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Abstract. We study a binary mixture of compressible viscous fluids modelled by the
Navier-Stokes-Allen-Cahn system with isentropic or ideal gas law. We propose a finite
volume method for the approximation of the system based on upwinding and artificial
diffusion approaches. We prove the entropy stability of the numerical method and present
several numerical experiments to support the theory.
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1. INTRODUCTION

Binary mixture of compressible fluids finds its wide applications in physics. Despite
the existence of a rich mathematical theory of such problems [1], [2], [7], [9], the
corresponding numerical analysis is far from well understood. In this paper, we are
interested in a finite volume approximation of the following model in the time space
cylinder (0,7) x Q, Q C R? an open and bounded domain, d = 2, 3:

(1.1a)  Orp+ div,(pu) =0,
(1.1b)  dy(ou) + div,(ou @ u) + Vop = — div, (Vox @ Vax — 2[Vax[?D)

+div, S+ Vo F(x)
OF (x)

(1‘1C) atX +u- va:X = AIX - 8X )
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where o, u and y represent the fluid density, velocity, and the order parameter,
respectively. Moreover, F = F(x) is Ginzburg-Landau potential, S = S(V,u) is the
viscous stress
1 . . 1 t
S =2u|Dyu — p divy ul| + ndivyul, Dyu= i(qu + V. u).
The fluid pressure p is determined by the state equation. In this paper, we consider

two variants of state equations:

Isentropic case. The pressure is a function of density:
(1.2a) p=p(0) = 0"

Non-isothermal case. The pressure is a function of density and absolute tem-
perature J:

(1.2b) p=p(p,9) =09 with ¢,(0:(09) + divy(edu)) — kALY
= —pdiv,u+S: Dyu+ (A.x — F (X))

For the sake of simplicity, we suppose the no-slip boundary conditions for the ve-
locity, together with the Neumann boundary conditions for the order parameter, i.e.,

(1.3) ulaa =0, V.x-n|sq =0 for the isentropic case,

and in addition, V,9 - n|sq = 0 for the non-isothermal case.
To close the system we impose the initial conditions

(1.4) (o,x,u)(0) = (00, X0, up) with go > 0 for the isentropic case

and in addition, ¥(0) = ¥y > 0 for the non-isothermal case.

1.1. Stability of the system. It is easy to check system (1.1)—(1.4) satisfies the
energy balance equation

d
(1.5a) —/ de—i—/(S :Dyut (Arx — F(x)3)dz =0
for the isentropic case, and

d
1.5b — [ Edx =
(1.5b) dt/Q z=0
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for the non-isothermal case, where E is the total energy function of the system

1 1
§g|u|2 + §|sz|2 + H(o) + F(x) for the isentropic case,

1 1
§g|u|2 + §|VIX|2 + ey + F(x) for the non-isothermal case,

where H(0) = ¢,0" and ¢, = 1/(y — 1).
For the isentropic case, the total energy plays the role of the mathematical entropy.
When considering the non-isothermal case, the system satisfies the entropy balance

LV”@P} dz,

d 1 , 9
. = > [ =|S:Dyu+ (Apx — F
(1.6) dt/ﬂgsdm /919[8 D,u+ (Azx (x)* + 3

where s = log(¥°v /p) is the specific entropy.

The goal of this paper is to propose a finite volume method preserving the discrete
variant of the above stabilities (1.5a)—(1.6), namely the entropy/energy stability.
The rest of the paper is organized as follows. In Section 2 we introduce a finite
volume method for the approximation of the problem. In Section 3 we analyze the
energy/entropy stability of the numerical solutions. Further, in Section 4 we validate
the theoretical results by numerical experiments. Section 5 is the conclusion.

2. NUMERICAL METHOD

In this section we propose a finite volume method for the approximation of system
(1.1)—(1.4).

Primary grid. Let ; be either a regular and quasi-uniform unstructured trian-
gulation of € in the sense of Ciarlet [3] or a uniform structured mesh of Q with the
following notations:

> We denote by K a generic element such that @ = |J K, where in the case of
KeQy
unstructured mesh, K is either a triangle for d = 2 or a tetrahedron for d = 3,

and in the case of structured mesh, K is either a rectangle for d = 2 or a cuboid
for d = 3.

> For any element K we denote by |K| its volume and by hk its diameter. Further,
we define by h = [I(nezgi hx the size of the mesh.

> We denote by &£ the set of all faces, £p the set of all faces on the boundary,
Er = £\ Ep the set of all interior faces, and £(K) the set of all faces of the element
K € Q. Further, we denote by o = K|L the common face of two neighbouring
elements K and L.
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> For each face o € £, we denote by |o| its Lebesgue measure, and n its outer normal
vector. If furthermore o € £(K), we write it as ng.

