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Abstract. We introduce variable exponent Fock spaces and study some of their basic
properties such as boundedness of evaluation functionals, density of polynomials, bound-
edness of a Bergman-type projection and duality. We also prove that under the global
log-Hölder condition, the variable exponent Fock spaces coincide with the classical ones.
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1. Introduction

Variable exponent Lebesgue spaces are a generalization of classical Lebesgue

spaces Lp in which the exponent p is a measurable function. Such spaces were intro-

duced by Orlicz in [17] and developed by Kováčik and Rákosník in [13]. Although

such spaces have received a considerable amount of attention, little is known about

their analytic version.

Recently, the research subject has received increasing interest and some progress

has been made. For example, in [11] and [12] variable exponent Hardy spaces of

analytic functions in the unit disk are considered. In [8] a version of BMO spaces

with variable exponents is considered. Bergman spaces with variable exponents

have been studied in [1], [2], [3] and a different approach has been taken in [9]

and [10], much of the research done in the area assumes the log-Hölder condition

on the exponent, which is a growth condition that usually guarantees boundedness

of a Hardy-Littlewood maximal operator in a related space. One case of function

spaces on unbounded domains have been studied in [16]. The theory of Orlicz spaces
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of analytic functions has also received recent interest, see for example [14] and [15]. In

this article, we study variable exponent Fock spaces, which can be seen as generalized

Orlicz spaces that are not rearrangement invariant.

Variable exponent Fock spaces Fp(·) are spaces of entire functions that belong to

a weighted Lp(·) space with respect to the Gaussian measure. The classical case has

received a great interest in the last years as can be seen in [19]. One property of vari-

able exponent Fock spaces that makes its study relevant is that the Gaussian measure

is not a Muckenhoupt weight; this makes it difficult to use one important resource in

the theory of variable exponent Lebesgue spaces: the boundedness of the maximal

function. In this article, we will introduce variable exponent Fock spaces and study

some of their basic properties such as the boundedness of evaluation functionals,

density of polynomials, boundedness of a Bergman-type projection and duality. We

also prove that under the global log-Hölder condition, the variable exponent Fock

spaces coincide with the classical ones, this is a phenomenon that singles out Fock

spaces from other spaces of analytic functions with variable exponents previously

investigated.

The article is distributed as follows. In the next section we will present some pre-

liminary concepts and results as well as the notation that will be used throughout the

rest of the article. In Section 3, we will first prove a version of Hölder’s inequality to

obtain an equivalent norm in variable exponent Fock spaces. Then we will show that

evaluation functionals are bounded and prove an inclusion relation between variable

exponent Fock spaces with different exponents. We also prove that when restricted

to exponents that satisfy the global log-Hölder condition, the variable exponent Fock

spaces coincide with the classical ones. An example of an exponent for which the

variable exponent space differ from all the classical ones is also given, and as a con-

sequence, it is shown that if 1 < p < ∞, then Fp 6= ⋂
q>p

Fq and Fp 6= ⋃
q<p

Fq. This

is an instance in which variable exponent techniques lead to results in the classical

case. Finally, in Section 4 we study a Bergman-type projection and characterize the

dual space of variable exponent Fock spaces under the assumption of boundedness

of the Hardy-Littlewood maximal operator.

For the rest of the paper, we will use the notation a . b if there exists a constant

C > 0, independent of a and b, such that a 6 Cb. Similarly, we use a ≍ b if we

have a . b . a.

2. Preliminaries

2.1. Fock spaces. We will need some properties of the classical Fock spaces that

we include here for the sake of completeness. These results will be taken from [19].
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Definition 2.1. Let A denote the Lebesgue area measure defined on the complex

plane C and let 1 6 p < ∞. Denote by Lp = Lp(C) the Lebesgue space of p-integrable

functions with respect to the measure A. We will denote by Lp = Lp(C) the Banach

space of all measurable functions f : C → C such that

‖f‖pLp =
p

π

∫

C

|f(z)e−|z|2 |p dA(z) < ∞.

In other words, Lp(C) consists of all functions f such that fe−|·|2 ∈ Lp(C). The

Fock space Fp is defined as the space of all entire functions that belong to Lp.

