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Abstract. The present paper deals with the numerical solution of 3D shape optimiza-
tion problems in frictional contact mechanics. Mathematical modelling of the Coulomb
friction problem leads to an implicit variational inequality which can be written as a fixed
point problem. Furthermore, it is known that the discretized problem is uniquely solvable
for small coefficients of friction. Since the considered problem is nonsmooth, we exploit
the generalized Mordukhovich’s differential calculus to compute the needed subgradient
information.
The state problem is solved using successive approximations combined with the Total

FETI (TFETI) method. The latter is based on tearing the bodies into “floating” subdo-
mains, discretization by finite elements, and solving the resulting quadratic programming
problem by augmented Lagrangians.
The presented numerical experiments demonstrate our method’s power and the impor-

tance of the proper modelling of 3D frictional contact problems. The state problem solution
and the sensitivity analysis process were implemented in parallel.
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1. Introduction

Shape optimization in contact mechanics aims to find shapes of deformable bod-

ies, possibly in mutual contact. An essential feature of contact shape optimization

with Coulomb’s friction is its nonsmooth character, since the respective control-state

mapping is typically nondifferentiable. To solve this problem correctly, one must use

a special minimization method developed for nonsmooth optimization. More details

can be found in [2], [1], [3], [16]. Note that not many papers deal with solving

contact shape optimization problems, especially with friction. For example, the arti-

cles [15], [20] have been published in recent years in this area. In [15], the solution of

the shape optimization problem for a frictionless contact problem is considered, which

leads to a much easier optimization problem than we present in this paper. In [20],

the shape and topological optimization problems with Coulomb friction are formu-

lated and solved using regularization and penalization, leading to a simpler problem.

An efficient solution to contact problems is crucial in contact shape optimiza-

tion applications in mechanical engineering. Large multibody contact problems of

linear elastostatics, see, e.g., [6], are complicated due to the inequality boundary

conditions. Moreover, if we admit “floating” bodies, the corresponding stiffness ma-

trices are only positive semidefinite (i.e., singular). It is natural to assume that the

solution of contact problems is more costly than that of a related linear problem

with the classical Dirichlet and Neumann boundary conditions. For detailed in-

formation about our contact problem formulation approach and used minimization

algorithms, see [7].

Let us point out that this article extends in many ways the brief conference pa-

per [4]. Here, we again use Signorini and Hertz contact problems as academic bench-

marks for the numerical experiments. However, these are now solved with signifi-

cantly finer discretizations. This is achieved by speeding up the sensitivity analysis

process, i.e., the computation of the Clarke subgradient, which is ensured using the

Total FETI (TFETI) approach (see Section 4 and [6], [17]). Another substantial

improvement is the parallelization of the state problem solution and also the paral-

lel implementation of the sensitivity analysis. The experiments were carried out on

the research infrastructure of IT4Innovations—the Czech National Supercomputing

Center. Another aim of the paper is to show the significance of Coulomb’s friction

model, which has to be used for a sufficiently accurate solution of the problem lead-

ing to a homogeneous distribution of normal contact stress on the contact boundary

(see Example 5.3).

The outline of the paper is as follows. In Section 2, we briefly present a formulation

of the discrete state contact problem with Coulomb’s friction by using the well-known

TFETI. Section 3 focuses on the discrete shape optimization. In Section 4, we deal
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with the computation of Clarke’s subgradients of the respective locally Lipschitz

and semismooth composite objective function that have to be supplied to the used

algorithm of nonsmooth optimization. Section 5 is devoted to several test examples.

