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SVAZEK 20 (1975) A P L I K A C E M ATE M A T I K Y ČÍSLO 6 

PARALLEL METHOD O F CONJUGATE DIRECTIONS 
FOR MINIMIZATION*) 

FRIDRICH SLOBODA 

(Received November 15, 1974) 

INTRODUCTION 

Recently developed minimization methods which generate conjugate directions 
are of two types: either they require the knowledge of the gradient vector or not. 
All methods of conjugate directions have the quadratic convergence property, i.e., 
the minimum of a quadratic function is achieved by a finite number of iterations. 
Methods requiring the gradient vector have been unified in terms of a general algo­
rithm [ l , 2] . The class of these methods includes Davidon-Fletcher-Powell's method 
[3] and the method of conjugate gradients [4, 5], which is the simplest. The most 
effective nongradient methods generating conjugate directions are Powell's method 
[6, 7] and Chazan-Miranker's method [8]. 

In this paper a method of conjugate directions for minimization not requiring 
the gradient vector is described. In [15] a projection method for linear algebraic 
systems is suggested. Let us consider the system 

(1) Ax = b 

where A is a regular n by n matrix and b is an n-vector. 
Let x(

0
0), x0

1 ), ..., x(
0

n) be n + 1 linearly independent points of the space En. Then 
the algorithm [15] is described by the recurrent relation 

Jk) Xi-Í T 
fr.-KsS-iLw 

where 

vflt = x^li - x?--,1*, i = 1, 2,'..., n , k = i, i + 1,..., n 

*) This paper was presented at the Colloquium on numerical methods, Keszthely, Hungary, 
September 1973. 

436 



and a ris the i-th row of the matrix A and bt is the i-th component of the vector h. 
Let x0

0) = (0, ..., 0)T and x0
k) = (0, .,., tk,..., 0)T where tk = 1. Let the matrix A 

be a strictly regular matrix. Then 

(a.,t421)*0 

and the matrix of the vectors v^j is upper triangular with unit elements in the dia­
gonal and the point xn

n) is the solution of (l). The following lemma is proved [15]: 

Lemma 1. Let A he a strictly regular, q-diagonal band matrix. Let x0
0) = 

= (0, ..., 0) r and x0
k) = (0, ..., tk, ..., 0) r where tk = 1. Then 

v(fc) _ v ( 0 . v(fc) 
xi — xi ~r -*0 

for k > (q — l)/2 + i, i = 1, 2,..., n , k = i, i + 1 , . . . , n . 

This lemma affects also the structure of the algorithm for minimization. Let us 
denote for the sake of brevity 

off?,, = b*~(a»x™i)9 i=\,2,...,n, fc= i9i + 1,..., n. 
(^i^]-i) 

In the next part we show how the algorithm [15] can be modified by a suitable choice 
of off?! to become an algorithm for minimization. This will be demonstrated on an 
example of the well-known equivalence between the solution of a system of linear 
algebraic equations with a symmetric, positive definite matrix A, and the minimiza­
tion of the function 

(2) f(x) = (Ax, x) - 2(6, x) + c . 

MATHEMATICAL DESCRIPTION OF THE ALGORITHM 

Definition. Let x0
0), x0

1), ..., x0
n) be n + 1 linearly independent points of the Eucli­

dean space En. Then the algorithm for minimization of (2) is defined as follows: 

(3) X?> - * £ > . + «£>.!#.. 

where 
f,(0 _ Y(0 _ rd-i) 
Vi-1 ~ Xi-1 Xi~l 

and (xf2t are scalar coefficients such that 

j(xf_\ + oei/,2.) = min! 

a = af2x , t = 1, 2,.. . , n , fe = i, i + 1,..., n . 
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Remark . For k = i, it is also possible to write 

where 

and 

x(Jk) __ ( i - l ) , ( i - l ) ( i ) 

y i - l — A i ~ l ~" x i - l 

/ ( x ^ > + WJ5-.) = min! 

a = ajL",1* • 

First we prove a theorem about parallel directions. 

Theorem 1. Let f : En -* Ex be the quadratic function (2). Let v e Enbe a non-zero 
vector. Let x0, y0 e En, x0 + y0 be points that 

min f(x0 + at?) = f(x0) , 
aeEi 

min f(y0 + j8t?) - / (y 0 ) . 
jSeEi 

Then 

(Av, x0 - y0) = 0 . 

