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Abstract. We study the density deconvolution problem when the random variables of
interest are an associated strictly stationary sequence and the random noises are i.i.d. with
a nonstandard density. Based on a nonparametric strategy, we introduce an estimator
depending on two parameters. This estimator is shown to be consistent with respect to
the mean integrated squared error. Under additional regularity assumptions on the target
function as well as on the density of noises, some error estimates are derived. Several
numerical simulations are also conducted to illustrate the efficiency of our method.
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1. INTRODUCTION

We consider the model
(L.1) Y= X+, jEN

with the following basic assumptions:

(A1) {X,} en is a strictly stationary sequence of random variables with a common
unknown density fx € L*(R).

(A2) {e;}jen is a sequence of 1.i.d. random variables with a known density f..
(A3) {X,}jen and {e;} en are independent sequences.
Suppose we only observe n random variables Y7, ..., Y}, of the process {Y;} jen. Based
on the observations as well as on the complete knowledge about f., we aim to estimate
the density fx in a nonparametric strategy.

The process {¢;}jen is usually referred to as random noises. Hence, the density f.
is called a noise density. Under the assumptions, {Y;}en is also a strictly stationary
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process. Let fy be the common density of Y}’s. It follows from the assumptions that
fy = fx * fe, where the notation * stands for the usual convolution on R. Therefore,
the problem of estimating fx from the observations Y7,...,Y;, and the density f. is
called a density deconvolution problem. This is a statistical inverse problem.

In the setting of independent {X;};en, the problem has been widely and inten-
sively studied in a large amount of papers, such as Carroll and Hall [5], Liu and
Taylor [19], Stefanski and Carroll [30], Fan [13], Pensky and Vidakovic [28], Comte et
al. [8], Hall and Meister [16], Butucea and Tsybakov [3] and many others. Obviously,
the independent assumption on X;’s can be unrealistic for some applications. As an
example, we mention from van Es et al. [31] a continuous-time stochastic volatility
model of the form dS; = oy dW; for ¢t > 0 (Sp = 0), where {S;}+>0 denotes the log-
price process of some stock on a financial market, {W;};>¢ is a standard Brownian
motion and {02};>¢ is a strictly stationary, predictable process which is indepen-
dent of {W;};>0. Under observed discrete-time data Sa, S2a, ..., Snha, one can get
YjA =Y XJ-A—I—ajA for small A, where YjA :=In((S;a—Sy—1a)?/AD), XjA = ln(U(Qj_l)A)
and ejA = In((Wja — W(j—1)a)?/A), j = I,n. The independence and stationarity
of Brownian increments give that {ejA} j=Tn 1s an independent strictly stationary

sequence. Moreover, the sequence is independent of {X jA} which is a strictly

=T
stationary sequence. Thus, the problem of estimating the djensity of In(c2, ) reduces
to a density deconvolution problem for dependent data.

In contrast to the setting of independent {X};en, there is not much research in
the setting of dependent { X} ;en. We refer to Masry [20], Masry [21] and Masry [22]
as the first related works for the problem with dependent {X,},en. These papers
addressed some asymptotic properties of a kernel type estimator under various mixing
assumptions on the sequence {X;};en. As a continuation of the three latter papers,
Masry [23] considered the setting where { X } ;e is positively or negatively associated
in the sense of Esary et al. [12]. Another notable research is the work of Comte et
al. [7], where the authors studied the performance of an adaptive penalized contrast
estimator when the sequence { X} en is absolutely regular in the sense of Volkonskii
and Rozanov [33] or when it is 7-dependent in the sense of Dedecker and Prieur [9].
Finally, we refer to the works of van Zanten and Zareba [32] and Chesneau [6], where
the performance of wavelet type estimators were investigated under strongly mixing
conditions on the sequence {Y;}en.

Let ¢. be the characteristic function with respect to the noise density f., i.e.
@ (t) == [T fo(x)e™ dx for t € R and i = /—1. As mentioned in Stefanski and
Carroll [30], the difficulty of the density deconvolution problem depends strongly on
the decaying rate of ., which is closely related to the smoothness of f.. Roughly
speaking, the problem is more difficult when f. is smoother. There are two major
types of f. which have been received much attention in the literature: ordinary
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smooth and supersmooth (see Fan [13]). In particular, it is usually assumed that

(1.2) v ({0}) =10,

where -1 ({0}) := {t € R: p.(t) = 0} is the set of all possible zeros of ¢.. Assump-
tion (1.2) is rather standard in the field of density deconvolution. It is satisfied for
many usual densities, e.g., Gaussian, Cauchy, Laplace, chi-square densities, etc. Of
course, there are still some densities that do not fulfill the assumption, for instance,
uniform densities, convolution of a uniform density with an arbitrary density, or
compactly supported densities in general. Throughout this paper, the density f. will
be said to be standard if it satisfies (1.2); otherwise, it is called nonstandard.

