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Abstract

In this paper, we examine the properties of hypersurfaces of weakly
and pseudo concircular symmetric manifolds and we give an example for
these manifolds.
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1 Introduction

Firstly, Tamassy and Binh introduced weakly symmetric manifolds, [1].
A non-flat Riemannian manifold (Mn, g), (n > 2) whose the curvature tensor

satisfies the following relation is called weakly symmetric

∇lRhijk = AlRhijk +BhRlijk +DiRhljk + EjRhilk + FkRhijl (1.1)

where A,B,D,E, F are non-zero 1-forms and ∇ denotes the covariant differ-
entiation with respect to the metric tensor of the manifold. These 1-forms are
called the associated 1-forms of the manifold and an n-dimensional manifold of
this kind is denoted by (WS)n. It may be mentioned in this connection that
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although the definition of a (WS)n is similar to that of a generalized pseudo-
symmetric space studied by Chaki and Mondal, [2], the defining condition of
a (WS)n is weaker than that of a generalized pseudo-symmetric manifold. De
and Bandyopadhyay, [3], proved that 1-forms of (WS)n can not be all different.
Then the equation (1.1) reduces to the form

∇lRhijk = AlRhijk +BhRlijk +BiRhljk +DjRhilk +DkRhijl (1.2)

Let us consider a subspace Vm immersed in a Riemannian manifold Vn whose
parametric representation is uλ = uλ(u1, u2, . . . , um) where (uλ) and (ui)
(i, j, k, . . . = 1, 2, . . . ,m) denote the coordinate systems of Vn and Vm, respec-
tively. A conformal transformation ḡij = ρ2gij of the fundamental tensor of Vn,
being a concircular one with the function ρ satisfying the equations

ρij = ∇jρi − ρiρj +
1
2
gαβραρβgij = φgij , ρj =

∂

∂uj
ln ρ (1.3)

this transformation is called concircular transformation where φ is a function
of ui.

The present paper deals with non-concircular flat Riemannian manifold
(Mn, g) whose concircular curvature tensor Zhijk satisfies the condition (n > 2)

∇lZhijk = AlZhijk +BhZlijk +DiZhljk + EjZhilk + FkZhijl

where

Zhijk = Rhijk −
R

n(n− 1)
(ghkgij − ghjgik)

Rhijk is the curvature tensor and R is the scalar curvature. Such a manifold will
be called a weakly concircular symmetric manifold and denoted by (WZS)n, [4].
It was shown that, in [5], Zh

ijk is invariant under a concircular transformation.
Desa and Amur studied the concircular recurrent Riemannian manifold, [6].

The authors proved that the defining condition of a (WZS)n can always be
expressed in the following form, [4]

∇lZhijk = AlZhijk +BhZlijk +BiZhljk +DjZhilk +DkZhijl (1.4)

where A,B,D 1-forms (non-zero simultaneously).
From the first Bianchi identity, we get

Rhijk +Rhjki +Rhkij = 0 (1.5)

The second Bianchi identity for a Riemannian manifold is

∇sRhijk +∇jRhiks +∇kRhisj = 0 (1.6)

Let (M̄, ḡ) be an (n + 1)-dimensional Riemannian manifold covered by a
system of coordinate neighborhoods {U, yα}. Let (M, g) be a hypersurface of
(M̄, ḡ) defined via a system of parametric equation yα = yα(xi), where Greek
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indices take the values 1, 2, . . . , n+1 and Latin indices take the values 1, 2, . . . , n
a locally coordinate system. Then, we have

gij = ḡαβy
α
i y

β
j (1.7)

Let nα be a local unit normal to (M, g). Thus, we obtain ḡαβn
αyβ

i = 0,
gαβn

αnβ = 1 and it is easily seen that there are the following conditions between
the contrary metric tensors of the hypersurface (M, g) and (M̄, ḡ)

gαβ = gijyα
i y

β
j + nαnβ, yα

i =
∂yα

∂xi
, (i, j = 1, 2, . . . , n; α = β = 1, 2, . . . , n+ 1)

