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SVAZEK 21 (1976) APLIKACE MATEMATIKY ČÍSLO 5 

SOME STOCHASTIC PROPERTIES 
OF THE BEST DETERMINED TERMS METHOD 

J I Ř Í NEUBERG 

(Received June 7, 1974) 

Some stochastic properties of the best determined terms method (BDT) are derived 
and some criteria based on the concept of the measure of information are given 
for an approximate determination of the normal solution to the Fredholm integral 
equation of the first kind. 

The system considered assumes after discretization the form 

(1.1) Kx = y + e, 
n 

where x e Rn (the norm in Rn is the Euclidean norm \\x\\2 = £ \xk\
2, x = (x1? ..., xn)

T) 
k= 1 

y\ 8 e Rm and 8 is a random vector with normal distribution and given covariance 
matrix D(e) (D(a) = F{[e — F(e)] [e — F(e)]r}). In particular F(a) = o, where F(s) 
is the expected value of e. By K we denote a linear mapping of Rn to Rm. The problem 
is to find a suitable approximation to the normal solution x0 of 

(1.2) Kx = y. 

By the normal solution we mean a vector fulfilling the following conditions: 

(i) Kx0 = y , 

00 ||xo||« is nrinimal among all vectors fulfilling (V2). The existence of such a solution 

is assumed. 

It is well known that D(e) can be decomposed into a product D(e) = TTT, where TT 

is a lower triangular matrix. Multiplying (1.1) by ( T T ) _ 1 one obtains 

(1.3) Kx = 3) + e , 
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where K = (TT)~X K, $ + t = ( T 7 ) " 1 (y + e). Consequently, the system (1A) is 
reduced to (1.3) and, in addition. D(e) = I. 

It is well known [1, p . 5] that the matrix K can be decomposed as follows (singu­
lar value decomposition —SVD): 

K = UTDV, 

where U and V is m x m and n x n unitary matrix respectively, and the m x n 
matrix D = (dJk)is such that djk = 0 if j + k and d/7 = aj ^ 0, j = 1, ..., r = min 
(m, n). Without loss of generality we may assume that al^ ... ^ ar. The system 
(1.3) can be further simplified if we let u = Vx and cp + Sep = U(p + e). We thus 
obtain 

(1.4) Du = cp + by . 

In this section some basic stochastic properties of the solution of the first kind 
of the system (l . l ) and thus (1.4), the definition of which is given below, will be 
presented. Some limit properties of this solution are shown in [5] . 

If T is a random variable with normal distribution then we say that T G N(E, D), 
where E(r) = E is the expected value of T and E[r — E(T)Y = D its dispersion. 

Let us choose A — 0 such that ||<5<p||m = -4 with a certain probability. We also assume 
that Sep j 6N(0, 1), where (Sq>u ..., S(pm)T = Sep and the components S(pj9j = 1 , . . . , m 

m 

are uncorrelated. Then (see [8, p. 85]) £ (ocpj)2 is a random variable with the#2-distri-
.7 = 1 

bution, consequently 
m 

(2-1) £[E(^Y] = '«-
.7=1 

It follows that A = m. 

R e m a r k . If the matrix D(e) is diagonal with diagonal elements (D(S))JJ = a2, 
j = 1,..., m, we have 

m m 

/ = i i = i 

We further define the vectors (see e.g. in [2], [4]) 

(2.2) "fc = Z ^ + ( ^ + ^ ) e j , 

k = 1, ..., r, where e7 is the unit vector with all its components zero except for the 
j t h component which is one. We use the notation af = a Jl if a} > 0 and a]~ = 0 

if aj = 0. 
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Definition 2.1. A vector uk(A) is called a solution of the first kind to (1.4), if it 
fulfils 

(i) | | D u ^ - (<p + O-<p)||2 <£ A, 

(ii) if uk fulfils (i) with k * k(A), fften k > k(A). 

Theorem 2.L Tfte covariance matrix D(uk(A)) fulfils 

D(uk(A)) = D^)[D*^rp ; 

where D*(J) = (dk(
k
A)) and dk(

k
A) = 0 if j 4- k and j = k > k(A) and djy° = cr+ 

fOrj = 1,...,k(A). 

Proof . We easily verify that 

UHA) = DUA)^ + S(py -

Hence, 

D(u*(J)) = Dk(A) E{[uk(A) - E(uk(A))~] [uk(A) - E(uk(A))]J} [D f c ( J )]T = 

= D*^)[Dfc(^)]r 

This completes the proof. 
The importance of Theorem 2.1 is emphasized by the fact which is its simple 

consequence, namely, that (<T/)2 is exactly the dispersion of the j<h component 
of uk(A). 