> Let P, = {2k | zx € K € Q,} be a set of control points such that for any
o = K|L the segment TRIL is perpendicular to 0. Then we denote by d, the
Euclidean distance between zx and zy, for 0 = K|L.

Hereafter, we call () the primary grid and introduce a dual grid for convenience of
notations.

Dual grid. We denote Dy, = |J D, as the dual grid, where D, is the dual cell
o€e€
associated to the face 0. On the one hand, for any exterior face o € £(K) N Ep we

define its dual cell as D, = D, g, where D, g is the domain obtained by connecting
the control point zx with the (d — 1) vertices of . On the other hand, for any
interior face 0 = K1 |K» € & we define D, = D, k, U Dy i, .

Remark 2.1. For a uniform structured mesh, P, can be chosen as the barycen-
ters. Concerning unstructured, we refer to VanderZee et al. [10] for the discussion of
a well-centered mesh, where the control points are chosen as the circumcenters.

For a piecewise (elementwise) continuous function v we define

in T _ out — T
v (x) = 61_1>r(1)1+v(x on) Vze€oef and v (x) 61_1>r(1)1+v(x—|—5n) Veeoels.

Moreover, for z € o € Eg we specify v°"(z) according to the boundary conditions:

out { v'® for no flux condition, s.t. [v]] = 0,
v =

—v™  for zero-Dirichlet condition, s.t. {{v}} =0,

where
Uin($) + vout(x)
fohe) = S
Function spaces. We define @)}, and W), respectively, as the space of piecewise
constant functions on the primary grid 25, and the dual grid Dy. Moreover, we mean
by v € Q (or v € W},) that v € Qn(Q; RY) (or v € Wi, (Q; RY)), ie., v; € Qp (or
v; € Wy) for all i = 1,...,d. The interpolation operator associated to @ reads

1 ifze K,

HQ<)0: Z 1?}5’7)/](50(1%) 1K(x):{

Keon, 0 otherwise.
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Diffusive upwind flux. Given the velocity field v € Q,, the upwind flux for any
function r € @, is specified at each face o € £ by

Up[r,v]|s = r"Pvy -1 = r[v, - 0]t +7°%[v, -n]” = {r}}v, -n— %|va -n|[[r],

where

2 out

= rin if v, on >0,
R T O - W R { |
r if Vo rn < 0.

Furthermore, we consider a diffusive numerical flux function of the form

(2.1) FIP(r,v) =Up[r,v] = h°[r]], > —L.

Discrete operators. For piecewise constant functions we define the discrete gra-
dient, divergence and Laplace operators elementwisely on the primary grid as

Vurn(z) = Z (Varn)k 1k (x), (Viurn)x = Z %{{m}}n,

KeQy, G’EE(K)
divpva(z) = Y (divavi)xli(x), (divava)g = Y %{{vh}}-n,
KeQy, G’EE(K)
T
Aprp(z) = Z (Aprn) k1K (2), (Aprn)x = Z %[[dh”
Ketn ce€(K) o

for any r, € Qp and vy € Qp. Further, we define discrete difference operator that
involves the dual grid. For any r, € Q) and q € W}, we define

Vgrh(x) = Z 1Da (Vgrh)pa, (Vg?“h)pa = \/E%n Voeé&r.

occ&

It is easy to check for any 7, ¢p € Qp that

(2.2) /Q Aprpon dz = — ) i[{m]][[w]] s,

Z—/VgT}L-VgQOhdx if [ra]le =0 Voeép.
Q

Time discretization. For a given time step At > 0, we denote the approximation
of a generic discrete function vy, at time t* = kAt by vf for k =1,..., Np(= T/At),

and define i -
Up — U

k
Dt'Uh = At

2.1. A finite volume method. Now we introduce a finite volume (FV) method
for the approximation of phase field model (1.1)—(1.4). First, we consider the isen-
tropic case (1.2a).
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Scheme A: An FV method for the isentropic model.