2. Setting of the discrete state problem

Here we present the algebraic setting of the discrete two-body contact problem

with respect to the shape design variable α. In this section, all matrices and vectors

(except f , F [2], and cE) depend on the shape variable, so for the sake of lucidity we

will omit this dependency in our notation. In Section 5, we test shape optimization

Ω
(1)

Ω
(2)

Ω
(3)

Ω
(4)

Ω
(5)

Ω
(7)

Ω
(8)

Ω
[1]

Ω
[2]

Figure 1. Contact problem types: body and rigid obstacle (left), two bodies (right). In this
case, each body is decomposed into 2× 2× 2 subdomains, i.e., n = 2.

on two types of 3D contact problems. The first type considers only one body in

possible contact with rigid obstacle (see Fig. 1 left) and the second type is a two-body

frictional contact problem (see Fig. 1 right). For reasons of clarity, we present here

only the algebraic formulation of the more general setting—the two-body problem:

(2.1) u∗ := argmin
u∈R3m

Jh(u) subject to Nu 6 cN and BEu = cE ,

where m is the number of all nodes and

(2.2) Jh(u) := f(u) + jh(u), f(u) :=
1

2
u⊤Ku− u⊤f ,

and

u =

[
u[1]

u[2]

]
, K =

[
K[1] O

O K[2]

]
, f =

[
f [1]

f [2]

]
.
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The upper indices ()[1] and ()[2] indicate the lower and upper body, respectively

(see Fig. 1 right). Notice that for each Ω[i], i = 1, 2, the vector u[i] contains the

displacements (in all three coordinate directions), K[i] is the stiffness matrix, f [i]

represents the load vector. Furthermore, N denotes the normal displacement jump

matrix, cN is an initial gap, and BE with cE represent linear constraints stemming

from both Dirichlet boundary condition and domain decomposition. The objective

functional Jh is defined in (2.2) as the sum of f and jh, which are the terms corre-

sponding to the elastic and frictional energy, respectively. The frictional term jh is

described further in (2.3).

We consider our two-body contact problem with the following bodies and contact

interfaces:

Ω[1] := {(x1, x2, x3) ∈ (0, a)× (0, b)× R : 0 < x3 < F [1]
α

(x1, x2)},

Ω[2] := {(x1, x2, x3) ∈ (0, a)× (0, b)× R : F [2](x1, x2) < x3 < k},

Γ[1]
c := {(x1, x2, F

[1]
α (x1, x2)) ∈ [0, a]× [0, b]× R},

Γ[2]
c := {(x1, x2, F

[2](x1, x2)) ∈ [0, a]× [0, b]× R},

where F [2] represents a given (fixed) shape of Γ
[2]
c and F

[1]
α is a function extracting the

upper boundary Γ
[1]
c of the lower body Ω[1] from shape design variable α. Notice that

the upper side of the body Ω[2] is flat, i.e., it is given by a constant k. In Fig. 1 we also

illustrate that we utilized the domain decomposition technique to enable dealing with

large domains. Thus, each Ω[i] is decomposed into nonoverlapping subdomains Ω(j),

Ω[1] =

n3⋃

j=1

Ω(j), Ω[2] =

2n3⋃

j=n3+1

Ω(j),

where n stands for the number of subdomains in each coordinate direction and

the line over a domain indicates its closure. We utilize TFETI (which stems from

the original FETI [8]) for solving the state problem, where the Dirichlet boundary

condition is imposed by Lagrange multipliers; see [6]. Torn subdomains are glued

together by equality constraints using the matrix BG and the Dirichlet conditions

are treated in the same manner using the matrix BD:

BEu = cE , BE :=

[
BG

BD

]
, cE :=

[
cG

cD

]
.

The frictional term jh in the case of Tresca friction is given using Lagrange mul-

tipliers λT as

(2.3) jh(u) :=

mc∑

i=1

Ψi‖Tiu‖ =

mc∑

i=1

max
‖λTi‖6Ψi

λ⊤
TiTiu,
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where Ψi is a given slip bound and mc is the number of nodes on the contact bound-

ary Γ
[1]
c . In (2.1) we use the α-dependent rows of the matrix N that extract normal

jumps of the displacement between the boundaries Γ
[1]
c and Γ

[2]
c . In the same manner,

we introduce two-row tangential jump matrices Ti in (2.3). These matrices usually

depend not only on the design variable α but also on the solution u∗. In this text,

we simplify our work and analysis by neglecting the dependence on u∗ and defining

the outer normal only as the direction of the x3-axis.

