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INTRODUCTION

In the present paper the finite element analysis for unilateral problems with
obstacles on the boundary I' of a polygonal domain Q <= R?is given. Using the tech-
nique of [9], [7], the rate of convergence is proved provided the exact solution is
smooth enough. We obtain the same results as in [2], [3], where the technique of [5],
[6] was used for investigating the primary and the dual problems. In the present
paper the case of nonhomogeneous obstacles as well as the case of two obstacles,
“lower and upper”, is studied. As the regularity hypotheses are not fulfilled in general,
we prove — for one class of problems — the convergence of finite element approxima-
tions to the exact solution without any regulatity assumptions.

1. SETTING OF THE PROBLEM

Let Q = R™ be a bounded domain. H¥(Q) (k = 0 integer) will denote the space
of all functions, the derivatives of which up to the order k (in the sense of distribu-
tions) are square integrable in Q. The norm of u € H(Q) (defined by the usual manner)
will be denoted by |ull,. For simplicity we write H°(Q) = I*(Q) and the scalar
product of u, ve I*(Q) will be denoted by (u, v). A repeated Latin index implies
always summation over the range 1, ..., n.

Let Q = R? be a bounded domain with a Lipschitz boundary I' = I'; U T, U @,
where I'y, I'y areopenin I', I', =0, I'y n Ty =@, mes; % =0 (one-dimensional
Lebesgue measure) and I'y n I", = {4, B} if I'y is non-empty.')

1y After slight modifications of proofs of this paper, one can easily extend its results to the case
of multiply connected domains.
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Let us set
V={veH(Q):v=0 on I,},

K={veV:iozy on TI,}.
where |/ is a given function defined on I', such that y(4) = y(B) = 0.
Let us define
PV
J(v) =J‘ <a,-j—0iﬂ + aovz> dx — 2'[ Sfodx,
0 0x; 0x; 0
where
(1.1) fel*0Q),
(2.1) ai;,a0€L”(Q), i,j=12,
(3.1) a;{x) =a;(x) ae.inQ, ij=12,
(4.1) ag z 0 andeither I'y 0 or 3¢ = const. >0,
ag(x) = ¢ ae. inQ,
(5.1) Jo = const. > 0: V{ e R?
ailid; = «f¢]?
a.e. in Q.

We shall consider the following problem (P):

(P) findueK :J(u) = min J(v).

vekK

Theorem 1.1. If (1.1)—(5.1) hold, then there exists a unique solution of (P), which
is characterized by

(6.1) ueK:a(u,v —u)=(f,v—u) VvekK.

a(u, v) = a,~.ﬁ v + aouv dx .
Ja -
0 X; 0X;

J

where

2. APPROXIMATION OF (P)

Let Q = R* be a polygonal domain, I', = U A;4;,,, A, = 4, 4,,,, = B (if
j=1

Iy #0). Let {7,}, he(0, 1) be a system of regular triangulations of Q, satisfying
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the usual requirements concerning the mutual position of triangles T;and such that
A, B are vertices of 7, for every h e (0, 1). We define

V, ={veC(Q)nV: Ulri is linear in T, VT, € T} ,
K, ={veV,:v(a) = V(a;), where a; are vertices of 7, on Ty, i =1,...,n}.

In general, K, ¢ K.
We define the problem (P,) (an approximation of (P)) in the following manner:

(Py) find u,eK,:J(u,) = min J(v).

vekn
Theorem 1.2. There exists a unique solution of (Ph), which is characterized by
(1.2) u,e K, s alu, v,— u,) = (f,v, — u,) Vo,eK,.
For the proof see [1]. Our aim is to estimate the rate of convergence of [[u — u,];.
Lemma 1.2. It holds
0 -l S el )+ i o)+ a0, — ) +
+ a(u,v — uy) + a(u, v, — u)} YveK,v,ek,,
where c is an absolute constant.
Proof. Let veK, v, € K,. Then
aflu — w1 < alu — wy, u — u,) = a(u, u) + a(uy, u,) — a(u, u,) —
— a(uy, u)< a(u, v) + (f, u—v) + a(uy, v,) + (f, up — v,) —
— a(u, u,) — aluy, u) = (fyu—v,) + (f,uy — v) + au, v — u,) +
+ a(u, — u, v, — u) + a(u, v, — u).

Consequence. If K, = K, he (0, 1), then substituting v = u,, in (2.2) we obtain
forallv, e K,

(3-2) lu — w|? < c{(fiu — v) + a(u, — u, v, — u) + a(u, v, — u)} .

Theorem 2.2. Let = 0 on I',, let the solution u satisfy ueK (\ H*(Q) and
u!rz e H¥(A;A;,) Vj=1,...,m. Then

lu — u,,“l = O(h).
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Proof. The Green formula yields

0 cu
a(u, v,— u) = J (— — (a;j~—~> (on — u) + ag u(v,— u))dx +
0 0x;

(}Xi

+j Tay—(v,,—u)ds,
I

2 Oy

where dufon, = a;(ufdx;)n;, n; being the components of the unit outward normal
to I'. It 1s easy to verify that

(4.2) -2 a,~jéli +apu =f ae inQ.
0x; 0x;

This together with (3.2) implies

(5.2) u — i < c{a(u,, — u, v, — u) 4-J :—u (v,— u) d.\'} <
n

r; A

< offun = ullfon = ulls + Jou = w]airn} =

< cellu — |} + —z lu = vallf + cflow = w]air »

where ¢ > 0 is arbitrary.

