfedpokladu existuji
mnohodleny 7 (x) a r (x) tak, Ze

PO - md@=d@WI@W+FE O
a pfitom stupeii r (x) je bud mensi neZ stupeti d (x) nebo

jer (x) =0.
Upravou rovnice (8) dostaneme

p@=(mrmt 1) d® + 7 @),
Nyni je zfejmé: poloZime-li
¢@ =3 "+ 7 ()7 () = F (x)

je pro tyto mnohocleny splnéno tvrzeni véty, c. b. d.

Pozndmka. Podiskutujme chvili opét s naSim odpircem,
kterému z pocatku neni jasné, v em tkvi hlavni vyznam
véty. Pokusime se mu vysvétlit, Ze vyznam véty spoclivi
v tom, Ze zaruCuje existenci polynomi g (x) a r (x) a on
nim hned namitne: Pro¢ by takové polynomy nemély
existovat ? Trpélivé mu vysvétlime, Ze by se mél spie ptat:
Pro¢ by mély existovat? Nebot pro mnohocleny pouze
s celodiselnymi koeficienty obdobna véta neplati jak uka-
zuje nasledujici pfiklad p (x) = x +1, d (x) = 5. Kdyby
totiZ existovaly polynomy ¢ a r tak, Ze
x+1=5¢(x) + rx),

a r (x) byl stupné 0 nebo r (x) = 0, musel by zfejmé g (x)
byt stupné prvniho ¢ (x) = a x + b, kde a a b jsou celd
Cisla. Potom by vSak 5 a = 1 (koeficienty u x si musi byt
rovny); to vak je spor.

31



Poznimka. Podobné jako v pfikladé 2 se dokdzalo, Ze Cisla
g a r jsou urCena jednoznané, lze dokazat, Ze polynomy
p (x) ar (x) z pfikladu 6 jsou jednoznaéné uréeny polynomy
g (x) a d (x) (viz k tomu cvid. 4).

Cviéeni

11. Rozmyslete si, Ze vétu 4 Ize vyslovit timto ekvivalentnim
zpusobem: Bud M mnosina ptirozenych &sel takovd, Ze
1. pFirozené Cislo r patif do M,

IL. jestlize pro vSechna pfirozend k, r < k < n plati-
keM, potomne M.
Potom M obsahuje viechna pirozend &slan = r.

12. Kazdé pfirozené Cislo je soulinem kone¢ného pottu
prvocisel. (Navod. Uzijte véty 4 a postupujte obdobné
jako v pfikladé 4.)

13*. Najdéte CasteCny podil a zbytek pfi d€leni mnohodlenu
2 (x) mnohoclenem d (x) pro
a)p(x) = x5 4+ x2 4 5, dix)=x+1;
b)p(x) = x5+ 243, d(x)=x*+ 1.

14. 0 DokaZte. Polynomy ¢ (x) a r (x) z pfikladu 6 jsou
jednoznalné& urdeny polynomy p (x) a d (x).

15. 0 Je-li a redlné ¢islo a p (x) polynom s redlnymi koefi-
cienty, potom existuje polynom ¢ (x) tak, Ze plati

P(®)=(x—a) g(x) + (@)
(Navod: Utijte ptikladu 6 pro d (x) = x — a.)

16. Cislo @ nazyvime nulovfm bodem polynomu p (x)
(nebo té% feSenim algebraické rovmice p (x) = 0),
jestliZe p (@) = 0. DokaZte: je-li €islo ¢ nulovym bodem
polynomu p (x), potom p (x) je délitelny dvojclenem
x — a. (Navod: Ulijte cv. 15.)
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17*, Vite-li, Ze polynom p (x) ma nulovy bod a, urlete
viechna feSeni rovnice p (x) = 0 pro

WpE)=x—2x2—9x 1 18, a= —3;
Bp(x) =x5— 24— 10x®+ 20+ 9x — 18,
a=2;
N =x+1, a= —1.
18. DokaZte tiplnou indukei pro x + 2 & x rovnosti
) sin—n_lz_l-xsinn—z—x
a)sinx +sin2x+ ... +sinnx =
sin =
2
sinzn;—lx
B)}+cosx+cos2x+ ... +cosmx=
2sin%

19. © DokaZte znovu (pouZitim véty 4 a véty z pfikladu 2)
cvié. 4. (Ndvod: Vezméte ¢ = 10 a uZijte indukéniho
ptedpokladu pro m.)
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4, PRIKLADY Z ALGEBRY
°

ProtoZe Ctendfi je jiz princip uplné indukce béZny, ne-
budu v tomto ¢ldnku podrobné rozvidét viechny detaily
a budu postupovat rychleji.

Pfiklad 1. V matematice se ¢asto pouZiva této tzv. Ber-
noulliho nerovnosti

A+xr=1+n=x (D

ktera plati pro viechna redlnd x = — 1 a kaZdé pfirozené n.

Cten4f znaly tzv. binomické poucky si Bernoulliho ne-
rovnost snadno zapamatuje. Pravd strana této nerovnosti
jsou prvé dva Cleny soultu, ktery dostaneme vypoltem
levé strany podle binomické poucky. Jeji diikaz provede-
me takto: Pro n = 1 plati zfejmé& rovnost. Necht tedy
(1) plati. DokéZeme, Ze plati(1 + x)**t 2 1 + (n + 1) x.
Bud je 1 + x = 0 nebo je 1 4+ x > 0. V obou piipadech
smime ndsobit nerovnost (1) ¢islem 1 4 x a tato nerovnost
zustane spravnd. Tak dostaneme

A+axr+1z(4+nx)(04+x)=1+®+ Dx+
+nx2zl+ n4+ 1

Ptiklad 2. Je-i0 < a < b, potom 0 < a* < b~

Dikaz. Pro n = 1 je tvrzeni zfejmé spravné. Nerovnost
0 < a" < b" znasobime kladnym Cislem a. Dostaneme
0 <antl << abn Nerovnost a < b znisobime kladnym
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éislem b7, Dostaneme a b” < bnt1, Celkem tedy mime

0-<arntl<agbn < bl c b, d.

