Czechoslovak Mathematical Journal

Lixin Mao

Ding projective and Ding injective modules over trivial ring extensions

Czechoslovak Mathematical Journal, Vol. 73 (2023), No. 3, 903-919

Persistent URL: http://dml.cz/dmlcz/151781

Terms of use:

© Institute of Mathematics AS CR, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project $\mathit{DML-CZ}$: The Czech Digital Mathematics Library http://dml.cz

DING PROJECTIVE AND DING INJECTIVE MODULES OVER TRIVIAL RING EXTENSIONS

LIXIN MAO, Nanjing

Received August 19, 2022. Published online April 13, 2023.

Abstract. Let $R \ltimes M$ be a trivial extension of a ring R by an R-R-bimodule M such that M_R , RM, $(R,0)_{R\ltimes M}$ and $R\ltimes M(R,0)$ have finite flat dimensions. We prove that (X,α) is a Ding projective left $R\ltimes M$ -module if and only if the sequence $M\otimes_R M\otimes_R X\stackrel{M\otimes\alpha}{\longrightarrow} M\otimes_R X\stackrel{\alpha}{\longrightarrow} X$ is exact and $\mathrm{coker}(\alpha)$ is a Ding projective left R-module. Analogously, we explicitly describe Ding injective $R\ltimes M$ -modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.

Keywords: trivial extension; Ding projective module; Ding injective module

MSC 2020: 16D40, 16D50, 16E05

1. Introduction

The origin of Gorenstein homological algebra may date back to the 1960s when Auslander and Bridger introduced the concept of G-dimension for finitely generated modules over a two-sided Noetherian ring, see [1]. In the 1990s, Enochs and Jenda extended the ideas of Auslander and Bridger and introduced the concepts of Gorenstein projective and Gorenstein injective modules over arbitrary rings, see [4], [5]. Ding, Li and Mao considered two special cases of the Gorenstein projective and Gorenstein injective modules, which they called strongly Gorenstein flat and Gorenstein FP-injective modules, respectively, in [2], [18]. These two classes of modules over coherent rings possess many nice properties analogous to Gorenstein projective and Gorenstein injective modules over Noetherian rings, see [2], [8], [16], [18], [25], [26].

DOI: 10.21136/CMJ.2023.0351-22 903

This research was supported by NSFC (12171230, 12271249) and NSF of Jiangsu Province of China (BK20211358).

So Gillespie later renamed strongly Gorenstein flat as Ding projective, and Gorenstein FP-injective as Ding injective. He used these modules to produce new model structures in the categories of modules, see [8] for details.

Let R be an associative ring and M be an R-R-bimodule. The Cartesian product $R \times M$, with the natural addition and multiplication, given by $(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + m_1r_2)$, becomes a ring. This ring is called the *trivial extension* of the ring R by the bimodule M (see [7], [22]) and denoted by $R \ltimes M$. The notion of trivial extension of a ring by a bimodule is an important extension of rings and has played a crucial role in ring theory and homological algebra. When R is a commutative ring, Nagata also called this construction an *idealization* in [20]. Fossum, Griffith and Reiten studied the categorical aspect and homological properties of trivial ring extensions in [7]. Palmér and Roos gave some explicit formulae for global homological dimensions of trivial ring extensions in [21]. Mao considered (relative) homological behaviours of trivial ring extensions in [17]. Holm and Jørgensen investigated Gorenstein projective, injective and flat modules over trivial ring extensions over trivial ring extensions in [15].

The present paper is devoted to Ding projective and Ding injective modules over trivial ring extensions.

In Section 2, we describe Ding projective modules over a trivial ring extension $R \ltimes M$. Let M_R , $_RM$, $\mathbf{Z}(R)_{R\ltimes M}$ and $_{R\ltimes M}\mathbf{Z}(R)$ have finite flat dimensions. It is proven that (X,α) is a Ding projective left $R\ltimes M$ -module if and only if the sequence $M\otimes_R M\otimes_R X \stackrel{M\otimes\alpha}{\longrightarrow} M\otimes_R X \stackrel{\alpha}{\longrightarrow} X$ is exact and $\mathrm{coker}(\alpha)$ is a Ding projective left R-module. As an application, we characterize Ding projective modules over Morita context rings with zero bimodule homomorphisms.

Section 3 is devoted to Ding injective $R \ltimes M$ -modules. Let $R \ltimes M$ be a left coherent ring, M_R have finite flat dimension, R^M be finitely presented and have finite projective or FP-injective dimension, $\mathbf{Z}(R)_{R \ltimes M}$ have finite flat dimension, $R \ltimes M \mathbf{Z}(R)$ have finite projective or FP-injective dimension. We prove that $[Y, \beta]$ is a Ding injective left $R \ltimes M$ -module if and only if the sequence

$$Y \xrightarrow{\beta} \operatorname{Hom}_{\mathcal{B}}(M, Y) \xrightarrow{\beta_*} \operatorname{Hom}_{\mathcal{B}}(M, \operatorname{Hom}_{\mathcal{B}}(M, Y))$$

is exact and $\ker(\beta)$ is a Ding injective left R-module. As an application, we characterize Ding injective modules over Morita context rings with zero bimodule homomorphisms.

Throughout this paper, all rings are nonzero associative rings with identity and all modules are unitary. For a ring R, we write R-Mod (or Mod-R) for the category of left (or right) R-modules, respectively. The symbol RX (or XR) denotes a left (or right)

R-module, respectively. For an R-module X, the character module $\operatorname{Hom}_{\mathbb{Z}}(X,\mathbb{Q}/\mathbb{Z})$ of X is denoted by X^+ , $\operatorname{pd}(X)$, $\operatorname{id}(X)$ and $\operatorname{fd}(X)$ denote the projective, injective and flat dimensions of X, respectively.

Next we recall some basic concepts and results on trivial extensions.

Recall from [7] that the classical right trivial extension of an abelian category $\underline{\underline{\mathbf{A}}}$ by an additive endofunctor \mathbf{F} , denoted by $\underline{\underline{\mathbf{A}}} \ltimes \mathbf{F}$, is a category whose objects are couples (X,f) with $X \in \mathrm{Ob}(\underline{\underline{\mathbf{A}}})$ and $f \colon \mathbf{F}(X) \to X$ such that $f \cdot \mathbf{F}(f) = 0$, and a morphism $\gamma \colon (X,\alpha) \to (Y,\beta)$ is a morphism $\gamma \colon X \to Y$ in $\underline{\underline{\mathbf{A}}}$ such that $\beta \mathbf{F}(\gamma) = \gamma \alpha$. If \mathbf{F} is right exact, then $\underline{\underline{\mathbf{A}}} \ltimes \mathbf{F}$ is an abelian category. In this case, a sequence in $\underline{\underline{\mathbf{A}}} \ltimes \mathbf{F}$ is exact if and only if the sequence of codomains in $\underline{\underline{\mathbf{A}}}$ is exact.

Dually, the *left trivial extension* of an abelian category $\underline{\underline{\mathbf{A}}}$ by an additive endofunctor \mathbf{G} , denoted by $\mathbf{G} \rtimes \underline{\underline{\mathbf{A}}}$, is a category whose objects are couples [X,g]with $X \in \mathrm{Ob}(\underline{\underline{\mathbf{A}}})$ and $g \colon X \to \mathbf{G}(X)$ such that $\mathbf{G}(g) \cdot g = 0$, and a morphism $\gamma \colon [X,\alpha] \to [Y,\beta]$ is a morphism $\gamma \colon X \to Y$ in $\underline{\underline{\mathbf{A}}}$ such that $\mathbf{G}(\gamma)\alpha = \beta\gamma$. If \mathbf{G} is left exact, then $\mathbf{G} \rtimes \underline{\underline{\mathbf{A}}}$ is an abelian category. In this case, a sequence in $\mathbf{G} \rtimes \underline{\underline{\mathbf{A}}}$ is exact if and only if the sequence of domains in $\underline{\underline{\mathbf{A}}}$ is exact.

For a right exact endofunctor $\mathbf{F} \colon \underline{\underline{\mathbf{A}}} \to \underline{\underline{\mathbf{A}}}$ and a left exact endofunctor $\mathbf{G} \colon \underline{\underline{\mathbf{A}}} \to \underline{\underline{\mathbf{A}}}$, there are some important functors as follows.

The functor \mathbf{T} : $\underline{\underline{\mathbf{A}}} \to \underline{\underline{\mathbf{A}}} \ltimes \mathbf{F}$ is given for every object $X \in \underline{\underline{\mathbf{A}}}$, by $\mathbf{T}(X) = (X \oplus \mathbf{F}(X), \mu)$ with $\mu = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$: $\mathbf{F}(X) \oplus \mathbf{F}^2(X) \to X \oplus \mathbf{F}(X)$ and for morphisms by $\mathbf{T}(\alpha) = \begin{pmatrix} \alpha & 0 \\ 0 & \mathbf{F}(\alpha) \end{pmatrix}$.

The functor $U: \underline{\underline{\mathbf{A}}} \ltimes \mathbf{F} \to \underline{\underline{\mathbf{A}}}$ is given for every object $(X, f) \in \underline{\underline{\mathbf{A}}} \ltimes \mathbf{F}$ by $\mathbf{U}(X, f) = X$ and for morphisms by $\mathbf{U}(\alpha) = \alpha$.