Let (o), uf), x) = (Hgeo, Hgxo, Mouo). Given (o', X3~ up™") € Qn x Qn X Qu
for any k= 1,..., Ny, we say that the triple (o}, x¥,uf) € Qn x Qi x Qp, is an FV
approximation of the Navier-Stokes-Allen-Cahn system (1.1), (1.2a), (1.3)—(1.4) at
time t* if the following system of algebraic equations holds:

(2.3a) / Diolion da / F22(of uf)[on] dSs = 0 Yon € Qu:
Q £
(2.3b) /Q Dyl - n di — /E F(ghub ) - [on] dS,
+ / (2uDpul : Vien + Mdiviyuldivyes) do
Q
= /pﬁdivhcph dx
Q
+ / (f}l; - AhXZ)Vh,XZ *Ph dz v‘Ph, S Qh7
Q
(2.30) /Q (Dot + ul - Vi on da = /Q (Bt = 5 de Vi € Qs

where pf = (o), Dpuy, = (Viuy + Viug)/2, A = n—2u/d, and the approximation
of F' follows the so-called convex-concave splitting technique

(2.4) fE=FL0m) + FOg,

where F, and F; are the convex and concave part of F, respectively.

Further, we propose an FV method for the non-isothermal case (1.2b).

Scheme B: An FV method for the non-isothermal model.

Let (Q(})La 19?17 u(})p X(})L) = (HQQOa HQﬂOa HQX07 HQuO) Given (Q£717 19]}2717 XZ*I, uzil) €
QnXxQnxQnpxQy for any k = 1,..., Ny, we say that the quadruple (of , 9%, X%, uf) €
Qn X Qn x Qp, x Qp is an FV approximation of the Navier-Stokes-Allen-Cahn sys-
tem (1.1), (1.2b), (1.3)—(1.4) at time ¢* if it satisfies (2.3) and

(2.5)

co [ Du@io)onds — e, / E0 (oot ub) [on] S, + /
Qpn Er Er dU

R

[951on] dSa
= / (S(th’fl) : th’fL —p’fldivhuﬁ + |Ahxﬁ — }’f|2)goh dx Yon € Qp.
Qn

Here, f; is the same as in scheme A, and the discrete pressure is defined as
pr = oy for 9, > 0 with an extension to the non-physical regime for ¥, < 0
that ph,(Q}m ﬁh) =0.
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3. STABILITY

In this section we show the stability of the FV schemes. Before that we recall
some important properties satisfied by our numerical approximation. First, we re-
call from [5] that the density scheme (2.3a) satisfies the positivity of density and

conservation of mass.

Lemma 3.1 (Positivity of density and conservation of mass). Let (op,up) sat-
isfy (2.3a) with g9 > 0. Then for any t € (0,T),

on(t,z) >0 Vae and /Qh(t)dx:/godx.
Q Q

Next, we test the density scheme (2.3a) by 5 = H'(0F), and find the following
lemma, see [5], Lemma 11.2.

Lemma 3.2 (Discrete renormalized continuity equation). Let (of,uf) € Qnx Qs
satisty the discrete continuity equation (2.3a) for any k € {1,..., Nr}. Then there
exist Q’E“ € co{glfl_l, of} and glg € co{ ok, 0%} for any o = K|L € & such that
(3.1)

[ Dirtehyae+ [ (e i do
Q Q
_ _ﬁ e k k12 _ "e k kn2( e l k <
= H"(0¢)| Doy |” dx H (o )len]l”(P° + 5lug - ) dS, <O0.
2 Q Er 2
Note that co{a,b} = [min{a,b}, max{a,b}]. Further, we report the positivity of
the temperature, see [6], Lemma 3.5.

Lemma 3.3 (Positivity of temperature). Let (on,Un, Xn,un) satisfy (2.5) with
00 > 0,99 > 0. Then for any t € (0,T),

Ip(t,x) >0 Vel

Theorem 3.4 (Existence of numerical solution). For every k = 1,..., Nr, there
exist a solution (of,x¥,uf) € Qn x Qn x Qp, to the FV method scheme A, and
a solution (o , 9%, x¥,uf) € Qn x Qn x Qn x Qy, to the FV method scheme B

The proof can be done analogously as [5], Lemma 11.3.

3.1. Stability of Scheme A. Here we derive the energy stability of Scheme A for
compressible Navier-Stokes-Allen-Cahn system with isentropic state equation (1.2a).
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Theorem 3.5 (Discrete energy balance). Let (op, xn, un) be a solution of the FV
method (2.3). Then we have the energy estimate

1 1
62) D [ (el + Hleh) + PO + 5Vew ) da
+ 20| Dy (|72 + Adivaug]|7. + [ Anxi; — fill7: = —DA,
where sz > 0 is the numerical dissipation

K _ At

D (o IDvag P + (Fo(x6) = Fo(ONDixi P + Ve Dex|?) de

2 Ja h

+ %LH”(@’E)I&QZIQ dz +/£ H”(@’Z)[[QZ]]Q(hE + %l{{ui}} . n|> ds,
+ [5 (hf{{pi}ﬂ %(Q]Z’UPH{UE}}-n|>|[[uﬁ]]|2d5x,

where X’g: X’E € co{xF 1 Xk}
Proof. First, we sum up (2.3a) and (2.3b) with ¢, = —1|uf|> € Q) and
pn = uf € Qy, to get the kinetic energy balance
At

