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Abstract. Let R ⋉ M be a trivial extension of a ring R by an R-R-bimodule M such
thatMR, RM , (R, 0)R⋉M and R⋉M (R, 0) have finite flat dimensions. We prove that (X,α)

is a Ding projective left R ⋉ M -module if and only if the sequence M ⊗R M ⊗R X
M⊗α
−→

M ⊗R X
α
→ X is exact and coker(α) is a Ding projective left R-module. Analogously,

we explicitly describe Ding injective R ⋉ M -modules. As applications, we characterize
Ding projective and Ding injective modules over Morita context rings with zero bimodule
homomorphisms.
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1. Introduction

The origin of Gorenstein homological algebra may date back to the 1960s when

Auslander and Bridger introduced the concept of G-dimension for finitely generated

modules over a two-sided Noetherian ring, see [1]. In the 1990s, Enochs and Jenda ex-

tended the ideas of Auslander and Bridger and introduced the concepts of Gorenstein

projective and Gorenstein injective modules over arbitrary rings, see [4], [5]. Ding,

Li and Mao considered two special cases of the Gorenstein projective and Goren-

stein injective modules, which they called strongly Gorenstein flat and Gorenstein

FP-injective modules, respectively, in [2], [18]. These two classes of modules over

coherent rings possess many nice properties analogous to Gorenstein projective and

Gorenstein injective modules over Noetherian rings, see [2], [8], [16], [18], [25], [26].
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of China (BK20211358).
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So Gillespie later renamed strongly Gorenstein flat as Ding projective, and Goren-

stein FP-injective as Ding injective. He used these modules to produce new model

structures in the categories of modules, see [8] for details.

Let R be an associative ring and M be an R-R-bimodule. The Cartesian prod-

uct R×M , with the natural addition and multiplication, given by (r1,m1)(r2,m2) =

(r1r2, r1m2 +m1r2), becomes a ring. This ring is called the trivial extension of the

ring R by the bimodule M (see [7], [22]) and denoted by R ⋉M . The notion of

trivial extension of a ring by a bimodule is an important extension of rings and has

played a crucial role in ring theory and homological algebra. When R is a com-

mutative ring, Nagata also called this construction an idealization in [20]. Fossum,

Griffith and Reiten studied the categorical aspect and homological properties of triv-

ial ring extensions in [7]. Palmér and Roos gave some explicit formulae for global

homological dimensions of trivial ring extensions in [21]. Mao considered (relative)

homological behaviours of trivial ring extensions in [17]. Holm and Jørgensen inves-

tigated Gorenstein projective, injective and flat modules over trivial ring extensions

in [11]. Mahdou and Ouarghi also studied the Gorenstein modules and dimensions

over trivial ring extensions in [15].

The present paper is devoted to Ding projective and Ding injective modules over

trivial ring extensions.

In Section 2, we describe Ding projective modules over a trivial ring extension

R ⋉M . Let MR, RM , Z(R)R⋉M and R⋉MZ(R) have finite flat dimensions. It is

proven that (X,α) is a Ding projective left R⋉M -module if and only if the sequence

M ⊗RM ⊗R X
M⊗α
−→ M ⊗R X

α
→ X is exact and coker(α) is a Ding projective left

R-module. As an application, we characterize Ding projective modules over Morita

context rings with zero bimodule homomorphisms.

Section 3 is devoted to Ding injective R ⋉ M -modules. Let R ⋉ M be a left

coherent ring, MR have finite flat dimension, RM be finitely presented and have

finite projective or FP-injective dimension, Z(R)R⋉M have finite flat dimension,

R⋉MZ(R) have finite projective or FP-injective dimension. We prove that [Y, β] is

a Ding injective left R⋉M -module if and only if the sequence

Y
β
→ HomR(M,Y )

β∗

−→ HomR(M,HomR(M,Y ))

is exact and ker(β) is a Ding injective left R-module. As an application, we

characterize Ding injective modules over Morita context rings with zero bimodule

homomorphisms.

Throughout this paper, all rings are nonzero associative rings with identity and all

modules are unitary. For a ringR, we write R-Mod (or Mod-R) for the category of left

(or right) R-modules, respectively. The symbol RX (or XR) denotes a left (or right)
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R-module, respectively. For an R-module X , the character module HomZ(X,Q/Z)

of X is denoted by X+, pd(X), id(X) and fd(X) denote the projective, injective and

flat dimensions of X , respectively.

Next we recall some basic concepts and results on trivial extensions.

Recall from [7] that the classical right trivial extension of an abelian category A

by an additive endofunctor F, denoted by A ⋉ F, is a category whose objects are

couples (X, f) with X ∈ Ob(A) and f : F(X) → X such that f ·F(f) = 0, and a mor-

phism γ : (X,α) → (Y, β) is a morphism γ : X → Y in A such that βF(γ) = γα.

If F is right exact, thenA⋉F is an abelian category. In this case, a sequence inA⋉F

is exact if and only if the sequence of codomains in A is exact.

Dually, the left trivial extension of an abelian category A by an additive end-

ofunctor G, denoted by G ⋊ A, is a category whose objects are couples [X, g]

with X ∈ Ob(A) and g : X → G(X) such that G(g) · g = 0, and a morphism

γ : [X,α] → [Y, β] is a morphism γ : X → Y in A such that G(γ)α = βγ. If G is

left exact, then G⋊A is an abelian category. In this case, a sequence in G ⋊A is

exact if and only if the sequence of domains in A is exact.

For a right exact endofunctor F : A → A and a left exact endofunctorG : A → A,

there are some important functors as follows.

