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Abstract. This paper addresses the stability study for nonlinear neutral differential equa-
tions. Thanks to a new technique based on the fixed point theory, we find some new
sufficient conditions ensuring the global asymptotic stability of the solution. In this work
we extend and improve some related results presented in recent works of literature. Two
examples are exhibited to show the effectiveness and advantage of the results proved.
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1. Introduction

It is well-known that the theory of neutral functional differential equations has

attracted many types of research due to its wide and great applications in many

fields of mathematical science and engineering such as neural networks, population

dynamics, control theory, and many other phenomena. For appropriate literature,

we can refer to the books [15], [16], [18], [19]. A neutral delay differential equa-

tion is a kind of delay differential equation where the delay argument occurs in the

highest order derivative of the state, which can be used to describe many real-world
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phenomena that arise in the areas, for example, of lossless transmission lines, theory

of automatic control and others, we refer the reader to the references Brayton [5],

Hale [15], Kuang [19], Kolmanovskii and Myshkis [18], and the sources related.

Until today, significant progress has been made in the qualitative theory (e.g. oscil-

lation theory, periodicity, stability, existence of a positive periodic solution, asymp-

totic behavior, boundedness, instability, etc.) of neutral delay differential equations.

For more detail, we refer to [1]–[5], [9], [10]–[14], [17], [20], [23]–[35] and the references

in these sources. One of the most qualitative concepts in mathematical theory is to

determine the stability of a model given. The theory of stability was initiated at the

end of the 19th century by Lyapunov. This method is now known as the Lyapunov

direct method or Lyapunov function.

For decades, Lyapunov has been developing a method for determining stability in

many areas of differential equations without solving the equations themselves. This

theory has been proven significantly effective over a century and it has achieved wide

applications in various fields of physics and mathematics. Unfortunately, when we

try to carry over the principles of the Lyapunov stability theory to special problems,

we face a large number of difficulties and it appears that new methods are needed to

overcome these obstacles (see [7]–[9]). Luckily, Burton and many other authors have

used the fixed point theory as an alternative to studying the stability of deterministic

or stochastic systems, where some of these problems of Lyapunov functions have

been solved. In the current study, we use this method to address a kind of nonlinear

neutral differential equations (see [5], [6], [14], [22]). Moreover, we use this method

to address a kind of nonlinear neutral differential equations.

In [17], Jin and Luo studied the asymptotic stability of the scalar nonlinear neutral

differential equation of the form

(1.1) u′(t) = −a(t)u(t) + c(t)u′(t− τ(t)) − b(t)u(t− τ(t)), t > 0

in the space C0. The work [17] by Jin and Luo requires that the delay τ is twice

differentiable, τ ′(t) 6= 1 for t > 0 and c is differentiable. However, there are many

interesting examples where these conditions are not satisfied. It is our aim in this

paper to remove these restrictive conditions by studying the global stability in the

space C1.

As is known, there are a few papers [1], [3], [4] and [21], [33] where the authors

discuss the global asymptotic stability of solutions of neutral differential equations

in C1. For example, Liu and Yang in [21] were the first to establish necessary and

sufficient conditions for the asymptotic stability in C1 for the equation

(1.2) u′(t) = −a(t)u(t) + c(t)u′(t− τ1(t)) +Q(t, u(t), u(t− τ2(t))),
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where Q is a Lipschitz continuous function in u. Liu and Yang were able, in their

work, to avoid the derivative of the coefficient c, and they also did not need that the

delay τ is twice differentiable and τ ′(t) 6= 1 for t > 0.

Recently, by the same method of Liu and Yang (see [21]), Ardjouni and Djoudi

(see [3]) have addressed a more general form than (1.2) like

(1.3) u′(t) = − a(t)u(t) + g(t, u′(t− τ1(t)), u
′(t− τ2(t)), . . . , u

′(t− τn(t)))

+ f(t, u(t− τ1(t)), u(t− τ2(t)), . . . , u(t− τn(t))),

where f(t, u1, . . . , un) and g(t, u1, . . . , un) are continuous and satisfy the Lipschitz

condition in u1, . . . , un, respectively. However, the case in which one considers all

the terms of the equation (1.3) to be nonlinear, still remains unexplored which is the

main reason for the analysis we perform in the current paper.

In 2020, Zaid et al. (see [23]) obtained stability results in C0 about the zero solution

of the standard form of the totally nonlinear delay differential equation

(1.4) u′(t) = −
N
∑

i=1

ai(t, ut)u(t) + f(t, ut), t > t0.

In the case N = 1, equation (1.4) reduces to that in [12]. With the previous

motivation, in this paper we extend the results of [23] to the totally nonlinear neutral

differential equation presented in (2.1) (see below). More precisely, we study the

stability in the space C1 (as described in more detail below) which is a stronger

and much richer concept of stability than the usual one in C0. By applying the

fixed point theory, we state new and more applicable stability criteria in C1. The

sufficient conditions obtained are quite practical and we no longer need the delay

to be twice differentiable or coefficients to be differentiable, which required some

previous relevant works, see [1], [2], [11], [17], [35]. This new feature makes the

asymptotic behavior in C1 more important and more useful as well. Our work

extends and improves the results of [3], [12], [17], [21], [23]. In addition, two examples

are exhibited to test the feasibility and advantage of the results proved.