In the setting of independent {X;};en, the density deconvolution problem with
nonstandard f. has been studied by some researchers, such as Devroye [11], Groene-
boom and Jongbloed [15], Hall and Meister [16], Meister [24], Delaigle and Meis-
ter [10], Carrasco and Florens [4]. However, to the best of our knowledge, the prob-
lem with dependent {X;};en and nonstandard f. has not yet been studied in any
work. Thus, our aim in the present paper is to partially fill this gap. More concretely,
we consider the problem of estimating fx when the underlying process {X,} en is
positively associated in the sense of Esary et al. [12]; in addition, the noise density f-
is assumed to be compactly supported in a bounded interval. It is emphasized that
the just mentioned assumption on f. is appropriate in circumstances that the ranges
of ¢;’s are restricted to a bounded domain. Despite the fact that Masry [23] also
considered the setting of positively associated {X};en, the results in the paper were
only established in the ordinary smooth and supersmooth cases of f., which are of
course not the nonstandard cases of f..

The rest of the present paper is organized as follows. In Section 2, we derive our
estimator. In Section 3, we investigate some asymptotic properties of our estimator,
including consistency and rates of convergence. In Section 4, we perform a numerical
experiment to examine the convergence of the proposed estimator according to the
sample size n. All proofs are presented in Section 5.

2. THE ESTIMATOR

We begin this section by introducing some notations and notions. We define the
characteristic function of a random variable U by ¢ (t) := E(e''V), t € R. Here i is
the imaginary unit, i.e., i? = —1. For u € LP(R) (p € {1,2}), the function ¢, (t) :=
[ u(@)e™ dz (¢ € R) is called the Fourier transform of u. As known, if ¢, € L(R),
then one has the Fourier inversion formula u(z) = (2r)~' [%_ @y (t)e = dt for al-
most all € R; moreover, ||p,||?> = 27| u||?, which is called the Parseval identity. The
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convolution of two functions u and v is defined by (u*v)(z) := [~ u(z — s)v(s) ds.

For an,b, > 0 depending on the sample size n, the notation a, < b, means that
there is a positive constant C' independent of n such that a,, < Cb,,. The notation
R{z} denotes the real part of a complex number z. Finally, the notation Cov(U, V)
stands for the covariance of two random variables U and V.

To ensure the identifiability of our problem, i.e., the unique reconstruction of fx

from the observation density fy, we need the following assumption:
(A4) A(pz1({0})) = 0, where X is the Lebesgue measure on R.

As indicated in Meister [25], page 24, the identifiability is a necessary condition
for the existence of consistent estimators of fx. It is obvious that (A4) is weaker
than (1.2).

Now we estimate fx. Let ¢y and ¢x be the characteristic functions of Y;’s and
X;’s, respectively. To derive an estimator of fx, we first estimate the unknown
function ¢x and then apply a Fourier inversion procedure on proposed estimator
of px. For the first step, we begin from the relation py = ¢xp. obtained by
model (1.1) and assumptions (A1)—(A3). The relation gives

(2.1) ox(t) = :’;Y—(” Vi ¢ oot ({0)).

For the identically distributed observations Y;’s, we can estimate ¢y (t) at every

t € R by the so-called empirical characteristic function Py ., (t) :== n=1> . In

n .
elth
Jj=1

doing so, in view of (2.1), ¢x (t) can be estimated by

xanll) = fj—(g) vt ¢ oot ({0}).

However, since lim Px.n(t) = oo for any s € {£oo} or s € o 1({0}) (if -1 ({0} # 0),
the integrability or square integrability of @x,, on the whole real line cannot be
guaranteed. Hence, we must regularize @x.,, before the Fourier inversion procedure
is applied.

To this end, we recall in the context of independent { X} ;en that, to avoid dividing
by numbers too close to zero, Hall and Meister [16] proposed to replace @x.,(t) by

@HM (t) == @s(_t)ws(t”r@i’;n(t)
Xincor O e (Ol e} 72

with 7,0 > 0 and ¢ > 0. The function n=¢|t|? is called a ridge parameter function
and the method of using @I;?\fl G g_r(t) is known as the ridge parameter regularization.

In the context of dependent {X;}jen, it is possible to use @YY ., .(t) to estimate
px (t). However, instead of using the ridge parameter function, we use a more general
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%; in addition, for

simplicity, we take r = 0. In other words, we can estimate px(t) by

@e(_t)S’O\Y;n(t)
max{|p:(t)]; 8]t}

It is emphasized that the estimated object ¢x is a characteristic function, so it is

ridge parameter function in the form 4[¢|* with 6 > 0 and a >

Pxin,0,a(t) =

bounded by 1. For this reason, we finally propose to estimate ¢ x (t) for every ¢t € R by

&X;n,é,a(t)
max{|Px;n,6,0(t)]; 1}

@X;n,é,a(t) =

For a > %, Dx:n.6,0 belongs to L2(R) almost surely. From there, we apply the inverse
Fourier transform for @xy. 5, to derive the final estimator of fx in the form

~ 1 o0 N n
(22) Frmsa@) = o= [ Bxmsaltle ™ at.
2n J_
Remark 2.1. It can be seen that ffooo fx;n757a(x) dz = Pxn,64(0) = 1. The
estimator fx., s at (2.2) has a disadvantage: it may take some complex values.
However, this is of minor importance, because we can always use the absolute value

function |R{fx.n.s5.q}| of the real part function R{ fx.n 5.} whose risk, quantified by
[E|||§R{fx;n,5,a}| — fx||?, is smaller than or equal to the risk of fAXm’(s’a.