The functor $\mathbf{Z} \colon \underline{\underline{\mathbf{A}}} \to \underline{\underline{\mathbf{A}}} \ltimes \mathbf{F}$ is given for every object $X \in \underline{\underline{\mathbf{A}}}$ by $\mathbf{Z}(X) = (X,0)$ and for morphisms by $\mathbf{Z}(\alpha) = \alpha$.

The functor $\mathbf{C} \colon \underline{\mathbf{A}} \ltimes \mathbf{F} \to \underline{\mathbf{A}}$ is given for every object $(X, f) \in \underline{\mathbf{A}} \ltimes \mathbf{F}$, by $\mathbf{C}(X, f) = \operatorname{coker}(f)$ and for morphisms by $\mathbf{C}(\alpha) = \operatorname{the induced morphism}$.

The functor $\mathbf{H} \colon \underline{\underline{\mathbf{A}}} \to \mathbf{G} \rtimes \underline{\underline{\mathbf{A}}}$ is given for every object $X \in \underline{\underline{\mathbf{A}}}$ by $\mathbf{H}(X) = [\mathbf{G}(X) \oplus X, \vartheta]$ with $\vartheta = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \colon \mathbf{G}(X) \oplus X \to \mathbf{G}^2(X) \oplus \mathbf{G}(X)$ and for morphisms by $\mathbf{H}(\beta) = \begin{pmatrix} \mathbf{G}(\beta) & 0 \\ 0 & \beta \end{pmatrix}$.

The functor $\mathbf{U} \colon \mathbf{G} \rtimes \underline{\underline{\mathbf{A}}} \to \underline{\underline{\mathbf{A}}}$ is given for every object $[X,g] \in \mathbf{G} \rtimes \underline{\underline{\mathbf{A}}}$ by $\mathbf{U}[X,g] = X$ and for morphisms by $\mathbf{U}(\alpha) = \alpha$.

The functor $\mathbf{Z} \colon \underline{\underline{\mathbf{A}}} \to \mathbf{G} \rtimes \underline{\underline{\mathbf{A}}}$ is given for every object $X \in \underline{\underline{\mathbf{A}}}$ by $\mathbf{Z}(X) = [X, 0]$ and for morphisms by $\mathbf{Z}(\alpha) = \alpha$.

The functor $\mathbf{K} \colon \mathbf{G} \rtimes \underline{\underline{\mathbf{A}}} \to \underline{\underline{\mathbf{A}}}$ is given for every object $[X,g] \in \mathbf{G} \rtimes \underline{\underline{\mathbf{A}}}$ by $\mathbf{K}[X,g] = \ker(g)$ and for morphisms by $\mathbf{K}(\alpha) =$ the induced morphism.

There exist several important pairs of adjoint functors

$$\underline{\underline{A}} \xrightarrow[U]{\underline{T}} \underline{\underline{A}} \ltimes F \xrightarrow[Z]{\underline{C}} \underline{\underline{A}} , \ \underline{\underline{A}} \xrightarrow[K]{\underline{Z}} \underline{\underline{G}} \rtimes \underline{\underline{A}} \xrightarrow[H]{\underline{U}} \underline{\underline{A}} ,$$

i.e., (\mathbf{T}, \mathbf{U}) , (\mathbf{C}, \mathbf{Z}) , (\mathbf{Z}, \mathbf{K}) and (\mathbf{U}, \mathbf{H}) are adjoint pairs with $\mathbf{CT} = \mathrm{id}_{\underline{\underline{\mathbf{A}}}}$, $\mathbf{UZ} = \mathrm{id}_{\underline{\underline{\mathbf{A}}}}$, $\mathbf{KH} = \mathrm{id}_{\underline{\underline{\mathbf{A}}}}$. We note that the functors \mathbf{T} and \mathbf{C} are right exact, \mathbf{H} and \mathbf{K} are left exact, \mathbf{U} and \mathbf{Z} are exact.

It is known that, when $\underline{\underline{\mathbf{A}}}$ is the category of left R-modules, M is an R-R-bimodule, $\mathbf{F} = M \otimes_R -$ and $\mathbf{G} = \mathrm{Hom}_R(M, -)$, both $\underline{\underline{\mathbf{A}}} \ltimes \mathbf{F}$ and $\mathbf{G} \rtimes \underline{\underline{\mathbf{A}}}$ are isomorphic to the category of left modules over $R \ltimes M$. We will identify $R \ltimes M$ -Mod with $\underline{\underline{\mathbf{A}}} \ltimes \mathbf{F}$ and $\mathbf{G} \rtimes \underline{\mathbf{A}}$ in what follows.

2. Ding projective modules over trivial ring extensions

Recall that a left R-module X is $Ding\ projective$ (see [2], [8]) if there is an exact sequence of projective left R-modules

$$\Xi: \ldots \to P^{-1} \xrightarrow{f^{-1}} P^0 \xrightarrow{f^0} P^1 \xrightarrow{f^1} P^2 \to \ldots$$

such that $X \cong \ker(f^0)$ and $\operatorname{Hom}_R(\Xi, Q)$ is also exact for any flat left R-module Q.

Theorem 2.1. Let (X, α) be a left $R \ltimes M$ -module.

- (1) If M_R and RM have finite flat dimensions, the sequence $M \otimes_R M \otimes_R X \xrightarrow{M \otimes \alpha} M \otimes_R X \xrightarrow{\alpha} X$ is exact and $\operatorname{coker}(\alpha)$ is a Ding projective left R-module, then (X, α) is a Ding projective left $R \ltimes M$ -module.
- (2) If $\mathbf{Z}(R)_{R \ltimes M}$ and $_{R \ltimes M}\mathbf{Z}(R)$ have finite flat dimensions, and (X, α) is a Ding projective left $R \ltimes M$ -module, then the sequence $M \otimes_R M \otimes_R X \stackrel{M \otimes \alpha}{\longrightarrow} M \otimes_R X \stackrel{\alpha}{\longrightarrow} X$ is exact and $\mathrm{coker}(\alpha)$ is a Ding projective left R-module.

Proof. (1) There exists an exact sequence of projective left R-modules

$$\Xi: \ldots \to P^{-1} \xrightarrow{f^{-1}} P^0 \xrightarrow{f^0} P^1 \xrightarrow{f^1} P^2 \to \ldots$$

such that $\operatorname{coker}(\alpha) \cong \ker(f^0)$ and $\operatorname{Hom}_R(\Xi, Q)$ is also exact for any flat left R-module Q. Since $\operatorname{fd}(M_R) < \infty$, we get the exact sequence of left R-modules

$$M \otimes_R \Xi \colon \dots \to M \otimes_R P^{-1} \xrightarrow{M \otimes f^{-1}} M \otimes_R P^0 \xrightarrow{M \otimes f^0} M \otimes_R P^1 \xrightarrow{M \otimes f^1} M \otimes_R P^2 \to \dots$$

with $M \otimes_R \operatorname{coker}(\alpha) \cong \ker(M \otimes f^0)$ by [3], Lemma 2.3.

The exact sequence $M \otimes_R X \xrightarrow{\alpha} X \xrightarrow{\varrho} \operatorname{coker}(\alpha) \to 0$ induces the exact sequence $M \otimes_R M \otimes_R X \xrightarrow{M \otimes \alpha} M \otimes_R X \xrightarrow{M \otimes \varrho} M \otimes_R \operatorname{coker}(\alpha) \to 0$. Since the sequence $M \otimes_R M \otimes_R X \xrightarrow{M \otimes \alpha} M \otimes_R X \xrightarrow{\varrho} \operatorname{coker}(\alpha) \to 0$ is exact, we get the exact sequence

$$0 \to M \otimes_R \operatorname{coker}(\alpha) \xrightarrow{\delta} X \xrightarrow{\varrho} \operatorname{coker}(\alpha) \to 0$$

with $\delta(M \otimes \varrho) = \alpha$. Since $\mathrm{fd}(RM) < \infty$, $\mathrm{fd}(M \otimes_R P^i) < \infty$. Thus, $\mathrm{Hom}_R(\Xi, M \otimes_R P^i)$ is exact for any $i \in \mathbb{N}$ by [16], Lemma 3.1. So $\mathrm{Ext}^1_R(\ker(f^i), M \otimes_R P^i) = 0$.

