Aplikace matematiky

Ivan Hlavacek; Jan LoviSek
A finite element analysis for the Signorini problem in plane elastostatics
Aplikace matematiky, Vol. 22 (1977), No. 3, 215-228

Persistent URL: http://dml.cz/dmlcz/103694

Terms of use:

© Institute of Mathematics AS CR, 1977

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/103694
http://dml.cz

SVAZEK 22 (1977) APLIKACE MATEMATIKY ClsLo 3

A FINITE ELEMENT ANALYSIS FOR THE SIGNORINI
PROBLEM IN PLANE ELASTOSTATICS

IvaN HLAVACEK and JAN LoviSEk

(Received September 20, 1976)

INTRODUCTION

If an elastic body rests upon a rigid frictionless support, the equilibrium can be
formulated by means of the Signorini unilateral problem (cf. [1]). A systematic
mathematical analysis of the problem was given by Fichera ([2], [3]).

For numerical solution of the Signorini problem, one can employ the finite element
technique — see [8], [9]. It is the aim of our paper to present some a priori asympto-
tic error estimates for the finite element procedure, provided the solution is sufficiently

_regular. We also prove the convergence without any regularity assumptions.

1. FORMULATION OF THE SIGNORINI PROBLEM

In this section we shall introduce a variational formulation of the Signorini problem
within the range of plane elastostatics, involving linear stress-strain relations and
small deformations of a non-homogeneous, anisotropic body. Let 2 = R? be a bound-
ed plane domain with Lipschitz boundary'), occupied by an elastic body and
let x = (xy, x,) be a Cartesian coordinate system. Let n = (ny, n,) denote the unit
outward normal to the boundary I'. We shall use the Sobolev spaces HQ), k =
= 1,2, ... of functions, the generalized derivatives of which up to the order k exist
and are square-integrable in Q. The usual norm of u in H*Q) will be denoted by
Julh 1@ = L(@)?)

" 9)o =J fg dx.

1y See [5] for the definition of Lipschitz boundary.
2) The same notation ||u |, will be used for vector-functions in [H*(€2)]* and the corresponding
euclidean norms.
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Let the displacement vector u = (uy, u,) e [H'(2)]*. The strain-displacement
relations are

1/0u; Ou;
1.1 g;u) = - —t 4y = , i,j=1,2
(1) i) 2((7xj 6x,~> (i.J )

and the stress-strain relations

(1~2) Tij = Cijriti (i,j =1, 2)

hold, where the coefficients satisfy:

(1-3) Cijkl € Loc(Q) s Cijki = Criij = Cjikt»

(1.4) Jeg = const > 0,  ¢;jutijer = Cotijeij Veij = &) .

A repeated index implies summation over the range 1, 2.

The stress field satisfies the following equilibrium equations

(1.5) T p =0 (i=1,2),

0x;

where F denotes the vector of body forces.
The traction-vector on the boundary

T, = 1;;n;

can be decomposed into the normal component
T, = Tin; = t;;n;n;
and the tangential component

T, = Titi = T..t.n:

ijtittyj o

where t = (1, 1,) = (—n,, n,) is the unit tangential vector.
The displacement vector can be decomposed similarly:

u,=un;, u,=u;;.
Suppose that the boundary I consists of three mutually disjoint parts
r=r,ur,ur,
and on I', and I', the displacements or tractions are prescribed, i.e.
(1.6) _ u=0 on T,,
(1.7) T=T on I,
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whereas on I', the Signorini’s conditions
(18) u/l§05 ']-;1207 ule;t:O, 7;:0

hold.
Assume that F e [L,(Q)]?, T € [L,(I',)]* are given and that both I', and I', contain
sets open in I'.

Introducing

A(u’ V) = J. Cijkm Sij(u) Sk,,,(v) dX N
2

Lv) = J‘ Fi;dx + f Tw; ds,
2] I,

the functional of potential energy can be defined as
ZL(v) = 1A(v,v) — L(v).
Let
V= {v[ve[H'(Q)]2 , v=0onT,},
and
K={v|veV, v, £0o0n I}

be the subspace of virtual displacements and the convex cone of admissible virtual
displacements, respectively.