3. CONVERGENCE RESULTS

In this section, our aim is to understand how well the estimator f Xin;8,a APProxi-
mates fx. We use the mean integrated squared error (MISE) E||fx.n.s.a — fx||? to
evaluate the accuracy of fAXm’(s’a. The error type was not mentioned in Masry [23].
First, the following proposition gives a general upper bound for the MISE.

Proposition 3.1. Consider model (1.1) under assumptions (Al)—(A4). Then for
§ >0 and a > § we derive
(3.1) Ellfrimsa — I < 5-
. Xin,d,a X S o

where

Il;é,a + —I2;5,a + _I3;n,5,a;
2nn m

e PG R
o= | (- mgosmmgy) lexoF

[ A lex (0Pl (0P ee ()
foe = / max{fi- (D] 3]t]}?
el
oo max{[ipc (6)7; 3]t

dt,

—00

n
I3.n.50 = Z |COV(eitX1 ) X )| dt.
j=2
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Estimate (3.1) is nonasymptotic. It depends on the dependence structure of the
data Yi,...,Y,. The term I, comes from the integrated square bias of fx;n’(g’a,
while the terms Is.5, and Iz, 5, come from the integrated variance of fx;m,;a.
For every a > %, Nisya < Tisye if 0 < 01 < d2; however, o, 4 = I25,,6 and
I3:0.61.0 = I3:n,65,0 if 0 < 01 < d2. In other words, when § is smaller, 1,5, becomes
smaller, but I5.5,, and I3., 5, become bigger. Note that the term Is., s, disappears
if the observations Y}’s are independent.

To derive a further estimate on the MISE, we will assume that the process {X;};en
is positively associated or associated for short. This terminology was first introduced
in Esary et al. [12] as an extension of the bivariate notion of positive quadrant
dependence in Lehmann [17]. For convenience, we restate this notion in the following
definition.

Definition 3.2 (see Esary et al. [12]). Random variables Uy, ..., U, are said to
be positively associated, or just associated, if for every pair of coordinatewise nonde-
creasing functions f,g: R™ — R there holds Cov(f(Ui,...,Uy),g(U,...,Uy)) =0
whenever the covariance is defined. A sequence {V;},en of random variables is as-
sociated if for every n € N, the family of variables V3, ..., V,, is associated.

Homogeneous Markov chains are typical examples of associated processes. As-
sociated processes have found many applications in many fields, such as in physics
(see Fortuin et al. [14]), finance (see Pan [27]), and especially in reliability theory
(see Bagai and Rao [1]). For more details on the associated processes, we refer the
readers to Oliveira [26].

Remark 3.3. From assumption (A2) and the fact that independent random
variables are associated (see Esary et al. [12], Theorem 2.1), we conclude that the
process {¢;}jen is associated. Also, it was shown in the latter paper that if two sets of
associated random variables are independent of one another, then their union is a set
of associated random variables (Property (P2)); in addition, nondecreasing functions
of associated random variables are associated (Property (P4)). These assertions and
assumption (A3) imply that if the process {X,};en is associated, then the process
{Y;}en is also associated.

Next we consider the assumption:
o0

(A5) {X,} en is an associated process such that 22 Cov(X1, X;) < 0.
=

o0
The summable condition ) Cov(Xi,X;) < oo is not restrictive. For example, if
j=2
{W;}jen is a sequence of ii.d. random variables with finite variance and X; =
o0

W, + W41 for j € N, then {X,}en is an associated process with >~ Cov(X1, X))

Jj=2
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Var(Wz) < oco. Another example is the case where X; = Y (v3/281)U;_
k=0
for j € N, where {U,}pez is a sequence of i.i.d. Gaussian random variables with

zero mean and unit variance. This linear process {X;}jen is associated with

. o0
Cov(X1,X;) = 2'77 for all j > 2, so Y. Cov(X1,X;) = 1. In Masry [23], the

I=2

author used a similar condition of the form Y j?Cov(X;, X;) < oo, for some 6 > 0.
j=2
Obviously, our summable condition is weaker than the one of the latter paper.
Using (A5) and the previous assumptions, we derive a more explicit upper bound

for the MISE.

