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Abstract. A macroscopic traffic flow model considering the effects of curves, ramps, and
adverse weather is proposed, and nonlinear bifurcation theory is used to describe and predict
nonlinear traffic phenomena on highways from the perspective of global stability of the traffic
system. Firstly, the stability conditions of the model shock wave were investigated using the
linear stability analysis method. Then, the long-wave mode at the coarse-grained scale is
considered, and the model is analyzed using the reduced perturbation method to obtain the
Korteweg-de Vries (KdV) equation of the model in the sub-stable region. In addition, the
type of equilibrium points and their stability are discussed by using bifurcation analysis, and
a theoretical derivation proves the existence of Hopf bifurcation and saddle-knot bifurcation
in the model. Finally, the simulation density spatio-temporal and phase plane diagrams
verify that the model can describe traffic phenomena such as traffic congestion and stop-and-
go traffic in real traffic, providing a theoretical basis for the prevention of traffic congestion.
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1. Introduction

With the increasing number of vehicles in the city, various traffic problems have

gradually emerged. Traffic congestion has become one of the main factors of traffic

problems, which restricts the rapid development of cities. How to alleviate traffic

problems with the guidance of scientific theories has become a hot topic of research
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nowadays. Many experts and scholars have proposed many traffic flow models in

order to study the formation and propagation characteristics of traffic congestion.

Classical traffic flow models can be divided into microscopic traffic flow models

and macroscopic traffic flow models. The main microscopic models are the vehicle-

following model [30], [31], [24], [25] and the metric automata model [5], [6]; the

main macroscopic models are the continuous flow model [35], [9] and the lattice fluid

dynamics model [34], [32], [33], [36]. In the study of traffic flow models, Gupta

and Katiyar presented many important findings, and in 2005, they studied a new

anisotropic continuous traffic flow model, analyzed some certain qualitative proper-

ties of the model, and discussed the relationship between shock waves in traffic flow

and traffic congestion [10]. In 2006, they conducted a study based on a modified

anisotropic continuum model and obtained the transitions between free flow and

various types of congested flows through numerical simulations, observing several

states such as local clustering and stop-and-go. The results show that the model

is able to describe all three phases of the traffic flow developed by kerner [12]. In

addition, they developed a new continuous model containing anisotropy term based

on an improved car-following model. It was found that this anisotropic term en-

sures that the characteristic velocity is always less than or equal to the macroscopic

flow velocity, and this new model also overcomes the problem of negative flow and

negative velocity that exists in almost every higher-order continuous medium model

[11]. In the study by Gupta and Sharma, they discussed a study of the nonlinear

stability of a new anisotropic continuum traffic flow model in which the dimension-

less parameter or anisotropic factor controls the nonisotropic character and diffusive

influence [14]. Shock waves and sparse waves, local clustering effects, and phase

transitions are investigated through experimental simulations of a two-lane continu-

ous medium model with coupling effects and are found to be consistent with various

nonlinear dynamical phenomena observed in real traffic flows. The results show that

the model is able to explain some specific traffic phenomena and is consistent with

the real traffic flow [15]. In the studies considering the effect of optimal current

difference on traffic dynamics, many new lattice hydrodynamic models have been

proposed to investigate the significant effect of optimal current difference on traffic

dynamics, which is beneficial to curb traffic congestion [13]. Besides, based on the

study of lattice hydrodynamic model, many scholars have done a lot of research con-

sidering the effects of different vehicle ratios, leading vehicle information, and delayed

feedback on traffic congestion [28]. The microscopic model focuses on studying and

analyzing the traffic operation of individual vehicles and is constructed based on the

velocity, headway time distance and acceleration information of vehicles; while the

macroscopic model studies the traffic operation of the road traffic flow as a whole,

which can take into account the road conditions themselves, as well as the factors

500



of traffic flow and other random disturbances that affect road traffic safety. The

expression of the macroscopic model is based on the partial differential equation of

density and velocity, which has higher computational efficiency in comparison. In

this paper, we select the continuous model, which is a classical macroscopic traffic

flow model.

In the real traffic environment, the vehicle driving will be affected by the road

geometry and weather environment and other random interference factors. When

the driver encounters a turn or goes up or down a ramp while driving, the blind spot

of the sight area existing on the curve and the too steep ramp will affect the driving,

which will lead to traffic chaos, thus increasing the chance of traffic congestion and

traffic accidents. In addition, the impact of weather conditions on traffic flow cannot

be ignored. When there is rain, snow, haze and other weather, visibility and ground

adhesion will be reduced, which will lead to unstable vehicle velocity; while in good

weather conditions, driving will hardly be affected. In 2014, Zeng et al. [29] studied

the effect of road curves on single-lane traffic flow, and proposed a cellular model

(CA) with road curves based on the NaSch model to examine the traffic flow under

different conditions such as curve radius, arc length, and road friction coefficient by

taking the curve characteristics as the study object. The simulation results showed

that the smaller the radius of the curve, the more likely blockage occurs. In 2017,

Meng et al. [26] proposed a new traffic flow model to describe the movement behavior

of vehicles on curved roads with slopes. The relevant effects on uniform traffic

congestion were investigated using analytical and numerical methods. Based on

the control theory, the condition of no traffic congestion is obtained analytically.

Finally, the developed traffic flow model is validated by simulation. Theoretical and

numerical results show that the relevant factors such as friction coefficient, radius

of curvature, curve slope and parameters have a large influence on the traffic flow

stability. In 2020, Zhang et al. [37] studied a macroscopic traffic flow model that

considered the velocity difference between adjacent vehicles on uphill and downhill,

analyzed the stability of the model, simulated the spatial and temporal evolution

of traffic flow on uphill and downhill, and concluded that the unstable region on

downhill expands as the gradient increases. In 2022, Li et al. [22] analyzed the

modeling law of a new continuous medium model considering the self-stability control

of sidehill curves, and studied the potential influencing factors of vehicle steady-

state velocity, historical velocity, road curve radius and road slope on the stability

of traffic flow, based on which an extended continuous model considering the self-

stability effect of sidehill curves was proposed, stability analysis was performed,

and the simulation of different slope and radius under self-stabilization effect, which

shows that the self-stabilization effect is beneficial to reduce congestion on curved

roads with slopes.
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Therefore, taking realistic factors into account in the traffic system is not only

more consistent with the actual situation of the road and can improve the safety and

stability of road traffic, but also more accurate, reliable and realistic for the study

of traffic flow theory. In view of this fact, we improved a new macroscopic traffic

flow model by considering the influence of factors such as curves, ramps and weather

environment on traffic conditions.

In complex traffic systems, a variety of nonlinear traffic phenomena are often pre-

sented, and these nonlinear traffic phenomena are also subject to frequent alternating

changes. Theoretically, the nature of such changes is a bifurcation behavior, and in

order to study the impact of these changes on the stability of traffic flow, bifurcation

theory was introduced into traffic flow to reproduce the sudden changes that oc-

cur in the traffic system. At present, the bifurcation phenomenon in traffic systems

is mainly studied from the follow-along model, while the analysis of the bifurca-

tion phenomenon in macroscopic traffic flow models is not very common. In 1999,

Igarashi et al. and Orosz et al. investigated the bifurcation phenomenon of traffic

flow in the Optimal Velocity model [17], [16], [27] proposed by Bando et al. Igarashi

et al. proved the existence of Hopf bifurcation by a rigorous mathematical deriva-

tion. Orosz et al. determined the type of Hopf bifurcation by drawing a bifurcation

simulation diagram and described its stability. In 2009, Ling et al. [23] studied the

bifurcation phenomenon of traffic flow in a nonlinear follow-along model by applying

the theory of time-lag dynamical systems, and analyzed the stability of the system

consisting of three vehicles and its Hopf bifurcation. In 2013, Carrillo et al. [4] inves-

tigated the macroscopic second-order traffic flow model and proved the existence of

the Taken-Bogdanov bifurcation. In 2015, Delgado et al. [8] applied traveling wave

solution for traffic flow to prove the existence of the TB bifurcation, thus explaining

the existence of the Hopf bifurcation and the GH bifurcation. In order to describe

in detail the specific traffic flow phenomena caused by bifurcation, Ai et al. [1] de-

rived the conditions for the existence of Hopf bifurcations of the velocity gradient

macroscopic model, the types of Hopf bifurcations and their stability, and analyzed

the traffic conditions near the bifurcation points by drawing simulation diagrams to

explain the nonlinear traffic phenomena in complex ground transportation systems

innovatively with bifurcation theory.

