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SVAZEK 22 (1977) A P L ! K ACE M A T E M A T I K Y ČlSLO 3 

A FINITE ELEMENT ANALYSIS FOR THE SIGNORINI 
PROBLEM IN PLANE ELASTOSTATICS 

IVAN HLAVACEK and JAN LOVISEK 

(Received September 20, 1976) 

INTRODUCTION 

If an elastic body rests upon a rigid frictionless support, the equilibrium can be 
formulated by means of the Signorini unilateral problem (cf. [1]). A systematic 
mathematical analysis of the problem was given by Fichera ([2], [3]). 

For numerical solution of the Signorini problem, one can employ the finite element 
technique — see [8], [9]. It is the aim of our paper to present some a priori asympto­
tic error estimates for the finite element procedure, provided the solution is sufficiently 
regular. We also prove the convergence without any regularity assumptions. 

1. FORMULATION OF THE SIGNORINI PROBLEM 

In this section we shall introduce a variational formulation of the Signorini problem 
within the range of plane elastostatics, involving linear stress-strain relations and 
small deformations of a non-homogeneous, anisotropic body. Let Q a R2 be a bound­
ed plane domain with Lipschitz boundary1), occupied by an elastic body and 
let x = (xl9 x2) be a Cartesian coordinate system. Let n = (nL, n2) denote the unit 
outward normal to the boundary F. We shall use the Sobolev spaces Hk(Q), k = 
= 1, 2, . . . of functions, the generalized derivatives of which up to the order k exist 

and are square-integrable in Q. The usual norm of u in Hk(Q) will be denoted by 
\\u\\k,H°(Q) = L2(Q),2) 

(f,g)0= \ ) 
Jß 

fgáx. 

1) See [5] for the definition of Lipschitz boundary. 
2) The same notation | |u| | f c will be used for vector-functions in [Hk{Q)]2 and the corresponding 

Euclidean norms. 
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Let the displacement vector u = (uu u2) e [ I I 1 ^ ) ] 2 . The strain-displacement 
relations are 

(1.1) ^ H ^ ' + ^Y C'-1'2) 
2 VOx j Ox if 

and the stress-strain relations 

(1.2) Ty = cUkIekI (i,j = 1,2) 

hold, where the coefficients satisfy: 

"ijkl — Cklij — Cjikl (1.3) c y H e L B ( Q ) , 

(1.4) 3c0 = const > 0 , cijklEifikl ^ c08l7el7 Ve,7 = e i { . 

A repeated index implies summation over the range 1, 2. 

The stress field satisfies the following equilibrium equations 

(1.5) ir + f< = ° 0 - - . 2 ) . 
dXj 

where F denotes the vector of body forces. 

The traction-vector on the boundary 

Tt = TijUj 

can be decomposed into the normal component 

Tn = Ttni = TijU^j 

and the tangential component 

Tt = TJ£ = Tijtifij, 

where t = (t1? t2) = ( — n2, n j is the unit tangential vector. 

The displacement vector can be decomposed similarly: 

Un = Ufli , uf = u£tf. 

Suppose that the boundary F consists of three mutually disjoint parts 

T = Tu u FT u Fa 

and on Fu and FT the displacements or tractions are prescribed, i.e. 

(1.6) u = 0 on Fu, 

(1.7) T = f on FT, 
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whereas on Ta the Signorini's conditions 

(1.8) un = 0, Tn = 09 unTn = 0, Tt = 0 

hold. 

Assume that F e [L 2 (0) ] 2 , T e [L 2(FT)] 2 are given and that both Tu and Fa contain 

sets open in F. 

Introducing 

L(v) = f Ftvt dx + 
Jn 

TiVt ds , 

the functional of potential energy can be defined as 

Se(v) = iA(v, v) - L(v) . 

Let 

V = {v j v e [ H 1 ^ ) ] 2 , v = 0 on Fu} , 

and 

K = {v | v e V, vn S 0 on Fa} 

be the subspace of virtual displacements and the convex cone of admissible virtual 

displacements, respectively. 

The problem (l. l), (1.2), (1.5) —(1.8) can be formulated as follows: to find u e K 

such that 

(1.9) &(u)^&(v) WeK. 

There is a close relation between the "classical" solution of (l . l), (1.2), (1.5) — (1.8) 

and a solution of (1.9). In fact, if holds 

Lemma 1.1. Any "classical" solution of ( l . l), (1.2), (1.5) —(1.8) satisfies (1.9). 

