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Abstract. We study a binary mixture of compressible viscous fluids modelled by the
Navier-Stokes-Allen-Cahn system with isentropic or ideal gas law. We propose a finite
volume method for the approximation of the system based on upwinding and artificial
diffusion approaches. We prove the entropy stability of the numerical method and present
several numerical experiments to support the theory.
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1. Introduction

Binary mixture of compressible fluids finds its wide applications in physics. Despite

the existence of a rich mathematical theory of such problems [1], [2], [7], [9], the

corresponding numerical analysis is far from well understood. In this paper, we are

interested in a finite volume approximation of the following model in the time space

cylinder (0, T )× Ω, Ω ⊂ Rd an open and bounded domain, d = 2, 3:

∂t̺+ divx(̺u) = 0,(1.1a)

∂t(̺u) + divx(̺u⊗ u) +∇xp = − divx
(

∇xχ⊗∇xχ− 1
2 |∇xχ|2I

)

(1.1b)

+ divx S+∇xF(χ)

∂tχ+ u · ∇xχ = ∆xχ− ∂F(χ)

∂χ
,(1.1c)
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where ̺, u and χ represent the fluid density, velocity, and the order parameter,

respectively. Moreover, F = F(χ) is Ginzburg-Landau potential, S = S(∇xu) is the

viscous stress

S = 2µ
[

Dxu− 1

d
divx uI

]

+ η divx uI, Dxu =
1

2
(∇xu+∇t

xu).

The fluid pressure p is determined by the state equation. In this paper, we consider

two variants of state equations:

Isentropic case. The pressure is a function of density:

(1.2a) p = p(̺) = ̺γ .

Non-isothermal case. The pressure is a function of density and absolute tem-

perature ϑ:

p = p(̺, ϑ) = ̺ϑ with cv(∂t(̺ϑ) + divx(̺ϑu))− κ∆xϑ(1.2b)

= −p divx u+ S : Dxu+ (∆xχ−F ′(χ))2.

For the sake of simplicity, we suppose the no-slip boundary conditions for the ve-

locity, together with the Neumann boundary conditions for the order parameter, i.e.,

u|∂Ω = 0, ∇xχ · n|∂Ω = 0 for the isentropic case,(1.3)

and in addition, ∇xϑ · n|∂Ω = 0 for the non-isothermal case.

To close the system we impose the initial conditions

(̺, χ,u)(0) = (̺0, χ0,u0) with ̺0 > 0 for the isentropic case(1.4)

and in addition, ϑ(0) = ϑ0 > 0 for the non-isothermal case.

1.1. Stability of the system. It is easy to check system (1.1)–(1.4) satisfies the

energy balance equation

(1.5a)
d

dt

∫

Ω

E dx+

∫

Ω

(S : Dxu+ (∆xχ−F ′(χ))2) dx = 0

for the isentropic case, and

(1.5b)
d

dt

∫

Ω

E dx = 0
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for the non-isothermal case, where E is the total energy function of the system

E =















1

2
̺|u|2 + 1

2
|∇xχ|2 +H(̺) + F(χ) for the isentropic case,

1

2
̺|u|2 + 1

2
|∇xχ|2 + cv̺ϑ+ F(χ) for the non-isothermal case,

where H(̺) = cv̺
γ and cv = 1/(γ − 1).

For the isentropic case, the total energy plays the role of the mathematical entropy.

When considering the non-isothermal case, the system satisfies the entropy balance

(1.6)
d

dt

∫

Ω

̺s dx >

∫

Ω

1

ϑ

[

S : Dxu+ (∆xχ−F ′(χ))2 +
κ|∇xϑ|2

ϑ

]

dx,

where s = log(ϑcv/̺) is the specific entropy.

The goal of this paper is to propose a finite volume method preserving the discrete

variant of the above stabilities (1.5a)–(1.6), namely the entropy/energy stability.