Let $\iota \colon \operatorname{coker}(\alpha) \to P^0$ be the canonical monomorphism and $\pi \colon P^{-1} \to \operatorname{coker}(\alpha)$ be the canonical epimorphism such that $\iota \pi = f^{-1}$. Since $\operatorname{Ext}^1_R(\operatorname{coker}(\alpha), M \otimes_R P^0) = 0$, there is $\psi \colon X \to M \otimes_R P^0$ such that $\psi \delta = M \otimes \iota$. Also there is $\eta \colon P^{-1} \to X$ such that $\varrho \eta = \pi$. Define $\lambda \colon X \to P^0 \oplus (M \otimes_R P^0)$ by $\lambda(x) = (\iota \varrho(x), \psi(x))$ and $\xi \colon P^{-1} \oplus (M \otimes_R P^{-1}) \to X$ by $\xi(x,y) = \eta(x) + \delta(M \otimes \pi)(y)$. It is easy to check that λ is a monomorphism and ξ is an epimorphism. Then by generalized Horseshoe (see Lemma [27], Lemma 1.6), we get the exact sequence of left R-modules

$$\dots \to P^{-1} \oplus (M \otimes_R P^{-1}) \xrightarrow{g^{-1}} P^0 \oplus (M \otimes_R P^0) \xrightarrow{g^0} P^1 \oplus (M \otimes_R P^1)$$
$$\xrightarrow{g^1} P^2 \oplus (M \otimes_R P^2) \to \dots$$

with $g^{-1} = \lambda \xi$, $g^i = \begin{pmatrix} f^i & 0 \\ \sigma^i & M \otimes f^i \end{pmatrix}$ $(i \neq -1)$ and $X \cong \ker(g^0)$. It is easy to verify that the two diagrams

$$M \otimes_{R} X \xrightarrow{M \otimes \lambda} M \otimes_{R} (P^{0} \oplus (M \otimes_{R} P^{0})) \xrightarrow{M \otimes g^{0}} M \otimes_{R} (P^{1} \oplus (M \otimes_{R} P^{1})) \xrightarrow{} \cdots$$

$$\downarrow^{\mu_{0}} \qquad \qquad \downarrow^{\mu_{1}}$$

$$0 \xrightarrow{\lambda} P^{0} \oplus (M \otimes_{R} P^{0}) \xrightarrow{g^{0}} P^{1} \oplus (M \otimes_{R} P^{1}) \xrightarrow{} \cdots$$

and

$$\cdots \longrightarrow M \otimes_R (P^{-2} \oplus (M \otimes_R P^{-2})) \xrightarrow{M \otimes g^{-2}} M \otimes_R (P^{-1} \oplus (M \otimes_R P^{-1})) \xrightarrow{M \otimes \xi} M \otimes_R X$$

$$\downarrow^{\mu_{-2}} \qquad \qquad \downarrow^{\mu_{-1}} \qquad \qquad \downarrow^{\mu_{-1$$

are commutative. So we obtain two exact sequences of left $R \ltimes M$ -modules $0 \to (X, \alpha) \xrightarrow{\lambda} \mathbf{T}(P^0) \xrightarrow{g^0} \mathbf{T}(P^1) \to \dots$ and $\dots \to \mathbf{T}(P^{-2}) \xrightarrow{g^{-2}} \mathbf{T}(P^{-1}) \xrightarrow{\xi} (X, \alpha) \to 0$.

By [7], Corollary 1.6 (c), each $\mathbf{T}(P^i)$ is projective. Thus, we get the exact sequence of projective left $R \ltimes M$ -modules

$$\Delta \colon \dots \to \mathbf{T}(P^{-1}) \xrightarrow{g^{-1}} \mathbf{T}(P^0) \xrightarrow{g^0} \mathbf{T}(P^1) \xrightarrow{g^1} \mathbf{T}(P^2) \to \dots$$

with $(X, \alpha) \cong \ker(g^0)$.

Let (Y,β) be any flat left $R \ltimes M$ -module. By [7], Proposition 1.14, $\operatorname{coker}(\beta)$ is a flat left R-module and the sequence $M \otimes_R M \otimes_R Y \stackrel{M \otimes \beta}{\longrightarrow} M \otimes_R Y \stackrel{\beta}{\longrightarrow} Y$ is exact. So we get the exact sequence $0 \to M \otimes_R \operatorname{coker}(\beta) \to Y \to \operatorname{coker}(\beta) \to 0$. By [16], Lemma 3.2, $\operatorname{fd}(M \otimes_R \operatorname{coker}(\beta)) < \infty$ since $\operatorname{fd}(_R M) < \infty$. By [21], Lemma 1, there is an exact sequence $0 \to \mathbf{Z}(M \otimes_R \operatorname{coker}(\beta)) \to (Y,\beta) \to \mathbf{Z}(\operatorname{coker}(\beta)) \to 0$. So we get the exact sequence of complexes

$$0 \to \operatorname{Hom}_{R \ltimes M}(\Delta, \mathbf{Z}(M \otimes_R \operatorname{coker}(\beta))) \to \operatorname{Hom}_{R \ltimes M}(\Delta, (Y, \beta))$$
$$\to \operatorname{Hom}_{R \ltimes M}(\Delta, \mathbf{Z}(\operatorname{coker}(\beta))) \to 0.$$

Since $\operatorname{Hom}_{R \ltimes M}(\mathbf{T}(P^i), \mathbf{Z}(\operatorname{coker}(\beta))) \cong \operatorname{Hom}_R(P^i, \operatorname{coker}(\beta))$, then

$$\operatorname{Hom}_{R \ltimes M}(\Delta, \mathbf{Z}(\operatorname{coker}(\beta))) \cong \operatorname{Hom}_{R}(\Xi, \operatorname{coker}(\beta))$$

is exact. Since $\operatorname{Hom}_{R \ltimes M}(\mathbf{T}(P^i), \mathbf{Z}(M \otimes_R \operatorname{coker}(\beta))) \cong \operatorname{Hom}_R(P^i, M \otimes_R \operatorname{coker}(\beta))$, then $\operatorname{Hom}_{R \ltimes M}(\Delta, \mathbf{Z}(M \otimes_R \operatorname{coker}(\beta))) \cong \operatorname{Hom}_R(\Xi, M \otimes_R \operatorname{coker}(\beta))$ is exact by [16], Lemma 3.1. So $\operatorname{Hom}_{R \ltimes M}(\Delta, (Y, \beta))$ is exact.

It follows that (X, α) is a Ding projective left $R \ltimes M$ -module.

(2) By [7], Corollary 1.6 (c), there is an exact sequence of projective left $R \ltimes M$ modules

$$\Delta \colon \dots \to \mathbf{T}(P^{-1}) \to \mathbf{T}(P^0) \xrightarrow{g^0} \mathbf{T}(P^1) \to \mathbf{T}(P^2) \to \dots$$

such that $(X, \alpha) \cong \ker(g^0)$ and the complex $\operatorname{Hom}_{R \ltimes M}(\Delta, L)$ is exact for any flat left $R \ltimes M$ -module L.

Since $\operatorname{fd}(\mathbf{Z}(R)_{R \ltimes M}) < \infty$, $\mathbf{Z}(R) \otimes_{R \ltimes M} \Delta$ is exact by [3], Lemma 2.3. Since $\mathbf{Z}(R) \otimes_{R \ltimes M} \mathbf{T}(P^i) \cong R \otimes_R P^i \cong P^i$, we get the exact sequence of projective left R-modules

$$\mathbf{C}(\Delta) \colon \dots \to P^{-1} \to P^0 \xrightarrow{\mathbf{C}(g^0)} P^1 \to P^2 \to \dots$$

with $\operatorname{coker}(\alpha) \cong \ker(\mathbf{C}(g^0))$.

Let Q be a flat left R-module. Then $Q = \lim_{\stackrel{\longrightarrow}{}} N_i$ with each N_i free by [13], Theorem 3.4. Note that $\mathbf{Z}(Q) = \mathbf{Z}(\lim_{\stackrel{\longrightarrow}{}} N_i) = \lim_{\stackrel{\longrightarrow}{}} \mathbf{Z}(N_i)$. Since $\mathrm{fd}_{(R \ltimes M} \mathbf{Z}(R)) < \infty$, $\mathrm{fd}_{(R \ltimes M} \mathbf{Z}(Q)) < \infty$. So $\mathrm{Hom}_R(\mathbf{C}(\Delta), Q) \cong \mathrm{Hom}_{R \ltimes M}(\Delta, \mathbf{Z}(Q))$ is exact by [16], Lemma 3.1. Hence, $\mathrm{coker}(\alpha)$ is a Ding projective left R-module.

By [21], Lemma 1, there is an exact sequence $0 \to \mathbf{Z}(M) \to \mathbf{T}(R) \to \mathbf{Z}(R) \to 0$, which induces the exact sequence of complexes

$$0 \to \mathbf{Z}(M) \otimes_{R \ltimes M} \Delta \to \mathbf{T}(R) \otimes_{R \ltimes M} \Delta \to \mathbf{Z}(R) \otimes_{R \ltimes M} \Delta \to 0.$$

Since $\mathbf{T}(R) \otimes_{R \ltimes M} \Delta$ and $\mathbf{Z}(R) \otimes_{R \ltimes M} \Delta$ are exact, $\mathbf{Z}(M) \otimes_{R \ltimes M} \Delta$ is exact. Note that $M \otimes_R P^i \cong \mathbf{Z}(M) \otimes_{R \ltimes M} \mathbf{T}(P^i)$ by [14], page 295. So $M \otimes_R \mathbf{C}(\Delta) \cong \mathbf{Z}(M) \otimes_{R \ltimes M} \Delta$

is exact. Let ι : $\operatorname{coker}(\alpha) \to P^0$ be the obvious monomorphism. Then $M \otimes \iota$: $M \otimes_R \operatorname{coker}(\alpha) \to M \otimes_R P^0$ is a monomorphism. The exact sequence $M \otimes_R X \stackrel{\alpha}{\to} X \stackrel{\varrho}{\to} \operatorname{coker}(\alpha) \to 0$ induces the exact sequence $M \otimes_R M \otimes_R X \stackrel{M \otimes \alpha}{\to} M \otimes_R X \stackrel{M \otimes \varrho}{\to} M \otimes_R \operatorname{coker}(\alpha) \to 0$. Since $\alpha(M \otimes \alpha) = 0$, there is $\delta \colon M \otimes_R \operatorname{coker}(\alpha) \to X$ such that $\delta(M \otimes \varrho) = \alpha$. Let $\lambda \colon X \to P^0 \oplus (M \otimes_R P^0)$ and $\varphi^0 \colon M \otimes_R P^0 \to P^0 \oplus (M \otimes_R P^0)$ be the injections. By [7], page 57, we get the following commutative diagram in R-Mod:

$$M \otimes_R \operatorname{coker}(\alpha) \xrightarrow{M \otimes \iota} M \otimes_R P^0$$

$$\downarrow^{\varphi^0} \qquad \qquad \downarrow^{\varphi^0} \qquad \qquad X \xrightarrow{\lambda} P^0 \oplus (M \otimes_R P^0).$$

Then δ is a monomorphism. Since the sequence $M \otimes_R M \otimes_R X \xrightarrow{M \otimes \alpha} M \otimes_R X \xrightarrow{M \otimes \alpha} M \otimes_R X \xrightarrow{M \otimes \alpha} M \otimes_R X \xrightarrow{\alpha} X$ is exact.