In order to study the bifurcation phenomenon in nonlinear traffic systems, the

modified macroscopic traffic flow model mentioned above is analyzed using bifurca-

tion analysis to investigate the nonlinear dynamics of traffic flow under bifurcation

threshold and bifurcation conditions. By setting different parameters for the model,

the type of equilibrium points and the stability of the traffic system under differ-

ent conditions can be obtained. Theoretical analysis of the model can lead to the

existence conditions and bifurcation types of Hopf bifurcation and Saddle-node bi-
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furcation, and finally, the sudden changes of the stability of the traffic system near

the Hopf bifurcation point and Saddle-node bifurcation point can be reproduced by

a simulation diagram. By bifurcation analysis of the model, we can clearly explain

how the qualitative state of this traffic flow system will change abruptly when the

traffic parameters change and exceed a certain critical value, which will also reveal

that bifurcation will lead to abrupt changes in the stability behavior of traffic flow.

Thus, the bifurcation analysis theory of traffic flow provides a theoretical and scien-

tific basis for preventing and alleviating traffic congestion, and explains the formation

mechanism of traffic congestion.

The paper is structured as follows: Section 2 presents the improved model consid-

ering the effects of curved ramps and weather conditions on traffic flow; in Section 3,

a linear stability analysis of the model is performed to derive the neutral stability

condition of the model; Section 4 derives the KdV-Burger equation based on the

nonlinear stability analysis; in Section 5, the model is analyzed using bifurcation

theory to study nonlinear traffic phenomena in the transportation system; Section 6

validates and explains the theoretical analysis part by means of simulation plots;

Section 7 concludes the full work.

2. Model introduction

In early traffic dynamics studies, many researchers neglected the effect of driver

response phenomenon. To address this phenomenon, in 1995, Bando et al. [2] devel-

oped the well-known OV traffic flow model (OVM) by introducing an optimal velocity

function. The OV model can describe many characteristics, such as the instability

of traffic flow, the evolution of traffic congestion, and the stop-and-go phenomenon.

The expression of the model is

(2.1)
dvn(t)

dt
= a[V (∆xn(t))− vn(t)],

where a is the driver’s sensitivity; vn(t) and ∆xn(t) represent the instantaneous

velocity and headway of vehicle n at moment t, respectively; V (∆xn(t)) represents

the optimal velocity function, which is defined as

(2.2)
Vmax

2
{tanh[∆xn(t)− hc] + tan(hc)},

where Vmax and hc are the maximum vehicle velocity and the allowable safety dis-

tance, respectively.
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Considering the problems of excessive acceleration and impractical deceleration in

the OV model, Jiang et al. [18] proposed the Full Velocity Difference (FVD) model

in 2001, and the FVD model expression is as follows

(2.3)
dvn(t)

dt
= a[V (∆xn(t))− vn(t)] + λ∆vn(t).

The FVD model improves the unrealistic acceleration problem of the OV model

and obtains the kink wave in the crowded condition by simulation. Therefore, the

FVD model is more mature and has superior steady-state and dynamic performance

compared with the previous follower model.

In the real traffic environment, the vehicle driving will be affected by road ge-

ometry and weather and other random interference factors. Relative to ordinary

roads, curves and ramps on the driving interference, order chaos, stability is poor,

the driver’s risky driving behavior increased, it is easy to occur traffic congestion

and traffic accidents. In addition, the vehicle driving velocity is relatively stable

under good weather conditions; bad weather conditions will have an impact on the

driver’s sight distance and road adhesion, and the vehicle driving velocity is rela-

tively unstable. In order to improve the safety of road traffic, it is necessary for

drivers to consider the influence brought by curves and ramps in the process of driv-

ing. Therefore, taking realistic factors into account in the traffic system is not only

more consistent with the actual situation of the road and can improve the safety and

stability of road traffic, but also more accurate, reliable and practical for the study

of traffic flow theory. The following is to analyze the impact of different real factors

on traffic flow separately.

The curve shape refers to the curve, and its characteristic parameter is the radius

of curvature. Therefore, the research on the influence of road curve on the following

vehicle can start from the radius of curvature of the curve. Visually, the “distance”

between the following vehicle and the vehicle in front becomes smaller when driving

on a curved road. Therefore, when the following vehicle is stimulated, its response

is different from that on a straight road. The response of the following vehicle to the

guiding vehicle can be studied from two aspects.

For the vehicle in the curve road, different driving velocity required for the mini-

mum safety radius of curvature is not the same—the higher the velocity, the greater

the minimum safety radius of curvature; conversely, the lower the velocity, the mini-

mum safety radius of curvature required will be smaller. Assuming that during

driving in a curve, the guiding vehicle suddenly accelerates, but the driver of the

following vehicle will have visual illusion due to being in the curve, which will cause

him to intuitively feel that the “straight line distance” between himself and the guid-

ing vehicle does not increase significantly, and mistakenly believe that the headway
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between the two vehicles has hardly changed. Therefore, its response to guiding

the vehicle to accelerate is relatively weak. Assume that r is the actual radius of

curvature of a curved road section, and r0 is the minimum safe radius of curvature

required for a vehicle traveling on that curved road section at a certain velocity.

The difference in acceleration resulting from the influence of a curve compared to

a straight section is

(2.4) a∆ = ξ tanh
(
1− r0

r

)
.

In (2.4), a∆ represents the difference in acceleration resulting from following the

vehicle driving in a curve versus driving in a straightaway when the guiding vehicle

to accelerate, and ξ represents the influence coefficient. And r0 can be calculated by

feeding the following equation

(2.5) r0 =
v2

127µ
.

When driving on a curved road section, if the guiding vehicle suddenly decelerates,

that is, when an+1 < 0, the driver of the following vehicle will have a certain visual

illusion that the headway between the two vehicles suddenly decreases, and at this

time, the driver’s reaction is stronger relative to the reaction when driving on a

straight road section, and the acceleration of the following vehicle will be greater at

this time than that on a straight road section. Assume that r is the actual radius of

curvature of a curved road section, and r0 is the minimum safe radius of curvature

required for a vehicle traveling on that curved road section at a certain velocity.

The difference in acceleration resulting from the influence of a curve compared to

a straight section is

(2.6) a∆ = ξ tanh
(
1− r0

r

)
.

In the curve driving, regardless of whether the guiding vehicle is in an accelerating

or decelerating state, the expression of the acceleration difference a∆ generated by the

following vehicle is the same. When the guiding vehicle to accelerate, the following

vehicle also accelerates; when the guiding vehicle to decelerate, the following vehicle

also decelerate.

Generally speaking, in order to ensure traffic safety, the driving velocity of the

vehicle on the ramp will be smaller than that on the straight road. At this time,

the following vehicle reacts strongly to the stimulation of the guiding vehicle, and

the following vehicle always wants to maintain a larger headway with the guiding

vehicle. When the vehicle goes uphill, the following vehicle is worried that the guiding
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vehicle will suddenly decelerate (i.e., when an+1 < 0), so the stimulus response to

the guiding vehicle will be stronger than in the case of driving on the flat road, and

the acceleration of the following vehicle will be greater than that on the flat road at

this time; while the vehicle goes downhill, the following vehicle will not only worry

about the guiding vehicle due to the faster driving velocity and sudden emergency

braking (i.e., an+1 < 0), but also worry that its own vehicle will occur brake failure,

which will lead to the driver of the following vehicle reacts to the stimulus of the

guiding vehicle significantly stronger than in the case of driving on a flat road, the

following vehicle reacts to the stimulus of the guiding vehicle significantly stronger

than in the case of driving on a flat road, and the acceleration of the following vehicle

is still greater than that on a flat road [15]. Assuming that the vehicle is driving

on a road section with slope, the acceleration difference generated by the following

vehicle compared to the flat road can be expressed as

(2.7) a∆ = ξ tanh(1− i).