Remark 2.2. In the literature, the Lp spaces just defined are known as

weighted Lp spaces in which the weight (in this case the Gaussian weight) acts

as a multiplier.

For every z ∈ C, the evaluation functional γz : Fp → C, defined as

(2.1) γz(f) := f(z),

is bounded since the following inequality holds for every f ∈ Fp:

(2.2) |f(z)| 6 ‖f‖Fpe|z|
2

.

The space Fp is a closed subspace of Lp and consequently it is a Banach space.

In the case when p = 2, the Fock space F2 is a Hilbert space with inner product

(2.3) 〈f, g〉 = 2

π

∫

C

f(z)g(z)e−2|z|2 dA(z).

As a consequence of Riesz representation theorem for every z ∈ C there exists an

element Kz ∈ F2 such that for every f ∈ F2,

(2.4) 〈f,Kz〉 = f(z).

The functions Kz are called reproducing kernels and are given by

(2.5) Kz(w) = e2wz.

It is shown in [18] that the reproducing formula (2.4) holds for general functions

f ∈ Fp in the sense that

(2.6) f(z) =
2

π

∫

C

f(w)e2wze−2|w|2 dA(w).

2.2. Generalized Orlicz spaces. We will also need some results from the theory

of generalized Orlicz spaces that will be presented as in [6].
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Definition 2.3. A function ϕ : C × [0,∞) → [0,∞) is said to belong to the

class Φ if for every t ∈ [0,∞) the function ϕ(·, t) is measurable and for every z ∈ C

the function ϕ(z, ·) satisfies the following conditions:
(i) ϕ(z, ·) is increasing;
(ii) ϕ(z, ·) is left-continuous;
(iii) ϕ(z, ·) is convex;
(iv) ϕ(z, 0) = lim

t→0+
ϕ(z, t) = 0 and lim

t→∞
ϕ(z, t) = ∞.

Some examples of functions of the class Φ are:

ϕ1(z, t) = tp(z), ϕ2(z, t) =
1

p(z)
tp(z), ϕ3(z, t) = tp(z)e−|z|2p(z),

where p : C → [1,∞) is a measurable function.

Definition 2.4. Given a function ϕ in the class Φ, define for every measurable

function f : C → C the modular

(2.7) ̺ϕ(f) =

∫

C

ϕ(z, |f(z)|) dA(z).

The Generalized Orlicz space Lϕ is defined as the set of all measurable functions f

such that ̺ϕ(λf) < ∞ for some λ > 0. Lϕ is a Banach space when equiped with the

Luxemburg-Nakano norm:

(2.8) ‖f‖Lϕ = inf
{
λ > 0: ̺ϕ

(f
λ

)
6 1

}
.

In the case in which ϕ = ϕ1, we call L
ϕ = Lp(·) a variable exponent Lebesgue space.

The basics on the subject may be found in the monographs (see [4], [5]). Denote

p+ = ess sup
z∈C

p(z) and p− = ess inf
z∈C

p(z). The measurable function p : C → [1,∞)

is called a variable exponent, and the set of all variable exponents with p+ < ∞ is
denoted as P(C).

We will be particularly interested in the case in which ϕ = ϕ3. We will denote

such generalized Orlicz space as Lp(·) to stress the dependence of the exponent and

we use the calligraphic L in order to differentiate from the unweighted Lebesgue
space.

2.3. Variable exponent Fock spaces. We are ready to introduce the main

concept of this article.

Definition 2.5. Let p : C → [1,∞) be a measurable function in P(C). The

variable exponent Fock space Fp(·) is defined as the set of all entire functions that

belong to the generalized Orlicz space Lp(·).
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In other words, Fp(·) is the set of entire functions such that

∫

C

|f(z)|p(z)e−|z|2p(z) dA(z) < ∞.

In order to have a better correspondence with the definition of Fock spaces for con-

stant exponents, a modification will be made to the modular defined in (2.7). We

will denote

Cp(·) :=

∫

C

e−|z|2p(z) dA(z)

and define the modular

̺p(·)(f) = C−1
p(·)

∫

C

|f(z)|p(z)e−|z|2p(z) dA(z).

The choice of the constant is made so that ̺p(·)(1) = 1.