The following result is an immediate consequence of Theorem 2.1.

Corollary 2.2. Let M_R , $_RM$, $\mathbf{Z}(R)_{R \ltimes M}$ and $_{R \ltimes M}\mathbf{Z}(R)$ have finite flat dimensions. Then

- (1) (X, α) is a Ding projective left $R \ltimes M$ -module if and only if the sequence $M \otimes_R M \otimes_R X \xrightarrow{M \otimes \alpha} M \otimes_R X \xrightarrow{\alpha} X$ is exact and $\operatorname{coker}(\alpha)$ is a Ding projective left R-module.
- (2) $\mathbf{T}(X)$ is a Ding projective left $R \ltimes M$ -module if and only if X is a Ding projective left R-module.
- (3) $\mathbf{Z}(X)$ is a Ding projective left $R \ltimes M$ -module if and only if $M \otimes_R X = 0$ and X is a Ding projective left R-module.

Specializing M = R in Theorem 2.1 (1), we have the following statement.

Corollary 2.3. If $X \stackrel{\alpha}{\to} X \stackrel{\alpha}{\to} X$ is an exact sequence in R-Mod and $\operatorname{coker}(\alpha)$ is a Ding projective left R-module, then (X, α) is a Ding projective left $R \ltimes R$ -module.

Morita context rings with zero bimodule homomorphisms is one important special case of trivial ring extensions. Let A and B be rings, ${}_BU_A$ and ${}_AV_B$ be bimodules, $\phi\colon U\otimes_AV\to B$ and $\psi\colon V\otimes_BU\to A$ be bimodule homomorphisms. Then $\left(\begin{smallmatrix} A & AV_B \\ BU_A & B \end{smallmatrix} \right)_{(\phi,\psi)}$ becomes a ring with the usual matrix addition and multiplication given by

$$\begin{pmatrix} a_1 & v_1 \\ u_1 & b_1 \end{pmatrix} \begin{pmatrix} a_2 & v_2 \\ u_2 & b_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 + \psi(v_1 \otimes u_2) & a_1 v_2 + v_1 b_2 \\ u_1 a_2 + b_1 u_2 & b_1 b_2 + \phi(u_1 \otimes v_2) \end{pmatrix}.$$

The matrix $\begin{pmatrix} A & AV_B \\ BUA & B \end{pmatrix}_{(\phi,\psi)}$ is called a Morita context ring or formal matrix ring, see [12], [19]. In particular, if $\phi = 0$, $\psi = 0$, then $\Lambda = \begin{pmatrix} A & AV_B \\ BUA & B \end{pmatrix}_{(0,0)}$ is called a Morita context ring with zero bimodule homomorphisms, which is a generalization of the formal triangular matrix ring $\begin{pmatrix} A & 0 \\ BUA & B \end{pmatrix}$.

Let $\Lambda = \begin{pmatrix} A & A^{V_B} \\ B^UA & B \end{pmatrix}_{(0,0)}$. Green in [9] proved that the category Λ -Mod is equivalent to the category Ω whose objects are tuples (X,Y,f,g), where $X\in A$ -Mod, $Y\in B$ -Mod, $f\in \operatorname{Hom}_B(U\otimes_A X,Y)$ and $g\in \operatorname{Hom}_A(V\otimes_B Y,X)$ such that $g(V\otimes f)=0,\ f(U\otimes g)=0,\$ and whose morphisms from (X_1,Y_1,f_1,g_1) to (X_2,Y_2,f_2,g_2) are pairs (α,β) such that $\alpha\in \operatorname{Hom}_A(X_1,X_2),\ \beta\in \operatorname{Hom}_B(Y_1,Y_2),\ f_2(U\otimes\alpha)=\beta f_1,\ g_2(V\otimes\beta)=\alpha g_1.$ In view of the well-known adjointness relation, the category Λ -Mod is also equivalent to the category Γ whose objects are tuples $[X,Y,f,g],\$ where $X\in A$ -Mod, $Y\in B$ -Mod, $f\in \operatorname{Hom}_A(X,\operatorname{Hom}_B(U,Y))$ and $g\in \operatorname{Hom}_B(Y,\operatorname{Hom}_A(V,X))$ such that $\operatorname{Hom}_B(U,g)f=0,\operatorname{Hom}_A(U,f)g=0,\$ and whose morphisms from $[X_1,Y_1,f_1,g_1]$ to $[X_2,Y_2,f_2,g_2]$ are pairs $[\alpha,\beta]$ such that $\alpha\in \operatorname{Hom}_A(X_1,X_2),\beta\in \operatorname{Hom}_B(Y_1,Y_2)$ and $f_2\alpha=\operatorname{Hom}_B(U,\beta)f_1,\ g_2\beta=\operatorname{Hom}_A(V,\alpha)g_1.$ We will identify Λ -Mod with Ω and Γ in what follows.

It is known that the ring $\Lambda = \begin{pmatrix} A & AV_B \\ BU_A & B \end{pmatrix}_{(0,0)}$ is isomorphic to the trivial ring extension $(A \times B) \ltimes (U \oplus V)$ under the correspondence $\begin{pmatrix} a & v \\ u & b \end{pmatrix} \to ((a,b),(u,v))$, see [7]. Note that $U \oplus V$ attains the $A \times B$ - $A \times B$ -bimodule structure through the ring homomorphisms $A \times B \to A$ and $A \times B \to B$. It is well known that a left $A \times B$ -module is an order pair (X,Y) with $X \in A$ -Mod and $Y \in B$ -Mod. Similarly, a right $A \times B$ -module is an order pair (W_1,W_2) with $W_1 \in \text{Mod-}A$ and $W_2 \in \text{Mod-}B$. So $(U \oplus V) \otimes_{A \times B} (X,Y) \cong (V \otimes_B Y, U \otimes_A X)$ and $\text{Hom}_{A \times B}(U \oplus V, (X,Y)) \cong (\text{Hom}_B(U,Y), \text{Hom}_A(V,X))$. Therefore Λ -Mod is isomorphic to $(A \times B) \ltimes (U \oplus V)$ -Mod by the functor $\Theta \colon \Lambda$ -Mod $\to (A \times B) \ltimes (U \oplus V)$ -Mod given by $\Theta(X,Y,f,g) = ((X,Y),(g,f))$. Similarly, Mod- Λ is isomorphic to Mod- $(A \times B) \ltimes (U \oplus V)$ by the functor $\Upsilon \colon \text{Mod-}\Lambda \to \text{Mod-}(A \times B) \ltimes (U \oplus V)$ given by $\Upsilon(W,Q,f,g) = ((W,Q),(f,g))$.

Theorem 2.4. Let $\Lambda = \begin{pmatrix} A & AV_B \\ BU_A & B \end{pmatrix}_{(0,0)}$ and (X,Y,f,g) be a left Λ -module.

- (1) If U_A , ${}_BU$, ${}_AV$ and V_B have finite flat dimensions, the sequences $V \otimes_B U \otimes_A X \xrightarrow{V \otimes f} V \otimes_B Y \xrightarrow{g} X$ and $U \otimes_A V \otimes_B Y \xrightarrow{U \otimes g} U \otimes_A X \xrightarrow{f} Y$ are exact, $\operatorname{coker}(f)$ is a Ding projective left B-module and $\operatorname{coker}(g)$ is a Ding projective left A-module, then (X,Y,f,g) is a Ding projective left Λ -module.
- (2) If $_{\Lambda}(A,B,0,0)$ and $(A,B,0,0)_{\Lambda}$ have finite flat dimensions and (X,Y,f,g) is a Ding projective left Λ -module, then the sequences $V \otimes_B U \otimes_A X \xrightarrow{V \otimes f} V \otimes_B Y \xrightarrow{g} X$ and $U \otimes_A V \otimes_B Y \xrightarrow{U \otimes g} U \otimes_A X \xrightarrow{f} Y$ are exact, coker(f) is a Ding projective left B-module and coker(g) is a Ding projective left A-module.