Theorem 2.2. The solution of the first kind to the system (1.4) is an unbiased 
estimate of the normal solution u0 of 

(2.3) Du = <p , 

if and only if (pk{A)+l = . . . = <pm = 0. 

R e m a r k . By the assumption of Theorem 2.2, E(uk(A)) = u0. 

P r o o f . If (pk(A)+1 = ... = <pm = 0 then ufc(J) = Dk(A)(cp + <5(p). This implies that 

E[uk(A)] = u0 . 

Since the converse assertion is obvious, the proof is complete. 
The previous result has some rather important consequences. One usually has 

k(A) small — see e.g. in [3], where some problems of spectrophotometric diagnostics 
of planetary nebulae are studied, the author shows that k(A) « 1. In this case the 
vector uk(A) is not an unbiased estimate of the normal solution u0. This is a serious 
disadvantage of using solutions, of the first kind as approximations to the normal 
solution u0. 

The following theorem describes a rather important extremal property of the co-
variance matrix of the solution of the first kind. 
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Theorem 2.3. Let u be an arbitrary unbiased estimate (i.e. u = C(<p + Sep), 
where C is an, n x m matrix, cp e Rm an arbitrary vector and E(Du) = cp) of u0. 
Then the covariance matrix of the solution of the first kind of (lA) fulfils 

D(uk^) S. D(u) . 

Proof. By hypothesis, u = C((p + S<p) with some n x m matrix C. The unbiased-
ness of u implies that CDcp = cp. We then simply deduce that CD = Is, where <JS > 0 
and <rs+ j = . . . = crr = 0, the matrix Is being of the type n x n and 

(2.5) (1% = 0 if j + k and j = k = s + 1, . . . , n 

( I % . = 1 if j=l,...,S. 

It is an easy matter to verify the validity of 

(2.6) CCr = D+(D+)r + (C - D+) (C - D+)T , 

where D+ denotes the generalized inverse to D, i.e. [6, p. 1], by virtue of the relation 
D+ = (DTD)+ DT. The required assertion of Theorem 2.3 then follows from (2.6). 
The proof is complete. 

3. 

We now consider some problems concerning the best approximations of the 
normal solution of the system (1.1). 

Let {u1, ..., u} be a set of vectors defined by (2.2). Our task is to present a decision 
criterion according to which one would find an index k such that 

(3.1) \\uk - u0\\n = m i n {\\uJ - u0\\n :j = 1, ..., r} , 

where u0 is the normal solution to (2.4). This problem is rather complicated because 
uk is a random vector. A further complication is that the vector q> is not known as 
a rule. We are going to study some properties of the best approximation (best with 
respect to a given set {u1, ..., u}). We find it natural to use nondeterministic approach 

Theorem 3.1. The vector uk is the best approximation with respect to {ul, ..., ur} 
if and only if 

k k 

(i) 2 X (at)2 (cp, + 5q>t) Sep, ̂  £ (<r,+ )2 (<Pi + ocptf for j =- 1, ..., k - 1 , 
i - j + 1 i = j + 1 

i = k+í 
(ii) 2 £ (a!Y(ęi + ðcp)ðęi ^ £ (o-ГУWi + t<PiY for j = k + 1, 

i = k+ 1 
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Proof. By definition, u is the best approximation if and only if 

| |M* - Uo\\n = \\uJ ~ « o | | n 

for j = 1, ..., r. 
Hence, 

(3.2) I K + ^ ; ) 2 + I ( f f , > i ) 2 _ _ K ^ ) 2 + I K+^-)2-
i = 1 i = fc + 1 / = ! i = / + 1 

In the case j = I, ..., k — 1, (3.2) is equivalent to 

£ (<5<^,+)2 ^ £ (<T,»2. 
i - j + 1 / = j + i 

It follows that 

2 £ K r > , + ^,)<v i = £ (crty((Pi + s<piy. 
i=j+l i=j+l 

The case j = k + 1, ..., r can be considered in the same way. This completes 
the proof. 

