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Abstract. We present a novel approach to solving a specific type of quasilinear boundary
value problem with p-Laplacian that can be considered an alternative to the classic approach
based on the mountain pass theorem. We introduce a new way of proving the existence
of nontrivial weak solutions. We show that the nontrivial solutions of the problem are
related to critical points of a certain functional different from the energy functional, and
some solutions correspond to its minimum. This idea is new even for p = 2. We present an
algorithm based on the introduced theory and apply it to the given problem. The algorithm
is illustrated by numerical experiments and compared with the classic approach.
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1. Introduction

In the paper, we focus on nontrivial weak solutions of a special case of Dirichlet

boundary value problem

(1)

{

−∆pu = u3 in Ω,

u = 0 on ∂Ω,

where

(2) ∆pu := div(|∇u|p−2∇u)

is the p-Laplace operator, p ∈ (43 , 4), and Ω ⊂ R
2 is a bounded domain with Lipschitz

boundary.
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For the choice p = 2, (1) describes a behaviour of the density of a gas sphere

in hydrostatic equilibrium (see, for example, [12], [14]) for main sequence stars,

including the Sun.

Another reason why this particular equation was chosen is the fact that the prob-

lem is very well known and serves as a model example for a particular type of non-

linearity. Problem (1) has been addressed by many authors, both for the semilinear

variant (where p = 2 and ∆pu = ∆u), see [2], [6], [7], [9], [10], [13], [4], [17], [15], [8]

and the quasilinear variant (where p 6= 2), see [8], [18]. Therefore, there is an op-

portunity to verify and compare our results. At the same time, the topic is still

interesting and provides plenty of room for further research.

The existence of nontrivial weak solutions of (1) has always been proven using

the mountain pass theorem (see [1]) and its modifications that focus on nontrivial

critical points of the type ‘minimax’. This approach has also inspired all numerical

algorithms for finding such solutions (see for example [6], [7], [10], [5], [13], [16], [3]).

It is known that the weak solutions of (1) correspond to critical points of a certain

functional J (see below). In this paper, we show that they are also related to critical

points of a different functional F introduced in the following section. This result is

new not only for p 6= 2 but also for p = 2. We also show that some solutions of (1)

correspond to a minimum of F . Consequently, we introduce an algorithm based on

our new approach and apply it to the given problem (1).

The paper has the following organization. In Section 2, we formulate the analy-

tical background and crucial theorems that represent the main results of this paper,

including complete proofs of these theorems. In Section 3, we introduce an optimiza-

tion algorithm based on the proposed approach. In Section 4, we apply the algorithm

to the given problem and compare it to a mountain pass type algorithm.

2. Main results

In the paper, we are interested in finding nontrivial weak solutions of problem (1).

Thus, let us first remind the definition.

Definition 1. A function u ∈ W 1,p
0 (Ω) is a weak solution of (1) if for all v ∈

W 1,p
0 (Ω) we have

∫

Ω

|∇u|p−2∇u∇v dx =

∫

Ω

u3v dx.

It is known that weak solutions of the boundary value problem (1) correspond to

critical points of the functional J ∈ C1(W 1,p
0 (Ω),R) given by

(3) J(u) :=
1

p

∫

Ω

|∇u|p dx−
1

4

∫

Ω

u4 dx.
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We consider a Banach space W 1,p
0 (Ω) with the norm

‖u‖p :=

(
∫

Ω

|∇u|p dx

)1/p

.

Let us define a functional F ∈ C1(W 1,p
0 (Ω) \ {0},R) by

F (u) :=
‖u‖p

‖u‖L4(Ω)
.

We can now formulate our main results.

Theorem 2.

(a) Let u 6= 0 be a critical point of J . Then u is a critical point of F .

(b) Let u be a critical point of F . Then

⊲ for all c ∈ R
+, cu is a critical point of F ,

⊲ ũ :=
(∫

Ω |∇u|p dx/
∫

Ω u4 dx
)1/(4−p)

u is a critical point of J .

Theorem 3. There exists

min
v∈W 1,p

0
(Ω)\{0}

F (v).

