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SOME STOCHASTIC PROPERTIES
OF THE BEST DETERMINED TERMS METHOD

Jiki NEUBERG
(Received June 7, 1974)

Some stochastic properties of the best determined terms method (BDT) are derived
and some criteria based on the concept of the measure of information are given
for an approximate determination of the normal solution to the Fredholm integral
equation of the first kind.

The system considered assumes after discretization the form
(1.1) Kx =y +e,

n
where x € R" (the norm in R" is the Euclidean norm [[x|, = ¥ |x[% x = (x;, ..., x,)")
k=1

vy, ¢€ R™ and ¢ is a random vector with normal distribution and given covariance
matrix D(e) (D(¢) = E{[e — E(¢)] [¢ — E(¢)]"}). In particular E(¢) = o, where E(c)
is the expected value of &. By K we denote a linear mapping of R" to R™. The problem
is to find a suitable approximation to the normal solution x, of

(1.2) Kx=y.

By the normal solution we mean a vector fulfilling the following conditions:

(i) Kxo =y,
(i1) ”xOH,, is minimal among all vectors fulfilling (1.2). The existence of such a solution
is assumed.

It is well known that D(e) can be decomposed into a product D(e) = T" T, where T"
is a lower triangular matrix. Multiplying (1.1) by (T7)"! one obtains

(1.3) Rx=9+¢,

317



where K = (T")" 'K, $ + & =(T")"! (y + ¢). Consequently, the system (1.1) is
reduced to (1.3) and, in addition. D(¢) = I.

It is well known [1, p. 5] that the matrix K can be decomposed as follows (singu-
lar value decomposition—SVD):

R =U"DV,

where U and Vis m x m and n x n unitary matrix respectively, and the m x n
matrix D = (dj)issuchthat d;, = 0if j + k andd;; =0; 20, j =1,...,r = min
(m, n). Without loss of generality we may assume that ¢, = ... 2 o,. The system
(1.3) can be further simplified if we let u = Vx and ¢ + d¢ = U(9 + £). We thus
obtain

(1.4) Du = ¢ + d¢.

2.

In this section some basic stochastic properties of the solution of the first kind
of the system (1.1) and thus (1.4), the definition of which is given below, will be
presented. Some limit properties of this solution are shown in [5].

If 7 is a random variable with normal distribution then we say that t eN(E, D),
where E(t) = E is the expected value of t and E[t — E(r)]* = D its dispersion.

Let uschoose 4 = 0 such that | ¢ < 4 with a certain probability. We also assume
that ¢ ; € N(0, 1), where (6, ..., 6¢,,)" = d¢ and the components d¢;,j = 1,...,m

are uncorrelated. Then (see [8, p. 85]) Y (3¢,)* is a random variable with the x*-distri-
=1
butiion, consequently
(2.1) E[Zl(éqoj)z] =m.
e
It follows that 4 = m.

Remark. If the matrix D(g) is diagonal with diagonal elements (D(g));; = ¢,
j=1,...,m, we have

E[ji(égoj)z] = E[Ji (¢;)*] 6% = ma*.

—

We further define the vectors (see e.g. in [2], [4])
k
(22) u =3 oj(9; + d9))¢;
j=1
k =1,...,r, where ¢; is the unit vector with all its components zero except for the
j™ component which is one. We use the notation ¢; =0; ' if ¢, > 0 and ¢ =0

if ; =0.
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Definition 2.1. A4 vector u"® is called a solution of the first kind to (1.4), if it
Julfils
(i) |Dd ~ (¢ + d9)|n < 4,
(i) if u* fulfils (i) with k % k(4), then k > k(4).

Theorem 2.1. The covariance matrix D(u*?®) fulfils
D(uk(d)) — Dh(A)[D’((A)]T ,

where DX = (&%) and d%® =0 if j + k and j = k > k(4) and d5\" = o}
for j =1,..., k(4).