(1.8)
A point of a hypersurface, at which the principal directions of the curvature

are indeterminate, is called an umbilical point. In order that the lines of cur-
vature may be indeterminate at every point of the hypersurface, it is necessary
and sufficient that Ωij = ωgij, where ω is an invariant. According to [7],

M = Ωijg
ij = nω (1.9)

where the scalar M is called the mean curvature of such a hypersurface, so that
the conditions for indeterminate lines of curvature are expressible as

Ωij =
M

n
gij (1.10)

If all the geodesics of a hypersurface (M, g) are also geodesics of (M̄, ḡ), the
former is called a totally geodesic hypersurface of the latter. Such hypersurfaces
are generalizations of planes in ordinary space. A necessary and sufficient condi-
tion that (M, g) be a totally geodesic hypersurface is that the normal curvature
should vanish for all directions in (M, g), and at every point. This requires

Ωij = 0 (1.11)

Consequently,
M = 0 (1.12)

and (1.10) is satisfied.
The structure equations of Gauss and Mainardi–Codazzi, [8]

Rijkl = R̄αβγθB
αβγθ
ijkl + Ωijkl

and
∇kΩij −∇jΩik + R̄βγδθn

βBγδθ
ijk = 0

where Ωijkl = ΩljΩik − ΩilΩjk.
From (1.9), the above equations reduce to the following forms

Rijkl = R̄αβγθB
αβγθ
ijkl +

M2

n2
(gljgik − gligjk) (1.13)
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and

R̄αγδθn
αBγδθ

ijk =
1
n

(gik∇jM − gij∇kM) (1.14)

respectively, where Rijkl and R̄αβγθ are the curvature tensors (M, g) and (M̄, ḡ),
and Bαβγθ

ijkl = Bα
i B

β
j B

γ
kB

θ
l , Bα

i = yα
i .

From the Gauss equation, we get

R̄ = R+ 2R̄αβn
αnβ − Ωijklg

ilgjk (1.15)

The concircular curvature tensors of (M, g) and (M̄, ḡ) can be written in the
form

Zhijk = Rhijk +
R

n(n− 1)
Ghijk (1.16)

and

Z̄αβγθ = R̄αβγθ +
R̄

n(n+ 1)
Gαβγθ (1.17)

where Ghijk = ghjgik − ghkgij and Gαβγθ = ḡαγ ḡβθ − ḡαθḡβγ . On account of
(1.7), (1.13), (1.16) and (1.17), we get

Zhijk = Z̄αβγθB
αβγθ
hijk +

M2

n2
Ghijk +

1
n

(
R

n− 1
− R̄

n+ 1
)Ghijk (1.18)

2 Totally umbilical hypersurface of a weakly concircular
symmetric manifold

Now, we consider an (n+1)-dimensional weakly concircular symmetric Rieman-
nian manifold and we denote this manifold by (WZS)n+1. For a (WZS)n+1,
we have

∇eZ̄abcd = AeZ̄abcd +BaZ̄ebcd +BbZ̄aecd +DcZ̄abed +DdZ̄abce (2.1)

Using (1.17), we obtain

Z̄abcdn
aBbcd

ijk = R̄abcdn
aBbcd

ijk (2.2)

We assume that the scalar curvature of (WZS)n is not constant and (WZS)n

is a totally umbilical hypersurface. In this case, we find that

∇sZhijk = AsZ̄abcdB
abcd
hijk +BhZ̄ebcdB

ebcd
sijk +BiZ̄aecdB

aecd
hsjk

+DjZ̄abedB
abed
hisk +DkZ̄abceB

abce
hijs +

1
n2
Ghijk∇sM

2

+
1
n
Ghijk∇s

( R

n− 1
− R̄

n+ 1

)
+
M

n

(
ghsR̄abcdB

bcd
ijkn

a + gisR̄badcB
adc
hkjn

b

+ gjsR̄cdabB
dab
khin

c + gksR̄dcbaB
cba
jihn

d
)

(2.3)
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By the aid of the Gauss equation, (2.3) can be written as

∇sZhijk = As

(
Zhijk −

M2

n2
Ghijk −

1
n

( R

n− 1
− R̄

n+ 1

)
Ghijk

)