The rest of the paper is organized as follows. In Section 2 we introduce a finite

volume method for the approximation of the problem. In Section 3 we analyze the

energy/entropy stability of the numerical solutions. Further, in Section 4 we validate

the theoretical results by numerical experiments. Section 5 is the conclusion.

2. Numerical method

In this section we propose a finite volume method for the approximation of system

(1.1)–(1.4).

Primary grid. Let Ωh be either a regular and quasi-uniform unstructured trian-

gulation of Ω in the sense of Ciarlet [3] or a uniform structured mesh of Ω with the

following notations:

⊲ We denote by K a generic element such that Ω =
⋃

K∈Ωh

K, where in the case of

unstructured mesh, K is either a triangle for d = 2 or a tetrahedron for d = 3,

and in the case of structured mesh, K is either a rectangle for d = 2 or a cuboid

for d = 3.

⊲ For any element K we denote by |K| its volume and by hK its diameter. Further,
we define by h = max

K∈Ωh

hK the size of the mesh.

⊲ We denote by E the set of all faces, EB the set of all faces on the boundary,
EI = E \EB the set of all interior faces, and E(K) the set of all faces of the element

K ∈ Ωh. Further, we denote by σ = K|L the common face of two neighbouring
elements K and L.
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⊲ For each face σ ∈ E , we denote by |σ| its Lebesgue measure, and n its outer normal
vector. If furthermore σ ∈ E(K), we write it as nK .

⊲ Let Px = {xK | xK ∈ K ∈ Ωh} be a set of control points such that for any
σ = K|L the segment −−−→xKxL is perpendicular to σ. Then we denote by dσ the

Euclidean distance between xK and xL for σ = K|L.
Hereafter, we call Ωh the primary grid and introduce a dual grid for convenience of

notations.

Dual grid. We denote Dh =
⋃

σ∈E

Dσ as the dual grid, where Dσ is the dual cell

associated to the face σ. On the one hand, for any exterior face σ ∈ E(K) ∩ EB we
define its dual cell as Dσ = Dσ,K , where Dσ,K is the domain obtained by connecting

the control point xK with the (d − 1) vertices of σ. On the other hand, for any

interior face σ = K1|K2 ∈ EI we define Dσ = Dσ,K1
∪Dσ,K2

.

R em a r k 2.1. For a uniform structured mesh, Px can be chosen as the barycen-

ters. Concerning unstructured, we refer to VanderZee et al. [10] for the discussion of

a well-centered mesh, where the control points are chosen as the circumcenters.

For a piecewise (elementwise) continuous function v we define

vin(x) = lim
δ→0+

v(x− δn) ∀x ∈ σ ∈ E and vout(x) = lim
δ→0+

v(x+ δn) ∀x ∈ σ ∈ EI .

Moreover, for x ∈ σ ∈ EB we specify vout(x) according to the boundary conditions:

vout =

{

vin for no flux condition, s.t. [[v]] = 0,

−vin for zero-Dirichlet condition, s.t. {{v}} = 0,

where

{{v}}(x) = vin(x) + vout(x)

2
, [[v]](x) = vout(x)− vin(x).

Function spaces. We define Qh and Wh, respectively, as the space of piecewise

constant functions on the primary grid Ωh and the dual grid Dh. Moreover, we mean

by v ∈ Qh (or v ∈ Wh) that v ∈ Qh(Ω;R
d) (or v ∈ Wh(Ω;R

d)), i.e., vi ∈ Qh (or

vi ∈Wh) for all i = 1, . . . , d. The interpolation operator associated to Qh reads

ΠQϕ =
∑

K∈Ωh

1K(x)

|K|

∫

K

ϕdx, 1K(x) =

{

1 if x ∈ K,

0 otherwise.
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Diffusive upwind flux. Given the velocity field v ∈ Qh, the upwind flux for any

function r ∈ Qh is specified at each face σ ∈ E by

Up[r,v]|σ = rupvσ · n = rin[vσ · n]+ + rout[vσ · n]− = {{r}}vσ · n− 1

2
|vσ · n|[[r]],

where

vσ = {{v}}|σ, [f ]± =
f ± |f |

2
and rup =

{

rin if vσ · n > 0,

rout if vσ · n < 0.