Remark 2.6. An entire function f belongs to Fp(·) if and only if the function

z 7→ f(z)e−|z|2 belongs to Lp(·).

2.4. Weighted Fock spaces.

Definition 2.7. Fix r > 0 and 1 < p < ∞. Let Ap,r denote the class of weights

w : C → [0,∞) such that

sup
z∈C

(
1

|B(z, r)|

∫

B(z,r)

w dA

)(
1

|B(z, r)|

∫

B(z,r)

w−1/(p−1) dA

)p−1

6 Cr

for some 0 < Cr < ∞.
We will say that w belongs to the Muckenhoupt class A1 if

ess sup
z∈C

Mw(z)

w(z)
< ∞,

where M denotes the Hardy-Littlewood maximal operator.

It is shown in [4], Section 4.2 that A1 ⊂ Ap,r for every 1 < p < ∞ and r > 0.

Given a weight w, we will denote by Lp(w) the weighted Lebesgue space

whereas Lp(w) will denote the weighted Lp space. The following theorem is shown

in [7].

Theorem 2.8. The following are equivalent for any weight w on C:

(i) w ∈ Ap,r for some r > 0.
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(ii) The operator H : Lp(w) → Lp(w) defined as

Hf(z) =

∫

C

e−|z−u|2f(u) dA(u)

is bounded.

(iii) The operator P : Lp(w) → Fp(w) defined as

Pg(z) =
2

π

∫

C

g(w)e2wze−2|w|2 dA(w)

is bounded.

(iv) w ∈ Ap,r for all r > 0.

Remark 2.9. The operator P is bounded on Lp(w) if and only if the operator

J : Lp(w) −→ Lp(w),

g 7−→
∫

C

|g(z)e2zwe−2|z|2 | dA(z)

is bounded.

The following proposition is a version of Rubio de Francia extrapolation result in

the framework of variable Lebesgue spaces.

Theorem 2.10 ([4], Theorem 5.24). Given a set Ω, suppose that for some p0 > 1

there exists a family D of pairs of functions such that for all w ∈ A1,

(2.9)

∫

Ω

F (x)p0w(x) dx 6 C0

∫

Ω

G(x)p0w(x) dx, (F,G) ∈ D.

Given p ∈ P(Ω), if p0 6 p− 6 p+ < ∞ and suppose that the Hardy-Littlewood

maximal operator is bounded on L(p(·)/p0)
′

(Ω), then

(2.10) ‖F‖Lp(·)(Ω) 6 Cp(·)‖G‖Lp(·)(Ω)

for every (F,G) ∈ D.

3. Some properties of variable exponent Fock spaces

In this section we will start by showing a version of Hölder inequality for Lp(·)

spaces that will be useful in this specific context. It is important to notice that,

as generalized Orlicz spaces, a Hölder inequality and a duality result already exists,

however here we prove a different version that better suits our purposes.
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Theorem 3.1 (Hölder’s inequality). Suppose p ∈ P(C) and let p′ : C → (1,∞)

be such that 1/p(z) + 1/p′(z) = 1 for all z ∈ C. Then if f ∈ Lp(·) and g ∈ Lp′(·), we

have that ∣∣∣∣
∫

C

f(z)g(z)e−2|z|2 dA(z)

∣∣∣∣ 6 2‖f‖Lp(·)‖g‖Lp′(·) .

P r o o f. It is clear that if any of the norms on the right-hand side is equal to

zero, then the inequality holds. So suppose both norms are nonzero, and use Young’s

inequality to obtain

|f(z)|
‖f‖Lp(·)

|g(z)|
‖g‖Lp′(·)

e−2|z|2 6
|f(z)|p(z)e−p(z)|z|2

p(z)‖f‖Lp(·)

+
|g(z)|Lp

′(·)

e−p′(z)|z|2

p′(z)‖g‖p′(·)
,

and the inequality follows. �

With the previous inequality in hand, we can define an alternative norm on Lp(·)

as

|||f |||Lp(·) = sup

{
2

π

∣∣∣∣
∫

C

f(z)g(z)e−2|z|2 dA(z)

∣∣∣∣ : g ∈ Lp′(·), ̺p′(·)(g) 6 1

}
.

