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Abstract. The present paper deals with the numerical solution of 3D shape optimiza-
tion problems in frictional contact mechanics. Mathematical modelling of the Coulomb
friction problem leads to an implicit variational inequality which can be written as a fixed
point problem. Furthermore, it is known that the discretized problem is uniquely solvable
for small coefficients of friction. Since the considered problem is nonsmooth, we exploit
the generalized Mordukhovich’s differential calculus to compute the needed subgradient
information.

The state problem is solved using successive approximations combined with the Total
FETI (TFETI) method. The latter is based on tearing the bodies into “floating” subdo-
mains, discretization by finite elements, and solving the resulting quadratic programming
problem by augmented Lagrangians.

The presented numerical experiments demonstrate our method’s power and the impor-
tance of the proper modelling of 3D frictional contact problems. The state problem solution
and the sensitivity analysis process were implemented in parallel.
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1. INTRODUCTION

Shape optimization in contact mechanics aims to find shapes of deformable bod-
ies, possibly in mutual contact. An essential feature of contact shape optimization
with Coulomb’s friction is its nonsmooth character, since the respective control-state
mapping is typically nondifferentiable. To solve this problem correctly, one must use
a special minimization method developed for nonsmooth optimization. More details
can be found in [2], [1], [3], [16]. Note that not many papers deal with solving
contact shape optimization problems, especially with friction. For example, the arti-
cles [15], [20] have been published in recent years in this area. In [15], the solution of
the shape optimization problem for a frictionless contact problem is considered, which
leads to a much easier optimization problem than we present in this paper. In [20],
the shape and topological optimization problems with Coulomb friction are formu-
lated and solved using regularization and penalization, leading to a simpler problem.

An efficient solution to contact problems is crucial in contact shape optimiza-
tion applications in mechanical engineering. Large multibody contact problems of
linear elastostatics, see, e.g., [6], are complicated due to the inequality boundary
conditions. Moreover, if we admit “floating” bodies, the corresponding stiffness ma-
trices are only positive semidefinite (i.e., singular). It is natural to assume that the
solution of contact problems is more costly than that of a related linear problem
with the classical Dirichlet and Neumann boundary conditions. For detailed in-
formation about our contact problem formulation approach and used minimization
algorithms, see [7].

Let us point out that this article extends in many ways the brief conference pa-
per [4]. Here, we again use Signorini and Hertz contact problems as academic bench-
marks for the numerical experiments. However, these are now solved with signifi-
cantly finer discretizations. This is achieved by speeding up the sensitivity analysis
process, i.e., the computation of the Clarke subgradient, which is ensured using the
Total FETI (TFETI) approach (see Section 4 and [6], [17]). Another substantial
improvement is the parallelization of the state problem solution and also the paral-
lel implementation of the sensitivity analysis. The experiments were carried out on
the research infrastructure of IT4Innovations—the Czech National Supercomputing
Center. Another aim of the paper is to show the significance of Coulomb’s friction
model, which has to be used for a sufficiently accurate solution of the problem lead-
ing to a homogeneous distribution of normal contact stress on the contact boundary
(see Example 5.3).

The outline of the paper is as follows. In Section 2, we briefly present a formulation
of the discrete state contact problem with Coulomb’s friction by using the well-known
TFETI. Section 3 focuses on the discrete shape optimization. In Section 4, we deal
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with the computation of Clarke’s subgradients of the respective locally Lipschitz
and semismooth composite objective function that have to be supplied to the used
algorithm of nonsmooth optimization. Section 5 is devoted to several test examples.

2. SETTING OF THE DISCRETE STATE PROBLEM

Here we present the algebraic setting of the discrete two-body contact problem
with respect to the shape design variable a. In this section, all matrices and vectors
(except f, FI? and ¢ £) depend on the shape variable, so for the sake of lucidity we
will omit this dependency in our notation. In Section 5, we test shape optimization
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Figure 1. Contact problem types: body and rigid obstacle (left), two bodies (right). In this
case, each body is decomposed into 2 X 2 X 2 subdomains, i.e., n = 2.

on two types of 3D contact problems. The first type considers only one body in
possible contact with rigid obstacle (see Fig. 1 left) and the second type is a two-body
frictional contact problem (see Fig. 1 right). For reasons of clarity, we present here
only the algebraic formulation of the more general setting—the two-body problem:

(2.1) u* :=argminJy(u) subject to Nu<cy and Bpu=cg,
ueRr3m

where m is the number of all nodes and

(2.2) Julw) = F0) +gu(w), f(u) = suTKu 'Y,

ull K o £l1]
u= Lm]’ K= [ 0 Km}v f= [f[Q]]'

and
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The upper indices ()I! and ()[? indicate the lower and upper body, respectively
(see Fig. 1 right). Notice that for each Qll i = 1,2, the vector ul’!l contains the
displacements (in all three coordinate directions), K[7 is the stiffness matrix, f
represents the load vector. Furthermore, N denotes the normal displacement jump
matrix, cy is an initial gap, and B with cg represent linear constraints stemming
from both Dirichlet boundary condition and domain decomposition. The objective
functional Jj, is defined in (2.2) as the sum of f and jj,, which are the terms corre-
sponding to the elastic and frictional energy, respectively. The frictional term jj is
described further in (2.3).

We consider our two-body contact problem with the following bodies and contact

interfaces:

= {(z1,22,23) € (0,a) x (0,b) x R: 0<x3<F[](x1,x2)},
{(z1,22,23) € (0,a) x (0,b) x R: F[](xl,x2)<x3<k},
F[” {(@1, 22, F{) (1, 22)) € [0,a] x [0,] x R},
= {( ) €[0,a] x [0,b] x R},

where FI?! represents a given (fixed) shape of I'? and FL is a function extracting the

upper boundary I‘g] of the lower body Q! from shape design variable . Notice that

)
)

T1,T2, F[ ](.131 X9

the upper side of the body Q[?! is flat, i.e., it is given by a constant k. In Fig. 1 we also
illustrate that we utilized the domain decomposition technique to enable dealing with
large domains. Thus, each Q[ is decomposed into nonoverlapping subdomains Q)

- ?’L3 - - 2”3 -
— U Qu), QP = U Q@)
i=1 j=ni+1
where n stands for the number of subdomains in each coordinate direction and
the line over a domain indicates its closure. We utilize TFETI (which stems from
the original FETT [8]) for solving the state problem, where the Dirichlet boundary
condition is imposed by Lagrange multipliers; see [6]. Torn subdomains are glued
together by equality constraints using the matrix Bg and the Dirichlet conditions
are treated in the same manner using the matrix Bp:

B
BELI:CE7 BE = |:BG:|7 Cp = |:CG:|.
D Cp

The frictional term j; in the case of Tresca friction is given using Lagrange mul-
tipliers Ar as

2.3 W, || T,;u max A T;u,
23) DTl =3 s AT

<P,
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where U, is a given slip bound and m,. is the number of nodes on the contact bound-
ary I‘[Cl]. In (2.1) we use the a-dependent rows of the matrix N that extract normal

jumps of the displacement between the boundaries F[CI] and F[CQ]

. In the same manner,
we introduce two-row tangential jump matrices T; in (2.3). These matrices usually
depend not only on the design variable o but also on the solution u*. In this text,
we simplify our work and analysis by neglecting the dependence on u* and defining
the outer normal only as the direction of the z3-axis.

Finally, let us introduce the algebraic formulation of our state contact problem

with Tresca friction as

(u*, ") := argminsup .Z(a)(u, Ay, Ar, Ag) subject to Ay = 0 and || Aq;|| < ;
u A

with
L) (W, AN, A, Ap) i= f(u) + ApTu+ AL (Nu — cy) + AL (Bpu — cg).

Here the Lagrange multipliers A := (An, Ap, Ag) are marked with subscripts denot-
ing normal, tangent, and equality parts, respectively.

Coulomb’s friction. Finally, let us deal with the contact problem with Cou-
lomb’s friction and denote the coefficient of friction by F. The Tresca friction can
be utilized to define the mapping

2: (RY)™ o (RY)™, E(®) := FAy,

where RS‘ denotes all nonnegative real numbers. It can be shown that the fixed point
of = equals to the solution to the problem with Coulomb’s friction. Here W is a vector
with the entries ¥; introduced in (2.3). It is well known [6], [21] that the sequence
{FXAE Y, FARFL = =(FAK,) with the initial slip bound FAY € (Rf)™e, converges to
the fixed point FAy if the mapping = is contractive in (Ra')mu. In addition, such
a fixed point exists uniquely provided F is small enough. We also recommend the
book [7] for further reading.