In (2.7), a∆ denotes the difference in acceleration generated by following the vehicle

when the slope factor is considered, ξ denotes the influence coefficient, and the slope

value i is in percentage form and is determined by the slope angle θ of the road

section, which can be defined as

(2.8) i =
θ

90◦
.

The impact of bad weather on vehicle driving is mainly manifested in the reduction

of the driver’s visual distance and the reduction of road adhesion. The variable ϕ

represents the complexity of weather conditions, which mainly affects the driver’s

sight distance and road surface adhesion. The variables s0 and ϕ are used to represent

the driver’s sight distance and road adhesion, respectively, while s0 and ϕ are the

values taken under ideal weather conditions. The expression is as follows:

(2.9) φ =
s0
s

· ϕ0

ϕ
.

It can be seen that in an ideal climate, the effect of environmental complexity is

the lowest when φ = s0ϕ0/(sϕ) = 1. However, in practice the values are generally

greater than 1, and the effect of φ on acceleration is as follows:

(2.10) a∆ = ξ tanh
(
1− s0

s
· ϕ0

ϕ

)
.

In (2.10), a∆ represents the acceleration difference generated by the following vehi-

cle when considering the driver’s sight distance s and road surface adhesion ϕ. When
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the guiding vehicle accelerates, the following vehicle will also accelerate, the driver

will appropriately reduce the response to the acceleration behavior of the preceding

vehicle due to the influence of the sight distance and road surface adhesion, so the

acceleration at this time will be less than the acceleration when driving in the ordi-

nary roadway (i.e., a∆ < 0). When the lead vehicle decelerates, the following vehicle

will also decelerate, but at this time, due to the reduced sight distance and road

surface adhesion, the driver’s reaction to the front vehicle’s deceleration behavior is

stronger, so the acceleration at this time will be greater than the acceleration when

driving on the ordinary road (i.e., a∆ > 0). ξ indicates the influence coefficient.

Combining the acceleration differences generated in the three cases yields a general

expression for the acceleration difference generated under the influence of multiple

factors

(2.11) a∆ = ξ tanh
(
1− r0

r
· s0
s

· ϕ0

ϕ
· i
)
.

Through the analysis of various traffic scenarios mentioned above, we have come to

the conclusion that when driving on curves, ramps, and adverse weather conditions,

if the guiding vehicle to accelerate, the acceleration of the following vehicle will be

less than acceleration of driving on ordinary road sections. If the guiding vehicle to

decelerate, the acceleration of the following vehicle will be greater than acceleration

of driving on a ordinary road section. When guiding the vehicle to slow down, the

response of the following vehicle to the deceleration of the vehicle in front of it is

greater than the response in the normal roadway situation, so its acceleration will

be greater than the usual acceleration. Therefore, a function un(t) is used to control

the influence of the above disturbance factors on the acceleration, given as

(2.12) un(t) =

{
−1, an+1 > 0,

1, an+1 < 0.

The function un(t) is a binary variable that reflects whether the front vehicle is

accelerating or decelerating.

In view of the above analysis, we introduce the effects of curves, ramps and weather

conditions on traffic conditions into the FVD model to produce the new followership

model

(2.13)
dvn(t)

dt
= a[V (∆xn(t))− vn(t)] + λ∆vn(t) + un(t)Hn(t),

where Hn(t) is a small perturbation generated under the influence of curved ramps

and weather conditions, which is defined as follows

(2.14) Hn(t) = ξ tanh
(
1− r0

r
· s0
s

· ϕ0

ϕ
· i
)
×∆vn(t).
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In order to transform the above micro traffic flow model into a macro traffic flow

model [19], the following variables are introduced

vn(t) → v(x, t), vn+1(t) → v(x +∆, t),(2.15)

V (∆xn(t)) → Ve(̺), V ′(∆xn(t)) → −̺2V ′

e (̺),

where ∆ represents the distance of continuous vehicles, ̺(x, t) and v(x, t) represent

the macro density and macro velocity respectively, and Ve(̺) is the equilibrium

velocity.

By performing a Taylor expansion on the variable vn+1(t) and neglecting the

higher order terms, we obtain

(2.16) ∆vn(t) = v(x+∆, t)− v(x, t) = ∆vx +
1

2
∆2vxx.

According to the above conversion, (2.13) can be rewritten as follows

(2.17) vt + (v − λ∆−N∆)vx = a[Ve(̺)− v] +
1

2
(λ +N)∆2vxx.

For simplification, ξ tanh(1−r0s0ϕ0i/(rsϕ)) will be replaced byN in the derivation

that follows, as:

(2.18) N = ξ tanh
(
1− r0

r
· s0
s

· ϕ0

ϕ
· i
)
.

Combining (2.17) with a local vehicle number conservation equation, the following

new macro continuous traffic flow model equation is obtained:

(2.19)





̺t + ̺vx + v̺x = 0,

vt +
(
v − λ∆− ξ tanh

(
1− r0

r
· s0
s

· ϕ0

ϕ
· i
)
∆
)
vx

= a[Ve(̺)− v] +
1

2

(
λ+ ξ tanh

(
1− r0

r
· s0
s

· ϕ0

ϕ
· i
))

∆2vxx.
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3. Linear stability analysis

Rewrite (2.19) in the following vector form to facilitate subsequent analysis

(3.1) Ut +AUx = E,

where

U =

[
̺

v

]
, A =

[
v ̺

0 v − λ∆−N∆

]
,(3.2)

E =

[
0

a[Ve(̺)− v] +
1

2
(λ +N)∆2vxx

]
.(3.3)

By solving the equation, the eigenvalue of A can be obtained as:

(3.4) λ1 = v, λ2 = v − λ∆−N∆.

The above characteristic velocities λ(i=1,2) are not greater than the macroscopic

traffic flow velocity, which proves that the model is anisotropic. Therefore, the model

describes traffic phenomenon in which the vehicles behind do not affect the movement

of the vehicles in front.

Regarding the model, it has limitations with respect to certain parameters. r

is the actual radius of curvature of a road section, while r0 is the minimum safe

radius of curvature required at a given velocity, so that the value of r must be

greater than the value of r0 in order to ensure safe driving, that is r > r0. The

expression for the weather complexity is φ = s0ϕ0/(sϕ). The lowest value that can

be obtained under ideal weather conditions, at this point, φ = 1; when the weather

conditions are not ideal, the value of φ is greater than 1, that is, φ > 1. Based on

a comprehensive analysis of the two scenarios, it can be concluded that the value

of weather complexity φ is greater than or equal to 1. The above discussion of the

range of values for the parameters is to ensure model rationality.

In addition to the limitations of the parameters mentioned above, the factors

considered in the model developed in this paper are not comprehensive enough,

which leads to limitations in the scope of application of the model. In fact, the

model is suitable for describing traffic flow under specific conditions such as curves,

ramps and bad weather. In addition, the model is a macroscopic traffic flow model

and has limitations of its own. It is an effective tool for simulating mass traffic and is

suitable for simulating highway traffic flows, but not street traffic. Finally, the model

is also unable to describe the overtaking or lane changing behaviour of vehicles on

a single lane.
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We take the density and velocity of the initial traffic flow as constants ̺0 and v0,

and then add a small perturbation to the density and velocity of the initial traffic

flow. The small perturbation takes the form

(3.5)

(
̺(x, t)

v(x, t)

)
=

(
̺0
v0

)
+

( ̺̂k
v̂k

)
exp(ikx+ σkt),

where k and σk denote wave number and frequency, respectively.

By substituting (3.5) into (2.19), we can obtain the following equation

(3.6)





(σk + v0ik)̺̂k + ̺0ikv̂k = 0,

aV ′

e (̺0)̺̂k − [σk + (v0 − λ∆−N∆)ik + a− 1

2
(λ+N)∆2(ik)2]v̂k = 0.