Proposition 3.4. Consider model (1.1) under assumptions (A1)—(A5). Then for
6>0anda > %,

. 1 1 45, Cov(X1, X;) -
(32) [EHfX;n,E,a - fXH2 < _Il;é,a + —I2;5,a + =2 ! -[3;6,0,7
2n 2mn mn
where I1.5,4, 12,5, are as in Proposition 3.1, and
N [e'e] t2 t 4
13;(5,(1 = |<p€( )| dt

—oo max{[ee ()% 0]t}

Note that the constraint a > % in the latter proposition ensures the finiteness of
Il;é,aa IQ;(S,(L and 13;(5,(1'
We are now ready to state a consistency result of the estimator fx.n s.q-

Theorem 3.5. Let the assumptions of Proposition 3.4 hold. If § depends on n in
such a way that lim 6 =0 and lim nd? = oo, then
n—oo n—oo

lim E|lfxins.0 = fx|* =0.
n—oo

In the sequel, we will establish some error estimates under further assumptions
on fx and f.. First, concerning fx, we consider the assumption:

(A6) There exist o > 5 and L > 0 such that [~ |ox (¢)[*(1 4 ¢?)*dt < L.

Assumption (A6) is known as the Sobolev condition on fx. It implies that fx has
derivatives up to order [, where [ is the largest integer number satisfying I < o — %
That explains why the number « is usually called smoothness degree of fx. This
assumption is satisfied for many common univariate densities, such as Gaussian,
Cauchy, Laplace, Gamma, chi-square densities and many others. Note that assump-
tion (A6) has been mentioned in many papers in nonparametric deconvolution topics.
See, for instance, Pensky and Vidakovic [28], Hall and Meister [16], Comte et al. [7]

and many others.

691



Next, regarding the density f., we introduce the following assumption:
(A7) There exists a constant M > 0 such that f.(z) = 0 for all « ¢ [—M, M].

Assumption (A7) means that the density f. is compactly supported in [—M, M].
Typical examples for the assumption are the uniform and beta densities. Note also
that the function ¢. under (A7) can be extended into an entire function (i.e., an
analytic function on the whole complex plane) of exponential type. This implies
that possible zeros of ¢, are all isolated, so ¢. automatically satisfies (A4).

Remark 3.6. If . € L%(R), then by the Paley-Wiener theorem (see, e.g.,
Rudin [29]), assumption (A7) is equivalent to the assumption that |¢.(2)] < M2l
for all z € C.

The following theorem establishes an upper bound on the convergence rate of the
MISE.

Theorem 3.7. Consider model (1.1) under assumptions (A1)—(A3), (A5)—(A7).

Let a > % Choosing 6 =n~" with 0 < | < %, we obtain

R —2a
El = I 5 ()

In Theorem 3.7, the convergence rate depends on the sample size n and is improved
with increasing n. Also, the rate becomes faster when the smoothness degree « is
larger, i.e., the target density fx is smoother. It is emphasized that the selection
of § does not depend on the parameters «, L related to the unknown density fx, so
the estimator f Xn,5,q 18 fully data-driven, meaning that it can be computed without
any knowledge concerning the parameters.

Although our main attention is focused on the case of compactly supported fe,
to convince that our estimator is well chosen, we need to show that it also achieves
some classical optimal rates of convergence under some typical standard cases of f..
For that purpose, we introduce the following assumptions:

(A8) There exist constants ¢ > ¢; > 0 and § > 0 such that
a(l+[t) 77 <lp=(t)] a1+ [t))™7 VieR.
(A9) There exist constants ka > k1 > 0 and d,~y > 0 such that

kre™ " < oo ()] < koe™ " Vi e R.

Assumptions (A8) and (A9), first introduced by Fan [13], have become very common
in the field of nonparametric deconvolution. Densities satisfying (A8) or (A9) are
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called ordinary smooth densities of order S or supersmooth of order =, respectively.
For example, the Laplace and Gamma densities are ordinary smooth, while the
Gaussian, Cauchy, ¢t and logistic densities are supersmooth. Under the assumptions,
©-1({0}) = 0 and hence . still satisfies assumption (A4).

Theorem 3.8. Consider model (1.1) under assumptions (A1)—(A6). Let a > 3.
(a) Let (A8) hold. Choosing

{ nf(a+2,3)/(2a+2ﬂ+1) 11('6 > 17

n—(a+28)/(2a+3) ifo< B <1,
we obtain
) n—20/(2a+25+1) if8>1,
[E”fX'n.éa - fXH2 S
s, ~ 1 ,-20/(20+3) ifo<fg<1.

(b) Let (A9) hold. Choosing

Inn — (In(Inn))2\—e/7 _ 2
— 1.2 Inn+(In(Inn))
5= ki 2d ) e ’

we obtain
Ell fxinsa — fx||* S (nn)=2e/7,

We have some comments on the results of Theorem 3.8 as follows:

> In part (a), where f. is ordinary smooth of order (, we obtain the rate
n—20/(2e+26+41) with B > 1. This rate coincides with the classical optimal rate
of deconvolution estimators in the setting of independent {X;}jen (see, e.g.,
Pensky and Vidakovic [28], Comte et al. [8]). Also, in comparison to Comte
et al. [7], where the process {X,} en is assumed to be absolutely regular or
T-dependent, this rate is the same as the rate of their penalized contrast esti-
mator. For 0 < § < 1, our rate n—2%/(22+3) i slower than the classical optimal
rate. This can be viewed as a payment for the case of associated {X};jen. It is
noted that, in the latter paper, the integrability of . is required. That implies
the authors only derived the rate n—2¢/(2+28+1) for the case 3 > 1.