The functor T : A → A ⋉ F is given for every object X ∈ A, by T(X) =

(X ⊕F(X), µ) with µ =
(

0 0

1 0

)

: F(X)⊕F
2(X) → X ⊕F(X) and for morphisms by

T(α) =
(

α 0

0 F(α)

)

.

The functor U : A ⋉ F → A is given for every object (X, f) ∈ A ⋉ F by

U(X, f) = X and for morphisms by U(α) = α.

The functor Z : A → A ⋉ F is given for every object X ∈ A by Z(X) = (X, 0)

and for morphisms by Z(α) = α.

The functor C : A ⋉ F → A is given for every object (X, f) ∈ A ⋉ F, by

C(X, f) = coker(f) and for morphisms by C(α) = the induced morphism.

The functor H : A → G ⋊ A is given for every object X ∈ A by H(X) =

[G(X) ⊕X,ϑ] with ϑ =
(

0 0

1 0

)

: G(X) ⊕X → G
2(X) ⊕G(X) and for morphisms

by H(β) =
(

G(β) 0

0 β

)

.

The functor U : G ⋊ A → A is given for every object [X, g] ∈ G ⋊ A by

U[X, g] = X and for morphisms by U(α) = α.

The functor Z : A → G ⋊ A is given for every object X ∈ A by Z(X) = [X, 0]

and for morphisms by Z(α) = α.

The functor K : G ⋊ A → A is given for every object [X, g] ∈ G ⋊ A by

K[X, g] = ker(g) and for morphisms by K(α) = the induced morphism.
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There exist several important pairs of adjoint functors

A
T //

A⋉ F

U
oo

C //
A

Z
oo , A

Z //
G⋊A

K
oo

U //
A

H
oo ,

i.e., (T,U), (C,Z), (Z,K) and (U,H) are adjoint pairs with CT = idA, UZ = idA,

KH = idA. We note that the functors T and C are right exact, H and K are left

exact, U and Z are exact.

It is known that, whenA is the category of left R-modules,M is an R-R-bimodule,

F = M ⊗R − and G = HomR(M,−), both A ⋉ F and G ⋊ A are isomorphic to

the category of left modules over R ⋉M . We will identify R⋉M -Mod with A⋉ F

and G⋊A in what follows.

2. Ding projective modules over trivial ring extensions

Recall that a left R-module X is Ding projective (see [2], [8]) if there is an exact

sequence of projective left R-modules

Ξ: . . .→ P−1 f−1

−→ P 0 f0

−→ P 1 f1

−→ P 2 → . . .

such that X ∼= ker(f0) and HomR(Ξ, Q) is also exact for any flat left R-module Q.

Theorem 2.1. Let (X,α) be a left R⋉M -module.

(1) If MR and RM have finite flat dimensions, the sequence M ⊗RM ⊗R X
M⊗α
−→

M ⊗R X
α
→ X is exact and coker(α) is a Ding projective left R-module,

then (X,α) is a Ding projective left R⋉M -module.

(2) If Z(R)R⋉M and R⋉MZ(R) have finite flat dimensions, and (X,α) is a Ding pro-

jective left R⋉M -module, then the sequenceM ⊗RM ⊗R X
M⊗α
−→M ⊗R X

α
→X

is exact and coker(α) is a Ding projective left R-module.

P r o o f. (1) There exists an exact sequence of projective left R-modules

Ξ: . . .→ P−1 f−1

−→ P 0 f0

−→ P 1 f1

−→ P 2 → . . .

such that coker(α) ∼= ker(f0) and HomR(Ξ, Q) is also exact for any flat left

R-module Q. Since fd(MR) <∞, we get the exact sequence of left R-modules

M ⊗R Ξ: . . .→M ⊗R P
−1 M⊗f−1

−→ M ⊗R P
0 M⊗f0

−→ M ⊗R P
1 M⊗f1

−→ M ⊗R P
2 → . . .

with M ⊗R coker(α) ∼= ker(M ⊗ f0) by [3], Lemma 2.3.
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The exact sequence M ⊗R X
α
→ X

̺
→ coker(α) → 0 induces the exact sequence

M ⊗R M ⊗R X
M⊗α
−→ M ⊗R X

M⊗̺
−→ M ⊗R coker(α) → 0. Since the sequence

M⊗RM⊗RX
M⊗α
−→ M⊗RX

α
→ X

̺
→ coker(α) → 0 is exact, we get the exact sequence

0 →M ⊗R coker(α)
δ
→ X

̺
→ coker(α) → 0

with δ(M ⊗ ̺)=α. Since fd(RM)<∞, fd(M ⊗R P
i)<∞. Thus, HomR(Ξ,M ⊗R P

i)

is exact for any i ∈ N by [16], Lemma 3.1. So Ext1R(ker(f
i),M ⊗R P

i) = 0.

Let ι : coker(α) → P 0 be the canonical monomorphism and π : P−1 → coker(α) be

the canonical epimorphism such that ιπ = f−1. Since Ext1R(coker(α),M⊗RP
0) = 0,

there is ψ : X → M ⊗R P
0 such that ψδ = M ⊗ ι. Also there is η : P−1 → X

such that ̺η = π. Define λ : X → P 0 ⊕ (M ⊗R P
0) by λ(x) = (ι̺(x), ψ(x)) and

ξ : P−1 ⊕ (M ⊗R P
−1) → X by ξ(x, y) = η(x) + δ(M ⊗ π)(y). It is easy to check

that λ is a monomorphism and ξ is an epimorphism. Then by generalized Horseshoe

(see Lemma [27], Lemma 1.6), we get the exact sequence of left R-modules

. . .→ P−1 ⊕ (M ⊗R P
−1)

g−1

−→ P 0 ⊕ (M ⊗R P
0)

g0

−→ P 1 ⊕ (M ⊗R P
1)

g1

−→ P 2 ⊕ (M ⊗R P
2) → . . .

with g−1 = λξ, gi =
(

fi 0

σi M⊗fi

)

(i 6= −1) and X ∼= ker(g0).