Ptiklad 3. Pro redlna kladna Cisla a, b, a + b, plati
2¢~Yg"+ b") > (a + b)~. @)

Dilkaz indukci. Nerovnost (2) plati zfejmé pro n = 2.
Ptedpokladejme a + b, a, b > 0 a dale to, ze (2) plati. Zna-
sobme (2) Cislem a + b a dostaneme

(@+byrtl<2n-1(a"+ b) (a + b). 3)
Nyni stadi dokdzat nerovnost
2-la"+b)(a+b)<2r(a*t! 4 bt 1) 4)

nebot potom
(a+ b)n+l <2n(an+1 + bn+l;’

a to je nerovnost (2) s n + 1 misto s n.
Nerovnost (4) je v3ak ekvivalentni s nerovnostmi

2n—l(an+l+bn+l)+2n—l(abn+ban) <
<2n(an+l_|_bn+l)’
abn+ban <an+1+bn+l,
0 < (a* — b") (a — b).

Posledni nerovnost je viak spravna, nebot Cinitelé na pravé
strané jsou bud oba kladni, nebo oba ziporni. Tedy plati
(4), c. b. d.

Pfiklad 4. Véta., Jsou-li x;, x, ..., x, kladnd Cisla
Xy X ... %= l,potomx; + x, + ... +xn = n.
Diikaz. Véta je spravnd pro n = 1 (plati rovnost). Necht
tedy plati pro pfirozené Cislo #n. UvaZujeme » + 1 kladnych
Cisel x5, ..., X4+ 1 takovych, Ze x; x5 ... x4+ 1 = 1. Mi-
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Zeme piedpoklidat x; = x; = ... = X, (v pHpadé po-
tieby Cisla x; pfecislujeme). Oznacme

P =X Xnt 1, Va=Xg s n=2n Cislayi(G=1,...,n)
jsou kladnd, plati y, ... y» =1, tedy podle indukcniho
predpokladu y; + ¥, + ... +yn = 1, Cili x;, xny1 + x5 +
+ ... + x» 2 n. Tuto nerovnost nyni upravme ekviva-
lentnimi Gpravami

X Xnr1+ X+ ... Fxa=mn
Ht+X+ .ot Xz t+1—-14x%+

+ Xnt1— X Xn+ 1
Av3ak

A=x)@rs1— D=1+ %r1— 1 — X%+ 1,
tedy
xitx+ ... txmpzn+l4+0—x) (X1 —1). (5)

DokiZeme-li P —x, =0, x,+1 - 1=0¢lix; = 1, 21215
bude zivér z n» nan + 1 dokonlen, nebot soulin na
pravé strané nerovnosti (5) bude nezdporné Cislo. Ditkaz
nerovnosti x, = 1 provedeme sporem. Necht x; > 1, po-
tom X; X5 ... Xn Xn+1 = Xx,"t1>1, a to je spor s pfedpo-
kladem x,x, . .. x,+1 = 1. Podobn¢& se dokdZe, Ze x,+1 = 1.
Véta je dokdzana.

Cvideni

1. Véta. Pro dvojmoc soudtu x; + ... + xa (7 = 2) platd
o+ xa+ .. Fx)t=x2F %24+ ...+ x?
F 2@ %+ 2y x5+ .. T X Xt XXy + ...+
+ XX+ ...+ Xno1 Xn).

2.0 Véta. Pro redlna &isla ay, agy ..., Gny b1y by .. .y Un
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plati vidy nerovmost (a; b; + a, b, + ... 4 anbs)* =
S(@l+a?+ ... +ad) b2+ b2+ ... + b%).

3.0 Jsou-li ay, ..., a» nezdporna ¢isla, potom Cisla

a=al+az-|-n...+anag=l/a1a2.”a"

nazyvime po fad® aritmetickym primérem &sel
Qs .. .8 @ geometrickym pramérem disel a; . . . an.
DokaZte nerovnost

Val...a..é Gt ... ¥ an

n
(Navod. Je-li g = 0, je véc jasni, pro g > 0 poloite
a a a, oo
X = El’ X, = ﬁ, ooy Xn = g—" a pouzijte ptikladu 4.)

4. O V nerovnosti z piikladu 4 nastivd rovnost (jest-
liZeoviem x; ... %= 1,2,> 0,2, > 0, ..., %, > 0)

jen pro x; = x, = ... = x, = 1. DokaZte!
5. 0 V nerovnosti z cvieni 3 nastivi rovnost jen
v ptipadé a, = a, = ... = a,. DokaZte!

6. O Dokazte tvrzeni cviceni 3 pfimo indukci. (Ndvod.
Vyjadfete n ve tvaru n = 2% — 5, nejdfive dokaZte
pro s = 0 indukci podle &.)

7. Mezi viemi obdélniky, které maji dany obvod s, existuje
jeden, ktery mé nejvétsi plodny obsah. Obdélnik nej-
vétsiho obsahu je Ctverec. (Navod. UZijte nerovnosti
z cvifeni 3 pro n = 2.)

8. Mezi viemi obdélniky daného ploSného obsahu P
existuje jeden (je to opét Ctverec), ktery méa nejmensi
obvod.

9*, Ze viech obdélniku vepsanych do kruZnice poloméru
r = 3)/ 2 najdéte ten, ktery md nejvétsi obsah.
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10. Z cviCeni 3 a 5 odvodte: Soulin » kladnych cisel,
jejichZz souCet se neméni, je nejvétsi tehdy, jsou-li si
viechna Cisla rovna. v

11. O Mezi viemi valci vepsanymi do koule poloméru
V6 najdéte ten, ktery md nejvétsi objem.

12. © Do daného kuZele vepiSte vilec nejvétSiho objemu.



5. UZITI INDUKCE
V GEOMETRII

Matematickd indukce se v geometrii nejvice pouzivd
k dikaztim tvrzeni o n bodech, n pfimkdch, k dikazu vét
o n—uhelnicich, n-sténech a podobné&. Nejlépe celou véc
osvétli pfiklady. .

Pfiklad 1. Je-li » = 2, potom n ruznych pfimek leZicich
v jedné roviné a prochazejicich jednim bodem déli rovinu
na 2 »n dutych hla.