+Bh

(
Zsijk −

M2

n2
Gsijk −

1
n

( R

n− 1
− R̄

n+ 1

)
Gsijk

)

+Bi

(
Zhsjk −

M2

n2
Ghsjk −

1
n

( R

n− 1
− R̄

n+ 1

)
Ghsjk

)

+Dj

(
Zhisk −

M2

n2
Ghisk −

1
n

( R

n− 1
− R̄

n+ 1

)
Ghisk

)

+Dk

(
Zhijs −

M2

n2
Ghijs −

1
n

( R

n− 1
− R̄

n+ 1

)
Ghijs

)

+
1
n2
Ghijk∇sM

2 +
1
n
Ghijk∇s

( R

n− 1
− R̄

n+ 1

)

+
M

n2
[(ghsgik − gisghk)∇jM + (gisghj − gijghs)∇kM

+ (gjsgik − gijgsk)∇hM + (gksghj − gjsghk)∇iM ] (2.4)

Now, we suppose that (M, g) is (WZS)n.
By the aid of (1.4) and (2.4), we have

[
M2

n2
+

1
n

( R

n− 1
− R̄

n+ 1

)]
(AsGhijk+BhGsijk+BiGhsjk+DjGhisk+DkGhijs)

−Ghijk∇s

(
M2

n2
+

1
n

( R

n− 1
− R̄

n+ 1

))

− M

n2
(Ghisk∇jM +Gihsj∇kM +Gsijk∇hM +Gkjsh∇iM) = 0 (2.5)

Multiplying (2.5) by ghkgij , we can obtain

(
M2

n2
+

1
n

( R

n− 1
− R̄

n+ 1

))
(2Bs + 2Ds + nAs)

− (n+ 2)
n2

∇sM
2 −∇s

( R

n− 1
− R̄

n+ 1

)
= 0 (2.6)

Similarly, multiplying (2.5) by gikghs, it is easily obtained that

(
M2

n2
+

1
n

( R

n− 1
− R̄

n+ 1

))
(Bs +As + (n− 1)Ds)

− (n+ 2)
2n2

∇sM
2 − 1

n
∇s

( R

n− 1
− R̄

n+ 1

)
= 0 (2.7)

Let us suppose that

R = (1− 2
n+ 1

)R̄ (2.8)
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where the scalar curvature R is not constant.
From (2.6) and (2.7), we get

As = 2Ds or M = 0 (2.9)

We assume that As = 2Ds. Transvecting (1.4) with glk and gij , we get

gks∇sGhk = (Ak −Bk +Dk)Ghsg
sk (2.10)

where Ghk = Rhk − R
n ghk (n > 2) is the Einstein tensor.

Similarly, transvecting (1.4) with ghk and gij , we have

(Bk +Dk)Ghsg
sk = 0 (2.11)

Hence, using the equations (2.9)1 and (2.10), it can be obtained that

(Ak + 2Bk)Ghsg
sk = 0 (2.12)

Now, multiplying the equation (1.4) by ghl and gij and using the result
∇sR

s
h = 1

2∇hR, we obtain R ≡ const. In the beginning, we suppose that
R �= const. Thus, As �= 2Ds. From (2.9), we have M = 0, i.e., the hypersurface
is totally geodesic. Thus, we can state the following theorem:

Theorem 2.1 In the totally umbilical hypersurface (WZS)n of (WZS)n+1, if
the expression R = (1− 2

n+1 )R̄ , (R �= const.) is satisfied then the hypersurface
is totally geodesic.

Theorem 2.2 If the totally umbilical hypersurface (WZS)n of a (WZS)n+1

satisfies the condition R
n−1 − R̄

n+1 = c (c < 0, const.) then either the mean
curvature or the scalar curvature of this hypersurface is constant.