If there exists a nonzero solution to (3.6), then the determinant of its coefficients

must be equal to zero, i.e.

(3.7)

∣∣∣∣
σk + v0ik ̺0ik

aV ′

e (̺0) −[σk + (v0 − λ∆−N∆)ik + a− 1
2 (λ+N)∆2(ik)2]

∣∣∣∣ = 0,

therefore

(3.8) (σk+v0ik)
2+aV ′

e (̺0)̺0ik+(σk+v0ik)[a−(λ+N)∆ik− 1

2
(λ+N)∆2(ik)2] = 0.

To determine the value of σk, we perform a power series expansion of σk, i.e., σk =

σ1ik + σ2(ik)
2 + . . ., and combine the terms into (3.8) to obtain a second-order

expression for ik as

(3.9) [aV ′

e (̺0)̺0 + (σ1 + v0)a]ik+ [(σ1 + v0)
2 + σ2a− (σ1 + v0)(λ+N)∆](ik)2 = 0.

In order to ensure that the above equation holds, the first-order term ik and the

second-order term (ik)2 of the power series must be equal to zero. Thus, the following

equation can be obtained

aV ′

e (̺0)̺0 + (σ1 + v0)a = 0,(3.10)

(σ1 + v0)
2 + σ2a− (σ1 + v0)(λ+N)∆ = 0.(3.11)

Combining (3.10) and (3.11) and then solving them, we can derive the equation

σ1 = −v0 − V ′

e (̺0)̺0,(3.12)

σ2 = −V ′

e (̺0)̺0
a

[V ′

e (̺0)̺0 + (λ+N)∆].(3.13)
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When σ2 > 0, the traffic flow is stable, so the neutral stability condition satisfies the

following equation:

(3.14) as = V ′

e (̺0)̺0[V
′

e (̺0)̺+ (λ+N)∆].

By using Taylor expansion, (3.6) is rewritten as

(3.15) Im(σk) = −k[v0 + ̺0V
′

e (̺0)] +O(k3).

According to (3.15), the following can be obtained:

(3.16) c(̺0) = v0 + ̺0V
′

e (̺0).

4. Nonlinear stability analysis

In order to analyze the evolutionary behavior of small perturbations near neutral

stability conditions of the traffic system, a new coordinate system is introduced to

translate it into the form

(4.1) z = x− ct.

Substituting the above equation into (2.19) yields

(4.2)





−c̺z + qz = 0,

−cvz + (v − λ∆ −N∆)vz = a[V e(̺)− v] +
1

2
(λ+N)∆2vzz ,

where the traffic flow q is the product of density and velocity, i.e., q = ̺v, which can

be obtained by substituting the flow equation into (4.2)

vz =
c̺z
̺

− q̺z
̺2

,(4.3)

vzz =
( c
̺
− q

̺2

)
̺zz − 2

( c

̺2
− q

̺3

)
̺2z.(4.4)

A second-order Taylor expansion for the flow rate q yields

(4.5) q = ̺V e(̺0) + b1̺z + b2̺zz.

Substituting (4.3)–(4.4) into the second equation of (4.2) yields

(4.6) −c
(c̺z

̺
− q̺z

̺2

)
+
( q
̺
− λ∆ −N∆

)(c̺z
̺

− q̺z
̺2

)

= a
[
Ve(̺)−

q

̺

]
+

1

2
(λ+N)∆2

(c̺zz
̺

− 2c̺2z
̺2

− q̺zz
̺2

+
2q̺2z
̺3

)
.

511



Since neither ̺z nor ̺zz is zero, the coefficients of ̺z and ̺zz in (4.6) must be

zero, so we can get

(4.7)





b1 =
1

a
[(c− Ve(̺))(c + (λ+N)∆2)− cVe(̺)],

b2 =
1

2a
(λ+N)∆2[c− Ve(̺)].

Near the neutral stability condition, taking ̺ = ̺h+ ̺̂(x, t), a second-order Taylor
expansion for ̺ yields

(4.8) ̺Ve(̺) ≈ ̺hVe(̺h) + (̺Ve)̺
∣∣
̺=̺h

̺̂+ 1

2
(̺Ve)̺̺

∣∣
̺=̺h

̺̂2.

Substituting the above equation into q = ̺V e(̺0) + b1̺z + b2̺zz and combining

with (4.6), we can obtain

(4.9) −c̺z + [(̺Ve(̺))̺ + (̺Ve(̺))̺̺̺]̺z + b1̺zz + b2̺zzz = 0.

In order to convert (4.9) to the standard KdV-Burgers equation, the following

transformations need to be introduced

(4.10) U = −[(̺Ve)̺ + (̺Ve)̺̺̺], X = mx, T = −mt.

Then, the following standard KdV-Burgers equation can be obtained by substi-

tuting (4.10) into (4.9)

(4.11) UT + UUX −mb1UXX −m2b2UXXX = 0.

The following solutions are obtained by solving the above equations

(4.12) U = − 3(−mb1)
2

25(−m2b2)



1 + 2 tanh

(
± −mb1

10m2

)(
X +

6(−mb1)
2

25(−m2b2)
T + ς0

)

+tanh2
(
± −mb1

10m2

)(
X +

6(−mb1)
2

25(−m2b2)
T + ς0

)


 .
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5. Bifurcation analysis of mode

5.1. Types of equilibrium points and their stability. In this paper, we

assume that the main section is open boundary condition, i.e.

(5.1) ̺(1, t) = ̺(2, t), ̺(L, t) = ̺(L− 1, t), v(1, t) = v(2, t), v(L, t) = v(L − 1, t).

Assume that the model has traveling wave solutions ̺(z) and v(z), where z = x−ct

and traveling wave velocity c < 0. Based on the theory above, substituting into (2.19)

yields

−c̺z + qz = 0,(5.2)

−cvz + (v − λ∆−N∆)vz = a[V e(̺)− v] +
1

2
(λ+N)∆2vzz .(5.3)

From (5.2) and (5.3)

vz =
c̺z
̺

− q̺z
̺2

,(5.4)

vzz =
( c
̺
− q

̺2

)
̺zz − 2

( c

̺2
− q

̺3

)
̺2z.(5.5)

Substituting (5.4)–(5.5) into (5.3) yields

(5.6) −̺z
̺3

q2 +
[ (2c+ λ∆+N∆)̺z

̺2
+

a

̺
+

(λ+N)∆2̺zz
2̺2

]
q

= aVε(̺) +
c2 + c(λ∆+N∆)

̺
̺z +

c(λ+N)∆2

2̺
̺zz.

The integral of (5.2) gives

(5.7) −c̺+ q = const. = q∗,

that is,

(5.8) q = q∗ + c̺.

Substituting (5.8) into (5.6) yields

(5.9)
[ (λ+N)∆2(q∗ + c̺)

2̺
− c

2
(λ+N)∆2

]
̺zz

−
[ (q∗ + c̺)2

̺2
− (2c+ λ∆+N∆)(q∗ + c̺)

̺
+ (c2 + c(λ∆+N∆))

]
̺z

+ a(q∗ + c̺)− aVe(̺) = 0.
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The second-order ordinary differential equation for ̺(z) is obtained by simplifica-

tion

(5.10) ̺zz −G(̺, q∗)̺z − F (̺, c, q∗) = 0,

where

G(̺, q∗) =
2

(λ +N)∆2

[q∗
̺

− λ∆−N∆
]
,(5.11)

F (̺, c, q∗) = − 2̺

T (λ+N)∆2q∗
[q∗ + c̺− ̺Ve(̺)].(5.12)

Let y = d̺
dz , (5.4) can be transformed into a system of first-order ordinary differ-

ential equations

(5.13)





d̺

dz
= y,

dy

dz
= G(̺, q∗)y + F (̺, c, q∗).

When making the right end of the system of (5.13) zero, it is possible to derive

y = 0 and F = 0, from which its equilibrium point can be determined as (̺i, 0).