387



2. Notations and preliminaries

Let R, R+, and R
− denote (−∞,∞), [0,∞), and (−∞, 0], respectively. In the

current paper, we aim at discussing the asymptotic stability in C1 for a standard

form of neutral differential equations

(2.1) u′(t) = −

N
∑

i=1

ai(t, ut)u(t) + g(t, u′t) + f(t, ut), t > t0,

where f, g ∈ C(R+ ×B,R) and ai ∈ C(R+ ×B,R), i = 1, N , with

B = {φ ∈ C(R−,R) : φ bounded}

and with the norm ‖φ‖◦ := sup
θ∈(−∞,0]

|φ(θ)|. Put also

CL = {ξ ∈ C : ‖ξ‖◦ 6 L} and C1
L′ = {ξ ∈ C1 : ‖ξ′‖◦ 6 L′}.

Let u ∈ C1(R,R) be bounded and t > 0 a fixed number, let ut, u
′

t ∈ C be defined by

(2.2) ut(θ) = u(t+ θ) and u′t(θ) = u′(t+ θ) for θ ∈ R
−.

We put

‖x‖[s,t] := sup
ξ∈[s,t]

|x(ξ)|

for a function x : R → R.

Before stating the main result of this paper, we impose the following assumptions.

(A1) There exists a constant L > 0 and a function b1 ∈ C(R,R+) such that for all

φ, ψ ∈ CL and for all t > 0,

(2.3) |f(t, φ)− f(t, ψ)| 6 |b1(t)|‖φ− ψ‖◦.

(A2) There exists a constant L′ > 0 and a function b2 ∈ C(R,R+) such that for all

φ, ψ ∈ C1
L′ and for all t > 0,

(2.4) |g(t, φ′)− g(t, ψ′)| 6 |b2(t)|‖φ
′ − ψ′‖◦.

(A3) For all ε > 0 and t1 > 0, there exists a t2 > t1 such that [t > t2, ut ∈ CL]

implies

(2.5) |f(t, ut)| 6 |b1(t)|(ε+ ‖u‖[t1,t]).

(A4) For all ε > 0 and t1 > 0, there exists a t3 > t1 such that [t > t3, u
′ ∈ C1

L′ ]

implies

(2.6) |g(t, u′t)| 6 |b2(t)|(ε+ ‖u′‖[t1,t]).
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(A5) There exist α1, α2 ∈ C(R,R) (α2 bounded) such that

α1(t) 6

N
∑

i=1

ai(t, ut) 6 α2(t).

(A6) Assume furthermore that

(2.7) f(t, 0) = g(t, 0) = 0 ∀ t > t0,

which guarantees that (2.1) possesses a trivial solution u(t) = 0.

For each t0 ∈ [0,∞), put C1
t0 = C1(]−∞, t0],R) with the norm defined by

|u|t0 := max
t∈(−∞,t0]

{|u(t)|, |u′(t)|}

for u ∈ C1
t0 = C1((−∞, t0],R). In addition, Φt0 denotes the set

Φt0 =

{

ϕ ∈ C1
t0 : ϕ

′

−
(t0) = −

N
∑

i=1

ai(t0, ϕt0)ϕ(t0) + g(t0, ϕ
′

t0) + f(t0, ϕt0)

}

.

For each t0 ∈ [0,∞), we choose initial functions for equation (2.1) of the type ϕ ∈ Φt0 .

The definitions of stability in C1 as well as the necessary notation for our study

are borrowed from paper [21], but the nonlinearities in our model and the fact that

we consider a neutral term make our study nontrivial and meaningful.

We now recall some basic information.

Definition 2.1. For each initial value (t0, ϕ) ∈ [0,∞)×Φt0 , u is called a solution

of (2.1) associated to (t0, ϕ), if u ∈ C1((−∞,∞),R) satisfies equation (2.1) for almost

t > t0 and u = ϕ for t 6 t0. Such a solution is denoted by u(t) = u(t, t0, ϕ).

We now recall definitions concerning the asymptotic stability in C1 for the solu-

tions to (2.1).

Definition 2.2. The trivial solution of (2.1) is said to be:

(i) stable in C1, if for any ε > 0 and t > t0, there is a scalar δ = δ(ε, t0) > 0

such that, for any initial function ϕ ∈ Φt0 satisfying |ϕ|t0 < δ, we have for the

corresponding solution that

max
s∈(−∞,t]

{|u(s, t0, ϕ)|, |u
′(s, t0, ϕ)|} < ε for t > t0,

(ii) asymptotically stable in C1, if u(t) is stable in C1 and for any initial function

ϕ ∈ Φt0 we have for the solution that

lim
t→∞

u(t, t0, ϕ) = lim
t→∞

u′(t, t0, ϕ) = 0.
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At light of Definition 2.1, sensible conditions are imposed on the initial value of

equation (2.1).

Since our model (2.1) involves the nonlinear term
N
∑

i=1

ai(t, ut)u(t), it turns out more

complex and different than those of [3], [12], [17], [21], [23], which also implies some

difficulties in the mathematical analysis. That means we study how the asymptotic

behavior property in C1 is when (1.4) is added to the perturbed nonlinear neutral

term g(t, u′t). Motivated by the previously cited literature related to the fixed point

approach [9], [10], [11], [12], [14], the Banach fixed point theorem is used to obtain

some new sufficient conditions ensuring the global asymptotic stability results in C1

to equation (2.1). Finally, two examples are given to illustrate the real interest and

importance of the results proposed.