3. DISCRETE SHAPE OPTIMIZATION

In the preceding section, we fixed the shape of the contact boundary. From now
on, we will start using o as a design variable that controls our state problem. Let us
denote by S the control-state mapping that assigns the design variable o € R¢ the
solution (u, A) of the 3D contact problem with Coulomb’s friction. Notice that S(c)
is nonempty for all a € U, where U is a set of all admissible design variables, and
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single-valued for small friction coefficients. See [1] for details. Let us introduce
a differentiable function
J: Gr§ —» R

that will be called an objective function. The term GrS denotes the graph of S.
We will now establish the notation utilized in the following sections. If F': RP — RY
is a Lipschitz single-valued mapping, then

OF (x) = conv { klim VF(xi): xx 25 x}

defines the generalized Jacobian of Clarke. The set Q2 contains all points at which F
is differentiable. For ¢ = 1 the term OF(x) is the Clarke generalized gradient. Fur-
thermore, we will use the following notions of Mordukhovich’s generalized differential
calculus [12], [13], [14]. If A C RP is closed and a point X belongs to A, then

*
~

Na(x) = {x* € RP: Limsup<XL__x> < O}
< Ax Ix —x||

is the Fréchet reqular normal cone to A at X. We define the limiting Mordukhovich
normal cone to A at X by

N4(X) := Limsup NA(X) ,

A _
X—rX

where “Limsup” denotes the Kuratowski-Painlevé outer limit of sets; see [18]. If A
is convex, then N4(X) = N A(X). Furthermore, we say that A is normally regular
at X if N4(X) = N4(X) holds true.

Based on the above definitions, let us describe the local behaviour of multifunc-
tions. Let ®: RP = R? be a multifunction with a closed graph and let (X,y) € Gr ®.
Then we define the multifunction D*®(X,y): R? = R? as

D*®(X,7)(y") == {x" € R”: (x*,~y") € Nexo(X.7)}-

We call the above multifunction a regular coderivative of ® at (X,y). The multifunc-
tion D*®(X,y): R? = RP given by

D*o(x,y)(y") = {x" e R?: (x*,-y") € Naxa(X,¥)}

is called a limiting Mordukhovich coderivative of ® at (X,y). These two coderiva-
tives are identical provided Gr ® is normally regular at the point (X,y). If @ is
single-valued, we simply write D*®(X) or D*®(X). Moreover, if ® is continuously
differentiable, then ﬁ*@(i) = D*d(x).
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Now let us introduce the discrete optimal shape design problem as:
(3.1) Find z* := (a*,u", X*) € Gr S such that J(z*) < J(z) Vz e GrS.
If F is sufficiently small, then S is single-valued and (3.1) can be written as:
(3.2) Find a® € U such that O(a*) < O(a) Va el

with O(a) := J (e, S(ax)). Observe that the control-state mapping S is nondiffer-
entiable, and therefore, the composite function ® := J o (I, S) is nondifferentiable
as well.

To solve the shape optimization problem (3.2) we utilize our Matlab implementa-
tion of the bundle trust method. This method, which is very robust and well suited
for minimizing nondifferentiable (nonsmooth) functions, is developed by combining
the bundle and the trust region approaches; see [19] for more details. This iterative
method needs a value of the objective function and one arbitrary Clarke subgradient
at each step (see [5]), i.e., for each admissible a we must solve the state problem
(u,A) = S(a) and also compute a Clarke subgradient. Notice that finding a Clarke
subgradient is the primary goal of Section 4.

The scheme of the blocks of the iterative process utilizing the bundle trust method
for the solution of the shape optimization is depicted in Fig. 2.

l Initial shape ap

Optimized shape ay,

Bundle trust method

| T (o, (o))

1. Value of the objective

. Qg 3%

function J (e, S(aw))
A
(8797 (uk., Ak)
y
Solution of the state 2. Sensitivity analysis

problem (uk,)\k):S(ak) £k€6j(ak,8(ak))

Figure 2. Block scheme of the shape optimization process with o, denoting the vector of
the shape variables and &), denoting Clarke’s subgradient (see Section 4).

