
Aplikace matematiky

Viorel Gh. Vodă
Inferential procedures on a generalized Rayleigh variate. I

Aplikace matematiky, Vol. 21 (1976), No. 6, 395–412

Persistent URL: http://dml.cz/dmlcz/103663

Terms of use:
© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103663
http://dml.cz


SVAZEK 21 (1976) APLIKACE MATEMATIKY ČÍSLO 6 

INFERENTIAL PROCEDURES ON A GENERALIZED 
RAYLEIGH VARIATE (I) 

V. G H . VODA 

(Received September 14, 1972) 

1. INTRODUCTION 

Consider a random variable X with the following density function: 

(1) X:f(x;0,k) = — x 2 k + 1 e x p { - 0 x 2 } 
r(k + 1) 

with x > 0, 9 > 0, k ^ 0. 

This class of densities contains some important probability laws: 
1) for k = 0 and 9 = 1/A2 we obtain 

2 
(2) fR(x; X) = ~ x e x p { - x 2 / A 2 } , x > 0 , A > 0 

A 

that is the one-parameter Rayleigh law. 

2) for k = \ and 0 = \\2X2 one obtains 

(3) fM(x;A) = - - 2 - ~ x 2 e x p { - x 2 / 2 A 2 } , x > 0 , A > 0 
/ (271)2 

that is the one-parameter Maxwell law. 

3) if in (l) we take 9 = 1/2T2, % > 0 and fc = \a — 1, a e N then we shall have 

(4) / ( X ; T , a) = 1 x a _ 1 exp { - X 2 / 2 T 2 } 
V > J\ ) 2^~VF(ia) F l ; J 

x > 0, T > 0, a e N, that is the density function of "chi" variable with " a " degrees 
of freedom. (Therefore a variable with density given by (1) may be regarded as a chi-
variable with certain degrees of freedom, not necessarily a natural number.) 
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Let us note that one can take for k also values in the interval ( — 1, 0). For instance 
if k = — \ and 9 = \\2a2 we rediscover the "half-normal" density function: 

(5) fHN(x;a) = ^^~exp{~x2l2a2}, x>0, a > 0 . 
a(2ny 

For the sake of homogenity we shall consider that k __ 0. 
In the following we shall call the random variable with density function given 

by (1) — a generalized Rayleigh variable (GRV). 
One can consider a three-parameter GRV by adding a location parameter: 

(6) / ( * ; 0, c, k) = J f L . (x - c ) — exp [-6(x - cf] 
r(k + 1) 

x > c > 0 , # > 0 , k__0 but we shall restrict our attention for a while only to the 
case when C = 0. 

The non-central moment of order p is given by 

(?) E{XP)=nk + ip + y * , 
w y J r(k + i) 
Therefore 

(8) E(X) = £ - * ± J ) 1 and Var (X) = ["(* + 1) - f ' < * + » > 1 1 . 
w w r(fc +1) e* L r2(fc + i)J ^ 

Putting E(X) = m, we can express easily the central moment of order 2p: 

(9) E[(X - mf"] = - ^ _ X (-1)' Cip0-*'m-T(fc + */ + 1) . 
I[k + 1) i=o 

The distribution function has the expression 

20fc+i /•* 

(io) F M ) f c ) = ^ _ l , 
A> + 1) Jo 

l Cx2 

= M C + ])-VdM = 
r(fc + OJo 

_ rfa2(fc + l) 
r(k + I) 

where we have put 9t2 = u and the last numerator represents the incomplete Gamma 
function. Hence, Karl Pearson's tables can be used for various values of 0 and k. 
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Using the usual transformation Y = (X - E(X))ly/Yax (X) we obtain the stan­
dardized density function as follows: 

o A 

(11) /0(x; k) = — - ^ — (Ax + B)2k+1 exp {- (Ax + B)2} , x, k > 0 
F(k + 1) 

where 

(i2) A=r(fc+i)-*-±i)? and B=
r±±3. 

y ' L r2{k + i)J r(fc + I) 

The corresponding standardized distribution function is 

(13) E0(x; fc) = — L — [riAx+By(k + i) - rB1/2(fc + i ) ] . 

