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Abstract. We provide a theoretical study of the iterative hard thresholding with par-
tially known support set (IHT-PKS) algorithm when used to solve the compressed sensing
recovery problem. Recent work has shown that IHT-PKS performs better than the tradi-
tional IHT in reconstructing sparse or compressible signals. However, less work has been
done on analyzing the performance guarantees of IHT-PKS. In this paper, we improve
the current RIP-based bound of IHT-PKS algorithm from δ3s−2k <

1√
32

≈ 0.1768 to

δ3s−2k <

√
5−1
4

≈ 0.309, where δ3s−2k is the restricted isometric constant of the measure-
ment matrix. We also present the conditions for stable reconstruction using the IHTµ-PKS
algorithm which is a general form of IHT-PKS. We further apply the algorithm on Least
Squares Support Vector Machines (LS-SVM), which is one of the most popular tools for
regression and classification learning but confronts the loss of sparsity problem. After the
sparse representation of LS-SVM is presented by compressed sensing, we exploit the support
of bias term in the LS-SVM model with the IHTµ-PKS algorithm. Experimental results on
classification problems show that IHTµ-PKS outperforms other approaches to computing
the sparse LS-SVM classifier.

Keywords: iterative hard thresholding; signal reconstruction; classification problem; least
squares support vector machine

MSC 2020 : 34B16, 34C25, 90C31

1. Introduction

According to the theory of compressive sensing (CS), one can effectively compress

the data while acquiring the signal and the sampling frequency can be lower than

the Nyquist frequency, which decreases the sample data and frees up the storage
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space. It also provides enough information. Currently, compressed sensing is widely

used in single-pixel cameras, medical imaging, radar, sampling theory, statistics,

and machine learning. The standard compressed sensing problem is to reconstruct

the sparse vector x ∈ R
n from the underdetermined measurement y = Ax ∈ R

m,

where m < n, A ∈ R
m×n is the measurement matrix, and y is the measurement

vector. The vector x is referred as s-sparse if ‖x‖0 6 s, where the ‘l0 norm’ ‖x‖0
counts the number of nonzero entries in x and s is an integer number. The first

algorithmic approach is l0 minimization, which tries to reconstruct x as a solution

of the optimization problem

(P0) min
x∈Rn

‖x‖0 s.t. Ax = y.

However, it is a nonconvex problem and NP-hard in general. The second method

solves a convex relaxed (P0) and is known as l1 minimization or basis pursuit [10],

(P1) min
x∈Rn

‖x‖1 s.t. Ax = y.

It has been shown that the sparse vector x can be recovered stably provided that x is

sufficiently sparse and the matrix A obeys a condition known as the restricted isom-

etry property (RIP) [12]. That is to say the restricted isometry constant, denoted as

δs, of the matrix A is smaller than a certain threshold value δ
∗, where δ∗ ∈ (0, 1). The

condition δs < δ∗, which ensures the success of signal recovery of a given algorithm,

is called the restricted isometry property based (RIP-based) bound of the algorithm.

Compressed sensing algorithms can be classified into three categories: optimiza-

tion methods, greedy methods and thresholding-based methods. The IHT algorithm

belongs to the third category that provides near-optimal error guarantees but does

not require matrix inversion [6]. There is a large amount of literature on the opti-

mization properties of the IHT algorithm [1], [19], [29]. In this paper, we research

a tighter RIP-based bound for an improved IHT algorithm. The IHT was first in-

troduced by Blumensath et al. [4] and its main iteration step is

x(t+1) = Hs(x
(t) +A⊤(y −Ax(t))),

where the operator Hs(z) ∈ R
n called the hard thresholding operator retains the s

largest absolute entries of z and sets other entries to zeros. Much work has been

focusing on the RIP-based bound for guaranteed performance of the IHT algorithm.

Blumensath et al. showed that under the condition of δ3s <
1√
32

≈ 0.1768, it can
recover sparse signals stably [5]. Later, this result was improved to δ3s <

1
2
√
3
≈

0.2886 by Foucart [13]. Recently, the result was improved to δ3s <
√
5−1
4 ≈ 0.309

by Zhao and Luo [31]. It is worth mentioning that Blumensath et al. developed
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the RIP-based bound for the performance of IHT according to the geometric rate

α 6 1
2 instead of α < 1. For the convenience of comparison, the results obtained

by Foucart [13] and Zhao [31] are also provided in the case that the geometric rate

α 6 1
2 in this paper.

Researchers have found that the reconstruction of sparse or compressible signals

with partially known support (PKS) in modified compressed sensing shows better

performances than the traditional compressed sensing [25], [16], [3], [2], [11]. Different

from the traditional basis pursuit (i.e., l1 minimization) to solve the minimum l1 norm

of the overall sparse vector x, Vaswani et al. [24] considered minimizing l1 norm of

the sparse signal x which does not contain the known partial support set. They

proposed the modified basis pursuit

(1.1) min
x∈Rn

‖xT c

0
‖1 s.t. y = Ax

to recover the sparse signal, where T0 is the known part of the support of x, T
c
0 is the

complement of T0, and xT c

0
denotes the vector inRn equal to x on T c

0 and equal to zero

on T0. Jacques [15] later proved that this technique can also extend to the case of cor-

rupted measurements and compressible signals. They proposed to solve the problem

(1.2) min
x∈Rn

‖xT c

0
‖1 s.t. ‖y −Ax‖2 6 ε

and proved that the sparse signal can be recovered stably if δ22c + 2δk+2c < 1, where

c ∈ N, k = |T0|. Differently from the traditional algorithm to solve the minimum l1

norm of the overall sparse vector x, the above problem is solved by the minimum l1
norm of the sparse signal x which does not contain the known partial support set.