On the contrary, if a solution of (1.9) is sufficiently regular, then it is a "classical" 

solution, as well. 

Proof . First we recall that u e K is a solution of (1.9) if and only if 

(1.10) A(u, v - u) ^ L(v - u) W G K . 

Let u be a "classical" solution. Multiplying (1.5) by a vector weV, integrating 

by parts and using (1.6), (1.7), (1.8), we obtain 

(1.11) 0 = т 0(u) ~ " + FiwЛdx + т 0 (u) njw, ds 
ĆXJ ) J г^гa 

-A(u,w) + L(w)+ í T„(u) w„ ds . 
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Choose an arbitrary v EK and set w = v — u. If un(x) < 0, then Tn(u) (x) = 0. If 
un(x) = 0, then wn(x) = v„(x) g 0 and Tn(u) (x) fg 0. Altogether, the last integral 
is non-negative and we have 

A(u, w) - L(w) = 0 , 

i.e., (1.10). 

On the contrary, let u e K be a sufficiently regular solution of (1.10). Denoting 

Y — u = w e Vand integrating by parts, we obtain 

(1.12) A(u, w) - L(w) = - f ( ^ ^ + F f ) w, dx 

+ TiAu) "jwi d s _ 

+ 

ЋWІ ás . irv i 

Tт 

Choosing w = ±(pe\j$(Q)Y (where £)(Q) is the set of infinitely differentiable 
functions with compact support in Q), we obtain the equilibrium equations (1.5). 
Consequently, from (1.12) and (1.10) it follows that 

(1.13) 0 g (т v(ü) Пj - Т,) w, dS + í (Tn(u) wn + Tt(u) wt) ás . 
Tr JГa 

The choice of w e F s u c h that the traces of wt vanish on Ta leads to the boundary 
conditions (1.7) on FT. Thus in (1.13) only the last integral remains. Next choosing w 
on Ta such that wn = 0, wt = +tif>, we obtain Tt(u) = 0 on Ffl. 

Let wn ^ 0 be arbitrary. Then from (1.13) T.,(u) ^ 0 on Ta follows. 

Finally, 

(1.14) A(u, u) - L(u) = 0 

can be deduced from (1.10), inserting v = 0 and v = 2u. 
Consequently, repeating the above procedure for w = u, we obtain 

0 = I Tn(u) un d5 . 
JT« 

As the product Tn(u) un is non-negative, it must vanish on Ta. 

Proposition 1.1. There exists a unique solution of the problem (1.9). 

Proof . The set K, being closed and convex in [ H 1 ^ ) ] 2 , is weakly closed. For the 

second Gateaux differential of $£ we may write 

(1.15) D2 se{u; v, v) = A(v, v)^c0í eu(v) eiy(v) dx ^ 

Vue [H^íž)] 2 , ve V, 

CІ v 
|2 

i Г i 
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(where the Korn's inequality has been used in the last step). Therefore £? is weakly 
lower semi-continuous and coercive and the existence and uniqueness of a solution 
follows. 

2. FINITE ELEMENT APPROXIMATIONS 

For simplicity, we restrict ourselves to polygonal domains. (For domains with 
smooth boundary, we refer the reader to the paper by Scarpini and Vivaldi [6], 
whose technique could be extended to the above problem). 

Let Q c R2 be a polygonal bounded domain (multiply connected, in general). 
We carve it into triangles T generating a triangulation ZTh. Denote h the maximal 
side of all triangles in 3~h. Let Vh be the space of continuous piecewise linear functions 
on the tringulation STh, vanishing on F,,.1) 

We say that a family of triangulations {^~h}, 0 < h :g 1, is a —/^-regular, if there 
exist positive a and />, independent of h and such that (i) the minimal angle of all 
triangles in yh is not less than a and (ii) the ratio between any two sides of 3Th is 
less than /?. 

For any h e (0, 1 > we define 

Kh = {v\ve[Vhf, a O o n Ta] . 

Obviously, Kh c K Vh e (0, 1 >. We say that uh e Kh is a. finite element approximation 
to the problem (1.9) if 

(2.1) <?(uh)£<?(v) W e K „ . 

It is readily seen that there exists a unique finite element approximation. This 
assertion can be verified by following the proof of Proposition 1.1. 