3. Stability by contraction mapping

It is well-known that studying the stability of an equation by Banach’s fixed point

method is based on three essential points: a complete metric space, a variation

of parameters formula, and the formulation of an appropriate contraction mapping.

The advantage of this method is that the fixed point argument leads to the existence,

uniqueness, boundedness, and stability of the equation, all at once. Up to date, no

work has considered equation (2.1) to establish sufficient conditions for the global

asymptotic behavior in C1. Let us begin to explore this issue of stability.

In this section, we discuss the asymptotic stability in C1 for equation (2.1).

Theorem 3.1. Assume hypotheses (A1)–(A6) hold and for any t > t0, there

exists η ∈ (0, 12 ) such that

lim inf
t→∞

∫ t

t0

α1(s) ds > −∞,(3.1)

∫ t

t0

e−
∫

t

s
α1(z) dz(|b1(s)|+ |b2(s)|) ds 6 η,(3.2)

|α2(t)|

∫ t

t0

e−
∫

t

s
α1(z) dz(|b1(s)|+ |b2(s)|) ds+ (|b1(t)|+ |b2(t)|) 6 η,(3.3)

∫ t

0

α1(s) ds→ ∞ as t→ ∞.(3.4)

Then, the trivial solution to equation (2.1) is asymptotically stable in C1.
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P r o o f. First, suppose that
∫ t

0
α1(s) ds→ ∞ as t→ ∞. For each t0 ∈ [0,∞), let

ϕ ∈ C((−∞, t0],R) be a fixed initial function. We define S as the space

S =
{

u ∈ C1(R,R) : lim
t→∞

u(t) = lim
t→∞

u′(t) = 0
}

with the metric defined by

‖u‖ := max
t∈R

{|u(t)|, |u′(t)|}.

Then S is a complete metric space.

Next, we put for any ϕ ∈ Φt0

Dl
ϕ =

{

u ∈ S : ut0 = ϕ and max
t>t0

{‖ut‖◦, ‖u
′

t‖◦} 6 l
}

.

Obviously, Dl
ϕ is a closed convex and bounded subset of S, where l = max{L,L′}.

We can use the variation of parameter formula to write equation (2.1) as an integral

equation suitable for Banach’s fixed point theorem. The expression of the mapping P

below can be deduced as in [21]. Hence, we omit the details.

Put P(u) : R → R with (Pu)(t) = ϕ(t) for t ∈ (−∞, t0] and

(3.5)

(Pu)(t) = e
−

∫
t

t0

∑
N

i=1
ai(s,us) dsϕ(t0) +

∫ t

t0

e−
∫

t

s

∑
N

i=1
ai(z,uz) dz(g(s, u′s) + f(s, us)) ds

for t > t0. It is not difficult to see that P(u) : R → R is continuous.

Initially, we show that P : Dl
ϕ → Dl

ϕ. In view of (3.5), we can derive

(3.6) (Pu)′(t) = − ϕ(t0)

N
∑

i=1

ai(t, ut)e
−

∫
t

t0

∑
N

i=1
ai(s,us) ds + g(t, u′t) + f(t, ut)

−

N
∑

i=1

ai(t, ut)

∫ t

t0

e−
∫

t

s

∑
N

i=1
ai(z,uz) dz(g(s, u′s) + f(s, us)) ds

= −

N
∑

i=1

ai(t, ut)(Pu)(t) + g(t, u′t) + f(t, ut)

for t > t0. By the definition of Φt0 , (3.6) yields

(Pu)′+(t0) = −

N
∑

i=1

ai(t0, ut0)ϕ(t0) + g(t0, u
′

t0) + f(t0, ut0) = ϕ′

−
(t0).

Hence, Pu ∈ C1(R) for u ∈ Dl
ϕ.
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Next, we verify that max
t>t0

{‖(Pu)′t‖◦, ‖(Pu)t‖◦} < l. Let

A = sup
t>t0

{|α2(t)|} and K = sup
t>t0

e
−

∫
t

t0
α1(s) ds.

By conditions (3.4) and (3.1), K,A ∈ [0,∞) for a given small bounded initial func-

tion ϕ with |ϕ|t0 < δ0, where δ0 > 0 satisfies

(3.7) δ0 < lmin
{

1,
1− η

K
,
1− 2η

KA

}

.

Let u ∈ Dl
ϕ, then max

t>t0
{‖u′t‖◦, ‖ut‖◦} 6 l. Due to conditions (2.3), (2.4), (3.7),

and (3.2),

|(Pu)(t)| 6 |ϕ(t0)|e
−

∫
t

t0
α1(s) ds +

∫ t

t0

e−
∫

t

s
α1(z) dz|b2(s)|‖u

′

s‖◦ ds

+

∫ t

t0

e−
∫

t

s
α1(z) dz|b1(s)|‖us‖◦ ds

6 Kδ0 + ηl < l.

Now, (3.6) and (2.3), (2.4), (2.7) and (3.2), (3.3), (3.7) imply that

|(Pu)′(t)| 6 |ϕ(t0)|

N
∑

i=1

|ai(t, ut)|e
−

∫
t

t0

∑
N

i=1
ai(s,us) ds + |g(t, u′t)|+ |f(t, ut)|

+

N
∑

i=1

|ai(t, ut)|

∫ t

t0

e−
∫

t

s

∑
N

i=1
ai(z,uz) dz(|g(s, u′s)|+ |f(s, us)|) ds

6 KAδ0 + |g(t, u′t)− g(t, 0)|+ |f(t, ut)− f(t, 0)|

+ l|α2(t)|

∫ t

t0

e−
∫

t

s
α1(z) dz(|b1(s)|+ |b2(s)|) ds

6 KAδ0 + l(|b1(t)|+ |b2(t)|) + ηl

6 KAδ0 + 2ηl < l

by the choice of δ0. This implies max
t>t0

{|(Pu)(t)|, |(Pu)′(t)|} < l. We now show that

(Pu)(t) approaches zero as t→ ∞.

