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Abstract. We will study applications of numerical methods in Clifford algebras in R4,
in particular in the skew field of quaternions, in the algebra of coquaternions and in the
other nondivision algebras in R%. In order to gain insight into the multidimensional case,
we first consider linear equations in quaternions and coquaternions. Then we will search for
zeros of one-sided (simple) quaternion polynomials. Three different classes of zeros can be
distinguished. In general, the quaternionic coefficients can be placed on both sides of the
powers. Then there are even five different classes of zeros. All results can be extended to
other noncommutative algebras in R*. In the paper by R.Lauterbach and G. Opfer (2014),
the authors constructed an exact Jacobi matrix for functions defined in noncommutative
algebraic systems without the use of any partial derivative. We applied this technique to
find the eigenvalues of the companion matrix as zeros of the companion polynomial by
Newton’s method.

Keywords: linear equations in quaternions and coquaternions; polynomials over R* alge-
bras; the algebraic eigenvalue problem over noncommutative algebras; Newton’s method;
companion matrix and companion polynomial; Niven’s algorithm
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1. BRIEF (PRE)HISTORICAL OVERVIEW

Clifford algebras find their use in many areas of mathematics. From the thirties
of the last century up to today, mathematicians have been attracted by [24], [19],
[30], [22], [2], [25], [23], [7].
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2. BASIC NOTATION

2.1. Quaternions. H := R*—the skew field of quaternions. Let z = (z1, 22,
z3,24), Y = (Y1,Y2,Y3,y4) € H.
x1 := Rez—real part of x, z9 := Sr—imaginary part of z,
@y = (0, x2, x3, T4 )—vector part of x,
T = (x1, —x2, —x3, —x4)—conjugate of x,
|z| = /2% + 22 + 22 + x3—absolute value of z,
r7t =7/|z|? for x € H \ {0}—inverse quaternion,
unit vectors: 1 = (1,0,0,0),i=(0,1,0,0), j = (0,0,1,0), k =(0,0,0,1),
z+y=(x1+y1, 22+ Y2, 23 + Y3, T4 + Ya),
Ty = (T1Y1 —T2Y2 —T3Y3 — TaY4, T1Y2+T2Y1 +T3Ys—T4Y3, T1Y3 — T2Ya+T3Y1+T4Y2,
T1Ya + T2Y3 — T3Y2 + Tay1),
> R(zy) = R(yzx), ax = za for x,y € H, a € R.

v VvV vV vV vV vV VvV V

2.1.1. Matrices isomorphic to quaternions. The field H is isomorphic to
a certain class Hc of C?*2 matrices: Let a = (a1, a2, as3,as) € H and let w = a1 +asi,
z = az + a4i. Then H¢ is the space of matrices of the form

w2
(2.1) H= ( _ _) € H¢ with ordinary matrix addition and multiplication.
-z w
The field H is also isomorphic to a certain class Hr of R*** matrices:
Let a = (a1, as,a3,a4) € H. We introduce the linear mapping wy: H — Hg by

a; —a2 —az —a4
a a —a a

(2.2) wifa):=| "> P | e Hp
as ay aq —asg

aqg —az a2 ai

This mapping represents the isomorphic image of the quaternion a in the matrix
space R4 see [29)].

Let us introduce also the mapping wy: H — R**4,

a1 —ag —as —Qay

a a a —a

(2.3) wola) = | 72 ™ 5| e rAx4,
a3 —agq aq a9
aq as —an a1

The two matrices wy(a), wa(b) coincide if and only if a = b € R.
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The second mapping ws reverses the multiplication order [1]:

wa(ab) = wa(b)wa(a).

Let us put
(2.4) ws(a,b) := wi(a)wa(b) € R4 a,b e H.
2.2. Coquaternions. Hcoq := R*—the field of coquaternions. Let x = (1,22,

r3,24), Y = (Y1,Y2, Y3, Ya) € Heog-

> x1 := Rr—real part of x, x5 := Sr—imaginary part of x,

> x, = (0, z2, x3, x4)—vector part of z,

> T = (x1, —22, —x3, —x4)—conjugate of z,

> absy(z) = 22 + 22 — 22 — x3—modulus of z; it may be also negative, absy(z) is
not the square of a norm,

> unit vectors: 1 = (1,0,0,0),i=(0,1,0,0), j = (0,0,1,0), k =(0,0,0,1),

> 2 +y= (21 +y1, 22 +y2,23 + Y3, 24 + Ya),

> ay = (T1y1 — T2y + T3Y3 + Taya, T1Y2 + Toy1 —T3Ya+TaY3, T1Y3 — TaYs + T3y +
T4y, T1Y4 + T2y — T3y2 + Tay1).
Coquaternions were introduced in 1849 by Sir James Cockle, see [4] and [5], as

complex matrices of the form

(2.5) Cr—<g ;).