We focus our attention to the estimate of the error u — uh between the solutions 
of the problem (1.9) and (2.1), respectively. To this end we shall use the idea proposed 
by Mosco and Strang [10], like in [4] — Sect. 2. Let us recall the 

Lemma 2.1. Let $ be the functional defined on a closed convex subset K of a Ba-
nach reflexive space B. Assume that f is twice differentiahle in B and the second 
differential satisfies the following inequalities 

(2.2) a0||z||2 S D2f(u;z,z) g c||z||2 V u e K , zeB. 

Let Kh cz K be a closed convex set. Denote the minimizing element of f over K 
and Kh by u and uh, respectively. Assume that a wh e Kh exists such that 2u — wh e K. 
Then it holds 

(2.3) ||u - I I , ! S (c/a0)1/2 ||u - wh\\ . 

For the p r o o f — see [4] — Lemma 2.1. 

J) The end-points of Fu coincide with the vertices of J~h. 
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Hence the problem is to find a wh e Kh sufficiently close to u and such that 2u — 
— wh e K. We can prove the following 

Theorem 2.1. Assume that u e [H2(iQ)]2 and uneH2(Ta n Fm), where Fm, m = 

= 1, 2, . . . , G, denotes any side of the polygonal boundary. 

Then there exists a whe [V/,]2 such that 

(2.4) 0 = whn = un on Ta , 

and, if the triangulations are a — ^-regular, it achieves the optimal order of approx­
imation, i.e. 

C 2 ' 5 ) I U - Wh\\i = C / ? { | | U | | 2 + niaX | | u „ | H 2 ( r a n T m ) } 
w= 1,...,G 

(with C independent of h and u). 

P r o o f is based on two lemmas. 

Lemma 2.2. (One-sided approximation of un on the boundary). Let un e H2(Ta n 
n Fm), m = 1, . . . , G. Then there exist linear spline functions i/Jj,m) e C(Fm), (with 
nodes determined by the vertices of the triangulation 3~h), such that 

(2.6) 0^iP„m^un on rmnra, 

(2.7) | t * „ - ^ m ) | i L = h3 f [d2M„/d52]2 ds 
J rmnra 

holds for any m = 1, 2, . . . , G, where unI is the linear Lagrange interpolate of un 

on Fm (with the same nodes) and 

\W\\rm = sup \(p(s)\ . 
serm 

Proof is parallel to that of Lemma 2.2 in [4], where F is replaced by Fm n Ffl. 
We set \j/n

m) = 0 on Fu and \j/h
m) = unJ at the vertices of FT except the points Ta n FT, 

where the one-sided approximation on Ta is defined. 

Lemma 2.3. Lel (pm e C(Fm), m = 1, 2, . . . , G be linear spline-functions with the 
nodes determined by a (x — fi-regular triangulation ZTh, cpm = 0 on Tu. 

Then there exists a vh e [V/,]2 such that vhn = cpm on Tm for m = 1, . . ., G and 

(2.8) U^lli = C h - 1 / 2 m a x ||^m||rm . 
m = l , . . . , G 

P r o o f is analogous to that of Lemma 3.2 in [4]. 

220 



The p r o o f of T h e o r e m 2.1. Let \jj\m) be the one-sided approximations of un 

defined in Lemma 2.2. Introducing 

(2.9) cpm - unI - i/,(m), m = l , . . . , G , 

we construct the vector-function vh e [V/,]2 according to Lemma 2.3. Then the function 

wh- uT - vh, 

(where u 7 = (ull9 u2J) denotes the Lagrange linear interpolate of u over the triangula-
tion &~h) satisfies (2.4), (2.5). In fact, on every Fm it holds 

Whn= uJn - vhn = u„j - ęm - ф (m) 
h 

and (2.6) implies (2.4). 
Furthermore, it is well-known that 

(2.10) Iu - i i ^ S Ch\\u\\2 . 

Then 

|| U - Wh\\l S \\u - Uj\\L + ||U/ - Wh\\t S || M ~ U/||i + | |n | | l 

holds and from (2.8), (2.9), (2.7) it follows 

(2.11) H^lli S Ch m a x | | u w | | f f 2 ( r a n r m ) . 
m=l, . . . ,G 

Hence (2.10) and (2.H) yield the estimate (2.5). 

Corollary 2.1. Let u and uh be the solutions of (1.9) and (2.1), respectively. If the 
assumptions of Theorem 2.1 are satisfied, then 

(2.12) H u - « A | i = 0(h). 

