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Abstract. We will study applications of numerical methods in Clifford algebras in R
4,

in particular in the skew field of quaternions, in the algebra of coquaternions and in the
other nondivision algebras in R

4. In order to gain insight into the multidimensional case,
we first consider linear equations in quaternions and coquaternions. Then we will search for
zeros of one-sided (simple) quaternion polynomials. Three different classes of zeros can be
distinguished. In general, the quaternionic coefficients can be placed on both sides of the
powers. Then there are even five different classes of zeros. All results can be extended to
other noncommutative algebras in R

4. In the paper by R. Lauterbach and G.Opfer (2014),
the authors constructed an exact Jacobi matrix for functions defined in noncommutative
algebraic systems without the use of any partial derivative. We applied this technique to
find the eigenvalues of the companion matrix as zeros of the companion polynomial by
Newton’s method.

Keywords: linear equations in quaternions and coquaternions; polynomials over R4 alge-
bras; the algebraic eigenvalue problem over noncommutative algebras; Newton’s method;
companion matrix and companion polynomial; Niven’s algorithm
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1. Brief (pre)historical overview

Clifford algebras find their use in many areas of mathematics. From the thirties

of the last century up to today, mathematicians have been attracted by [24], [19],

[30], [22], [2], [25], [23], [7].
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2. Basic notation

2.1. Quaternions. H := R
4—the skew field of quaternions. Let x = (x1, x2,

x3, x4), y = (y1, y2, y3, y4) ∈ H.

⊲ x1 := ℜx—real part of x, x2 := ℑx—imaginary part of x,

⊲ xv := (0, x2, x3, x4)—vector part of x,

⊲ x = (x1,−x2,−x3,−x4)—conjugate of x,

⊲ |x| =
√
x2
1 + x2

2 + x2
3 + x2

4—absolute value of x,

⊲ x−1 = x/|x|2 for x ∈ H \ {0}—inverse quaternion,

⊲ unit vectors: 1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1),

⊲ x+ y = (x1 + y1, x2 + y2, x3 + y3, x4 + y4),

⊲ xy = (x1y1−x2y2−x3y3−x4y4, x1y2+x2y1+x3y4−x4y3, x1y3−x2y4+x3y1+x4y2,

x1y4 + x2y3 − x3y2 + x4y1),

⊲ ℜ(xy) = ℜ(yx), αx = xα for x, y ∈ H, α ∈ R.

2.1.1. Matrices isomorphic to quaternions. The field H is isomorphic to

a certain class HC of C
2×2 matrices: Let a = (a1, a2, a3, a4) ∈ H and let w = a1+a2i,

z = a3 + a4i. Then HC is the space of matrices of the form

(2.1) H =

(
w z

−z w

)
∈ HC with ordinary matrix addition and multiplication.

The field H is also isomorphic to a certain class HR of R
4×4 matrices:

Let a = (a1, a2, a3, a4) ∈ H. We introduce the linear mapping ω1 : H → HR by

(2.2) ω1(a) :=




a1 −a2 −a3 −a4
a2 a1 −a4 a3
a3 a4 a1 −a2

a4 −a3 a2 a1


 ∈ HR.

This mapping represents the isomorphic image of the quaternion a in the matrix

space R4×4, see [29].

Let us introduce also the mapping ω2 : H → R
4×4,

(2.3) ω2(a) :=




a1 −a2 −a3 −a4
a2 a1 a4 −a3

a3 −a4 a1 a2
a4 a3 −a2 a1


 ∈ R

4×4.

The two matrices ω1(a), ω2(b) coincide if and only if a = b ∈ R.
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The second mapping ω2 reverses the multiplication order [1]:

ω2(ab) = ω2(b)ω2(a).

Let us put

(2.4) ω3(a, b) := ω1(a)ω2(b) ∈ R
4×4, a, b ∈ H.

2.2. Coquaternions. Hcoq := R
4—the field of coquaternions. Let x = (x1, x2,

x3, x4), y = (y1, y2, y3, y4) ∈ Hcoq.

⊲ x1 := ℜx—real part of x, x2 := ℑx—imaginary part of x,

⊲ xv := (0, x2, x3, x4)—vector part of x,

⊲ x = (x1,−x2,−x3,−x4)—conjugate of x,

⊲ abs2(x) = x2
1 + x2

2 − x2
3 − x2

4—modulus of x; it may be also negative, abs2(x) is

not the square of a norm,

⊲ unit vectors: 1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1),

⊲ x+ y = (x1 + y1, x2 + y2, x3 + y3, x4 + y4),

⊲ xy = (x1y1 − x2y2 + x3y3 + x4y4, x1y2 + x2y1−x3y4+x4y3, x1y3 − x2y4 + x3y1 +

x4y2, x1y4 + x2y3 − x3y2 + x4y1).