A Taylor expansion of (5.13) at the equilibrium point gives the following linear

system

(5.14)

{
̺′ = y,

y′ = G(̺i, q
∗)y + F ′(̺i, c, q

∗)(̺− ̺i).

The Jacobian matrix of system (5.13) at the equilibrium point (̺i, 0) can be

derived as

(5.15) L =

[
0 1

F ′

i Gi

]
,

so, the Jacobian characteristic equation can be obtained as

(5.16) λ2 −Giλ− F ′

i = 0.

When Gi = G(̺i, q
∗) and F ′

i = F ′(̺i, c, q
∗), the following equations can be ob-

tained from (5.11) and (5.12)

F ′

i = − 2̺i
T (λ+N)∆2q∗

[c− ̺iV
′

e (̺i)− Ve(̺i)],(5.17)

Gi =
2

(λ+N)∆2

[q∗
̺i

− λ∆−N∆
]
.(5.18)
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Since F = 0 at the equilibrium point, it follows that q∗ + c̺i− ̺iVe(̺i) = 0, so F ′

i

can be written as

(5.19) F ′

i =
2(q∗ + ̺2iVe(̺i))

T (λ+N)∆2q∗
.

The type of equilibrium point of the system can be determined according to the

qualitative theory of differential equations: (a) When F ′

i > 0, the equilibrium point

is the saddle point; (b) When G2
i +4F ′

i > 0 and F ′

i < 0, the equilibrium point is the

node; (c) When G2
i + 4F ′

i < 0 and Gi 6= 0, the equilibrium point is the focus; (d)

When F ′

i < 0 and Gi = 0, the equilibrium point is the center. When z → ±∞, the
linear system is unstable at the saddle point; When Gi < 0 (or Gi > 0), it is stable

at the node or focus with z → ∞ (or z → −∞).
From the Hartman-Gorban linearization theorem we know that the nonlinear sys-

tem (5.13) has the same equilibrium point as the linear system. For equilibrium

points that are not central, the stability situation at the equilibrium point is the

same for the nonlinear system (5.13) and the linear system (5.14). The equilibrium

point ̺i (i = 1, 2, 3) of the linear system (5.8) can be solved when given any set

of values of the traveling wave velocity and the traveling wave parameter q∗. The

equilibrium velocity function proposed in the literature [20] is chosen:

(5.20) Ve(̺) = Vf

{[
1 + exp

(̺/̺m− 0.25

0.06

)]
−1

− 3.72× 10−6
}
,

where vf is the free flow velocity and ̺m is the maximum or congestion density.

The values of parameters in this model are as follows

(5.21)

T = 10 s, Vf = 30m/s, ̺m = 0.2 veh/m, r0 = 126m, r = 250m, ϕ = 4, i = 0.15.

When ̺ = 0, this is a mundane equilibrium point with no practical significance, so

only other equilibrium points need to be discussed. From the discussion above and

(5.17)–(5.18), the type of equilibrium point and its stability can be judged as shown

in Table 1, where the equilibrium point is denoted by ̺ (i = 1, 2, 3).

Figure 1 (a) corresponds to the first set of data in Table 1. As seen in Figure 1 (a):

When z → ±∞, the system is unstable at the equilibrium points (̺1, 0) and (̺3, 0),

and the trajectories in their vicinity are all far from this point. When z → ∞, there
are several spiral trajectories close to the saddle point (̺3, 0) converging to the focal

point (̺2, 0); when z → −∞, these trajectories move away from this focal point and
eventually converge to infinity. This shows that when z → ∞, the system is stable
at (̺2, 0); when z → −∞, the system is unstable at (̺2, 0), and the trajectory can
be regarded as the saddle point-focus-saddle point solution of the system.
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dz
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−3
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(a) c=−1.371, q
∗
=0.2 (b) c=−1.38, q

∗
=0.64

(c) c=−2.5, q
∗
=0.8 (d) c=−6.7, q

∗
=0.2

Figure 1. Phase plane diagram when the traveling wave velocity c and traveling wave pa-
rameter q∗take different values.

Figure 1 (b) corresponds to the second set of data in Table 1. Figure 1 (b) shows

that when z → ±∞, the system is unstable at the equilibrium point (̺1, 0), and its
nearby trajectories are far away from this point. The spiral trajectory from (0.05, 0)

tends to the focal point (̺2, 0) when z → ∞, and the system is stable at that point;
when z → −∞, it is far from the focal point (̺2, 0), and the system is unstable
at that point. Further study reveals that the spiral trajectory from (0.03, 0) tends

to the outermost circle of the curve ring in the figure when z → −∞ and tends to
infinity when z → ∞. Therefore, the system has a limit ring.
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Figure 1 (c) corresponds to the third set of data in Table 1. Figure 1 (c) shows

that when z → ±∞, the system is unstable at the equilibrium point (̺1, 0), and all
of its nearby tracks are far from this point. When z → −∞, the spiral trajectories
close to the saddle point (̺1, 0) tend to the focal point (̺2, 0); when z → ∞, these
trajectories are far from the focal point and eventually tend to infinity. It follows that

the system is stable at (̺2, 0) when z → −∞ and unstable at (̺2, 0) when z → ∞.
Figure 1 (d) corresponds to the fourth set of data in Table 1. When z → ±∞,

the system is unstable at (̺1, 0), and all the tracks in its vicinity move away from

this point, and the value of the variable ̺ eventually tends to infinity. This indicates

that the vehicle density corresponding to this set of parameters will continue to

increase, the traffic system becomes unstable, and the traffic flow will eventually

become congested.

(c, q) ̺1 ̺2 ̺3

0.0065 0.0937 0.1447

(−1.371, 0.2) F ′

i > 0, saddle point, ∆i < 0, Gi < 0, focal point, F ′

i > 0, saddle point,

unstable for z → ±∞. stable for z → ∞, unstable for z → ±∞.
unstable for z → −∞.

0.0254 0.0522

(−1.38, 0.64) F ′

i > 0, saddle point, ∆i < 0, Gi < 0, focal point,

unstable for z → ±∞. stable for z → ∞,
unstable for z → −∞.

0.0283 0.0546

(−2.5, 0.8) F ′

i > 0, saddle point, ∆i < 0, Gi < 0, focal point,

unstable for z → ±∞. stable for z → ∞,
unstable for z → −∞.

0.0065

(−6.7, 0.2) F ′

i > 0, saddle point,

unstable for z → ±∞.

Table 1. Type of equilibrium point and its stability when model parameters are given,
∆i −G2i + 4F

′

i , i = 1, 2, 3.

5.2. Derivation of Hopf bifurcation condition of model. The condition for

the existence of the Hopf bifurcation is known from Lemma I [3].

Theorem 5.1. Consider the variable parameters of x′ = f(x, λ), x ∈ Rn, λ ∈ R, λ

in the system. If (x0, λ) satisfies the condition f(x, λ)|(x0,λ0) = 0n×1 of the equilib-

rium point, then there is L = Dxf(x, λ)|(x0,λ0), and its eigenvalue is R(ϕ) ± jI(ϕ).

If R(ϕ0) = 0 and J(ϕ0) = J0 > 0, c = R′(ϕ)|ϕ0 6= 0, then the system has Hopf

bifurcations at ϕ = ϕ0.
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For system (5.13), let q∗ be a variable parameter which has equilibrium point

(̺0, 0) for all q
∗. The derivative matrix at the equilibrium point is also the Jacobian

matrix of the system at the equilibrium point, as follows:

(5.22)

L(q∗) =




0 1

2(q∗ + ̺2V ′

e (̺))

T (λ+N)∆2q∗
2

(λ+N)∆2

(q∗
̺

− (λ+N)∆
)



∣∣∣∣∣
̺=̺0

q∗=q∗
0

,

(
b1 b2

b3 b4

)
.

Let its eigenvalue be λ, and λ = R(q∗) ± jI(q∗), then its characteristic equation
is as follows

(5.23) λ2 − (b1 + b4)λ+ (b1b4 − b2b3) = 0.