It is easy to verify that the two diagrams

M ⊗R X

α

��

M⊗λ
// M ⊗R (P 0

⊕ (M ⊗R P 0))

µ0

��

M⊗g0

// M ⊗R (P 1
⊕ (M ⊗R P 1))

µ1

��

// . . .

0 // X
λ

// P 0
⊕ (M ⊗R P 0)

g0

// P 1
⊕ (M ⊗R P 1) // . . .

and

. . . // M ⊗R (P−2
⊕ (M ⊗R P−2))

µ−2

��

M⊗g−2

// M ⊗R (P−1
⊕ (M ⊗R P−1))

µ−1

��

M⊗ξ
// M ⊗R X

α

��
. . . // P−2

⊕ (M ⊗R P−2)
g−2

// P−1
⊕ (M ⊗R P−1)

ξ
// X // 0

are commutative. So we obtain two exact sequences of left R ⋉M -modules 0 →

(X,α)
λ
→ T(P 0)

g0

−→ T(P 1) → . . . and . . .→ T(P−2)
g−2

−→ T(P−1)
ξ
→ (X,α) → 0.

By [7], Corollary 1.6 (c), each T(P i) is projective. Thus, we get the exact sequence

of projective left R⋉M -modules

∆: . . .→ T(P−1)
g−1

−→ T(P 0)
g0

−→ T(P 1)
g1

−→ T(P 2) → . . .

with (X,α) ∼= ker(g0).
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Let (Y, β) be any flat left R ⋉M -module. By [7], Proposition 1.14, coker(β) is

a flat left R-module and the sequence M ⊗RM ⊗R Y
M⊗β
−→ M ⊗R Y

β
→ Y is exact.

So we get the exact sequence 0 → M ⊗R coker(β) → Y → coker(β) → 0. By [16],

Lemma 3.2, fd(M ⊗R coker(β)) <∞ since fd(RM) <∞. By [21], Lemma 1, there is

an exact sequence 0 → Z(M ⊗R coker(β)) → (Y, β) → Z(coker(β)) → 0. So we get

the exact sequence of complexes

0 → HomR⋉M (∆,Z(M ⊗R coker(β))) → HomR⋉M (∆, (Y, β))

→ HomR⋉M (∆,Z(coker(β))) → 0.

Since HomR⋉M (T(P i),Z(coker(β))) ∼= HomR(P
i, coker(β)), then

HomR⋉M (∆,Z(coker(β))) ∼= HomR(Ξ, coker(β))

is exact. Since HomR⋉M (T(P i),Z(M ⊗R coker(β))) ∼= HomR(P
i,M ⊗R coker(β)),

then HomR⋉M (∆,Z(M ⊗R coker(β))) ∼= HomR(Ξ,M ⊗R coker(β)) is exact by [16],

Lemma 3.1. So HomR⋉M (∆, (Y, β)) is exact.

It follows that (X,α) is a Ding projective left R⋉M -module.

(2) By [7], Corollary 1.6 (c), there is an exact sequence of projective left R ⋉M -

modules

∆: . . .→ T(P−1) → T(P 0)
g0

−→ T(P 1) → T(P 2) → . . .

such that (X,α) ∼= ker(g0) and the complex HomR⋉M (∆, L) is exact for any flat left

R⋉M -module L.

Since fd(Z(R)R⋉M ) < ∞, Z(R) ⊗R⋉M ∆ is exact by [3], Lemma 2.3. Since

Z(R) ⊗R⋉M T(P i) ∼= R ⊗R P
i ∼= P i, we get the exact sequence of projective left

R-modules

C(∆): . . .→ P−1 → P 0 C(g0)
→ P 1 → P 2 → . . .

with coker(α) ∼= ker(C(g0)).

Let Q be a flat left R-module. Then Q = lim
→
Ni with each Ni free by [13],

Theorem 3.4. Note that Z(Q) = Z(lim
→
Ni) = lim

→
Z(Ni). Since fd(R⋉MZ(R)) < ∞,

fd(R⋉MZ(Q)) < ∞. So HomR(C(∆), Q) ∼= HomR⋉M (∆,Z(Q)) is exact by [16],

Lemma 3.1. Hence, coker(α) is a Ding projective left R-module.

By [21], Lemma 1, there is an exact sequence 0 → Z(M) → T(R) → Z(R) → 0,

which induces the exact sequence of complexes

0 → Z(M)⊗R⋉M ∆ → T(R)⊗R⋉M ∆ → Z(R)⊗R⋉M ∆ → 0.

Since T(R)⊗R⋉M∆ and Z(R)⊗R⋉M∆ are exact, Z(M)⊗R⋉M∆ is exact. Note that

M ⊗R P
i ∼= Z(M)⊗R⋉M T(P i) by [14], page 295. So M ⊗RC(∆) ∼= Z(M)⊗R⋉M ∆
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is exact. Let ι : coker(α) → P 0 be the obvious monomorphism. Then M ⊗ ι :

M ⊗R coker(α) → M ⊗R P
0 is a monomorphism. The exact sequence M ⊗R X

α
→

X
̺
→ coker(α) → 0 induces the exact sequence M ⊗R M ⊗R X

M⊗α
−→ M ⊗R X

M⊗̺
−→

M ⊗R coker(α) → 0. Since α(M ⊗α) = 0, there is δ : M ⊗R coker(α) → X such that

δ(M⊗̺) = α. Let λ : X → P 0⊕(M⊗RP
0) and ϕ0 : M⊗RP

0 → P 0⊕(M⊗RP
0) be

the injections. By [7], page 57, we get the following commutative diagram in R-Mod:

M ⊗R coker(α)

δ

��

M⊗ι
// M ⊗R P

0

ϕ0

��

X
λ // P 0 ⊕ (M ⊗R P

0).