Proof . With regard to Lemma 2A and (2.5), it suffices to verify that (i) the func­
tional <£ satisfies (2.2) and (ii) wh e Kh, 2u — wh e K. The positive-definiteness of 
(2.2) is an immediate consequence of the Korn's inequality (1.15), (for B = V). 
From (2.4) it follows that wh eKh. Obviously, 2u — wh e Vand on Fa we have 

2un - whn S un ~ whn - 0 

as a consequence of (2.4). Hence 2u — whe K follows and the proof is complete. 

3. CONVERGENCE WITHOUT ANY REGULARITY ASSUMPTIONS 

From the results developed by Fichera (cf. [3]) one concludes that the regularity 
of the solution u, assumed in Theorem 2.1, cannot be expected, in general. Therefore 
we study the convergence of the finite element approximations without any regularity 
assumptions. To this end, we employ the following abstract 
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Theorem 3.1. (cf. [7] — chpt. 4). Let V be a Hilbert space with the norm ||.||, 
K cz V a convex closed subset, h e (0, 1 > a real parameter, Kh <= K convex closed 
sets for any h. 

Let a differentiable functional f on V be given, the second differential of which 
exists and satisfies the inequalities (2.2) for any u e K and z e V 

Denote u and uh the minimizing elements of f over the sets K and Kh, respectively. 
Assume that vh e Kh exist such that 

(3.1) lim ||u - vh\\ = 0 . 

Then it holds 

(3.2) lim ||u - «a|| - 0 . 
h-+0 

Proof. From (2.2) the existence and uniqueness of u and uh follows. Let vh e Kh 

satisfy (3.1). Using the Taylor's theorem we may write 

f(vh) = f(u) + Df(u, vh - u) + \D2 f(u + 9h(vh - u); vh - u, vh - u). 

Consequently, by virtue of (2.2), we conclude 

(3.3) lim f(vh) = f(u) . 

From the definition of uh it follows 

(3.4) f(uh) ^ f(vh) , 

consequently, 

f(uh) S c < +oo Vh . 

Since f is coercive, it holds 

\\uh\\ ^ Cj < +oo Vh . 

Thus we can choose a subsequence (denoted again by {uh}) such that uh e Kh, uk 

tends to u* weakly. As K is weakly closed, u* e K. We have 

/ ( u * ) g l i m / ( u „ ) = f(u), 

consequently u* = u. 
There exist Xh e (0, 1) such that 

/ ( "* ) = / ( " ) + D f(u, uh- u) + \D2 f(u + Xh(uh - u); uh - u, uh - u) 

and by virtue of (2.2) 

f(uh) - f(u) - D/(u, uh - u) ^ i-a0||u, - u||2 . 

From (3.3), (3.4) and the weak convergence uh ~> u (3.2) follows for the subsequence. 
Since u is a unique solution, the whole sequence converges to u. 
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Theorem 3.2. Assume that there is only a finite number of "end-points" Fa n FT, 
Fu n FT, FM n Ffl. Tl?en the set 

K n [Cc0(-Q)]2 

is dense in K. 

Proof. Let u e K be a fixed vector-function. Consider a system of open domains 
{B,}, i = 0, 1, . . . , r, which cover Q and denote {<pj the corresponding decomposi-

r 

tion of unity (i.e. (pt e &(Bt), 0 z% (pt ^ \, £ <p,-(x) = 1 Vx e Q). Assume that B0 c Q 
r z = 0 

and (J Bj covers the boundary F. Denoting uj = ucp., we have 
i= 1 

r 

u = £ u J , uy e [ H 1 ^ ) ] 2 , supp uJ c Bj V/ . 
j = o 

We say that P e F is a singular point, if it is a vertex of F or an "end-point" Ta n FT, 
fu n FT, FM n Fa. Suppose that each Bj contains at most one singular point. For 
brevity, we shall omit the superscript j . The system of Bh i = 1, . . ., r, can be 
divided into eight groups as follows. 

1. group. Let B,- n F <= Tu. Then wfc e H0(Bj n ;Q), (k = 1, 2) can be approximated 
by functions uky e CQ(BJ n Q) such that 

\\ukx ~ uk\\t ->0 for % - > 0 . 

2. group. Let J3 • n F c Fa and does not contain any vertex of F. Consider the local 
cartesian coordinate system (£, w) such that the £-axis coincides with F. Then we 
may write u = u*e^ + unen, where e ,̂ e,. are unit basis vectors, and un = — un ^ 
^ 0 for n = 0. 