Proof. (1) Since the sequences $V \otimes_B U \otimes_A X \xrightarrow{V \otimes f} V \otimes_B Y \xrightarrow{g} X$ and $U \otimes_A V \otimes_B Y \xrightarrow{\bigoplus} U \otimes_A X \xrightarrow{f} Y$ are exact, the sequence $(U \oplus V) \otimes_{A \times B} (U \oplus V) \otimes_{A \times B} (X,Y) \xrightarrow{(U \oplus V) \otimes (g,f)} (U \oplus V) \otimes_{A \times B} (X,Y) \xrightarrow{(g,f)} (X,Y)$ is exact. Since $\operatorname{coker}(f)$ is a Ding projective left B-module and $\operatorname{coker}(g)$ is a Ding projective left A-module, $\operatorname{coker}(g,f) = (\operatorname{coker}(g),\operatorname{coker}(f))$ is a Ding projective left $A \times B$ -module. By Theorem 2.1, ((X,Y),(g,f)) is a Ding projective left $(A \times B) \ltimes (U \oplus V)$ -module. So (X,Y,f,g) is a Ding projective left A-module.

(2) Since $\operatorname{fd}(\Lambda(A, B, 0, 0)) < \infty$ and $\operatorname{fd}((A, B, 0, 0)_{\Lambda}) < \infty$,

$$\operatorname{fd}({}_{(A\times B)\ltimes(U\oplus V)}\mathbf{Z}(A\times B))<\infty\quad\text{and}\quad\operatorname{fd}(\mathbf{Z}(A\times B)_{(A\times B)\ltimes(U\oplus V)})<\infty.$$

Since (X,Y,f,g) is a Ding projective left Λ -module, ((X,Y),(g,f)) is a Ding projective left $(A\times B)\ltimes (U\oplus V)$ -module. By Theorem 2.1, the sequence $(U\oplus V)\otimes_{A\times B}(U\oplus V)\otimes_{A\times B}(X,Y)\stackrel{(U\oplus V)\otimes (g,f)}{\longrightarrow}(U\oplus V)\otimes_{A\times B}(X,Y)\stackrel{(g,f)}{\longrightarrow}(X,Y)$ is exact and $\operatorname{coker}(g,f)$ is a Ding projective left $A\times B$ -module. So the sequences $V\otimes_B U\otimes_A X\stackrel{V\otimes f}{\longrightarrow}V\otimes_B Y\stackrel{g}{\longrightarrow}X$ and $U\otimes_A V\otimes_B Y\stackrel{U\otimes g}{\longrightarrow}U\otimes_A X\stackrel{f}{\longrightarrow}Y$ are exact, $\operatorname{coker}(f)$ is a Ding projective left B-module and $\operatorname{coker}(g)$ is a Ding projective left A-module.

Corollary 2.5. Let $\Lambda = \begin{pmatrix} A & AV_B \\ BU_A & B \end{pmatrix}_{(0,0)}$, U_A , BU, AV, V_B , $\Lambda(A,B,0,0)$ and $(A,B,0,0)_{\Lambda}$ have finite flat dimensions. Then

- (1) $(X, U \otimes_A X, \mathrm{id}_{U \otimes_A X}, 0)$ is a Ding projective left Λ -module if and only if X is a Ding projective left Λ -module.
- (2) $(V \otimes_B Y, Y, 0, \mathrm{id}_{V \otimes_B Y})$ is a Ding projective left Λ -module if and only if Y is a Ding projective left B-module.
- (3) (X,Y,0,0) is a Ding projective left Λ -module if and only if $U\otimes_A X=0$, $V\otimes_B Y=0$, X is a Ding projective left A-module and Y is a Ding projective left B-module.

3. Ding injective modules over trivial ring extensions

Recall that a left R-module X is FP -injective (see [24]) if $\operatorname{Ext}^1_R(N,X)=0$ for every finitely presented left R-module N, equivalently, if every exact sequence $0 \to X \to Y \to L \to 0$ of left R-modules is pure by [6], Theorem 3.1. The FP -injective dimension of a left R-module X, denoted by FP – $\operatorname{id}(X)$, is defined to be the smallest integer $n \geqslant 0$ such that $\operatorname{Ext}^{n+1}_R(N,X)=0$ for every finitely presented left R-module N (if no such n exists, set FP – $\operatorname{id}(X)=\infty$).

A left R-module X is called Ding injective (see [8], [18]) if there is an exact sequence of injective left R-modules

$$\Xi : \ldots \to E^{-1} \xrightarrow{f^{-1}} E^0 \xrightarrow{f^0} E^1 \xrightarrow{f^1} E^2 \to \ldots$$

such that $X \cong \ker(f^0)$ and $\operatorname{Hom}_R(Y,\Xi)$ is exact for any FP-injective left R-module Y. Recall that R is a *left coherent ring* (see [13]) if every finitely generated left ideal is finitely presented.

Lemma 3.1. Let $R \ltimes M$ be a left coherent ring and $_RM$ be finitely presented. Then

- (1) $[Y,\beta]$ is an FP-injective left $R \ltimes M$ -module if and only if $\ker(\beta)$ is an FP-injective left R-module and the sequence $Y \xrightarrow{\beta} \operatorname{Hom}_R(M,Y) \xrightarrow{\beta_*} \operatorname{Hom}_R(M,Y)$ is exact.
- (2) $\mathbf{H}(Y)$ is an FP-injective left $R \ltimes M$ -module if and only if Y is an FP-injective left R-module.
- (3) $\mathbf{Z}(Y)$ is an FP-injective left $R \ltimes M$ -module if and only if Y is an FP-injective left R-module and $\operatorname{Hom}_R(M,Y) = 0$.

Proof. Since $R \ltimes M$ is a left coherent ring, R is also a left coherent ring by [7], Theorem 2.2. Since RM is finitely presented, the natural map $\sigma \colon Y^+ \otimes_R M \to \operatorname{Hom}_R(M,Y)^+$ is an isomorphism by [23], Lemma 3.60.

(1) The exact sequence $0 \to \ker(\beta) \to Y \xrightarrow{\beta} \operatorname{Hom}_R(M,Y)$ induces the exact sequence $\operatorname{Hom}_R(M,Y)^+ \xrightarrow{\beta^+} Y^+ \to (\ker(\beta))^+ \to 0$. Therefore, $[Y,\beta]$ is an FP-injective left $R \ltimes M$ -module if and only if $[Y,\beta]^+ \cong (Y^+,\beta^+\sigma)$ is a flat right $R \ltimes M$ -module by [6], Theorem 2.2 if and only if $\operatorname{coker}(\beta^+) \cong \operatorname{coker}(\beta^+\sigma)$ is a flat right R-module and the sequence $Y^+ \otimes_R M \otimes_R M \xrightarrow{(\beta^+\sigma)\otimes M} Y^+ \otimes_R M \xrightarrow{\beta^+\sigma} Y^+$ is exact by [7], Proposition 1.14 if and only if $(\ker(\beta))^+$ is a flat right R-module and the sequence $\operatorname{Hom}_R(M,\operatorname{Hom}_R(M,Y))^+ \xrightarrow{(\beta_*)^+} \operatorname{Hom}_R(M,Y)^+ \xrightarrow{\beta^+} Y^+$ is exact if and only if $\ker(\beta)$ is an FP-injective left R-module and the sequence $Y \xrightarrow{\beta} \operatorname{Hom}_R(M,Y) \xrightarrow{\beta_*} \operatorname{Hom}_R(M,\operatorname{Hom}_R(M,Y))$ is exact by [6], Theorem 2.2.

(2) and (3) are immediate consequences of (1).
$$\Box$$

Theorem 3.2. Let $R \ltimes M$ be a left coherent ring and $[Y, \beta]$ be a left $R \ltimes M$ -module.

(1) If M_R has finite flat dimension, $_RM$ is finitely presented and has finite projective or FP-injective dimension, the sequence $Y \stackrel{\beta}{\to} \operatorname{Hom}_R(M,Y) \stackrel{\beta_*}{\to} \operatorname{Hom}_R(M,\operatorname{Hom}_R(M,Y))$ is exact and $\ker(\beta)$ is a Ding injective left R-module, then $[Y,\beta]$ is a Ding injective left $R \ltimes M$ -module.

(2) If $\mathbf{Z}(R)_{R \ltimes M}$ has finite flat dimension, $_{R \ltimes M}\mathbf{Z}(R)$ has finite projective or FP-injective dimension, $[Y,\beta]$ is a Ding injective left $R \ltimes M$ -module, then the sequence $Y \xrightarrow{\beta} \operatorname{Hom}_R(M,Y) \xrightarrow{\beta_*} \operatorname{Hom}_R(M,\operatorname{Hom}_R(M,Y))$ is exact and $\ker(\beta)$ is a Ding injective left R-module.

Proof. (1) There is an exact sequence of injective left R-modules

$$\Xi : \ldots \to E^{-1} \xrightarrow{f^{-1}} E^0 \xrightarrow{f^0} E^1 \xrightarrow{f^1} E^2 \to \ldots$$

such that $\ker(\beta) \cong \ker(f^0)$ and $\operatorname{Hom}_R(Q,\Xi)$ is also exact for any FP-injective left R-module Q.

Since $\operatorname{pd}(_RM)<\infty$ or $\operatorname{FP}-\operatorname{id}(_RM)<\infty$, we get the exact sequence of left R-modules

$$\operatorname{Hom}_R(M,\Xi) \colon \dots \to \operatorname{Hom}_R(M,E^{-1}) \xrightarrow{(f^{-1})^*} \operatorname{Hom}_R(M,E^0) \xrightarrow{(f^0)_*} \operatorname{Hom}_R(M,E^1) \to \dots$$

with $\operatorname{Hom}_R(M,\ker(\beta))\cong \operatorname{Hom}_R(M,\ker((f^0)_*))$ by [3], Lemma 2.5 and [16], Lemma 3.2.