Then δ is a monomorphism. Since the sequence M ⊗RM ⊗R X
M⊗α
−→ M ⊗R X

M⊗̺
−→

M ⊗R coker(α) → 0 is exact, the sequence M ⊗R M ⊗R X
M⊗α
−→ M ⊗R X

α
→ X is

exact. �

The following result is an immediate consequence of Theorem 2.1.

Corollary 2.2. Let MR, RM , Z(R)R⋉M and R⋉MZ(R) have finite flat dimen-

sions. Then

(1) (X,α) is a Ding projective left R⋉M -module if and only if the sequenceM ⊗R

M ⊗R X
M⊗α
−→ M ⊗R X

α
→ X is exact and coker(α) is a Ding projective left

R-module.

(2) T(X) is a Ding projective left R⋉M -module if and only ifX is a Ding projective

left R-module.

(3) Z(X) is a Ding projective left R⋉M -module if and only if M ⊗RX = 0 and X

is a Ding projective left R-module.

Specializing M = R in Theorem 2.1 (1), we have the following statement.

Corollary 2.3. If X
α
→ X

α
→ X is an exact sequence in R-Mod and coker(α) is

a Ding projective left R-module, then (X,α) is a Ding projective left R⋉R-module.

Morita context rings with zero bimodule homomorphisms is one important spe-

cial case of trivial ring extensions. Let A and B be rings, BUA and AVB be bi-

modules, φ : U ⊗A V → B and ψ : V ⊗B U → A be bimodule homomorphisms.

Then
(

A AVB

BUA B

)

(φ,ψ)
becomes a ring with the usual matrix addition and multipli-

cation given by

(

a1 v1
u1 b1

)(

a2 v2
u2 b2

)

=

(

a1a2 + ψ(v1 ⊗ u2) a1v2 + v1b2
u1a2 + b1u2 b1b2 + φ(u1 ⊗ v2)

)

.
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The matrix
(

A AVB

BUA B

)

(φ,ψ)
is called a Morita context ring or formal matrix ring,

see [12], [19]. In particular, if φ = 0, ψ = 0, then Λ =
(

A AVB

BUA B

)

(0,0)
is called

a Morita context ring with zero bimodule homomorphisms, which is a generalization

of the formal triangular matrix ring
(

A 0

BUA B

)

.

Let Λ =
(

A AVB

BUA B

)

(0,0)
. Green in [9] proved that the category Λ-Mod is equiv-

alent to the category Ω whose objects are tuples (X,Y, f, g), where X ∈ A-Mod,

Y ∈ B-Mod, f ∈ HomB(U ⊗A X,Y ) and g ∈ HomA(V ⊗B Y,X) such that

g(V ⊗ f) = 0, f(U ⊗ g) = 0, and whose morphisms from (X1, Y1, f1, g1) to

(X2, Y2, f2, g2) are pairs (α, β) such that α ∈ HomA(X1, X2), β ∈ HomB(Y1, Y2),

f2(U ⊗ α) = βf1, g2(V ⊗ β) = αg1. In view of the well-known adjointness rela-

tion, the category Λ-Mod is also equivalent to the category Γ whose objects are

tuples [X,Y, f, g], where X ∈ A-Mod, Y ∈ B-Mod, f ∈ HomA(X,HomB(U, Y ))

and g ∈ HomB(Y,HomA(V,X)) such that HomB(U, g)f = 0,HomA(U, f)g = 0, and

whose morphisms from [X1, Y1, f1, g1] to [X2, Y2, f2, g2] are pairs [α, β] such that α ∈

HomA(X1, X2), β ∈ HomB(Y1, Y2) and f2α = HomB(U, β)f1, g2β = HomA(V, α)g1.

We will identify Λ-Mod with Ω and Γ in what follows.

It is known that the ring Λ =
(

A AVB

BUA B

)

(0,0)
is isomorphic to the trivial ring ex-

tension (A×B)⋉ (U ⊕ V ) under the correspondence
( a v

u b

)

→ ((a, b), (u, v)), see [7].

Note that U ⊕ V attains the A × B-A × B-bimodule structure through the ring

homomorphisms A × B → A and A × B → B. It is well known that a left A × B-

module is an order pair (X,Y ) with X ∈ A-Mod and Y ∈ B-Mod. Similarly, a right

A × B-module is an order pair (W1,W2) with W1 ∈ Mod-A and W2 ∈ Mod-B.

So (U ⊕ V ) ⊗A×B (X,Y ) ∼= (V ⊗B Y, U ⊗A X) and HomA×B(U ⊕ V, (X,Y )) ∼=

(HomB(U, Y ),HomA(V,X)). Therefore Λ-Mod is isomorphic to (A×B)⋉ (U ⊕ V )-

Mod by the functor Θ: Λ-Mod → (A×B)⋉ (U ⊕ V )-Mod given by Θ(X,Y, f, g) =

((X,Y ), (g, f)). Similarly, Mod-Λ is isomorphic to Mod-(A×B)⋉(U⊕V ) by the func-

tor Υ: Mod-Λ → Mod-(A×B)⋉ (U ⊕ V ) given by Υ(W,Q, f, g) = ((W,Q), (f, g)).

Theorem 2.4. Let Λ =
(

A AVB

BUA B

)

(0,0)
and (X,Y, f, g) be a left Λ-module.