Corollary 4. If

F (u) = min
v∈W 1,p

0
(Ω)\{0}

F (v),

then ũ := c̃u 6= 0, where

c̃ =

(

∫

Ω |∇u|p dx
∫

Ω
u4 dx

)1/(4−p)

is a weak solution of (1).

Now, we can proceed to the proofs of the above theorems.

P r o o f of Theorem 2. (a) It is not difficult to compute that for u 6= 0

(4) F ′(u) = 0 ⇔ (∀ v ∈ W 1,p
0 (Ω)) :

(
∫

Ω

u4 dx

)(
∫

Ω

|∇u|p−2∇u∇v dx

)

=

(
∫

Ω

|∇u|p dx

)(
∫

Ω

u3v dx

)

.

Since u is a critical point of J , for all v ∈ W 1,p
0 (Ω) \ {0} we have

(5)

∫

Ω

|∇u|p−2∇u∇v dx =

∫

Ω

u3v dx.
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Therefore, for the choice of v = u,

(6)

∫

Ω

|∇u|p dx =

∫

Ω

u4 dx.

Hence, the proven statement simply follows from (4).

(b) First, we need to show that if F ′(u) = 0, then also F ′(cu) = 0 for all c ∈ R
+.

It can be done simply by substituting into (4).

Let us now take ũ = c̃u, where F ′(u) = 0 and

c̃ =

(

∫

Ω
|∇u|p dx

∫

Ω u4 dx

)1/(4−p)

.

We already know that F ′(ũ) = 0. Hence, see (4),

(
∫

Ω

ũ4 dx

)(
∫

Ω

|∇ũ|p−2∇ũ∇v dx

)

=

(
∫

Ω

|∇ũ|p dx

)(
∫

Ω

ũ3v dx

)

for all v ∈ W 1,p
0 (Ω). We are left to show that

∫

Ω

ũ4 dx =

∫

Ω

|∇ũ|p dx.

However, this is clear because

∫

Ω

ũ4 dx =

(

∫

Ω |∇u|p dx
∫

Ω
u4 dx

)4/(4−p) ∫

Ω

u4 dx

=

(
∫

Ω

|∇u|p dx

)4/(4−p)(∫

Ω

u4 dx

)−p/(4−p)

and

∫

Ω

|∇ũ|p dx =

(

∫

Ω
|∇u|p dx

∫

Ω u4 dx

)p/(4−p) ∫

Ω

|∇u|p dx

=

(
∫

Ω

|∇u|p dx

)4/(4−p)(∫

Ω

u4 dx

)−p/(4−p)

.

�

P r o o f of Theorem 3. Since

(7) W 1,p
0 (Ω) →֒→֒ L4(Ω),

it holds that

0 < c := sup
v∈W 1,p

0
(Ω)\{0}

‖v‖L4(Ω)

‖v‖p
∈ R.
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If we manage to prove that there exists u ∈ W 1,p
0 (Ω) \ {0} satisfying

‖u‖L4(Ω)

‖u‖p
= c,

then clearly
1

c
= F (u) = min

v∈W 1,p

0
(Ω)\{0}

F (v).

Let us consider a sequence (un) ⊂ W 1,p
0 (Ω) \ {0} such that

‖un‖L4(Ω)

‖un‖p
→ c.

Then, for the sequence (vn), vn := un/‖un‖p, we have

‖vn‖p = 1, ‖vn‖L4(Ω) → c.

From the reflexivity of W 1,p
0 (Ω) it follows that there exists a subsequence (vn) (la-

belled in the same way) and u ∈ W 1,p
0 (Ω) such that

‖vn‖p = 1, vn ⇀ u

in W 1,p
0 (Ω). The compact embedding (7) yields

vn → u in L4(Ω), ‖vn‖L4(Ω) → ‖u‖L4(Ω).

However, the sequence (vn) was chosen to satisfy

‖vn‖L4(Ω) → c.

Hence,

‖u‖L4(Ω) = c > 0.

Now all that remains is to use a weak lower semicontinuity of a norm and the defi-

nition of c. We get

c = ‖u‖L4(Ω) 6 c‖u‖p 6 c lim inf ‖vn‖p = c lim ‖vn‖p = c.

From that we obtain
‖u‖L4(Ω)

‖u‖p
= c.