Let the pair of eigenvalues of this equation be R(q∗)± jI(q∗), then we can obtain

R(q∗) =
b1 + b4

2
=

q ∗ −(λ+N)∆̺0
(λ+N)∆2̺0

,(5.24)

I(q∗) =

√
(b1b4 − b2b3)−

(b1 + b4)2

4
(5.25)

=

√
−2q∗ − 2̺2V ′

e (̺)

T (λ+N)∆2q∗
− (q∗ − (λ+N)∆̺)2

[(λ +N)∆2]̺2
,

c = R′(q∗)|q∗0 =
1

(λ +N)∆2̺0
6= 0.(5.26)

Let R(̺0, q
∗

0) = 0, then

(5.27) R(̺0, q
∗

0) =
(q∗0 − (λ+N)∆̺0

(λ+N)∆2̺0

)∣∣∣
q∗=q∗

0

, 0,

therefore

(5.28) q∗0 = (λ+N)∆̺0.

At the same time,

(5.29) I(̺0, q
∗

0) =

√
−2q∗ − 2̺2V ′

e (̺)

T (λ+N)∆2q∗
− (q∗ − (λ +N)∆̺)2

[(λ+N)∆2]̺2

∣∣∣∣
̺=̺0

q∗=q∗
0

.

From (5.28)

(5.30) I(̺0, q
∗

0) =

√
−2q∗ − 2̺2V ′

e (̺)

T (λ+N)∆2q∗

∣∣∣∣
̺=̺0

q∗=q∗
0

.
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Since V ′

e (̺) < 0, it follows that I(̺0, q
∗

0) > 0 when −̺20Ve(̺0) > q∗0 > 0. At this

point the system has a Hopf bifurcation at q∗ = q∗0 .

5.3. Derivation of Hopf bifurcation type of model. The principle of deter-

mining the Hopf bifurcation type can be known from Lemma II [3], [21].

Theorem 5.2. For system (5.13), there is a variable parameter q∗, which has

a balance point (̺0, 0) for all q
∗, let ˜̺ = ̺− ̺0 translate the coordinates and move

the balance point to the origin. At this time, the system can be expressed as follows

(5.31)





˜̺′ = y,

y′ =
2

(λ+N)∆2

( q∗

˜̺+ ̺0
− (λ+N)∆

)
y

− 2(˜̺+ ̺0)

T (λ+N)∆2q∗
[q∗ + c(˜̺+ ̺0)− (˜̺+ ̺0)Ve(˜̺+ ̺0)].

The linear form of Taylor expansion of the system at the equilibrium point (˜̺, y) =

(0, 0) is

(5.32) x̃′ = L(q∗)x̃+ f,

wherein the constituent elements f1,2 of the smooth vector function are Taylor ex-

pansions of the least quadratic term of x̃, which can be expressed as follows

(5.33)

f =

[
0

k11 ˜̺
2 + k22y

2 + k12 ˜̺y + k111 ˜̺
3 + k222y

3 + k112 ˜̺
2y + k122 ˜̺y

2 + o(˜̺, y)4

]
.

The form of Jacobian matrix L(q∗) is

(5.34)

L(q∗) =

(
0 1

2(q∗ + ̺0
2V ′

e (̺0))

T (λ+N)∆2q∗
2

(λ+N)∆2

( q∗
̺0

− (λ+N)∆
)
)

=

(
0 1

m(q∗) n(q∗)

)
,

its characteristic equations and eigenvalues are

(5.35) λ2 − σλ +∆ = 0,

where σ = σ(q∗) = n(q∗) = trL(q∗), ∆ = ∆(q∗) = −m(q∗) = detL(q∗),

(5.36) λ12(q
∗) =

1

2
(σ(q∗)±

√
σ(q∗)2 − 4∆(q∗)).
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From Hopf bifurcation condition

(5.37) σ(0) = 0, ∆(0) = I20 > 0.

Introducing variables for smaller |q∗|,

(5.38) R(q∗) =
1

2
σ(q∗), I(q∗) =

1

2

√
4∆− σ2(q∗),

we can get its eigenvalue expression

(5.39) λ1(q
∗) = λ(q∗), λ2(q

∗) = λ̄(q∗),

where

(5.40) λ(q∗) = R(q∗) + jIq∗), R(0) = 0, I(0) = I0 > 0.

Let the eigenvector of L(q∗) corresponding to the eigenvalue λ(q∗) be Ire+jIim, then

(5.41) L(Ire + jIim) = jI0(Ire + jIim).

Since the real and imaginary parts on both sides of the equation are equal, we get

(5.42)

{
LIim = I0Ire,

LIre = −I0Iim.

Collating (5.42) yields the following relationship

(5.43) L [ Iim Ire ] = [ Iim Ire ]

[
0 −I0
I0 0

]
.

It can be concluded that

(5.44) [ Iim Ire ]
−1

L [ Iim Ire ] =

[
0 −I0

I0 0

]
.

Let

(5.45) ỹ = [ Iim Ire ]
−1

x̃.

Then

(5.46) ỹ′ = [ Iim Ire ]
−1 x̃′.
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Substituting (5.32) into (5.46) yields

(5.47) ỹ′ = [ Iim Ire ]
−1

L [ Iim Ire ] ỹ + [ Iim Ire ]
−1

f

=

[
0 −I0

I0 0

]
ỹ + [ Iim Ire ]

−1
f

and the eigenvector of L(q∗) can be calculated as

(5.48) Ire + jIim =

[
0

1

]
+ j

[− 1√
−m(q∗)

0

]
.

Substituting (5.29) and the values of Iim and Ire into (5.47) yields

(5.49)

ỹ′ =

[
0 −I0
I0 0

]
ỹ

+

[
0

k11 ˜̺
2 + k22y

2 + k12 ˜̺y + k111 ˜̺
3 + k222y

3 + k112 ˜̺
2y + k122 ˜̺y

2 +O(̺, y)4

]
.

According to Lemma II, the value of a in system (5.13) can be calculated as

(5.50) a = (1/16)[f̃2ỹ1ỹ1ỹ2
+ f̃2ỹ2ỹ2ỹ2

] + (1/16I0)[−f̃2ỹ1ỹ2
(f̃2ỹ1ỹ1

+ f̃2ỹ2ỹ2
)].

Therefore, the value of c can be calculated as

(5.51) c = R′(0) =
1

(λ+N)∆2̺0
> 0.

Based on the above analysis, for system (5.13), Hopf bifurcation is supercritical

when a < 0; when a > 0, Hopf bifurcation is subcritical.

5.4. Derivation of the Saddle-node bifurcation condition of the model.

The existence condition of saddle-nod bifurcation can be known from Lemma III [7].

Theorem 5.3. For system (5.13), let q∗ be a variable parameter, and the deriva-

tive operator matrix at the equilibrium point is shown in (5.22). When, q∗0 =

−̺20Ve(̺0), there exists β =

(
1

0

)
satisfying Lβ = 0.

Therefore,

(5.52) αL = 0 ⇒ α =
( 2

(λ+N)∆2

(
(λ+N)∆− q∗0

̺0

)
, 1
)
.
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It follows from Lemma III that

a = ∂ · ∂

∂q∗
f(x, q∗)

∣∣∣
(x0,q

∗

0
)
=
( 2

(λ+N)∆2

(
(λ+N)∆− q∗0

̺0

)
, 1
)( 0

− 2̺0
T (λ+N)∆2q∗0

)

= − 2̺0
T (λ+N)∆2q∗0

6= 0,

b = α ·
n∑

i=1

ei

[
βT ∂2

∂x2
f(x, λ)

∣∣∣
(x0,λ0)

β
]
=
( 2

(λ+N)∆2

(
(λ+N)∆− q∗0

̺0

)
, 1
)

·




( 1 0 )

(
0 0

0 0

)(
1

0

)

( 1 0 )




4Ve(̺0) + 8̺0V
′

e (̺0) + 2̺20V
′′

e (̺0)− 4c

T (λ+N)∆2q∗0
− 2q∗0
(λ+N)∆2̺20

− 2q∗0
(λ+N)∆2̺20

0



(
1

0

)




=
4Ve(̺0) + 8̺0V

′

e (̺0) + 2̺20V
′′

e (̺0)− 4c

T (λ+N)∆2q∗0
6= 0.