The problem (1.1), (1.2), (1.5)—(1.8) can be formulated as follows: to find u e K
such that

(1.9) L(u) £ L(v) Vvek.
There is a close relation between the “classical” solution of (1.1), (1.2), (1.5)—(1.8)

and a solution of (1.9). In fact, if holds

Lemma 1.1. Any “classical” solution of (1.1), (1.2), (1.5)—(1.8) satisfies (1.9).
On the contrary, if a solution of (1.9) is sufficiently regular, then it is a “classical”
solution, as well.

Proof. First we recall that u € K is a solution of (1.9) if and only if
(1.10) A(u,v —u) = L(v —u) Vvek.

Let u be a “classical” solution. Multiplying (1.5) by a vector w € V, integrating
by parts and using (1.6), (1.7), (1.8), we obtain
F F,w,-) dx +J‘ 7;(u) njw; ds =
j r.ury,

(1.11) 0=L<_f,.,.(u) ,

- —A(u, w) + L(w) + j T,,(u) w, ds .

Ia

ow
dx
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Choose an arbitrary ve K and set w = v — u. If u,(x) < 0, then T,(u)(x) = 0. If
u,(x) = 0, then w,(x) = v,(x) £ 0 and T,(u)(x) < 0. Altogether, the last integral
is non-negative and we have
A(u,w) — L(w) 2 0,
i.e., (1.10).
On the contrary, let ue K be a sufficiently regular solution of (1.10). Denoting
v — u = w e Vand integrating by parts, we obtain

(1.12) Mmﬂ—LW%riLch@+F9mm+

0x;
+ '[ 7;;(u) nw;ds — J Tw;ds.
r r.

Choosing w = +¢ e[2(Q)]* (where 2(Q) is the set of infinitely differentiable
functions with compact support in Q), we obtain the equilibrium equations (1.5).
Consequently, from (1.12) and (1.10) it follows that

(1.13) 0= J; (tif(u) n; — T)wids + J.r (T(u) w, + T,(u) w,)ds .

The choice of w € V such that the traces of w; vanish on I', leads to the boundary
conditions (1.7) on I',. Thus in (1.13) only the Jast integral remains. Next choosing w
on I', such that w, = 0, w, = =+, we obtain T)(u) = O on T,.

Let w, < 0 be arbitrary. Then from (1.13) T,(u) < 0 on I', follows.

Finally,

(1.14) A(u,u) — L(u) =0

can be deduced from (1.10), inserting v = 0 and v = 2u.
Consequently, repeating the above procedure for w = u, we obtain

0 =f T,(u)u,ds.
Ia
As the product T,(u) u, is non-negative, it must vanish on I',.

Proposition 1.1. There exists a unique solution of the problem (1.9).

Proof. The set K, being closed and convex in [H'(®)]?, is weakly closed. For the
second Giteaux differential of ¥ we may write

(19 NZ@LO=A@ﬂg%f%®%MngWM

Q
Yue[H'(Q)]*, veV,
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(where the Korn’s inequality has been used in the last step). Therefore £ is weakly
lower semi-continuous and coercive and the existence and uniqueness of a solution
follows.

2. FINITE ELEMENT APPROXIMATIONS

For simplicity, we restrict ourselves to polygonal domains. (For domains with
smooth boundary, we refer the reader to the paper by Scarpini and Vivaldi [6],
whose technique could be extended to the above problem).

Let Q = R? be a polygonal bounded domain (multiply connected, in general).
We carve it into triangles T generating a triangulation & ,. Denote h the maximal
side of all triangles in . Let V,, be the space of continuous piecewise linear functions
on the tringulation 7, vanishing on I',.")

We say that a family of triangulations {7}, 0 < h £ 1, is a— p-regular, if there
exist positive « and f, independent of h and such that (i) the minimal angle of all
triangles in 7, is not less than o and (ii) the ratio between any two sides of 77, is
less than f.

For any h e (0, 1) we define
K,={v|ve[V,]*, v, =0on I}.