Carrillo et al. [9] further proposed the iterative hard thresholding with partially

known support (IHT-PKS) algorithm to solve the compressed sensing problem. The

main iteration step of IHT-PKS is

x(t+1) = HT0

s−k(x
(t) +A⊤(y −Ax(t))),

where k = |T0|. The algorithm selects the first s− k elements with the largest abso-

lute value that are not in T0 at each iteration and retains the elements in T0. It was

shown that when δ3s−2k <
1√
32

≈ 0.1768, the s-sparse signal can be stably recovered.
Their experimental results demonstrated that IHT-PKS performs better than other

algorithms such as the orthogonal matching pursuit (OMP) [17], compressed sam-

pling matching pursuit (CoSaMP) [30], etc. Carrillo et al. also extended the ideas

of modified compressed sensing to various greedy algorithms [8]. The benefits of

known partial support on the performance of joint-sparse recovery algorithms were

also studied by Besson et al. [3].
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In this paper, we prove that the result in [9] for IHT-PKS can be improved to

δ3s−2k <
√
5−1
4 ≈ 0.309, which is also a tighter RIP-based bound than that required

by IHT in [31] due to δ3s−2k 6 δ3s. Note that a general form of the IHT-PKS

algorithm could allow stepsizes µ in front of A⊤(y−Ax(t)), so we also present a suf-

ficient condition for the stable recovery of the IHTµ-PKS algorithm. We further

apply the IHTµ-PKS algorithm on the sparse Least Squares Support Vector Ma-

chine (LS-SVM) to obtain sparse classifiers. LS-SVM is one of the most popular

tools for regression and classification of learning tasks. However, one of the major

drawbacks of LS-SVM is the loss of sparseness, in which a great number of support

vectors (SVs) are required in the model. The support vectors are typically a portion

of training of samples, used to construct the decision function. Too many SVs might

have a negative impact on the generalization ability of the trained model. The same

holds for computational complexity scales with the increasing number of SVs. By

using IHTµ-PKS, we can reduce the computation cost and achieve a more generalized

and sparser LS-SVM model.

The rest of the paper is organized as follows. In Section 2, we introduce some

related work on RIP-based sufficient conditions for basis pursuit, IHT and IHT-

PKS. In Section 3, we present the conditions for stable recovery by the IHTµ-PKS

algorithm and give a tighter RIP-based bound for guaranteed recovery via IHT-PKS.

In Section 4, we discuss LS-SVM classifiers and present how the IHTµ-PKS algorithm

can address the sparsity issue in LS-SVM. Numerical experiments are presented in

Section 5, followed by the conclusions of this paper in Section 6.

2. Related work

In this section, some related work on RIP-based sufficient conditions for the basis

pursuit, IHT and IHT-PKS are introduced. Table 1 gives the main notations used

in the rest of this paper.

Notation Definition

[n] The set of natural numbers not exceeding n, i.e., {1, 2, . . . , n}
S; Sc A subset of [n]; the complement of a set S, i.e., Sc = [n] \ S
card(S) The cardinality of a set S

AS A submatrix of matrix A with columns indexed by S

xS The vector in R
n equal to x on S and to zero on Sc

supp(x) {j ∈ [n] : xj 6= 0}

Table 1. Notations used in this paper.
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2.1. Basis pursuit for sparse signal recovery. For the optimization prob-

lem (P1), lots of conditions have been investigated on the matrix A for ensuring

exact or approximate reconstruction of the sparse vector x. Foucart [12] proved that

every s-sparse x (i.e., ‖x‖0 6 s) can be recovered from the problem if the restricted

isometry constant δ2s of the matrix A of number 2s in a row is less than
3

4+
√
6
≈

0.4652, where the restricted isometry constant is defined below.

Definition 2.1 ([7]). The sth restricted isometry constant δs = δs(A) of a ma-

trix A is the smallest δ > 0 such that

(2.1) (1− δ)‖x‖22 6 ‖Ax‖22 6 (1 + δ)‖x‖22

for all s-sparse vectors x ∈ R
n. Equivalently,

(2.2) δs = max
S⊂[n],card(S)6s

‖A⊤
SAS − I‖2→2,

where the operator norm ‖A‖2→2 := sup
x 6=0

‖Ax‖2/‖x‖2.

If δs < 1, A is said to satisfy the restricted isometry property (RIP). The larger the

restricted isometry constant, the smaller the number of measurements required for re-

covering sparse signal. As is shown in [14], for certain random matrix A/
√
m ∈ R

m×n

(such as Gaussian, sub-Gaussian, and Bernoulli random matrix), if we have

m > Cδ−2[s(ln(N/s) + 1) + ln(2ε−1)] ∀ δ, ε ∈ (0, 1), C > 0

with probability at least 1− ε, the restricted isometry constant of A satisfies δs 6 δ.

Hence, a great many scholars are motivated to find a tight RIP-based bound for the

guaranteed performance of specific algorithms.

2.2. Iterative hard thresholding (IHT). In the section, we introduce the IHT

algorithm, which is a thresholding-based method, used in the compressed sensing.