F(k + 1) 

The GR distribution is one-modal and asymmetric. The mode is 

(14) x M ^ ( ^ ± ^ . 
1 ; M (26f 

If 0 = 1, then the Mellin transform (Epstein [3]) associated with X is 

(14) h(s) = E(XS~") = P x 5 " 1 f(x; 1, k) dx = ^ t i i l ^ . 
Jo F(k + 1) 

2. PRELIMINARIES 

We shall prove first 

Lemma 1. IfK is a GRV, the Ka, a > 0 has the following density function: 

(15) f*a(x; 0, k) = - 2 ^ + 1
 x(2/a)(/c+i)-i e x p r f e 2 M ? x? fl> fc? a > 0 

a F(k + 1) 

Proof. Taking the derivative of 

7/1/c+i / V / a 

(16) F(y) = Prob {X < y1^} = - ^ x2* + V ^ 2 dx 
f(k + l)Jo 

we obtain immediately (15). 

It is important to note that for a = 2, the variable K2 obeys a Gamma law 

(17) X2:fx2(x;0,k)=^^x*e-e-\ x > 0 , 0 > 0 , k^O. 
F(k + 1) 
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The density function of X x can be obtained formally from 

(18) X' :fxJx; 0, k) - p p ^ x(2/«)(*+n-i {_0x2/a| 

V ; V ' | a | F ( k + 1) P I i 

x, 0 > 0, k ^ 0, a e R by taking a = - 1 . We have: 

2Ak + 1 

(19) X~l :fx-l(x;9,k) = ~ x-(2k + 3)e~e/X2 QX>0 k > 0 . 

V ) V ' r(fc + 1) 

If we take in (19) k = 0 we have 

(20) A - 1 ( x ; c ? , O ) = - e x p { - 0 / x 2 } , x, 0 > 0 which is just the density function of the "inverse Rayleigh" variable introduced for 
the first time in the literature by Treyer [17] and studied later by Iliescu-Voda [7] 
and Voda [19]. 

Now, if we take in (19) a = —2 we have 

(21) K"2 :fx-2(x;6, k) = -fL x^k+2)e'e/x
 9 x, 6 > 0 , k^O. 

F(k + 1) 

For k = —\, 0 = \X we obtain 

(22) K-2 :fx-2(x; \X, -\) = (-^-\ exp ( -A/2x) , x, A > 0 
\2nx J 

which is just the density function which arises in standard Rrownian motion problems 
(Roy-Wasan [14]). 

If we take in (17) 6 = 1 we obtain a Gamma variate with scale 1 and shape (k + l). 
Consider now two GR variables, say X and Ywith scales 1 and shape parameters kx 

and k2. 
Therefore K2 + Y2 is a Gamma variate with shape k1 + k2 + 2. Now, a well-

known property (Jambunathan [10] or IMT [9] page 3.26) may be restated as 
follows: 

Lemma 2. IfK and Yare two independent GR variates with scales 1 and shapes 
kl9 k2, respectively, then the variable 

Y2 

(23) U = ~~^—1 v K2 + Y2 

obeys a Beta law with parameters (kt + 1, k2 + 1). 
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Proof . The proof is very simple if we use an idea of Emiliana Ursianu [18], 
namely to apply the Mellin transform: 

(24) hv(s) = hx2(s) ^ ^ = 3 - i - ± i ) F ^ + k-l + 3 ~ -) 
1 7 w U ( ' u r(fc, + l) r(fc, + fc2 + 2) 
since h2-i(s) = h2( — s + 2). 

The basic inversion formula yields 

u».(l +u)-(kt + k2 + 2), (25) j(") = 
1 

2тп. 

* C + 100 -1 

(25) j(") = 
1 

2тп. 
W / / J Ò I U J — 

ß(fc, + 1; fc2 + 1) 

ki, fc2 > o 

where 

(26) ß(ш; и) = Г(m) Г(n)jГ(m + и̂  

ESTIMATION PROBLEMS 

A. Maximum likelihood estimates: consider first the simplest case, namely when k 
is assumed to be known. Let xu x2, ..., xn be an independent sample on X and let L 
be the likelihood function. Putting & = 1/(9, the log-likelihood equation 

(27) * | i _ , < t • , ) « _ £ . ? _ „ 

provides the solution 

(28) S . . ! ^ . 
/l(k + 1) i=l 

Now, due to Lemma 1 (in the case a = 2) we find that 

(29) E(S) = 9 and Var (§) = -1 *92 , 
w(k + 1) 

that is, the maximum likelihood estimate of 9 is unbiased. This is an expected result 
since X2 obeys a Gamma law and (28) involves a sum of Gamma variates. It follows 
therefore that all known results regarding some inferences on Gamma variable 
are valid. 