Diikaz. Dvé riznobézky déli rovinu na Ctyfi duté uhly.
Necht tedy n pfimek jdoucich jednim bodem déli rovinu
na 2 n ¢asti. Vezméme n + 1 ni pfimku jdouci prisecikem
n predchozich pfimek. Tato pfimka rozdéli dva z té€chto
dutych uhli opét na dvé dasti, tedy celkem n 4 1
pfimek jdoucich jednim bodem rozdéli rovinu na

2n + 2 = 2 (n + 1) dutych dhly, c. b. d.

Pfiklad 2. Urdit soudet vnirfnich uhla kenvexniho
n-Ghelnika,

Trojihelnik ma soucet vnmitfnich dhld 180° = 2R.
Ctyfihelnik rozdélime uhloptickou na dva trojihelniky.
SouCet vnitfnich dhli ¢tyfdhelnika je roven celkovému
soutu vnitfnich dhlu obou trojuhelniki, tj. 2.2 R = 4 R.
To nis vede k domnénce, Ze soulet vnitfnich ihla kon-
vexniho n-uhelnika je 2 (» — 2) R. Tuto hypotézu do-
kaZme nyni indukci. Vime jiZ, Ze je sprdvna pro» = 3 a 4.
Necht tedy plati pro konvexni n-ihelniky a uvaZujme kon-
vexni n + l-uhlenik o vrcholech A,, A,, ..., Au, An+1.
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Uhloptitka A, A, rozdeli tento 7 4 1-tuhelnik na troj-
uhelnik 4, 4, A3 a n—thelnik 4, 43 A, ... Any 1 (kresle-
te si obrazek!). Soulet vnitinich uhli ~» + 1-tGhelnika bude
roven sou¢tu vaitfnich ahli trojahelnika A, A, A, a n-thel-
nikad, Ay ... Ani 1, . 2R+ 2 —2)R=2nmn—1R
=2m+1—2)Rc.b.d
Pozndmka. Pro konvexni n—uhelnik lze vétu o soutiu
vnitfnich 1ihld dokazat i jinak (jak? dokaZte!); pfiklad 3
nam poslouZil hlavné jako tivod k dal$imu piikladu, o némz
dokazeme, Ze soucet vaitfnich Ghlia libovolného (tedy i ne-
konvexniho) n—thelnika je 2 (n — 2) R. Nejdfive si viak
musime fici, co je to mnohouhelnik (nekonvexni).
Méjme v rovin€ dano » bodt 4;, A, ..., A, v urditém
pofadi. (Zvolte si urlité n, napf. » = 7 a kreslete si ke
viemu obrizky.) V dalsim vzdy poradi bodd bude
patrné ze zdpisu. Mnozinu viech bodu, které lezi na usec-
kich 4, A,, A, A, A3 4,, . . ., Au— 1 Ax nazyvame lome-
nou Carou, body 4,, 4, ..., 4s jejimi vrcholy. Tuto lo-
menou &iru budeme oznacovat 4, A, ... A, Za sousedni
poklddame vrcholy, které za sebou nasleduji v pofadi, tedy
napk. vrcholy A4, A,, A, A; atp. jsou sousedni. Za sousedni
useCky povazujeme useCky Ax_,Ar a ArAr., pro
k=2,...,n— 1. Nepatfi-li Zddny bod lomené &iry do
dvou usecek s jedinou vyjimkou spole¢ného vrcholu dvou
sousednich usecek, nazyvime lomenou ¢iru jednoduthou.
Jinymi slovy: lomena &ira je jednoduchd, jestliZe sama
sebe neprotind.
JestliZe useCka 4, A, nema s jednoduchou lomenou &arou
A, A, ... A, Zidny spoleény vnitfni bod, nazyvime
lomenou &iru A4, 4, ... 4. 4, jednoduchou uzavienou

lomenou ¢arou. U uzaviené lomené ¢ary povaZujeme i body
Ana A, za sousedni. D4 se dokdzat*), Ze jednoduchi uza-

*) Zde to nebudeme providét.
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vien4 lomend ¢4ra rozdé&li rovinu na dvé &asti tak, Ze kazdé
dva body lezici v téZe C4sti Ize spojit lomenou arou, kterd
celd v této Casti leZi. KaZd4d lomena Cara spojujici dva body
lezici v riznych ¢astech nutné pivodni jednoduchou uza-
vienou lomenou Ciru protne. Pouze jedna z téchto Casti
obsahuje néjakou pfimku roviny. Tu nazveme vnéjSkem
lomené Ciry A; A, ... An A,. Druhi je vnitfek. Nyni
definujeme:

Viechny body, které lezi bud ve vnitfku (budeme
téZ nékdy tikat, Ze lezi uvmr.r) jednoduché uzaviené lo-
mené ¢ary nebo na ni, tvofi n—tihelnik. n—dhelnik vytvo-

feny lomenou Carou A, 4, ... An A; budeme oznalovat
P4, ..., As). Misto n-thelnik budeme té&% n&kdy fikat
mnohouhelmk Usetky A, Ay, Ay Agy ..., Aw A, se na-
zyvaji strany n—uhelnika.

Zavedme jest& pro bod A, oznaCeni 4, ., a pro bod
A, oznaleni A,. PFi tomto oznaleni pfislusi ke kazdému
vecholu*) A, (k= 1,...,n) n-thelnika dva sousedni
vrcholy Ax—, a Ai 4 1. Mnohotihelniky, pro néZ je néktery
1'1he%1 Ap_ 1 Ar Ar + 1 pEimy, vyloudime v dal§im z naSich
avah.

Nyni vZdy existuji dva” body P, Q na polopfimkich
Ar Ar -1 a Ar Ar+ 1 tak, Ze 24dny vnitini bod R dsed-
ky PQ nelezi na lomené &ife 4, 4, ... An A;. (K tomu
stali zvolit body P, Q dosti blizko k A:) Jsou dvé&
mozZnosti, bud trojuhelnik PA:Q je &isti n—dhelnika
P(A,, ..., An), nebo neni. V prvém piipadé prohldsime
duty uhel Ag_ 1 Ar Ay 1 za vnitfni 1hel z—Ghelnika
P(A,,..., As), v druhém ptipad® prohlisime za vnitfni
thel mnohothelnika P (4, ,..., As) vypukly thel
Ak_ 1 Ak Ak+ 1 (VIZ Obl'. 1 a, b).