Although a detailed description of the bundle trust method is not the aim of this
paper, let us only briefly present a convergence result concerning minimization of
a nonconvex, nonsmooth, locally Lipschitz, and weakly semismooth function f.
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Recall that a function f: RP — R is weakly semismooth if it is Lipschitz near all
x € RP and for all x € RP there exists the limit
lim ,h Vh e RP.
geaf(x+th){<g >}
t10
Theorem 3.1. If the function f: RP +— R is weakly semismooth, bounded below
and the sequence of iterations {xy}ren generated by the bundle trust method is

bounded, then there exists a cluster point X € R? of the sequence {X }ren such that

0 € 0f(X).

For more details, see [19]. Let us note that the used objective functions in Section 5
are locally Lipschitz and weakly semismooth. Thus, the existence of a cluster point X
for each objective function satisfying the condition 0 € 9f(X) is guaranteed.

4. SENSITIVITY ANALYSIS

The aim of the sensitivity analysis is to compute one arbitrary Clarke subgradient
(i.e., one element of the Clarke generalized gradient) of the objective function for
each a € U. To achieve this, in this section, we will use the definition of the
Clarke generalized gradient and the limiting Mordukhovich coderivative introduced
in Section 3.

The locally Lipschitz control-state mapping S(«) can be transformed into the
following system of generalized equations:

0 =Kf(a)u —fr(a) - B(a)[ A,
0 € Ker(a)u — £ () — B(a) LA + Q(uer, Ao),

(4.1)
0 =Ky (a)u—f.,(a) - B(a)/ A,
0 € c(a) - Bla)su+ Nere (Ae)s
where the stiffness matrix K, the load vector f, the matrix B := Bg, the displace-

ments u and the Lagrange multipliers A := Ay are introduced in Section 2. The
generalized equations (4.1) utilize the notation f for free nodes, ¢ for contact nodes,
t for tangential components, v for normal components, c(a) for the shape of contact
boundary of the optimized body controlled by design variable a, and N R, for the

standard normal cone; see [2]. Let us further define the multifunction Q by

Qv(uctv Ac) = utj(ut; )\c)
with the friction term

jug, Ac) == F Y A
=1
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We rewrite (4.1) as
0 € Fla)y — £(a) +Q(y)
with

y = (u,A)" € R e,

_ [ K@) =B(e)?
F@=] g o |
() := (f(a), —c(a)) ",
Q) = (0,Q(uct, A), 0, Ngrre (X))

Now let us compute one (arbitrary) Clarke subgradient. Using the chain rule, one

can write
00(a) 2 &€ = V1J (e, S(a)) + {C' V2T (o, S(v)): C € 9S(ax)}.
Since for all y* € R? we have
D*S(a)(y*) #0 and conv(D*S(a))(y*) ={C"y": C € dS(a)},

only one element of D*S(a)(V2J (e, S())) needs to be computed. The elements
can be found from the limiting (Mordukhovich) coderivative

D*S(a)(y”) :={x" € R”: (x",—y") € Nars(a)}
by the following theorem.

Theorem 4.1. Consider the reference pair (o,y) with o € U and y = S(a).
Then for all y* € R? we have

D*S(a)(y*) € (VF(e) -y — V&(a)) TV,
provided V is the set of solutions v to the (limiting) adjoint generalized equation

0€y" +(F(a) v+ D*Qy, —F(a)y + £(a))(v).

For further details, see [1], [4].
Finally, the generalized equations from the latter theorem can be rewritten alge-
braically in order to compute one (arbitrary) Clarke subgradient £ € 90 () € RY as

£ =ViJ(e,S(@)) +p' (VF(a) y = Vi(a)), II-p=-VaJ(e,S()),

[ K BT Q O
H‘[—B 0%[62 0]’

where
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(51 and (52 are symmetric and nonsymmetric, respectively. To solve the adjoint gen-
eralized equation, we utilized the GMRES algorithm. To speed up the search for the
solution of the limiting adjoint generalized equation, we used the TFETI method;
see [9]. In addition, to further accelerate the computation, the whole process was
parallelized.