> In part (b), where fe is supersmooth of order v, we obtain the logarithm rate
(In n)’za/ 7, which gives that fAX;n,,;,a converges extremely to fx. However, this
rate is the same as the optimal rate derived in the settings of independent
{X;}jen (see, e.g., Pensky and Vidakovic [28], Comte et al. [8]) as well as of
absolutely regular or 7-dependent {X;};en (see Comte et al. [7]). Finally, it
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is worth mentioning that the selection of ¢ in this part depends only on the
parameters ki, d, v and a. In our estimator, a > % is given. Also, in principle,
the parameters ki, d, v are all known since the density f. is assumed to be
known exactly. Hence, the estimator fx;n,a,a is fully data-driven.

4. NUMERICAL EXPERIMENT

We now present some numerical simulations to illustrate the convergence of our
estimator to the sample size n. All computations are carried by using the R software.
We consider three following examples of the process { X }jen:

El: X, = %(WJ + W,41) for j € N, where {W;};en is a sequence of i.i.d. Gaussian
random variables with zero mean and unit variance.

E2: X, = ﬁ(Wj—i—WjH) for j € N, where {W, }jen is a sequence of i.i.d. chi-square
random variables with 2 degrees of freedom.

E3: X Z (V3/21)YW,_, for j € N, where {W;},cz is a sequence of i.i.d.

Gau551an random variables with zero mean and unit variance.

The processes {X;} en in the three examples satisfy assumptions (Al) and (A5).
In E1 and E3, X;’s have the standard Gaussian distribution, so fx(z) = (1/v/27) x
e™*"/2, In E2, Var(X,) = 1 and fx(z) = 2v2f,2(1)(2V2z), where fy2(y) is the
density of the chi-square distribution with 4 degrees of freedom.

Corresponding to each example, we consider the following cases of the process

{ej}ien:

C1: g;’s have the uniform distribution on the interval (—@ ‘/_) In that case, ¢,
satisfies (AT).
C2: ¢;’s have the triangular distribution with lower limit —£ , upper limit ‘/_ and

mode 0. In that case, @, also satisfies (A7).

C3: ¢;’s have the Laplace distribution with location parameter 0 and scale parameter
ﬁ. In that case, @, satisfies (AS8).

C4: ¢;’s have the Gaussian distribution with mean 0 and variance i. In that case,
©e satisfies (A9).

In all the cases of £;’s, Var(g;) = 1 and hence the signal ratios, i.e., \/Var(e;)/Var(X;),
are equal to 0.5 corresponding to 50% noise contamination.

Because fX :n,5,c can take some complex values, we set up |3‘%{fx n.6,a)| instead of
fx;n,a,a in our experiment. Note that the risk of |§R{fx;n,5,a}| is not bigger than the
risk of fxm@a (see Remark 2.1). For that purpose, the observations Y7,...,Y, of
the process {Y;},en must be available. Indeed, these observations are derived in the
following way:
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1. For E1 and E2, generate i.i.d. data W7y,..., W, +1. For E3, generate i.i.d. data
Wi_n,Wo_n,...,Wo,W1,...,W,, where N is chosen large enough. In our
setup, we take IV := 5000.

2. FOI'j = L—n, set Xj = %(Wj + Wj+1) in El, Xj = ﬁ(Wj + Wj+1) in EQ,
N
and X; ~ > (V3/2F W, _ in E3.
k=0
3. Generate i.i.d. data e1,...,¢, from the density f..

4. For j =1,n, set Y; = X, +¢j.

Concerning ¢ and a, we take a = 2 in all cases of {¢;}en (i-e., C1, C2, C3, C4),
§ = n~Y*in C1, C2, C3 (in view of Theorems 3.7 and 3.5), and § = 4(Inn —
(In(Inn))?)~te~ mnt(nn m)* in C4 (in view of Theorem 3.8 (b)).

Let I := [A, B] be a sufficiently large interval on which we plot the graphs of fx
and |3‘%{fx;n,5’a}| and compute some error estimates. Concretely, we take A = —5,
B =5in El and E3, and A = —4, B =6 in E2. Let M := 1000 and {zx}, 15777
be the equidistant point grid in I. To approximate the MISE of |§R{fx;n75,a}|, we
replicate our computations R times independently, where R is chosen large enough.
In our setup, we let R := 100. At the gth computation (for ¢ = 1, R), a data
sample Y, := (Yi,4,...,Ynq) is generated and then the integrated squared error
(ISE) of [R{fx.nsa}|, i.., the quantity ISE, := |[|R{fxm.s.a}l(,Yy) — fxl|?, is
approximated by

B-ANM X
EISEq := —7— S R Fximsal (@r Yo) = fx (i),
k=1

where

ig{ /oo pe(—tn T I itV

21 | Jooo  max{|pc(t)[?; 6]t}

X (max{ ‘ pe(Ztn Tt By e
max{ e (t)[?; 6[¢|*}

|§R{fx;n,5,a}|($ka Yq) = ‘

1f) et dt}‘.