We shall state only some of them without detailed computations: 

1) the statistic 8 is an estimation with minimum variance; indeed, we have 

(30) ^ = - ( f c + 1)0 + 0 V 
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and the Rao-Cramer bound is therefore 

(зi) Яo-Ыľ-Џ 
d» J) n(k+ \)Q2 

2) The statistic S is sufficient since it is an efficient one. 

3) The density function of 3 is 

Qnk+n(nk 4- nYk+n ^ 
(32) (p*($; 9) = lWIC + U) $nk+n-~l exp {-0(nk + n) 9} . 

F(nk + n) 

4) The likelihood function can be written as 

(33) L= pV<*-'*-••••.*«> 

where q(x1? ..., xn) is a function which depends only on the sample values. 

Lemma 3. The maximum likelihood estimate of $ is consistent and asymptotically 

efficient in Kuldorff's sense. 

Proof. It is enough to check the conditions of Kuldorff's theorem (Kuldorff [11]) 

which reduces to compute 

s 2 i n / / a a 2 , O^lnf/OS3 

and to verify that 

- ^ d x = 0 , d x = 0 , - o o < - f d x < 0 . 
Jo as Jo d2f J 0 O^2 

Finally, it is necessary to construct a positive function u = uS such that there 

exist du/d<9, d2u/d<92 for every 0 > 0 and a positive function H which does not depend 

on 9 such that 

dč>2 V S» J 

ЃQO 

Hf(x), < H and H flx) dx < + 0 0 . 

For instance the last condition may be easily proved if we choose u.9 = *92 and H 

constant and positive. 

Asymptotic normality of S: Let us denote 

a, = E(9t) = 9, 0]- Var(5 ;) = — 1 — 9 2 , 
i(k + 1) 

el -Ef\*t-aH*), «?>-±o? -__L__ f; 1, e^-iet 
i=i t r ( k + 1) i = i 1 i = i 

#00 = — I (5i - fl,) , #oW = f V ) _ i ^ < 2 df. 
^(n) * = 1 JO 
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Let now Ft be the distribution function St and F(n) the distribution function 
of 5(n). A well-known corollary of Lyapunoff 's theorem (IMT [9]) asserts that if .of 
exists for every i = 1, 2, ..., n and lim Q(n)\<J{n) = = 0 then l i m F{n)(x) = <£0(*)-

n n 

In our case 

n ? " 1 6 " 1 
(33) O,3 = y oj = — - — y - + -L_ y -v ; ( } ffi e\k + i)2 h i2 o2(k + i) tk i 
but 

" 1 1 
£ - = (//(« + 1) + c = i/J(ti) + - + U 

i = i i w 

where c = 0-57715664 (Euler-Mascheroni's constant) and 

, s d ln Г(n 
ф(n) = v 

dи 

We have also 

(34) ф(n) = ln и + 1 e~"' (- dt 

Jo V l-e-'J 
(Ryshyk-Gradstein [15]). 

On the other hand, 
00 1 1 1 1 

(35) X - = 1 + - + - + ... + — + ... =i(p) 
V ; A ip 2P 3P np K J 

where c(p) is the Riemann function, defined as 

(36) m = . - ^ — d t . 
V ^ U ( l - 2 1 - ) n O J o i + ^r 

For p = 2 we obtain £(2) = \n2 (Ryshyk-Gradstein [15]) and noticing that 
lim \jf(n + 1) = + oo we obtain immediately the condition from Lyapunoff's corol-

n 

lary; therefore the variable 

(37) y = i^ V [ ( f c + l ) M ] 

is of class N(0, 1) for large n. 

It is interesting to obtain some information on the speed of convergence of Sn to 

N (si/w(fc + i ) e2). 
With regard to the fact that the statistic T = 6(nk + n) 9- is distributed as a Gamma 

variable with scale 1 and shape nk + n, let yai be the o^-quantile of the above Gamma 
variable for fixed 0, k, and n. 
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Compute therefore 6(nk + n) yar This quantity is just an a2-quantile of Sn distri­
bution: let it be [#]a2. To this one there corresponds a value Ya2 which is just the 
a2-quantile of 7, that is 

(38) F a 2 = ^ l i V [ ( / c + l ) „ ] . 