5. NUMERICAL EXPERIMENTS

In this section, we report results of our numerical experiments—the Signorini and
Hertz contact problems (see Examples 5.1 and 5.2). Since these problems can be
reformulated as fixed-point problems, successive approximations are utilized for their
solutions. Each iterative step is represented by a contact problem with given friction
computed from the previous iteration. This can be solved by using the algorithm
suggested in [10] or, alternatively, one can exploit the approach proposed in [11].
We implemented the techniques described in Sections 2—4 in Matlab. To solve every
state problem and sensitivity analysis in parallel, we employed 128 computational
cores. All the computations ran on the research infrastructure of IT4Innovations—
the Czech National Supercomputing Center.

The contact boundary Fg] is modelled by the cubic spline function FIU, therefore,
the design variable «v is the vector of its control points. Now, let us define the shape
optimization problem (the solution procedure of which utilizing the bundle trust
method is described in detail in Section 3) using this type of design variables:

(5.1) Minimize J(a,S(ar)) subject to a €U,
where

U = {ae Ré>dz: Oy < ) < FR 2y, 20), i =0,1,...,d1, j=0,1,...,d;

|a(i+19) — (09| gcldi, i=0,1,....di -1, j=0,1,...,ds:
1
. . b
la(ith) — q(63)] < Cigy i=0,1,...d1, 5 =0,1,....d> = 1;
2

021 < meas Q(a) < 022},

Co, C1, Ca1, and Cay are given positive constants and the function F'2 is for the
Signorini problem defined by (5.3) and for the Hertz problem by the function de-
scribing contact boundary of the upper body. The constants d; and ds stand for
the numbers of the shape design variables in the x; and 2 coordinate directions,
respectively. Note that the first set of constraints ensures that

|F (21, 22)| > Co
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for all (x1,2z2) € [0,a] x [0,b]. The second and third constraint sets take care of the
slopes of FO[‘1 l'in the x1 and x5 coordinate directions. It is well known that provided
the control points fulfil the above conditions, then

0

8—MFE]($17$2) <G

for all (z1,z2) € [0,a] x [0,b] and k = 1,2. The fourth constraint is given in order
to control the domain’s volume by the control points of the cubic spline, so that it
determines the volume of the body

(5.2) Q@) := {(z1, 22, 23) € (0,a) x (0,b) x R: 0 < 23 < Fl(2y,25)}.

Example 5.1. Let us first consider a single elastic body in possible contact with
a rigid obstacle; see Fig. 3. We look for a shape of the contact boundary minimizing
the peak of normal contact stress that is represented by Lagrange multipliers A(a), in
other words, we want to find o € U that minimizes the max-norm of A(a). Because
the max-norm is not continuously differentiable, we utilize the p-norm ||-||, instead,
taking p large enough (p := 4 in our case).

obstacle FI2I

LTI I~ T3
A .
| o
P

Figure 3. Example 5.1, setting of the problem.

The elastic body QM (a) is for any a € U determined by (5.2) with a := 100 mm
and b := 100 mm. The set U of all admissible designs is given by Cy := 50, Cy := 5,
C1 :=0.8-10% mm?, and Csy := 1.2 10° mm3. The Dirichlet part of the boundary
(with prescribed zero displacements in the 27 and x5 directions) is defined as Fg] =
{(0, 22, 23) € Q(c)}; see Fig. 3. Let us further define the nonzero external loads.
The bottom face I‘[P] := {(z1,22,0) € Q()} is subjected to the constant pressure
P :=3-10° N/mm?. The upper face I‘[C } modelled by FO[‘] is constrained by the rigid
obstacle F2! given by

(5.3) F2 (21, 20) = sin(2m1) +2cos (2

1
100 100 ) +103
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for all (z1,z2) € [0,a] x [0,b]. The elastic material parameters are as follows: the
Young modulus £ := 1.1 - 10> MPa, Poisson’s ratio o := 0.33, and the friction
coefficient F := 0.3.

We are concerned with the shape optimization problem:

(5.4)  Minimize J(c,S(a)) =J (e, (u,A)) = ||[A(a)||i subject to a € U.