Owing to condition (3.4), we have

lim
t→∞

e
−

∫
t

t0
α1(z) dz = 0.

Therefore, it is obvious that the first term of (Pu)(t) tends to zero as t → ∞

because of condition (3.4). Next, we show that the last term of (Pu)(t) tends to
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zero, too. Since lim
t→∞

u(t) = lim
t→∞

u′(t) = 0, we can find T1 > t0 such that for all

t > T1, max{|u(t)|, |u′(t)|} < ε, and the fact u ∈ Dl
ϕ implies that for all t > t0,

max{‖ut‖◦, ‖u
′

t‖◦} < l. Therefore, it follows from (2.5) and (2.6) that we can find

t2 > T1 such that

|f(t, ut)| 6 |b1(t)|(ε+ ‖u‖[T1,t])

and

|g(t, u′t)| 6 |b2(t)|(ε+ ‖u′‖[T1,t])

for t > t2. Hence for t > t2 we have

∣

∣

∣

∣

∫ t

t0

e−
∫

t

s

∑
N

i=1
ai(z,uz) dz(g(s, u′s) + f(s, us)) ds

∣

∣

∣

∣

6

∫ t2

t0

e−
∫

t

s
α1(z) dz |g(s, u′s) + f(s, us)| ds

+

∫ t

t2

e−
∫

t

s
α1(z) dz|g(s, u′s) + f(s, us)| ds

6

∫ t2

t0

e−
∫

t

s
α1(z) dz(|b1(s)|+ |b2(s)|)max

s>t0
{‖u′s‖◦, ‖us‖◦} ds

+

∫ t

t2

e−
∫

t

s
α1(z) dz|b1(s)|(ε+ ‖u′‖[T1,s]) ds

+

∫ t

t2

e−
∫

t

s
α1(z) dz|b2(s)|(ε+ ‖u‖[T1,s]) ds

since max{‖u‖[T1,t], ‖u′‖[T1,t]} 6 ε for t > t2. Then,

∫ t2

t0

e−
∫

t

s
α1(z) dz(|b1(s)|+ |b2(s)|)max

s>t0
{|u′s|, |us|} ds

+ 2ε

∫ t

t2

e−
∫

t

s
α1(z) dz(|b1(s)|+ |b2(s)|) ds

6 l

∫ t2

t0

e−
∫

t2
s

α1(z) dze
−

∫
t

t2
α1(z) dz(|b1(s)|+ |b2(s)|) ds+ 2ηε.

Using condition (3.4), we can find T > t2 such that for t > T we get

le−
∫

t

T
α1(z) dz

∫ t2

t0

e−
∫

T

s
α1(z) dz(|b1(s)|+ |b2(s)|) ds 6 ε.

This yields lim
t→∞

(Pu)(t) = 0 for u ∈ Dl
ϕ.
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Moreover, for each u ∈ Dl
ϕ, lim

t→∞

u(t) = lim
t→∞

u′(t) = 0, given ε > 0 there exists

T2 > t0 such that for all t > T2, max{|u(t)|, |u′(t)|} < ε. By conditions (2.5), (2.6)

we can find a T ′ > T2 such that for t > T ′ we have

|g(t, u′t)| 6 |b1(t)|(ε+ ‖u′‖[T2,t])

and

|f(t, ut)| 6 |b2(t)|(ε+ ‖u‖[T2,t]).

For t > T ′, we have from (3.6)

|(Pu)′(t)| 6

N
∑

i=1

|ai(t, ut)||(Pu)(t)|+ |g(t, u′t)|+ |f(t, ut)|

6

N
∑

i=1

|ai(t, ut)||(Pu)(t)|+ |b1(t)|(ε+ ‖u′‖[T2,t]) + |b2(t)|(ε+ ‖u‖[T2,t])

6 |α2(t)||(Pu)(t)|+ 2ηε.

This together with (3.1)–(3.3), leads to lim
t→∞

(Pu)′(t) = 0 for u ∈ Dl
ϕ. Therefore,

Pu ∈ Dl
ϕ for u ∈ Dl

ϕ, i.e. P : Dl
ϕ → Dl

ϕ.

We now show that P : Dl
ϕ → Dl

ϕ is contractive. To this end, suppose that

u, y ∈ Dl
ϕ. By conditions (2.3), (2.4), (3.2), (3.3), (3.6), then for t > t0,

(3.8) |(Pu)(t)− (Py)(t)|

6

∫ t

t0

e−
∫

t

s

∑
N

i=1
ai(z,uz) dz(|g(s, u′s)− g(s, y′s)|+ |f(s, us)− f(s, ys)|) ds

6

∫ t

t0

e−
∫

t

s
α1(z) dz |b1(s)|‖u

′

s − y′s‖◦ ds

+

∫ t

t0

e−
∫

t

s
α1(z) dz|b2(s)|‖us − ys‖◦ ds

6

∫ t

t0

e−
∫

t

s
α1(z) dz(|b1(s)|+ |b2(s)|)max

s>t0
{‖us − ys‖◦, ‖u

′

s − y′s‖◦} ds

6 η‖u− y‖.