Proof. We easily verify that

uk(A) — Dk(A)((P + (S(P) .
Hence,
D(u*®) = DK@ E{[u*® — E(u*@)] [i*@ — E@*“)]"} [DX]" =
= DMO[phaT
This completes the proof.
The importance of Theorem 2.1 is emphasized by the fact which is its simple

consequence, namely, that (¢;)* is exactly the dispersion of the j™ component
of u*¥

Theorem 2.2. The solution of the first kind to the system (1.4) is an unbiased
estimate of the normal solution u, of

(2.3) Du =g,
if and only if Qysp+1=-.-= @, = 0.
Remark. By the assumption of Theorem 2.2, E(u*®) = u,,.
Proof. If ¢uuys1 = ... = ¢, = 0 then u*® = D" + ¢). This implies that
E[u¥®] = u, .

Since the converse assertion is obvious, the proof is complete.

The previous result has some rather important consequences. One usually has
k(4) small — see e.g. in [3], where some problems of spectrophotometric diagnostics
of planetary nebulae are studied, the author shows that k(4) ~ 7. In this case the
vector u*) is not an unbiased estimate of the normal solution u,. This is a serious
disadvantage of using solutions, of the first kind as approximations to the normal
solution u,,.

The following theorem describes a rather important extremal property of the co-
variance matrix of the solution of the first kind.
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Theorem 2.3. Let ii be an arbitrary unbiased estimate (i.e. ii = C(p + 0¢),
where C is an, n x m matrix, ¢ € R™ an arbitrary vector and E(DIZ) = q)) of uy.
Then the covariance matrix of the solution of the first kind of (1.4) fulfils

D(u*®) < D(a).

Proof. By hypothesis, i = C(p + d¢) with some n x m matrix C. The unbiased-
ness of @ implies that CD¢p = ¢. We then simply deduce that CD = I°, where o, > 0
and g,,, = ... = g, = 0, the matrix I° being of the type n x n and

(2.5) (F)y=0 if j+k and j=k=s+1,...,n

() =1 if j=1,..,s.
It is an easy matter to verify the validity of
(2.6) CC" = D*(D*)" +(C - D*)(C - D),

where D* denotes the generalized inverse to D, i.e. [6, p. 1], by virtue of the relation
D* = (D"D)* D". The required assertion of Theorem 2.3 then follows from (2.6).
The proof is complete.

We now consider some problems concerning the best approximations of the
normal solution of the system (].l).

Let {u’, ..., u"} be a set of vectors defined by (2.2). Our task is to present a decision
criterion according to which one would find an index k such that

(3.1) [u* = |, = min {[ju! — uol,:j=1,...r},

where u, is the normal solution to (2.4). This problem is rather complicated because
u* is a random vector. A further complication is that the vector ¢ is not known as
a rule. We are going to study some properties of the best approximation (best with
respect to a given set {u', ..., u"}). We find it natural to use nondeterministic approach

Theorem 3.1. The vector u* is the best approximation with respect to {u', ..., u"}
if and only if

k k
(D)2 Y (67)(p; + 09) o0, < Y (67) (i + 69.)* for j=1,...k—1,
i=j+1 i=j+1
J j
(i) 2 Y (67) (@i + 090)o0; = Y (o) (@i + 59)* for j=k+1,..,r.
i=k+1 i=k+1

320



Proof. By definition, u* is the best approximation if and only if

Jut = wollw = [ = wolls

forj=1,...,r
Hence,
k r j
(3:2) Y (o700 + Y (oi @) = Z(U dp;)* + Z (07 @2
i=1 i=k+1 i= i=j+1
In the case j = I, ...,k — 1, (3.2) is equivalent to
Z (Opioi ) = Z (ff @)
i=j+1 i=j+
It follows that
k k
2% (o) (@i + 09;) 09, < Z (07 ) (@i + 39,) .
i=it1 ¥