Coquaternions were introduced in 1849 by Sir James Cockle, see [4] and [5], as

complex matrices of the form

(2.5) C :=

(
w z

z w

)
.

The decisive difference between H and C is the inverse:

H−1 =
1

|w|2 + |z|2

(
w −z

z w

)
, C−1 =

1

|w|2 − |z|2

(
w −z

−z w

)
.

A quaternion H has an inverse as long as H 6= 0. The algebra of quaternions is free

of zero divisors, it is a field, though not commutative.

The inverse of C exists if and only if the denominator |w|2 − |z|2 6= 0. Thus, the

algebra of coquaternions has zero divisors, does not form a field, see [29].

2.2.1. Matrices isomorphic to coquaternions. Let a = a1+a2i+a3j+a4k ∈

Hcoq and define the matrix

(2.6) C4(a) :=




a1 −a2 a3 a4

a2 a1 a4 −a3
a3 a4 a1 −a2

a4 −a3 a2 a1


 .

Then the set of all matrices of the type C4 forms an algebra, and this algebra is

isomorphic to the algebra Hcoq of coquaternions, see [10] and [13].
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Let us note that the two matrices ω1(a) in (2.2) and C4(a) in (2.6) differ only by

the signs of the elements of the 2× 2 submatrix in the upper right corner.

The algebra of coquaternions is also isomorphic to the algebra of all real 2 × 2

matrices, see [20],

(2.7) C2(a) := a1

(
1 0

0 1

)

︸ ︷︷ ︸
E

+a2

(
0 1

−1 0

)

︸ ︷︷ ︸
I

+a3

(
0 1

1 0

)

︸ ︷︷ ︸
J

+a4

(
1 0

0 −1

)

︸ ︷︷ ︸
K

=

(
a1 + a4 a2 + a3
−a2 + a3 a1 − a4

)
=

(
c11 c12
c21 c22

)
∈ R

2×2.

Given the four matrix elements c11, c12, c21, c22 ∈ R, the four components of a can

be recovered by

a1 =
1

2
(c11 + c22), a2 =

1

2
(c12 − c21), a3 =

1

2
(c12 + c21), a4 =

1

2
(c11 − c22).

If we denote the four basis elements in the order of the equation (2.7) by E, I, J, K,

then they obey the same multiplication rules as 1, i, j, k, respectively.

An algebra of this type is also called a split algebra, in the current case the algebra

of split quaternions, see [20].

Coquaternions are used, e.g., in physics; it is shown by Brody and Graefe [3]. That

paper also contains an overview over relevant properties of coquaternions. There is

another, very subtle, investigation mainly on the analysis of coquaternions with

application to physics by Frenkel and Libine [8].

2.3. Extension to other nondivision algebras in R
4. Let us go from the alge-

bra of coquaternions to other algebras in R4, in particular, let us consider tessarines,

cotessarines, nectarines, conectarines, tangerines, and cotangerines. We may observe

many similarities with the quaternionic and coquaternionic case. The following table

is obtained by allowing all eight combinations of signs ±1 for the squares i2, j2, k2

and keeping the product ij = k the same for all algebras.

No Name of algebra in short i2 j2 k2 ij jk ki

1. Quaternions H −1 −1 −1 k i j

2. Coquaternions Hcoq −1 1 1 k −i j

3. Tessarines Htes −1 1 −1 k i −j

4. Cotessarines Hcot 1 1 1 k i j

5. Nectarines Hnec 1 −1 1 k i −j

6. Conectarines Hcon 1 1 −1 k −i −j

7. Tangerines Htan 1 −1 −1 k i j

8. Cotangerines Hcotan −1 −1 1 k −i −j
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The eight algebras separate into four noncommutative ones, in particular No. 1,

2, 5, 6, and into four commutative ones, those with numbers 3, 4, 7, 8. We note that

the real numbers commute with all members of all algebras.

The names of No. 2–4 were introduced by James Cockle in 1849 in a series of

articles in Philosophical Magazine, see [6], [4], [27]. The names nectarines, conec-

tarines, tangerines, cotangerines were introduced very recently by Bernd Schmeikal

(Vienna), see [28].

2.4. Inversion formula.

Lemma 2.1. Let A be one of the four noncommutative algebras (number 1, 2, 5,

or 6) and a ∈ A. Then the product aa = aa is real and

(2.8) a−1 =
a

aa
if aa 6= 0.

P r o o f. Because abs2(a) = aa, a = (a1, a2, a3, a4), we apply the multiplication

rules and obtain

abs2(a) := aa =






a21 + a22 + a23 + a24 for algebra H,

a21 + a22 − a23 − a24 for algebra Hcoq,

a21 − a22 + a23 − a24 for algebra Hnec,

a21 − a22 − a23 + a24 for algebra Hcon.