In addition,

(3.9) |(Pu)′(t)− (Py)′(t)|

6 |α2(t)||(Pu)(t)− (Py)(t)|+ |g(t, u′t)− g(t, y′t)|+ |f(t, ut)− f(t, yt)|

6 ‖u− y‖

(

|α2(t)|

∫ t

t0

e−
∫

t

s
α1(z) dz(|b1(s)|+ |b2(s)|) ds+ |b1(t)|+ |b2(t)|

)

6 η‖u− y‖.
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From (3.8) and (3.9), as 0 < η < 1
2 , P : Dl

ϕ → Dl
ϕ is a contraction mapping. Hence

there exists a unique fixed point u in Dl
ϕ which means u is a solution of (2.1) with

the initial value (t0, ϕ), bounded by l, and lim
t→∞

u(t) = lim
t→∞

u′(t) = 0 as t → ∞.

The following step represents another way in which we can establish the stabil-

ity of (2.1) by using Banach’s fixed point method as the main tool. For compre-

hensive works published on the stability of some particular cases of the equation

mentioned, the readers are referred to the papers by Raffoul [9] and Burton [10].

Let ε > 0 be given. By proceeding now in a different way than before, that is,

replacing l by ε in Dl
ϕ, we obtain the existence of a sufficiently small δ > 0 such

that (3.7) is satisfied with δ0 = δ. For |ϕ| < δ it leads to the unique solution u

of (2.1) with ut0 = ϕ on (−∞, t0] that satisfies max
t>t0

{|u(t)|, |u′(t)|} < ε. Moreover,

lim
t→∞

u(t, t0, ϕ) = lim
t→∞

u′(t, t0, ϕ) = 0. We can therefore conclude that the trivial

solution of (2.1) is asymptotically stable in C1.

In the end, we proceed to show the asymptotic stability in C1 of the trivial solution

to equation (2.1). For all ε > 0, let δ > 0 be such that

δ < εmin
{

1,
1− η

K
,
1− η

KA

}

.

If u(t) = u(t, t0, ϕ) is a solution to equation (2.1) with |ϕ|t0 < δ, then u(t) = (Pu)(t)

on [t0,∞). We claim that ‖u‖ < ε. Otherwise, there would exist t∗ > t0 such that

max{|u(t∗, t0, ϕ)|, |u
′(t∗, t0, ϕ)|} = ε and max{|u(t, t0, ϕ)|, |u

′(t, t0, ϕ)|} < ε

for t 6 t∗. If |u(t∗, t0, ϕ)| = ε, then it follows from (3.5) and (2.3), (2.4), (3.2) that

|u(t∗, t0, ϕ)| =

∣

∣

∣

∣

ϕ(t0)e
−

∫
t
∗

t0

∑
N

i=1
ai(s,us) ds

+

∫ t∗

t0

e
−

∫
t
∗

t0

∑
N

i=1
ai(z,uz) dz(g(s, u′s) + f(s, us)) ds

∣

∣

∣

∣

6 |ϕ(t0)|e
−

∫
t
∗

t0
α1(z) dz

+

∫ t∗

t0

e−
∫

t
∗

s
α1(z) dz(|g(s, u′s)− g(s, 0)|+ |f(s, us)− f(s, 0)|) ds

6 δ0e
−

∫
t
∗

t0
α1(z) dz +

∫ t∗

t0

e−
∫

t
∗

s
α1(z) dz(|b1(s)|‖u

′

s‖◦ + |b2(s)|‖us‖◦) ds

6 Kδ + ηε < ε,

which contradicts |u(t∗, t0, ϕ)| = ε.
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If |u′(t∗, t0, ϕ)| = ε, then it follows from (3.6), (2.3), (2.4), (3.3) that

|u′(t∗, t0, ϕ)| 6 |ϕ(t0)||α2(t
∗)|e

−
∫

t
∗

t0

∑
N

i=1
ai(s,us) ds + |g(t∗, u′t∗)|+ |f(t∗, ut∗)|

+ |α2(t
∗)|

∫ t∗

t0

e−
∫

t
∗

s
α1(z) dz(|g(s, u′s)|+ |f(s, us)|) ds

6 KAδ + ε|α2(t
∗)|

∫ t∗

t0

e−
∫

t
∗

s
α1(z) dz(|b1(s)|+ |b2(s)|) ds

+ |b1(t
∗)|+ |b2(t

∗)|

6 KAδ + ηε < ε,

which contradicts |u′(t∗, t0, ϕ)| = ε as well. Thus, max{|u(t)|, |u′(t)|} < ε for all

t > t0 and the zero solution of equation (2.1) is stable in C1. Combined with the

fact that

lim
t→∞

u(t) = lim
t→∞

u′(t) = 0,

the zero solution of (2.1) is asymptotically stable in C1 if (3.4) holds. �

Theorem 3.2. Suppose that conditions (2.3)–(2.7) and (3.1)–(3.3) hold for (2.1).

If the trivial solution of (2.1) is globally asymptotically stable in C1, then

(3.10) lim
t→∞

∫ t

0

α2(s) ds = ∞.

P r o o f. Arguing by contradiction, suppose condition (3.10) fails. Then (3.1)

implies that lim inf
t→∞

∫ t

0 α2(s) ds > −∞ and we find a sequence {tn} ⊂ [0,∞), tn → ∞

as n→ ∞, such that

lim
n→∞

∫ tn

0

α2(s) ds = F for each F ∈ R
+.