(1) If UA, BU , AV and VB have finite flat dimensions, the sequences V ⊗B U ⊗A

X
V⊗f
−→ V ⊗B Y

g
→ X and U ⊗A V ⊗B Y

U⊗g
−→ U ⊗AX

f
→ Y are exact, coker(f) is

a Ding projective left B-module and coker(g) is a Ding projective left A-module,

then (X,Y, f, g) is a Ding projective left Λ-module.

(2) If Λ(A,B, 0, 0) and (A,B, 0, 0)Λ have finite flat dimensions and (X,Y, f, g) is

a Ding projective left Λ-module, then the sequences V ⊗B U ⊗A X
V⊗f
−→V ⊗B

Y
g
→ X and U ⊗A V ⊗B Y

U⊗g
−→ U ⊗A X

f
→ Y are exact, coker(f) is a Ding

projective left B-module and coker(g) is a Ding projective left A-module.
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P r o o f. (1) Since the sequences V ⊗B U ⊗A X
V⊗f
−→ V ⊗B Y

g
→ X and

U⊗AV ⊗B Y
U⊗g
−→ U⊗AX

f
→ Y are exact, the sequence (U⊕V )⊗A×B (U⊕V )⊗A×B

(X,Y )
(U⊕V )⊗(g,f)

−→ (U ⊕ V ) ⊗A×B (X,Y )
(g,f)
−→ (X,Y ) is exact. Since coker(f) is

a Ding projective left B-module and coker(g) is a Ding projective left A-module,

coker(g, f) = (coker(g), coker(f)) is a Ding projective left A × B-module. By The-

orem 2.1, ((X,Y ), (g, f)) is a Ding projective left (A × B) ⋉ (U ⊕ V )-module. So

(X,Y, f, g) is a Ding projective left Λ-module.

(2) Since fd(Λ(A,B, 0, 0)) <∞ and fd((A,B, 0, 0)Λ) <∞,

fd((A×B)⋉(U⊕V )Z(A×B)) <∞ and fd(Z(A ×B)(A×B)⋉(U⊕V )) <∞.

Since (X,Y, f, g) is a Ding projective left Λ-module, ((X,Y ), (g, f)) is a Ding pro-

jective left (A×B)⋉ (U ⊕V )-module. By Theorem 2.1, the sequence (U ⊕V )⊗A×B

(U ⊕ V ) ⊗A×B (X,Y )
(U⊕V )⊗(g,f)

−→ (U ⊕ V ) ⊗A×B (X,Y )
(g,f)
−→ (X,Y ) is exact and

coker(g, f) is a Ding projective left A×B-module. So the sequences V ⊗BU⊗AX
V⊗f
−→

V ⊗B Y
g
→ X and U ⊗A V ⊗B Y

U⊗g
−→ U ⊗A X

f
→ Y are exact, coker(f) is a Ding

projective left B-module and coker(g) is a Ding projective left A-module. �

Corollary 2.5. Let Λ =
(

A AVB

BUA B

)

(0,0)
, UA, BU , AV , VB , Λ(A,B, 0, 0) and

(A,B, 0, 0)Λ have finite flat dimensions. Then

(1) (X,U ⊗A X, idU⊗AX , 0) is a Ding projective left Λ-module if and only if X is

a Ding projective left A-module.

(2) (V ⊗B Y, Y, 0, idV⊗BY ) is a Ding projective left Λ-module if and only if Y is

a Ding projective left B-module.

(3) (X,Y, 0, 0) is a Ding projective left Λ-module if and only if U ⊗A X = 0,

V ⊗B Y = 0, X is a Ding projective left A-module and Y is a Ding projective

left B-module.

3. Ding injective modules over trivial ring extensions

Recall that a left R-module X is FP-injective (see [24]) if Ext1R(N,X) = 0

for every finitely presented left R-module N , equivalently, if every exact sequence

0 → X → Y → L → 0 of left R-modules is pure by [6], Theorem 3.1. The

FP-injective dimension of a left R-module X , denoted by FP − id(X), is defined

to be the smallest integer n > 0 such that Extn+1
R (N,X) = 0 for every finitely

presented left R-module N (if no such n exists, set FP− id(X) = ∞).
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A left R-module X is called Ding injective (see [8], [18]) if there is an exact

sequence of injective left R-modules

Ξ: . . .→ E−1 f−1

−→ E0 f0

−→ E1 f1

−→ E2 → . . .

such thatX ∼= ker(f0) and HomR(Y,Ξ) is exact for any FP-injective left R-module Y .

Recall that R is a left coherent ring (see [13]) if every finitely generated left ideal is

finitely presented.

Lemma 3.1. Let R ⋉M be a left coherent ring and RM be finitely presented.

Then

(1) [Y, β] is an FP-injective left R ⋉ M -module if and only if ker(β) is an

FP-injective left R-module and the sequence Y
β
→ HomR(M,Y )

β∗

−→ HomR(M,

HomR(M,Y )) is exact.

(2) H(Y ) is an FP-injective left R ⋉M -module if and only if Y is an FP-injective

left R-module.

(3) Z(Y ) is an FP-injective left R ⋉M -module if and only if Y is an FP-injective

left R-module and HomR(M,Y ) = 0.

P r o o f. Since R⋉M is a left coherent ring, R is also a left coherent ring by [7],

Theorem 2.2. Since RM is finitely presented, the natural map σ : Y + ⊗R M →

HomR(M,Y )+ is an isomorphism by [23], Lemma 3.60.