The decisive difference between H and C is the inverse:

1 w —z 1 w  —z
H_1 B — ) C_l = )
lw[? + |2[2 (E w ) lw[? — 2|2 (—E w )

A quaternion H has an inverse as long as H # 0. The algebra of quaternions is free
of zero divisors, it is a field, though not commutative.

The inverse of C exists if and only if the denominator |w|* — |z|* # 0. Thus, the
algebra of coquaternions has zero divisors, does not form a field, see [29].

2.2.1. Matrices isomorphic to coquaternions. Let a = a1+ asi+azj+ask €
Hooq and define the matrix

al —Q2 as a4
ag a1 aq —as
(2.6) Cy(a) :=

az a4 a1 —az

aqg —az az a

Then the set of all matrices of the type C4 forms an algebra, and this algebra is
isomorphic to the algebra Hcoq of coquaternions, see [10] and [13].
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Let us note that the two matrices wy(a) in (2.2) and Cy(a) in (2.6) differ only by
the signs of the elements of the 2 x 2 submatrix in the upper right corner.

The algebra of coquaternions is also isomorphic to the algebra of all real 2 x 2
matrices, see [20],

1 0 0 1 0 1 1 0
(2.7) Cg(a) =a (0 1)+a2 (_1 0)+a3 (1 O)+a4(0 _1>
— — — —

E I J K
_ ( a1+ ay a2+a3):(011 CIQ)E[RQXQ.
—az+as ayp—aq C21 €22
Given the four matrix elements ci1, 12, €21, coo € R, the four components of a can
be recovered by

ar = 5(011 +e22), az= %(012 —c21), a3 = %(012 +e21), as= %(011 — C22).
If we denote the four basis elements in the order of the equation (2.7) by E, I, J, K,
then they obey the same multiplication rules as 1, i, j, k, respectively.

An algebra of this type is also called a split algebra, in the current case the algebra
of split quaternions, see [20].

Coquaternions are used, e.g., in physics; it is shown by Brody and Graefe [3]. That
paper also contains an overview over relevant properties of coquaternions. There is
another, very subtle, investigation mainly on the analysis of coquaternions with

application to physics by Frenkel and Libine [8].

2.3. Extension to other nondivision algebras in R*. Let us go from the alge-
bra of coquaternions to other algebras in R*, in particular, let us consider tessarines,
cotessarines, nectarines, conectarines, tangerines, and cotangerines. We may observe
many similarities with the quaternionic and coquaternionic case. The following table
is obtained by allowing all eight combinations of signs +1 for the squares i2, jZ, k2
and keeping the product ij = k the same for all algebras.

No Name of algebra in short i2 j2 k2 ij jk ki
1. Quaternions H -1 -1 -1 k i j
2. Coquaternions Heoq -1 1 1 k —i j
3. Tessarines Hies -1 1 -1 k i —j
4. Cotessarines Heot 1 1 1 k i j
5. Nectarines Hhec 1 -1 1 k i —j
6. Conectarines Heon 1 1 -1 k —-i —j
7. Tangerines Hian 1 -1 -1 k i j
8. Cotangerines Heotan —1 —1 1 k —-i —j
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The eight algebras separate into four noncommutative ones, in particular No. 1,
2, 5, 6, and into four commutative ones, those with numbers 3, 4, 7, 8. We note that
the real numbers commute with all members of all algebras.

The names of No. 2-4 were introduced by James Cockle in 1849 in a series of
articles in Philosophical Magazine, see [6], [4], [27]. The names nectarines, conec-
tarines, tangerines, cotangerines were introduced very recently by Bernd Schmeikal
(Vienna), see [28].

2.4. Inversion formula.

Lemma 2.1. Let A be one of the four noncommutative algebras (number 1, 2, 5,
or 6) and a € A. Then the product aa = @a is real and

(2.8) a = if @a # 0.