Finally, let us introduce the algebraic formulation of our state contact problem

with Tresca friction as

(u∗,λ∗) := argmin
u

sup
λ

L (α)(u,λN ,λT ,λE) subject to λN > 0 and ‖λTi‖ 6 Ψi

with

L (α)(u,λN ,λT ,λE) := f(u) + λ⊤
TTu+ λ⊤

N (Nu− cN ) + λ⊤
E(BEu− cE).

Here the Lagrange multipliers λ := (λN ,λT ,λE) are marked with subscripts denot-

ing normal, tangent, and equality parts, respectively.

Coulomb’s friction. Finally, let us deal with the contact problem with Cou-

lomb’s friction and denote the coefficient of friction by F . The Tresca friction can

be utilized to define the mapping

Ξ: (R+
0 )

mc 7→ (R+
0 )

mc , Ξ(Ψ) := FλN ,

where R+
0 denotes all nonnegative real numbers. It can be shown that the fixed point

of Ξ equals to the solution to the problem with Coulomb’s friction. HereΨ is a vector

with the entries Ψi introduced in (2.3). It is well known [6], [21] that the sequence

{Fλk
N}, Fλk+1

N = Ξ(Fλk
N ) with the initial slip bound Fλ0

N ∈ (R+
0 )

mc , converges to

the fixed point FλN if the mapping Ξ is contractive in (R+
0 )

mc . In addition, such

a fixed point exists uniquely provided F is small enough. We also recommend the

book [7] for further reading.

3. Discrete shape optimization

In the preceding section, we fixed the shape of the contact boundary. From now

on, we will start using α as a design variable that controls our state problem. Let us

denote by S the control-state mapping that assigns the design variable α ∈ R
d the

solution (u,λ) of the 3D contact problem with Coulomb’s friction. Notice that S(α)

is nonempty for all α ∈ U , where U is a set of all admissible design variables, and
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single-valued for small friction coefficients. See [1] for details. Let us introduce

a differentiable function

J : GrS 7→ R

that will be called an objective function. The term GrS denotes the graph of S.

We will now establish the notation utilized in the following sections. If F : Rp 7→ R
q

is a Lipschitz single-valued mapping, then

∂F(x) = conv
{

lim
k→∞

∇F(xk) : xk
ΩF→ x

}

defines the generalized Jacobian of Clarke. The set ΩF contains all points at which F

is differentiable. For q = 1 the term ∂F(x) is the Clarke generalized gradient. Fur-

thermore, we will use the following notions of Mordukhovich’s generalized differential

calculus [12], [13], [14]. If A ⊂ R
p is closed and a point x belongs to A, then

N̂A(x) =
{
x∗ ∈ R

p : Lim sup
x

A
−→x

〈x∗,x− x〉

‖x− x‖
6 0

}

is the Fréchet regular normal cone to A at x. We define the limiting Mordukhovich

normal cone to A at x by

NA(x) := Lim sup
x

A
−→x

N̂A(x) ,

where “Lim sup” denotes the Kuratowski-Painlevé outer limit of sets; see [18]. If A

is convex, then NA(x) = N̂A(x). Furthermore, we say that A is normally regular

at x if NA(x) = N̂A(x) holds true.

Based on the above definitions, let us describe the local behaviour of multifunc-

tions. Let Φ: R
p ⇒ R

q be a multifunction with a closed graph and let (x,y) ∈ GrΦ.

Then we define the multifunction D̂∗Φ(x,y) : R
q ⇒ R

p as

D̂∗Φ(x,y)(y∗) := {x∗ ∈ R
p : (x∗,−y∗) ∈ N̂GrΦ(x,y)}.