After that we estimate the MISE of |R{fx.n.5.0}| by
1B
EMISE := — q; EISE,.

In Tables 1, 2 and 3, we report the values of EMISE for some different sample
sizes n (i.e., n = 100,300,500,700,900) and for some different cases of ¢;’s (i.e.,
the cases C1, C2, C3 and C4). As expected, the values of EMISE decrease with
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increasing n. This result is compatible to the consistency result of f X:n,5,a; &S shown
in Theorem 3.5. To visualize more specifically the convergence trend of |R{ f Xm0t
in Figures 1, 2 and 3, we show some sub-figures plotted with different sizes n and
different cases of €;’s. In each sub-figure, we plot six curves, where the black curve
is the graph of fx, and the curves of red, blue, green, orange and purple colors
are the graphs of |%{fx;7,,757a}| corresponding, respectively, to the 25th, 50th, 75th,
90th and 100th percentiles of the R calculated EISE;s. We realize that the curves
become closer when the sample sizes n are bigger, and this indicates that |R{ f Xin.5,a]
converges quite well to fx. Eventually, we see that the convergence tendency of the
numerical estimators in Figures 1 and 3 is more clear than the one in Figure 2. In
particular, in each case of ¢;’s, the values of EMISE in Tables 1 and 3 are smaller
than those in Table 2. These observations can be explained by the fact that the
densities fx in E1 and E3 are smoother than the one in E2.

EMISE
C1 C2 C3 C4
100  0.0074 0.0077 0.0074 0.0075
300  0.0035 0.0032 0.0031 0.0032
500  0.0026 0.0023 0.0019 0.0024
700  0.0018 0.0019 0.0016 0.0020
900 0.0018 0.0015 0.0013 0.0017

Table 1. The values of EMISE when the process {X};ey is as in E1.

n

EMISE
C1 C2 C3 C4
100  0.0387 0.0378 0.0332 0.0315
300 0.0323 0.0314 0.0262 0.0215
500  0.0299 0.0288 0.0239 0.0187
700  0.0283 0.0272 0.0223 0.0166
900  0.0275 0.0265 0.0213 0.0154

Table 2. The values of EMISE when the process {X};ey is as in E2.

n

EMISE
C1 C2 C3 C4
100  0.0070 0.0067 0.0077 0.0123
300  0.0053 0.0061 0.0066 0.0123
500  0.0034 0.0035 0.0040 0.0086
700  0.0031 0.0032 0.0038 0.0070
900  0.0029 0.0029 0.0035 0.0062

Table 3. The values of EMISE when the process {X};en is as in E3.

n
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Figure 1. Graphs of fx and |§R{fX;n,5,a}| corresponding to the 25th, 50th, 75th, 90th and
100th percentiles of 100 calculated ISEqs. Here the process {X;};en is as in E1.
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Figure 2. Graphs of fx and |8‘E{fx;n,5’a}| corresponding to the 25th, 50th, 75th, 90th and
100th percentiles of 100 calculated ISEgs. Here the process { X} en is as in E2.
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Figure 3. Graphs of fx and |8‘E{fx;n,5’a}| corresponding to the 25th, 50th, 75th, 90th and
100th percentiles of 100 calculated ISEqs. Here the process {X;};en is as in E3.
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5. PROOFS

Proof of Proposition 3.1.

By the Parseval identity and the Fubini theorem, we
obtain that

[EHJ?X;VL,&G - fX”2

I e G (e
)

1})_1—<px(t)‘2dt

max{ e (t)|%;
L[~ P (=) Py (t) 2
< — [E‘ ; —ox(t ‘ dt.
=) ity ~ o5
After that, using the standard bias-variance decomposition yields

60 Elfxmse— fxlP <5 [ [E(E0R0) o]
i - ar e (=) Py n(t)
"o /_OOV (Tt o)
1% e (OE@ya(l) 2
=5 | |y o] @
e |0 (8)P Var(By (1))
27 J_. max{ - (0% 0]t]°}2

dt.
It is obvious that

(5.2) E(@y:n(t) = ¢y (t) = x (t)pe(t)-
For the quantity Var($y,,(t)) we have

1 no. ) .
Var(Br ) = o [Var (6 )+ Covfe e
j=1

1Sg#k<sn

1 . 1 . .
— E\/ar(e‘tyl) + 2 Z Cov(elth’e‘tYk).

1<j#k<n
ote that Var(e®™¥1) = 1 — |E(e'™)|?2 = 1 — |ox (¢)|*|p:(t)|?> and that for all 1 < j
N hat Var(e!'?’ 1—|E(e)]2 =1 2 2 and that for all 1
k< n,
COV(eith,eitYk) _ [E(eit(ijYk)) _ [E(eith)[E(efitYk)

= [pe (BI[E(HO X)) — E (X )E (o105
= |c (t)[*Cov (e Xk,

Hence,

B 2 2 2 . .
Val"(g/o\y;n(t)) _ 1 |50X (tT)l| |506 (t)| + |90€n(§)| Z COV(eltXJ ’ elth).