We can also select a constant q ∈R+ such that

−q 6

∫ tn

0

α2(s) ds 6 +q, n = 1, 2, . . .

Set

0

K = sup
t>t0

e
−

∫
t

t0
α1(s) ds and

0

A = sup
t>t0

{|α2(t)|}, J = lim inf
t→∞

∫ t

0

α1(s) ds.

Hence, it follows from (3.1) that J ∈ R,
0

K,
0

A ∈ R
+.
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Since (3.10) fails, then the statement that
∫ t

0
α1(s) ds tends to ∞ as t → ∞ fails,

too. By (3.1), for the sequence {tn} defined above, one can choose J ∈ R
+ such that

(3.11) −J 6

∫ tn

0

α1(s) ds 6 +J, n = 1, 2, . . .

Put

In =

∫ tn

0

e
∫

s

0
α1(z) dz(|b1(s)|+ |b2(s)|) ds, n = 1, 2, . . .

But, in view of condition (3.2) we have

In =

∫ tn

0

e
∫

s

0
α1(z) dz(|b1(s)|+ |b2(s)|) ds 6 η.

From (3.11), it then follows that

In = e
∫

tn

0
α1(z) dz

∫ tn

0

e
∫

s

0
α1(z) dz(|b1(s)|+ |b2(s)|) ds 6 ηe

∫
tn

0
α1(z) dz < eJ .

Therefore the sequence {In} is bounded. Thus, the sequence {In} has a convergent

subsequence. Without loss of generality, we can assume that

lim
n→∞

∫ tn

0

e
∫

s

0
α1(z) dz(|b1(s)|+ |b2(s)|) ds = µ for some µ ∈ R

+.

Let m be an integer such that

(3.12)

∫ tn

tm

e
∫

s

0
α1(z) dz(|b1(s)|+ |b2(s)|) ds <

1− η

4Be2q(e−J + 1)

and

(3.13) e−
∫

tn

tm
α1(z) dz >

1

2
, e−

∫
tn

0
α1(z) dz < e−J + 1, e

∫
tm

0
α1(z) dz < eJ + 1

for all n > m, where

B = max
{

0

K(eJ + 1),
0

K
0

A(eJ + 1), 1
}

.

For any δ0 > 0, we consider u(t) = u(t, tm, ϕ) to be the solution of (2.1) with

|ϕ|tm < δ0 and |ϕ(tm)| > δ0/2 for t < tm. It therefore follows from (3.5), (3.6), (3.13)

and (3.1)–(3.3), that for t ∈ [tm,∞),

|u(t)| 6 δ0e
−

∫
t

tm
α1(s) ds +

∫ t

tm

e−
∫

t

s
α1(z) dz(|g(s, u′s)|+ |f(s, us)|) ds

6
0

K(eJ + 1)δ0 + ‖u‖tm

∫ t

tm

e−
∫

t

s
α1(z) dz(|b1(s)|+ |b2(s)|) ds

6 Bδ0 + η‖u‖tm
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and

|u′(t)| 6 |u(tm)||α2(t)|e
−

∫
t

tm
α1(s) ds + |g(t, u′t)|+ |f(t, ut)|

+ |α2(t)|

∫ t

tm

e−
∫

t

s
α1(z) dz(|g(s, u′s)|+ |f(s, us)|) ds

6
0

K
0

A(eJ + 1)δ0

+ ‖u‖tm

(

|α2(t)|

∫ t

tm

e−
∫

t

s
α1(z) dz(|b1(s)|+ |b2(s)|) ds+ (|b1(t)|+ |b2(t)|)

)

6 Bδ0 + η‖u‖tm .

Hence, ‖u‖tm 6 Bδ0 + η‖u‖tm , thus we have

(3.14) ‖u‖tm 6
B

1− η
δ0 ∀ t > tm.

It then follows from (3.5), (3.12)–(3.14) and (2.3), (2.4), (2.7) that for any n > m

|u(tn)| > |ϕ(tm)|e−
∫

tn

tm
α2(s) ds −

∣

∣

∣

∣

∫ tn

tm

e−
∫

tn

s

∑
N

i=1
ai(z,uz) dz(g(s, u′s) + f(s, us)) ds

∣

∣

∣

∣

> δ0e
−

∫
tn

tm
α2(s) ds −

∫ tn

tm

e−
∫

tn

s

∑
N

i=1
ai(z,uz) dz|g(s, u′s) + f(s, us)| ds

> δ0e
−

∫
tn

tm
α2(s) ds − ‖u‖tme−

∫
tn

0
α1(z) dz

∫ tn

tm

e
∫

s

0
α1(z) dz(|b1(s)|+ |b2(s)|) ds

> δ0e
−

∫
tn

tm
α2(s) ds − ‖u‖tme−

∫
tn

0
α1(z) dz

∫ tn

tm

e
∫

s

0
α1(z) dz(|b1(s)|+ |b2(s)|) ds.

But

e−
∫

tn

tm
α2(z) ds = e

∫
0

tn
α2(z) dze

∫
tm

0
α2(z) dz = e−

∫
tn

0
α2(z) dze

∫
tm

0
α2(z) dz > e−2q

and e−
∫

tn

0
α1(z) dz 6 e−J + 1, which implies

(3.15) |u(tn)| >
1

2
δ0e

−2q −
δ0B

1− η
(e−J + 1)

1− η

4Be2q(e−J + 1)
=

1

2
δ0e

−2q.