A vector uk satisfies the condition (3.1) if and only if the vectors cp and Sep satisfy 
the conditions (i) and (ii). We write q>* = cp + Sep, where <p* is a known vector 
and we define random variables w), j _ {1, ..., r} \ {k} and k = 2, ..., r — 1 as 
follows: 

*J-= __ <f>*i{?t)2&<Pi for j = l , . . . , k - 1 
/•=./+1 

and 

')= _ ęìioîУôę, for y = Л+ 1,.. Г . 

i = * + 1 

We further define for k = 2, ..., r — 1 the quantities 

h* = } £ (<p*<7,+)2 for j = V...,k- 1 
i=j+\ 

and 

ҺЃj = i X (<p*<rГ)2 for 7 = fe+ l , . . . , r . ^ * ^ 2 

i - fc + t 

Definition 3.1. Le/, for j = 2, ..., r — I, 

(3.3) P, = P(H.{ ^ h j , ..., wj_, g /rj_,, wj

i+ , ^ hj+ , ,v/ ^ /,;) , 

where P is the probability measure derived from the probability density corres­

ponding to the random vector w1 = (w{, ..., wj_ j , wj+ ,, ..., w/) r e Rr~i. 

We say that uk is a solution of (1.4) if 

P, = max{P,. : ; = 2 , . . . , r - 1} . 
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We now evaluate these probabilities. We use the same simple method shown 
e.g. [8, p. 43]. The definition of wk for k = 2 , . . . , r — 1 allows us to write 

(3.4) cp*(a+)2 Sepj = w)^ - w) for j = 2, ..., k - 1 

and 

<PK°!Y d<Pj = *5 - " J - . f o r y = fc + 2, ..., r 
and 

<P*{?kY S(Pk = wl~i > <Pk+i(°t+iY 8<Pk+i = w*+i • 

We always have in mind that O*^. e N(0, 1), j = L, ..., m. 
Let us consider the case when 

vMY = o 
for some j = 1, ..., r. Let j _ k = 1 (if j _ k + 1 the considerations are just the 
same). We have w) = w)-X — ... = w), where I - {V . . . , j — 1} is the last index 
smaller than j such that (p*+x(T^+x = 0. There is a possibility to choose a subset 
p(l), ..., p(c) of {1, ..., r}, where c ^ r, such that <P*(O"/)2 + 0 for j = p(1),..., p(c) 
and p(1) _ p(2) _ . . . _ p(c). Let p(/) be an index such that wp(/) = w£_i. The 
conditions (i) and (ii) in Theorem 3.1 can be expressed as follows: 

0') w j - f c , for j = p(l),...,p(I), 

(HO wj_fc* for ,/ = p(Z + 2) , . . . ,p (c ) . 

It follows that 

Jnда 
where 

_(fc) = ( - c o , hp(1)) x ... x ( - c o , hp(0) x (hp(/ + 2 ), +oo) x ... x (ftp(c), +oo) 

a n d ^ ( t j , ..., fc_-) is the probability density of the vector (wP ( 1 ), ..., wp(/), w P ( z + 2 ) , . . . 

. . . ,w P ( c ) )
T . 

According to [8, p. 44] 

^ ( t i , . . . , t c _ 1 ) = ( d e t S , ) 1 / 2 f ( t T S , t ) . 

Here f(t l 5 ..., rc_j) is the probability density of the random vector (d<pu ..., OVc-i)r> 
t — (tj, ..., tc_i)T e Rc_t and Sfc is a matrix (c — 1) x (c — 1: 

with square diagonal blocks Afe and Bfe the dimensions of which equal / and c — / — 1 

respectively. 
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Explicitly, 

/ a2, — a2, 0, 
-a2, a 2 + a3, —a3, 0 
0, — a3, a 3 + a4, — a4, 0 

V o, o, *,_!, a ^ + ocj 

/ a / + 1 + a / + 2 , - a / + 2 , 0, 
" o-i+i- at + 2 + oc/ + 3 , - a / + 3 , 0, 

.0, - a c _ t , ac 

where a, - [K0 )(ffp+
0 ))

2] 2 for ; = 2, . . 
We easily verify that 

Pd) 

detAt = ( n ^ ; ) 2 ) - 2 , 
1 = p(2) 

p(c) 

detBt = ( n ^ ; ) 2 ) - 2 -
j=p(i+i) 

Consequently, 

ťSkť 
(3.6) gk(tu ..., tc + 1) = - - ^ [ n ^ j K a ) ) 2 ] " 1 ^ 

( 2 T I ) 1 / 2 y = 2 \ 2 

Since the matrix Sk is symmetric and, by hypothesis, regular there is a lower triangular 
matrix Lsuch that Sk = ilL. Let us substitute t = Lt into (3.6); we obtain 

(3.7) 9k(h> •••> l - i ) = const e x p f - — j 

where const is independent of fc. 

Let Hk be the set defined as follows: 

Hk = {teRc-{ : - A Sh _ _ h * ( 1 ) , . . . , - ^ = h S hk
p(l), hk

p(e+2) ^ tl+l ^ A, ... 