The elastic “cube” (see Fig. 3) was uniformly cut into 35 x 35x 35 = 42 875 bricks. We
also uniformly decomposed the body into 5 x 5 x5 = 125 subdomains and applied the
finite element discretization using trilinear hexahedral elements. The total numbers
of nodal displacements and design variables were 192000 and 36, respectively, and
the number of Lagrange multipliers was 1296.

In Fig. 4, the shape of the rigid obstacle can be seen.

T3
103
102
101
100

070
Figure 4. Example 5.1, shape of the obstacle.

The von Mises stress for the initial and otpimized shapes QM (cv;,) and QM (arpt)
is shown in Fig. 5 on the left and on the right, respectively.

12-10°

100 100 10 - 10°
X X

’ ’ 8103

50 50 6. 103

0 0 4-10°
100 100

2.103
Tl

50
0

0

3
0 0 0-10

Figure 5. Example 5.1, von Mises stress for initial (left) and optimal (right) design.
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Furthermore, in Fig. 6, we depict the normal contact stress along the contact
part of Q1 (auy,) (left) and QY (awpt) (right). We can see that the peak of stress is
considerably suppressed and, in addition, the normal contact stress along the contact
part of Q1 (cwopt) is evenly distributed. The values of the objective function at ap
and agpt are 3.9691 - 10'® and 1.1065 - 107, respectively.

100 100 15-10°
o €2
10- 103
50 50
5-103
0 0 0-103
0 50 z; 100 0 50 ;100

Figure 6. Example 5.1, normal contact stress for initial (left) and optimal (right) design.

Example 5.2. Now let us consider two elastic bodies in possible bilateral con-
tact, see Fig. 7. Similarly to the previous example, we aim to find the shape of the
lower body’s contact boundary minimizing the peak of the normal contact stress rep-
resented by the Lagrange multipliers A(a). In other words, we look for a minimizer
a € U of the max-norm of A(a). Moreover, due to the nondifferentiability of the

max-norm, we again utilize the norm ||-||4 instead.

The settings now slightly differ from those used in Example 5.1. The lower elastic
body Q1(a) is for an o € U prescribed by (5.2) with a := 10 mm and b := 10 mm.
The upper elastic body Q! is defined by

Q= { (21, 29, 23) € (0,a) x (0,0) x R: F&(zy,25) < 23 < k}
with ¢ := 10 mm, b := 10 mm, & := 20 mm, and F2 g given by
FB(2y,29) == 20 — /202 — 23 — a3.

The set U of all admissible designs is defined by Cy := 5, C; := 5, Ca1 := 0.8 - 10°
mm?, and Oy := 1.2 - 10°> mm?>. We used these choices of the material parameters:
the Young modulus E := 7-10* MPa (or E := 2.1 - 105 MPa) and Poisson’s ratio
o :=0.35 (or o := 0.29) for the lower (or upper) body, and the friction coefficient
F:=0.3.
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Figure 7. Example 5.2, setting of the problem.

We prescribe the density of surface tractions as P; := (0,0, —2000 MPa) on the
top of the upper body and P := (500 MPa, 0, —2000 MPa) on the front face of the
upper body. Moreover, we impose zero normal displacements on the bottom of the
lower body and on the left and right faces of both bodies. Let us consider the shape

optimization problem:
(5.5)  Minimize J(c,S(a)) = J (e, (u,\)) = |[A()||] subject to a cU.

Each of the elastic bodies (see Fig. 7) was uniformly cut into 25 x 25 x 25 = 15625
bricks and uniformly decomposed into 5 x 5 x 5 = 125 subdomains. We used tri-
linear hexahedral finite elements for the discretization. The total numbers of nodal
displacements and design variables were 162 000 and 36, respectively. The number
of Lagrange multipliers was 676. The lower body’s contact boundary is modelled by
a cubic spline, the shape of which is controlled by design variables.

The von Mises stress corresponding to the initial shape Q! (atin) and to the opti-
mized shape QU (atopt) is shown in Fig. 8 on the left and on the right, respectively.

Fig. 9 depicts how the normal contact stress is distributed along the contact part
of QM(ayy,) (left) and QM () (right), respectively. Tt is seen that the peak of
stress is again considerably suppressed. The values of the objective function at a;y,
and apt are 1.9255 - 10'® and 2.2250 - 1017, respectively.