To describe the IHT algorithm, it is necessary to introduce the hard thresholding

operator first. For an arbitrary vector v ∈ R
n and a subset Ω of [n], we define the

operator

(PΩ(v))i =

{
vi if i ∈ Ω,

0 otherwise.

If τ is the support set corresponding to the positions of the top k largest absolute

values of the vector v, then we have the hard thresholding operator

Hk(v) := Pτ (v).

The IHT algorithm is formally described as follows.
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Algorithm 1. IHT

Input: The measurement matrix A, measurement vector y, sparsity level s.

1: Choose an initial s-sparse vector x(0), typically x(0) = 0.

2: Repeat the following iteration until a stopping criterion is met:

x(t+1) = Hs(x
(t) +A⊤(y −Ax(t))).

Output: The s-sparse vector x̂.

Blumensath et al. [5] investigated the RIP-based bound for guaranteed perfor-

mance of the IHT algorithm and derived that in the case of a given observation

y = Ax+ e with error e, where x is s-sparse, and if the restricted isometry constant

of A of number 3s in a row satisfies δ3s <
1√
32
, then at the tth iteration, the recovered

sparse signal x(t) satisfies

‖x− x(t)‖2 6 2−t‖x− x(0)‖2 + 5‖e‖2.

A more generalized condition is given by [22]. Let x ∈ R
n be an s-sparse signal

and k > s. If the restricted isometry constant of the measurement matrix A satisfies

δ2k+s < 1/
√
8v, where

v = 1 +
̺+

√
(4 + ̺)̺

2
, ̺ =

min{s, n− k}
k − s+min{s, n− k} ,

then at the tth iteration, the recovered sparse signal x(t) satisfies

‖x− x(t)‖2 6 2−t‖x− x(0)‖2 +D‖e‖2,

where x(0) is the initial point of IHT and D is a constant.

Recently, a new improved RIP-based bound of the IHT algorithm was derived

by Zhao and Luo [31]. They found that if the restricted isometry constant of A of

number 3s in a row satisfies δ3s <
√
5−1
4 , then at the tth iteration, the recovered

sparse signal x(t) satisfies

‖x− x(t)‖2 6 2−t‖x− x(0)‖2 +D‖e‖2.

This significantly improves the RIP-based bound from δ3s <
1√
32
in [5] to δ3s <

√
5−1
4 .

Some works have shown that the modified compressed sensing yields better results

than the traditional compressed sensing in the reconstruction of the sparse signals if

partial support of the sparse signal is known. Carrillo et al. [9] proposed a modified
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iterative hard thresholding algorithm with partially known support (IHT-PKS) and

proved that the sparse signal can be recovered stably, if the restricted isometry

constant of the measurement matrix satisfies δ3s−2k <
1√
32
.

Assume the support set of s-sparse signal x is partially determined, i.e., T =

supp(x) and T = T0 ∪ ∆, where T0 ⊂ {1, 2, . . . , n} is the known part of the sup-
port set, ∆ ⊂ {1, 2, . . . , n} is the undetermined part of the support set. If the
restricted isometry constant of the measurement matrix A satisfies δ3s−2k < 1√

32
,

where k = |T0|, ‖A‖2 < 1 and ‖e‖2 6 ε, then at the tth iteration, the recovered

sparse signal x(t) satisfies

‖x− x(t)‖2 6 αt‖x‖2 + βε,

where α =
√
8δ3s−2k, β = 2

√
1 + δ2s−k(1 − αt)/(1− α).

In this paper, we improve the RIP-based bound in [9] and show that when the

(3s − 2k)th restricted isometric constant of a measurement matrix meets δ3s−2k <√
5−1
4 , the original sparse signal can be stably recovered. Note that the RIP-based

bound δ3s−2k <
√
5−1
4 is tighter than δ3s−2k <

1√
32
in [9]. This makes the recovery

of sparse signal easier to implement. The details are described in Section 3.

3. Improved RIP bound for IHT-PKS

In this section we first introduce the IHT-PKS algorithm and then we show an

improved RIP bound of IHT-PKS.

3.1. Iterative hard thresholding with partially known support (IHT-

PKS). IHT-PKS algorithm was first proposed by Carrillo et al. [9]. It is a modified

iterative hard thresholding algorithm that incorporates the known support in the

recovery process. It has been verified that using the prior support information re-

laxes the conditions for stable reconstruction. To describe the IHT-PKS algorithm,

we give the definition of another operator. For an arbitrary vector α ∈ R
n and

a subset ϕ of [n],

Hϕ
u (α) = αϕ +Hu(αϕc), where u ∈ N.

Assuming that the partial support of sparse signal is known a priori, the important

step of the IHT-PKS algorithm is given as

x(t+1) = HT0

s−k(x
(t) +A⊤(y −Ax(t))),

where k = |T0| and T0 represents the known part of the support set. The algorithm
selects the first s − k elements with the largest absolute value except T0 at every

iteration and retains the elements in T0. The IHT-PKS algorithm reads as follows.
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Algorithm 2. IHT-PKS

Input: The measurement matrix A, measurement vector y, sparsity level s, set T0
of the partially known support, and k = |T0|.
1: Choose an initial s-sparse vector x(0), typically x(0) = 0.

2: Repeat the following iteration until a stopping criterion is met:

x(t+1) = HT0

s−k(x
(t) +A⊤(y −Ax(t))).

Output: The s-sparse vector x̂.