The exact sequence $0 \to \ker(\beta) \xrightarrow{\iota} Y \xrightarrow{\beta} \operatorname{Hom}_R(M,Y)$ induces the exact sequence $0 \to \operatorname{Hom}_R(M,\ker(\beta)) \xrightarrow{\iota_*} \operatorname{Hom}_R(M,Y) \xrightarrow{\beta_*} \operatorname{Hom}_R(M,\operatorname{Hom}_R(M,Y))$. Since the sequence $0 \to \ker(\beta) \xrightarrow{\iota} Y \xrightarrow{\beta} \operatorname{Hom}_R(M,Y) \xrightarrow{\beta_*} \operatorname{Hom}_R(M,\operatorname{Hom}_R(M,Y))$ is exact, we get the exact sequence

$$0 \to \ker(\beta) \xrightarrow{\iota} Y \xrightarrow{\gamma} \operatorname{Hom}_R(M, \ker(\beta)) \to 0$$

such that $\beta = \iota_* \gamma$. Since $\operatorname{fd}(M_R) < \infty$, we have $\operatorname{id}(\operatorname{Hom}_R(M, E^i)) < \infty$ by [16], Lemma 3.2. Therefore, the complex $\operatorname{Hom}_R(\operatorname{Hom}_R(M, E^i), \Xi)$ is exact by [16], Lemma 4.1. So $\operatorname{Ext}^1_R(\operatorname{Hom}_R(M, E^i), \ker(f^{i+1})) = 0$. Let $\pi \colon E^{-1} \to \ker(\beta)$ be the canonical epimorphism and $\tau \colon \ker(\beta) \to E^0$ be the canonical monomorphism such that $\tau \pi = f^{-1}$. Since $\operatorname{Ext}^1_R(\operatorname{Hom}_R(M, E^{-1}), \ker(\beta)) = 0$, there is $\psi \colon \operatorname{Hom}_R(M, E^{-1}) \to Y$ such that $\gamma \psi = \pi_*$. Also there is $\phi \colon Y \to E^0$ such that $\phi \iota = \tau$. Define $\xi \colon \operatorname{Hom}_R(M, E^{-1}) \oplus E^{-1} \to Y$ by $\xi(x, y) = \psi(x) + \iota \pi(y)$ and $\lambda \colon Y \to \operatorname{Hom}_R(M, E^0) \oplus E^0$ by $\lambda(x) = (\tau \gamma(x), \phi(x))$. It is easy to check that λ is a monomorphism and ξ is an epimorphism. Then by generalized Horseshoe Lemma (see [27], Lemma 1.6), we get the exact sequence of left R-modules

$$\dots \to \operatorname{Hom}_R(M, E^{-1}) \oplus E^{-1} \xrightarrow{\partial^{-1}} \operatorname{Hom}_R(M, E^0) \oplus E^0 \xrightarrow{\partial^0} \operatorname{Hom}_R(M, E^1) \oplus E^1 \to \dots$$
with $\partial^{-1} = \lambda \xi$, $\partial^i = \begin{pmatrix} (f^i)_* & 0 \\ \tau^i & f^i \end{pmatrix}$ $(i \neq -1)$ and $Y \cong \ker(\partial^0)$.

It is easy to check that the two diagrams

and

$$0 \longrightarrow Y \xrightarrow{\lambda} \operatorname{Hom}_{R}(M, E^{0}) \oplus E^{0} \xrightarrow{\partial^{0}} \operatorname{Hom}_{R}(M, E^{1}) \oplus E^{1} \xrightarrow{\longrightarrow} \cdots$$

$$\downarrow^{\beta} \downarrow \qquad \qquad \downarrow^{\vartheta_{0}} \qquad \qquad \downarrow^{\vartheta_{1}}$$

$$\operatorname{Hom}_{R}(M, Y) \xrightarrow{\lambda_{*}} \operatorname{Hom}_{R}(M, \operatorname{Hom}_{R}(M, E^{0}) \oplus E^{0}) \xrightarrow{(\partial^{0})_{*}} \operatorname{Hom}_{R}(M, \operatorname{Hom}_{R}(M, E^{1}) \oplus E^{1}) \xrightarrow{\longrightarrow} \cdots$$

are commutative. So we obtain two exact sequences $\dots \to \mathbf{H}(E^{-2}) \xrightarrow{\partial^{-2}} \mathbf{H}(E^{-1}) \xrightarrow{\xi} [Y,\beta] \to 0$ and $0 \to [Y,\beta] \xrightarrow{\lambda} \mathbf{H}(E^0) \xrightarrow{\partial^0} \mathbf{H}(E^1) \to \dots$

By [7], Corollary 1.6 (d), each $\mathbf{H}(E^i)$ is injective. So we get the exact sequence of injective left $R \ltimes M$ -modules

$$\Delta : \ldots \to \mathbf{H}(E^{-2}) \xrightarrow{\partial^{-2}} \mathbf{H}(E^{-1}) \xrightarrow{\partial^{-1}} \mathbf{H}(E^{0}) \xrightarrow{\partial^{0}} \mathbf{H}(E^{1}) \to \ldots$$

with $[Y, \beta] \cong \ker(\partial^0)$.

Let $[X, \zeta]$ be an FP-injective left $R \ltimes M$ -module. By Lemma 3.1, $\ker(\zeta)$ is an FP-injective left R-module and the sequence

$$X \xrightarrow{\zeta} \operatorname{Hom}_R(M,X) \xrightarrow{\zeta_*} \operatorname{Hom}_R(M,\operatorname{Hom}_R(M,X))$$

is exact. Thus, we get the exact sequence

$$0 \to \ker(\zeta) \to X \to \operatorname{Hom}_R(M, \ker(\zeta)) \to 0.$$

So there is an exact sequence

$$0 \to \mathbf{Z}(\ker(\zeta)) \to [X, \zeta] \to \mathbf{Z}(\operatorname{Hom}_R(M, \ker(\zeta))) \to 0,$$

which induces the exact sequence of complexes

$$0 \to \operatorname{Hom}_{R \ltimes M}(\mathbf{Z}(\operatorname{Hom}_R(M, \ker(\zeta))), \Delta) \to \operatorname{Hom}_{R \ltimes M}([X, \zeta], \Delta)$$
$$\to \operatorname{Hom}_{R \ltimes M}(\mathbf{Z}(\ker(\zeta)), \Delta) \to 0.$$

Note that $\operatorname{Hom}_{R \ltimes M}(\mathbf{Z}(\ker(\zeta)), \mathbf{H}(E^i)) \cong \operatorname{Hom}_R(\ker(\zeta), E^i)$. Therefore, the complex $\operatorname{Hom}_{R \ltimes M}(\mathbf{Z}(\ker(\zeta)), \Delta) \cong \operatorname{Hom}_R(\ker(\zeta), \Xi)$ is exact. On the other hand, by [16], Lemma 4.2, FP – $\operatorname{id}(\operatorname{Hom}_R(M, \ker(\zeta))) < \infty$. Since

$$\operatorname{Hom}_{R \ltimes M}(\mathbf{Z}(\operatorname{Hom}_R(M, \ker(\zeta))), \mathbf{H}(E^i)) \cong \operatorname{Hom}_R(\operatorname{Hom}_R(M, \ker(\zeta)), E^i),$$

we have the complex

$$\operatorname{Hom}_{R \ltimes M}(\mathbf{Z}(\operatorname{Hom}_R(M, \ker(\zeta))), \Delta) \cong \operatorname{Hom}_R(\operatorname{Hom}_R(M, \ker(\zeta)), \Xi)$$

is exact by [16], Lemma 4.1. Therefore, $\operatorname{Hom}_{R \ltimes M}([X, \zeta], \Delta)$ is exact. It follows that $[Y, \beta]$ is a Ding injective left $R \ltimes M$ -module.

(2) By [7], Corollary 1.6 (d), there is an exact sequence of injective left $R \ltimes M$ -modules

$$\Delta \colon \dots \to \mathbf{H}(E^{-1}) \to \mathbf{H}(E^0) \xrightarrow{\partial^0} \mathbf{H}(E^1) \to \mathbf{H}(E^2) \to \dots$$

such that $[Y,\beta] \cong \ker(\partial^0)$ and $\operatorname{Hom}_{R\ltimes M}(X,\Delta)$ is also exact for any FP-injective left $R\ltimes M$ -module X. Since $\operatorname{pd}_{R\ltimes M}\mathbf{Z}(R) < \infty$ or $\operatorname{FP} - \operatorname{id}_{R\ltimes M}\mathbf{Z}(R) < \infty$, the complex $\operatorname{Hom}_{R\ltimes M}(\mathbf{Z}(R),\Delta)$ is exact by [3], Lemma 2.5 and [16], Lemma 4.1. Note that $\operatorname{Hom}_{R\ltimes M}(\mathbf{Z}(R),\Delta) \cong \operatorname{Hom}_R(R,\mathbf{K}(\Delta)) \cong \mathbf{K}(\Delta)$. So we get the exact sequence of injective left R-modules

$$\mathbf{K}(\Delta) \colon \dots \to E^{-1} \to E^0 \xrightarrow{\mathbf{K}(\partial^0)} E^1 \to E^2 \to \dots$$

with $\ker(\beta) \cong \ker(\mathbf{K}(\partial^0))$.