•••, ^p(o ^ ic-i ^ ^} , 
where A' > 0 is given. 

Further, let 

&(?!, . . . , ř ^ . ^ d ř i , . . . , d? c_, . 
L(Hk) 

Definition 3.2. We say that uk is the solution of the second kind of the system 
( 1 . 4 ) i y P t - m a x { P y : j » 2 , . . . , r - 1}. 
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R e m a r k . If A > 0 is large, then Pk « Pk. Hence the solution of the second kind 
is correctly defined. 

Practical results using this criterion can be found in [3]. 

4. 

In this section we characterize the BDT method using the concept of measure 
of information. It is shown in [7] that this approach offers certain advantages for 
determining a suitable decision criterion. In this paper we use the concept of measure 
of information to establish new decision criterion. First we modify the BDT method 
slightly. The advantages of the modification will be clear later. 

For the sake of simplicity we consider a simplified system 

(4.1) Kx = y + e, 

in which x e Rn, y, e e Rn and K maps Rn to Rn. The requirements concerning the 
random vector on the right hand side are same as for the general case considered 
in the previous section. We see that all the above consideration remains valid for the 
special case m = n. In particular, (4.1) is equivalent to Kx = y + t, with K = (TT)~l K 
etc. 

Using the same notation as in (2.5) we define Ik+1 = I — lk, where I is the n x n 
unit matrix. We correspondingly define the vectors 

xk(n) = VT(Dn + nlk + 1) U(y + s) , k = 1, ..., n , 

where n > 0 and Dk is from Theorem 2.1. 
It follows that 

11**00 ~ **!! = n\$ + 1̂1 • 
By choosing n appropriately, xk can be approximated by xk(n) with an arbitrarily 
small error. We also easily determine the covariance matrix 

D(xk(n))=VT{D\Dk)T + ^Ik+x-]V. 
Let 

f(t»..., ',) - 4 - (det [ D ( x ^ ) ) ] } - 1 / 2 e x p { - i ( t - tf D(xk(n)) t - /,)} 

where the components of the vector xk(n) belong to N(/t, D(xk(n)), where ft = 
= VT(Dk + rjlk + 1) Uy and t = (tl9 ..., tn)

T. 

Definition 4.1. The quantity 

(4.2) J(x\n)) = [){t) logj(0 dtu..., dt„ 

is called the measure of information with respect to the vector xk(n). 
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After the substitution t = ( T 7 ^ ) ) - 1 V(t - fi), where D(xk(n)) = TT(n)T(rj)v/ith 
a lower triangular matrix TT(n), into (4.2) we obtain 

+ «" - k J(xk(n)) = c,(n) - c2(n) log at, ..., okn 

for k = 1, ..., n. In this formula the numbers cx(n) and c2(n) are independent of 
K and y + £. We further have 

alztDxk(r1) = (ot,...,ok

+n"-k)2 . 

If 

(4.3) 0 < n < at S ••• S ^,+ , s e {l, ..., /?} , 

we deduce that J(xk(rf)) is non-increasing as a function of k. The rate of a possible 
decrease gives us tools for determining a suitable decision criterion. 

We first determine components of the measure of information with respect to the 
direction vk, where V = (vx\ ... |v,.). Let us denote 

ind 
J(k) = J(x\rj)) - J(xk~\ę)) for k = 2, ..., n 

J(l) - a(n, r}) + (log no{) c2(n) , 

where a(n, n) = c2(n) — c2(n) logn. It follows from (4.3) that J(k) ^ J(k + l) 
and we see that the measure of information with respect to the direction is a non-
increasing function of k. This is in a good accordance with the intuition. 

Decision criterion. 
We say that the vector xk in an a-approximation to the normal solution of (4.1) 

if J(k) — J(k + 1) ^ a and the relation J(s) — J(s + 1) ^ a implies that s ^ k. 
This criterion has be tested on some inverse problems of spectroscopic diagnostics 

of planetary nebulae. The results will be published elsewhere. 
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S o u h r n 

NĚKTERÉ STOCHASTICKÉ VLASTNOSTI METODY 
NEJLÉPE URČENÝCH TERMŮ 

JIŘÍ NEUBERG 

Jsou studovány některé stochastické vlastnosti metody nejlépe určených termů 
a některá kriteria založená na konceptu míry informace pro určení aproximace 
normálního řešení Fredholmových integrálních rovnic prvního druhu. 

Authoťs address: Dr. Jiří Neuberg, Matematicko-fysikální fakulta KU, Malostranské nám. 
25, 118 00 Praha i. 

326 


		webmaster@dml.cz
	2020-07-02T02:42:05+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