Let us set v,= R,u, where R,u € V}, is defined by the relation
Ru=TMru on T;, VT;eT,.

Iy u denotes the linear Lagrange interpolate of u on T;. As v, € K,, the assertion
of the theorem follows from the well-known properties of Lagrange interpolation,
(5.2) and the regularity assumptions.

Let us consider the general case K, ¢ K.

Theorem 3.2. Let y € H(A;A;,,) 0 H'(I';), ue K n H(Q), u|, € H¥(A;A4;.,),
j=1,...,m. Then
lu = ull, = o(h).

Proof follows from the Green formula, (2.2) and (4.2):

(6.2) u = uf = c{a(u,, — U, v, — u) +J-

ou (v — uy)ds +
r, Ony

+f 2(u,,—u)ds} YoeK, Vv,ekK,.
r, Ong
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The first and the third member on the right hand side of (6.2) can be estimated in the
same manner as in Theorem 2.2 (we substitute v, = R,u). Let us consider the second
member. We define

o =sup(u,y) on I,,

=0 on I'—1T,.

Then v € H'(I'), # 2 ¥ on I', and there exists a function v € H'(Q) such that v = &
on I'. Hence v € K and
i >
u, — b= \/0 Tf uy 2 ¥
u, — if ou, < Y.

As uy(a;) = y(a;), i =1, ..., n, it is u, = ry on I'y, where ry|, ... is the linear

Lagrange interpolate of Y on a;a;, . Now

f (ﬁ—uh)zds=f (y — uy)* ds,

where
ry ={xerl,:ux) <y(x)}.

Since 0 < (¥ — u,) (x) £ (¥ — r) (x) on I';, we have
f (5 — uy)* ds =f (¢ — u,)?ds §J\ (b — r)* ds = O(h*).
I3 r,+ I+

Remark. Supposing u € H*(Q), we can prove that |u — u,||; = O(h**). See
also [8].
Now let us consider the case of “two obstacles” on I',. Let

K={veVipg<v=y on I,},

where @,  are functions defined on I';, ¢(x) = y(x) for each x € I',, p(A4) = ¢(B) =
= Y(A) = Y(B) = 0if I'y * 0. We define the problem (P):

(P) find ueK :J(u)=min J(v).
veK
Let K, = {ve C(Q) n V,v|r, is linear on Tie T, o¢(a;) < v(a;) < W(a;), i=
=1,...,n}.
Let us recall that aq, ..., a, are the vertices of 7, on I',.

We define the problem (Py):

(Py) find uy, €K, J(u,) = min J(v) .

veKn
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Theorem 4.2. Let the solution u satisfy ue K o HQ), u|,, € H*(A;A; . ); let
@, Y e H(A;A; ) " H'(I,),j =1, ..., m. Then

||u - u,,”, = O(h).
Proof. We use (6.2). It is sufficient to estimate
0
J ;-y»'(v — uy)ds.
ry Ony
Let us set

_ s max (min (4, ¥), ) on I,
"= on I'—1T,.
U=

1t is easy to see that ¢ < Y on I, 5e H'(I') so that there exists a function
veH'(Q):v = bon I. Hence ve K and

/“h_'// if u >y
“h‘ﬁzq“o if @ Su, =Y
Sup— @ if o u, < 0.

We can write

f (up — 0)*ds =J (up — W)* ds + J. (up — p)* ds,

where I'; = {xe ', :uy(x) > y(x)}, I's = {xel, u(x) < ¢(x)}. The inequality
uy(a;) < y(a;) implies u, < r on I', and similarly u, = r,e on T,.
Hence

0 < uyx) — Y(x) < ryy(x) — Y(x) on Ij,

) 0 < o(x) — uy(x) < o(x) — ryo(x) on Iy

IIA

f (up — ¥)* ds j (ray — w)*ds = O(h*),

.[ (o —o)dss sz ~ 1) ds = O(h).

APPENDIX

In the above analysis we needed very strong regularity assumptions concerning
the solution u in order to be able to prove the rate of convergence. Unfortunately
there are no reasons to expect such a great smoothness in general case. In this Appen-
dix we prove the convergence of u, to u for a particular problem without any regular-
ity assumptions. We shall consider the problem (P) with

K={veH'(Q):v=y on I'},
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where (A 1) ¥ is the trace of a function ¥ e H'™*¢(Q) (¢ > 0). First we prove two
auxiliary lemmas.