If abs2(a) 6= 0, the inversion formula

a−1 =
a

abs2(a)

is valid in all four noncommutative algebras. �

2.5. Classes of equivalence.

2.5.1. Classes of equivalence in quaternions. Two quaternions x and y are

equivalent, denoted by x ∼ y, if y = h−1xh for some h ∈ H \ {0}. For fixed x ∈ H

the set

(2.9) [x] = {y ∈ H : y = h−1xh for h ∈ H \ {0}}

is called the equivalence class of x. If x is real, then obviously [x] = {x}, i.e., the

equivalence class [x] consists of x alone.

Lemma 2.2. Two quaternions x and y are equivalent if and only if

(2.10) ℜx = ℜy and |x| = |y|.
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Let x = (x1, x2, x3, x4). It follows that y = (x1,
√
x2
2 + x2

3 + x2
4, 0, 0) is equivalent

to x and y ∈ [x] is the only complex element in [x] with nonnegative imaginary part,

see [12].

2.5.2. Classes of equivalence in coquaternions. In (2.7), we have already

seen that the algebra Hcoq is isomorphic to R
2×2, where this isomorphism is for

a = (a1, a2, a3, a4) ∈ Hcoq defined by

C2(a) :=

[
a1 + a4 a2 + a3
−a2 + a3 a1 − a4

]
.

Definition 2.1. Two coquaternions a, b will be called similar, denoted by a ∼ b,

if the corresponding matrices C2(a), C2(b) are similar, or in other words, if there is

a nonsingular (= invertible) coquaternion h such that a = h−1bh. By

[a] := {b : b = h−1ah for all invertible h ∈ Hcoq}

we denote the equivalence class of all coquaternions which are similar to a.

R em a r k 2.1. The equivalence class [a] consists of one single element if and only

if a is real.

Lemma 2.3. Let a ∼ b, a, b ∈ Hcoq. Then

(2.11) ℜ(a) = ℜ(b), abs2(a) = abs2(b).

E x am p l e 2.1. Let a = (α, 0, 0, 0), α ∈ R, and b = (α, 5, 4, 3) be two coquater-

nions. Because a is real, then [a] consists of one single element only, i.e., a, b are

not similar. However, ℜ(a) = ℜ(b) = α and abs2(a) = abs2(b) = α2, i.e., in con-

trast to the quaternionic case, conditions (2.11) are not sufficient for similarity of

coquaternions.

Definition 2.2. Two coquaternions a, b are said to be quasi-similar, written as

a ∼q b, if (2.11) is valid.

Lemma 2.4. The relation ∼q is an equivalence relation.

P r o o f. The three properties of equivalence relations, a ∼q a (reflexivity),

a ∼q b ⇔ b ∼q a (symmetry), and a ∼q b, b ∼q c ⇒ a ∼q c (transitivity) are easily

verified. �
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The corresponding quasisimilarity classes are denoted by

[a]q = {b ∈ Hcoq : b ∼q a}.

Let us note that

a ∼ b ⇒ a ∼q b and [a] ⊂ [a]q.

Due to the first condition in (2.11), distinct real numbers are in different equivalence

classes with respect to both ∼ and ∼q.

3. Linear mappings over R in general

3.1. Column operator. Let L : R
n → R

m be a linear mapping over R. It can

be represented by a real matrix M of size (m × n), see [11]. In order to find this

matrix, we define a column operator col by

col(x) :=




x1

x2
...

xn


 ,

where x1, x2, . . . , xn are the components of x. If it happens that x is a matrix, we

put the columns of that matrix from the left to the right into one column in order to

define col for that matrix. By evaluating L at x ∈ R
n and applying the col operator

we obtain

(3.1) col(L(x)) = Mcol(x), M ∈ R
m×n, col(·) ∈ R

n,

whereM is unknown so far.

Let ej be the standard unit vectors in R
n, j = 1, 2, . . . , n. Putting x := ej , we

obtain

(3.2) col(L(ej)) = Mcol(ej) =




µ1j

µ2j

...

µmj


 , j = 1, . . . , n,

where µij are the elements of the matrix M and the right-hand side of (3.2) rep-

resents the jth column of M. Hence, the matrix M is completely known by the n

values L(ej). We note thatM will be an integer if the values of L are integers, see [16].

A typical nontrivial example is the mapping L : R
n → R

m defined by

(3.3) L(X) = AXB, A ∈ R
p×q, X ∈ R

q×r , B ∈ R
r×s,

where in this case we have m = ps, n = qr.
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3.2. Quaternionic linear mappings in one variable. Let us study quater-

nionic linear mappings Λ: H → H over R which are defined by the property

(3.4) Λ(γx+ δy) = γΛ(x) + δΛ(y) ∀x, y ∈ H ∀ γ, δ ∈ R.