Let Q be an FP-injective left R-module. Then there is a pure monomorphism in R-Mod $Q \to \prod R^+$. By [10], Lemma 2.1 (i), we get the pure monomorphism in $R \ltimes M$ -Mod

$$\mathbf{Z}(Q) \to \mathbf{Z}(\prod R^+) = \prod \mathbf{Z}(R^+).$$

Since $\operatorname{fd}(\mathbf{Z}(R)_{R\ltimes M})<\infty$, we have $\operatorname{FP-id}(_{R\ltimes M}\mathbf{Z}(R^+))=\operatorname{FP-id}(_{R\ltimes M}\mathbf{Z}(R)^+)<\infty$ by [6], Theorem 2.1. Thus, $\operatorname{FP-id}(_{R\ltimes M}\prod\mathbf{Z}(R^+))<\infty$ and so $\operatorname{fd}(\mathbf{Z}(\prod R^+)^+)<\infty$ by [6], Theorem 2.2 since $R\ltimes M$ is a left coherent ring. The pure monomorphism $\mathbf{Z}(Q)\to\mathbf{Z}(\prod R^+)$ induces the split epimorphism $\mathbf{Z}(\prod R^+)^+\to\mathbf{Z}(Q)^+$. Thus, $\operatorname{fd}(\mathbf{Z}(Q)^+)<\infty$ and so $\operatorname{FP-id}(_{R\ltimes M}\mathbf{Z}(Q))<\infty$. By [16], Lemma 4.1, $\operatorname{Hom}_{R\ltimes M}(\mathbf{Z}(Q),\Delta)$ is exact. Since $\operatorname{Hom}_R(Q,E^i)\cong\operatorname{Hom}_{R\ltimes M}(\mathbf{Z}(Q),\mathbf{H}(E^i))$, $\operatorname{Hom}_R(Q,\mathbf{K}(\Delta))\cong\operatorname{Hom}_{R\ltimes M}(\mathbf{Z}(Q),\Delta)$ is exact. So $\ker(\beta)$ is a Ding injective left R-module.

By [21], Lemma 1, there is an exact sequence $0 \to \mathbf{Z}(M) \to \mathbf{T}(R) \to \mathbf{Z}(R) \to 0$, which induces the exact sequence of complexes

$$0 \to \operatorname{Hom}_{R \ltimes M}(\mathbf{Z}(R), \Delta) \to \operatorname{Hom}_{R \ltimes M}(\mathbf{T}(R), \Delta) \to \operatorname{Hom}_{R \ltimes M}(\mathbf{Z}(M), \Delta) \to 0.$$

Since $\operatorname{Hom}_{R \ltimes M}(\mathbf{Z}(R), \Delta)$ and $\operatorname{Hom}_{R \ltimes M}(\mathbf{T}(R), \Delta)$ are exact, $\operatorname{Hom}_{R \ltimes M}(\mathbf{Z}(M), \Delta)$ is exact. So $\operatorname{Hom}_{R}(M, \mathbf{K}(\Delta)) \cong \operatorname{Hom}_{R \ltimes M}(\mathbf{Z}(M), \Delta)$ is exact. Let $\tau \colon E^{-1} \to \ker(\beta)$ be the canonical epimorphism, then $\tau_* \colon \operatorname{Hom}_R(M, E^{-1}) \to \operatorname{Hom}_R(M, \ker(\beta))$ is an epimorphism.

The exact sequence $0 \to \ker(\beta) \xrightarrow{\iota} Y \xrightarrow{\beta} \operatorname{Hom}_R(M,Y)$ induces the exact sequence $0 \to \operatorname{Hom}_R(M,\ker(\beta)) \xrightarrow{\iota_*} \operatorname{Hom}_R(M,Y) \xrightarrow{\beta_*} \operatorname{Hom}_R(M,\operatorname{Hom}_R(M,Y))$. Since $\beta_*\beta = 0$, there is $\gamma \colon Y \to \operatorname{Hom}_R(M,\ker(\beta))$ such that $\iota_*\gamma = \beta$. Let $\varrho \colon \operatorname{Hom}_R(M,E^{-1}) \oplus E^{-1} \to Y$ be the canonical epimorphism and

$$\varphi^{-1} : \operatorname{Hom}_{R}(M, E^{-1}) \oplus E^{-1} \to \operatorname{Hom}_{R}(M, E^{-1})$$

be the projection. Consider the following commutative diagram in R-Mod:

$$\operatorname{Hom}_R(M,E^{-1}) \oplus E^{-1} \xrightarrow{\varrho} Y$$

$$\downarrow^{\varphi^{-1}} \qquad \qquad \downarrow^{\gamma}$$

$$\operatorname{Hom}_R(M,E^{-1}) \xrightarrow{\tau_*} \operatorname{Hom}_R(M,\ker(\beta)).$$

Since τ_* and φ^{-1} are epimorphisms, γ is an epimorphism. Hence, the sequence $Y \xrightarrow{\beta} \operatorname{Hom}_R(M,Y) \xrightarrow{\beta_*} \operatorname{Hom}_R(M,\operatorname{Hom}_R(M,Y))$ is exact.

The following result is an immediate consequence of Theorem 3.2.

Corollary 3.3. Suppose that $R \ltimes M$ is a left coherent ring, M_R has finite flat dimension, RM is finitely presented and has finite projective or FP-injective dimension, $\mathbf{Z}(R)_{R \ltimes M}$ has finite flat dimension, $R \ltimes M \mathbf{Z}(R)$ has finite projective or FP-injective dimension.

- (1) $[Y,\beta]$ is a Ding injective left $R \ltimes M$ -module if and only if the sequence $Y \xrightarrow{\beta} \operatorname{Hom}_R(M,Y) \xrightarrow{\beta_*} \operatorname{Hom}_R(M,\operatorname{Hom}_R(M,Y))$ is exact and $\ker(\beta)$ is a Ding injective left R-module.
- (2) $\mathbf{H}(Y)$ is a Ding injective left $R \ltimes M$ -module if and only if Y is a Ding injective left R-module.
- (3) $\mathbf{Z}(Y)$ is a Ding injective left $R \ltimes M$ -module if and only if $\operatorname{Hom}_R(M,Y) = 0$ and Y is a Ding injective left R-module.

Specializing M = R in Theorem 3.2 (1), we have:

Corollary 3.4. If R is a left coherent ring, the sequence $Y \xrightarrow{\beta} Y \xrightarrow{\beta} Y$ is exact in R-Mod and $\ker(\beta)$ is a Ding injective left R-module, then $[Y,\beta]$ is a Ding injective left $R \ltimes R$ -module.

Theorem 3.5. Let $\Lambda = \begin{pmatrix} A & AV_B \\ BUA & B \end{pmatrix}_{(0,0)}$ be a left coherent ring and [X,Y,f,g] be a left Λ -module.

- (1) If U_A and V_B have finite flat dimensions, ${}_BU$ and ${}_AV$ are finitely presented and have finite projective dimensions or ${}_BU$ and ${}_AV$ have finite FP-injective dimensions, $\ker(f)$ is a Ding injective left A-module, $\ker(g)$ is a Ding injective left B-module, the two sequences $X \xrightarrow{f} \operatorname{Hom}_B(U,Y) \xrightarrow{\operatorname{Hom}_B(U,g)} \operatorname{Hom}_B(U,\operatorname{Hom}_A(V,X))$ and $Y \xrightarrow{g} \operatorname{Hom}_A(V,X) \xrightarrow{\operatorname{Hom}_A(V,f)} \operatorname{Hom}_A(V,\operatorname{Hom}_B(U,Y))$ are exact, then [X,Y,f,g] is a Ding injective left Λ -module.
- (2) If $[A, B, 0, 0]_{\Lambda}$ has finite flat dimension, ${}_{\Lambda}[A, B, 0, 0]$ has finite projective or FP-injective dimension and [X, Y, f, g] is a Ding injective left Λ -module, then $\ker(f)$ is a Ding injective left A-module and $\ker(g)$ is a Ding injective left B-module, the two sequences $X \xrightarrow{f} \operatorname{Hom}_{B}(U, Y) \xrightarrow{\operatorname{Hom}_{B}(U, g)} \operatorname{Hom}_{B}(U, \operatorname{Hom}_{A}(V, X))$ and $Y \xrightarrow{g} \operatorname{Hom}_{A}(V, X) \xrightarrow{\operatorname{Hom}_{A}(V, f)} \operatorname{Hom}_{A}(V, \operatorname{Hom}_{B}(U, Y))$ are exact.

Proof. Obviously, $(A \times B) \ltimes (U \oplus V)$ is a left coherent ring.