(1) The exact sequence 0 → ker(β) → Y
β
→ HomR(M,Y ) induces the exact se-

quence HomR(M,Y )+
β+

−→ Y + → (ker(β))+ → 0. Therefore, [Y, β] is an FP-injective

left R ⋉ M -module if and only if [Y, β]+ ∼= (Y +, β+σ) is a flat right R ⋉ M -

module by [6], Theorem 2.2 if and only if coker(β+) ∼= coker(β+σ) is a flat right

R-module and the sequence Y + ⊗R M ⊗R M
(β+σ)⊗M

−→ Y + ⊗R M
β+σ
−→ Y + is exact

by [7], Proposition 1.14 if and only if (ker(β))+ is a flat right R-module and the se-

quence HomR(M,HomR(M,Y ))+
(β∗)

+

−→ HomR(M,Y )+
β+

−→ Y + is exact if and only

if ker(β) is an FP-injective left R-module and the sequence Y
β
→ HomR(M,Y )

β∗

−→

HomR(M,HomR(M,Y )) is exact by [6], Theorem 2.2.

(2) and (3) are immediate consequences of (1). �

Theorem 3.2. Let R ⋉M be a left coherent ring and [Y, β] be a left R ⋉M -

module.

(1) If MR has finite flat dimension, RM is finitely presented and has finite

projective or FP-injective dimension, the sequence Y
β
→ HomR(M,Y )

β∗

−→

HomR(M,HomR(M,Y )) is exact and ker(β) is a Ding injective left R-module,

then [Y, β] is a Ding injective left R⋉M -module.
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(2) If Z(R)R⋉M has finite flat dimension, R⋉MZ(R) has finite projective or

FP-injective dimension, [Y, β] is a Ding injective left R ⋉M -module, then the

sequence Y
β
→ HomR(M,Y )

β∗

−→ HomR(M,HomR(M,Y )) is exact and ker(β)

is a Ding injective left R-module.

P r o o f. (1) There is an exact sequence of injective left R-modules

Ξ: . . .→ E−1 f−1

−→ E0 f0

−→ E1 f1

−→ E2 → . . .

such that ker(β) ∼= ker(f0) and HomR(Q,Ξ) is also exact for any FP-injective left

R-module Q.

Since pd(RM) < ∞ or FP − id(RM) < ∞, we get the exact sequence of left

R-modules

HomR(M,Ξ): . . .→ HomR(M,E−1)
(f−1)∗
−→ HomR(M,E0)

(f0)∗
−→ HomR(M,E1) → . . .

with HomR(M, ker(β)) ∼= HomR(M, ker((f0)∗)) by [3], Lemma 2.5 and [16], Lem-

ma 3.2.

The exact sequence 0 → ker(β)
ι
→ Y

β
→ HomR(M,Y ) induces the exact sequence

0 → HomR(M, ker(β))
ι
∗

−→ HomR(M,Y )
β∗

−→ HomR(M,HomR(M,Y )). Since the

sequence 0 → ker(β)
ι
→ Y

β
→ HomR(M,Y )

β∗

−→ HomR(M,HomR(M,Y )) is exact,

we get the exact sequence

0 → ker(β)
ι
→ Y

γ
→ HomR(M, ker(β)) → 0

such that β = ι∗γ. Since fd(MR) < ∞, we have id(HomR(M,Ei)) < ∞ by [16],

Lemma 3.2. Therefore, the complex HomR(HomR(M,Ei),Ξ) is exact by [16],

Lemma 4.1. So Ext1R(HomR(M,Ei), ker(f i+1)) = 0. Let π : E−1 → ker(β)

be the canonical epimorphism and τ : ker(β) → E0 be the canonical monomor-

phism such that τπ = f−1. Since Ext1R(HomR(M,E−1), ker(β)) = 0, there is

ψ : HomR(M,E−1) → Y such that γψ = π∗. Also there is φ : Y → E0 such that

φι = τ . Define ξ : HomR(M,E−1) ⊕ E−1 → Y by ξ(x, y) = ψ(x) + ιπ(y) and

λ : Y → HomR(M,E0) ⊕ E0 by λ(x) = (τγ(x), φ(x)). It is easy to check that λ is

a monomorphism and ξ is an epimorphism. Then by generalized Horseshoe Lemma

(see [27], Lemma 1.6), we get the exact sequence of left R-modules

. . .→ HomR(M,E−1)⊕E−1 ∂−1

−→ HomR(M,E0)⊕E0 ∂0

−→ HomR(M,E1)⊕E1 → . . .

with ∂−1 = λξ, ∂i =
(

(fi)∗ 0

τ i fi

)

(i 6= −1) and Y ∼= ker(∂0).
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It is easy to check that the two diagrams

. . . // HomR(M,E−2)⊕ E−2

ϑ−2

��

∂−2

// HomR(M,E−1)⊕ E−1

ϑ−1

��

ξ
// Y

β

��

// 0

. . . // HomR(M,HomR(M,E−2)⊕ E−2)
(∂−2)∗

// HomR(M,HomR(M,E−1)⊕ E−1)
ξ∗

// HomR(M,Y )

and

0 // Y

β

��

λ
// HomR(M,E0)⊕ E0

ϑ0

��

∂0

// HomR(M,E1)⊕ E1

ϑ1

��

// . . .

HomR(M,Y )
λ∗

// HomR(M,HomR(M,E0)⊕ E0)
(∂0)∗

// HomR(M,HomR(M,E1)⊕ E1) // . . .

are commutative. So we obtain two exact sequences . . . → H(E−2)
∂−2

−→ H(E−1)
ξ
→

[Y, β] → 0 and 0 → [Y, β]
λ
→ H(E0)

∂0

−→ H(E1) → . . .