Obviously, K, = K Vh e (0, 1). We say that u, € K, is a finite element approximation
to the problem (1.9) if
(2.1) L(u,) £ Z(v) Vvek,.

It is readily seen that there exists a unique finite element approximation. This
assertion can be verified by following the proof of Proposition 1.1.

We focus our attention to the estimate of the error u — u, between the solutions

of the problem (1.9) and (2.1), respectively. To this end we shall use the idea proposed
by Mosco and Strang [10], like in [4] — Sect. 2. Let us recall the

Lemma 2.1. Let ¢ be the functional defined on a closed convex subset K of a Ba-
nach reflexive space B. Assume that ¢ is twice differentiable in B and the second
differential satisfies the following inequalities
(2.2) ao”zﬂz < Dzj(u;z, z) =< c”z”2 YueK, zeB.

Let K, = K be a closed convex set. Denote the minimizing element of ¢ over K
and K, by u and u,, respectively. Assume that a w, € K, exists such that 2u — w, € K.
Then it holds

(2:3) Ju =] = (/o) u = wi] -

For the proof — see [4] — Lemma 2.1.

1) The end-points of I', coincide with the vertices of 7.
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Hence the problem is to find a w, € K, sufficiently close to u and such that 2u —
— w, € K. We can prove the following

Theorem 2.1. Assume that ue[H*(Q)]* and u,e H I, n I,,), where I,,, m =
= 1,2, ..., G, denotes any side of the polygonal boundary.

Then there exists a w, € [V, ]* such that
(2.4) 0=w,,=u, on I,,

and, if the triangulations are o.— f-regular, it achieves the optimal order of approx-
imation, i.e.

(2:5) lu = wil = Ch{]u], + max GI“n”IIz(rmrm)}
m=1,...,
(with C independent of h and u).
Proof is based on two lemmas.
Lemma 2.2. (One-sided approximation of u, on the boundary). Let u, e HZ(F,, N

AT,), m=1,...,G. Then there exist linear spline functions y{"™ e C(I,,), (with
nodes determined by the vertices of the triangulation J ), such that

(2.6) 0=ym=u, on I',nrl,,
@.7) ity — Y12 < J [d2u,/ds?]? ds
I'mnla
holds for any m = 1,2, ..., G, where u,; is the linear Lagrange interpolate of u,

on I',, (with the same nodes) and

el = sup fo(s)] -
Proof is parallel to that of Lemma 2.2 in [4], where I is replaced by I',, 0 I,
We set /™ = 0 on I, and y{™ = u,; at the vertices of I, except the points I', N I",,
where the one-sided approximation on I', is defined.

Lemma 2.3. Let ¢,,€ C(I',,), m = 1,2, ..., G be linear spline-functions with the
nodes determined by a o.— f-regular trtangulatton w Pm = 0o0n T,

Then there exists a v, € [V,]* such that v,, = ¢,, on I, for m =1,...,G and
9 ol = CH max o],

,,,,,

Proof is analogous to that of Lemma 3.2 in [4].
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The proof of Theorem 2.1. Let (™ be the one-sided approximations of u,
defined in Lemma 2.2. Introducing

(29) P = Uy — l//;xm) ’ m = l’ BRI} G 5
we construct the vector-function v, € [V,,]Z according to Lemma 2.3. Then the function
W= U = Vg,

(where u; = (uyg, u,y) denotes the Lagrange linear interpolate of u over the triangula-
tion 7,) satisfies (2.4), (2.5). In fact, on every I, it holds
Wpn= Upy — bpy = Uy — Py = ‘pl(xm)

and (2.6) implies (2.4).

Furthermore, it is well-known that
(2.10) o=, = Chlul,.

Then

o= wific < = iy + oy~ wal = o= wf + ol

holds and from (2.8), (2.9), (2.7) it follows

(2.11) [valls < Ch max |u,|luzeronr,, -
m=1 G

,,,,,

Hence (2.10) and (2.11) yield the estimate (2.5).