All linear mappings have the property Λ(0) = 0. This follows from (3.4) by putting

x = y, γ = 1, δ = −1.

Definition 3.1. A quaternionic linear mapping Λ: H → H will be called non-

singular if Λ(x) = e has a unique solution for all choices of e ∈ H. The mapping Λ

will be called singular if it is not nonsingular.

Lemma 3.1. The linear mapping Λ is singular if and only if the homogeneous

equation Λ(x) = 0 has nontrivial solutions.

P r o o f. For the proof see [19]. �

3.2.1. Null space of Λ. The null space (or kernel) of Λ is defined by

(3.5) N := {x ∈ H : Λ(x) = 0}.

It is a linear subspace of H, regarded as a subspace over R4, i.e., the dimension of N

may vary from zero to four.

The linear mapping Λ: H → H also defines a linear mapping Λ̃ : R
4 → R

4 which

can be defined by a 4× 4 real matrix.

Theorem 3.1. Let Λ: H → H be a quaternionic linear mapping. Then there

exists a matrix M ∈ R
4×4 such that Λ(x) = Mx, where the quaternions x, Λ(x)

have to be identified with the column vectors x,Mx ∈ R
4, respectively, and where

(3.6) M := (Λ(1),Λ(i),Λ(j),Λ(k) ) .

The entries Λ(j), j = 1, 2, 3, 4, must be read as column vectors in R
4.

This theorem allows us to reduce the given linear equation to a linear matrix

equation in four variables for which solution techniques are known.

3.2.2. Quaternionic linear mappings of type Λ(x) :=
m∑
j=1

bjxcj . Let us con-

sider a quaternionic mapping

(3.7) Λm(x) :=

m∑

j=1

bjxcj

defined for any fixed positive integerm and for 2m quaternionic constants bj , cj ∈ H,

j = 1, 2, . . . ,m.
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The set of all such linear mappings Λm separates into two classes. One class con-

sists of all mappings Λm with m 6 2 for which a complete answer to all reasonable

questions can be found. All other Λm, namely those with m > 3, belong to a class

for which we can gather only incomplete information. We introduce a formal sim-

plification: Let µ(x) := b−1
m xc−1

1 . This linear mapping is nonsingular and thus (put

b̃j = b−1
m bj , c̃j = cjc

−1
1 , j = 2, 3, . . . ,m− 1),

(µ ◦ λm)(x) = b−1
m

( m∑

j=1

bjxcj

)
c−1
1 =






b1x+

m−1∑

j=2

b̃jxc̃j + xcm for m > 2,

x for m = 1

will be singular if and only if λm is singular. After a formal simplification, it turns

out that without loss of generality we can investigate

(3.8) Λm(x) := ax+

m−2∑

j=1

bjxcj + xd, m > 2,

for example

Λ2(x) := ax+ xd for m = 2,

and for m = 3 we write simply

Λ3(x) := ax+ bxc+ xd.

3.3. Linear equations in coquaternions. Linear equations in coquaternions

are formally similar to linear equations in quaternions. A linear system will always

be a linear system over R. Linearity with respect to C or to Hcoq is in general not

granted.

A linear system in n coquaternions xk, k = 1, 2, . . . , n, and m equations is defined

as follows: Let

(3.9) lj(u) :=

Kj∑

k=1

a
(j)
k ub

(j)
k , j = 1, 2, . . . ,mn

be an arbitrary set of mn linear, coquaternionic mappings in one coquaternionic

variable u, where a
(j)
k , b

(j)
k , k = 1, 2, . . . ,Kj, are given coquaternions, and Kj are

given positive integers, j = 1, 2, . . . ,mn.
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A linear system L(x) in n coquaternionic variables xk, k = 1, 2, . . . , n, and m

equations will then be defined by

L1(x) :=

n∑

j=1

lj(xj), L2(x) :=

n∑

j=1

lj+n(xj), . . . ,

Lm(x) :=

n∑

j=1

lj+(m−1)n(xj) ⇒ L(x) :=




L1(x)

L2(x)
...

Lm(x)


 ,

where x ∈ R
4n consists of one column composed out of x1, x2, . . . , xn.

Note that L is not a linear mapping over C or Hcoq. However, L is a linear mapping

over R, because real coquaternions commute with arbitrary coquaternions. Hence,

a matrixM as in (3.1) and (3.2) exists.

4. One-sided (simple) quaternionic polynomials

Let pn be a given quaternionic polynomial of degree n:

(4.1) pn(z) =

n∑

j=0

ajz
j, z, aj ∈ H, j = 0, 1, 2, . . . , n, a0an 6= 0.

Polynomial pn is called one-sided (or simple) quaternionic polynomial.