*) Vrchol n-tthelnika definujeme jako vrchol pfslu¥né lomené &ary.
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Obr. 1

Pfiklad 3. Soudet vnitfnich hla libovolného n-tihelnika
je2(n—2)R.

Diikaz provedeme opét matematickou indukci. Ovéfeni
platnosti v&ty pro n = 3 je ofividné. RovnéZ pro {tyk-
thelnik P (4,, Ay, A5, A) 1ze vétu snadno dokdzat.
Alespoii jedna z thlopficek rozdéli totiZ tento étyfahlenik
na dva trojuihelniky (obr. 2). PotiZ nastane pfi zévéru z » na
n + 1. Tentokrit toti% nevime, zda dhlopticka A; 4; odd&li
z n + 1- tdhelnika P (4,,..., Ay+1) trojihelnik, nebot

Ay
A, Al
A
Ay
A A
T ow b) A;
Obr. 2
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useCka A; A; muiZe leZet
(oviem vyjma krajni bo-
dy) ve vnéjsku uvaZované-
ho n-thelnika nebo miZe
i vicekrite lomenou C¢iru
A Ay ... AnAni A4,

protnout (obr. 3). Dikaz
proto povedeme takto:Vez-
meme 7 = 4 a budeme
ptedpoklddat, Z¢ soucet
vnitfnich dhld libovolné-
ho k-thelnika, kde 2 < n,
je roven 2 (k—2)R. Vez-

meme vnitini dhel 4, A, A3 n-uhelnika P (4,, ..

A,
Obr. 4

s An).

UvaZujme nyni polopfimku p s politeCnim bodem A,,
kterd lezi uvnitf vnitfniho tdhlu 4; A, 4;. Tato polo-

pHmka protne lomenou &iru A, ... 4. 4, bud X ten
prusetik (prusefikli muze byt vice), ktery je nejblize bo-

Obr. 3
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du A,, tj. takovy, ze cela useCka A, X leziv P(A,, ..., Ay).
Mnozinu viech takovych bodi X oznatme X. Jsou dvé
moZnosti:

1. MnoZina X obsahuje né&jaky vrchol 4, mnohothelnika

P(A4,, ..., A, (obr. 4).
2. MnoZina X neobsahuje Z4dny vrchol mnohothelnika
P(A,, ..., As) (obr. 5).

1. Uhlopl"lcka A A, rozdéli mnohouthelnik P (A, . .., An)
na dva mnohouhelniky. Ma-li jeden z téchto mnohouhel-
nikd % vrcholt, ma druhy » — & + 2 vrchola*) (body A
a A, je tfeba poditat do obou s-thelnikd). PFitom soucet
vnitfnich dhli téchto mnohouhelnikdi je roven souctu
vnitfnich thli mnohotthelnika P (Al, . «+5 An). Podle in-
duk&niho ptedpokladu je tento soucet

2 (k— 2)R+2(n—k+2—2)R=2(n—2)R.
Zbyva vySetfit druhou moZnost.

2.V tomto pfipadé miZeme zfejmé pfedpokladat, se
X A; A, Ay je duty. Nejdfive dokiZeme, Ze trojihel-
nik A A4, A, Ay je &isti P(A,, ..., As). Piedpokladej-
me opak; pak existuje bod Q, Q non € P(4,, ..., An)

Obr. 5

*) Je tfeba vzit v avahu, Ze dhel pfi vrcholu A miZe byt v nékte-
rém z téchto mnohouhelnikd pfimy.
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Obr. 6

Qe A 4, 4, 4, (viz obr. 6). Oznalme R ten z priseliki
poloptimky A, O s farou A, A, ... An A,, ktery je nejbliZe
bodu A,. Takovy bod existuje, nebot vzhledem k tomu, Ze
OnoneP(A4,,...,4), Q€ A A, A; A5 poloptimka 4, O

protind &iru Ag A, ... An A,. Ztejmé Re A A, A; A,.
Bod R lezi na né&které strané P (4, ..., As); budiZ to
strana A, 4,,,. Alespofi jeden z bodu A, 4., leZi v Ghlu
A, A, A5; v opaéném pripadé by tsecka 4, 4,;, protala
¢aru A, A, A,;, a to neni moZné. Necht tedy napf. bod
A, leZi v vhlu 4, A, A; (viz obr. 6). Podle pfedpokladu
A, non € X. Tedy na usece A4; A, leZi n¢jaky bod T € X.
Opakujeme dile dvahu pro bod R nyni pro bod T. Po
konelném poctu kroku dospéjeme k vrcholu, ktery neni
s»zastinén® Zddnou stranou a patfi do X — spor. Je
tedy A A; A, Ay Casti P (A4,, Ay, Asy ..., An), a tedy
souCet vnitfnich whld tohoto mnohothelnika je roven
soutu vnitfnich uhla A A4, A, A, a mnohothelnika
P(Al’ As, IS An), ti~2 R+ 2(”'—‘ 3)R= 2(”"“2)R.
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Ptiklad 4. »n ptimek v rovin€ rozdéli tuto rovinu na &asti,
které lze vybarvit ¢ernou a bilou barvou tak, %e dvé sou-
sedni Casti (tj. takové, které se dotykaji podél tuseCky*)
jsou ruzné vybarveny.

Tvrzeni je spravné pro jednu pfimku; jednu polorovmu

vybarvime bile a druhou ¢erné. Necht tvrzeni je spravné pro
n ptimek, uvazujme rovinu rozdélenou » -+ 1-ni pfimkami.
Odstrafime jednu pfimku a provedme spravné vybarveni (to
Ize podle indukcniho predpokladu) n + 1-ni pfimka rozdéli
rovinu na dvé poloroviny; v prvé z nich nechme ptvodni
vybarveni a v druhé poloroviné vyméfime viade bilou barvu
za Cernou a naopak. Tim docilime spravného vybarveni
i pro rovinu rozdélenou z + 1 pfimkami.
Pozndmka. Ptiklad 4 je velmi specidlnim pfipadem jedné
véty, kterd hovofi o vybarveni rovinnych map. Jde o to,
s kolika barvami vysta¢ime pfi vybarvovani rovinnych
»map*, jestliZe sousedni ,,staty maji byt vybarveny rizny-
mi barvami. Podafilo se dokazat, Ze vidy lze vystacit s péti
barvami, ale dosud nebyl nalezen pfiklad takové mapy,
kde by senevystacilo pouze se ¢tyfmi. Otdzka, zda stadi CtyFi
barvy, je dodnes otevieny problém.