Therefore, when q∗0 = −̺20V
′

e (̺0), system (5.13) has a saddle-junction type bifur-

cation at q∗ = q∗0 .

6. Numerical simulation

6.1. Simulation of the stop-and-go phenomenon. By simulating the traffic

flow at different initial densities, it is possible to simulate the side walk stopping

phenomenon of the traffic flow. In the uniform traffic flow, a small local disturbance

is added, and the side walk stopping phenomenon can be clearly expressed in the

small disturbance amplification phenomenon.

For the traffic flow model, considering the case of adding a small local perturbation

to the initial uniform traffic flow, the expression for the initial density is given as

follows

̺(x, 0) = ̺0 +∆̺0

{
cosh−2

[160
L

(
x− 5L

16

)]
(6.1)

− 1

4
cosh−2

[40
L

(
x− 11L

32

)]}
, x ∈ [0, L],

v(x, 0) = V (̺(x, 0)), x ∈ [0, L].(6.2)

Where ̺0 is the initial density, ∆̺0 = 0.01 veh/m is the perturbed density,

L = 32.2 km is the road section length, and the dynamic critical condition is given

as follows

(6.3)

̺(1, t) = ̺(2, t), ̺(L, t) = ̺(L− 1, t), v(1, t) = v(2, t), v(L, t) = v(L− 1, t).

522



In order to facilitate the implementation of the simulation, the spatial spacing is

taken to be equidistant and the time interval is taken to be 1S. The other parameters

in the model are taken as follows

(6.4)

T = 10 s, Vf = 30m/s, ̺m = 0.2 veh/m, r0 = 126m, r = 250m, ϕ = 4, i = 0.15.

When the parameters are taken as above, the critical densities of the model are

0.045 veh/m and 0.070 veh/m, i.e., the traffic flow is linearly unstable when the initial

density is ̺0 in the range of 0.045 veh/m to 0.070 veh/m.

Figure 2 explores the spatial and temporal evolution of the model for different

initial densities of the density wave. As shown in Figure 2 (a), when the initial density

is 0.041 veh/m, the density is within the stable range of the model, and when the small

perturbation applied for it disappears with time, the density will return to a stable

state, and the traffic flow will also reach a stable state at that time. In Figure 2 (b),

the initial density of 0.045 veh/m is selected, which is within the unstable range of the

model, and the magnitude of density fluctuation increases significantly at this time,

and it evolves into the phenomenon of local clustering, indicating the phenomenon

of traffic congestion, and the traffic system is in an unstable state at this time.

As shown in Figure 2 (b)–(e), when the initial density is between 0.045 veh/m

and 0.070 veh/m, the density fluctuates widely and the traffic flow is in an unstable

state, and the higher the initial density chosen for the traffic simulation, the larger

the unstable region is. In addition, the traffic flow can evolve into local clusters,

leading to the stop-and-go phenomenon. As shown in Figure 2 (f), the density wave

returns to the steady state when the density increases to 0.075 veh/m, at which time

the traffic flow gradually converges to a uniform flow. In summary, the unstable area

of traffic flow ranges from 0.045 veh/m to 0.075 veh/m.

6.2. Influence of curve radius on traffic flow. In order to investigate the

influence of curves on traffic flow, the traffic flow of different radii of curvature

is simulated and verified, and other parameters are kept constant to illustrate the

influence of curves on traffic flow through comparative analysis. Assuming that the

vehicle travels at 40 km/h on a curved section of road, the minimum safety radius of

the vehicle at that velocity can be calculated as r0 = 126m from r0 = v2/(127µ).

The larger the radius of curvature, the less curved the curve is. In real life, the

more gentle the curve, the more stable the traffic condition is. From the density-time

diagram, we can see that as the radius of curvature increases, the density wave is

gradually dissipating and the unstable area of traffic flow is gradually decreasing,

which also indicates that when the curve is gentler, the traffic condition is more

stable. This is also consistent with the actual situation.
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Figure 2. The spatial and temporal evolution of the density when the initial density ̺0
takes different values.

As shown in Figure 3 (c)–(d), in the curve radius of curvature larger gentle bend,

the vehicle is basically in the state of free driving, the interaction between vehicles is

smaller when the vehicle driving through the curve can still maintain the free state.
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So, this case of the vehicle density change is smaller, density fluctuations are also

smaller, the density to restore the steady state of the time used is also shorter, and

soon the flow of traffic will reach the maximum, then the traffic flow will tend to the

steady state, and the traffic density will also be stable.

Figure 3 (a)–(b) in the obvious density fluctuation area indicates the vehicle block-

age area, that is, the local blockage phenomenon; density stabilization area indicates

the smooth flow of vehicles, that is, vehicles running freely.

It can be seen from the density-time diagram that the traffic density fluctu-

ates with the frequent stop-and-go behavior of vehicles, and this phenomenon leads

to the local blockage phenomenon on the lane. The smaller the radius of curva-

ture, the greater the magnitude and range of density fluctuations, which also indi-

cates that the smaller the radius of curvature, the more obvious its effect on the

traffic “bottleneck”.
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Figure 3. The spatial and temporal evolution of the density at different radii of curvature
at initial density ̺0 = 0.58 veh/m.
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6.3. Influence of slope on traffic flow. Next, the effect of slope on traffic flow

is considered, and the evolution of density spatial and temporal maps at different

slopes is used to verify whether the theoretical results of the model are consistent

with the actual traffic conditions.
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Figure 4. The spatial and temporal evolution of density at different slopes at initial density
̺0 = 0.45 veh/m.

From Figure 4, it can be seen that with the increase of the slope, the amplitude

and range of the density wave gradually increase, which indicates that when the

vehicle is driving on a steeper section, the velocity change of the vehicle will be more

obvious, and the driver’s response to the stimulus (acceleration) is obviously stronger

than that of driving on a flat road, and the traffic condition will become unstable.

And as the slope increases, the unstable area of traffic flow also increases gradually.

This also verifies the consistency of the theoretical analysis with the actual situation.

The simulation graph shows that the greater the slope of the ramp, the greater

its effect on the driving. The driving velocity of the vehicle will drop significantly

when it first drives into the ramp, and then the velocity change slowly stabilizes and
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finally reaches a uniform velocity. From the density spatial and temporal Figure

4 (a)–(d) can be seen, in a certain period of time, that the vehicle density produced

a sharp fluctuation, after that, the density fluctuation gradually calmed down, until

finally reached a stable state. This is due to the fact that when the vehicle first

enters the ramp, the driver’s reaction is more intense and the velocity change is

more obvious, at which time the traffic condition becomes unstable and may cause

the phenomenon of traffic congestion. After that, when the driver decelerates to

a stable state, the vehicle density will also tend to a stable state, which indicates

that the traffic congestion phenomenon is gradually relieved. And the simulation

graph shows that the larger the vertical slope is, the more significant is the effect

on the traffic.

6.4. Analysis of bifurcation phenomenon in traffic flow. Through theoret-

ical analysis and simulation, it is verified that the model is in line with the actual

situation. The phenomena discussed above, such as traffic congestion and vehi-

cles stop-and-go, occur frequently in actual traffic systems, but the mechanism that

triggers these changes is difficult to be identified. Theoretically, the essence of the

stability change of the traffic flow system is a bifurcation behavior, that is, when the

parameters in the traffic system change and pass certain critical values, the quali-

tative state of the system will change suddenly. Bifurcation theory provides a new

approach to reveal the inner regularity implied behind the nonlinear traffic flow phe-

nomenon, so that traffic congestion can be detected and relieved in time. Therefore,

the study of traffic flow bifurcation theory can not only effectively explain various

traffic flow phenomena, but also contribute to the development of traffic planning

and control. Next, we analyze the model using bifurcation theory.