Let us note that we suppose that a0 6= 0, i.e., the origin is never a zero of pn,

an 6= 0, i.e., the polynomial degree is not less than n.

Definition 4.1. Let z0 be a zero of pn. If z0 is not real and it has the property

pn(z) = 0 ∀ z ∈ [z0],

we say that z0 generates a spherical zero or z0 is a spherical zero.

If z0 is real or does not generate a spherical zero, it is called an isolated zero.

4.1. All powers of a quaternion. To get rid of the powers zj and to simplify

formula (4.1) we apply the following two term recursion: Iteration process (two term

recursion):

(4.2) zj = αjz + βj , αj , βj ∈ R, j = 0, 1, . . . ,

where

α0 = 0, β0 = 1, αj+1 = 2ℜ(z)αj + βj , βj+1 = −|z|2αj , j = 0, 1, . . .
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In order to compute all powers of z ∈ H up to degree n, one needs n−1 quaternionic

multiplications (one quaternionic multiplication = 28 flops), whereas the above re-

cursion needs only 3n flops.

Lemma 4.1. Let z1 ∼ z2. Then αj , βj , j = 0, 1, . . . , n, defined in (4.2) are the

same for z1, z2.

P r o o f. For the proof see [26]. �

By means of recursion (4.2), the polynomial pn can be written as

(4.3) pn(z) =

n∑

j=0

ajz
j =

n∑

j=0

aj(αj + βjz) = A(z) +B(z)z,

where

(4.4) A(z) =
n∑

j=0

αjaj , B(z) =
n∑

j=0

βjaj .

Theorem 4.1. Let z0 ∈ H be fixed. Then both A(z) and B(z) are constant for

all z ∈ [z0]. Let z0 be a zero of pn, i.e., pn(z0) = A(z0) +B(z0)z0 = 0. Then

(4.5) pn(z) = A(z) + B(z)z = 0 ∀ z ∈ [z0].

The quantities A(z), B(z) in (4.5) can vanish only simultaneously.

If A(z0) = 0 and z0 is not real, then all z ∈ [z0] are zeros of pn, thus, z0 generates

a spherical zero of pn.

If A(z0) 6= 0, then z0 is an isolated zero of pn.

Theorem 4.2. Let z0, z1 ∈ H be two different zeros of pn with z0 ∈ [z1]. Then

pn(z) = 0 for all z ∈ [z1], z0 generates a spherical zero of pn, and A(z) = B(z) = 0

for all z ∈ [z0]. In particular, z0 /∈ R is a spherical zero of pn if and only if A(z0) = 0.

Finally, let us summarize: Let z0 be a zero of the one sided (simple) quaternionic

polynomial pn. Then:

1. If z0 is real, then z0 is isolated.

2. If z0 is not real and A(z0) = 0, then all z ∈ [z0] are zeros of pn, z0 is spherical.

3. If z0 is not real and A(z0) 6= 0, then z0 is isolated.

The computation of all zeros of pn, including their types, can be reduced to the

computation of all zeros of a real polynomial of degree 2n, see [14].
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5. Two-sided type quaternionic polynomials

We consider so-called two-sided polynomials

p(z) :=

n∑

j=0

ajz
jbj , z, aj, bj ∈ H, j = 0, 1, . . . , n ∈ N,(5.1)

a0b0 6= 0, anbn 6= 0.

By means of (4.2) the polynomial p can be written as

(5.2) p(z) :=

n∑

j=0

ajz
jbj =

n∑

j=0

aj(αj + βjz)bj

=

n∑

j=0

αjaj bj +

n∑

j=0

βjajzbj = A(z) +

n∑

j=0

βjajzbj,

where

(5.3) A(z) :=

n∑

j=0

αjajbj .

Let a := (a1, a2, a3, a4) ∈ H. We introduce a column operator col : H → R
4,

col(a) :=




a1
a2

a3
a4


 .

The purpose of this column operator is to regard a quaternion as a matrix with one

column and four rows.

Lemma 5.1. The column operator is linear over R, i.e.,

col(αa+ βb) = α col(a) + β col(b), a, b ∈ H, α, β ∈ R.

Lemma 5.2. For arbitrary quaternions a, b, c we have

col(ab) = ω1(a)col(b) = ω2(b)col(a),(5.4)

col(abc) = ω1(a)ω2(c)col(b).(5.5)
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We apply the mapping ω3 to the last term in (5.2), in particular,

col(abc) = ω3(a, c)col(b), a, b, c,∈ H,

to the equation

p(z) = A(z) +

n∑

j=0

βjajzbj

and obtain

(5.6) col(p(z)) = col(A(z)) +

n∑

j=0

βjω3(aj , bj)col(z) = col(A(z)) +B(z)col(z),

where

(5.7) B(z) =

n∑

j=0

βjω3(aj , bj) ∈ R
4×4.