Algorithm 3. IHTµ-PKS

Input: The measurement matrix A, measurement vector y, sparsity level s, set T0
of the partially known support, step size µ > 0, and k = |T0|.
1: Choose an initial s-sparse vector x(0), typically x(0) = 0.

2: Repeat the following iteration until a stopping criterion is met:

x(t+1) = HT0

s−k(x
(t) + µA⊤(y −Ax(t))).

Output: The s-sparse vector x̂.

3.2. Improved RIP-based bound. We present a sufficient condition for the

stable recovery of the IHTµ-PKS algorithm and give a tighter RIP-based bound for

the guaranteed performance of the IHT-PKS algorithm in this section. The details

of the IHTµ-PKS algorithm are as follows.

An inequality that will be used later is initially presented. Let a(t+1) = x(t) +

µA⊤(y − Ax(t)), T = supp(x), T (t) = supp(x(t)) and U (t) = supp(Hs−k(a
(t)
T c

0
)). Put

B(t+1) = T ∪ T (t+1) = T0 ∪∆ ∪ U (t+1), where ∆ represents the undetermined part

of the support set. Differently from the proof of Theorem 1 in [9] which shows that

‖xB(t+1) − x
(t+1)

B(t+1)‖2 6 2‖xB(t+1) − a
(t+1)

B(t+1)‖2,

when the step size µ = 1. We refer to [22], however, this paper presents a new

estimate

‖xB(t+1) − x
(t+1)

B(t+1)‖2 6

√
3 +

√
5

2
‖xB(t+1) − a

(t+1)

B(t+1)‖2,

where the step size µ > 0, under the condition of partial support set, is known

to derive an improved RIP-based bound. To facilitate the proof of the following

theorem, we define a more extensive restricted isometry constant

(3.1) δs,µ = max
S⊂[n],card(S)6s

∥∥∥A⊤
SAS − 1

µ
I
∥∥∥
2→2

.
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Notice that when µ = 1, δs and δs,µ are equivalent. The lemmas below also play

a significant role when proving the conclusions of this paper.

Lemma 3.1 ([22]). Let y ∈ R
m be a vector. For all matrices A ∈ R

m×n and any

index set Γ with |Γ| = s, the formula

(3.2) ‖A⊤
Γ y‖2 6

√
1 + δs‖y‖2

holds.

Lemma 3.2 ([13]). Let v ∈ R
n be a vector and S be a subset of [n]. If |S ∪

supp(v)| 6 t for all matrices A ∈ R
m×n, then the formula

(3.3) ‖[(I −A⊤A)v]S‖2 6 δt‖v‖2

holds.

Lemma 3.3. Let v ∈ R
n be a vector, µ be a constant, and S be a subset of [n].

If |S ∪ supp(v)| 6 t for all matrices A ∈ R
m×n, then the formula

(3.4)
∥∥∥
[ 1
µ
(I − A⊤A)v

]
S

∥∥∥
2
6 δt,µ‖v‖2

holds.

P r o o f. The proof of this lemma is presented in Appendix. �

The following are the important conclusions given in this paper for guaranteeing

stable the signal reconstruction using the IHTµ-PKS algorithm.

Theorem 3.1. Let x ∈ R
n be an s-sparse vector satisfying y = Ax + e, where

‖e‖2 < ε. Put T = supp(x) and T = T0 ∪∆, |T | = s and |T0| = k. Suppose that the

restricted isometric constant of the matrix A ∈ R
m×n of number (3s − 2k, µ) in a

row satisfies δ3s−2k,µ < (
√
5− 1)/(4µ), then through the IHTµ-PKS algorithm, the

error in the tth iteration is

(3.5) ‖x− x(t)‖2 6 αt‖x‖2 + βε,

where α =

√
3+

√
5

2 µδ3s−2k,µ, β = µ

√
3+

√
5

2 (1 + δ2s−k)(1− αt)/(1− α).

P r o o f. The proof of this theorem is presented in Appendix. �
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R em a r k 3.1. According to Theorem 3.1, when δ3s−2k,1 <
√
5−1
4 ≈ 0.309, we

have ‖x − xt‖2 6 2−t‖x‖2 + βε. Compared to the restricted isometry constant

δ3s−2k <
1√
32

= 0.1768 derived in [9], the condition given in this paper is weaker and

easier to realize.

R em a r k 3.2. According to Theorem 3.1, when µ = 1 we have ‖x − x(t)‖2 6

2−t‖x‖2 + βε, where β =

√
3+

√
5

2 (1 + δ2s−k)(1 − αt)/(1− α). Compared to β =

2
√
1 + δ2s−k(1− αt)/(1 − α) given in [9], we have a tighter error bound.

R em a r k 3.3. The RIP-based bound for the guaranteed performance of IHT-

PKS is tighter than the very recent result for IHT in [31], i.e., that δ3s <
√
5−1
4 on

account of δ3s−2k 6 δ3s. It should be noted that our proof method is different from

that of [31]. A smaller order of RIP reduces the number of measurements required

for the approximate reconstruction. In the worst case, when the cardinality of the

partially known support is zero, we have the same condition required by IHT.

In summary, we not only present a theoretical analysis about the IHTµ-PKS al-

gorithm but also give an improved RIP-based bound of the IHT-PKS algorithm.

4. Application on sparse LS-SVM

In this section, we first briefly review the well known theory about the sparse

LS-SVM, and then we show how to use the IHTµ-PKS algorithm to perform model

training and SVs selection simultaneously.