Furthermore, we consider a diffusive numerical flux function of the form

(2.1) F up
ε (r,v) = Up[r,v]− hε[[r]], ε > −1.

Discrete operators. For piecewise constant functions we define the discrete gra-

dient, divergence and Laplace operators elementwisely on the primary grid as

∇hrh(x) =
∑

K∈Ωh

(∇hrh)K1K(x), (∇hrh)K =
∑

σ∈E(K)

|σ|
|K| {{rh}}n,

divhvh(x) =
∑

K∈Ωh

(divhvh)K1K(x), (divhvh)K =
∑

σ∈E(K)

|σ|
|K| {{vh}} · n,

∆hrh(x) =
∑

K∈Ωh

(∆hrh)K1K(x), (∆hrh)K =
∑

σ∈E(K)

|σ|
|K|

[[rh]]

dσ

for any rh ∈ Qh and vh ∈ Qh. Further, we define discrete difference operator that

involves the dual grid. For any rh ∈ Qh and q ∈ Wh we define

∇Erh(x) =
∑

σ∈E

1Dσ
(∇Erh)Dσ

, (∇Erh)Dσ
:=

√
d
[[r]]

dσ
n ∀σ ∈ EI .

It is easy to check for any rh, ϕh ∈ Qh that

(2.2)

∫

Ω

∆hrhϕh dx = −
∫

EI

1

dσ
[[rh]][[ϕh]] dSx

= −
∫

Ω

∇Erh · ∇Eϕh dx if [[rh]]σ = 0 ∀σ ∈ EB.

Time discretization. For a given time step∆t > 0, we denote the approximation

of a generic discrete function vh at time t
k = k∆t by vkh for k = 1, . . . , NT (= T/∆t),

and define

Dtv
k
h =

vkh − vk−1
h

∆t
.

2.1. A finite volume method. Now we introduce a finite volume (FV) method

for the approximation of phase field model (1.1)–(1.4). First, we consider the isen-

tropic case (1.2a).
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Scheme A: An FV method for the isentropic model.

Let (̺0h,u
0
h, χ

0
h) = (ΠQ̺0,ΠQχ0,ΠQu0). Given (̺k−1

h , χk−1
h ,uk−1

h ) ∈ Qh ×Qh ×Qh

for any k = 1, . . . , NT , we say that the triple (̺
k
h, χ

k
h,u

k
h) ∈ Qh ×Qh ×Qh is an FV

approximation of the Navier-Stokes-Allen-Cahn system (1.1), (1.2a), (1.3)–(1.4) at

time tk if the following system of algebraic equations holds:
∫

Ω

Dt̺
k
hϕh dx−

∫

E

F up
ε (̺kh,u

k
h)[[ϕh]] dSx = 0 ∀ϕh ∈ Qh;(2.3a)

∫

Ω

Dt(̺
k
hu

k
h) ·ϕh dx−

∫

E

F up
ε (̺khu

k
h,u

k
h) · [[ϕh]] dSx(2.3b)

+

∫

Ω

(2µDhu
k
h : ∇hϕh + λdivhu

k
hdivhϕh) dx

=

∫

Ω

pkhdivhϕh dx

+

∫

Ω

(fk
h −∆hχ

k
h)∇hχ

k
h ·ϕh dx ∀ϕh ∈ Qh,

∫

Ω

(Dtχ
k
h + uk

h · ∇hχ
k
h)ψh dx =

∫

Ω

(∆hχ
k
h − fk

h )ψh dx ∀ψh ∈ Qh;(2.3c)

where pkh = (̺kh)
γ , Dhuh = (∇huh +∇t

huh)/2, λ = η− 2µ/d, and the approximation

of F ′ follows the so-called convex-concave splitting technique

(2.4) fk
h = F ′

a(χ
k
h) + F ′

b(χ
k−1
h ),

where Fa and Fb are the convex and concave part of F , respectively.