It follows therefore that the difference a2 — al where a t is derived by entries in 
tables for Gamma distribution and computed on the basis of N(0, 1) tables, represents 
a measure of the convergence speed of Sn to N(#, \\(n(k + 1) 62). If we have no 
special tables for Gamma distribution, y2 tables may be used, taking into account 
that if G(u, p) = [r(p)]~l Jo xp~1e~x dx, then for 2x = y we have 

(39) G(u, p) = 
2 u 

y'-'e-iydy = Prob {X
2

lp (lu)} 

(Bolshev-Smirnov [l]) . 

Asymptotic normality proved with the aid of entropy ratio: a tool which avoids 
the use of a characteristic function or the existence of certain moments is that intro­
duced by Scala [16]. Namely, in our case we have to prove that 

f*cc 

ŠnlnŠnáŠ 

(40) lim R = lim ' ° 
П~* 00 П~* 00 ln V(2яe Var §„) 

in order to establish the asymptotic normality of <9„. 

The quantity R is called "entropy ratio" and this approach does not require the 
independence of variables Sn. 

It is easy to recognize that the numerator represents the entropy of Sn. 
After some tedious algebra, using some formulas from Grobner and Hoffreiter [6] 

we get: 

(41) f §„ In ,9n dS = i ln "- + ln [2ne-l6(k + l)] 
Jo (fe + 1) n - 1 

A Z/JTp 

(42) ln J(2ne Var 9n) = ~\ In n + \ In 
e2(k + i) 

Applying L'Hospital's rule we obtain easily (40); therefore Sn ~ N(&, ll(k + 1) 02n) 
for large n. 

We shall point out now an interesting property of the maximum likelihood estimate 
for 3* in the case k-known. 

Lemma 4. The maximum likelihood estimate of 9*, namely S%L has the property 
that A0 = §ML/^t *5 distributed independently of 9*. 

Here Qj is the true value of the parameter 9*. 
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Proof. If we put in (l) y = N/.91 we obtain the reduced GRV, that is 

(43) x r : / ( y ; * ) = — A - yi^ie-y\ v > 0 , k = 0 

F(k H- 1) 

which does not depend on #*. 

Since <9ML is a solution of the equation 

(44) 8U^K3 = Q 

we can write immediately 

(45) max L(xt; 9±, k) = L(xt; S%L, k) 
5,1/2 

which can be expressed in terms of the reduced variables as follows: 

(46) ™ j L f e » . t ) . - ^ 4 „ - - n ( * ) " " • + I ( * ) " } 

and which is in fact max L(yh k). Therefore A0 corresponds to the estimation of <9̂  
5 1 / 2 

when the sample is drawn from the reduced variable. Since the likelihood function 
on the reduced variable does not depend on #^ it follows that A0 is distributed 
independently of T9̂ . 

B. Maximum likelihood estimation in the truncation case: it is known (Cohen 
[2]) that the density function of the left-truncated variable is given as 

(47) XT :fT(x; 0, k) = _ _ ! _ _ f(x; 0, k) 
1 - F(xT; 6, k) 

where x > xT > 0, 0 > 0, k = 0, xT being the truncation point. 
Let xl9 x2, ..., xn, xt > xT (i = 1,2,..., n) be a sample on the truncated GRV. 
The log-likelihood equation is 

(48) d ^ k = V 1 fei g , fc) + n (3ldS)F(xrJ9k) = Q 
} d§ i=i f(xt; 6, k) dS 1 - F(xr; 6, k) 

which in our case becomes after some calculations 

/Ans. dlnL n 1 1 " 2 in . . , , 
(49) — = - - + — Y x] - - - xT r(k + 1) A(X7) = 0 
V } dS 3 k + 1 S2 i=i $ 2 V } V } 

where X(xT) is the hazard rate (see section C) computed at the truncation point. 
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If xT is assumed to be known, in particular if k = 0 (truncated Rayleigh variable, 
XTR) we obtain 

(50) KL--tx2~x2. 
n » = i 

It is to note that in this case SML is not unbiased. We have 

JL 

(51) E(XTR) = ~ + xTe-ex^ - <PL(XT(2K)> and E(X2
TR) = 

2fJ2 

= &T*X-2 + xj*-'**2 

where <P = TI"1 JQ e_i'2 dL 

It follows that 

(52) £(,9ML) = 9 e - ( ' - 2 + ( e - f l - 2 - l ) x ? . 

For xT = 0 the usual situation occurs. 