Pifiklad 5. V rovin& bud dén trojihelnik, jehoZ vrcholy
jsou ocislovany Cisly 1, 2, 3. Tento trojihelnik je rozdélen
na mensi trojuhelniky tak, Ze kazdé dva z téchto menSich
trojihelnikt bud nemaji spoleény bod, nebo maji spolecny
vrchol, nebo maji spoleCnou stranu (celou). VSechny
vrcholy trojtihelniki rozkladu jsou oéislovany ¢isly 1, 2, 3,
pfitemz vrcholy leZici na nékteré strané puvodniho troj-
thelnika jsou ofisloviny nékterym z Cisel, kterym jsou
oznaceny krajni body této strany (obr. 7).

Mai se dokazat, Ze alespoil jeden z malych trojuhelniki je
rovnéZ ocislovan Cisly 1, 2, 3.

*) resp. polopfimky resp. pfimky.
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1 2 2
Obr. 7

Dikaz provedeme indukci podle poltu » malych troj-
thelnikd. Pro n = 1,2 je tvrzeni spravné (nakreslete si obra-
zek). Pfedpoklddejme, Ze tvrzeni je jiZ spravné pro viechny
rozklady na men3i pocet trojuihelniki nezli #» a uvaZujme
rozklad na n trojuhelnikid. Jsou-li v3echny trojihelni-
ky rozkladu olisloviny riznymi ¢&isly, neni co dokazovat.
V opatném piipadé existuje trojihelnik, jehoZ dva vrcholy
maji taz Cisla. napf. 3, 3. Strana 3 3 je stranou bud dvou
(obr. 7) (jestliZe strana leZi uvnitf zdkladniho trojihelni-
ka) nebo jednoho trojihelnika (obr. 8) (jestlie strana

Obr. 8
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le#f na strané zakladniho trojihelnika). Stdhneme nyni
stranu 3 3 na bod. Tim odstranime z rozkladu bud dva
(v prvém ptipadé) nebo jeden (v druhém pfipadé¢) troj-
thelnik, vidy vSak sniZime pocet trojihelniki rozkladu.
Podle indukéniho pfedpokladu existuje nyni trojuhelnik,
ktery je oCislovan riznymi ¢isly. Tedy takovy trojuhelnik
existoval i v rozkladu na » trojuhelnika, c. b. d.
Pozndimka. Probrany pfiklad je velmi zvlaStni p¥ipad tzv.
Spernerovy véty.
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Cvidenf

n rovin prochdzejicich jednou p¥imkou déli prostor na
2 n Casti.

O DokaZte, Ze n rovin jdoucich jednim bodem, z nichZ
#4dné tfi nemaji spoletnou pfimku déli prostor na
n(n— 1) + 2 Casti.

. Dokaite, Ze rovinnou ,,mapu‘‘, kterd je tvofena kruz-

nicemi lze vybarvit bilou a ernou barvou tak, Ze
kazdé dva sousedni ,,stity* jsou rizné vybarveny

. O Usedka, jeji% koncové body jsou oznaceny &isly 1, 2

je rozdélena na nékolik mensich uselek tak, Ze kon—
cové body téchto usecek jsou &islovany Cisly 1, 2. Do-
kaZte, Ze existuje GseCka rozkladu, kterd je ocislovédna
riznymi Cisly.

. O Na pfimce leZi n tseek, z nichZ kazdé dvé maji

spoleny bod. Potom existuje bod, ktery leZi ve viech
téchto useckach.



6. DEFINICE INDUKCI -
[ ]

Matematické indukce 1ze uzit ta*é k definicim. Tak napf,
abychom definovali té€Znici a t€Zi§t€ n-uhclntka, postadi,
definujeme-li tyto pojmy pro trojuhelnik, a urime*),
co rozumime t&ZiSt€m a t&Znicemi #n -+ l-thelnika
P(A,, ..., An+ 1) na zdkladé téZnic a t€ZiSt n-dhelnikl
P(A,, ..., 4n), P(Ay ..., Ans 1), P(Ag Any Ani 1, 4y)
atd. Podobné k tomu, abychom pro kazdé pfirozené n defi-
novali symbol @” (tj. n-tou mocninu &isla a), postaci, defi-
nujeme-li a' =g a ¢*+?! = a.a" Pfitom zpravidla mu-
sime véty o pojmech zayedenych indukci dokazovat pomoci
principu GpIné indukce.

Piiklad 1. Mg&me dvé Cisla a, d. PoloZme a, = a,
ani+1 = a,+ d. Tim je pro kaZdé n definovano Cislo a,.
O (dislech a,, a,, ag, - .., takto definovanych, fikime, Ze
tvofi aritmetickou posloupnost. DokaZzme nyni, Ze plati
an=a + (n — 1) d. Pron = 1 to plati. Necht dokazovany
vzorec platl pron Potoma,.1=a+ n—1)d+d=
=a+@m+1—1)d,cb.d

Pozndmka. Definice indukci Ize uZit té2 v této formé: Vec,
kterou zavidime deﬁmc1, definujeme pro » = 1 a potom ji
definujeme pro pfirozené ¢fslo n za predpokladu, Ze jiZ byla
definovina pro viechna phrozena k <n.

Definici indukei se téZ n&kdy fikd rekurentni definice.

*) Zde to neprovidime.
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Cviéeni

. Definujte geometrickou posloupnost indukci.
. DokaZte vzorec pro n-ty Clen geometrické posloupnosti.
Je-llia, =2,a,=3aa,+1=3an— 2a,_, (podle zi-

véreCné poznamky tohoto ¢linku je a, definovino pro
vSechna n) potom g, = 2"~ ! 4 1.