Notice that

|||f |||Lp(·) = sup

{
2

π

∫

C

|f(z)||g(z)|e−2|z|2 dA(z) : g ∈ Lp′(·), ̺p′(·)(g) 6 1

}

= sup

{
2

π

∫

C

|f(z)||g(z)|e−2|z|2 dA(z) : g ∈ Lp′(·), ̺p′(·)(g) < ∞
}
.

Theorem 3.2. Suppose that p ∈ P(C) and let p′ : C → (1,∞) be such that

1/p(z) + 1/p′(z) = 1 for all z ∈ C. Then there exist constants c > 0 and C > 0 such

that

c‖f‖Lp(·) 6 |||f |||Lp(·) 6 C‖f‖Lp(·) .

P r o o f. Suppose f ∈ Lp(·). Then by Hölder’s inequality we have

|||f |||Lp(·) 6 sup

{
2

π

∫

C

|f(z)||h(z)|e−2|z|2 dA(z) : h ∈ Lp′(·), ̺p′(·)(h) 6 1

}

6
4

π

sup{‖f‖Lp(·)‖h‖Lp′(·) : h ∈ Lp′(·), ̺p′(·)(h) 6 1} 6
4

π

‖f‖p(·).

On the other hand, suppose that |||f |||Lp(·) = 1. Define function g as

g(z) =
π

2Cp(·)
|f(z)|p(z)−1e−|z|2(p(z)−2).
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Then

̺p′(·)(g) =
π

2Cp′(·)Cp(·)

∫

C

|f(z)|(p(z)−1)p′(z)e−|z|2(p(z)−2)p′(z)e−|z|2p′(z) dA(z)

=
π

2Cp′(·)Cp(·)

∫

C

|f(z)|p(z)e−|z|2p(z) dA(z) 6
π

2Cp′(·)
̺p(·)(f).

Thus, g ∈ Lp′(·) and consequently,

̺p(·)(f) = C−1
p(·)

∫

C

|f(z)||f(z)|p(z)−1e−|z|2(p(z)−2)e−2|z|2 dA(z)

=
2

π

∫

C

|f(z)||g(z)|e−2|z|2 dA(z) 6 |||f |||Lp(·) = 1.

Thus

̺p(·)
( f

|||f |||Lp(·)

)
= ̺p(·)(f) 6 1,

which implies that

‖f‖Lp(·) 6 |||f |||Lp(·) .

The general case |||f |||Lp(·) 6= 1 follows from the homogeneity of the norm. �

We pass now to prove that evaluation functionals are continuous. Given z ∈ C

the evaluation functional is defined as

γz : Fp(·) −→ C,

f 7−→ f(z).

We will need the next lemma.

Lemma 3.3. Let f : C → C be an entire function and let R > 0. Then for every

z ∈ C,

|f(z)|e−|z|2 6
eR

2

R2
π

∫

B(z,R)

|f(w)|e−|w|2 dA(w).

P r o o f. Fix z ∈ C and define an entire function

g : C −→ C,

w 7−→ f(w + z)e−2zw.

By the mean value theorem we have that

|g(0)| 6 1

R2
π

∫

B(0,R)

|g(w)| dA(w).
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Writing the equation in terms of f and multiplying it by e−|z|2 we get

|f(z)|e−|z|2 6
1

R2
π

∫

B(0,R)

|f(w + z)||e−2zw|e−|z|2 dA(w)

6
eR

2

R2
π

∫

B(z,R)

|f(w)|e−|w|2 dA(w).

�

Theorem 3.4. Suppose that p ∈ P(C). Then there exists a constant C > 0 such

that for every f ∈ Fp(·)

|f(z)| 6 Ce|z|
2‖f‖Fp(·).

P r o o f. Take R = 1 in the previous lemma to get

|f(z)|e−|z|2 6
e

π

∫

B(z,1)

|f(w)|e−|w|2 dA(w).