The case j = k + 1,...,r can be considered in the same way. This completes

the proof.
A vector u* satisfies the condition (3.1) if and only if the vectors ¢ and ¢ satisfy

the conditions (i) and (ii). We write ¢* = ¢ + d¢, where ¢* is a known vector
and we define random variables w%, je{l,...r}\{k} and k=2, ... r—1 as

follows:
k
wh= % of(cf) e, for j=1,..k—1
’ i=j+1
and

Il
>~
+

J
wh= Y oi(a]) dp; for j
We further define for k = 2, ..., r — | the quantities

K
]1"::% Z ((p;ko'?)z for j=1,..,k—1

J
i=j+1
and
i
Wi=1Y (pfol)? for j=k+1,...1
i=ki1
Defirition 3.1. Let, for j =2, ..., r — 1,
(3.3) P;=Pwj < hj,...owi_, Shi_wh,=hi, ... w= hl),

where P is the probability measure derived f;om the probability density corres-

ponding to the random vector w' = (w{, ..., wi_,,wi .. w) eR 1L

We say that u* is a solution of (1.4) if
Po=max{P;:j=2..,r—1}.
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We now evaluate these probabilities. We use the same simple method shown
e.g. [8, p. 43]. The definition of w* for k = 2, ..., r — 1 allows us to write

(3-4) X} ) o, =whoy —wh for j=2,.. k-1
and

@i (o] ) d¢; = wh —wh_y for j=k+2,..,r
and

*( _+\2 Lk * + \2 3 Lk
(pk(ak) 0P = Wi—1 » ‘Pk+1(0'k+1) 0Py = Wiy -

We always have in mind that 6¢; e N(0, 1), j = I, ..., m.
Let us consider the case when

?j(0;) =0

for some j = 1,...,r. Let j < k = 1 (if j = k + | the considerations are just the
same). We have wi = wh_, — ... = wh, where je{l,...,j — 1} is the last index
smaller than j such that (p}'l‘a;;l = 0. There is a possibility to choose a subset
p(1), ..., p(c) of {1, ..., r}, where ¢ < r, such that ¢ (c; )* # 0 for j = p(1), ..., p(c)
and p(1) < p(2) < ... < p(c). Let p(I) be an index such that wh, = wi_,. The
conditions (i) and (ii) in Theorem 3.1 can be expressed as follows:

i) wh < h p(1), ..., p(1),
(ii") whi = h p(l +2), ..., pc).
1t follows that

for j

Il

k
J
k .
G for j

[\

P, =f gilty, oo tey) dty, o dr
(k)

where

Qk) = (=0, hyr)) x oo x (=00, b)) X (Byreay +0) X oo X (B +0)

and gkk(t,, ..y t._y) is the probability density of the vector (wh,), ..., Wk, whi i ...
e W)
According to [8, p. 44]

gty oo teq) = (det S)Y2 f(17S,1) .

Here f(ty, ..., t._,) is the probability density of the random vector (d¢,, ..., 6¢.-,)",
t=(ty,...t.—y)"€R._y and S; is a matrix (¢ — 1) x (¢ — 1:

= (515)

with square diagonal blocks A, and B, the dimensions of whichequal land¢ — [ — 1
respectively.
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Explicitly,

oy, —ay, 0, o \
— 0y, Oy + 03, —o3, 0 ...
A, = 0, — oy, o3+ ooy, —oy, O....... s
0, ornnn.. 0, —oyy, oy + o)
Oy + Ayypy —%ya, L
B — = Opyyy Oy F %y —oeg 00l
=

where o; = [@p(0p;)?] 2 forj=2,....c.
We easily verify that

1
det Ay = (11 0Xer V)2,
Ji=p(2)
p(c)
det B, = (j=ﬂ+ l)tpj‘(a;)z)*z .
Consequently,
(3.6) Giltes oo tesy) = ""1“*[ ‘" ‘P:m(";f))z]glex‘{_ @\1)
(27[)”2 =2 2

Since the matrix S, is symmetric and, by hypothesis, regular there is a lower triangular
matrix Lsuch that S, = L'L. Let us substitute i = Lt into (3.6); we obtain

const exp( t—Ti)
2

(3.7) Gty -on )

where const is independent of k.
Let H, be the set defined as follows:

A

N -1, N K N k k 5
Hy={eR™ 1 =421t < hyyy ooty =4 S8 S hpyy Moy S 1y S AL

k A
vy =i £ A}

>

where 4” > 0 is given.
Further, let

p, ZJ Guiss oo i) i o i
L(Hi)

Definition 3.2. We say that u* is the solution of the second kind of the system
(1.4)if P, =max {P;:j=2,...r — 1}



Remark. If 4 > 0 is large, then P,  P,. Hence the solution of the second kind
is correctly defined.
Practical results using this criterion can be found in [3].