S

Proof. Because abss(a) = aa, a = (a1,a2,as,aq), we apply the multiplication
rules and obtain
a? + a3 +a3 + a3 for algebra H,

aj + a3 —a3 —aj for algebra Heoq,

at — a3 +a3 — a3 for algebra Hec,

a3 — a3 — a3 +a? for algebra Heop-

If absy(a) # 0, the inversion formula

. a

~ absy(a)

is valid in all four noncommutative algebras. O

2.5. Classes of equivalence.

2.5.1. Classes of equivalence in quaternions. Two quaternions x and y are
equivalent, denoted by x ~ y, if y = h='xh for some h € H \ {0}. For fixed » € H
the set

(2.9) ] = {y € H: y=h"'zh for h € H\ {0}}

is called the equivalence class of z. If x is real, then obviously [z] = {z}, i.e., the
equivalence class [z] consists of x alone.

Lemma 2.2. Two quaternions x and y are equivalent if and only if

(2.10) Rr =Ry and |z|=|y|
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Let © = (21, 22,73, 74). It follows that y = (21, /23 + 2% + 22%,0,0) is equivalent
to x and y € [z] is the only complex element in [z] with nonnegative imaginary part,

see [12].

2.5.2. Classes of equivalence in coquaternions. In (2.7), we have already
seen that the algebra Hcoq is isomorphic to R?*2 where this isomorphism is for
a = (a1,a2,as,a4) € Heoq defined by

a1 +as az+as

C =
2(a) —az+ a3z aip— a4

Definition 2.1. Two coquaternions a, b will be called similar, denoted by a ~ b,
if the corresponding matrices Cs(a), C2(b) are similar, or in other words, if there is
a nonsingular (= invertible) coquaternion h such that a = h=1bh. By

[a] := {b: b= h""'ah for all invertible h € Heoq}

we denote the equivalence class of all coquaternions which are similar to a.
Remark 2.1. The equivalence class [a] consists of one single element if and only
if a is real.

Lemma 2.3. Leta~b, a,b€ Heoq. Then

(2.11) R(a) = N(b), absz(a) = absa(b).

Example 2.1. Let a=(a,0,0,0), « € R, and b = (¢, 5,4, 3) be two coquater-
nions. Because a is real, then [a] consists of one single element only, i.e., a, b are
not similar. However, R(a) = R(b) = « and absy(a) = absay(b) = o2, i.e., in con-
trast to the quaternionic case, conditions (2.11) are not sufficient for similarity of
coquaternions.

Definition 2.2. Two coquaternions a, b are said to be quasi-similar, written as
a ~7b,if (2.11) is valid.
Lemma 2.4. The relation ~? is an equivalence relation.

Proof. The three properties of equivalence relations, a ~% a (reflexivity),
a~%b&b~1qa (symmetry), and a ~2 b, b ~% ¢ = a ~? ¢ (transitivity) are easily
verified. O
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The corresponding quasisimilarity classes are denoted by
[a]lg = {b € Heoq: b ~Ta}.
Let us note that
a~b=a~%b and [a] C [a],

Due to the first condition in (2.11), distinct real numbers are in different equivalence
classes with respect to both ~ and ~9.

3. LINEAR MAPPINGS OVER R IN GENERAL

3.1. Column operator. Let L: R™ — R™ be a linear mapping over R. It can
be represented by a real matrix M of size (m x n), see [11]. In order to find this
matrix, we define a column operator col by

Ty
T2
col(z) .= | . |,
Tn
where x1,x2, ..., %, are the components of z. If it happens that x is a matrix, we

put the columns of that matrix from the left to the right into one column in order to
define col for that matrix. By evaluating L at x € R™ and applying the col operator

we obtain
(3.1) col(L(x)) = Mcol(z), M e R™*"  col(:) € R",
where M is unknown so far.
Let e; be the standard unit vectors in R™, j = 1,2,...,n. Putting = := ¢;, we
obtain
Mg
H2j .
(3.2) col(L(ej)) = Mcol(e;) = S, Ji=1...,n,
Hom

where p;; are the elements of the matrix M and the right-hand side of (3.2) rep-

resents the jth column of M. Hence, the matrix M is completely known by the n

values L(e;). We note that M will be an integer if the values of L are integers, see [16].
A typical nontrivial example is the mapping L: R™ — R™ defined by

(3.3) L(X)=AXB, AecRPY XeR?, BeR™,
where in this case we have m = ps, n = qr.
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3.2. Quaternionic linear mappings in one variable. Let us study quater-
nionic linear mappings A: H — H over R which are defined by the property

(3.4) A(yz + 0y) = vA(x) + 0A(y) Vz,y e HV~v,d € R.
All linear mappings have the property A(0) = 0. This follows from (3.4) by putting
r=y,vy=16=—1.