For a binary classification problem with the training set {xi, yi}Ni=1, xi ∈ R
d is

the ith input sample and yi ∈ {1,−1} is the class label. The LS-SVM is trained by
addressing the optimization problem

(4.1) minJ (w, b, e) =
1

2
w⊤w+

γ

2

N∑

i=1

e2i s.t. yi = w⊤ϕ(xi)+b+ei, i = 1, 2, . . . , N,

where ϕ(xi) is a nonlinear function which maps the input space into a higher dimen-

sional space, e is the error term, γ is a regularization parameter. Then, we can get

its Lagrangian function

L(w, b, e;α) = J (w, b, e) +

N∑

i=1

αi[yi − w⊤ϕ(xi)− b− ei],

where αi are the Lagrange multipliers, which can be either positive or negative due to

the equality constraints. The Karush-Kuhn-Tucker conditions for the above problem
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are reduced to a linear system by getting rid of w and e,

(4.2)

[
Q + γ−1IN 1N

1⊤
N 0

] [
α

b

]
=

[
y

0

]
,

where Qij = ϕ(xi)
⊤ϕ(xi) is a kernel function, and 1N represents the N dimensional

vector whose elements are equal to 1. The most used kernel functions are the linear

kernel Qij = x⊤i xj , polynomial kernel Qij = (x⊤i xj +1)d where d > 1, and Gaussian

radial basis (RBF) kernel Qij = exp{−‖xi − xj‖2/σ2}.
Notice that setting a particular element of α to zero is equivalent to eliminating the

corresponding training sample or SVs. Hence, the goal of finding a sparse solution,

within a given tolerance of accuracy, can be equated to solving (4.2) by minimizing

the l0 norm of the vector [α
⊤, b]⊤. The training algorithms for the sparse LS-SVM

using compressive sampling are investigated in [27], [21], [28]. Let x =

[
α

b

]
, ψ =

[
Q+ γ−1IN 1N

1⊤
N 0

]
, and z =

[
y

0

]
. The sparse LS-SVM problem can be cast as

(4.3) min ‖x‖0 s.t. ψx = z.

When problem (4.3) is minimized, all N samples from the training set are taken

into account, which can be expensive when working with large training sets. Yang [28]

further designed the sparse LS-SVM training with fewer measurements. Given a mea-

surement matrix A ∈ R
M×N (M < N), the measurement vector is given by Y = Az

and the optimization problem (4.3) can be expressed as

(4.4) min ‖x‖0 s.t. Dx = Y,

where D = Aψ is the dictionary. As seen, the computational complexity is now only
anM × (N +1)-dimensional linear system that needs to be solved. Compared to the

original model, which has the size (N + 1)× (N + 1), this is significantly smaller.

To train the sparse LS-SVM, a variety of optimization approaches have been ap-

plied to solve the LS-SVM model. For instance, Suykens et al. first proposed prun-

ing training samples that have the smallest absolute support values [23]. However,

this method might eliminate training samples near the decision boundary, which

has a negative influence on the training performance. An improved method was

proposed in [18], where only a reduced training set comprised of samples near the

decision boundary is used to train the LS-SVM. Yang et al. proposed an OMP al-

gorithm to regard the support vectors as a dictionary and select the important ones

that minimize the residual output error iteratively [28]. Another sparsity enhanced

method was proposed in [20], where the least important SVs are removed through

regularization to accelerate the training process.
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In this paper, the IHTµ-PKS algorithm used to solve the sparse LS-SVM model

does not ignore the bias term like other algorithms do. The support of the bias term in

the LS-SVM is used to assist finding the important support vectors. It has also been

proven in Theorem 1 that when the measurement matrix satisfies δ3s−2k,µ <
√
5−1
4 ,

it can stably recover the s-sparse signal. In consequence, it is feasible to apply the

IHTµ-PKS algorithm to train the sparse LS-SVM model.

5. Numerical experiments

In this section, we verify the performance of IHTµ-PKS for real-world datasets.

The task is to verify the advantages of the IHTµ-PKS algorithm in solving the

sparsity issue of the LS-SVM. All the experiments were carried out in Matlab R2021a

on a personal computer with 2.40 GHz Intel processor and 16.00 GB RAM.

5.1. Data sets. For the classification experiments, we use four data sets Rip-

ley [26], Ionosphere1, AlgerianForestFires2, Madelon3. Each data set contains two

subsets: training and testing. Table 2 gives the basic statistics of these data sets.

Data set Features Size

Ripley 2 Train 250

Test 1000

Ionosphere 34 Train 202

Test 149

AlgerianForestFires 13 Train 122

Test 121

Madelon 500 Train 1000

Test 1600

Table 2. Statistics of the data sets from the UCI benchmark repository.