4.

In this section we characterize the BDT method using the concept of measure
of information. It is shown in [7] that this approach offers certain advantages for
determining a suitable decision criterion. In this paper we use the concept of measure
of information to establish new decision criterion. First we modify the BDT method
slightly. The advantages of the modification will be clear later.

For the sake of simplicity we consider a simplified system

(4.1 Kx=y+e,

in which x e R", y, ¢€ R" and K maps R" to R". The requirements concerning the
random vector on the right hand side are same as for the general case considered
in the previous section. We see that all the above consideration remains valid for the
special case m = n. In particular, (4.1) is equivalent to Kx = p + & with K = (T7)"*K
etc.

Using the same notation as in (2.5) we define I, = I — I*, where I is the n x n
unit matrix. We correspondingly define the vectors

xk(”) = VT(D” + ’711‘+1) U(f’ + ('A') , k=1,....n,

where 7 > 0 and D* is from Theorem 2.1.
It follows that
[0 = M <l + 3]
By choosing n appropriately, x* can be approximated by x*(i7) with an arbitrarily
small error. We also easily determine the covariance matrix
D(xk(”)) = VT[Dk(Dk)T + ’72]k+1] V.
Let

1

flty, ..oty = o {det [D(x*(n))]} "2 exp {—3(t — )" D(x*(n)) t — p)}

AV

where the components of the vector x*(n) belong to N(p, D(x*(n)), where u =
= V(D" + nl+,) U and t = (11,....1,)".

Definition 4.1. The quantity
(42) () = f 7(0) log £(1) diy. .., dt,
is called the measure of information with respect to the vector x*(n).
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After the substitution 7 = (T"(n))™"' V(¢ — ), where D(x*(n)) = T"(n) T(n) with
a lower triangular matrix T7 (y), into (4.2) we obtain

J(x¥n)) = ¢,(n) — cy(n)log oy, ..., n" "

for k = 1,...,n. In this formula the numbers ¢;(n) and c,(n) are independent of

K and $ + £ We further have

det D.\"‘(r]) = (ar, ofr;""")z .
If
(4.3) 0<n<o, <...<0 . sell,...on},

we deduce that J(x*(i7)) is non-increasing as a function of k. The rate of a possible
decrease gives us tools for determining a suitable decision criterion.

We first determine components of the measure of information with respect to the
direction v,, where V = (v,‘ |u,,). Let us denote

J(k) = J(x*(n)) — J(x*"N)) for k=2 ...n
and

J(1) = a(n, n) + (log na,) cs(n),

where a(n, n) = ¢,(n) — cy(n) logn. It follows from (4.3) that J(k) = J(k + 1)
and we see that the measure of information with respect to the direction is a non-
increasing function of k. This is in a good accordance with the intuition.

Decision criterion.

We say that the vector x* in an a-approximation to the normal solution of (4.1)
if J(k) — J(k + 1) = « and the relation J(s) — J(s + 1) = « implies that s = k.

This criterion has be tested on some inverse problems of spectroscopic diagnostics
of planetary nebulae. The results will be published elsewhere.
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Souhrn

NEKTERE STOCHASTICKE VLASTNOSTI METODY
NEJLEPE URCENYCH TERMU

JIRi NEUBERG
Jsou studovany nékteré stochastické vlastnosti metody nejlépe urlenych termut
a néktera kriteria zaloZzend na konceptu miry informace pro ureni aproximace

normélniho feseni Fredholmovych integralnich rovnic prvniho druhu.

Author’s address: Dr. Jifi Neuberg, Matematicko-fysikdlni fakulta KU, Malostranské nam.
25, 118 00 Praha 1.
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