Corollary 2.1. Let u and u, be the solutions of (1.9) and (2.1), respectively. If the
assumptions of Theorem 2.1 are satisfied, then

(2.12) lu—u, = 0O(h).

Proof. With regard to Lemma 2.1 and (2.5), it suffices to verify that (i) the func-
tional & satisfies (2.2) and (ii) w, e K,, 2u — w, e K. The positive-definiteiiess of
(2.2) is an immediate consequence of the Korn’s inequality (1.15), (for B = V).
From (2.4) it follows that w), € K,,. Obviously, 2u — w;, € Vand on I', we have

zun — Whn = Uy, — Wy, é 0

as a consequence of (2.4). Hence 2u — w,, € K follows and the proof is complete.

3. CONVERGENCE WITHOUT ANY REGULARITY ASSUMPTIONS

From the results developed by Fichera (cf. [3]) one concludes that the regularity
of the solution u, assumed in Theorem 2.1, cannot be expected, in general. Therefore
we study the convergence of the finite element approximations without any regularity
assumptions. To this end, we employ the following abstract
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Theorem 3.1. (cf. [7] — chpt. 4). Let V' be a Hilbert space with the norm | .||,
K <= V a convex closed subset, h e (0, 1) a real parameter, K, = K convex closed
sets for any h.

Let a differentiable functional ¢ on V be given, the second differential of which
exists and satisfies the inequalities (2.2) for any u e K and z € V.

Denote u and u,, the minimizing elements of # over the sets K and K, respectively.
Assume that v, € K, exist such that

(3.1) lim [u — v, =0.
h—0
Then it holds
(3-2) lim [fu — u,|| = 0.
h=0
Proof. From (2.2) the existence and uniqueness of u and u, follows. Let v, € K,
satisfy (3.1). Using the Taylor’s theorem we may write

f(vh) = #(u) + D #(u, v, — u) + 1D? f(u + I(vy — u); v, — u, v, — u).

Consequently, by virtue of (2.2), we conclude

(3.3) lim #(v,) = #(u). .
From the definition of u, it follows

(3'4) f(“h) = f(vh) s

consequently,

Fu) Se< +o0 Vi
Since # is coercive, it holds
[ | < ¢y < +o00 Vh.

Thus we can choose a subsequence (denoted again by {u,}) such that u, € K,, u,
tends to u* weakly. As K is weakly closed, u* € K. We have

F(u*) < lim #(u,) = #(u),
consequently u* = u.
There exist 4, € (0, 1) such that

Huy) = #(u) + D J(u,u, — u) + 3D* Fu + 4wy, — u);uy — u, u, — u)
and by virtue of (2.2)
) — #Fw) — D F(u,uy — u) = dog|lu, — u?.

From (3.3), (3.4) and the weak convergence u,, — u (3.2) follows for the subsequence.
Since u is a unique solution, the whole sequence converges to u.
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Theorem 3.2. Assume that there is only a finite number of “end-points” I, n I,
F,aT,l,nT, Then the set

KalcH (@)

is dense in K.

Proof. Let ue K be a fixed vector-function. Consider a system of open domains
{B;},i=0,1,...,r which cover @ and denote {¢;} the corresponding decomposi-

tion of unity (i.e. 9, € Z(B;), 0 < ¢; < 1, Y ¢x) = 1 Vx € Q). Assume that B, = Q
r i=0

and U B; covers the boundary I'. Denoting u/ = ug;, we have

i=1

u=>3yu, We[H(Q)], suppw/ cB; Vj.
ji=o

We say that Pe I is a singular point, if itis a vertex of I" or an “end-point” I', n I,
I'nnT, I,nT, Suppose that each B; contains at most one singular point. For
brevity, we shall omit the superscript j. The system of B;, i =1, ..., r, can be
divided into eight groups as follows.

1. group. Let B;n I = T,. Then u, € Hy(B; n Q), (k = 1, 2) can be approximated
by functions u,, € C§(B; N Q) such that

hee — uefy >0 for x—0.

2. group. Let B; n I = I', and does not contain any vertex of I'. Consider the local
cartesian coordinate system (tf, ;1) such that the &-axis coincides with I'. Then we
may write u = uce; + u,e,, where €, e, are unit basis vectors, and u, = —u, =
= 0 for n = 0.