5.2. Evaluation metrics. To evaluate the effectiveness and efficiency of classi-

fication, we calculate the classification accuracy and the running time of different

algorithms, where accuracy is the ratio of correct labels to recovered labels:

accuracy =
|ycor|
|yrec|

× 100%,

where |ycor| denotes the number of correct labels in recovered labels.
1 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
2 http://archive.ics.uci.edu/ml/datasets.php
3 https://jundongl.github.io/scikit-feature/datasets.html
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5.3. Baseline methods. We compare IHTµ-PKS with the three baselines com-

monly used in compressed sensing: orthogonal matching pursuit (OMP), iterative

hard thresholding (IHT) and fast hard thresholding (FHTP) [13]. The stepsizes µ of

A⊤(y − Ax(t)) in IHTµ-PKS, IHT and FHTP are set to µ = 103/(1000‖D‖22). IHT
is introduced in Section 2.2. FHTP is a fast version of the hard thresholding pursuit

algorithm, where the orthogonal projection is replaced by a certain number of gra-

dient descent iterations [13]. OMP is a greedy iterative method. In each iteration,

it selects the columns of the matrix A to maximize the correlation between the se-

lected columns and the current redundant vector y−Ax(t); then, the relevant part is
subtracted from the original signal vector. This is repeated until the number of itera-

tions reaches the sparsity s. Yang et al. [28] adopted the OMP algorithm to train the

LS-SVM and verified that compared to conventional training algorithm, the OMP

algorithm achieves a significant improvement in terms of classification accuracy.

5.4. Experimental results.

5.4.1. Classification. We use the grid search to tune parameters γ, d and σ

in the problem (4.4), where d and σ are parameters of a polynomial kernel Q and

RBF kernel Q, respectively. The Gaussian random matrix was selected as the mea-

surement matrix and the zero vector was selected as the initial vector. For the

classification experiment on the data Ripley, we employ a liner kernel function, on

the Ionosphere data, we employ a polynomial kernel function, on the AlgerianForest-

Fires and Madelon data, we use a RBF kernel function. For each data set, after we

obtain the optimal parameters out of the grid search, we calculate the average ac-

curacy and running time over 20 runs of the experiment. The experiment results

of classifying the four real-world data sets are given in Tables 3, 4, 5 and 6 for the

datasets Ripley, Ionosphere, AlgerianForestFires and Madelon, respectively. We par-

ticularly show the results when the sparsity K is 10%, 20% and 30%. The sparsity K
is defined as

K =
K

N + 1
× 100%,

where K is the number of selected SVs and N is the number of training samples.

Thus, a larger value of K means that more SVs are selected for training.
From Tables 3 to 6, we see that IHTµ-PKS obtains much higher accuracy in testing

data sets than the baseline methods. In terms of time cost, the IHTµ-PKS algorithm

takes less time than the other three algorithms, especially the OMP algorithm. On

the Ripley data set, Ionosphere data set and Madelon data set, only when the sparsity

is 10%, the time spent by the OMP algorithm is similar to the IHT and IHTµ-PKS
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algorithms, but the time cost increases significantly with the number of selected

support vectors increasing. When the sparsityK is 20% and 30%, the OMP algorithm
takes almost ten times longer time than the IHTµ-PKS algorithm in this experiment.

K Data OMP IHT FHTP IHTµ-PKS

10% Train 85.8200 84.9800 86.0000 86.0400

Test 88.1000 89.2400 88.0900 89.2450

20% Train 85.8200 85.1200 86.0200 86.1000

Test 88.1000 89.3000 87.4200 89.3100

30% Train 85.7600 85.2800 85.9600 85.8400

Test 88.0500 89.1500 87.8200 89.5000

10% Time 0.00403 0.00411 0.00851 0.00397

20% Time 0.01320 0.00413 0.00872 0.00409

30% Time 0.03272 0.00412 0.00873 0.00407

Table 3. Classification accuracy (%) and time cost (in seconds) on the Ripley data set.

K Data OMP IHT FHTP IHTµ-PKS

10% Train 83.9109 86.2376 84.5050 86.2871

Test 93.3221 91.4765 84.832 95.0336

20% Train 85.1238 87.4505 86.287 87.6238

Test 90.9732 94.6309 88.389 94.9664

30% Train 83.1683 88.3663 86.9060 88.3911

Test 86.2752 92.7517 88.3560 93.8255

10% Time 0.00363 0.00464 0.00653 0.00399

20% Time 0.00789 0.00467 0.00662 0.00396

30% Time 0.01628 0.00471 0.00646 0.00395

Table 4. Classification accuracy (%) and time cost (in seconds) on the Ionosphere data set.

K Data OMP IHT FHTP IHTµ-PKS

10% Train 92.7459 91.5164 91.7620 91.7623

Test 93.1818 92.3554 93.5120 93.6777

20% Train 93.4426 92.4590 93.1150 92.7049

Test 93.0579 91.6529 90.2070 93.7190

30% Train 93.6066 92.8279 94.2620 93.1967

Test 91.9421 92.0248 90.7440 92.1901

10% Time 0.00101 0.00117 0.00152 0.00107

20% Time 0.00203 0.00112 0.00152 0.00106

30% Time 0.00420 0.00110 0.00152 0.00105

Table 5. Classification accuracy (%) and time cost (in seconds) on the AlgerianForestFires
data set.
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K Data OMP IHT FHTP IHTµ-PKS

10% Train 55.3400 59.8650 58.3900 59.8800

Test 50.0188 49.9750 50.0280 50.0188

20% Train 59.7250 67.0700 64.8150 67.5300

Test 50.0250 50.0500 50.0250 50.0625

30% Train 62.8550 71.23 70.1250 71.6450

Test 50.0563 50.0500 50.04375 50.0625

10% Time 0.14918 0.11860 0.55493 0.11399

20% Time 1.07840 0.17807 0.55575 0.11430

30% Time 3.49460 0.17787 0.55923 0.11404

Table 6. Classification accuracy (%) and time cost (in seconds) on the Madelon data set.