We call the above multifunction a regular coderivative of Φ at (x,y). The multifunc-

tion D∗Φ(x,y) : R
q ⇒ R

p given by

D∗Φ(x,y)(y∗) := {x∗ ∈ R
p : (x∗,−y∗) ∈ NGrΦ(x,y)}

is called a limiting Mordukhovich coderivative of Φ at (x,y). These two coderiva-

tives are identical provided GrΦ is normally regular at the point (x,y). If Φ is

single-valued, we simply write D̂∗Φ(x) or D∗Φ(x). Moreover, if Φ is continuously

differentiable, then D̂∗Φ(x) = D∗Φ(x).
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Now let us introduce the discrete optimal shape design problem as:

(3.1) Find z∗ := (α∗,u∗,λ∗) ∈ GrS such that J (z∗) 6 J (z) ∀z ∈ GrS.

If F is sufficiently small, then S is single-valued and (3.1) can be written as:

(3.2) Find α∗ ∈ U such that Θ(α∗) 6 Θ(α) ∀α ∈ U

with Θ(α) := J (α,S(α)). Observe that the control-state mapping S is nondiffer-

entiable, and therefore, the composite function Θ := J ◦ (I,S) is nondifferentiable

as well.

To solve the shape optimization problem (3.2) we utilize our Matlab implementa-

tion of the bundle trust method. This method, which is very robust and well suited

for minimizing nondifferentiable (nonsmooth) functions, is developed by combining

the bundle and the trust region approaches; see [19] for more details. This iterative

method needs a value of the objective function and one arbitrary Clarke subgradient

at each step (see [5]), i.e., for each admissible α we must solve the state problem

(u,λ) = S(α) and also compute a Clarke subgradient. Notice that finding a Clarke

subgradient is the primary goal of Section 4.

The scheme of the blocks of the iterative process utilizing the bundle trust method

for the solution of the shape optimization is depicted in Fig. 2.

Bundle trust method

Initial shape α0

Optimized shape αk

1. Value of the objective

function J (αk,S(αk))

αk J (αk,S(αk))

Solution of the state

problem (uk,λk) =S(αk)

αk (uk,λk)

2. Sensitivity analysis

ξk ∈ ∂J (αk,S(αk))

αk ξk

Figure 2. Block scheme of the shape optimization process with αk denoting the vector of
the shape variables and ξk denoting Clarke’s subgradient (see Section 4).

Although a detailed description of the bundle trust method is not the aim of this

paper, let us only briefly present a convergence result concerning minimization of

a nonconvex, nonsmooth, locally Lipschitz, and weakly semismooth function f .
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Recall that a function f : R
p 7→ R is weakly semismooth if it is Lipschitz near all

x ∈ R
p and for all x ∈ R

p there exists the limit

lim
g∈∂f(x+th)

t ↓ 0

{〈g,h〉} ∀h ∈ R
p.

Theorem 3.1. If the function f : R
p 7→ R is weakly semismooth, bounded below

and the sequence of iterations {xk}k∈N generated by the bundle trust method is

bounded, then there exists a cluster point x ∈ R
p of the sequence {xk}k∈N such that

0 ∈ ∂f(x).

For more details, see [19]. Let us note that the used objective functions in Section 5

are locally Lipschitz and weakly semismooth. Thus, the existence of a cluster point x

for each objective function satisfying the condition 0 ∈ ∂f(x) is guaranteed.

4. Sensitivity analysis

The aim of the sensitivity analysis is to compute one arbitrary Clarke subgradient

(i.e., one element of the Clarke generalized gradient) of the objective function for

each α ∈ U . To achieve this, in this section, we will use the definition of the

Clarke generalized gradient and the limiting Mordukhovich coderivative introduced

in Section 3.

The locally Lipschitz control-state mapping S(α) can be transformed into the

following system of generalized equations:

(4.1)