1
(3.3) Dt/Q §g’g|u’fl|2dx+7/ Q§_1|Dtu’fl|2dx
h h

. I ku
o (1 tekp + e - ) [ as,
+ 20 B 3+ Mdivan 3

= /Q (gﬁ)”divhu’fl d:t—k/Q (ff’f — Ahxﬁ)vhxlfl . u’fl dz,
h h

see, e.g. [4], eq. 3.4 for more details.
Next, by choosing ¥y, = (ApxF — fF) € Q in (2.3c) we derive

B [ @nd-srae= [ (A - 5 0nd b Tid)as
' 1 At
= _Dt/ §|V£XIZ|2d$— 7/ [VeDyxj|? da
Q Q
— Dy ‘F(X];;L)dx

Qp
At

A (Fa (x€) = Fo (X&) Dex| > dae
h
+ /Q(Ahxii — fi)ai; - Vaxg d,
where X’E, X]Z € co{x¥~ !, xF}. Finally, summing up (3.3) and (3.4) together with (3.1)
completes the proof. O
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3.2. Stability of Scheme B. Considering the compressible Navier-Stokes-Allen-
Cahn system with non-isothermal state equation (1.2b), its stability includes not
only the energy stability but also the entropy stability. First, we derive the energy
stability of Scheme B.

Theorem 3.6 (Energy stability). Let (on, Y, xn, un) be a solution of scheme B.
Then

1 1
35 D [ (Gekhul+odhdh + PO + 5 Text) do = - Db,
h

where D% > 0 is the numerical dissipation

p_ At

D}, (M IDeup | + (F (xE) — F (XE)Dex)? + Ve Dixy|?) dw

2 Ja h

o [ (W kB + ok HEuky - nl) kDR as.

where X’g,xlg € co{xF 1 Xk}

Proof. First, following the proof of Theorem 3.5, we set ¢ = —%|u§|2Qh
in (2.3a), ¢p = uf € Qy in (2.3b) and ¥, = (ApxF — fF) € Qp in (2.3¢) to get

1 At _
36 D[ goblbPde+ G [ oDk e+ 20Dy
h h

+ Aldivaug]Z: + [|AxE — 117
1
= / pﬁdivhu’ﬁdx—Dt/ ~|VexF|?da
o Q2

At
- 7/ \VeDixE|?dx — Dy | F(xF)dx
Q Qp

At
=S [ (FOE = F O ) 1Dk da
2 Qp
€ 1 u
= [ (netky + 5ok Iuky - ol DR a5
I
Next, by setting ¢, =1 € @y, in (2.5) we obtain
(3.7)
D [ cochilde = [ (S(Vau): Vi~ paeh. oh)divaud) do + Ak - £
Qp Qn
Further, summing up (3.6) and (3.7) yields the desired result. O
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Next, following [6], Theorem 3.7 we report the entropy inequality for Scheme B.

Lemma 3.7 (Entropy inequality). Let (on, 9, X, ur) be a solution of Scheme B.
Then

(3.8) Dt/ o sk de = —/KVgQgh Vg( )dx
Q ¥

h

1 .
+ / e (2ulDa ()P + Adivyuf]?) do
Q Y

1
+ _k(AhXh fh) dx—l—Dg
Qn 19h
20,
where
At OWAN
D§ = ——I|Do Veorl? v Dr
b= gD w VP faf - nl + gl Do
2| . |2|Vs n?(oh) " [uf - 0] ™ + h*HVeo) - Ve(V,(—oksh))
9,k

h€+1V€ph Ve (Vp(_QZSZ))

>0
Where.flgh € co{g ,Qh} fﬁh € 00{19’“ ! 192} and 779} € co{gk m,gﬁout} nsh €
co{dp™ 95"} for any o € € .

Remark 3.8. The inequality in Lemma 3.7 implies that the total (physical)
entropy is non-decreasing. Hereafter we refer to the above inequality as entropy
stability.