6. Conclusion and future work

In this paper, we give the conditions for signal stable recovery by the IHTµ-PKS

algorithm. We also derive a tighter RIP-based bound of the IHT-PKS algorithm and

prove that the recovered signal has a tighter error bound compared with existing

results. The IHTµ-PKS algorithm is applied to solve the sparse LS-SVM problem.

We provide a new insight into the solution through using the known support of

the bias term and employing the IHTµ-PKS algorithm to train the sparse Least

Squares Support Vector Machines. The experimental results show that compared

with the traditional OMP, IHT and FHTP algorithms, the IHTµ-PKS algorithm is

more effective in solving the sparse LS-SVM problem.

In the future, to verify if the upper bound δ3s−2k <
√
5−1
4 is sharp or not, we

plan to construct a measurement matrix A with the restricted isometry constant

satisfying δ3s−2k =
√
5−1
4 . If the measurement matrix A is such that the IHT-PKS

algorithm cannot recover s-sparse signal, we can say that δ3s−2k <
√
5−1
4 is a sharp

bound. However, that is difficult because for a given matrix A and a sparsity level s,

computing δs is NP-hard.

7. Appendix

P r o o f of Lemma 3.3. Let u ∈ R
n be a vector and set ζ := supp(u) ∪ supp(v),

we have

∥∥∥
〈
u,

( 1

µ
I −A⊤A

)
v
〉∥∥∥(7.1)

=
∥∥∥ 1
µ
〈u, v〉 − 〈Au,Av〉

∥∥∥ =
∥∥∥ 1
µ
〈uζ , vζ〉 − 〈Au,Av

〉∥∥∥
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=
∥∥∥
〈
uζ ,

( 1

µ
I −A⊤

ζ Aζ

)
vζ

〉∥∥∥ 6 ‖uζ‖2
∥∥∥
( 1

µ
I −A⊤

ζ Aζ

)
vζ

∥∥∥
2

6

∥∥∥
〈
uζ ,

( 1

µ
I −A⊤

ζ Aζ

)
vζ

〉∥∥∥ 6 ‖uζ‖2
∥∥∥
( 1

µ
I −A⊤

ζ Aζ

)∥∥∥
2→2

‖vζ‖2

6 ‖uζ‖2δt,µ‖vζ‖2 = δt,µ‖u‖2‖v‖2.

Indeed, using (7.1), we have

(7.2)
∥∥∥
(( 1

µ
I −A⊤A

)
v
)
S

∥∥∥
2

2
=

〈(( 1

µ
I −A⊤A

)
v
)
S
,
( 1

µ
I −A⊤A

)
v
〉

6 δt,µ

∥∥∥
(( 1

µ
I −A⊤A

)
v
)
S

∥∥∥
2
‖v‖2.

To get (3.4), the remaining step is to simplify by ‖(( 1
µ
I −A⊤A)v)S‖2. �

P r o o f of Theorem 3.1. Since |T | = s and |T0| = k, we have |∆| = s− k. Let

(7.3) a(t+1) = x(t) + µA⊤(y −Ax(t)) = x(t) + µ(A⊤Ax −A⊤Ax(t) +A⊤e).

At the (t+ 1)st iteration, x(t+1) = a
(t+1)
T0

+Hs−k(a
(t+1)
T c

0
), the reconstruction error

at the tth iteration is r(t) = x−x(t). Let T (t) = supp(x(t)), U (t) = supp(Hs−k(a
(t)
T c

0
)).

For any t there is |supp(a(t)T0
)| 6 k, |U (t)| 6 s− k, |T (t)| 6 s.

Let B(t+1) = T ∪ T (t+1) = T0 ∪∆ ∪ U (t+1), then

(7.4) |B(t+1)| 6 |T0|+ |∆|+ |U (t+1)| 6 2s− k.

We first prove the formula

(7.5) ‖xB(t+1) − x
(t+1)

B(t+1)‖2 6

√
3 +

√
5

2
‖xB(t+1) − a

(t+1)

B(t+1)‖2.

Let Ω be the support of x
(t+1)

B(t+1) and Ωc be the complement of the support of

x
(t+1)

B(t+1) . Let Ω′ be the support of xB(t+1) and put a1 = PΩ\Ω′ (a
(t+1)

B(t+1)), a2 =

PΩ∩Ω′(a
(t+1)

B(t+1)), a3 = PΩc\Ω′(a
(t+1)

B(t+1)), a4 = PΩc∩Ω′(a
(t+1)

B(t+1)). By the definition of

x(t+1), PΩ(x
(t+1)

B(t+1)) = PΩ(a
(t+1)

B(t+1)). Similarly, for x
(t+1)

B(t+1) and xB(t+1) , define ωi and

xi (1 6 i 6 4), respectively. We can get ω1 = a1, ω2 = a2, ω3 = ω4 = x1 = x3 = 0.

Our aim is to find the maximum value of ‖xB(t+1) − x
(t+1)

B(t+1)‖22/‖xB(t+1) − a
(t+1)

B(t+1)‖22,
in fact,

(7.6) γ =
‖xB(t+1) − x

(t+1)

B(t+1)‖22
‖xB(t+1) − a

(t+1)

B(t+1)‖22
=

‖a1‖22 + ‖a2 − x2‖22 + ‖x4‖22
‖a1‖22 + ‖a2 − x2‖22 + ‖a3‖22 + ‖a4 − x4‖22

.

