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1. CONFIDENCE INTERVALS

The GRY introduced in the first part has the property that if X is the underlying
variable then X2 is a Gamma variate with certain parameters.
In this way, if x;, x,, ..., x, is an independent sample on X then it is easy to prove

n

that the statistic 20¢ where ¢ = fo is distributed as a chi-square variable with
i=1

2(k + 1) n degrees of freedom, k being the shape parameter of the GRV and 6 the
scale parameter.

Therefore, we can determine two numbers /; and I such that for a given con-
fidence — say (1 — y) — we have

(1) Prob{l; <20 <} =1—19y.
The length of the interval for 0 is

-1
2

and if we look for Q-minimum, we obtain after some tedious algebra:

) 0 (I, — 1)

ls 1 nk+n—1
(3) J‘ xn(k+1)"1e—x/2 dx = (1 _ ,})) 2nk+n F(nk + n) , <l_s) =
b i

= exp {3(I, — 1))}

(see also Voda [3]) which may provide values for /; and I,. In this situation seems
to be more convenient to look for confidence intervals for 1/0. We have

2% 1 2
4 Probd=> <~ <=2l 1 —y,
() " {13<0<lt} 7
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The length is now § = 2¢(1/I; — 1/1,) and the minimum condition yields finally

s [ nk+n+1
(5) J~ X le ™2 dx = (1 — y) 2"*" I'(nk + n), (f) =

' = exp {i(/; — I,»)}

which can be used for concrete solutions with the aid of Tate-Klett tables [2] but
entering in the cell corresponding to 2(k + 1) n degrees of freedom.
From (4) we obtain easily

i

Mk +3) [2 I(k+3) 2 _
() Prob {r(ﬁ{) \/[ < HX) < L \/ Ii} 1y
(™ Prob {5(1) " < E(X) < o)™} =1 -7y
where

®) PEEACES RO

Cr(k+ 1) A

The above relation may be interpreted as a confidence interval with minimum
length for the expected — life in a GR model. In the table below we give the values
of the constant

b33 lc 3 R n )
9) w = “——_—F(I—i— ) where & = o Y x7)t.
Ik +1) =
N Density function w Degrees of freedom
1 Rayleigh (k = 0) 12533141373 2n
2 Maxwell (k = 1) 1:595769121 3n

Table 1. Useful constants for computing confidence intervals.

For an application of the method we must take into account that Tate-Klett tables
[2] are computed for n = 2(1) 30. Therefore the sample sizes must be limited to
stay within the range of the tables (in Rayleigh case: n £ 15 and in Maxwell case:
n < 10).

2. PARAMETER ESTIMATION IN THE CASE OF A MIXTURE
OF TWO GR VARIABLES
Consider now a random variable X ,;, characterized by the following density:
(10) Xomix i X301, 05, p k) = p f(x:0,, k) + (1 = p) f(x; 0,, k)
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where x >0, 0,,0, >0, 0 < p <1 and k = 0 are assumed to be known and
S(x; 0, k) is the density of a GRYV.

Let our task be to estimate the parameters 0,, 0, and p.

In this way, we shall generalize a former work of Krysicki [13] which concerns
the mixture of two simple Rayleigh laws.

We shall apply the same method — namely the method of moments.

It is interesting also to investigate the behaviour of the density (10) with respect
to the modal value.

We have

2(1 — p) 057 2x7H(2x* — 07'(2k + 1))
(1) Jmin () = Ik + 1) exp (0 ,xz) '

2x% — 05 '(2k + 1) 0,
[ -0 xp (0, — 0,)x7) — —P— *) .
0,2k + 1) — 0
To find the modal value, we must impose

(12) fain(X3 0,05, p. k) = 0.

It is clear that the product (11) vanishes if

(13) v = (LY
20,

But this value is not a solution of(l 2), therefore we have in fact to solve the equations:

(14) 2x2 — 02_‘(2k + ])exp {(01 —0,) Xz} _ P <gl>k+2

07'(2k + 1) — 2x? 1—p

which is a transcendental equation.

Since (0,/0,)** > 0 for every 0,0, > 0 and k = 0 and as 0 < p < 1, the right-
hand side is an increasing function of p, due to the factor p/(] - p).

The left-hand side becomes infinite for x given by (13) and vanishes for

(15) X = gk+1ir.
20,
Therefore, for x lying in the interval
(16) ¥ = 2’?:11) AR
20, 26,

the left-hand side is positive if 0,/0, > 1.
Let us denote for brevity the lett-hand side by g(x).
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If follows that to study the behaviour of g(x) = (p/(1 — p)) (0,/0,)*% in the
interval %, we have to take the derivative of g(x). We have

oy 8(0, — 0,) x
(17 9 = [k + 1)07" = 2x2]

,{—x“ + 32k + 1) <0l + —01—> x? — (zwl‘:—fl)ﬁkf})}.

exp [(0, — 0,)x].