The matrix B plays an important role in the classification of zeros of two-sided

quaternionic polynomials.

5.1. Classification of zeros of two-sided quaternionic polynomials.

Definition 5.1. Let z be a nonreal zero of p, defined in (5.1), and let z0 be the

complex representative of [z]. Then we classify the zeros z of p with respect to the

rank of B(z0), see [15].

The zero z is called zero of type k if

rank(B(z0)) = 4− k, 0 6 k 6 4 .

A zero of type 4 (rank(B(z0)) = 0) will be called a spherical zero. It has the

property that all z ∈ [z0] are zeros.

A zero of type 0 (B(z0) is nonsingular) will be called an isolated zero. In this case

col(z) = −(B(z0))
−1col(A(z0))

and this z is the only zero in [z0].

A real zero will also be called an isolated zero.

6. Zeros of one-sided polynomials over R
4 algebras

Let A be one of eight algebras in R4. We have already divided them into noncom-

mutative algebras: quaternions, coquaternions, nectarines, conectarines and commu-

tative ones: tessarins, cotessarins, tangerines, cotangerines.
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Now we will treat unilateral polynomials p of the form

(6.1) p(z) = a0 + a1z + . . .+ an−1z
n−1 + anz

n, z, aj ∈ A,

j = 0, 1, . . . , n, a0, an invertible in A.

Let us consider three noncommutative algebras Hcoq, Hnec and Hcon.

Let a = (a1, a2, a3, a4) ∈ A. We will deal with the following problem, see [9]:

Given a polynomial p over A and a similarity class [z] ⊂ A, which is known to

contain a zero z0 ∈ [z] of p, how to find the zero?

The main idea is to write the polynomial p in a formally linear form. Similarly as

for quaternions, we use the two-term recursion (4.2) and obtain

(6.2) z2 = −abs2(z) + 2ℜ(z)z,

which is valid in A.

We define the conjugate of a, denoted either by a or by conj(a), by

(6.3) a = conj(a) = (a1,−a2,−a3,−a4).

For the product aa we use again the notation

(6.4) abs2(a) = aa.

Let us restrict our attention to one quasi-similarity class [z]q. Then the coefficients

αk, βk for k > 0 are constant on this class. Applying (4.2) to all powers in the

polynomial p, we obtain

(6.5) p(z) =

n∑

k=0

akz
k =

n∑

k=0

ak(αk + βkz) =

n∑

k=0

αkak +

( n∑

k=0

βkak

)
z := A+Bz

and A, B are constant on the quasi similarity class [z]q.

Theorem 6.1. Let B be invertible on the given class [z]q and let [z]q contain

a zero z0 of p. Then

(6.6) z0 = −B−1A

is the only zero in [z]q. If A = B = 0, then all elements in [z]q are zeros of p and

there may exist another undetected zero quasi similar to r1.

P r o o f. From (6.5) it follows that p(z0) = 0. Let there be two distinct zeros,

z0, z1 ∈ [z]q. Then p(z0) = A + Bz0 = 0 and p(z1) = A + Bz1 = 0, which implies

B(z0 − z1) = 0. If B is invertible, then z0 = z1 would follow, a contradiction.

Thus, B is noninvertible if there exist two distinct zeros z1, z2 ∈ [z]q. The last part

is obvious. �
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The algorithm to find all zeros of polynomials over A can be found in [17].

R em a r k 6.1. Number of zeros: Let p be a polynomial of degree n as defined

in (6.1) over A. Then p may have n(2n− 1) zeros.

Finally, we would like to mention that in this part we used two essential ideas of

other authors, namely:

(1) The idea by Anatoliy Pogoruy and Michael Shapiro was to write the powers zj

in the form αz + β with real α, β, which reduces the two-sided polynomials

to a sum of terms of the form azb, see [26]. This idea also gave birth to the

introduction of equivalence classes of zeros in H.

(2) The idea by Ludmilla Aramanovitch was the introduction of the matrix ω2 (for-

mula (2.3)) which permitted to pull out the variable z from azb (formula (5.5)).

Both ingredients allowed the development of the important formula (6.2), see [1].

7. The algebraic eigenvalue problem over noncommutative algebras

7.1. Eigenvalues of matrices with general algebraic entries.

Definition 7.1. Let A ∈ An×n for an algebra A. If there exists an element

λ ∈ A and a column vector x ∈ An×1 such that

(7.1) Ax = xλ, x contains an invertible component,

then λ is called the eigenvalue ofA with respect to the eigenvector x. The pair (λ,x)

is called the eigenpair.

The set of all eigenvalues of A is denoted by σ(A).