�

The corollary follows from part (b) of Theorem 2 and the fact that u satisfying

F (u) = min
v∈W 1,p

0
(Ω)\{0}

F (v)

must be a critical point of F .
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Let us now mention one more interesting observation and formulate the following

lemma.

Lemma 5. Let 0 6= u1 ∈ W 1,p
0 (Ω) be a weak solution of (1) and

F (u1) = min
u∈W 1,p

0
(Ω)\{0}

F (u).

Then

0 < J(u1) = min{J(u) : u is a nontrivial weak solution of (1)}.

P r o o f. Let 0 6= u2 ∈ W 1,p
0 (Ω) be a weak solution of (1). From (6) it follows that

(
∫

Ω

|∇u1|
p dx

)(4−p)/(4p)

=

(∫

Ω
|∇u1|

p dx
)1/p

(∫

Ω |∇u1|p dx
)1/4

= F (u1) 6 F (u2)

=

(∫

Ω
|∇u2|

p dx
)1/p

(∫

Ω |∇u2|p dx
)1/4

=

(
∫

Ω

|∇u2|
p dx

)(4−p)/(4p)

.

Since p < 4, it also holds
(
∫

Ω

|∇u1|
p dx

)

6

(
∫

Ω

|∇u2|
p dx

)

.

Thus, considering (6) again, we can write

0 < J(u1) =
4− p

4p

∫

Ω

|∇u1|
p dx 6

4− p

4p

∫

Ω

|∇u2|
p dx = J(u2),

which completes the proof. �

The introduced approach and main theorems can also be used for a generalized

version of (1) with an exponent different from 3 and corresponding values of p.

However, the main goal of this paper was to introduce an alternative to the method

introduced in [2] that was tailored to problem (1).

3. Numerical solution of problem (1)

The numerical approach presented in this section is based on the introduced theory

and the fact that F has a minimum. The minimum is sought using a classical gradient

method, which forms the core of our algorithm. Since the algorithm actually returns

a point with zero derivative, the result we get is a stationary point of F (that is not

necessarily a minimum) corresponding to the solution of (1). The most difficult part

is finding a descent direction and computing ‖F ′(u)‖, which will be discussed below.

In this section, we present two novel algorithms.
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Algorithm 1

1: Choose an arbitrary vector w ∈ W 1,p
0 (Ω), w 6= 0, as an initial guess and take

u := w.

2: If ‖F ′(u)‖ 6 ε, where ε > 0 is the desired precision, return u and stop.

3: Find v0 ∈ W 1,p
0 (Ω) such that ‖v0‖p = 1 and

〈F ′(u), v0〉 < 0

(see below).

4: Set

ũ = u+ δv0,

where 0 < δ = min{δ̂; ‖u‖p/2}, where δ̂ > 0 is given apriori.

5: If the value of F is not lower, i.e.,

F (ũ) > F (u),

then take

v0 :=
v0
2

and return to step 4. Else, go to step 6.

6: Take u := ũ and go to step 2.

Algorithm 2

1: Choose an arbitrary vector w ∈ W 1,p
0 (Ω), w 6= 0 as an initial guess and set u := w.

2: If ‖F ′(u)‖ 6 ε, where ε > 0 is the desired precision, return u and stop.

3: Find v0 ∈ W 1,p
0 (Ω) such that ‖v0‖p = 1 and

〈F ′(u), v0〉 < 0

(see below).

4: Find t̃ ∈ (0, δ], 0 < δ = min{δ̂; ‖u‖p/2}, where δ̂ > 0 is given apriori, such that

F (u+ t̃v0) = min
t∈[0,δ]

F (u+ tv0).

(The value t̃ can be computed using any method for one-dimensional optimi-

zation).

5: Set

u = u+ t̃v0

and go to step 2.
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Now, focus on finding the descent direction v0 in u 6= 0 and computing the dual

norm

‖F ′(u)‖ := sup
v∈W 1,p

0
(Ω),‖v‖p=1

〈F ′(u), v〉.