Further, we propose an FV method for the non-isothermal case (1.2b).

Scheme B: An FV method for the non-isothermal model.

Let (̺0h, ϑ
0
h,u

0
h, χ

0
h) = (ΠQ̺0,ΠQϑ0,ΠQχ0,ΠQu0). Given (̺

k−1
h , ϑk−1

h , χk−1
h ,uk−1

h ) ∈
Qh×Qh×Qh×Qh for any k = 1, . . . , NT , we say that the quadruple (̺

k
h, ϑ

k
h, χ

k
h,u

k
h) ∈

Qh ×Qh × Qh ×Qh is an FV approximation of the Navier-Stokes-Allen-Cahn sys-

tem (1.1), (1.2b), (1.3)–(1.4) at time tk if it satisfies (2.3) and

(2.5)

cv

∫

Ωh

Dt(̺
k
hϑ

k
h)ϕh dx− cv

∫

EI

F up
ε (̺khϑ

k
h,u

k
h)[[ϕh]] dSx +

∫

EI

κ

dσ
[[ϑkh]][[ϕh]] dSx

=

∫

Ωh

(S(∇hu
k
h) : ∇hu

k
h − pkhdivhu

k
h + |∆hχ

k
h − fk

h |2)ϕh dx ∀ϕh ∈ Qh.

Here, fh is the same as in scheme A, and the discrete pressure is defined as

ph = ̺hϑh for ϑh > 0 with an extension to the non-physical regime for ϑh < 0

that ph(̺h, ϑh) = 0.
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3. Stability

In this section we show the stability of the FV schemes. Before that we recall

some important properties satisfied by our numerical approximation. First, we re-

call from [5] that the density scheme (2.3a) satisfies the positivity of density and

conservation of mass.

Lemma 3.1 (Positivity of density and conservation of mass). Let (̺h,uh) sat-

isfy (2.3a) with ̺0 > 0. Then for any t ∈ (0, T ),

̺h(t, x) > 0 ∀x ∈ Ω and

∫

Ω

̺h(t) dx =

∫

Ω

̺0 dx.

Next, we test the density scheme (2.3a) by ϕh = H′(̺kh), and find the following

lemma, see [5], Lemma 11.2.

Lemma 3.2 (Discrete renormalized continuity equation). Let (̺kh,u
k
h) ∈ Qh×Qh

satisfy the discrete continuity equation (2.3a) for any k ∈ {1, . . . , NT }. Then there
exist ̺kξ ∈ co{̺k−1

h , ̺kh} and ̺kζ ∈ co{̺kK , ̺kL} for any σ = K|L ∈ EI such that
(3.1)

∫

Ω

DtH(̺kh) dx+

∫

Ω

(̺kh)
γdivhu

k
h dx

= −∆t

2

∫

Ω

H′′(̺kξ )|Dt̺
k
h|2 dx−

∫

EI

H′′(̺kζ )[[̺
k
h]]

2
(

hε +
1

2
|uk

σ · n|
)

dSx 6 0.

Note that co{a, b} = [min{a, b},max{a, b}]. Further, we report the positivity of
the temperature, see [6], Lemma 3.5.

Lemma 3.3 (Positivity of temperature). Let (̺h, ϑh, χh,uh) satisfy (2.5) with

̺0 > 0, ϑ0 > 0. Then for any t ∈ (0, T ),

ϑh(t, x) > 0 ∀x ∈ Ω.

Theorem 3.4 (Existence of numerical solution). For every k = 1, . . . , NT , there

exist a solution (̺kh, χ
k
h,u

k
h) ∈ Qh × Qh × Qh to the FV method scheme A, and

a solution (̺kh, ϑ
k
h, χ

k
h,u

k
h) ∈ Qh ×Qh ×Qh ×Qh to the FV method scheme B

The proof can be done analogously as [5], Lemma 11.3.