Lemma 7.1. Let A be a noncommutative algebra and λ an eigenvalue of A with

respect to an eigenvector x. Then for all invertible h ∈ A, the set Λ := {h−1λh}

consists of eigenvalues of A with respect to xh.

Lemma 7.2. Let A,B ∈ An×n be two similar matrices. Then σ(A) = σ(B).

7.2. Some facts about eigenvalues. In order to find all eigenvalues of a given

matrix A ∈ An×n, it is sufficient to find one representative in each similarity class

of eigenvalues. The number of eigenvalues of A will be, correspondingly, defined as

the number of distinct similarity classes of σ(A).

Theorem 7.1. Let A be either a division algebra or a commutative algebra and

let A ∈ An×n be an upper triangular matrix. Then the diagonal elements of A are

the eigenvalues of A. The same is true for lower triangular matrices.
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Theorem 7.2. Let A ∈ An×n be a given upper or lower triangular matrix with

matrix entries ajk, j, k = 1, 2, . . . , n. The matrix A is singular if and only if one of

the diagonal elements ajj , j = 1, 2, . . . , n, is singular.

The eigenvalue problem over an arbitrary algebra can be expressed in the real

form

(7.2) (M− Λ)col(x) = 0,

and there will be a solution x 6= 0 if and only if there is a matrix Λ such thatM−Λ

is singular. The matrixM− Λ is a triangular block matrix.

8. Computation of eigenvalues by Newton’s technique

For a general square matrix A ∈ An×n we consider the eigenvalue problem (7.1)

in the form

G1(x, λ) := xλ−Ax,(8.1)

G2(x) := ‖col(x)‖2 − 1(8.2)

and solve

(8.3) G(x, λ) :=

[
G1(x, λ)

G2(x)

]
= 0

by Newton’s method. The quantity ‖·‖2 is the square of the standard Euclidean

norm in R
nN . The condition G2(x) = 0 is a normalization condition for the eigen-

vectors. It is independent of the algebra A under investigation. However, it does not

imply uniqueness of x. In all algebras the eigenvectors x and −x are simultaneous

eigenvectors or not.

If z ∈ A commutes with an eigenvalue λ and ‖col(z)‖ = 1 (Euclidean norm),

then x and xz are both eigenvectors for the same λ.

Applying the techniques developed in [21], we obtain the derivative of G in the

form

(8.4) G′(x, λ)(h, h1) =

[
hλ+ xh1 −Ah

2col(x)⊤col(h)

]
, x,h ∈ An×1, h1 ∈ A1×1.

The Newton’s technique consists of solving the linear system

(8.5) G′(xk, λk)(h, h1) = −G(xk, λk), k = 0, 1, . . . ,

for (h, h1), where the start values x0, λ0 are given, in principle, arbitrarily.
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We observe that the number of real unknowns (x, λ) in equation (8.3) is (n+1)N ,

whereas the number of real equations is nN +1. In the linear Newton equation (8.5)

we have, thus, (n+1)N real unknowns (h, h1) and nN +1 real equations. Thus, the

system is underdetermined.

Finally, the left-hand side of (8.5) is linear in (h, h1) and thus, can be expressed

by a matrix the form of which is given in (8.4). The result is

G′(x, λ)(h, h1) = M

[
col(h)

col(h1)

]
, whereM ∈ R

(nN+1)×(n+1)N .

9. Calculation of eigenvalues of a quaternion matrix using

the companion matrix and companion polynomial

Given the polynomial coefficients a0, a1, . . . , an, an = 1, the companion matrix is

defined as

(9.1) C :=




0 0 . . . 0 −a0
1 0 . . . 0 −a1
...
. . .

...
...

0 0
. . . 0 −an−2

0 0 . . . 1 −an−1



∈ H

n×n.

The essence of the method is to find the set of eigenvalues of C. How to find these

eigenvalues?

Let us recall that we identify complex numbers d1 + d2i with quaternions d =

(d1, d2, 0, 0).

Theorem 9.1. Two complex numbers with nonnegative imaginary part are sim-

ilar if and only if they are identical.

In order to find the eigenvalues of A we use an isomorphism

ι : H → C2×2

defined by

(9.2) ι(a) =

[
w z

−z w

]
=

[
a1 + a2i a3 + a4i

−a3 + a4i a1 − a2i

]

and apply this isomorphism to the whole matrix A.
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Theorem 9.2. Eigenvalues of the matrix ι(A):

(i) The 2n eigenvalues of the complex matrix ι(A) are either real or pairs of complex

conjugate numbers.

(ii) Real eigenvalues of ι(A) appear in duplicate.

(iii) The eigenvalues of ι(A) are similar to the eigenvalues of A.

(iv) The similarity classes of the eigenvalues of ι(A) are identical with the eigenval-

ues of A.