Proof We assume that the totally umbilical hypersurface (WZS)n of (WZS)n+1

satisfies the condition

− R̄

n+ 1
+

R

n− 1
= c (2.13)

From (2.5) and (2.13), we obtain

(M2

n2
+
c

n

)
(AsGhijk +BhGsijk +BiGhsjk +DjGhisk +DkGhijs)

− 1
n2
Ghijk∇sM

2 − M

n2
(Ghisk∇jM

+Gihsj∇kM +Gsijk∇hM +Gkjsh∇iM) = 0 (2.14)

Multiplying (2.14) by ghkgij , we find that

(M2

n2
+
c

n

)
(2Bs + 2Ds + nAs)−

(n+ 2)
n2

∇sM
2 = 0 (2.15)
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Similarly, multiplying (2.14) by gikghs, we can easily obtain that

(M2

n2
+
c

n

)
(Bs +As + (n− 1)Ds)−

(n+ 2)
2n2

∇sM
2 = 0 (2.16)

Using (2.15) and (2.16), we get

M2 = −cn or As = 2Ds (2.17)

On the other hand, from (1.4), we have

∇lZhijk = AlZhijk +BhZlijk +BiZhljk +DjZhilk +DkZhijl (2.18)

Permutating j, k and l by cyclic in (2.18), adding the three equations and
using the expression (1.5) and the first Bianchi Identity, we obtain

(Al − 2Dl)Zhijk + (Aj − 2Dj)Zhikl + (Ak − 2Dk)Zhilj

− 1
n(n− 1)

(Ghijk∇lR+Ghikl∇jR+Ghilj∇kR) (2.19)

Transvecting (2.19) with gijghk, we can obtain

2(Ak − 2Dk)ghkGhl =
(n− 2)
n

∇lR (2.20)

If Ak = 2Dk, from (2.20), then we say that the scalar curvature of this
hypersurface is constant. If Ak �= 2Dk, from (2.17), the mean curvature of this
hypersurface must be constant. If c = 0 then it is clear that this hypersurface
is totally geodesic. Thus, the proof is completed. �

Theorem 2.3 If a totally geodesic hypersurface of a (WZS)n+1 satisfies the
condition R = (1− 2

n+1 )R̄ then this hypersurface is (WZS)n.

Proof From (1.4) and (2.4), the proof is easily seen that.

3 Totally umbilical hypersurface of a pseudo concircular
symmetric manifold

We consider a non-concircular flat Riemannian manifold (M, g) whose concir-
cular curvature tensor Zhijk satisfies the condition

∇lZhijk = 2λlZhijk + λhZlijk + λiZhljk + λjZhilk + λkZhijl (3.1)

where λl is a non-zero covariant vector. Such a manifold will be called a pseudo-
concircular symmetric manifold and denoted by (PZS)n. Permutating j, k, l by
cyclic in (3.1), we obtain the following equations

∇jZhikl = 2λjZhikl + λhZjikl + λiZhjkl + λkZhijl + λlZhikj (3.2)
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and
∇kZhilj = 2λkZhilj + λhZkilj + λiZhklj + λlZhikj + λjZhilk (3.3)

Adding the equations (3.1), (3.2) and (3.3) and by using the first and the second
Bianchi identities, it is obtained that

Ghijk∇lR+Ghikl∇jR+Ghilj∇kR = 0 (3.4)

Transvecting (3.4) with ghkgij , we get (1− n)(2 − n)∇lR = 0.
Since n > 2, we find that the scalar curvature of the hypersurface is constant.

Now, we can state the following theorem:

Theorem 3.1 The scalar curvature of a pseudo concircular symmetric mani-
fold is constant.

Theorem 3.2 Let us suppose that a hypersurface (PZS)n of a pseudo con-
circular symmetric manifold (PZS)n+1 be totally umbilical. Then the scalar
curvature of (PZS)n+1 is constant.

Proof Taking the relation As

2 = Bs = Ds = λs in (2.3), (2.4) and (2.5) and
using the equation (3.1), we get

(M2

n2
+

1
n

( R

n− 1
− R̄

n+ 1

))
(2λsGhijk +λiGhsjk +λjGhisk +λkGhijs +λhGsijk)

− 1
n2
Ghijk∇sM

2 − 1
n
Ghijk∇s

( R

n− 1
− R̄

n+ 1

)

− M

n2
(Ghisk∇jM +Gihsj∇kM +Gsijk∇hM +Gkjsh∇iM) = 0 (3.5)