The facts that lim
n→∞

tn = ∞ and the trivial solution of (2.1) is asymptotically sta-

ble in C1 imply lim
n→∞

u(t, tn, ϕ) = lim
n→∞

u′(t, tn, ϕ) = 0, which is in contradiction

with (3.15). The proof of Theorem 3.2 is complete. �
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Corollary 3.1. Assume that (A1)–(A6) hold, and for any t > t0, if there is an

η ∈ (0, 12 ) such that

lim inf
t→∞

∫ t

t0

α1(s) ds > −∞

and
∫ t

t0

e−
∫

t

s
α1(z) dz(|b1(s)|+ |b2(s)|) ds 6 η,

then the zero solution to equation (2.1) is asymptotically stable in C0 if

∫ t

t0

α1(s) ds→ ∞ as t→ ∞.

For equation (2.1), we also have

Corollary 3.2. Suppose that (A1)–(A6) and (3.1), (3.2) hold. If the trivial

solution of (2.1) is asymptotically stable in C0, then we get

∫ t

t0

α2(s) ds→ ∞ as t→ ∞.

R em a r k 3.1. Regarding Ziad et al. [23], Corollary 3.1 and Corollary 3.2 are

natural generalizations of Theorem 3.1 and Theorem 3.2 in [23], respectively. In

fact, when g(t, u′t) = 0 our conditions reduce to those of Ziad et al. (see [23]).

Now we consider the standard form of totally nonlinear neutral differential equa-

tions

(3.16) u′(t) = −h(t, u(t)) + g(t, u′t) + f(t, ut), t > t0.

Similarly to equation (2.1), if we assume that

(A7) h(t, 0) and there exist α1, α2 ∈ C(R,R) such that

α1(t) 6
∂h(t, u)

∂u
6 α2(t),

then we can get the following theorem.
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Theorem 3.3. Assume that (A1)–(A7) and (3.1)–(3.4) hold, then the trivial

solution to (3.16) is asymptotically stable in C1.

P r o o f. For any h ∈ C1, since h(t, 0) = 0 it is straightforward to see that

h(t, u) =

(
∫ 1

0

∂h(t, su)

∂u
ds

)

u.

If we set
N
∑

i=1

ai(t, ut) =

∫ 1

0

∂h(t, su)

∂u
ds,

then we can rewrite (2.1) as (3.16) with

α1(t) 6

N
∑

i=1

ai(t, ut) 6 α2(t).

Then the claim is true thanks to Theorem 3.1. �

In addition, we derive another result for equation (3.16).

Theorem 3.4. If conditions (A1)–(A6) and (3.1)–(3.3) are fulfilled, then the

zero solution of (3.16) with a small initial function is asymptotically stable in C1. If

the zero solution of (3.16) is globally asymptotically stable in C1, then

∫ t

0

α2(t) → ∞ as t→ ∞

holds.

Choosing N = 1 and a1(t, ut) = a(t) in Theorem 3.1, we have the following result.

Corollary 3.3. Assume that (A1)–(A6) hold and for any t > t0, there exists

a constant η ∈ (0, 12 ) such that

lim inf
t→∞

∫ t

t0

a(s) ds > −∞,(3.17)

∫ t

t0

e−
∫

t

s
a(z) dz(|b1(s)|+ |b2(s)|) ds 6 η,(3.18)

|a(t)|

∫ t

t0

e−
∫

t

s
a(z) dz(|b1(s)|+ |b2(s)|) ds+ (|b1(t)|+ |b2(t)|) 6 η.(3.19)

Then, the trivial solution to equation (2.1) is asymptotically stable in C1 if only if

∫ t

t0

a(s) ds→ ∞ as t→ ∞.
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R em a r k 3.2. Theorem 3.1 remains true if conditions (3.2), (3.3) are fulfilled for

all t > tσ with some tσ ∈ R
+.

4. Remarks and illustrative examples

Let us discuss two examples to illustrate our abstract theory.

E x am p l e 4.1. Let us consider the nonlinear neutral differential equation

(4.1) u′(t) = −a(t, u(t− τ(t)))u(t) + f(t, u(t− τ(t))) + g(t, u′(t− τ(t))),

t > 0, where

a(t, u(t− τ(t))) =
1

1 + t

(

1 +
| sin t|

1 + u2(t− τ(t))

)

,

g(t, u′(t− τ(t))) =
0.1

1 + t
sin

u′(t− τ(t))

10
,

f(t, u(t− τ(t))) = 0.4 ln
(

1 +
|u(t− τ(t))|

10(1 + t)

)

.

One can take α1(t) = (1 + t)−1 and α2(t) = 2|sin t|/(1 + t), then α1(t) 6 a(t, ut) 6

α2(t).It is easy to check that

|α2(t)| < 2 ∀ t ∈ [0,∞),

∫ t

0

α1(s) ds→ ∞ as t→ ∞.

By straightforward computation, we can check that conditions (2.2) and (2.3) of

Theorem 3.1 hold true, where τ, δ ∈ C(R+,R+) with

(4.2) t− τ(t) → ∞ and t− δ(t) → ∞ as t→ ∞.