Let

pn(z) =

n∑

j=0

ajz
j, z, aj ∈ H, j = 0, 1, 2, . . . , n, an = 1.

The main information is the following.

Theorem 9.3. The zeros of the polynomial p are located in the similarity classes

of the eigenvalues of the complex matrix ι(C).

How to find the zeros of p if the similarity classes of the eigenvalues of ι(C) are

known?

9.1. Niven’s algorithm. Niven’s algorithm of 1941 is based on the following

representation of p.

Let r be a quadratic polynomial of the form r(z;u, v) = z2 − 2uz + v, u, v ∈ R.

The central property of this polynomial r is that it vanishes if we choose u = ℜ(z),

v = abs2(z). Due to (2.10), r will even vanish if we replace z by all elements of [z]

but keep u, v unchanged, i.e., r will vanish for the whole class [z]. Dividing of p by r

yields

(9.3) p(z) = q(z)r(z;u, v) +R0(u, v)z +R1(u, v),

where q is a polynomial of degree n− 2 and R0(u, v), R1(u, v) follow from a (simple)

recursion based on (9.3). Now R0(u, v)z+R1(u, v) may be regarded as the remainder

of the division. The polynomial q is of no importance.

We insert one of the eigenvalues z of ι(C) including u = ℜ(z), v = abs2(z) into

Niven’s equation (9.3). Then r(z;u, v) = 0 and the equation

(9.4) p(z) = R0(u, v)z +R1(u, v) = 0

remains to be solved. If R0(u, v) is invertible, then

z = −(R0(u, v))
−1R1(u, v).

This is an isolated zero. If R0(u, v) = 0, then also R1(u, v) = 0 and all elements

of [z] solve (9.4). This zero of p is spherical.
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Now it is natural to ask how many zeros the polynomial p has. The number of

eigenvalues of ι(C) is 2n = 2n1 + 2n2, where 2n1 is the number of real eigenvalues

and 2n2 is the number of complex eigenvalues.

Altogether, there are at most n1 distinct real eigenvalues and at most n2 distinct

complex eigenvalues with positive real part. Thus, the number of zeros of p is at

most n1 + n2 = n. This result was already known by Gordon and Motzkin, 1965.

9.2. The introduction of the companion polynomial. Again based on the

coefficients a0, a1, . . . , an = 1 of the given polynomial p, the following real polyno-

mial c is defined by

c(z) =
n∑

j,k=0

ajakz
j+k =

2n∑

ℓ=0

bℓz
ℓ,(9.5)

bℓ =

min(ℓ,n)∑

m=max(0,ℓ−n)

amaℓ−m ∈ R,(9.6)

and c is called the companion polynomial of p. This name with this definition was

for the first time used by Janovská and Opfer, [14].

We will call the solutions of c(z) = 0 the roots of c, in contrast to zeros, which are

the solutions of p(z) = 0.

Since the polynomial c is real and of degree 2n, it has an even number (zero

allowed) of real roots and an even number (zero allowed) of complex roots, where

the complex roots always appear in pairs of complex conjugate roots.

Theorem 9.4. The zeros of the polynomial p are located in the similarity classes

of the roots of the real companion polynomial c.

P r o o f. For the proof see [18]. �

In order to find the zeros of p we do exactly the same steps as before with the

eigenvalues of ι(C). The zeros of p are located in the similarity classes of the eigen-

values of ι(C) and simultaneously in the similarity classes of the roots of c. Since

these quantities are real or complex, they must be identical, which implies:

Theorem 9.5. Let C be the companion matrix defined by the quaternionic poly-

nomial coefficients of p and let c be the companion polynomial of p. Then the

companion polynomial c is the characteristic polynomial of ι(C).

P r o o f. For the proof see [18]. �
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Let us see a simple example. Let p(z) = z + a and let a = (a1, a2, a3, a4). The

companion polynomial of p is

c(z) = z2 + 2ℜ(a)z + abs2(a).

The companion matrix is C = [−a] and (see equation (9.2))

ι(C) =

[
−(a1 + a2i) −(a3 + a4i)

a3 − a4i −a1 + a2i

]

and

det(I2λ− ι(C)) = λ2 + 2a1λ+ a21 + a22 + a23 + a44,

which coincides with the above companion polynomial c.

In the meantime it was shown (various papers by Janovská and Opfer) that last

Theorem 9.5 is also valid in the remaining three noncommutative R4 algebras:

⊲ Hcoq, the algebra of coquaternions,

⊲ Hnec, the algebra of nectarines,

⊲ Hcon, the algebra of conectarines.

There is one difference: The equation

p(z) = R0(u, v)z +R1(u, v) = 0

has more possibilities for solving than in the quaternionic case and the number of

zeros is limited to the larger number

(
2n

2

)
= n(2n− 1).
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