Lemma Al. Let K = {ve H'(Q) :v = 0 on I}, Then K is the closure in H'(Q) of
the set

6§.(0)=1{ved(0):v=0 on ri.h

Proof. Let ue K be arbitrary. Then u|r e H'/2(I') (for the definition see [4]),
u|r > 0 and there exists a function U € H'(Q) such that U = u on I', U = 0 in Q.
For the construction of U see [4], p- 100. We can write

u=U+727,

where Z € Hy(Q). The density of D(Q) in Hg(Q)?) implies that there exist Z, € D(Q)
such that Z, - Z in H'(Q). The regularization U, of U are also non-negative in Q
and if U is suitably extended on a domain G, Q@ = G then U, —» U in H'(Q). Setting
u, = Uy, + Z,€ 6 ,(0) we have u, » u in H'(Q).

Lemma A2. Let ¢ be a continuous function defined on {a, b) (—o0 < a < b<0),
D,:a =xj < x| < ...<x, = badivision of {a, by, v(D,) = max |x',f — x'i'_ll -
i=1,...,n

- 0 forn — 0. Let {l,//,,}:; 1 be a sequence of piecewise linear functions with nodes at
x, such that ,(x7) 2 @(x,) Vi =0, ...,n;n = 1,2, ... Let , > ) a.e. in {a, b).
Thenyy = ¢ a.e. in {a, b).

Proof. Let M < <a, by, u(M) = b — a (one-dimensional Lebesgue measure)
and such that Vx e M :y,(x) = ¢(x). We shall show that for all xe M, y(x) =
> ¢(x). Let there exist x € M such that }(X) < ¢(X). Since ¢ is continuous there
exists & > O such that

(A2)  o(x) > y(x) + 1)2(p(X) — ¥(X)) for Vxe(X =8, X +6), 6>0.
On the other hand, there exists n, such that
(A3) V(%) < () + 1/2(0(X) — ¥(%)),

v(D,) <6

for Vn = ny. We distinguish two cases:

a0
1 Q) = N C"(Q) (k = 0 integer), where C¥(Q) denotes the space of continuous functions,
k=1
the derivatives of which up to the order k are also continuous and continuously extensible onto Q.

2) H})(Q) is the subspace of H‘(Q) of functions, the traces of which are equal to zero on I'.
D(Q) < &(Q) is the space of functions with compact support in Q.
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1. Let there exist n = nq such that X e (x},, x}, ;) for some i, €{0, 1, ..., n}. The

restriction of ¥, on x’x,oﬂ is linear and y,(x7,) 2 @(x},), ¥,(X) < ¢(X) and (A2), (A3)

yield o(x},) > ¥,(X). Hence ,(x} 41) < Y, (%) < ¥(X) + 1)2(p(X) — ¥(X)) < ¢(x)

Vx e (X — 8, X + §). In particular, for x = x},,; we obtain
l//n(X’iIoJr 1) < ‘/’(—"'?0+ 1) ,
i.e. a contradiction with the assumptions of Lemma A2.
2. Let X = xj, forall n = ngy. Then (%) = ¢(X) = y/(X) = ¢(X) which is a contra-
diction.

Now we can prove the main result of this Appendix.

Theorem Al. Let (A1) be satisfied. Then |u — u,|, — 0for i > 0+.

Proof. according to [1], p. 142, it is sufficient to prove

(i) YoeK 3,eK,:|jv =) >0 for h— 0+,
(i) v,eKy v, — v (weakly)in H'(Q)=>veK.

(ad i) Let veK be arbitrary. Then v — Y e H'(Q) and v — ¥ = v — ¢y =2 0 on I
Lemma A1 implies that there exist ¢4 € &(Q): @y > v — ¥ in H'(Q). As H' *(Q) >
c C(Q), we can construct R,¥ in the same manner as in Theorem 2.2 and

¥ — R¥[i -0, h—0+.
The same we do for ¢y

”‘pll - RI;Q"H”x -0, h->0+.

Setting v, = R,Y + R,¢py, we have v, € K, for each i > 0 and

l

for h, H » 0+.

(ad ii) Let v, = v in H'(Q), v,eK,. Then v, —» v in I*(I')') and we can extract
a subsequence {u,,”} such that v,, — v a.e. in I'. Using Lemma A2 we prove v =
=Y ae inl,ievek.

v = Uh”l = KL - l]/) — @ + ¢y — Rypy HI + Hlll - Rhl}I“ L
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Souhrn

ANALYZA JEDNOSTRANNYCH ULOH S PREKAZKAMI
NA HRANICI METODOU KONECNYCH PRVKU

JAROSLAV HASLINGER

Prdce se zabyvd aplikaci metody kone&nych prvki pro feseni (i) jednostrannych
uloh s obecné nehomogenni pifekdzkou na hranici I’ (ii) dvoustrannych tloh, kdy
je na I' zaddna ,,horni a dolni* pfekdzka. Jsou-li feSeni uvedenych problémi dostated-
né hladkd, potom je dokdzdno, Ze konvergence pfibliznych feSeni k pfesnému je
fddu O(h). Pfitom pouzivdime po Cdstech linedrnich kone€nych prvki. ProtoZe
oblast, na niz problémy feSime je polygondlui, neni obecné zarucena tak vysokd
hladkost feseni. Proto v zdvéru prdce je proveden ditkaz konvergence (bez odhadu
jeji rychlosti) pro problémy typu (i), aniZ bychom pfedpoklddali dodate¢nou hladkost.
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