Proof. Let us consider the function (2). For x = x0 + av we obtain 

f(x0 + av) — (A(x0 + av) , x0 + av) — 2(b, x0 + av) + c = 

= a2(Av, v) + 2a[(Ax0, v) - (b, v)] + f(x0) 

and 

?f(*° + ^ = 2a(Av, v) + 2[(Ax0, v) - (b, v)] . 
da 

According to the assumption of the theorem we have 

(4) a(Av, v) + (Ax0, v) - (b, v) = 0 , a = 0 

P(Av9 v) + (Ay0, v) - (b, v) = 0 , p = 0 

Equations (4), when rearranged, show that 

(Av, x0 - y0) = 0 

which is the assertion of the theorem. 

Theorem 2. The vectors v0*\ v^,.•., vn
nl t defined by the algorithm (3) are 

mutually conjugate. 
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Proof. Let x0°\ x0
l\ ..., x0

n) be n + 1 linearly independent points of the space 
En. Let us denote 

V0
 == X Q X Q , I -== 1 , .(-«, . . . . 12 . 

From (3) we obtain 

(5) x<» = x<» + W = x<0) + «<%</> 

x<2> = x<2> + a<
2>^> 

xi — x0 T* a0 v0 

where a0
fe) are real numbers. Let us denote 

i?<0 = x<0 - X
{1\ i = 2, 3 , , . . , n. 

Equations (5), when rearranged, show that 

(6) v[2> = x<2> - x</> = x<2> - x<°> + (*<2) - <x<0)) vil> = -<*> + («<o2) - «(o0)) ti>, 

^ 3 ) = ^ 3 ) + (oc<o3)-a<o0>[,1), 

v? = vf + («<0"> - ^ V o " • 

It is shown in [15] that vf for k = 2, 3 , . . . , n are linearly independent vectors. 
By means of Theorem 1 we have 

(Av0
l\ v[») = 0 , i = 2 , 3 , . . . , n . 

Let us denote 

v2 — %i ~~ *2 » I = 3 , 4 , . . . , n . 

Further, we show that 

(-4i?<--i, v(
2
fc)) = 0 , / = 1, 2', fc = 3, 4 , . . . , 11. 

By means of Theorem 1 we have 

(Av[2\ vf) = 0 , fc = 3 ,4 , . . . , n 

and therefore it is sufficient to prove that also 

(Av0
l\ vf) = 0 , fc = 3 , 4 , . . . , n . 

According to the algorithm (3) and the relations analogous (6) we may express 

vf = xf - x<2> = v\ + A«,<2>, k - 3, 4 , . . . , n 
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where pk are real numbers. Vectors v(
2

fc) are linearly independent and by virtue of 
Theorem 1 we obtain 

(Av(1), vf) = (Av(1), vf + pkv[2)) = (M'\ 4k)) + Pk(M'\ v[2)) = o, 
k = 3, 4,. . . , n . 

Let us denote 
4° = 4 ° - 4fc), * = fc + l , . . . ,n. 

Let 

(7) (Av(/+1),vf) = 0 , j = l , 2 , . . . , f c , « = 0,1 j - 1 , r = ; + l , . . . , n . 

According to Theorem 1, 

(8) (M f e + 1 )
? 4 + i ) = 0, r = fc + 2 , . . . ,n . 

Since 
'4r)i = 4 r ) + ?r4

fc+1), r = fc + 2,. . . ,n 

where yr are real numbers and vectors 4 r | i are linearly independent, we obtain 
from (7) 

( A , r i ) , < )
1 ) = ( ^ r i ) , 4 r ) + ^ + i ) ) = 

= (At-r1}, 4r)) + y£M+l\ 4t+1)) = o , i = o, l,..., fc - l , 

r = fc + 2,. . . , n . 

Theorem 3. At the point x(ll) defined by the algorithm (3), the function (2) achieves 
its minimum. 

Proof. The point x(n) at which the function (2) achieves its minimum may be 
expressed in the form 

x<"> = 4 o ) + t « r 1
i M , 2 1 

i = l 

where vj_i are conjugate vectors and aJ'JT̂  are real coefficients defined by the algo­
rithm (3). Then we have [6] 

/(*<">) = (A(x<°> + t -.L7M2.), 40 ) + t a ^ V / i O -
i = l i - 1 

- 2(b, x<°> + 1 -{LVM-?.) + c = (A t «TV M'-1, t «TV M-1 i) + 
i = l i = l i = l 

+ 2(Ax<0>,tariM21) - 2(b, t^ -VM-i ) + 
i = l • i = l 

+ (Ax<0),x<0>)-2(b,x<0>) + c . 