Definition 3.1. A quaternionic linear mapping A: H — H will be called non-
singular if A(x) = e has a unique solution for all choices of e € H. The mapping A
will be called singular if it is not nonsingular.

Lemma 3.1. The linear mapping A is singular if and only if the homogeneous
equation A(x) = 0 has nontrivial solutions.

Proof. For the proof see [19]. O

3.2.1. Null space of A. The null space (or kernel) of A is defined by
(3.5) N :={z e H: A(z) = 0}.

It is a linear subspace of H, regarded as a subspace over R, i.e., the dimension of A/
may vary from zero to four.

The linear mapping A: H — H also defines a linear mapping A: R* — R* which
can be defined by a 4 x 4 real matrix.

Theorem 3.1. Let A: H — H be a quaternionic linear mapping. Then there
exists a matrix M € R*** such that A(z) = Mz, where the quaternions z, A(z)

have to be identified with the column vectors x, Mx € R*, respectively, and where
(3.6) M := (A1), A(D), A(), A(k) ).
The entries A(j), j = 1,2,3,4, must be read as column vectors in R*.

This theorem allows us to reduce the given linear equation to a linear matrix
equation in four variables for which solution techniques are known.

m
3.2.2. Quaternionic linear mappings of type A(x) := Y bjzc;. Let us con-
=1

sider a quaternionic mapping J

(3.7) Ap(z) == ijxcj

defined for any fixed positive integer m and for 2m quaternionic constants b;, c; € H,
i=12,...,m.
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The set of all such linear mappings A,, separates into two classes. One class con-
sists of all mappings A,, with m < 2 for which a complete answer to all reasonable
questions can be found. All other A,,, namely those with m > 3, belong to a class
for which we can gather only incomplete information. We introduce a formal sim-
plification: Let u(x) := b;llxcfl. This linear mapping is nonsingular and thus (put
bj = b1, ¢ =cjert, §=2,3,...,m—1),

m—1
/& B bix + ijéj + zc,, form > 2,
(o Am)(z) = bml (Z bja:cj) c 1= ;
j=1

T form=1

will be singular if and only if )\, is singular. After a formal simplification, it turns
out that without loss of generality we can investigate

m—2
(3.8) Ap(2) == ax + ija:cj +axd, m =2,

=1
for example

As(x) :=ax + xd for m = 2,

and for m = 3 we write simply
As(z) := ax + bxc + zd.

3.3. Linear equations in coquaternions. Linear equations in coquaternions
are formally similar to linear equations in quaternions. A linear system will always
be a linear system over R. Linearity with respect to C or to Hcoq is in general not
granted.

A linear system in n coquaternions xx, k = 1,2,...,n, and m equations is defined
as follows: Let

K;
(3.9) Li(u) == Zafg)ubgg), i=1,2,...,mn
k=1

be an arbitrary set of mn linear, coquaternionic mappings in one coquaternionic
variable u, where a,(f), b,(f), k =1,2,...,Kj;, are given coquaternions, and K are

given positive integers, 7 = 1,2,..., mn.
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A linear system L(z) in n coquaternionic variables zx, k = 1,2,...,n, and m
equations will then be defined by

Lyi(z) = le(xj), Ly (x) = Zlﬂn(%‘)w-,

Ly (x)
L (z) := zn:ljJr(mfl)n(ﬂ?j) = L(z) == Lzz(x) ;
- Ly ()
where € R*" consists of one column composed out of z1,za, ..., Tn.

Note that L is not a linear mapping over C or Hcoq. However, L is a linear mapping
over R, because real coquaternions commute with arbitrary coquaternions. Hence,
a matrix M as in (3.1) and (3.2) exists.

4. ONE-SIDED (SIMPLE) QUATERNIONIC POLYNOMIALS

Let p, be a given quaternionic polynomial of degree n:

n

(4.1) pn(2) = Zajzj, z,a; €H, j=0,1,2,...,n, apa, #0.
3=0

Polynomial p,, is called one-sided (or simple) quaternionic polynomial.
Let us note that we suppose that ag # 0, i.e., the origin is never a zero of p,,
an # 0, i.e., the polynomial degree is not less than n.

Definition 4.1. Let zg be a zero of p,. If zg is not real and it has the property
pn(2) =0 Vz € [z],

we say that zy generates a spherical zero or zj is a spherical zero.
If zp is real or does not generate a spherical zero, it is called an isolated zero.