Assume that b1(t) = 0.1/(2(1 + t)) and b2(t) = 0.5/(10(1 + t)). Then (2.3), (2.4)

hold. Also assume that η = 1
3 , then for t ∈ [0,∞)

(4.3)

∫ t

0

e−
∫

t

s
α1(z) dz(|b1(s)|+ |b2(s)|) ds

6

∫ t

0

e−
∫

t

s
(1+z)−1 dz 1

10(1 + s)
ds =

1

10
6 η

and

(4.4) |α2(t)|

∫ t

0

e−
∫

t

s
α1(z) dz(|b1(s)|+ |b2(s)|) ds+ (|b1(t)|+ |b2(t)|)

6 2

∫ t

0

e−
∫

t

s
(1+z)−1 dz 1

10(1 + s)
ds+

1

10(1 + t)
=

3

10
6 η.

Hence, all the conditions of Theorem 3.1 are fulfilled. Therefore, the zero solution

to equation (4.1) is asymptotically stable in C1.
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E x am p l e 4.2. Consider the following equation in the form (2.1),

(4.5) u′(t) = −

2
∑

i=1

ai(t, u(t− τ(t)))u(t) + f(t, u(t− τ1(t)), u(t− τ2(t)))

+ g(t, u′(t− τ1(t)), u
′(t− τ2(t)))

and put

a1(t, u) =
0.5et

1 + et

(

1 +
| cos t|

1 + e−u2

)

, a2(t, u)) =
0.5et

1 + et

(

1 +
| sinu|

2

)

,

τ ∈ C(R+,R+), and τi ∈ C(R+,R+) satisfying

(4.6) t− τi(t) → ∞ as t→ ∞, i = 1, 2.

By simple calculation, we have

α1(t) :=
et

1 + et
6

2
∑

i=1

ai(t, u(t− τ(t))) 6
1.75et

1 + et
=: α2(t)

and it is straightforward to check that

|α2(t)| < 1.75 ∀ t ∈ [0,∞) and

∫ t

0

α1(s) ds→ ∞ as t→ ∞.

Let

f(t, u1, u2) = ln
(

1 +
5(|u1|+ |u2|)

100(1 + e−t)

)

,

g(t, u1, u2) = 0.1 sin
u1

5(1 + e−t)
+ 0.12 sin

u2
4(1 + e−t)

,

then we obtain

|f(t, u1, u2)− f(t, v1, v2)| 6 |b1(t)||u1 − v1|+ |b2(t)||u2 − v2|,

|g(t, u1, u2)− g(t, v1, v2)| 6 |c1(t)||u1 − v1|+ |c2(t)||u2 − v2|,

where

b1(t) = b2(t) =
5

100(1 + e−t)

and

c1(t) =
0.02

1 + e−t
, c2(t) =

0.03

1 + e−t
.
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Then (A1)–(A6) hold. In addition, let η = 4
9 , then for t ∈ [0,∞),

(4.7)

∫ t

0

e−
∫

t

s
α1(z) dz

2
∑

j=1

|bj(s)|+ |cj(s)| ds

<

∫ t

0

e−
∫

t

s
(ez/(1+ez)) dz

( es

10(1 + es)
+

0.05es

1 + es

)

ds < 0.15 < η

and

(4.8) |α2(t)|

∫ t

0

e−
∫

t

s
α1(z) dz

2
∑

j=1

(|bj(s)|+ |cj(s)|) ds+

2
∑

j=1

(|bj(t)|+ |cj(t)|)

< 1.75×

∫ t

0

e−
∫

t

s
ez(1+ez)−1 dz

( es

10(1 + es)
+

0.05es

1 + es

)

ds

+
et

10(1 + et)
+

0.05et

1 + et

< 1.75× 0.15 +
et

10(1 + et)
+

0.05et

1 + et
< 1.75× 0.15 + 0.15 = 0.413 6 η.

Hence, (3.2) and (3.3) hold. According to Theorem 3.1, the zero solution of equa-

tion (4.5) is globally asymptotically stable in C1.

R em a r k 4.1. Theorem 3.1 includes and generalizes the result of Ardjouni

and Djoudi, see [3]. In fact, when we choose N = 1 and a1(t, ut) = a(t)

(a is bounded), g(t, u′t) = g(t, u′(t − τ1(t)), u
′(t − τ2(t)), . . . , u

′(t − τn(t))) and

f(t, ut) = f(t, u(t − τ1(t)), u(t − τ2(t)), . . . , u(t − τn(t))), our conditions reduce

to those of Ardjouni and Djoudi (see [3], Theorem 2.1).

R em a r k 4.2. It has been noted in [26] that a fading memory condition such

as (2.5), (2.6) or (4.6) is necessary for the asymptotic behavior of a general neutral

differential equation. This means that the equation representing a physical system

has to remember its past, but the memory has to fade over time.

Conclusion

In this work, a standard totally nonlinear neutral differential equation has been

studied. Based on the Banach fixed point theorem, some new sufficient conditions

ensuring the global asymptotic stability in C1 of the trivial solution to equation (2.1)

have been established. The main contribution of this paper confirms the importance

and advantage of using the fixed point theory. The derived stability criteria are
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easy to apply in practice and do not need the differentiability of the delays or co-

efficients, which are required in [17]. Moreover, we can easily see that Theorem 3.1

and the corollaries cited above are independent of some restrictive conditions in ref-

erence [17]. Up to now, the results derived here have not been published in the

corresponding literature. Illustrative examples are given to show the efficiency of the

results introduced. Hence, in future, we would like to extend the application of this

precise approach to more complex delay models such as the equations with damped

stochastic perturbations and other variants.
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