Now, applying Theorem 3.1 we get that if 1/p(w) + 1/p′(w) = 1 for all w ∈ C, then

∫

B(z,1)

|f(w)|e−|w|2 dA(w) =

∫

C

|f(w)|e|w|2χB(z,1)(w)e
−2|w|2 dA(w)

6 2‖f‖Fp(·)‖e|·|2χB(z,1)‖Lp′(·)

and the result follows. �

Corollary 3.5. Suppose that p ∈ P(C). Then Fp(·) is a closed subspace of Lp(·)

and hence it is a Banach space.

As another consequence of the previous theorem, we can now show a relation

between Fp(·) spaces.

Theorem 3.6. Suppose p, q ∈ P(C) and there exists R > 0 such that p(z) 6 q(z)

for every z ∈ C, |z| > R. Then Fp(·) ⊂ Fq(·) and moreover for every f ∈ Fp(·),

‖f‖Fq(·) . ‖f‖Fp(·).

P r o o f. Suppose f ∈ Fp(·) and ‖f‖Fq(·) 6 1. We write

̺q(·)(f) = I1 + I2,
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where

I1 = C−1
q(·)

∫

|z|<R

|f(z)|q(z)e−|z|2q(z) dA(z)

and

I2 = C−1
q(·)

∫

|z|>R

|f(z)|q(z)e−|z|2q(z) dA(z).

By Theorem 3.4, there exists C > 0 such that

I2 6 C−1
q(·)

∫

|z|>R

|f(z)|p(z)(Ce|z|
2

)q(z)−p(z)e−|z|2q(z) dA(z) . ̺p(·)(f).

On the other hand, using again Theorem 3.4, we obtain that I1 . R2. Thus,

̺q(·)(f) . ̺p(·)(f) + 1,

and consequently f ∈ Fq(·).

For a general f , notice that

̺q(·)
( f

‖f‖Fp(·)

)
. ̺p(·)

( f

‖f‖Fp(·)

)
+ 1 6 2.

�

A natural question emerges. Does there exist p(·) such that the space Fp(·) does

not coincide with the classical Fock space Fp with a constant exponent p? We will

exhibit a family of such spaces.

Example 3.7. For 0 < a < 1 let p : C → (1,∞) be defined as p(z) = 2 +

(log(e + |z|))−a. Notice that by the previous theorem, F2 ⊂ Fp(·).

Aditionally, it is shown in [19] that the inclusion is strict in the case of constant

exponents. Consequently, for a fixed q > 2 we can always find q > s > 2 and R > 0

such that p(z) 6 s if |z| > R. Thus, Fp(·) ⊂ Fs ⊂ Fq, but since Fs 6= Fq, then we

have that Fp(·) 6= Fq.

Now we will show that F2 6= Fp(·). Suppose the contrary, then the inclusion

operator is invertible and by the open mapping theorem there exists C > 1 such that

for every f ∈ F2,

‖f‖F2 6 C‖f‖Fp(·).

Consequently,

(3.1) ̺p(·)
( Cf

‖f‖F2

)
> 1.
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Now for each integer n > 2 let fn : C → C by defined as fn(z) = zn. It has been

noticed in [19], using Stirling’s formula, that

‖f‖2F2 =
(n!)1/2

2n/2
∼ nn/2n1/4

(2e)n/2
.

Then

(3.2) ̺p(·)
( fn
‖fn‖F2

)
∼

∫ ∞

0

(rne−r2(2e)n/2

nn/2n1/4

)2+(log(e+r))−a

r dr.

Define an auxiliary function gn : [0,∞] → [0,∞] as

gn(r) :=
rne−3r2/4(2e)n/2

nn/2
.

Function gn is decreasing on the interval ((
1
32n)

1/2,∞) and consequently for r >
√
2n

we have that

gn(r) 6 gn(
√
2n) =

( 4

e2

)n/2
6 1.

Thus,

rne−r2(2e)n/2

nn/2n1/4
6

e−r2/4

n1/4
.

Moreover, for r >
√
2n > 2 we have that (log(e + r))a < r and log(n) < r, which

implies that

r2 >
log(n)(log(e + r))a

(log(e +
√
2n))a

,

and consequently,
−r2

4
6

log(n)

4

(
1− (log(e + r))a

(log(e +
√
2n))a

)
.

Rearranging the previous inequality we get

(3.3)
(e−r2/4

n1/4

)(log(e+r))−a

6 n−1/(4(log(e+
√
2n))a).