According to Theorem 2, 

( ^ 2 . , - j - i ) - - , i * j -
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Thus we get 

f(xT) = j(*n + i (a{ir.1)W-i. ».-\) + 
i = l 

+2ociL-1
1)[(M°),^i)-(b,^i)])> 

i.e., the minimum of the function (2) is achieved by succesive minimizations in 
linearly independent directions v(

0
{\ v^\ ..., v^lx. 

Theorem 4. Let x(
0
0) = (0, ..., 0) r and 

(9) xo
fc) = (0,.. . ,0,f f c ,0,.. . ,0) r 

where tk = 1. Then ccflt defined by the algorithm (3) satisfies 

«.'_>! _ f c V % ^ , i = l , 2 , . . . , n , fc = i,i + l , . . . ,n 

where at is the i-th row of the matrix A and bt is the i-th component of the vector b. 

Proof. For the function (2) we obtain 

Sf(x) 
ôy 

= 2(Ax — b, y) 

where y is a direction vector. It is shown in [15] that the algorithm (3) for 

«-) _ bi-(ai,xf21) 

(«..f.2.) 

Ax = b 

« i - i = 

solves the linear system 

whereby 

(10) (apxp) = bj9 i = l,2, . . . ,n , j = l , 2 , . . . , i , k = i, i + 1, ..., n 

and if x(
0
fc) are in the form (9), then the vectors v(

0
1}, v^\ ..., v(^ll are mutually con­

jugate and ©<«+->, x(0? xf) a re in the form 

í+\ 

( Ц ) v (i+D 
+ 
1 
0 

M) 

W 

+ 
o 

Vo/ 

+ 
o 

1 

Vo/ 

ŕ = 0, 1, ..., n , fc = i + 1,..., n 
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where the lower index indicates that the first i components are in general non-zero 
while the upper index indicates that the k-th component of the corresponding vector 
is one. It is sufficient to show that 

(12) (Ax^ - b, v(/lx) = 0, i = 1,2, ...,n, k = i, i + 1,..., n. 

From (10), (11) we obtain 

Kfl(,«n-6,]+,i:1e[(fl;.xn-6j-o. 
j=i 

i = 1, 2, . . . , n , k = i, i + 1,..., n 
where © is in general a non-zero component. 
Let A be a sparse matrix. Then reduced algorithms can be derived for the minimiza­
tion of the quadratic function (2). 

Theorem 5. Let A be a positive definite, symmetric, q-diagonal band matrix. 

Letx0
0) = (0, ...,0)T and 

x(
o
fe) = (0, . . . ,0, t f e ,0, . . . ,0) r 

where tk = 1. Then the algorithm (3) for the minimization of the quadratic function 
(2) assumes the form 

Y(*) _ v(*) , or(fc> «<') t,W - v(»> V ( * ~ D 

i — 1, 2,. . . , n , k = i, i + 1,..., n 

where ocflt are scalar coefficients such that 

f(x?2x + av (^) = min!, 

a = aflx 

and 
*<*> = x(f) + x(

0
fc) , k > (q - l)/2 + i . 

Proof follows directly from Theorem 4 and Lemma 1. 

LINEAR MINIMIZATION 

Let us consider the quadratic function (2). Linear minimization consists in de­
termining the scalar coefficient X such that f(x + Xv) for given x and v achieves 
its minimum. In the case of quadratic function, the minimum is defined by three 
function values f(x + Xxv) = f1? f(x + X2v) = f2, f(x + X3v) = f3. For X we ob­
tain 

x - - K-l ~ xMi ± W - ^) / 2 + (j| - ^)h 

2(X2 - X3)ft + (X3 - X,)f2 + (X, - X2)f3' 
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Let us denote 

(13) u = (^2 - A3)/i + Qt3 - AQ/ 2 + (At - k2)h 
(Xt — X2) (Ai — A3) (A2 — ^3) 

Since the second derivative on parallel directions is constant, the minimum on these 
directions is defined by two function values. Let us denote f(x + lv) = fi9 f(x) = fQt 

Then the minimum on parallel directions is defined by 

x = (^ - i^J° 
2ut 

where u is defined by (13) and t is a scalar coefficient. This property enables us to re­
duce the number of values of the function f(x) to be calculated. 