By selecting different parameter values, system (5.13) can obtain different equilib-

rium points. Taking the equilibrium point (̺1, 0) = (0.0065, 0) as an example, various

system bifurcations can be obtained by selecting different parameters as continuous

variable parameters with the help of the bifurcation software package MATCONT.

When the initial value of the parameter q∗ is set to 0.2, the actual calculation

range of q∗ is taken to be about −30 to 30, and two special points are found in this

calculation range, which are a Hopf(H) bifurcation and a limit point (LP), as shown

in Figure 5.

When the value of q∗ is 0.832879, the state variable of the Hopf bifurcation

obtained is 0.048993, indicating that the density of the vehicle at this time is

̺0 = 0.048993 veh/m and the two eigenvalues are (3.2711e − 06) + 0.009684i and

(3.2711e-06)−0.009684i. The real part of this pair of conjugate eigenvalues is consid-

ered to be 0, which is an important condition to determine its Hopf bifurcation, and

the maximum Lyapunov exponent is 9.269633e. Substituting the value of ̺0 into
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the equation −̺20V
′e(̺0), we get −̺20V

′e(̺0) = 1.30756. Obviously, the inequality

1.30756 > 0.832879 > 0 satisfies the derivation of the Hopf bifurcation condition

of the model.
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Figure 5. The bifurcation diagram for ̺ and q∗ with appropriate parameters.

When the value of q∗ is 0.172588, the limit point state variable is 0.112377, indi-

cating that at this time the density of the vehicle is ̺0 = 0.112377 veh/m and the two

eigenvalues are 2.1231e−05 and −0.018227. The latter eigenvalue is considered here

to be 0, which is a sign that it is a limit point bifurcation. The other eigenvalue has

a negative real part, which means it is a stable limit point (saddle knot bifurcation

point). In addition, its quadratic normality coefficient is a = −2.089350e− 01. Sub-

stituting the value of ̺0 into equation −̺20V
′e(̺0), we get −̺20V

′e(̺0) = 0.172588.

Obviously, the equation q∗0 = −̺20V
′e(̺0) satisfies the derivation of the saddle junc-

tion bifurcation condition of the model, and also verifies the consistency of the the-

oretical analysis with the numerical results.

Next, the stability of the traffic system is analyzed when the parameters are taken

to some of the bifurcation thresholds calculated above. Firstly, the traffic flow near

the Hopf bifurcation point is investigated, and the effect of the Hopf bifurcation on

the traffic flow is illustrated by observing the change in the stability of the phase

plane diagram of the system as the parameter q∗ passes through 0.832879.

Figure 6 shows that there are two equilibrium points (0.02443, 0) and (0.0554, 0)

when q∗ = 0.832879. It can be seen from the figure that one spiral track line

starts from the point (0.05, 0) as time converges to the point (0.0554, 0) as z → ∞
and eventually evolves into an equal amplitude oscillation as z → −∞. The other
spiral rail line tends to the outside of the above equal amplitude oscillation region as

z → −∞, and tends to infinity as z → ∞. So, there is a periodic solution between the
two trajectories, so that no new equilibrium point appears at the Hopf bifurcation

point, but a periodic solution is generated. This also verifies the consistency of the

numerical results with the theoretical analysis. When q∗ = 0.832879, a limit cycle
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(LPC) appears and the first Yapunov exponent a = 9.269633e is greater than zero, so

this Hopf is in a subcritical state and this limit cycle is unstable. We can see from the

spatial and temporal evolution of the density of the traffic flow that the uniform traffic

flow becomes unstable and oscillates when it passes through the Hopf bifurcation

point, which shows that the Hopf bifurcation has an impact on the traffic flow.
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Figure 6. Phase plane diagram of Hopf bifurcation at parameter q∗ = 0.8328.
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Figure 7. The spatial and temporal evolution of density when the initial density ̺0 takes
the value of the Hopf bifurcation point.

When the initial density value is the Hopf bifurcation point corresponding to the

state variable ̺0 = 0.48993 veh/m, a small local perturbation of amplitude ∆̺0 =

0.01 veh/m is applied, and the same numerical simulation conditions as above are

chosen, resulting in the density-time diagram of the system shown in Figure 7.
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The complex phenomenon in congested traffic flow can be easily explained by the

evolution of the density-time diagram with time. The effect of Hopf bifurcation on

traffic flow can be clearly reflected by choosing the state variable of Hopf bifurca-

tion point (̺0 = 0.48993 veh/m) as the initial density of the density-time diagram.

From the nature of Hopf bifurcation, it can be obtained that the system generates a

periodic solution from the equilibrium point when the parameter passes through the

bifurcation point. Since the initial density value at this point is in the unstable range

of the model, the small perturbation on the initial uniform density is amplified, as

shown in Figure 7, and then evolves into a dense go-go-stop wave of uniform ampli-

tude, and then evolves into a larger, denser go-go-stop wave, which is consistent with

the characteristics of the limit-loop solution. It illustrates that under the initial uni-

form traffic, the small perturbation changes to a walk-stop wave when the parameter

is taken as the Hopf bifurcation point state variable, and also shows that the ob-

tained conclusion is consistent with the actual phenomenon as well as the numerical

calculation results, which also verify the correctness of the theoretical analysis.

In the following, we study the effect of the limit ring bifurcation on the traffic flow

when the parameter q∗ passes through 0.172588. When q∗ > 0.172588, let q∗ = 0.18,

at this time the system has two equilibrium points (0.10165, 0) and (0.12664, 0),

which are the focal point and the saddle point, as shown in Figure 8 (a). At this

time, the traffic flow is stable in the region to the left of the red line in the figure,

and unstable in the region to the right of the red line.

As the parameter q∗ decreases, the red line moves to the left, and when the

parameter q∗ passes through q∗ = 0.172588, a saddle-junction bifurcation occurs,

as shown in Figure 8 (b). At this point, the two previous equilibrium points of the

system merge into one equilibrium point (0.11522, 0) now, and the system has only

one zero eigenvalue. When the parameter q∗ continues to decrease and is less than

0.172588, taking the value of q∗ = 0.16, the equilibrium points all disappear and all

the solutions move to the right, as shown in Figure 8 (c), and the traffic flow system

becomes unstable.

7. Conclusions

In this paper, a macroscopic traffic flow model is improved with the FVD model as

the theoretical basis, and a theoretical analysis and numerical simulation of the model

are carried out by combining the mechanical properties of curves and ramps as well

as the random disturbance factors such as weather environment. In the linear and

nonlinear stability analysis, the neutral stability condition of the model and the KdV-

Burgers equation are derived. The bifurcation analysis of the model is also carried

out, and the conditions of existence and stability of a Hopf bifurcation and a saddle-
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knot bifurcation are analyzed theoretically, and the bifurcation phenomena in the

nonlinear traffic system are explained by the verification of simulation diagrams.

The main conclusions are obtained as follows.
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Figure 8. Phase plan of saddle-node bifurcation at q∗ = 0.18, q∗ = 0.172588 and q∗ = 0.16.

Under the same condition of initial density of curved traffic, when vehicles pass

through different curves at a certain speed, the smaller the radius of curvature, the

more unstable the traffic flow system is, indicating that the smaller the radius of

curvature of curves, the more obvious its influence on traffic flow.

The greater the slope of the ramp, the more unstable the traffic flow, which indi-

cates that the greater longitudinal slope has a more significant effect on the traffic.
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The bifurcation analysis of the model reveals that the stability of the system

changes abruptly when the values of the parameters of the system change and span

the values of the Hopf bifurcation point and the saddle-node bifurcation point. This

is due to the changes in the qualitative states of the system, which are consistent with

the changes between various traffic phenomena in real traffic, such as the transitions

between the vehicle free-running state, the vehicle stop-and-go state, and the traffic

congestion state, etc. The essence of the transitions between these different states

is a bifurcation behavior. Therefore, the study of bifurcation behavior in traffic flow

can well explain various nonlinear phenomena in real traffic and provide an effective

theoretical basis for guiding and developing the planning and control management

of traffic systems, so as to achieve the purpose of fundamentally alleviating and

preventing traffic congestion.
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