On the other hand, since for every positive integer n and r > 0 we have that

rne−r2(2e)n/2

nn/2
6 1,

then if r <
√
2n, the following inequality holds:

(3.4)
(rne−r2(2e)n/2

nn/2n1/4

)1/(log(e+r))a

6 n−1/(4(log(e+r))a) 6 n−1/(4(log(e+
√
2n))a).
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Putting estimates (3.2), (3.3) and (3.4) together we get

̺p(·)
( fn
‖fn‖F2

)
. n−1/(4(log(e+

√
2n))a)‖fn‖−2

F2

∫ ∞

0

r2ne−2r2r dr

∼ n−1/(4(log(e+
√
2n))a) → 0 as n → ∞,

contradicting inequality (3.1).

The previous example can be generalized to conclude the following result about

classical Fock spaces.

Proposition 3.8. Let 1 < p < ∞. Then

Fp 6=
⋂

q>p

Fq.

A similar example as Example 3.7 can be used to show that if 1 < p < ∞, then

Fp 6=
⋃

q<p

Fq.

The exponents used in Example 3.7 were chosen for their s low convergence to zero

as |z| → ∞. Such behavior is somewhat unwanted. As a matter of fact, there exists
a common condition that is used to study variable exponent spaces that discards

such example. In what follows, we will study such condition and see its implications

in our context.

Definition 3.9. A function p : C → [1,∞) is said to be log-Hölder continuous

or to satisfy the Dini-Lipschitz condition on C if there exists a positive constant Clog

such that

(3.5) |p(z)− p(w)| 6 Clog

log(1/|z − w|)

for all z, w ∈ C such that |z−w| < 1
2 . The function p is said to satisfy the log-Hölder

decay condition if there exists p∞ ∈ [1,∞) and a positive constant C such that

(3.6) |p(z)− p∞| 6 C

log(e + |x|)

for all z ∈ C. We say that the function p is globally log-Hölder continuous in C if it

satisfies both (3.5) and (3.6). We denote byP log(C) the set of all globally log-Hölder

continuous functions in C for which

1 < p− 6 p+ < ∞.
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It is known that the condition p ∈ P log(C) implies boundedness of the Hardy-

Littlewood maximal operator on Lp(·)(C). This however is not a characterization,

there are exponents p 6∈ P log(C) such that the Hardy-Littlewood maximal opera-

tor is bounded on Lp(·)(C). An example of a family of such exponent is given in

Example 3.7 (see [4], Example 4.13).

The following theorem shows that under the P log(C) condition, Fock spaces and

variable exponent Fock spaces coincide. We will need the following result.

Lemma 3.10 ([4], Lemma 3.26). Suppose that p(·) ∈ P log(C) and 1 < p∞ < ∞.
There exists a constant C > 0 such that given any set E ⊂ C and any function F

on C with 0 6 F (z) 6 1, for all z ∈ E we have that

(3.7)

∫

E

F (z)p(z) dA(z) 6 C

∫

E

F (z)p∞ dA(z) +

∫

E

R(z)p
−

dA(z)

and

(3.8)

∫

E

F (z)p∞ dA(z) 6 C

∫

E

F (z)p(z) dA(z) +

∫

E

R(z)p
−

dA(z),

where

R(z) =
1

(e + |z|)k , k > 2.

Theorem 3.11. Suppose that p(·) ∈ P log(C) and that 1 < p∞ < ∞. Then
Fp(·) = Fp∞ , and for every f ∈ Fp∞ we have that ‖f‖Fp(·) ∼ ‖f‖Fp∞ .

P r o o f. Let f ∈ Fp∞ , then by Theorem 3.4 there exists a constant C > 0 such

that for every z ∈ C,

g(z) :=
|f(z)|e−|z|2

C‖f‖Fp∞

6 1.