The above described method requires n\2(n + 1) linear minimizations, calling 
for n2 + 2n function values for a quadratic function. If the quadratic function 
corresponds to a sparse matrix, reduced algorithm can be used, which require sub­
stantially less function values. When explicit gradients are not available, then the 
gradient vector 

V/(x) = (3/73*1, clf\dx2,..., df\dxn)
T 

is approximated by the difference formulas 

dfjdXj „ /(»+ ^) - M 

where e} is the vector with thej-th component equal to one and the other components 
zero. This approximation requires n + 1 function values. The trouble with this 
approach consists in choosing S. The exact determination of the gradient vector 
of a quadratic function, not considering rounding errors, is given by the formulas 

dfldx =
 / ( x + 8ej) ~ f(x - Sej) 

1 J 28 

which require 2n function values. The effectiveness of conjugate gradients schemes 
depends on the ability to generate mutually conjugate directions, and the use of ap­
proximate gradients may cut it down. The structure of the matrix has no influence 
on the total number of function values required for minimization. For illustration, 
the number of the function values requires by the above described method and the 
method of conjugate gradients is compared below: 

PPM ( ľonjugate gra< 

general matrix n2 + 2n 2n2 + Зи 
5-diagonal matrix In - 6 2n2 + Ъn 
3-diagonal matrix 5n - 2 2n2 + Зи 
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The algorithm (3) can be viewed also as an iterative algorithm in the sense that the 
point x4n) is considered the new initial point x0

0) for the new computation given 
by the relation (3). It can be proved that such an algorithm converges for strictly 
convex functions. This will be investigated in a separated paper. Nongradient me­
thods [6, 8] require n2 linear minimizations per iteration. 

NUMERICAL EXAMPLE 

Let us consider the minimization problem of a quadratic function 

f(x) = (Ax, x) - 2(6, x) . 

Let n = 10, 

/ 2 1 . . . 1\ 
1 2 1 . . 1 

A = 

V - • 2) 

and b = (21, 23, 21, 23, 21, 23, 21, 23, 21, 23) r . The exact solution is x = (1, 3, 1, 3, 
1, 3, 1, 3, 1, 3)T. The starting point was chosen to be x0

0) = (0, ..., 0)T. The results 
obtained by the above described method and by the conjugate gradients method 
with exact difference formulas are as follows: 

PPM 

0-9999861 
2-9999863 
1-0000472 
3-0000011 
1-0000022 
2-9999975 
1-0000046 
2-9999960 
0-9999981 
2-9999956 

Conjugate gradient 

0-9924156 
3-0061550 
0-9924156 
3-0061571 
0-9924087 
3-0061560 
0-9924136 
3-0061477 
0-9924098 
3-0061556 

APPLICATIONS 

The above described method can be applied 

a) to the solution of ill-conditioned linear systems minimizing a quadratic form 

[10], 
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b) in optimal control theory, where in many cases explicit gradients are not 

available at all or only at excessive costs [11, 12, 13]; the structure of the corres­

ponding matrix is in many cases sparse [14], 

c) to functions of quadratic forms for which the algorithm (3) terminates after 

a finite number of iterations, e.g. y = exp [f(x)]. 

According to Theorem 4 the total storage requirements are less then n2 + n + 2. 

For a g-diagonal band matrix it is necessary to store (q — l)/2 + 1 vectors. The 

above described method is suitable for implementation on a parallel computer, 

because the minimizations on parallel directions are independent from the computa­

tional point of view. The storage requirements are in a suitable disseminated form, 

i.e., each processor of a multiprocessor system has to store only one vector. 

In the next paper we shall consider the convergence of iterative methods of the 

general form 

Step(i): For given x0

0 ), x(

0

fc) = x 0

0 ) 4- v(

0

k) do the calculation by the recurrent relation 

x(k) _ x(k) , (*) (0 
xi — xi-l ^ ai-\vi-\ 9 

where 

v^! - x^lx - xiLY*, i = 1, 2,..., n , k = i, i + 1, ..., n . 

Step(ii): Replace x 0

0 ) by x(

n

n) and go to Step(i); 

for finding the minimizer of a given continuously differentiable strictly convex 

function / : En -> Er. Here af}1 is the basic steplength and v(

0

fc) = (0, ..., tk, ..., 0)T 

where tk = X, 0 < X <; 1. 
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Súhrn 

PARALELNÁ METODA KONJUGOVANÝCH SMEROV 
PRE MINIMALIZÁCIU 

FRIDRICH SLOBODA 

V článku je popásaná metoda konjugovaných smerov pre minimalizáciu ktorá 
nevyžaduje znalosť gradientu. Metoda má vlastnost' kvadratickej konvergencie 
a úzko súvisí s metodou pre riešenie systému lineárnych algebraických rovnic čo 
umožňuje definovať redukované algoritmy ak odpovedajúca matica je riedka. 

Authoťs address: Dr. Fridrich Sloboda, Ústav technickej kybernetiky SAV, Dúbravská cesta 1, 
809 31 Bratislava. 
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