0 = Kf (α)u− ff (α)− B(α)⊤f λ,

0 ∈ Kct(α)u− fct(α)− B(α)⊤ctλ+ Q̃(uct,λc),

0 = Kcν(α)u− fcν(α) − B(α)⊤cνλ,

0 ∈ c(α) − B(α)cνu+NR
mc
+

(λc),

where the stiffness matrix K, the load vector f , the matrix B := BE , the displace-

ments u and the Lagrange multipliers λ := λN are introduced in Section 2. The

generalized equations (4.1) utilize the notation f for free nodes, c for contact nodes,

t for tangential components, ν for normal components, c(α) for the shape of contact

boundary of the optimized body controlled by design variable α, and NR
p
+
for the

standard normal cone; see [2]. Let us further define the multifunction Q̃ by

Q̃(uct,λc) := ∂ut
j(ut,λc)

with the friction term

j(ut,λc) := F
mc∑

i=1

λi
c‖u

i
t‖.
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We rewrite (4.1) as

0 ∈ F(α)y − ℓ(α) +Q(y)

with

y := (u,λ)⊤ ∈ R
3m+mc ,

F(α) :=

[
K(α) −B(α)⊤

−B(α) O

]
,

ℓ(α) := (f(α),−c(α))⊤,

Q(y) := (0, Q̃(uct,λc),0, NR
mc
+

(λc))
⊤.

Now let us compute one (arbitrary) Clarke subgradient. Using the chain rule, one

can write

∂Θ(α) ∋ ξ = ∇1J (α,S(α)) + {C⊤∇2J (α,S(α)) : C ∈ ∂S(α)}.

Since for all y∗ ∈ R
q we have

D∗S(α)(y∗) 6= ∅ and conv (D∗S(α))(y∗) = {C⊤y∗ : C ∈ ∂S(α)},

only one element of D∗S(α)(∇2J (α,S(α))) needs to be computed. The elements

can be found from the limiting (Mordukhovich) coderivative

D∗S(α)(y∗) := {x∗ ∈ R
p : (x∗,−y∗) ∈ NGrS(α)}

by the following theorem.

Theorem 4.1. Consider the reference pair (α,y) with α ∈ U and y = S(α).

Then for all y∗ ∈ R
q we have

D∗S(α)(y∗) ⊂ (∇F(α) · y −∇ℓ(α))⊤V ,

provided V is the set of solutions v to the (limiting) adjoint generalized equation

0 ∈ y∗ + (F(α))⊤v +D∗Q(y,−F(α)y + ℓ(α))(v).

For further details, see [1], [4].

Finally, the generalized equations from the latter theorem can be rewritten alge-

braically in order to compute one (arbitrary) Clarke subgradient ξ ∈ ∂Θ(α) ∈ R
d as

ξ = ∇1J (α,S(α)) + p⊤(∇F(α) · y −∇ℓ(α)), Π · p = −∇2J (α,S(α)),

where

Π =

[
K −B⊤

−B O

]
+

[
Q̃1 O

Q̃2 O

]
,
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Q̃1 and Q̃2 are symmetric and nonsymmetric, respectively. To solve the adjoint gen-

eralized equation, we utilized the GMRES algorithm. To speed up the search for the

solution of the limiting adjoint generalized equation, we used the TFETI method;

see [9]. In addition, to further accelerate the computation, the whole process was

parallelized.

5. Numerical experiments

In this section, we report results of our numerical experiments—the Signorini and

Hertz contact problems (see Examples 5.1 and 5.2). Since these problems can be

reformulated as fixed-point problems, successive approximations are utilized for their

solutions. Each iterative step is represented by a contact problem with given friction

computed from the previous iteration. This can be solved by using the algorithm

suggested in [10] or, alternatively, one can exploit the approach proposed in [11].

We implemented the techniques described in Sections 2–4 in Matlab. To solve every

state problem and sensitivity analysis in parallel, we employed 128 computational

cores. All the computations ran on the research infrastructure of IT4Innovations—

the Czech National Supercomputing Center.