This problem will be discussed on two cases. First of all, if ‖xB(t+1) − a
(t+1)

B(t+1)‖2 = 0,

then we have ‖a1‖2 = ‖a3‖2 = 0, a2 = x2 and a4 = x4 due to the property that
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the norm is greater than or equal to 0. And further, because ‖a1‖0 = s − ‖a2‖0 =

s− (s− ‖a4‖0) = ‖a4‖0, we can get ‖x4‖2 = 0. From (7.6), we then have ‖xB(t+1) −
x
(t+1)

B(t+1)‖22 = 0 and obviously the formula (7.5) is true.

Next, if ‖xB(t+1) − a
(t+1)

B(t+1)‖2 6= 0, then ‖a3‖2 must be zero as it only appears at
the denominator compared to other elements, therefore

(7.7) γ =
‖xB(t+1) − x

(t+1)

B(t+1)‖22
‖xB(t+1) − a

(t+1)

B(t+1)‖22
=

‖a1‖22 + ‖a2 − x2‖22 + ‖x4‖22
‖a1‖22 + ‖a2 − x2‖22 + ‖a4 − x4‖22

and

(7.8) (γ − 1)‖a2 − x2‖22 + γ‖a4 − x4‖22 − ‖x4‖22 + (γ − 1)‖a1‖22 = 0.

Since we are interested in the maximum of γ, we assume γ > 1 below. In the case

of γ > 1, a4 is definitely not equal to 0 from (7.7). We can also have a1 6= 0 due to

‖a1‖0 = ‖a4‖0. Fixing (a1, a2, a4), we can consider the above formula as a function
of (x2, x4). It can be proven that the Hessian matrix

[
2(γ − 1) 0

0 2(γ − 1)

]

of this function is positive definite, so the minimum value is obtained at a stable point

(7.9) x∗2 = a2, x∗4 =
γ

γ − 1
a4.

From (7.8), we know that the minimum value of the function defined as the left-hand

side of (7.8) is less than or equal to 0. Substituting (7.9) into (7.8), we get

(7.10) ‖a1‖22γ2 − (2‖a1‖22 + ‖a4‖22)γ + ‖a1‖22 6 0.

Solving the above inequality with respect to γ, due to a1 6= 0, we obtain

(7.11) γ 6 1 + (2‖a1‖22)−1
(
‖a4‖22 +

√
(4‖a1‖22 + ‖a4‖22)‖a4‖22

)
.

As a1 contains the first s elements of the largest absolute value in T except T0, we

have

(7.12)
‖a4‖22
‖a4‖0

6
‖a1‖22
‖a1‖0

.

Because ‖a1‖0 = ‖a4‖0, we can get ‖a4‖22 6 ‖a1‖22. Substituting this into (7.11), we
obtain

(7.13) γ 6 1 +
(1 +

√
5)‖a1‖22

2‖a1‖22
=

3 +
√
5

2
.
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Then, we have

(7.14) ‖xB(t+1) − x
(t+1)

B(t+1)‖2 6

√
3 +

√
5

2
‖xB(t+1) − a

(t+1)

B(t+1)‖2.

The above equation can also be expressed as

(7.15) ‖(x− x(t+1))B(t+1)‖2 6

√
3 +

√
5

2
‖(x− a(t+1))B(t+1)‖2.

Given that a(t+1) = x(t)+µA⊤Ax−µA⊤Ax(t)+µA⊤e, substituting this into (7.15),

we have

(7.16)

‖(x− x(t+1))B(t+1)‖2 6

√
3 +

√
5

2
‖(x− x(t) − µA⊤Ax+ µA⊤Ax(t) − µA⊤e)BT+1‖2

6

√
3 +

√
5

2
‖[(I − µA⊤A)(x − x(t))]B(t+1)‖2

+ µ

√
3 +

√
5

2
‖(A⊤e)B(t+1)‖2.

By using Lemma 3.1 and Lemma 3.3 together with the fact that |B(t+1)| 6 2s− k

and |B(t) ∪B(t+1)| = |T0 ∪∆ ∪ U (t+1) ∪ U (t)| 6 3s− 2k, we get

(7.17) ‖(x− x(t+1))B(t+1)‖2 6

√
3 +

√
5

2
µδ3s−2k,µ‖x− x(t)‖2

+

√
3 +

√
5

2
µ‖(A⊤e)B(t+1)‖2

6

√
3 +

√
5

2
µδ3s−2k,µ‖x− x(t)‖2 + η‖e‖2,

where η = µ

√
3+

√
5

2 (1 + δ2s−k). Hence, we obtain

(7.18) ‖x− x(t+1)‖2 6

√
3 +

√
5

2
µδ3s−2k,µ‖x− x(t)‖2 + η‖e‖2.

Putting α =

√
3+

√
5

2 µδ3s−2k,µ and assuming x
0 = 0, we have

(7.19) ‖x− x(t)‖2 6 αt‖x‖2 + η‖e‖2
t−1∑

j=0

αj ,
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which can be rewritten as

(7.20) ‖x− x(t)‖2 6 αt‖x‖2 + βε,

where β = µ

√
3+

√
5

2 (1 + δ2s−k)(1 − αt)/(1− α).

We see that if α =

√
3+

√
5

2 µδ3s−2k,µ < 1, the algorithm is guaranteed to converge.

In order to achieve a quick converge, we can let

√
3+

√
5

2 µδ3s−2k,µ <
1
2 , this completes

the proof of Theorem 3.1. �
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