1 2 40102

The sign of g'(x) is determined by the expression in parentheses.
The discriminant of the equation in parantheses is
1 2 5 1 1
(18) 5 =32k + 1) 7~2»~k—i.—7+—2).
03 2k +1 0,0, 0y

Therefore
(19) 520 if Ly 2K+ Ak 4 O)
- 0, (2k + 1) 0,

%

Under this condition we obtain for g’(x) two points x"" and x® for which

g(x?)=0,i=1,2....
They are given by

(20) xD = (%k"'L)@t()Z) F 4ot
40,0,
The behaviour of g’ is indicated in Table 2.
2k + 1 N %@ (%“ZLI '
20, 20,
S S o B -
g'(x) + 0 - O 7 + 70N - 0

min

Table 2. Behaviour of g'(x) for x e &Z.
Therefore
(21) Jmin = g(x“)) and Gnax = g(x(zj) .

It follows also that the values of (p/(1 — p))/(0,/0,) ** vary between gy and g,
Hence we can determine an interval for p as

,,g Max

I min -
22 e ymm < p < ——rm— .
( ) I min + (01/02)k+2 gMux + (01/02)k+2
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We shall show now that

(23) Imin = 9(x ") = g%(0,/0,)

(24) Gmax = 9(x') = ¢**%(0,0)
This facts can be easily seen if we write (18) in the form

2
(k1) <0 2k 450, +1)

03 2k + 10,

1—i'—<l’2— J\+5;+J>

(26) Goin =

l—r+<r —-2&+—§ )

2k + 1 1y 2k +1 1 2 2k +°5 1

. exp ro—-- — (1l == =2——r+ 1
4 r 4 r 2k + 1

where we have denoted 0,/0, = r.

(25) e

40%

We have by similar calculation

1 —r+ r2~‘22£—t31'+l%
(27) p . 2k + 1
Max — . I
I —r— }'2~2gk+51‘+l
2k + 1
k

2k+1 1 2k+l 1 5 2k + 5 3
pL——|(r — - = =)= 2C r4 1 .
4 r 4 r 2k + 1

Now it is clear that we must require

2k + 5 + 24k + 6)F

28 r=
(28) - 2k + 1

taking into account (19).

For instance, if we wish to tabulate limits for the values of p for different particular
densities we must begin from a value of r given by (28) where we have insert the
spectfic value of k.

Example. In the case of Rayleigh distribution we have k = 0; therefore
(29) Fz5+2/6 =989
and tabulation may begin from r = 10.
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The values g, and gwm., are respectively

= 1 —r—(r* —10r + 1)% R
30)  gwn = - exp {3(r — 1) (r* = 10r + )4},
(30 I —r+(r? = 10r + 1)} P U= 4)( "

L—r+(r* = 10r + 1)*
I —r—(r* = 10r + 1)}

exp {; <r - ,l) + ;(; - ;) (r — 1or + 1)%}.

As concerns the estimation, let x,, x5, ..., X, be an independent sample form the
underlying population. Therefore

(31) I =

(32) E(X}) = E(kf;;%l{)‘ Y [P0 + (1= p)0;*].

Since three unknown parameters are involved we take for j successively the values
1,2, 3.

Hence we obtain the following equations:

- e T+ 1) ¢
33 pO > + (1 — p)0," = ———2 ) x;,
( ) pPYy ( P) 2 nf(k i %) ig‘

. R o 1 -
34 po' + (1= p)0;' = — ¥ xi,
(34) Po ( PO n(k + 1) i;
(35) Pt (1= pyosr= TE D)5

nI(k + 3) =
Let us denote by u and v the following expressions:
(36) u=07% v=20;*.

We have after some calculations

(37) plu —v) = nr;(:‘k':-li) i:i]xi -,

(38) ﬁ(uz )= in _ 2,

Al 3 3) — !-(If;t»ll ; x? — 113
(39) p(u —v)—nr(k+%),-; ‘ '
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Still other calculations yield

Th+1) 05 Tkt ¢ &
(40) wivo" I'(k + 3) =1 ' erf(k + 1) Ik + 3) i;l 1:21'
b e [k & T
n(k + 1) i; ' [11 Ik + 3) s; ']
”E&iJme.imixg_mmlm"(éxy

_ n? I(k + 3k + %) =1 =1 n*(k + 1)?
n n 2
g [ 5]

n(k + 1) i< n Ik +3) &0

(41)

Supposing that the common denominator of the two ratios is not zero we have
a second degree equation.

This equation will provide the moment estimators for 6;* and 0;*. Then an
estimate for p is easily established from (37).
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Souhrn

PROCEDURY STATISTICKE INDUKCE PRO ZOBECNENOU
RAYLEIGHOVU PROMENNOU (II)

V. GH. VoDA
V této Casti se konstruuji intervaly spolehlivosti minimalni délky pro stiedni hod-

notu zobecnéné Rayleighovy proménné. Dale se studuji nékteré problémy tykajici se
odhadovani ve smési dvou zobecnénych Rayleighovych proménnych.
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