. Dokazte, Ze A, = cos n 9, jestlize Al = CoS 19 A, =

= cos 29 a pro kazdé & > 2]CAk=2A],_1COS1.9—
_Ak—2.

. Definice symbolu n! (&4 n faktoridl), Pron = 1je 1! =

=1, (n + 1! =n!.(n+ 1). Vypottéte 31, 41, 5!,



7.DVOJITA INDUKCE
°

Ne&kdy je tieba dokdzat n&jaké tvrzeni T}, . z4vislé na
dvou pfirozenych &islech & a n. Napfiklad takovym tvrze-
nim T}, » mizZe byt véta z pfikladu 2 ¢l. 3: Ke kazdym dvé-
ptirozenym Cislim 7 a k existuji celd Cisla m a r tak, Ze platd

n=mk+4r

O0=r <k

Dilkaz této véty lze vést tak, Ze se dokaZe, Ze T, plati
pro kaZdé k a z toho, Ze Ty, . plati pro kazdé & se odvo-
di, Ze plati Tk, » 4, pro kazdé %.*) Tak lze mnohdy postu-
povat pfi dikazu tvrzeni T, », n€kdy viak je potfebné pro-
vadeét indukci podle obou &isel % i .

Ve cvidenich 9 a 11 ¢l. 1 se tvrdi, Ze soufin dvou po so-
b& jdoucich ptirozenych Cisel je délitelny Cislem 2 = 2!
soudin tfi po sobé jdoucich pfirozenych disel je délitelny
gislem 6 = 3!. To nds vede k domnénce, Ze soucin & po
sob& jdoucich ptirozenych Cisel je délitelny Cislem k!
Pfiklad 1. Pro kaZdé pfirozené n a & je Cislo Ay, .=
=nn+41)... (n+ k— 1)délitelné k!. Tvrzeni je spravné
pro n =1 a kazdé k. UvaZujme nyni soudin
Apni1=m+1D...(n+ k)=
=nn+1)...n+k—D+k(n+1)...(n+k—1)=
==Aun+ EAr-1,n+1. 1
S ptedpokladem, Ze A, » je pro kazdé k délitelné %! nevy-

*) Provedte sami.

a
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stacime, nebot v rovnici (1) se na pravé strané vyskytuje
Clen Ag—1, n+1 sindexem n + 1. Snadno se nahlédne, Ze
ani indukce podle % pro kaZdé #» ndm nepomuiZe. K dikazu
uZijeme této véty:

V&ta 5. Bud Ty, , torzent zdvislé na dvou pfirozenych &s-
lech takové, e

L. &) Ty, plati pro kaZdé n,

B) T, plati pro kaZdé k,
IL. jsou-li k, n pfirozend c{sla E>1Ln>1, potom z plat-
nosti T, , pro éislar,s,r =k, s <na takova, Ze v alespori
jedné z téchto nerovnosti platz’ ostrd nerovnost, vyplyvd
platnost Ty, .
Potom Ty, plati pro viechna piirozend n, k.

Pomoci této véty lze snadno dokoncit diikaz. Skute¢né
Ay, » je vZdy délitelné Cislem 1! a Ay 1 = k! je pro kazdé &
délitelné C&islem %! Dale pro A » plati (¢ > 1,n > 1) (je
to vlastn& rovnice (1) s # misto n -+ 1)

Ak,n == Ak,n—l + k Ak—l,n- (2)

Udinime-li nyni indukénf pfedpoklad II je A, n—1 déli-
telné Cislem k! a 4,_,, , délitelné Cislem (k—1)! a kAg—_y, 5
tedy ¢islem k! Oba sitanci na pravé strané rovnosti (2) jsou
délitelni &islem %!, tedy i A4, je délitelné Cislem &1,

Cviéeni

1. 0 Dokaztc vétu 5.
2. Dokazte tplnou indukci binomickou poucku

(a + by = Iéo (Z) an—k bt
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3. Dokajte tzv. polynomickou poucku

(a, + ...

2

Sl+ -“2+ oo +S]¢==ﬂ
S.'go
kde

_IA a;;)" —

n a;. ..
51 9009 Sk

n!

[ n -
Spseevs Sk sitsal oo @l

4. Vypoctéte (x + 14 —i—)a

a‘k,
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8. HISTORICKE POZNAMKY
[ ]

O osob& Euklidové neni mnoho zndmo. Vime, Ze il okolo
roku 300 pfed nasim letopoctem v Alexandrii, kde v této
dob& bylo védecké stiedisko s ohromnou knihovnou.
Euklid shroul tehdej$i geometrické poznatky v jednotny
logicky uceleny systém. Vychazel pfi tom z nékolika za-
kladnich pojmu (bod, pfimka, atd.), které definoval a z né-
kolika zdkladnich nedokazovanych tvrzeni, které rozdélil
do dvou skupin (axiémy a postulaty). Pro nds je rozdil mezi
nimi nepodstatny.

Systém axidomil, postuldtd, definic a poudek z Euklido-
vych zdkladd se vyvojem zdokonaloval, rozristal a fasem se
ustdlil pro né&j nazev euklidovskd geometrie. Ta je dodnes
ndplni ,,5kolni” geometrie. Logické zdklady euklidovské
geometrie byly podrobeny kritice a revisi v 19. stoleti. Byly
vytvofeny dokonalej3i soustavy axiémil, na zdklad€ kterych
Ize vybudovat euklidovskou geometrii tak, Ze jsou uspoko-
jeny vSechny poZadavky zvySené pfesnosti a logické sprav-
nosti, jak je klade moderni matematika.