C. Maximum likelihood estimation from censored samples: an application to 
life testing. Starting from an engineering problem which concerns the durability 
testing of a certain kind of cutting tools, we develop in this section an estimation 
of the expected life of tools when time to failure obeys the GR law. 

Experimental data are considered to be subjected to a general kind of censorization. 
The method applied is that of the maximum likelihood in the case of censored samples. 

In engineering practice, the following situation occurs: we have to test the durability 
of some grinding tools of a batch containing a large number of items. 

From this lot, a random sample of n tools is subjected to a life test. 
The procedure obeys generally the following rules: experimenter observes when the 

first failure ossurs and records the moment, say xv Then he removes from the (n — 1) 
tools which did not fail a random sample of size nl9 and tests the remaining tools 
till the next failure occurs. 

Let the moment of the second failure be x2. Then a random of n2 objects are 
removed from the (n — nt — 2) tools still in order. 

The procedure is applied till the r-th failure occurs and in this case the rest of 
items: 

r- 1 

(53) nr = n - £ n,- - r 
1=i 

are removed from the test. 

It is considered that the life-testing procedure is finished when the r-th tool fails. 
In this procedure, the experimenter knows: 

1) the size of sample subjected to the life-testing (n); 
2) the allowable number of tools which can fail (r); 
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3) the sizes of samples which are excluded from the test (nt; i = 1, 2, ..., r); 
4) the moments when the failures occur-that is the experimental data xb i = 

= 1,2, ..., r. 

We are looking for an estimation of the expected life (mean durability) when time 
to failure obeys the G.R. distribution. 

Mean durability estimation reduces in fact to estimate the parameter in the parent 
density function. 

Consider now that the shape parameter in the G. R. variable is known and let 
x = (xl9 x2, ..., xr) be the vector of observations. 

If we take into account the rules of the test, we have 

r 

(54) n = r + Y,nj -
1=i 

Denote 
i - i 

(55) Nt = n - X nj - i + 1 . 
1=i 

It is clear that Nt represents the number of tools which the experimenter continues 
to observe after the (i — l)-st failure and the corresponding exclusion. 

The likelihood function is 

L(x; 0) = ft [NJ(Xi; 0, k) (l - F(x;; 0, fc))"<] 
( = 1 

that is the distribution of all observed failures. In the above formula f(xt; 0, k) 
represents the probability that the next item fail at the moment xi9 [ l — F(xf; 6, k)]"' 
represents the probability that nt objects are still in order at the same moment. 

The log-likelihood equation 

( 5 6 ) 5 1 n L ^ 0 ) = + 1 _ 2 ^ l f l ^ _ 1 ^ ^^ = Q 

ov 0 i-i 20 ;=! 

where A(x;) = j ( x ; ; 0, fc)/(l — F(x,; 0, fc)) is the hazard rate provides the solution 

2(fc + l ) r - £ n j x i l ( x i ) 
(57) 0 M , = r - ^ 1 • 

4l lnx ; 
i=l 

Therefore, to obtain a maximum likelihood estimate of 6 and implicitly an estimation 
of the expected-life, we must estimate by means of known methods the hazard rate 
of the model. 
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D. Maximum likelihood estimation in the case when both parameters are 
unknown: Let us consider now the case when k is not known. Then the likelihood 
system is 

(**\ d In F(k + 1) n " 
(58) -— ~ — n In 6 = 2 2, In x, 

dk /=i 
n 

nk — 6 YJ
 xt — — n . 

i = i 

If we use the same notation as above, we have 

00 

(59) <Kk + 1)= - c + X ( - l ) l * ( 0 * , ~ 1 -
j = 2 

Considering the terms up to the fifth degree, we have 

(60) \jj(k + 1) £ -0-577215664 + 1-644934067k - l-202056904k2 + 

+ l-082323234k3 - l-036927765k4 + l-017343062k5 , 

(61) ln0 s ( f l - 1) - i(0 - l )2 + 

+ i(0 - i)3 - i(0 - i)4 + Kfl - j)5 

and in this way, the likelihood system can be reduced to an equation of a high order 
in k or 0. 

4. LINEAR ESTIMATION 

In this paragraph, we shall construct linear estimation for 9^ using the so-called 
"quasi-ranges". 

Firstly, let us note that the theoretical median of the G.R. distribution, given by 
the equation 

(62) rHmm)2(k + 1) = i F ( k + l ) , 

can be written approximately as 

/ i \l/(2fc + 2) 
(63, „ , , ( _ ) P 

where C0 is a constant which can be read from incomplete Gamma function tables 
depending on values of k. 