The contact boundary Γ
[1]
c is modelled by the cubic spline function F [1], therefore,

the design variable α is the vector of its control points. Now, let us define the shape

optimization problem (the solution procedure of which utilizing the bundle trust

method is described in detail in Section 3) using this type of design variables:

(5.1) Minimize J (α,S(α)) subject to α ∈ U ,

where

U :=
{
α ∈ R

d1×d2 : C0 6 α(i,j)
6 F [2](x1, x2), i = 0, 1, . . . , d1, j = 0, 1, . . . , d2;

|α(i+1,j) −α(i,j)| 6 C1
a

d1
, i = 0, 1, . . . , d1 − 1, j = 0, 1, . . . , d2;

|α(i,j+1) −α(i,j)| 6 C1
b

d2
, i = 0, 1, . . . , d1, j = 0, 1, . . . , d2 − 1;

C21 6 meas Ω(α) 6 C22

}
,

C0, C1, C21, and C22 are given positive constants and the function F [2] is for the

Signorini problem defined by (5.3) and for the Hertz problem by the function de-

scribing contact boundary of the upper body. The constants d1 and d2 stand for

the numbers of the shape design variables in the x1 and x2 coordinate directions,

respectively. Note that the first set of constraints ensures that

|F [1]
α

(x1, x2)| > C0
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for all (x1, x2) ∈ [0, a]× [0, b]. The second and third constraint sets take care of the

slopes of F
[1]
α in the x1 and x2 coordinate directions. It is well known that provided

the control points fulfil the above conditions, then

∣∣∣ ∂

∂xk

F [1]
α

(x1, x2)
∣∣∣ 6 C1

for all (x1, x2) ∈ [0, a] × [0, b] and k = 1, 2. The fourth constraint is given in order

to control the domain’s volume by the control points of the cubic spline, so that it

determines the volume of the body

(5.2) Ω[1](α) := {(x1, x2, x3) ∈ (0, a)× (0, b)× R : 0 < x3 < F [1]
α

(x1, x2)}.

E x am p l e 5.1. Let us first consider a single elastic body in possible contact with

a rigid obstacle; see Fig. 3. We look for a shape of the contact boundary minimizing

the peak of normal contact stress that is represented by Lagrange multipliers λ(α), in

other words, we want to find α ∈ U that minimizes the max-norm of λ(α). Because

the max-norm is not continuously differentiable, we utilize the p-norm ‖·‖p instead,

taking p large enough (p := 4 in our case).

P

x1

x2

x3

u1 = u2 =0

obstacle F
[2]

Figure 3. Example 5.1, setting of the problem.

The elastic body Ω[1](α) is for any α ∈ U determined by (5.2) with a := 100 mm

and b := 100 mm. The set U of all admissible designs is given by C0 := 50, C1 := 5,

C21 := 0.8 · 106 mm3, and C22 := 1.2 · 106 mm3. The Dirichlet part of the boundary

(with prescribed zero displacements in the x1 and x2 directions) is defined as Γ
[1]
u :=

{(0, x2, x3) ∈ Ω[1](α)}; see Fig. 3. Let us further define the nonzero external loads.

The bottom face Γ
[1]
P := {(x1, x2, 0) ∈ Ω[1](α)} is subjected to the constant pressure

P := 3 ·103 N/mm2. The upper face Γ
[1]
c modelled by F

[1]
α is constrained by the rigid

obstacle F [2] given by

(5.3) F [2](x1, x2) := sin
(2πx1

100

)
+ 2 cos

(2πx2

100

)
+ 103
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for all (x1, x2) ∈ [0, a] × [0, b]. The elastic material parameters are as follows: the

Young modulus E := 1.1 · 105 MPa, Poisson’s ratio σ := 0.33, and the friction

coefficient F := 0.3.

We are concerned with the shape optimization problem:

(5.4) Minimize J (α,S(α)) = J (α, (u,λ)) := ‖λ(α)‖44 subject to α ∈ U .

The elastic “cube” (see Fig. 3) was uniformly cut into 35×35×35 = 42 875 bricks. We

also uniformly decomposed the body into 5×5×5 = 125 subdomains and applied the

finite element discretization using trilinear hexahedral elements. The total numbers

of nodal displacements and design variables were 192 000 and 36, respectively, and

the number of Lagrange multipliers was 1296.

In Fig. 4, the shape of the rigid obstacle can be seen.
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Figure 4. Example 5.1, shape of the obstacle.