For u ∈ W 1,p
0 (Ω), F ′(u) 6= 0, we take the descent direction v0 in the form

v0 = −
b

‖b‖p
,

where b ∈ W 1,p
0 (Ω) is a weak solution of the boundary value problem

(8)

{

−∆pb = F ′(u) in Ω,

b = 0 on ∂Ω.

It can be shown, see [2], that the weak solution of (8) is unique and v0 is even

the steepest descent direction in u, i.e.

〈F ′(u), v0〉 = min
v∈W 1,p

0
(Ω),‖v‖p=1

〈F ′(u), v〉 < 0,

and

‖F ′(u)‖ =
〈

F ′(u),
b

‖b‖p

〉

= ‖b‖p−1
p .

Problem (8) can be solved using an approach and a gradient method introduced

in [11]. The authors of [11] also suggested some methods for preconditioning.

We use a standard finite element method with a finite-dimensional subspace V h

of W 1,p
0 (Ω) containing piecewise linear and continuous functions (h is the discretiza-

tion step).

It is difficult to say anything about the convergence of the introduced algorithms.

The computation stops if the norm of the derivative is sufficiently small. The received

solution does not necessarily have the critical value, which, in fact, is not even known.

Moreover, problem (1) has infinitely many solutions. In the following section, two

experiments resulting in multiple solutions were made and illustrated. Although

there are no analytical results about the convergence, the numerical experiments

presented in the following section suggest that the introduced algorithms converge

to solutions of problem (1).

A crucial part of the algorithms is finding the descent direction as a solution

of (8). As mentioned before, the problem has a unique solution that can be found

using an algorithm presented in [11]. Furthermore, the authors of [11] also formulated

convergence theorems for the preconditioned version of the algorithm.
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4. Results

In this section, we demonstrate the algorithms proposed in Section 3. They return

u ∈ V h and compute u = c̃u ∈ V h, which is an approximation of the weak solution

of (1). For the numerical validation of the results, we compare u with u ∈ V h that

is an approximation of the weak solution u of the problem

(9)

{

−∆pu = u3 in Ω,

u = 0 on ∂Ω.

(For this purpose, we can use a solver introduced in [11].) In other words, we compute

(10) ‖u− u‖p =

(
∫

Ω

|∇(u − u)|p dx

)1/p

.

For the numerical experiments, we mainly use the first introduced algorithm (Al-

gorithm 1) which requires less time to find the solution. On the other hand, Algo-

rithm 2 can find solutions different from the minimum of F . First, focus on the one-

dimensional version of the given problem. We choose Ω = [0, π] and finite-element

discretization with equidistant nodes, discretization step h, and continuous piece-

wise linear basis functions. We take w = sin(x) as the initial guess. For numerical

computation, we consider a finite element interpolation of w.

In Table 1, we can see the results of Algorithm 1 with a fixed precision ε = 10−5,

various values of p, and three values of h. As we can see, the error is significantly

reduced if h decreases. Fig. 1 illustrates solutions for some chosen values of p.

h = π/26 h = π/28 h = π/210

p J(u) ‖u− u‖p J(u) ‖u− u‖p J(u) ‖u− u‖p

9/6 1.38675 8.31046 · 10−4 1.38662 6.66252 · 10−5 1.38661 1.87289 · 10−5

10/6 1.30945 6.62698 · 10−4 1.30932 3.31420 · 10−5 1.30931 1.40259 · 10−5

11/6 1.24619 5.59338 · 10−4 1.24606 3.39869 · 10−5 1.24605 5.35008 · 10−6

12/6 1.19417 4.91589 · 10−4 1.19404 2.96421 · 10−5 1.19403 3.15774 · 10−6

13/6 1.15091 4.40157 · 10−4 1.15078 2.73057 · 10−5 1.15078 6.15550 · 10−6

14/6 1.11452 3.99088 · 10−4 1.11439 2.96935 · 10−5 1.11438 5.79427 · 10−6

15/6 1.08354 3.68951 · 10−4 1.08342 2.23293 · 10−5 1.08341 1.74400 · 10−5

16/6 1.05690 3.38161 · 10−4 1.05678 3.25783 · 10−5 1.05677 2.50345 · 10−5

17/6 1.03377 3.20484 · 10−4 1.03365 3.99744 · 10−5 1.03365 2.58841 · 10−5

18/6 1.01351 2.93890 · 10−4 1.01340 4.61777 · 10−5 1.01339 4.14522 · 10−5

Table 1. Algorithm 1: Results for Ω = [0, π], ε = 10−5, w = sin(x).
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Figure 1. Algorithm 1: The solutions u of (1) for Ω = [0, π], ε = 10−5, h = 2−9π, w = sin(x)
and different values of p.