Now, let x ( ] ) , x(2), ..., x(n) be order statistics obtained from a random sample 
Xj, x2, ..., xn on X. 
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Define two random variables as follows: 

(64) f2/(x;0,/c) for * < m. 
1 y i v y ) 0 otherwise, 

(65) , # . _ f 0 for x < me 
X2'h[X>U>k)-\2f(x;0,k) otherwise. 

The expected values of these variables are 

(*rne /»oo 

(66) E(Ki) = 2 xf(x; 0, k) dx and E(X2) = 2 xf(x; 0, fe) dx . 

Jo J me 

The above mean-values can be estimated by 

I [»/2] 1 [»/2] 

(67) s i = p ^ T I *co and S2 = — — X x0 l_,+ 1) 

[n/2]i=i [nil] i-i 
where [ft/2] is the integer part of n/2. 

Therefore we can estimate the parameter from the relation: 

(68) E(X2) - £(__.) = S2 - S, = p - ^ r T ^ o 
[n/2] . = i 

where w(i) = .x („_ i+1) — x( i) is the i-th quasi-range. 
In our case, straightforward computation provides 

(69) £ ( X 1 ) = ( f c + 1 ) 9 i and E(X2) = 2 ^ ± _ ^ _ ___±iz__t 
v v ' (2C0)

,/,t+1) v ~; r(fc + i) (2C0)
W+1) 

Therefore 

(70) 3* = C(n; fcj_w(i) 

where 
F(fe + f) _ 2(fe + 1 

(71) C(n;fc) = 
[n/2] 

-yfc + 1) ľ 
L Г(k + 1) (2C0)

1/<fe + 1 ) J 

Taking 0 = l/A2 with A > 0 and noticing that tor fe = 0 one obtains Rayieigh 
distribution, we have after some algebra the following estimate for A: 

1 ^ 4 4 c " / 2 1 
(72) A = f ^ Z w(0 • 

[n/2] £=i 

It should be mentioned that in the case fe = 0, the median can be expressed exactly 
as A ^/ln 2. 

Former results form [8] imply that estimators of the type (70) are asymptotically 
unbiased estimators for the underlying parameters. 
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5. MINIMAX ESTIMATION 

We shall prove here 

Theorem 1. The statistic h(x) = x F(k + f)/F(k + 2) where k is assumed to be 
known is an unbiased estimate in Lehmann's sense for S^ with respect to the loss 
function 

(73) w[9i;h{x)] = e ( ^ ± ^ - ^ 2 . 

It is also minimax and admissible with respect to the same loss function. 

Proof. To prove unbiasedness in Lehmann's sense [12] we shall use a theorem 
by Goodman [4], [5] which states that if B = E(^\X)\E(^\X)2 = constant, where £ 
is a random variable with a density function/(x; X), then the statistic B£ is an un­
biased estimate for X with respect to the loss function 

(74) W[k\ JI(JC)] = (h(x) - Xf\)2 . 

In our case we have immediately: 

(n*\ D E(x J°) r(k + 2) 
(75) B = ——^—- = —- lJ- = constant 
V ' E(X^9)2 F(k + 2) 
and hence the first part of the theorem is proved. 

The risk associated (Wald [20]) with the loss function (73) is given as 

r\k +1) 
(76) RKx)9* 

Г(k + 2) Г(k + 1) 

To prove that the minimum is reached for h(x) — constructed in this way — we 
shall proceed in this way: suppose for instance that there exists another estimate h^x) 
for which the risk assumes its minimum. We choose hY(x) so that 

(77) E(h,(x)) = 3* + a9* = q>& . 

The tisk in this case is 

(78) RhlWS* = 0[Var (ht(x)) + a29±] . 

Apply now the Rao-Cramer inequality 

(79) K M , , S * £ (±±ÆЃ- + a Ч í 
ďJ*?'' 

59* 

= aЧ* + i1 + a ' ^ 
4(fc + 1) 
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From this point on the proof consists only in very tedious computations the assump­
tion that h}(x) attains its minimum leads to a contradiction and hence h(x) is the 
desired estimate. We omit here these computations. 

6, A SPECIAL PROBLEM OF ESTIMATION 

In this paragraph, we shall consider the following problem: let X be a generalized 
Rayleigh variable with a density function f(x; 6, k) where the parameters 6 and K 
are supposed to be known. 