Multiplying (3.5) by ghkgij and gikghs, respectively, we obtain

(M2

n2
+

1
n

( R

n− 1
− R̄

n+ 1

))
2λs(2 + n)− (n+ 2)

n2
∇sM

2

−∇s

( R

n− 1
− R̄

n+ 1

)
= 0 (3.6)

and

(M2

n2
+

1
n

( R

n− 1
− R̄

n+ 1

))
λs(2 + n)− (n+ 2)

2n2
∇sM

2

− 1
n
∇s

( R

n− 1
− R̄

n+ 1

)
= 0 (3.7)

From (3.6) and (3.7), we obtain

− R̄

n+ 1
+

R

n− 1
= c (3.8)
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where c is a positive constant. By using Theorem 3.1, we can say that

R̄ ≡ const. (3.9)

�

Theorem 3.3 If a totally geodesic hypersurface of (PZS)n+1 satisfies the con-
dition R = (1− 2

n+1 )R̄ then the hypersurface is (PZS)n.

Proof Let us suppose that a hypersurface of (PZS)n+1 be totally geodesic.
From the expressions (1.12) and (2.4) and the condition As

2 = Bs = Ds = λs,
the proof is clear. �

4 An example of a (WZS)n

In this section, we want to construct a (WZS)n spaces. On the coordinate space
Rn (with coordinates x1, x2, . . . , xn), we define a Riemannian space V n and
calculate the components of the curvature tensor and its covariant derivative.

Let each Latin index run over 1, 2, . . . , n and each Greek index over 2, 3, . . . ,
n− 1. We define a Riemannian metric on Rn (n > 3) by the formula

ds2 = φ(dx1)2 + kαβdx
αdxβ + 2dx1dxn (4.1)

where [kαβ ] is a symmetric and non-singular matrix consisting of constants
and φ is a function of (x1, x2, . . . , xn−1) and independent of xn. In the metric
considered, the only non-vanishing components of the curvature tensor, [9]

R1αβ1 =
1
2
φ.αβ (4.2)

where “.” denotes the partial differentiation with respect to the coordinates and
kαβ are the elements of the matrix inverse to [kαβ ].

We consider Vn and

φ = f(x1)(Vαβx
αxβ cos g(x1) + wαβx

αxβ sin g(x1) + kαβx
αxβh(x1))

where f, g, h are functions of x1 only and the matrices [wαβ ], [Vαβ ] and [kαβ ]
are the form

wαβ = −1 for α = β and wαβ = 0 for α �= β (4.3)

Vαβ = 1 for α = β and Vαβ = 0 for α �= β (4.4)

and

kαβ =
{

1 for α = β

0 otherwise

}
(4.5)

From (4.2), the only non-vanishing components of the concircular curvature
tensor Zhijk are

Z1αβ1 =
{
f(cos g − sin g + h) for α = β

0 for α �= β

}
(4.6)
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Here, we consider

Ai = Bi = Di = 0 for i �= 1 and A1 +B1 +D1 = c1, c1 �= 0 and const. (4.7)

Thus, from (1.4), Vn will be (WZS)n if and only if the following relations

∇1Z1αα1 = A1Z1αα1 +B1Z1αα1 +BαZ11α1 +DαZ1α11 +D1Z1αα1 (4.8)

∇αZ11α1 = AαZ11α1 +B1Zα1α1 +B1Z1αα1 +DαZ11α1 +D1Z11αα (4.9)

∇αZ1α11 = AαZ1α11 +B1Zαα11 +BαZ1α11 +D1Z1αα1 +D1Z1α1α (4.10)

Thus, using (4.8), (4.9) and (4.10), we find

f ′(x1)(cos g − sin g + h) + f(x1)(−g′ sin g − g′ cos g + h′)

= (A1 +B1 +D1)f(x1)(cos g − sin g + h). (4.11)

By the aid of (4.11), we get

f(cos g − sin g + h) = c2e
(A1+B1+D1)x

1
, c2 > 0. (4.12)

So, the n-dimensional weakly concircular recurrent Riemannian manifold has
the metric of the form

ds2 = φ(dx1)2 + kαβdx
αdxβ + 2dx1dxn,

φ = c2e
c1x1

n−1∑

k=2

(xk)2.
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