1<j#k<n
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By the latter estimate and the stationarity of the sequence { X };en in (A1), we derive

~ 1 - t 2 € t 2 2 € 1 1
(53) Var(goym(t)) < |50X(T)L| |<P ( )l |<P Z |COV tX1 itX; )l
Jj=2

From (5.1), (5.2) and (5.3), estimate (3.1) follows. O
To prove Proposition 3.4, we need the following lemma.
Lemma 5.1 (see Birkel [2]). Let A, B be finite sets and {U, }jeaup be associated

random variables. If f: R#4 — R and g: R#® — R are partially differentiable with
bounded partial derivatives, then

(Cov(F(U)se)so((U)acn)) |\22H(9fu |52 covtws. v,

where ||-||co denotes the usual sup-norm.

Proof of Proposition 3.4. We first have for j = 2,n that

Cov (X1, e!"X7) = Cov(cos(tX;) +isin(tX,), cos(tX;) + isin(tX;))
= Cov(cos(tX1),cos(tX;)) —iCov(cos(tX1),sin(tX;))
+1Cov(sin(tX1), cos(tX;)) + Cov(sin(tX1), sin(tX;)),

SO

|Cov(e'™X1, e'™X7)| < |Cov(cos(tX1), cos(tX;))| + |Cov(cos(tX1), sin(tX;))]
+ |Cov(sin(tX1), cos(tX;))| + |Cov(sin(tX1), sin(t X;))|.

Under assumption (A5), applying Lemma 5.1 gives
|Cov(e'™X1, e1X7)| < 4t2Cov(X1, X;),

which yields

= 2| e (£)|* S ;
Ig;n’(;’a < 4 COV Xl, X dt < 4 COV(Xl,X')Ig;(s’a.
—oo max{|pe (t)|%; 0]t} = Z ; ’
From the latter estimate and estimate (3.1) we obtain (3.2). O
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Proof of Theorem 3.5. From assumption (A4) we have

@2 v
Tiisu = / - lox (1) dt,
oy U T OEATT)

from which we apply the Lebesgue dominated convergence theorem to get

(5.4) lim Iy.5, = 0.
n—oo
Since |¢c| is continuous on R and |¢-(0)| = 1, there exists a constant o € (0,1)

depending only on ¢, such that | (t)| = %, for all ¢ € [—tg,t]. Thus,

1 1 1 1 1
IQ;(;’aé/ 7dt+—/ dt < 8tg+ = — dt,
[t|<to e (1) 2 62 [t|>to [t[2* 42 [t|>to |t[2e

- t2 1 1 82 1 1
Is.5, </ 7dt+—/ —dt<—0+—/ ———dt.
¢ [t|<to e (1) ]2 62 [t|>to [t[2e—2 3 62 [t|>to [t[2a—2

It follows from the two latter estimates and the assumption lim né? = co that
n— oo

Lnsa
(5.5) lim 222 =,

n—oo N

(5.6) lim B _ g

n—oo N
From (3.2), (5.4), (5.5) and (5.6), we deduce 1i_>m Ellfxinsa— fx]?>=0. O
n—oo

To prove Theorem 3.7, we need the following lemma.

Lemma 5.2. Let assumption (A7) hold and q > 1. Define L,_(R, o) = {|t| <
R: |p:(t)] < o} for R, 0 > 0. For ¢ > 0 small enough, let R, be a unique positive
solution of the equation

(5.7) 2eM R,(qIn R, + In(15¢)) = In(1/0).

Then there exist positive constants Cy, Co and C3 depending only on M, q such that

In(1/0) In(1/0)

(5.8) Tatn(/e) S Fe S O m/g)
and
(5.9) ALy, (R, 0)) < C3 (%)H

for all o > 0 small enough.
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Proof. Put ¢(R) := 2eM R(qIn R+1n(15¢%)), R > 1. Obviously, the function

is increasing on (1,00), ¥(R) > 0 for all R > 1, lim %(R) = co and lim ¢(R) =
R—o0 R—1+

2eM In(15¢®). Hence, for every 0 < o < (15¢3)~2¢M | there exists a unique number

R, > 1 such that ¥(R,) = In(1/p), i.e., R, satisfies (5.7). Also, we have R, 1 oo as

040.
We next verify estimate (5.8). For ¢ > 0 small enough, we derive from (5.7) that

In(1/0) In(1/0)
. — < < ,
(5.10) 2eM(q+1) RoIn R, 2eMgq
S0
1
(5.11) R, < R,InR, < 5ellq In(1/0).