There exists a function veH'(Bj I8 .Q) such that v =2 0 in B; n Q, suppv < By,
v = u, on I' (see [5], chpt. 2. Th. 5.7 for the construction of that function). Let us
define the extension Pv of v by means of the relation

(3.6) Puo(S, n) = Po(&, —n).
Then Pve H'(B;). Using the regularization operator R, with the kernel
2
Ax =% exp *l)‘—l for |x| <,
; |x|* — 2
w(x, %) = <
0 for |x| =,

where x and A are positive constants, x = (£, n), we define

6 )= [ oo ) e, ¥ = @),

Bj
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Since both w and Pv are non-negative, we obtain R ,Pv = 0 on I', moreover R, Pv €
€ C*(Q) and

(3.8) [RPv — o]y =0

holds for » — 0. We have

u,=v+z, zeHyB;nQ).

Setting
u,, = R,Pv + z,,

where z, € C§(B; n Q) is an approximation of z, we obtain

(3.9) e =

for x — 0 and u,, € C*(Q), u,, = Oon I.

We extend also the component u, like v in (3.6) and regularize. Then u;, = R, Pu; €
e C*(Q),
(3.10) |

IIA

|RPo = ol + [z = 2]~ 0

Ug, — e[y >0 for % —0.

From (3.9) and (3.10) we conclude that for x — 0

G11) o= ul} = ¥ o = wl? = 4 —

24 Hu,,x — u,,Hf) - 0.

Fig. 1

3. group. Let B; n I' = I', contain a vertex of I". In general, we use a “skew” co-
ordinate basis for the components of u. Thus et e', e be unit tangential and n', n?
unit outward normal vectors (see Fig. 1).

We may write

u= u® ep/ep .n?,

1

.ﬁMN

where the dot denotes the scalar product, u® = y . n?. Hence

u(p)=un§0 on 1"“”.
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Let us consider the component u‘®. We transform the angular domain B; n Q
into the upper halfplane {(¢, ) I n > 0} by means of a proper Lipschitz mapping T
such that I'® is mapped into the positive ¢-axis and I''") into the negative &-axis.
Let us extend the trace u® from the positive onto the negative ¢-axis by means of the
relation

Pu®(=¢) = Pu®(¢).

There exists a function & € H'(B},), where B;, = T(B; n Q), such that § < 0 in B;,,
& = Pu® on the &-axis, supp & = T(B;) (see again [5], Th. 2.5.7). If we define
v(xg, x) = 8(T(xy, x,)), then ve H'(B; " Q), v <0 in B;n Q, suppv < B; and
v = u® on I'®. Consequently, we may write

u® =v+ z,

where z e H'(B; n Q), suppz < Bj, z =0 on I''*.
We define
v, = v(x + A),

where A€ R? is a vector in the direction of the axis of the internal angle at the vertex.
Then v, is an extension of v and it holds R,v; € C*(2), R,v, < 0 on I'?,

IRw: — vs = [[Rew; = vafly + [Jo, = oy = 0

for !/] — 0and x - 0, » < C]l].

There exists a function we H'(B; n Q) such that w =z on I, suppw < B,
w = 0 in the angular domain 0 < 3 < }9,, where 9, denotes the internal angle and
3 the polar coordinate. Choosing the direction of a vector 4 properly, we find a “shift-
ed” function w,(x) = w(x + 2) such that R,w; = 0 on I'® and

[Rowz — w|y =0 for

[A] -0, x>0, x<cCli.
Since it holds
z=w+ zg,

where z, € Hy(B; N Q), we have

ull = R, + Rw, + R,zoe C(Q),

uP <0
on I'® and
(3.12) [ul? — u®|; >0 for
x<Cl|, |4 -o0.
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An analogous approach can be applied to u'"), For any vector w it holds w, =
= a;w'" + a,w'?), where a; are constants. Consequently, we have

2
Iwdt = X w?t, k=12,
p=1
Defining

2
— (P)ap
u, =y ulbe’ler n’
p=1

and using (3.12) together with an analogous result for p = 1, we arrive at
(3.13) [ui, — w/|, >0 for x <], |A]-0.