G. Peano, italsky matematik, %il v letech 1858—1932,
Od roku 1890 byl profesorem university v Turiné. Zabyval
se formélné logickymi zdklady matematiky, napf. axioma-
tikou geometrie, axiomatickym zaloZemim pFirozenych
¢isel atp. Dosdhl vSak vyznamnych objevi i v jinych od-
vétvich matematiky.
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9. VYSVETLIVKY
®

1. Prvodlisla Prirozené (islo m je délitelné pfirozenym
Cislem T jestlize existuje pfirozené {islo s tak, Ze m = r.s.
Tak napt. &islo (m =) 18 je délitelné &islem (r =) 3, nebot
18 = 3.6 (s = 6). Jestlize phrozene Cislo m je déhtclne
pfirozenym Cislem r, fikéme, Ze Cislo  je delitelem Cisla m.
KaZdé pfirozené lislo m je ziejm& délitelné Cislem 1
i islem m. Tito délitelé Cisla m se nazyvaji samoziejmi
délitelé. Pfirozené Cislo v&tsi neZ jedna, které ma pouze
samoziejmé délitele, se nazyva prvocislo. ]mym1 slovy:
Ptirozené Cislo p > 1 je prvodislem, )esthie neni délitelné
Zidnym pﬁrozenym Cislem r takovym, Ze 1 <r <p.

Casto se vysetfuje délitelnost v oboru celych &isel (md to
své vyhody), potom napf. i ¢islo —2 je prvolislo a kazdé
celé Cislo m ma Ctyfi samozfejmé délitele, totiZ Cisla 1, —1,
ma — m. V této kniZce se vSak dusledné zabyvdme jen
délitelnosti pfirozenych Cisel.

2. MnoZiny. V matematice pro souhrn né&jakych véci za-
vidime zvlaStni ndzev mnoZina. MnoZiny zde znalime
velkymi a tuénymi latinskymi pismeny. Uvedme si n€kolik
pfikladG mnoZin:

mno¥ina vSechredlnych ¢isel . . . . . . . . . . . M,
mnoZina sudych éisel . . . . . . . . ... ... M,
mnoZina viech doml na Viclavském nimé&sti v Praze M,
mnoZina viech ¢tendid tétokniZky . . . . . . . . M,



mnoZina t&ch, kterym se tato kniZka bude libit . . . M,
mnoZina téch, kterym se tato knizka nebude libit . . M,

Patii-li néjakd véc x do mnoZiny M, fikime, Ze x je prvek
mnoziny M (nebo téz, Ze x patfi do M) a oznacujeme to
x € M. Neplati-li to, piSeme x non € M. Tak napt.: 3eM,,
3 non € M,, Ctendf této knizky e M,. Je 1iCelné zavésti tzv.,
mnozinu prizdnou, tak budeme nazyvat mnoZinu, kterd
nema Zzidny prvek. Ucelnost pojmu prazdné mnoZiny jasné
vysvitne, jakmile si uvédomime, Ze mnoZiny M,, M;, M,
nemusi obsahovat Zddny prvek. MiZe se stat, Ze nikdo tuto
knihu nebude ¢ist (M, bude prazdnai), rovnéZ je myslitelné,
%e se nikomu nebude libit (M; bude prizdnd), je vsak
moZné, Ze se bude viem libit (Mg bude priazdni). Autor je
nezvratné piesvédCen, Ze mnoZna M, nebude prazdnid,
neve&fi ptili§ v praizdnotu mnoziny M,, ale doufi, Ze i M;
bude neprizdna (tj. nebude prizdna).

3. Funkce a mnohoé¢leny. Ze $koly znite n&které jed-
noduché funkce napf. funkci linedrni a nepfimou imérnost
apod. Funkce je pravidlo, které kazdému x patficimu do
jisté dané mnoziny M pfifazuje pravé jedno Cislo y. Mno-
Zina M se nazyva defini¢ni obor funkce. Funkce zpravidla
oznaCujeme malymi latinskymi pismeny f, g, &, p apod.
Cislo ptifazené funkci f prvku x oznafujeme Casto f (x).
Dvé funkce f a g povaZujeme za stejné (sobé& rovné), jestlize
maji stejny defini¢ni obor a pfifazuji kazdému x e M tutéz
hodnotu f (x) = g (x).

Tak napf. rovoicemi p (x) = 2x + 3, g (x) = x%, h (x) =
= 5 x* + 1 jsou (pro vSechna redlnd x) definovany funkce
P, & h. Tyto funkce jsou zvlaStnim pFipadem tzv. mnoho-
Clend. Obecné definujeme: Funkce f definovana pied-
pisem

fE)=a,x" + ap-1 x" 1+ ... + ag
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kde 7 je pfirozené Cislo, a,, ay, ..., aa jsou redlni (resp.
racionalni) Cisla, se nazyva mnohoflen s redlnymi (resp.
raciondlnimi) koeficienty. Cislim a; se fikd koeficienty.
Strucné budeme fikat mnohoclen. Misto mnohoélen uZiva
se téZ slova polynom. Je-li a, + O fikdme, Ze mnohodlen f
je n-tého stupné; tak napf. p je stupné prvniho, g je stupné
druhého a % stupné &tvrtého. Pozor. Cislo rizné od nuly
Ize tedy povaZovat za mnohoClen stupné nultého, avSak
Cislo 0 (piesnéji mnohoclen, ktery kaZzdému x pfifazuje
hodnotu 0) nema Zidny stupes. .

Dva mnohocleny f a g jsou si rovny, jestlize ptifazuji
témuZ x tutéZ hodnotu f(x) = g(x) (definini obor je
u viech mnohoclent stejny, je to mnoZina, viech redlnych
¢isel). DA se ukazat (dikaz zde neprovedeme), Ze potom
oba mnoho¢leny maji tytéZ koeficienty.
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10. VYSLEDKY K CVICENIM
[ )

1. Uvod
1.n22.n(n+ 1) 3.—;-71(71 +1)2n+ 1)
1 n n
4, ?n(n—l— 1)(n + 2). 5. Il 6. Wil
7. Pron=1 je 5"t1 4 62~1 = 3]; 50+ D+1
+ 620+ 1)—-1 — 5(5n+1 + 62"‘1) 4+ 31.6>-1,