Consequently, we focus on problem (1) in two dimensions. We take Ω = [0, π] ×

[0, π] and finite-element discretization with equidistant nodes, right-angled triangles,

discretization step h (corresponding to the length of the legs of the triangles), and

continuous piecewise linear basis functions. As the initial guess, we use a finite

element interpolation of w = sin(x) sin(y).

First, we take a fixed precision ε = 10−5 and various values of p. In Table 2,

we can find the results (where c = 1/F (u) represents an estimate of the embedding

constant from (7) at the solution obtained by Algorithm 1). We can also see how

the error (10) depends on the discretization step. As we can see, the error is reduced

if h decreases to zero, and the values of J decrease. Fig. 2 illustrates solutions for

some chosen values of p.

Now, we show, see Table 3, the performance of Algorithm 1 by comparing it with

the minimax algorithm introduced in [2] (with the descent direction from [2], Subsec-

tion 4.2). Since finding the descent directions for both algorithms is computationaly

expensive, especially if p < 2, we restrict ourselves on p ∈ [11/6, 3].
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h = π/25

p J(u) F (u) c ‖u− u‖p

9/6 4.90223 2.79306 0.35803 1.36291 · 10−2

10/6 4.49311 2.44326 0.40929 8.27395 · 10−3

11/6 4.13619 2.18083 0.45854 6.11904 · 10−3

12/6 3.85099 1.98110 0.50477 4.90581 · 10−3

13/6 3.63882 1.82545 0.54781 4.10995 · 10−3

14/6 3.50226 1.70140 0.58775 3.56354 · 10−3

15/6 3.45145 1.60061 0.62476 3.14602 · 10−3

16/6 3.51145 1.51731 0.65906 2.78719 · 10−3

17/6 3.73839 1.44743 0.69088 2.62947 · 10−3

18/6 4.26398 1.38808 0.72042 2.34993 · 10−3

h = π/26

9/6 4.88230 2.78839 0.35863 3.25788 · 10−3

10/6 4.47603 2.43998 0.40984 2.02514 · 10−3

11/6 4.11895 2.17817 0.45910 1.52130 · 10−3

12/6 3.83242 1.97875 0.50537 1.23035 · 10−3

13/6 3.61801 1.97875 0.54847 1.02796 · 10−3

14/6 3.47814 1.69932 0.58847 9.02870 · 10−4

15/6 3.42249 1.59859 0.62555 8.00853 · 10−4

16/6 3.47514 1.51534 0.65992 7.28314 · 10−4

17/6 3.69011 1.44550 0.69180 6.95355 · 10−4

18/6 4.19400 1.38617 0.72141 6.87146 · 10−4

h = π/27

9/6 4.87724 2.78715 0.35879 7.26888 · 10−4

10/6 4.47174 2.43920 0.40997 4.67036 · 10−4

11/6 4.11463 2.17746 0.45925 3.68437 · 10−4

12/6 3.82778 1.97812 0.50553 3.07873 · 10−4

13/6 3.61281 1.82269 0.54864 2.54766 · 10−4

14/6 3.47211 1.69880 0.58865 2.45503 · 10−4

15/6 3.41525 1.59808 0.62575 2.32033 · 10−4

16/6 3.46606 1.51483 0.66014 3.64296 · 10−4

17/6 3.67803 1.44500 0.69204 5.01201 · 10−4

18/6 4.19400 1.38617 0.72141 6.87146 · 10−4

Table 2. Algorithm 1: Results for Ω = [0, π]× [0, π], ε = 10−5, w = sin(x) sin(y).
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Figure 2. Algorithm 1: The solutions u of (1) for Ω = [0, π] × [0, π], ε = 10−5, h = 2−5π,
w = sin(x) sin(y) and different values of p.