By inequality (3.7) we conclude that

∫

C

|g(z)|p(z) dA(z) < ∞,

and consequently ‖f‖Fp(·) . ‖f‖Fp∞ . The second part is proven in a similar way

using inequality (3.8). �
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4. A Bergman-type projection

In this section, we introduce a Bergman-type projection on variable exponent Fock

spaces and we will obtain a duality result. Due to Theorem 3.11, the global log-Hölder

condition is too restrictive to study variable exponent Fock spaces. In this section,

we will use a less restrictive condition that the Hardy-Littlewood maximal operator is

bounded on L(p(·)/p0)
′

(C) for some p0 < p−. Of course, this is not a condition simple

to verify and the question remains open to find a more constructive condition.

Let us formally define a projection P of a function g as

(4.1) Pg(z) =
2

π

∫

C

g(w)e2wze−2|w|2 dA(w).

It is shown in [19], Section 2.2 that P is a linear operator that maps Lp onto Fp.

We will show an analogous result for the case of variable exponents by putting

Theorems 2.8 and 2.10 together.

Theorem 4.1. Suppose that p belongs to P(C) and suppose that the Hardy-

Littlewood maximal operator is bounded on L(p(·)/p0)
′

(C) for some p0 < p−. Then

the operator P defined in (4.1) is bounded from Lp(·) onto Fp(·).

P r o o f. First notice that since Fp(·) ⊂ Fp+

, representation (2.6) holds for every

function g ∈ Fp(·) and consequently Pg = g. This implies that P is surjective.

Now we will use Theorem 2.10. It was mentioned before that if w is any weight

in A1, then it belongs to Ap0,r for any r > 0.

In consequence, by Theorem 2.8 we have that there exists a constant C > 0 such

that for any g ∈ Lp0(w) the following inequality holds:
∫

C

|Pg(z)|p0e−|z|2p0w(z) dA(z) 6 C

∫

C

|g(z)|p0e−|z|2p0w(z) dA(z).

Hence, if we define the family

D = {(e−|·|2Pg, e−|·|2g) : g ∈ Lp0(w)},

then we have the hypotheses of Theorem 2.10. Thus, there exists a constant Cp(·) > 0

such that

‖e−|·|2Pg‖Lp(·)(C) 6 Cp(·)‖e−|·|2g‖Lp(·)(C)

for every g ∈ Lp0(w), and therefore

‖Pg‖Lp(·)(C) 6 Cp(·)‖g‖Lp(·)(C).

Finally, by density of Lp0 in Lp(·) we get that the inequality holds for every function

in Lp(·). �
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We are almost ready to show a duality result for variable exponent Fock spaces.

This will come as a consequence of the corresponding duality result for Lp(·) spaces.

Theorem 4.2. Suppose that p ∈ P(C) and let p′ be such that 1/p(z) +

1/p′(z) = 1 for all z ∈ C. Then the dual space of Lp(·) is isomorphic to Lp′(·)

and every functional Λ ∈ (Lp(·))∗ is of the type

f 7−→ 2

π

∫

C

f(z)h(z)e−2|z|2 dA(z),

and

‖Λ‖ ∼ ‖h‖Lp′(·) .

P r o o f. First notice that the operator

Qp(·) : Lp(·) −→ Lp(·),

f 7−→ Cp(·)e
|·|2

satisfies that for every f ∈ Lp(·), it holds that

̺p(·)
(Qp(·)f

λ

)
= ̺ϕ3

(f
λ

)
.

This implies that

‖Qp(·)f‖Lp(·) = ‖f‖Lp(·).

Now suppose that h ∈ Lp′(·) and define the linear functional

Λh : Lp(·) −→ C,

f 7−→ 2

π

∫

C

f(z)h(z)e−2|z|2 dA(z).

By Theorem 3.1 we have that

|Λh(f)| 6
4

π

‖f‖Lp(·)‖h‖Lp′(·)

and consequently λh ∈ (Lp(·))∗. On the other hand, suppose that Λ ∈ (Lp(·))∗ and

define
Γ: Lp(·) −→ C,

g 7−→ C−1
p(·)ΛQp(·)g.

Since Λ and Qp(·) are bounded, Γ ∈ (Lp(·))∗ and by the duality result for variable

exponent Lebesgue spaces (see for Example [4], Section 2.8) there exists a function

u ∈ Lp′(·) such that ‖u‖Lp′(·) ∼ ‖Γ‖ and for every g ∈ Lp(·)

Γg =

∫

C

g(z)u(z) dA(z).
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Take

h =
π

2Cp′(·)
Qp′(·)u ∈ Lp′(·)

and notice that if f ∈ Lp(·), then

Λf = Cp(·)ΓQ
−1
p(·)f =

2

π

∫

C

f(z)g(z)e−2|z|2 dA(z).