By [7], Corollary 1.6 (d), each H(Ei) is injective. So we get the exact sequence of

injective left R⋉M -modules

∆: . . .→ H(E−2)
∂−2

−→ H(E−1)
∂−1

−→ H(E0)
∂0

−→ H(E1) → . . .

with [Y, β] ∼= ker(∂0).

Let [X, ζ] be an FP-injective left R ⋉M -module. By Lemma 3.1, ker(ζ) is an

FP-injective left R-module and the sequence

X
ζ
→ HomR(M,X)

ζ∗
−→ HomR(M,HomR(M,X))

is exact. Thus, we get the exact sequence

0 → ker(ζ) → X → HomR(M, ker(ζ)) → 0.

So there is an exact sequence

0 → Z(ker(ζ)) → [X, ζ] → Z(HomR(M, ker(ζ))) → 0,

which induces the exact sequence of complexes

0 → HomR⋉M (Z(HomR(M, ker(ζ))),∆) → HomR⋉M ([X, ζ],∆)

→ HomR⋉M (Z(ker(ζ)),∆) → 0.
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Note that HomR⋉M (Z(ker(ζ)),H(Ei)) ∼= HomR(ker(ζ), E
i). Therefore, the com-

plex HomR⋉M (Z(ker(ζ)),∆) ∼= HomR(ker(ζ),Ξ) is exact. On the other hand, by [16],

Lemma 4.2, FP− id(HomR(M, ker(ζ))) <∞. Since

HomR⋉M (Z(HomR(M, ker(ζ))),H(Ei)) ∼= HomR(HomR(M, ker(ζ)), Ei),

we have the complex

HomR⋉M (Z(HomR(M, ker(ζ))),∆) ∼= HomR(HomR(M, ker(ζ)),Ξ)

is exact by [16], Lemma 4.1. Therefore, HomR⋉M ([X, ζ],∆) is exact. It follows

that [Y, β] is a Ding injective left R⋉M -module.

(2) By [7], Corollary 1.6 (d), there is an exact sequence of injective left R ⋉M -

modules

∆: . . .→ H(E−1) → H(E0)
∂0

−→ H(E1) → H(E2) → . . .

such that [Y, β] ∼= ker(∂0) and HomR⋉M (X,∆) is also exact for any FP-injective

left R ⋉M -module X . Since pd(R⋉MZ(R)) < ∞ or FP − id(R⋉MZ(R)) < ∞, the

complex HomR⋉M (Z(R),∆) is exact by [3], Lemma 2.5 and [16], Lemma 4.1. Note

that HomR⋉M (Z(R),∆) ∼= HomR(R,K(∆)) ∼= K(∆). So we get the exact sequence

of injective left R-modules

K(∆): . . .→ E−1 → E0 K(∂0)
−→ E1 → E2 → . . .

with ker(β) ∼= ker(K(∂0)).

Let Q be an FP-injective left R-module. Then there is a pure monomorphism

in R-Mod Q →
∏

R+. By [10], Lemma 2.1 (i), we get the pure monomorphism in

R⋉M -Mod

Z(Q) → Z

(

∏

R+
)

=
∏

Z(R+).

Since fd(Z(R)R⋉M ) <∞, we have FP− id(R⋉MZ(R+)) = FP− id(R⋉MZ(R)+) <∞

by [6], Theorem 2.1. Thus, FP−id
(

R⋉M

∏

Z(R+)
)

<∞ and so fd
(

Z
(
∏

R+
)+)

<∞

by [6], Theorem 2.2 since R ⋉ M is a left coherent ring. The pure monomor-

phism Z(Q) → Z
(
∏

R+
)

induces the split epimorphism Z
(
∏

R+
)+

→ Z(Q)+.

Thus, fd(Z(Q)+) < ∞ and so FP − id(R⋉MZ(Q)) < ∞. By [16], Lemma 4.1,

HomR⋉M (Z(Q),∆) is exact. Since HomR(Q,E
i) ∼= HomR⋉M (Z(Q),H(Ei)),

HomR(Q,K(∆)) ∼= HomR⋉M (Z(Q),∆) is exact. So ker(β) is a Ding injective

left R-module.

By [21], Lemma 1, there is an exact sequence 0 → Z(M) → T(R) → Z(R) → 0,

which induces the exact sequence of complexes

0 → HomR⋉M (Z(R),∆) → HomR⋉M (T(R),∆) → HomR⋉M (Z(M),∆) → 0.
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Since HomR⋉M (Z(R),∆) and HomR⋉M (T(R),∆) are exact, HomR⋉M (Z(M),∆) is

exact. So HomR(M,K(∆)) ∼= HomR⋉M (Z(M),∆) is exact. Let τ : E−1 → ker(β)

be the canonical epimorphism, then τ∗ : HomR(M,E−1) → HomR(M, ker(β)) is an

epimorphism.

The exact sequence 0 → ker(β)
ι
→ Y

β
→ HomR(M,Y ) induces the exact se-

quence 0 → HomR(M, ker(β))
ι
∗

−→ HomR(M,Y )
β∗

−→ HomR(M,HomR(M,Y )).

Since β∗β = 0, there is γ : Y → HomR(M, ker(β)) such that ι∗γ = β. Let

̺ : HomR(M,E−1)⊕ E−1 → Y be the canonical epimorphism and

ϕ−1 : HomR(M,E−1)⊕ E−1 → HomR(M,E−1)

be the projection. Consider the following commutative diagram in R-Mod:

HomR(M,E−1)⊕ E−1

ϕ−1

��

̺
// Y

γ

��

HomR(M,E−1)
τ∗ // HomR(M, ker(β)).

Since τ∗ and ϕ
−1 are epimorphisms, γ is an epimorphism. Hence, the sequence

Y
β
→ HomR(M,Y )

β∗

−→ HomR(M,HomR(M,Y )) is exact. �

The following result is an immediate consequence of Theorem 3.2.