(1) Note that $U \oplus V$ is a finitely presented left $A \times B$ -module, $\operatorname{fd}((U \oplus V)_{A \times B}) < \infty$, $\operatorname{pd}(_{A \times B}(U \oplus V)) < \infty$ or $\operatorname{FP} - \operatorname{id}(_{A \times B}(U \oplus V)) < \infty$. Since the two sequences $X \xrightarrow{f} \operatorname{Hom}_B(U,Y) \xrightarrow{\operatorname{Hom}_B(U,g)} \operatorname{Hom}_B(U,\operatorname{Hom}_A(V,X))$ and $Y \xrightarrow{g} \operatorname{Hom}_A(V,X) \xrightarrow{\operatorname{Hom}_A(V,f)} \operatorname{Hom}_A(V,\operatorname{Hom}_B(U,Y))$ are exact, it follows that the sequence

$$(X,Y) \stackrel{(f,g)}{\longrightarrow} \operatorname{Hom}_{A \times B}(U \oplus V, (X,Y)) \stackrel{(f,g)_*}{\longrightarrow} \operatorname{Hom}_{A \times B}(U \oplus V, \operatorname{Hom}_{A \times B}(U \oplus V, (X,Y)))$$

is also exact. Since $\ker(f)$ is a Ding injective left A-module and $\ker(g)$ is a Ding injective left B-module, $\ker(f,g) = (\ker(f),\ker(g))$ is a Ding injective left $A \times B$ -module. By Theorem 3.2 (1), [(X,Y),(f,g)] is a Ding injective left $(A \times B) \ltimes (U \oplus V)$ -module. So [X,Y,f,g] is a Ding injective left Λ -module.

(2) Note that $\operatorname{fd}(\mathbf{Z}(A\times B)_{(A\times B)\ltimes(U\oplus V)})<\infty$, $\operatorname{pd}(_{(A\times B)\ltimes(U\oplus V)}\mathbf{Z}(A\times B))<\infty$ or $\operatorname{FP}-\operatorname{id}(_{(A\times B)\ltimes(U\oplus V)}\mathbf{Z}(A\times B))<\infty$. Since [X,Y,f,g] is a Ding injective left Λ -module, [(X,Y),(f,g)] is a Ding injective left $(A\times B)\ltimes(U\oplus V)$ -module. By Theorem 3.2 (2), the sequence $(X,Y)\stackrel{(f,g)}{\longrightarrow}\operatorname{Hom}_{A\times B}(U\oplus V,(X,Y))\stackrel{(f,g)_*}{\longrightarrow}\operatorname{Hom}_{A\times B}(U\oplus V,\operatorname{Hom}_{A\times B}(U\oplus V,(X,Y)))$ is exact and $\operatorname{ker}(f,g)$ is a Ding injective left $A\times B$ -module. So the sequences $X\stackrel{f}{\to}\operatorname{Hom}_B(U,Y)\stackrel{\operatorname{Hom}_B(U,g)}{\longrightarrow}\operatorname{Hom}_B(U,\operatorname{Hom}_A(V,X))$ and $Y\stackrel{g}{\to}\operatorname{Hom}_A(V,X)\stackrel{\operatorname{Hom}_A(V,f)}{\longrightarrow}\operatorname{Hom}_A(V,\operatorname{Hom}_B(U,Y))$ are exact, $\operatorname{ker}(f)$ is a Ding injective left A-module and $\operatorname{ker}(g)$ is a Ding injective left B-module. \square

Corollary 3.6. Let $\Lambda = \begin{pmatrix} A & AV_B \\ BU_A & B \end{pmatrix}_{(0,0)}$ be a left coherent ring, U_A and V_B have finite flat dimensions, BU and AV be finitely presented and have finite projective

dimensions or $_BU$ and $_AV$ have finite FP-injective dimensions, $[A,B,0,0]_{\Lambda}$ have finite flat dimension, $_{\Lambda}[A,B,0,0]$ have finite projective or FP-injective dimension.

- (1) $[X, \operatorname{Hom}_A(V, X), 0, \operatorname{id}_{\operatorname{Hom}_A(V, X)}]$ is a Ding injective left Λ -module if and only if X is a Ding injective left Λ -module.
- (2) $[\operatorname{Hom}_B(U,Y), Y, \operatorname{id}_{\operatorname{Hom}_B(U,Y)}, 0]$ is a Ding injective left Λ -module if and only if Y is a Ding injective left B-module.
- (3) [X, Y, 0, 0] is a Ding injective left Λ -module if and only if $\operatorname{Hom}_A(V, X) = 0$, $\operatorname{Hom}_B(U, Y) = 0$, X is a Ding injective left Λ -module and Y is a Ding injective left Π -module.

Acknowledgements. The author wants to express his gratitude to the referee for his/here very helpful comments.

References

[1]	M.Auslander,M.Bridger: Stable Module Theory. Memoirs of the American Mathemat-			
	ical Society 94. AMS, Providence, 1969.	zbl	MRd	oi
[2]	N. Ding, Y. Li, L. Mao: Strongly Gorenstein flat modules. J. Aust. Math. Soc. 86 (2009),			
	323–338.	zbl	MRd	oi
[3]	E. E. Enochs, M. Cortés-Izurdiaga, B. Torrecillas: Gorenstein conditions over triangular			
	matrix rings. J. Pure Appl. Algebra 218 (2014), 1544–1554.	zbl	MRd	oi
[4]	E. E. Enochs, O. M. G. Jenda: Gorenstein injective and projective modules. Math. Z. 220			
[-]	(1995), 611–633.		MRd	oi
[5]	E. E. Enochs, O. M. G. Jenda: Relative Homological Algebra. de Gruyter Expositions in		TITLE CE	91
[0]	Mathematics 30. Walter de Gruyter, Berlin, 2000.		MR d	oi
[6]	D. J. Fieldhouse: Character modules, dimension and purity. Glasg. Math. J. 13 (1972),	ZUI	WIII U	IJΙ
[O]		-b1	MR d	ند
[77]	144-146.	ZDI	MIK a	ΟI
[1]	R. M. Fossum, P. A. Griffith, I. Reiten: Trivial Extensions of Abelian Categories: Homo-			
	logical Algebra of Trivial Extensions of Abelian Categories with Applications to Ring		MD	
[0]	Theory. Lecture Notes in Mathematics 456. Springer, Berlin, 1975.	ZDI	MRd	01
[8]	J. Gillespie: Model structures on modules over Ding-Chen rings. Homology Homotopy			
	Appl. 12 (2010), 61–73.		MRd	oi
[9]	E. L. Green: On the representation theory of rings in matrix form. Pac. J. Math. 100			
	(1982), 123–138.	zbl	MR d	oi
[10]	A. Haghany, M. Mazrooei, M. R. Vedadi: Pure projectivity and pure injectivity over for-			
	mal triangular matrix rings. J. Algebra Appl. 11 (2012), Article ID 1250107, 13 pages.	zbl	MRd	oi
[11]	H. Holm, P. Jørgensen: Semi-dualizing modules and related Gorenstein homological di-			
	mensions. J. Pure Appl. Algebra 205 (2006), 423–445.	zbl	MRd	oi
[12]	P. Krylov, A. Tuganbaev: Formal Matrices. Algebra and Applications 23. Springer,			
	Cham, 2017.	zbl	MRd	oi
[13]	T. Y. Lam: Lectures on Modules and Rings. Graduate Texts in Mathematics 189.			Ī
	Springer, New York, 1999.	zbl	MRd	oi
[14]	C. Löfwall: The global homological dimensions of trivial extensions of rings. J. Algebra			
. 1	<i>39</i> (1976), 287–307.		MRd	oi
[15]	N. Mahdou, K. Ouarghi: Gorenstein dimensions in trivial ring extensions. Commutative			-
[-0]	Algebra and its Applications. Walter de Gruyter, Berlin, 2009, pp. 291–299.		MR d	oi
	ingesta and to rippineasions. Haiser de Grayter, Bernin, 2000, pp. 201-200.	201	wire Ci	<i>3</i> /1

- [16] L. Mao: Ding modules and dimensions over formal triangular matrix rings. Rend. Semin. Mat. Univ. Padova 148 (2022), 1–22.
- [17] L. Mao: Homological properties of trivial ring extensions. To appear in J. Algebra Appl. doi
- [18] L. Mao, N. Ding: Gorenstein FP-injective and Gorenstein flat modules. J. Algebra Appl. 7 (2008), 491–506.
- [19] K. Morita: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Diagaku, Sect. A 6 (1958), 83–142.
- [20] M. Nagata: Local Rings. Interscience Tracts in Pure and Applied Mathematics 13. Interscience, New York, 1962.
- [21] I. Palmér, J.-E. Roos: Explicit formulae for the global homological dimensions of trivial extensions of rings. J. Algebra 27 (1973), 380–413.
- [22] I. Reiten: Trivial Extensions and Gorenstein Rings: Thesis. University of Illinois, Urbana, 1971.
- [23] J. J. Rotman: An Introduction to Homological Algebra. Pure and Applied Mathematics 85. Academic Press, New York, 1979.
- [24] B. Stenström: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323–329.
- (1970), 323–329. Zbl MR doi [25] *G. Yang*: Homological properties of modules over Ding-Chen rings. J. Korean Math. Soc. 49 (2012), 31–47. Zbl MR doi
- [26] G. Yang, Z. Liu, L. Liang: Ding projective and Ding injective modules. Algebra Colloq. 20 (2013), 601–612.
- [27] P. Zhang: Gorenstein-projective modules and symmetric recollements. J. Algebra 388 (2013), 65–80.

Author's address: Lixin Mao, School of Mathematics and Physics, Nanjing Institute of Technology, No. 1 Hongjing Avenue, Jiangning District, Jiangsu, Nanjing 211167, P.R. China, e-mail: maolx2@hotmail.com.

MR doi

zbl MR

zbl MR doi