Moreover, ‖Λ‖ = ‖Γ‖ ∼ ‖u‖Lp′(·) = ‖h‖Lp(·) . �

Remark 4.3. In the previous theorem, the constant 2/π is being considered in

order to keep the correspondence with the representation given by equation (2.6).

Theorem 4.4. Suppose that p ∈ P(C) and suppose that the Hardy-Littlewood

maximal operator is bounded on L(p(·)/p0)
′

(Ω) for some p0 < p−. Let p′ be such

that 1/p(z) + 1/p′(z) = 1 for all z ∈ C. Then the dual space of Fp(·) is isomorphic

to Fp′(·) and every functional Λ ∈ (Fp(·))∗ is of the type

f 7→ 〈f, h〉 = 2

π

∫

C

f(z)h(z)e−2|z|2 dA(z)

and

‖Λ‖ ∼ ‖h‖Fp′(·) .

P r o o f. First, by a similar reasoning as in the previous theorem, for every

function h ∈ Fp′(·) the linear functional

Λh : Fp(·) −→ C,

f 7−→ 2

π

∫

C

f(z)h(z)e−2|z|2 dA(z)

is bounded.

On the other hand, if Λ ∈ (Fp(·))∗, then since Fp(·) is a closed subset of Lp(·), we

use Hahn-Banach theorem to extend Λ to a bounded linear functional Λ̃ ∈ (Lp(·))∗

with ‖Λ̃‖ = ‖Λ‖. By the previous theorem, there exists a function h̃ ∈ Lp′(·) such

that ‖h̃‖ = ‖Λ̃‖ and for every f ∈ Lp(·),

Λ(f) =
2

π

∫

C

f(z)h̃(z)e−2|z|2 dA(z).

Take h = P h̃, where P denotes the projection defined in equation (4.1). Since P is

bounded, ‖h‖Fp(·) . ‖h̃‖Lp(·) . Moreover, if f ∈ Fp(·), then we know that Pf = f
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and consequently,

Λf = Λ̃f =
2

π

∫

C

f(z)h̃(z)e−2|z|2 dA(z)

=
4

π
2

∫

C

f(w)e−2|w|2
∫

C

e2zwh̃(z)e−2|z|2 dA(z) dA(w)

=
2

π

∫

C

f(w)h(w)e−2|w|2 dA(w).

The use of Fubini’s theorem is justified since

∫

C

|f(w)e−2|w|2
∫

C

e2zwh̃(z)e−2|z|2 dA(z)| dA(w) . ‖f‖Lp(·)‖Jh̃‖Lp′(·) ,

and using Corollary 2.9 in combination with 2.10 we conclude that

‖Jh̃‖Lp′(·) . ‖h̃‖Lp′(·) .

Finally, again by Hölder’s inequality we have that ‖Λ‖ . ‖h‖Fp(·) which implies

that

‖Λ‖ ∼ ‖h‖Fp(·).

�

We finish this article with one consequence of the previous duality. Recall that

if p ∈ P(C), then Fp− ⊂ Fp(·) ⊂ Fp+

and as an immediate corollary, we get that

{Kz : z ∈ C} ⊂ Fp(·). Consequently, every f ∈ Fp(·) satisfies representation (2.6).

Moreover, denote as V the closed vector subspace of Fp(·) generated by the set

{Kz : z ∈ C} and suppose that f ∈ Fp(·) \ V . Then there exists h ∈ Fp′(·), h 6= 0

such that 〈Kz, h〉 = 0 for every z ∈ C, but then h ≡ 0, a contradiction. We record

this in the following corollary.

Corollary 4.5. Suppose p ∈ P(C). Then the set of all linear combinations of

reproducing kernels is dense in Fp(·).

As a direct consequence, we have the density of the set of polynomials in Fp(·).

Corollary 4.6. Suppose p ∈ P(C). Then the set of polynomials is dense in Fp(·).
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