4. NUMERICAL EXPERIMENTS

In our experiments, we consider the computational domain to be Q = [—1,1]?,
divided into 802 uniform squares. To solve the nonlinear schemes, we use the fix-
point iteration method and solve an explicit and linear system at each sub-iteration,
which requires the so-called CFL condition. To fulfill this condition, we take a small
time step At = 10~%. The potential function F(x) and its discrete derivative fj,
denoted in (2.4) are respectively taken as

F =308 =17 and g = ()P
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4.1. Experiment 1—barotropic case. In this experiment, we consider the
barotropic case. Initially, one of the fluids occupies two circular areas located at
x; = (=0.12,0) and z, = (0.1,0) of the radii 0.08 and 0.1, respectively, while the
other fluid stays in the rest of the domain. The initial data read

(01,1) if |z — x| < 0.08 or |z — z,| < 0.12,
(02,0) otherwise,

u =0, (QOaXO) = {

(1,1) Case A,
(01,02) = ¢ (1,2) Case B,
(2,1) Case C.

In Figure 1 we present the time evolution of the total mass and energy, which clearly
supports the conservation of mass and stability of energy. Further, we show the time
evolution of ¢ and x in Figure 2 and Figure 3, respectively.

8 T : T
— A 50 — A -
....... B tmmmm- B
6 C 4 C
4 - 0 I
0 0.5 ;100 0.5 ; 1.0
(a) mass (b) energy

Figure 1. Time evolution of the total mass and energy.

Experiment 2—Non-isothermal case. In this experiment, we consider the
non-isothermal case. Analogously to experiment 1, one of the fluids occupies two
circular areas located at z; = (—0.12,0) and «, = (0.1,0) of the radii 0.08 and 0.1,
respectively, while the other fluid stays in the rest of the domain. We take the initial
data for density, velocity and order parameter, and moreover ¥y = 1.

In Figure 4 we present the time evolution of the total mass, energy and entropy,
which clearly supports the conservation of mass and stability of energy, and entropy.
Further, we show the time evolution of g;, and x; and 9, in Figures 57, respectively.

5. CONCLUSION

In this paper, we have studied the compressible Navier-Stokes-Allen-Cahn system
with both isentropic gas law and ideal gas law. By using central difference, upwind-
ing, and artificial diffusion techniques, we have proposed a finite volume method.
We have shown that the finite volume method is entropy stable for both isentropic
and ideal gas laws. We have also validated the theoretical results by numerical

experiments.
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Remark 5.1. Here we open a few technical discussions.

> We point out that the artificial diffusion term h®[[r;,]] is not necessary for the
proof of stability, but plays an important role if one wants to show the consis-
tency of the methods, see [5]. Indeed, when setting € = oo, we have h* = 0 and
the diffusive flux F'P defined in (2.1) becomes the standard upwind flux.

> The current paper can be viewed as the preceding chapter of the convergence
analysis of the method, see our recent work on the barotropic Navier-Stokes-
Allen-Cahn [8] and Navier-Stokes-Fourier [6].

1.04
1.02

@o 1.00

0.98

1.04
1.03
1.02
1.01
1.00
0.99

1.99
1.0010

1.0005
1.0000
0.9995
0.9990

1.10
1.08
1.06
1.04
1.02

1.98
1.97

Case (A) Case (B) Case (C)

1.96
1.95

Figure 2. Experiment 1: time evolution of g, from top to bottom are ¢t = 0,0.001,0.1, 1.
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0.05 0.05 0.05
0.04 0.04 0.04
0.03 0.03 0.03
0.02 0.02 0.02
0.01 0.01 0.01
0.0456 0.0462 0.0452
0.0454 0.0460 0.0450
0.0452 0.0458 0.0448
0.0450 0.0456 0.0446
Case (A) Case (B) Case (C)

Figure 3. Experiment 1: time evolution of x, from top to bottom are ¢t = 0,0.001,0.1, 1.

8 ---------------------- r --------------------- ! T
....... 5| o1 — A
6 c4 B
45 C
4 - I
0 0.5 + 1.0 400 0.5 ;1.0
(a) mass (b) energy

Figure 4. Time evolution of the total mass, energy and entropy (continued).
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0.5 " 1.0
(c) entropy

Figure 4. Time evolution of the total mass, energy and entropy.

Figure 5. Experiment 2: time evolution of g, from top to bottom are ¢t = 0,0.001,0.1, 1.
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0.07

0.07 0.07

0.06 0.06 O'Oé
0.05 0.05 0.05
0.04 0.04 0.04
0.03 0.03 0.03
0.02 0.02 0.02
0.01 0.01 0.01
0.0698 0.0656
0.0696 0.0722 0.0654
0.0694 0.0720 0.0652

' 0.0718 '
0.0692 00716 0.0650
0.0690 0'0714 0.0648
Case (A) Case (B) Case (C)

Figure 6. Experiment 2: time evolution of x, from top to bottom are ¢t = 0,0.001,0.1, 1.
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