3.1. Stability of Scheme A. Here we derive the energy stability of Scheme A for

compressible Navier-Stokes-Allen-Cahn system with isentropic state equation (1.2a).
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Theorem 3.5 (Discrete energy balance). Let (̺h, χh,uh) be a solution of the FV

method (2.3). Then we have the energy estimate

(3.2) Dt

∫

Ω

(1

2
̺kh|uh|2 +H(̺kh) + F (χk

h) +
1

2
|∇Eχh|2

)

dx

+ 2µ‖Dhu
k
h‖2L2 + λ‖divhuk

h‖2L2 + ‖∆hχ
k
h − fk

h‖2L2 = −Dk
A,

where Dk
A > 0 is the numerical dissipation

Dk
A =

∆t

2

∫

Ωh

(̺k−1
h |Dtu

k
h|2 + (F ′

a(χ
k
ξ )−F ′

b(χ
k
ζ ))|Dtχ

k
h|2 + |∇EDtχ

k
h|2) dx

+
∆t

2

∫

Ω

H′′(̺kξ )|Dt̺
k
h|2 dx+

∫

EI

H′′(̺kζ )[[̺
k
h]]

2
(

hε +
1

2
|{{uk

h}} · n|
)

dSx

+

∫

EI

(

hε{{̺kh}}+
1

2
̺k,uph |{{uk

h}} · n|
)

|[[uk
h]]|2 dSx,

where χk
ξ , χ

k
ζ ∈ co{χk−1

h , χk
h}.

P r o o f. First, we sum up (2.3a) and (2.3b) with ϕh = − 1
2 |uk

h|2 ∈ Qh and

ϕh = uk
h ∈ Qh to get the kinetic energy balance

(3.3) Dt

∫

Ωh

1

2
̺kh|uk

h|2 dx+
∆t

2

∫

Ωh

̺k−1
h |Dtu

k
h|2 dx

+

∫

EI

(

hε{{̺kh}}+
1

2
̺k,uph |{{uk

h}} · n|
)

|[[uk
h]]|2 dSx

+ 2µ‖Dhu
k
h‖2L2 + λ‖divhuk

h‖2L2

=

∫

Ωh

(̺kh)
γdivhu

k
h dx+

∫

Ωh

(fk
h −∆hχ

k
h)∇hχ

k
h · uk

h dx,

see, e.g. [4], eq. 3.4 for more details.

Next, by choosing ψh = (∆hχ
k
h − fk

h ) ∈ Qh in (2.3c) we derive

(3.4)

∫

Ωh

(∆hχ
k
h − fk

h )
2 dx =

∫

Ω

(

∆hχ
k
h − fk

h

)

(Dtχ
k
h + uk

h · ∇hχ
k
h) dx

= −Dt

∫

Ω

1

2
|∇Eχ

k
h|2 dx − ∆t

2

∫

Ω

|∇EDtχ
k
h|2 dx

−Dt

∫

Ωh

F(χk
h) dx

− ∆t

2

∫

Ωh

(F ′′
a (χ

k
ξ )−F ′′

b (χ
k
ζ ))|Dtχ

k
h|2 dx

+

∫

Ω

(∆hχ
k
h − fk

h )u
k
h · ∇hχ

k
h dx,

where χk
ξ , χ

k
ζ ∈ co{χk−1

h , χk
h}. Finally, summing up (3.3) and (3.4) together with (3.1)

completes the proof. �

474



3.2. Stability of Scheme B. Considering the compressible Navier-Stokes-Allen-

Cahn system with non-isothermal state equation (1.2b), its stability includes not

only the energy stability but also the entropy stability. First, we derive the energy

stability of Scheme B.

Theorem 3.6 (Energy stability). Let (̺h, ϑh, χh,uh) be a solution of scheme B.