The von Mises stress for the initial and otpimized shapes Ω[1](αin) and Ω
[1](αopt)

is shown in Fig. 5 on the left and on the right, respectively.
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Figure 5. Example 5.1, von Mises stress for initial (left) and optimal (right) design.
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Furthermore, in Fig. 6, we depict the normal contact stress along the contact

part of Ω[1](αin) (left) and Ω[1](αopt) (right). We can see that the peak of stress is

considerably suppressed and, in addition, the normal contact stress along the contact

part of Ω[1](αopt) is evenly distributed. The values of the objective function at αin

and αopt are 3.9691 · 1018 and 1.1065 · 1017, respectively.
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Figure 6. Example 5.1, normal contact stress for initial (left) and optimal (right) design.

E x am p l e 5.2. Now let us consider two elastic bodies in possible bilateral con-

tact, see Fig. 7. Similarly to the previous example, we aim to find the shape of the

lower body’s contact boundary minimizing the peak of the normal contact stress rep-

resented by the Lagrange multipliers λ(α). In other words, we look for a minimizer

α ∈ U of the max-norm of λ(α). Moreover, due to the nondifferentiability of the

max-norm, we again utilize the norm ‖·‖4 instead.

The settings now slightly differ from those used in Example 5.1. The lower elastic

body Ω[1](α) is for an α ∈ U prescribed by (5.2) with a := 10 mm and b := 10 mm.

The upper elastic body Ω[2] is defined by

Ω[2] := {(x1, x2, x3) ∈ (0, a)× (0, b)× R : F [2](x1, x2) < x3 < k}

with a := 10 mm, b := 10 mm, k := 20 mm, and F [2] is given by

F [2](x1, x2) := 20−
√
202 − x2

1 − x2
2.

The set U of all admissible designs is defined by C0 := 5, C1 := 5, C21 := 0.8 · 103

mm3, and C22 := 1.2 · 103 mm3. We used these choices of the material parameters:

the Young modulus E := 7 · 104 MPa (or E := 2.1 · 105 MPa) and Poisson’s ratio

σ := 0.35 (or σ := 0.29) for the lower (or upper) body, and the friction coefficient

F := 0.3.
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Figure 7. Example 5.2, setting of the problem.

We prescribe the density of surface tractions as P1 := (0, 0,−2000 MPa) on the

top of the upper body and P2 := (500 MPa, 0,−2000 MPa) on the front face of the

upper body. Moreover, we impose zero normal displacements on the bottom of the

lower body and on the left and right faces of both bodies. Let us consider the shape

optimization problem:

(5.5) Minimize J (α,S(α)) = J (α, (u,λ)) := ‖λ(α)‖44 subject to α ∈ U .

Each of the elastic bodies (see Fig. 7) was uniformly cut into 25× 25× 25 = 15 625

bricks and uniformly decomposed into 5 × 5 × 5 = 125 subdomains. We used tri-

linear hexahedral finite elements for the discretization. The total numbers of nodal

displacements and design variables were 162 000 and 36, respectively. The number

of Lagrange multipliers was 676. The lower body’s contact boundary is modelled by

a cubic spline, the shape of which is controlled by design variables.

The von Mises stress corresponding to the initial shape Ω[1](αin) and to the opti-

mized shape Ω[1](αopt) is shown in Fig. 8 on the left and on the right, respectively.

Fig. 9 depicts how the normal contact stress is distributed along the contact part

of Ω[1](αin) (left) and Ω[1](αopt) (right), respectively. It is seen that the peak of

stress is again considerably suppressed. The values of the objective function at αin

and αopt are 1.9255 · 1018 and 2.2250 · 1017, respectively.

E x am p l e 5.3 (Comparisons of the solutions of the contact shape optimization

with and without friction). To see the importance of proper modelling of 3D contact

problems with friction, let us deal with a problem similar to that of Example 5.1,
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but now without friction. We aim to compare the solution of the Signorini problem

with the nonzero friction coefficient F := 0.3 (see Example 5.1) with the solution

of the same problem with zero friction coefficient. Let us stress that the function

Θ(α) := J (α,S(α)) is differentiable considering the friction coefficient equals to

zero, therefore, its minimization is much simpler.