4.1. All powers of a quaternion. To get rid of the powers 27 and to simplify
formula (4.1) we apply the following two term recursion: Iteration process (two term

recursion):
(4.2) Z=ajz+ B, a;,B€R, j=01,...,
where
a =0, fo=1 a1 =2R0=)a;+0;, B =—|za;, j=01,...
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In order to compute all powers of z € H up to degree n, one needs n — 1 quaternionic
multiplications (one quaternionic multiplication = 28 flops), whereas the above re-
cursion needs only 3n flops.

Lemma 4.1. Let 21 ~ 2. Then «j, 8, j = 0,1,...,n, defined in (4.2) are the
same for z1, z».

Proof. For the proof see [26]. O

By means of recursion (4.2), the polynomial p,, can be written as

(4.3) pn(z) = Zajzj = Z a;(a; + Bjz) = A(z) + B(2)z,
3=0 3=0

(4.4) Az) =) aja;, B(z)=)_Bja;.
=0 =0

Theorem 4.1. Let zy € H be fixed. Then both A(z) and B(z) are constant for
all z € [zg]. Let zg be a zero of p,, i.e., pn(z0) = A(20) + B(20)z0 = 0. Then

(4.5) pn(z) = A(2) + B(2)z=0 Vz¢€ [z].

The quantities A(z), B(z) in (4.5) can vanish only simultaneously.

If A(zp) = 0 and z( is not real, then all z € [zg] are zeros of p,,, thus, zo generates
a spherical zero of p,.

If A(z9) # 0, then zj is an isolated zero of p,,.

Theorem 4.2. Let zy,21 € H be two different zeros of p,, with zg € [z1]. Then
pn(2) = 0 for all z € [z1], zo generates a spherical zero of p,, and A(z) = B(z) =0
for all z € [z0]. In particular, zp ¢ R is a spherical zero of p,, if and only if A(zp) = 0.

Finally, let us summarize: Let zy be a zero of the one sided (simple) quaternionic
polynomial p,,. Then:

1. If zg is real, then zq is isolated.
2. If zy is not real and A(zg) = 0, then all z € [2] are zeros of p,, 2o is spherical.
3. If zp is not real and A(zg) # 0, then zq is isolated.

The computation of all zeros of p,, including their types, can be reduced to the
computation of all zeros of a real polynomial of degree 2n, see [14].
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5. TWO-SIDED TYPE QUATERNIONIC POLYNOMIALS

We consider so-called two-sided polynomials

n
(5.1) p(z) = Zajzjbj, z,a5,b; € H, j=0,1,...,n €N,
§=0
Cl()b() 75 0, anbn 7é 0.

By means of (4.2) the polynomial p can be written as
(5.2) p(z) =Y a;27b; = aj(ey + Bj2)b;
3=0 §=0

=D ajabj+ Y Bjajzbj = Alz)+ ) Bja;zb;,
§=0 §=0

j=0

(5.3) A(z) = Zajajbj.
3=0

Let a := (a1,az,as,as) € H. We introduce a column operator col: H — R*,

ai

a

col(a) := 2
as
a4

The purpose of this column operator is to regard a quaternion as a matrix with one

column and four rows.
Lemma 5.1. The column operator is linear over R, i.e.,

col(aa + Bb) = acol(a) + Beol(b), a,be H,a,p € R.

Lemma 5.2. For arbitrary quaternions a, b, ¢ we have

(5.4) col(ab) = wy(a)col(b) = wa(b)col(a),
col(abc) = w1 (a)wa(c)col(d).
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We apply the mapping ws to the last term in (5.2), in particular,
col(abe) = ws(a, c)col(b), a,b,c,e H,

to the equation

p(z) = A(2) + > _Bja;zb;
and obtain 7=

(5.6)  col(p(z)) = col(A(z)) + Zﬁng(aj, bj)col(z) = col(A(z)) + B(z)col(2),
3=0

where
(57) B(Z) = Zﬁng(aj,bj) e RP4,
5=0

The matrix B plays an important role in the classification of zeros of two-sided
quaternionic polynomials.
5.1. Classification of zeros of two-sided quaternionic polynomials.

Definition 5.1. Let z be a nonreal zero of p, defined in (5.1), and let zo be the
complex representative of [z]. Then we classify the zeros z of p with respect to the
rank of B(z), see [15].

The zero z is called zero of type k if

rank(B(z9)) =4 —k, 0<k<4.