There exists a function v e Hx(Bj n £>) such that v ^ 0 in B7 n -Q, supp v c By, 
v = u,7 on F (see [5], chpt. 2. Th. 5.7 for the construction of that function), Let us 
define the extension Pv of v by means of the relation 

(3.6) Pv(Ln) = Pv(L ~rj). 

Then Pv e Hl(Bj). Using the regularization operator Rx with the kernel 

Ax 2 exp — ] — ! - - for be < x , 

/ \ / \m -x 
co(x, x) = <: M ' 7 

0 for |x| ^ x , 

where x and A are positive constants, x = (£, r/), we define 

(3.7) #x-Mx) = <*>(* ~ *'> *) P K X 0 dx ' > x' = (£'> */') • 
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Since both co and Pv are non-negative, we obtain RxPv ^ 0 on F, moreover RxPv e 

e C°°(.Q) and 

(3.8) \\RxPv - v||i ->0 

holds for x -> 0. We have 

Setting 

un = v -f z , z є Я0(By n Í2) . 

«„* = -^-Pf + Zx , 

where zx e C0°(-5>/- n ;Q) is an approximation of z, we obtain 

(3-9) ||M„X - un\\x S \\RxPv - v||i + ||zx - z||i. -> 0 

for x -> 0 and u^ e C°°(:0), u^x _ 0 on F. 

We extend also the component u% like v in (3.6) and regularize.Then u^x = RxPu^ e 

e C°°(Q), 

(3.10) | |u^ — M§||J -> 0 for x -> 0 . 

From (3.9) and (3.10) we conclude that for x -> 0 
2 

(3.11) ||ux - uIJ = X ||Mb, - «*|? ^ 4(|u.„ - u,||* + ||a,x - «,||J) -> 0 . 
k= 1 

Fig. 1 

3. group. Let By n F c Fa contain a vertex of F. In general, we use a "skew" co­

ordinate basis for the components of u. Thus let e1, e2 be unit tangential and n\ n2 

unit outward normal vectors (see Fig. 1). 

We may write 
2 

u - £ M<-» e p / e
p . np , 

P = I 

where the dot denotes the scalar product, u{p) _ u . np. Hence 

ЛP) _ un _ 0 on JЧР) 
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Let us consider the component u(2). We transform the angular domain By n Q 
into the upper halfplane {(£,?]) \rj > 0} by means of a proper Lipschitz mapping T 
such that F(2) is mapped into the positive £-axis and F(1) into the negative £-axis. 
Let us extend the trace u(2) from the positive onto the negative £-axis by means of the 
relation 

Pu(2)(-c) = Pw(2)(€-

There exists a function v e Hl(Bj0), where Bj0 = T(Bj n Q), such that v ^ 0 in Bj0, 
v = Pu{2) on the £-axis, supp v a T(Bj) (see again [5], Th. 2.5.7). If we define 
v(xi, x2) = v(T(x1, X2)), then v e Hl(Bj n Q), v :g 0 in Bj n Q, supp v c: Bj and 
v = u{2) on F(2). Consequently, we may write 

u(2) = v + z , 

where z e H1(Bj n Q), supp z a Bp z = 0 on F(2). 

We define 

vx = v(x + A) , 

where k e R2 is a vector in the direction of the axis of the internal angle at the vertex. 
Then vx is an extension of v and it holds Rxvx e Cco(Q), Rxvx ^ 0 on F(2), 

1-VA - HI- ^ \\RxV* - v4i + IK - HI- -* ° 

for \k\ -> 0 and x -> 0, % < CJA|. 

There exists a function w eHx(Bj n :C2) such that w = z on F, supp w c B^, 
w = 0 in the angular domain 0 < # < Jn90, where #0 denotes the internal angle and 
$ the polar coordinate. Choosing the direction of a vector k properly, we find a "shift­
ed" function wA(x) = w(x + k) such that Rxwx = 0 on F(2) and 

|[RxwA — vv Ij i. —> 0 for 

\k\ -+ o, x -> o, % < c|;.|. 
Since it holds 

z = vv + z0 , 

where z0 e H0(B; n .Q), we have 

<4P s KxvA + KxwA + Rxz0 6 C°°(0), 

«£> = o 

on F(2) and 

(3.12) | | w
( 2 ) - M^>||1 -> 0 for 

x < C\k\ , \k\ -> 0 . 
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An analogous approach can be applied to u{i\ For any vector w it holds vv̂  = 
= aiW(1) + a2w

{2\ where at are constants. Consequently, we have 

2 

INI? =" C X lw(P) | |?> fc = 1, 2 . 
p = l 

Defining 

«XA = I «LPMe" . n^ 
P=I 

and using (3.12) together with an analogous result for p = 1, we arrive at 

(3.13) | | o^ - oy | | t -> 0 for x < C\X\ , |A| -> 0 . 