Then

(3.5) Dt

∫

Ωh

(1

2
̺kh|uh|2 + cv̺

k
hϑ

k
h + F (χk

h) +
1

2
|∇Eχ

k
h|2

)

dx = −Dk
B,

where Dk
B > 0 is the numerical dissipation

Dk
B =

∆t

2

∫

Ωh

(̺k−1
h |Dtu

k
h|2 + (F ′′

a (χ
k
ξ )−F ′′

b (χ
k
ζ ))|Dtχ

k
h|2 + |∇EDtχ

k
h|2) dx

+

∫

EI

(

hε{{̺kh}}+
1

2
̺k,uph |{{uk

h}} · n|
)

|[[uk
h]]|2 dSx,

where χk
ξ , χ

k
ζ ∈ co{χk−1

h , χk
h}.

P r o o f. First, following the proof of Theorem 3.5, we set ϕh = − 1
2 |uk

h|2Qh

in (2.3a), ϕh = uk
h ∈ Qh in (2.3b) and ψh = (∆hχ

k
h − fk

h ) ∈ Qh in (2.3c) to get

(3.6) Dt

∫

Ωh

1

2
̺kh|uk

h|2 dx+
∆t

2

∫

Ωh

̺k−1
h |Dtu

k
h|2 dx+ 2µ‖Dhu

k
h‖2L2

+ λ‖divhuk
h‖2L2 + ‖∆hχ

k
h − fk

h‖2L2

=

∫

Ωh

pkhdivhu
k
h dx−Dt

∫

Ω

1

2
|∇Eχ

k
h|2 dx

− ∆t

2

∫

Ω

|∇EDtχ
k
h|2 dx−Dt

∫

Ωh

F(χk
h) dx

− ∆t

2

∫

Ωh

(

F ′′
a (χ

k
ξ )−F ′′

b (χ
k
ζ )
)

|Dtχ
k
h|2 dx

−
∫

EI

(

hε{{̺kh}}+
1

2
̺k,uph |{{uk

h}} · n|
)

|[[uk
h]]|2 dSx.

Next, by setting ϕh = 1 ∈ Qh in (2.5) we obtain

(3.7)

Dt

∫

Ωh

cv̺
k
hϑ

k
h dx =

∫

Ωh

(S(∇hu
k
h) : ∇hu

k
h − ph(̺

k
h, ϑ

k
h)divhu

k
h) dx+ ‖∆hχ

k
h − fk

h‖2L2 .

Further, summing up (3.6) and (3.7) yields the desired result. �
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Next, following [6], Theorem 3.7 we report the entropy inequality for Scheme B.

Lemma 3.7 (Entropy inequality). Let (̺h, ϑh, χh,uh) be a solution of Scheme B.

Then

(3.8) Dt

∫

Ω

̺khs
k
h dx = −

∫

Ω

κ∇Eϑ
k
h · ∇E

( 1

ϑkh

)

dx

+

∫

Ω

1

ϑkh
(2µ|Dh(u

k
h)|2 + λ|divhuk

h|2) dx

+

∫

Ωh

1

ϑkh
(∆hχ

k
h − fk

h )
2 dx+Dk

S

> 0,

where

Dk
S =

∆t

2ξk̺,h
|Dt̺

k
h|2 +

h

2ηk̺,h
|∇E̺

k
h|2|uk

h · n|+ cv∆t

2|ξkϑ,h|2
̺k−1
h |Dtϑ

k
h|2

− cvh

2|ηkϑ,h|2
|∇Eϑ

k
h|2(̺kh)out[uk

h · n]− + hε+1∇E̺
k
h · ∇E(∇̺(−̺khskh))

+ hε+1∇Ep
k
h · ∇E(∇p(−̺khskh))

> 0

where ξk̺h
∈ co{̺k−1

h , ̺kh}, ξkϑh
∈ co{ϑk−1

h , ϑkh}, and ηk̺h
∈ co{̺k,inh , ̺k,outh }, ηkϑh

∈
co{ϑk,inh , ϑk,outh } for any σ ∈ E .