3. Jiné formulace

2. Pron=1,2a pron = 4. 4. Existence Cisel s a ay,
Ay ..., a: Pron=1jes=0ag, =1 Zavérzn
na n+t+1:n+1=a10°4+ ... 4+ g+ 1. Je-li
ay-+1 < 10 neni co dokazovat, je-li a, + 1 = 10 jsou
dvé moZnosti: @) ¢ + 1 =10pro ¢ =0, 1, ..., s;
f) existuje R =s tak, %¢ a4+ 1=10 pro i <k a
ax + 1 < 10. V pifipadé a) n + 1 = 10**!, v piipadé B)
n+1=a,10°+a,_; 105~ + ... 4 (ar + 1) 10*. Exis-
tence je dokdzdna. Jednoznacnost podobné jako v ptikl. 2.
Viz jeSté cvié. 19. 6. 137 = 27 4 23 4 1, stru¢né 10001001.
B.agx)=2—x3+2%r(x)=5;b) ¢g(x)=x,rx)=
= 2x? — x. 14. Necht existuji ¢;, 7, a g, 7,. Potom r; —
— ry=d (g, — ¢1). Kdyby ¢,— ¢, nebyl nulovy polynom,
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byl by v této rovnosti mnohoclen na pravé stran& vyssiho
stupné neZ mnohoClen na levé strané. Je tedy ¢, = ¢,
atimir,=r, 15.p(x)=(x—a) g(x) + r(x). r(x) je
bud nula nebo mnohoclen nultého stupné. V kazdém
piipadé je r(x)=c¢, kde ¢ je dislo. Tedy p(x) =
= (x—a) q (x) + ¢. Dosazenim x =a je p(a) =c, Cili
px)==(x—a) g +£(a) 17. a)2,3,-3. f) 1,
—1,2,3,—-3.9)3(1 +iy3). 19.n=10m +ayanam
Ize wZit indukéniho pfedpokladu m = a, 16! + ... + a,.
Dosazenim za m do n = 10 m 4 a, dostdvime tvrzeni.

4. Piiklady z algebry

2. n=1 zfejmé. Oznadme A, = Ja2 + ... + as% Ba=

=8+ ... F b Ze zname nerovnosti 2xy = x24y?
plyne 2¢n+1 n+1 A B, = by1® As® + anyy B Jest
(@15, + ...+ anyq basy)? _(a1b1+"'+a’lbﬂ)2+

+ 2(1,;+1 bn+1 (al bl + PP + an bn) + a,.+12 bn+12 = A"ZB'.2 +
+ 2an+1 bn+1 A, B, + a2n+1 b2n+1 = Anz B, + bn+12 A2 +
+ @n1® Ba? 4 @ni® buyy® = (4n® + @ai1?) (Ba® + bnis?)

a+ ...+ an
n

3.5+ 5+ 7 Z il zs

4. Nejsou-h si viechna x; rovna, plati v (5) ostrd nerovnost.

5. Je-lig = 0 musi zfejm€ a; = g, = ... = a, = 0. Je-li
a, a

> 0, e— —I——= a—.—=...—=1

£>0,] + 24 2 2 2 >

ztoho%=%=...=ﬂ=1,éﬂiv§echnaa,-isou stejnd,

6. s=0:prok=1zlemé; 2*x =a, ... + am,
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- x —_—
2%y = agr 49+ ...+ Gk +1, —2!—y z Jxy;

s + 0: doplnime polet ¢lent na 2*,

2k_,
(2*-s)a=a; + ... + “2’°—"g = e e,
a + . —zkazk—s e ]/al—k_,as, z toho plyne
a<g.

9. Ctverec o strané 6. 11. Oznaéme x polomér podstavy,
y vsku. Potom y = 2 |6 —x% V =2rx2 |6 — 22

Objem bude nejvéEtsi, kdyZz bude nejvétsi 2 = %4 6 — %)=

_ 6 X 2 26— x kterd

=33 (6 — x?). Soulin ti Eisel - oy 8 6 — x%, které
2 2

maji soudet 6, bude nejvetsi, jestliZe 5 = % =6 — x?

z toho x2 =4, x =2,

12. Bud v vyska kuZele, » polomér zikladny, x polomér
podstavy viélce, y vy3ka vélce. Z podobnosti trojuhelniki

plyne y = ; (r — x). Objem V = nTv x® (r — x). Soufin

tH sel > 7 r — x (jejichZ soulet je r) bude nejvétsi,

23

jestlize 7=—2—==r—x,éilix=%r.
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5. Indukce v geometrii

2. Necht 7 rovin déli prostor na #» (n — 1) 4 2 &sti.
n + l-ni rovinu oznacme n. Rovina = protind kaZzdou
z ptedchozich rovin v pfimce a tyto pfimky rozdé¢luji = na
2n dutych dhla (pfiklad 1). Kazdy z téchto dutych uhli
rozd€luje jednu z Casti prostoru, na které prvnich # rovin
déli prostor, na dvé Cisti. Celkem tedy 7 A4 1 rovin dé&li
prostor na n(n — 1)+ 2+2n=n(n+ 1)+ 2 dZast.
4. Postupujte jako v ptikladé 5 a stdhnéte tsecku 11 (resp.
22) na bod. 5. Mé&jme na ptimce n + 1 tsecek #;, u,, ...,
#n4,. Podle indukéniho pfedpokladu existuje bod, ktery
leZi ve vSech useCkich uy, u,, ..., un. Spoleénou C4st use-
Cek 1y, %y, ..., %, 0Znalme u. u je bud bod nebo usecka.
Ptedpoklidejme nyni, Ze¢ » nemd spoletny bod s #s;.
Potom existuje bod A, ktery leZi mezi u a u,,. AvSak kazdd
z usecek uy, Uy, ..., 4 obsahuje u a né&jaky bod z %, . 4,
musi tedy obsahovat bod A, tj. 4 patii do u. Tento spor
dokazuje, Ze u, .., md spoleny bod s  a tento bod je spo-
le¢ny bod viech tselek uy, 1y, . . .5 Un 1.

7. Dvojitd indukce

1. Utvofme mnoZinu pfirozenych &sel M takto: Cislo ¢
patii do M, jestlie t = k2 + n a T, , neplati. Pfedpokla-
dejme, Ze M je neprazdnd—odvodime spor. Bud 7, nejmensi
prvek z M, pak existuji 2, a n, tak, Ze 1, =k, + 1y a
Tiosn, Deplatl, Je ky>1,7m5> 1. Je-linyni r =%, a s=n,
a alespoil v jedné z téchto nerovnosti plati ostrd nerovnost
jer + s < ty, tedy T, , plati (podle definice Cisla t,). Podle
II plati Tj,,», — spor.
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