Algorithm 1 Minimax algorithm

p J(u) ‖u− u‖p it J(u) ‖u− u‖p it

11/6 4.11895 1.52130 · 10−3 18 4.11895 1.52047 · 10−3 20

12/6 3.83242 1.23036 · 10−3 9 3.83243 1.23044 · 10−3 9

13/6 3.61802 1.02796 · 10−3 12 3.61802 1.02793 · 10−3 13

14/6 3.47814 9.02870 · 10−4 10 3.47811 9.03389 · 10−4 11

15/6 3.42250 8.00854 · 10−4 8 3.42250 7.98002 · 10−4 12

16/6 3.47514 7.28314 · 10−4 7 3.47514 7.23060 · 10−4 12

17/6 3.69012 6.95355 · 10−4 7 3.69012 6.90178 · 10−4 16

18/6 4.19400 7.30576 · 10−4 6 4.19400 6.64144 · 10−4 32

Table 3. Results for Ω = [0, π]× [0, π], ε = 10−5, h = 2−6π, w = sin(x) sin(y).

As we can see in the table, both algorithms find the numerical solution with

similar accuracy. The proposed algorithm needs fewer iterations to find the numerical

solution, while the cost of one iteration is the same for both algorithms.
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Finally, we focus on the other introduced algorithm (Algorithm 2). We take p = 2

and choose five different functions as the initial guess w. In Table 4, we can find

results given by Algorithm 1 and Algorithm 2. As the table shows, for some w,

Algorithm 2 found solutions of (1) that do not correspond to the minimum of F ,

while Algorithm 1 always returned the same solution. The results of Algorithm 2

are illustrated in Fig. 3.

Algorithm 1 Algorithm 2

Initial guess w F (u) J(u) ‖u− u‖p F (u) J(u) ‖u− u‖p

sin(x) sin(y) 1.97812 3.82778 3.08072 · 10−4 1.97812 3.82778 3.07415 · 10−4

10 sin(2x) sin(y) 1.97812 3.82778 3.09902 · 10−4 3.05387 21.74424 1.44633 · 10−3

10 sin(x) sin(2y) 1.97812 3.82778 3.10213 · 10−4 3.05387 21.74424 1.44832 · 10−3

4(x− y) sin(x) sin(y) 1.97812 3.82778 3.08963 · 10−4 2.98337 19.80472 8.34581 · 10−4

Table 4. Algorithm 1, Algorithm 2: Results for Ω = [0, π]×[0, π], ε = 10−5, p = 2, h = 2−7π

and different choices of w.
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(a) w= sin(x) sin(y) (b) w=4(x− y) sin(x) sin(y)

(c) w=10 sin(2x) sin(y) (d) w=10 sin(x) sin(2y)

Figure 3. Algorithm 2: The solutions u of (1) for Ω = [0, π] × [0, π], ε = 10−4, h = 2−5π,
p = 2 and different choices of w.
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The last experiment focuses on finding multiple solutions on a nonconvex domain.

Consider Ω = ([0, π] × [0, π]) \ ((π/4, 3π/4) × (π/4, 3π/4)), h = 2−5
π, ε = 10−4 and

four choices of the initial guess. The results are illustrated in Figure 4.
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(a) w= sin(x) sin(y), J =45.182134,

F =3.666535

(b) w=4|sin(x) sin(2y)|, J =90.364415,

F =4.360281

(c) w=4(x− y) sin(x) sin(y), J =36.035313,

F =3.464955

(d) w= |4 sin(3x) sin(3y)|, J =71.220508,

F =4.108345

Figure 4. Algorithm 2: The solutions u of (1) for Ω = ([0, π] × [0, π]) \ ((π/4, 3π/4) ×
(π/4, 3π/4)), ε = 10−4, h = 2−5π, p = 2 and different choices of w.

Again, the algorithm returned different solutions depending on the initial guess.

The solution with the minimal value of F among the received ones is illustrated in

Subfigure (c). One can clearly get another three solutions with the same value of F

just by rotating solution (c). In [14], the authors took a domain with an annulus

shape and received a solution with a similar quality as (c). Thanks to the shape of

the domain, even infinite many solutions can arise by rotating the original solution.
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