A zero of type 4 (rank(B(z9)) = 0) will be called a spherical zero. It has the
property that all z € [zo] are zeros.
A zero of type 0 (B(zp) is nonsingular) will be called an isolated zero. In this case

col(z) = —(B(20)) ‘col(A(20))

and this z is the only zero in [zg].
A real zero will also be called an isolated zero.

6. ZEROS OF ONE-SIDED POLYNOMIALS OVER R* ALGEBRAS

Let A be one of eight algebras in R*. We have already divided them into noncom-
mutative algebras: quaternions, coquaternions, nectarines, conectarines and commu-

tative ones: tessarins, cotessarins, tangerines, cotangerines.
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Now we will treat unilateral polynomials p of the form
(6.1) p(z) =ap+ar1z+ ...+ a,_ 12" +anz", z,a5 € A,
j=0,1,...,n, ag,a, invertible in A.

Let us consider three noncommutative algebras Heoq, Hnec and Heon.

Let a = (a1,a2,a3,a4) € A. We will deal with the following problem, see [9]:
Given a polynomial p over A and a similarity class [z] C A, which is known to
contain a zero zg € [z] of p, how to find the zero?

The main idea is to write the polynomial p in a formally linear form. Similarly as
for quaternions, we use the two-term recursion (4.2) and obtain

(6.2) 2% = —absy(2) + 2R(2)z,

which is valid in A.
We define the conjugate of a, denoted either by @ or by conj(a), by

(6.3) a = conj(a) = (a1, —ag, —ag, —aq).
For the product aa we use again the notation
(6.4) absg(a) = aa.

Let us restrict our attention to one quasi-similarity class [z],. Then the coefficients
ag, B for k > 0 are constant on this class. Applying (4.2) to all powers in the
polynomial p, we obtain

(6.5) p(z)= Zakzk — Z a(ag + Brz) = Z oarar + <Z Bkak)z = A+ Bz
k=0 k=0 k=0 k=0

and A, B are constant on the quasi similarity class [2],.

Theorem 6.1. Let B be invertible on the given class [z], and let [z], contain
a zero zg of p. Then

(6.6) 2z=—-B'A

is the only zero in [z],. If A = B = 0, then all elements in [z], are zeros of p and
there may exist another undetected zero quasi similar to ry.

Proof. From (6.5) it follows that p(zgp) = 0. Let there be two distinct zeros,
20,21 € [2]q- Then p(z9) = A+ Bzp = 0 and p(z1) = A+ Bz = 0, which implies
B(zg — z1) = 0. If B is invertible, then zyp = z; would follow, a contradiction.
Thus, B is noninvertible if there exist two distinct zeros z1,z2 € [z];. The last part
is obvious. ([
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The algorithm to find all zeros of polynomials over A can be found in [17].

Remark 6.1. Number of zeros: Let p be a polynomial of degree n as defined
in (6.1) over A. Then p may have n(2n — 1) zeros.

Finally, we would like to mention that in this part we used two essential ideas of
other authors, namely:

(1) The idea by Anatoliy Pogoruy and Michael Shapiro was to write the powers 27
in the form az +  with real «, 8, which reduces the two-sided polynomials
to a sum of terms of the form azb, see [26]. This idea also gave birth to the
introduction of equivalence classes of zeros in H.

(2) The idea by Ludmilla Aramanovitch was the introduction of the matrix wo (for-
mula (2.3)) which permitted to pull out the variable z from azb (formula (5.5)).
Both ingredients allowed the development of the important formula (6.2), see [1].

7. THE ALGEBRAIC EIGENVALUE PROBLEM OVER NONCOMMUTATIVE ALGEBRAS

7.1. Eigenvalues of matrices with general algebraic entries.

Definition 7.1. Let A € A™*"™ for an algebra A. If there exists an element
X € A and a column vector x € A™*! such that

(7.1) Ax =x)\, x contains an invertible component,

then A is called the eigenvalue of A with respect to the eigenvector x. The pair (A, x)
is called the eigenpair.
The set of all eigenvalues of A is denoted by o(A).

Lemma 7.1. Let A be a noncommutative algebra and A an eigenvalue of A with
respect to an eigenvector x. Then for all invertible h € A, the set A := {h~'\h}
consists of eigenvalues of A with respect to xh.

Lemma 7.2. Let A,B € A"*™ be two similar matrices. Then o(A) = o(B).