R em a r k 3.8. The inequality in Lemma 3.7 implies that the total (physical)

entropy is non-decreasing. Hereafter we refer to the above inequality as entropy

stability.

4. Numerical experiments

In our experiments, we consider the computational domain to be Ω = [−1, 1]2,

divided into 802 uniform squares. To solve the nonlinear schemes, we use the fix-

point iteration method and solve an explicit and linear system at each sub-iteration,

which requires the so-called CFL condition. To fulfill this condition, we take a small

time step ∆t = 10−4. The potential function F(χ) and its discrete derivative fh
denoted in (2.4) are respectively taken as

F(χ) =
1

4
(χ2 − 1)2 and fk

h = (χk
h)

3 − χk−1
h .

476



4.1. Experiment 1—barotropic case. In this experiment, we consider the

barotropic case. Initially, one of the fluids occupies two circular areas located at

xl = (−0.12, 0) and xr = (0.1, 0) of the radii 0.08 and 0.1, respectively, while the

other fluid stays in the rest of the domain. The initial data read

u = 0, (̺0, χ0) =

{

(̺1, 1) if |x− xl| < 0.08 or |x− xr| < 0.12,

(̺2, 0) otherwise,

(̺1, ̺2) =











(1, 1) Case A,

(1, 2) Case B,

(2, 1) Case C.

In Figure 1 we present the time evolution of the total mass and energy, which clearly

supports the conservation of mass and stability of energy. Further, we show the time

evolution of ̺ and χ in Figure 2 and Figure 3, respectively.

A
B
C

0 0.5 1.0
t

(a) mass

4

6

8

A
B
C

0 0.5 1.0
t

(b) energy

0

50

Figure 1. Time evolution of the total mass and energy.

Experiment 2—Non-isothermal case. In this experiment, we consider the

non-isothermal case. Analogously to experiment 1, one of the fluids occupies two

circular areas located at xl = (−0.12, 0) and xr = (0.1, 0) of the radii 0.08 and 0.1,

respectively, while the other fluid stays in the rest of the domain. We take the initial

data for density, velocity and order parameter, and moreover ϑ0 = 1.

In Figure 4 we present the time evolution of the total mass, energy and entropy,

which clearly supports the conservation of mass and stability of energy, and entropy.

Further, we show the time evolution of ̺h and χh and ϑh in Figures 5–7, respectively.

5. Conclusion

In this paper, we have studied the compressible Navier-Stokes-Allen-Cahn system

with both isentropic gas law and ideal gas law. By using central difference, upwind-

ing, and artificial diffusion techniques, we have proposed a finite volume method.

We have shown that the finite volume method is entropy stable for both isentropic

and ideal gas laws. We have also validated the theoretical results by numerical

experiments.
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R em a r k 5.1. Here we open a few technical discussions.

⊲ We point out that the artificial diffusion term hε[[rh]] is not necessary for the

proof of stability, but plays an important role if one wants to show the consis-

tency of the methods, see [5]. Indeed, when setting ε = ∞, we have hε = 0 and

the diffusive flux F up
ε defined in (2.1) becomes the standard upwind flux.

⊲ The current paper can be viewed as the preceding chapter of the convergence

analysis of the method, see our recent work on the barotropic Navier-Stokes-

Allen-Cahn [8] and Navier-Stokes-Fourier [6].
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Figure 2. Experiment 1: time evolution of ̺, from top to bottom are t = 0, 0.001, 0.1, 1.
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Figure 3. Experiment 1: time evolution of χ, from top to bottom are t = 0, 0.001, 0.1, 1.
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Figure 4. Time evolution of the total mass, energy and entropy (continued).
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Figure 4. Time evolution of the total mass, energy and entropy.
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Figure 5. Experiment 2: time evolution of ̺, from top to bottom are t = 0, 0.001, 0.1, 1.
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Figure 6. Experiment 2: time evolution of χ, from top to bottom are t = 0, 0.001, 0.1, 1.
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