Let us consider the situation from Example 5.1 with the very same geometry and

elastic material settings (see Fig. 3), the shape of the rigid obstacle (see Fig. 4), and

the resulting shape optimization problem (5.4).

The elastic body was uniformly cut into 12× 12× 12 = 1728 bricks and uniformly

divided into 2× 2× 2 = 8 subdomains. The trilinear hexahedral finite elements were

utilized. The total numbers of nodal displacements and design variables were 8232

and 36, respectively, and the number of Lagrange multipliers was 169.
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Figure 8. Example 5.2, von Mises stress for initial (left) and optimal (right) design.
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Figure 9. Example 5.2, normal contact stress for lower body of initial (left) and optimal
(right) design.
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The von Mises stress corresponding to the initial shape Ω[1](αin) and to the op-

timized shape Ω[1](αopt) is depicted in Figs. 10 and 11 for the friction coefficient

F := 0.3 and zero friction coefficient, respectively.
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Figure 10. Example 5.3, von Mises stress for initial (left) and optimal (right) design (with
friction).

100

50

0
0

50

100
0

50

100

x3

x2

x1

100

50

0
0

50

100
0

50

100

x3

x2

x1

0 · 10
3

2 · 10
3

4 · 10
3

6 · 10
3

8 · 10
3

10 · 10
3

Figure 11. Example 5.3, von Mises stress for initial (left) and optimal (right) design (with-
out friction).

Figs. 12 and 13 depict the distribution of the normal contact stress along the

contact part of Ω[1](αin) (left) and Ω[1](αopt) (right) for the friction coefficient

F := 0.3 and zero friction coefficient, respectively. These figures show that the

peak of stress is considerably suppressed and, in addition, the normal contact

stress along the contact part of Ω[1](αopt) is evenly distributed. Notice that the

optimized shapes computed for the two previous friction coefficient choices are

very similar.
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Figure 12. Example 5.3, normal contact stress for initial (left) and optimal (right) design
(with friction).

0 50 100x1

0

50

100

x2

0 50 100x1

0

50

100

x2

0 · 10
3

5 · 10
3

10 · 10
3

15 · 10
3

Figure 13. Example 5.3, normal contact stress for initial (left) and optimal (right) design
(without friction).
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Figure 14. Example 5.3, comparison (both with friction): von Mises stress for optimized
design computed for problem with nonzero friction coefficient (left) and zero
friction coefficient (right).
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Figure 15. Example 5.3, comparison (both with friction): normal contact stress for opti-
mized design computed for problem with nonzero friction coefficient (left) and
zero friction coefficient (right).

Finally, let us compute two state problems with the friction coefficient F := 0.3

and with different lower body shapes. In the first case, the lower body has the

optimized shape for the computation with friction (see Fig. 10 right), and in the

second case, the lower body has the optimized shape for the computation without

friction (see Fig. 11 right). Figs. 14 and 15 show the comparisons of the von Mises

stress and the normal contact stress for both problems, respectively. These figures

show that replacing the Coulomb friction problem with a (much simpler) model

without friction does not make much sense to get an “approximate optimal design”.

6. Comments and conclusions

A method for the parallel solution of 3D shape optimization problems of contact

mechanics with Coulomb’s friction was presented. We had to deal with the fact that

our problem was nonsmooth. We implemented the utilized bundle trust method in

Matlab and used the Mordukhovich differential calculus for the sensitivity analy-

sis. Moreover, the sensitivity analysis process was accelerated using TFETI. For

the discretization and solution of the state contact problem, the TFETI approach

and the augmented Lagrangians method combined with active set based algorithms

were used, respectively. To speed up the whole solution process, we parallelized

both the solution of the state contact problem and the sensitivity analysis. The

efficiency of our approach was demonstrated on two academic benchmarks. Finally,

we also stress the importance of using frictional models in 3D contact mechanics.

Our method can be successfully applied to industrial problems modelled as 3D shape

optimization problems of frictional contact mechanics since they typically need very

fine discretizations.
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