4. group. Let B; n I" contain a singular point I, n T, which may coincide with
a vertex of I'. We transform B; n Q into the upper halfplane, mapping I', into the
positive ¢-axis. We apply the approach of the 3. group, used for u‘®, setting I''® = T,
'Y = T If B; ~ I is straight, we use the same approach, substituting only —u,

for u'?,

5. group. Let B; n I contain a point I', n I",, which may coincide with a vertex of I'-
Let I', coincide with the positive ¢-axis of the local coordinate system. We may apply
the approach used for approximating the function z in the 3. group, to both compo-
nents u,, k = 1,2, substituting I', for I'®,

6. group. Let B; n I' contain a point I, n I', which is not a vertex. Let I', coincide
with the positive -axis. The component u. can be approximated as the function
z in the 3. group. For u,, we may write u, = v + z, where ve H'(B; n Q), v = u,
onI',v=0in B; nQ, suppv = B; and v = 0 in the first quadrant & >0, n > 0,
z e Hy(B; n Q). Defining v,(x) = v(x + 2), where 1 = (b, b), b > 0, and regularizing,
we obtain R,v;, = 0Oon I',, R,v, = 0 on I',. The remaining steps are obvious.

7. group. Let B; n I contain a point I', n I
the “skew” coordinate system, we obtain

coinciding with a vertex of I". Using

a»

u =y, <0 on IM=r,, UV =u»=0 on ' =r,.

The component u‘® can be approximated like the function z in the 3. group. " can
be written in the form u'" = v + z, wherev < 0in B; n Q,v = 0for 0 < § < 19,
supp v < B;and v = u) on I'. Then “shifting” v properly (as for z in the 3. group)
and regularizing, we obtain R,v, < Oon I';, R,v, =0on I,

8. group. Let B; n I' < I',. Since no boundary conditions are imposed, there exist

approximations u,, € C*(Q), supp u,, < B; such that

|u, —ul; >0 for %—-0.

k3

For B, we define ul, = R,uy. Finally, adding ul or ul,, respectively, from all the
sets B;, we are led to the assertion of the theorem.
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Theorem 3.3. Let u and uy, be the solutions of the problem (1.9) and (2.1), respec-
tively. Let the assumptions of Theorem 3.2 be satisfied. Then

(3.17) lim [u — [ =0.
[

h—

Proof. From Theorem 3.2 it follows that a u, € K n [C*(Q)]* exists such that
Hu — ux”1 < 6/2.

As u, is smooth, we can define the Lagrange linear interpolate u,; over the triangula-
tion 77, and the estimate (cf. (2.10))

lu,, — uN”l < Ch||ux

2

holds. We have u,; € K, and for sufficiently small &

lu —wile S Ju—u,

 + ”ux -~ ux,“ <e.

Setting v, = u,;. the assumption (3.1) is satisfied. With # = #, Theorem 3.1 implies
the convergence of u,,.

Acknowledgments. The authors are indebted to Dr. J. Haslinger, CSc., for an idea
used in the proof of Theorem 3.2.
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Souhrn

ANALYZA SIGNORINIHO ULOHY V ROVINNE PRUZNOSTI
METODOU KONECNYCH PRVKU

IvaN HLAVACEK, JAN LoViSEK

Spocivd-li pruzné téleso na dokonale tuhé a hladké opéfe, pak jeho rovnovdhu
Ize popsat pomoci Signoriniho jednostranné ulohy (viz [1]). Systematicky matema-
ticky rozbor podal Fichera ([2], [3]). K numerickému feSeni se hodi téZ metoda
kone¢nych prvki (viz [8], [9]).

V této prédci se odvozuji n€které apriorni asymptotické odhady chyb metody
koneénych prvki za pfedpokladu jisté regularity feSeni. V zdvére¢ném odstavci je
dokdzdna konvergence i k feSeni, které neni reguldrni.
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