Corollary 3.3. Suppose that R⋉M is a left coherent ring, MR has finite flat di-

mension, RM is finitely presented and has finite projective or FP-injective dimension,

Z(R)R⋉M has finite flat dimension, R⋉MZ(R) has finite projective or FP-injective

dimension.

(1) [Y, β] is a Ding injective left R ⋉M -module if and only if the sequence Y
β
→

HomR(M,Y )
β∗

−→ HomR(M,HomR(M,Y )) is exact and ker(β) is a Ding injec-

tive left R-module.

(2) H(Y ) is a Ding injective left R⋉M -module if and only if Y is a Ding injective

left R-module.

(3) Z(Y ) is a Ding injective left R ⋉M -module if and only if HomR(M,Y ) = 0

and Y is a Ding injective left R-module.

Specializing M = R in Theorem 3.2 (1), we have:

Corollary 3.4. If R is a left coherent ring, the sequence Y
β
→ Y

β
→ Y is exact in

R-Mod and ker(β) is a Ding injective left R-module, then [Y, β] is a Ding injective

left R⋉R-module.
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Theorem 3.5. Let Λ =
(

A AVB

BUA B

)

(0,0)
be a left coherent ring and [X,Y, f, g] be

a left Λ-module.

(1) If UA and VB have finite flat dimensions, BU and AV are finitely pre-

sented and have finite projective dimensions or BU and AV have finite

FP-injective dimensions, ker(f) is a Ding injective left A-module, ker(g) is

a Ding injective left B-module, the two sequences X
f
→ HomB(U, Y )

HomB(U,g)
−→

HomB(U,HomA(V,X)) and Y
g
→HomA(V,X)

HomA(V,f)
−→ HomA(V,HomB(U, Y ))

are exact, then [X,Y, f, g] is a Ding injective left Λ-module.

(2) If [A,B, 0, 0]Λ has finite flat dimension, Λ[A,B, 0, 0] has finite projective or

FP-injective dimension and [X,Y, f, g] is a Ding injective left Λ-module, then

ker(f) is a Ding injective left A-module and ker(g) is a Ding injective left B-

module, the two sequences X
f
→ HomB(U, Y )

HomB(U,g)
−→ HomB(U,HomA(V,X))

and Y
g
→ HomA(V,X)

HomA(V,f)
−→ HomA(V,HomB(U, Y )) are exact.

P r o o f. Obviously, (A×B)⋉ (U ⊕ V ) is a left coherent ring.

(1) Note that U⊕V is a finitely presented left A×B-module, fd((U⊕V )A×B) <∞,

pd(A×B(U ⊕V )) <∞ or FP− id(A×B(U ⊕V )) <∞. Since the two sequences X
f
→

HomB(U, Y )
HomB(U,g)

−→ HomB(U,HomA(V,X)) and Y
g
→ HomA(V,X)

HomA(V,f)
−→

HomA(V,HomB(U, Y )) are exact, it follows that the sequence

(X,Y )
(f,g)
−→ HomA×B(U ⊕V, (X,Y ))

(f,g)∗
−→ HomA×B(U ⊕V,HomA×B(U ⊕V, (X,Y )))

is also exact. Since ker(f) is a Ding injective left A-module and ker(g) is a Ding

injective left B-module, ker(f, g) = (ker(f), ker(g)) is a Ding injective left A × B-

module. By Theorem 3.2 (1), [(X,Y ), (f, g)] is a Ding injective left (A×B)⋉(U⊕V )-

module. So [X,Y, f, g] is a Ding injective left Λ-module.

(2) Note that fd(Z(A × B)(A×B)⋉(U⊕V )) < ∞, pd((A×B)⋉(U⊕V )Z(A × B)) < ∞

or FP − id((A×B)⋉(U⊕V )Z(A × B)) < ∞. Since [X,Y, f, g] is a Ding injective

left Λ-module, [(X,Y ), (f, g)] is a Ding injective left (A × B) ⋉ (U ⊕ V )-module.

By Theorem 3.2 (2), the sequence (X,Y )
(f,g)
−→ HomA×B(U ⊕ V, (X,Y ))

(f,g)∗
−→

HomA×B(U⊕V,HomA×B(U⊕V, (X,Y ))) is exact and ker(f, g) is a Ding injective left

A×B-module. So the sequencesX
f
→ HomB(U, Y )

HomB(U,g)
−→ HomB(U,HomA(V,X))

and Y
g
→ HomA(V,X)

HomA(V,f)
−→ HomA(V,HomB(U, Y )) are exact, ker(f) is a Ding

injective left A-module and ker(g) is a Ding injective left B-module. �

Corollary 3.6. Let Λ =
(

A AVB

BUA B

)

(0,0)
be a left coherent ring, UA and VB have

finite flat dimensions, BU and AV be finitely presented and have finite projective
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dimensions or BU and AV have finite FP-injective dimensions, [A,B, 0, 0]Λ have

finite flat dimension, Λ[A,B, 0, 0] have finite projective or FP-injective dimension.

(1) [X,HomA(V,X), 0, idHomA(V,X)] is a Ding injective left Λ-module if and only

if X is a Ding injective left A-module.

(2) [HomB(U, Y ), Y, idHomB(U,Y ), 0] is a Ding injective left Λ-module if and only if Y

is a Ding injective left B-module.

(3) [X,Y, 0, 0] is a Ding injective left Λ-module if and only if HomA(V,X) = 0,

HomB(U, Y ) = 0, X is a Ding injective left A-module and Y is a Ding injective

left B-module.
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