Example 5.3 (Comparisons of the solutions of the contact shape optimization
with and without friction). To see the importance of proper modelling of 3D contact
problems with friction, let us deal with a problem similar to that of Example 5.1,
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but now without friction. We aim to compare the solution of the Signorini problem
with the nonzero friction coefficient F := 0.3 (see Example 5.1) with the solution
of the same problem with zero friction coefficient. Let us stress that the function
O(a) := J(a,S(a)) is differentiable considering the friction coefficient equals to
zero, therefore, its minimization is much simpler.

Let us consider the situation from Example 5.1 with the very same geometry and
elastic material settings (see Fig. 3), the shape of the rigid obstacle (see Fig. 4), and
the resulting shape optimization problem (5.4).

The elastic body was uniformly cut into 12 x 12 x 12 = 1728 bricks and uniformly
divided into 2 x 2 x 2 = 8 subdomains. The trilinear hexahedral finite elements were
utilized. The total numbers of nodal displacements and design variables were 8232
and 36, respectively, and the number of Lagrange multipliers was 169.
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Figure 8. Example 5.2, von Mises stress for initial (left) and optimal (right) design.
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Figure 9. Example 5.2, normal contact stress for lower body of initial (left) and optimal
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The von Mises stress corresponding to the initial shape Q[l](ain) and to the op-
timized shape Q[l](aopt) is depicted in Figs. 10 and 11 for the friction coefficient
F := 0.3 and zero friction coefficient, respectively.
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Figure 10. Example 5.3, von Mises stress for initial (left) and optimal (right) design (with
friction).

100
xs3

50

10- 103
100
Z3 8103
50 6103
4.10°
0 0
100 100 ,
T2 2-10
50 ) 100
50 s
0% 0-10

Figure 11. Example 5.3, von Mises stress for initial (left) and optimal (right) design (with-
out friction).

Figs. 12 and 13 depict the distribution of the normal contact stress along the
contact part of QM (a,) (left) and QM (api) (right) for the friction coefficient
F :=0.3 and zero friction coefficient, respectively. These figures show that the
peak of stress is considerably suppressed and, in addition, the normal contact
stress along the contact part of QU () is evenly distributed. Notice that the
optimized shapes computed for the two previous friction coefficient choices are
very similar.
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Figure 12. Example 5.3, normal contact stress for initial (left) and optimal (right) design
(with friction).
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Figure 13. Example 5.3, normal contact stress for initial (left) and optimal (right) design
(without friction).
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Figure 14. Example 5.3, comparison (both with friction): von Mises stress for optimized
design computed for problem with nonzero friction coefficient (left) and zero
friction coefficient (right).
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Figure 15. Example 5.3, comparison (both with friction): normal contact stress for opti-
mized design computed for problem with nonzero friction coefficient (left) and
zero friction coefficient (right).

Finally, let us compute two state problems with the friction coefficient F := 0.3
and with different lower body shapes. In the first case, the lower body has the
optimized shape for the computation with friction (see Fig. 10 right), and in the
second case, the lower body has the optimized shape for the computation without
friction (see Fig. 11 right). Figs. 14 and 15 show the comparisons of the von Mises
stress and the normal contact stress for both problems, respectively. These figures
show that replacing the Coulomb friction problem with a (much simpler) model
without friction does not make much sense to get an “approximate optimal design”.

6. COMMENTS AND CONCLUSIONS

A method for the parallel solution of 3D shape optimization problems of contact
mechanics with Coulomb’s friction was presented. We had to deal with the fact that
our problem was nonsmooth. We implemented the utilized bundle trust method in
Matlab and used the Mordukhovich differential calculus for the sensitivity analy-
sis. Moreover, the sensitivity analysis process was accelerated using TFETI. For
the discretization and solution of the state contact problem, the TFETI approach
and the augmented Lagrangians method combined with active set based algorithms
were used, respectively. To speed up the whole solution process, we parallelized
both the solution of the state contact problem and the sensitivity analysis. The
efficiency of our approach was demonstrated on two academic benchmarks. Finally,
we also stress the importance of using frictional models in 3D contact mechanics.
Our method can be successfully applied to industrial problems modelled as 3D shape
optimization problems of frictional contact mechanics since they typically need very
fine discretizations.
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