Let cp(x; co) be the probability that X is observable. We assume that the probability 
cp(x; co) is not known and our aim is an estimation of the parameter co based on 
a sample of size r : xl9 x2, ..., xr, drawn from the parent population, knowing that 
we have (n — r) unobserved values. 

The problem when the density function of a random variable is assumed to be 
known except an unknown parameter, was solved by D. E. Lloyd [13]. (His method 
concerns the x2 distribution with unknown scale parameter. The results can be verified 
easily if we use the square of a generalized Rayleigh variate which includes as 
a particular case the x2 distribution.) 

We shall distinguish here the following cases: 

a) we draw a sample of size n from the parent population and look for the proba­
bility that the sample values be xl9 x2, ..., xr; 

b) we draw a sample of size n from the parent population and look for the proba­
bility of obtaining r observed values; 

c) given r observations from X (the possible total n being unknown) we look for 
the probability that the selected values be xl9 x2,..., xr. 

In each case, the method of estimation will be that of the maximum likelihood, 
the likelihood function being in each case the required probability. 

Let us note that if we select randomly a value x, the probability that it will be 
observable is 

t*00 

(80) p(co) = f(x; 9, k) cp(x; co) dx . 

Straightforward computations provide the following log-likelihood equations: 

(81) a) * ^±]n(p(Xi;co)-(l-r\, 
r i=i ceo \ nj 

r 
(82) b) p(co) = - , (an expected result), 

n 

(83) c) if A,.̂ ,,.) --fj.^-0 
r i = i dco p(co) dco 

(see also Lloyd [13]). 
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Now, the problem reduces in fact to choosing the form of cp(x; to) a continuous 

function such that 0 = cp(x; co) _ 1 for every x > 0, co > 0 being unknown. 

Jn our case we choose 

(84) cp(x; co) = e x p { — cox2} , x > 0 , co > 0 . 

The conditions requested are obviously satisfied. 
Therefore 

1 r . (n \ 0k+1 1 
(85) a) - l S x . + ( » - i \(k + i) « _ L _ = 0 ) 

r r= l V J (0 + w ) — 0 0 + CD 

(86) b) - l £ > ? + i ± A = o. 
r i=i u + co 

Notice that (l/r) ]£ x? is the second noncentral sample moment calculated with r 
f = l r 

observations. Denote r " 1 T̂ x2 = M2(r). 
i = l 

From (c) we obtain 

(87) co = (k + i ) M2-;} - 0 . 

Taking into account the invariance property of the likelihood estimation, we get 

For the simple Rayleigh model (k = 0) we obtain from a) 

(89) M2(r)u
3 - 0M2(r)u

2 + & (l - - V 0 

where we have denoted 6 + co = u2. Direct calculations yield the desired estimate 
for co. 

Remark . The converse problem — which means in our case that the scale 0 
inf(x; 0, k) is considered unknown and we wish to estimate 0 by means of x l5 x 2 , . . . 
..., xr and cp(x; co) = e~cox , co > 0 known (the shape parameter K is also assumed 
to be known — leads to the following equations for a) and c): 

(90, * ± i - M2U,+(»- ,y» + - r"• -«»• . (±±ihi±i?. o 
0 \r / 0fc 0 + co 

and 

(91) -li-^-^^^-O. 
V ' 6 2(r) 0(0 + «,) 
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For k = 0 w e obtain respectively 

(92) ~ M 2 ( r ) + 

and 

( l - "\[co + I V - co)] 

(93) 9 - M 2 ( r ) - - ^ ± - M - = 0 . 

61(61 + co) 

(We have put 0 + co — u2.) 

The last equation yields easily 

(94) 0 = [2M2{r)yi -co. 

Acknowledgement. I am indebted to Professor M. losifescu (Bucharest) for reading 
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Souhrn 

PROCEDURY STATISTICKÉ INDUKCE PRO ZOBECNĚNOU 
RAYLEIGHOVU PROMĚNNOU (I) 

V. G H . VODA 

V práci se studuje určitá jednorozměrná náhodná proměnná, zahrnující některé 
důležité speciální případy jako Rayleighovu, Maxwellovu proměnnou a některé 
další. Tato část je věnována různým problémům odhadů. 

Authoťs address: Viorel Ch. Voda, Research Fellow, Center of Mathematical Statistics, 
$tirbey Voda Střet No 174, Bucharest 7000, Romania. 
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