7.2. Some facts about eigenvalues. In order to find all eigenvalues of a given
matrix A € A"*™ it is sufficient to find one representative in each similarity class
of eigenvalues. The number of eigenvalues of A will be, correspondingly, defined as
the number of distinct similarity classes of o(A).

Theorem 7.1. Let A be either a division algebra or a commutative algebra and
let A € A™*" be an upper triangular matrix. Then the diagonal elements of A are
the eigenvalues of A. The same is true for lower triangular matrices.
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Theorem 7.2. Let A € A™*" be a given upper or lower triangular matrix with
matrix entries a;, j,k = 1,2,...,n. The matrix A is singular if and only if one of
the diagonal elements a;;, j =1,2,...,n, is singular.

The eigenvalue problem over an arbitrary algebra can be expressed in the real
form

(7.2) (M — A)col(x) = 0,

and there will be a solution x # 0 if and only if there is a matrix A such that M — A
is singular. The matrix M — A is a triangular block matrix.

8. COMPUTATION OF EIGENVALUES BY NEWTON’S TECHNIQUE

For a general square matrix A € A™*" we consider the eigenvalue problem (7.1)

in the form

(8.1) G1(x,\) = x\ — Ax,
(8.2) Ga(x) == ||col(x)||2 -1
and solve

(8.3) G(x,\) = [Géi’(‘x?)} -0

by Newton’s method. The quantity |-||? is the square of the standard Euclidean
norm in R™V. The condition G3(x) = 0 is a normalization condition for the eigen-
vectors. It is independent of the algebra A under investigation. However, it does not
imply uniqueness of x. In all algebras the eigenvectors x and —x are simultaneous
eigenvectors or not.

If = € A commutes with an eigenvalue A and ||col(z)|| = 1 (Euclidean norm),
then x and xz are both eigenvectors for the same A.

Applying the techniques developed in [21], we obtain the derivative of G in the

form

hX\ 4+ xh; — Ah

84)  C(xN)(h )= { 2col(x) T col(h)

] , x,he A hye AV
The Newton’s technique consists of solving the linear system

(8.5) G (xk, M\e)(h hy) = —G(xk, M), k=0,1,...,

for (h, hq), where the start values xg, Ag are given, in principle, arbitrarily.
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We observe that the number of real unknowns (x, A) in equation (8.3) is (n+1)N,
whereas the number of real equations is nN 4 1. In the linear Newton equation (8.5)
we have, thus, (n+ 1) N real unknowns (h, h;) and nN + 1 real equations. Thus, the
system is underdetermined.

Finally, the left-hand side of (8.5) is linear in (h, ;) and thus, can be expressed
by a matrix the form of which is given in (8.4). The result is

col(h)

G'(x,\)(h,h;) =M [col(hl)

] ., where M € RONVHDx (4N,

9. CALCULATION OF EIGENVALUES OF A QUATERNION MATRIX USING
THE COMPANION MATRIX AND COMPANION POLYNOMIAL

Given the polynomial coefficients ag, aq, ..., a,, a, = 1, the companion matrix is
defined as
0 O 0 —ag
1 0 0 —ay
(9.1) Ci=|: . : : € Hm™m,
0 0 . 0 —ap_o
0 0 ... 1 —ap_1

The essence of the method is to find the set of eigenvalues of C. How to find these
eigenvalues?

Let us recall that we identify complex numbers d; + doi with quaternions d =
(d17 dQ; 07 0)

Theorem 9.1. Two complex numbers with nonnegative imaginary part are sim-
ilar if and only if they are identical.

In order to find the eigenvalues of A we use an isomorphism
t: H— C2*2

defined by

w oz a1 +asi a3+ a4l
(9:2) L(a)—[ _ _}—[ LT S
—Z w —asz + aql  ay; — asl

and apply this isomorphism to the whole matrix A.
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Theorem 9.2. Eigenvalues of the matrix ¢(A):

(i) The 2n eigenvalues of the complex matrix t(A) are either real or pairs of complex
conjugate numbers.
(ii) Real eigenvalues of 1(A) appear in duplicate.
(iii) The eigenvalues of t(A) are similar to the eigenvalues of A.
(iv) The similarity classes of the eigenvalues of t(A) are identical with the eigenval-
ues of A.

Let .
pn(z):Zajzj, z,a;€H, j=01,2,...,n, a,=1.
§=0

The main information is the following.

Theorem 9.3. The zeros of the polynomial p are located in the similarity classes
of the eigenvalues of the complex matrix +(C).