4. group. Let By n F contain a singular point Ffl n FT, which may coincide with 
a vertex of F. We transform By n .Q into the upper halfplane, mapping Fa into the 
positive £-axis. We apply the approach of the 3. group, used for u(2), setting F(2) = Ffl, 
p(i) _ j ^ if B. n F is straight, we use the same approach, substituting only — un 

for u(2). 

5. group. Let By n F contain a point Tu n FT, which may coincide with a vertex of F* 
Let F„ coincide with the positive £~axis of the local coordinate system. We may apply 
the approach used for approximating the function z in the 3. group, to both compo­
nents uk, k = 1,2, substituting FM for F(2). 

6. group. Let By n F contain a point FM n Ffl which is not a vertex. Let FH coincide 
with the positive c-axis. The component u^ can be approximated as the function 
z in the 3. group. For un, we may write un = v + z, where v e H[(Bj n .Q), v = H,, 
on F, v = 0 in By n £>, supp v c: B7 and v = 0 in the first quadrant £ >0 , ?/ > 0, 
z e Hl(Bj n £>). Defining vA(x) = v(x + X), where X = (b, b), b > 0, and regularizing, 
we obtain RAvk = 0 on FM, Rxv; ^ 0 on Ffl. The remaining steps are obvious. 

7. group. Let By n F contain a point Fw n Ffl, coinciding with a vertex of F. Using 
the "skew" coordinate system, we obtain 

u(1) = un ^ 0 on F(1) = Fa , u(l) = u(2) = 0 on F(2) = FM. 

The component u(2) can be approximated like the function z in the 3. group. u0) can 
be written in the form u(1) = v + z, where v = 0 in By n O, v = 0 for 0 < 9 < i<90> 
supp v c B. and v = u(1) on F. Then "shifting" v properly (as for z in the 3. group) 
and regularizing, we obtain Rxvx ^ 0 on Ffl, Rxvx = 0 on FM. 

8. group. Let By n F cz FT. Since no boundary conditions are imposed, there exist 
approximations ukx e CG0(.Q), supp w^ c By such that 

||ox — o| | t —> 0 for x -> 0 . 

For Bo we define u£x = Pxu°. Finally, adding o£ or o£A, respectively, from all the 
sets By, we are led to the assertion of the theorem. 
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Theorem 3.3. Let u and uh be the solutions of the problem (1.9) and (2.1), respec­

tively- Let the assumptions of Theorem 3.2 be satisfied. Then 

(3.17) lim Iu — uh\\l = 0 . 
h->0 

Proof. From Theorem 3.2 it follows that a ux e K n [C°°(-3)]2 exists such that 

| |" ~ «x | | l < £ / 2 ' 

As ux is smooth, we can define the Lagrange linear interpolate uxJ over the triangula-

tion 3Th and the estimate (cf. (2.10)) 

K / - "x||l < C/i||Ux||2 

holds. We have if̂ j e Kft and for sufficiently small h 

If — If rlli < IIII — If Hi + llll — If rll < £ || xI\\L = || **>f||l ' || x xl\\ 

Setting vft = uxI. the assumption (3.1) is satisfied. With,/ ' = J£, Theorem 3T implies 

the convergence of ifft. 

Acknowledgments. The authors are indebted to Dr. J. Haslinger, CSc, for an idea 

used in the proof of Theorem 3.2. 
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S o u h r n 

ANALÝZA SIGNORINIHO ÚLOHY V ROVINNÉ PRUŽNOSTÍ 
METODOU KONEČNÝCH PRVKŮ 

IVAN HLAVÁČEK, JÁN LOVÍŠEK 

Spočívá-li pružné těleso na dokonale tuhé a hladké opeře, pak jeho rovnováhu 
lze popsat pomocí Signoriniho jednostranné úlohy (viz [ l]) . Systematický matema­
tický rozbor podal Fichera ([2], [3]). K numerickému řešení se hodí též metoda 
konečných prvků (viz [8], [9]). 

V této práci se odvozují některé apriorní asymptotické odhady chyb metody 
konečných prvků za předpokladu jisté regularity řešení. V závěrečném odstavci je 
dokázána konvergence i k řešení, které není regulární. 
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