How to find the zeros of p if the similarity classes of the eigenvalues of ((C) are
known?

9.1. Niven’s algorithm. Niven’s algorithm of 1941 is based on the following
representation of p.

Let r be a quadratic polynomial of the form r(z;u,v) = 22 — 2uz + v, u,v € R.
The central property of this polynomial r is that it vanishes if we choose u = $(z),
v = absa(z). Due to (2.10), r will even vanish if we replace z by all elements of [z]
but keep u, v unchanged, i.e., r will vanish for the whole class [z]. Dividing of p by r
yields

(9:3) p(2) = q(2)r(z;u,v) + Ro(u,v)z + Ra(u, v),

where ¢ is a polynomial of degree n — 2 and Rg(u,v), R1(u,v) follow from a (simple)
recursion based on (9.3). Now Ry (u,v)z+ Ri(u, v) may be regarded as the remainder
of the division. The polynomial ¢ is of no importance.

We insert one of the eigenvalues z of +(C) including u = R(z), v = absy(z) into
Niven’s equation (9.3). Then 7(z;u,v) = 0 and the equation

(9.4) p(2) = Ro(u,v)z + Ry(u,v) =0
remains to be solved. If Ry(u,v) is invertible, then
2z = —(Ro(u,v)) 'Ry (u,v).

This is an isolated zero. If Ro(u,v) = 0, then also Rj(u,v) = 0 and all elements
of [z] solve (9.4). This zero of p is spherical.
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Now it is natural to ask how many zeros the polynomial p has. The number of
eigenvalues of ((C) is 2n = 2ny + 2ng, where 2n; is the number of real eigenvalues
and 2ns is the number of complex eigenvalues.

Altogether, there are at most n; distinct real eigenvalues and at most ns distinct
complex eigenvalues with positive real part. Thus, the number of zeros of p is at
most 11 + ny = n. This result was already known by Gordon and Motzkin, 1965.

9.2. The introduction of the companion polynomial. Again based on the
coefficients ag, a1, ...,a, = 1 of the given polynomial p, the following real polyno-
mial ¢ is defined by

n 2n
(9.5) c(z) = Z ajap?th = Zbgze,
4,k=0 £=0
min(£,n)
(9.6) by = Umar—m € R,

lin
m=max(0,{—n)

and c is called the companion polynomial of p. This name with this definition was
for the first time used by Janovska and Opfer, [14].

We will call the solutions of ¢(z) = 0 the roots of ¢, in contrast to zeros, which are
the solutions of p(z) = 0.

Since the polynomial ¢ is real and of degree 2n, it has an even number (zero
allowed) of real roots and an even number (zero allowed) of complex roots, where
the complex roots always appear in pairs of complex conjugate roots.

Theorem 9.4. The zeros of the polynomial p are located in the similarity classes
of the roots of the real companion polynomial c.

Proof. For the proof see [18]. O

In order to find the zeros of p we do exactly the same steps as before with the
eigenvalues of +(C). The zeros of p are located in the similarity classes of the eigen-
values of +(C) and simultaneously in the similarity classes of the roots of ¢. Since
these quantities are real or complex, they must be identical, which implies:

Theorem 9.5. Let C be the companion matrix defined by the quaternionic poly-
nomial coefficients of p and let ¢ be the companion polynomial of p. Then the
companion polynomial ¢ is the characteristic polynomial of ((C).

Proof. For the proof see [18]. O
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Let us see a simple example. Let p(z) = z + a and let a = (a1, as,as,a4). The
companion polynomial of p is

c(z) = 2% + 2R(a)z + absz(a).
The companion matrix is C = [—a] and (see equation (9.2))

—(a1 + agi) —(a3 + a4i)

L(C) =
( ) as — ay4l —a1 + asi

and
det(Io\ — ¢(C)) = A2 + 241\ + a? + a3 + a2 + aj,

which coincides with the above companion polynomial c.
In the meantime it was shown (various papers by Janovska and Opfer) that last
Theorem 9.5 is also valid in the remaining three noncommutative R* algebras:

> Heoq, the algebra of coquaternions,
> Hyec, the algebra of nectarines,
> Heon, the algebra of conectarines.

There is one difference: The equation
p(2) = Ro(u,v)z + Ry(u,v) =0

has more possibilities for solving than in the quaternionic case and the number of
zeros is limited to the larger number

<22n) =n(2n - 1).

Open Access. This article is licensed under a Creative Commons Attribu-
tion 4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain per-
mission directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.
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