From (5.10) and (5.11), we have

1

In(1/0)
(612) Ry g S > o) (2eM(q +1) 1n(2€Mq ln(l/g)))
In(1/0)

~ 4eM(q+1)In(In(1/p))"

From (5.10) and (5.12), we have

In(1/0)
i ol AV
¢S SeMgn R, In(1/p) <2quln<
1
= In(1/0) (2qu[1n(m)+1n(m(1/g)) - ln(ln(ln(l/g)))})
In(1/0)
~ eMgln(In(1/9))’
Hence, we have shown (5.8) with C :=1/[4eM(q+ 1)], C2 :==1/(eMq).
Now we prove (5.9). Define ®(z) := fi\/fM f-(x)e** dz, z € C. Then ® is a nontri-
vial entire function, |®(0)| =1 and ln(l lrzlg)% |<I>(z)|) < 2eM R,. Hence, by applying

In(1/o) ))‘1
4eM(q+ 1)In(In(1/0))

Theorem 4, Section 11.3 in Levin [18] with 1 := R, 7, there exists a set of disks
{D(zj,7;)}jes C C with Y r; < nR, such that
jeJ
1 3
|®(2)| > exp{—ln(i) ln(‘ max |<I>(z)|)}
n z

|=2eR,
> exp{—2eMR,(qIn R, + In(15¢%))} = ¢

for all z € D'(0,R,) \ U D(zj,r;). Here D'(0,R,) := {2z € C: |z| < R,} and
jeJ
D(zj,rj) :=={z € C: |z — 2| <r;}. Consequently,

Ly.(Ry,0) = {z € R: 2] < Ry, |2(2)] < 0} € | J[D(z,75) NR].
jet
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Hence,

In(1/0) \'=9 In(1/g) \'=¢
ML, (Ry, 0)) < 2;% < 2R, < 2<Clm) - C3<1n(1n(1/g)))

with C5 := 2C117q. O
Proof of Theorem 3.7. Put A5, := {t € R: |p:(t)]* < §]t|*}. Then

_ Oy
19 hao= [ (1= o) lexOP s [, lexoF

Let R, 0> 0 and L,_(R, 0) be defined as in Lemma 5.2. For § € (0, R~%p?] we have

As0 = Lo (R, 0) U{[t] < R: 0 <[p(t)] < VO[t|*} U{Jt] > R: e ()] < vt}
C Ly (R, 0) U{|t| > R},

which together with (5.13) yields

Iipe < / lox (B di +2 / lox (B dt.
L,.(R,0) R

By the fact that |¢x(t)| < 1 for any ¢t € R and by assumption (A6), we get
s < ML, (Re0) 4204 B [ ox(®OP(1+)7 dt S ALy (Bo0)) + B
R

Also, according to the proof of Theorem 3.5, we have I35 q, 1:3;5,(1 < 1/62. Therefore,

from the estimates of I1.5.4, 12:5.a, jg;(s’a, assumption (A5) and estimate (3.2) in
Proposition 3.4, we derive, for § € (0, R=%¢?],

. 1
(5.14) Ellfxmsa = SxI? S ML (R 0) + R+ —.
For p > 0 small enough, let R, be the unique solution of equation (5.7), where we
take ¢ := 2a.+ 1. Applying (5.14) with R := R, and Lemma 5.2, we have, for
6 € (0,R,*0?,

; In(1/0) 2> 1
[EHfX;n,é,a_fXHQ,S (m> +W'

Letting s =n~!, o=n"" with 0 < I < %, 0 <l <1/2, we obtain

) 1nn —2a 1nn —2a
E . . 2 < 20—1 <
| fxinsa — [xII© S (1n(1nn)) tn ~ (ln(lnn)) ’

and this completes the proof. O
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Proof of Theorem 3.8. As in the proof of Theorem 3.7, we have

(5.15) Ih&a<‘/‘ lox ()] dt,
§,a
where A5, = {t € R: |p-(t)]> < 8]t]*}.

(a) Let 0 < § < ¢2/45. For an arbitrary t € As, we have c3(1 + [t|)728 <
loe(t)]? < S[t|* by the left inequality in (A8), so ¢2/§ < [¢|*(1 + |¢)?#. This and
the constraint 0 < § < ¢?/4% imply |t| > 1. Hence, c2/6 < [t|*(2[t])?# = 4P|t|++28,
which yields [t| > T, with T, := (c}/(4%6))"/(@+28) Thus, we have shown that
Asoa C{t € R: |t| > T.} for 0 < § < ¢?/4°. Combining this with (5.15) and (A6),

we obtain

hm</ mmww<uuﬂﬂ/|wmﬂuﬁfw5ﬁ%

* *

Next, by (A8), we have

1 e (8)[?
I2:5.q g/ 7dt+/ dt
[t|<Tw e (1) 2 [t]>T 62[t[2e

—283 1-2a—-2p3
28 (1+ ) op+1 , Lx

g/ a+m)a+/ S ST S

[t|< T [t|>T.

- 2l ()[4
fpas [ vas | el o
It < T > %[

A+ Tl
§ﬁ+/ At < T3+
sr. 0%t 92

It follows from estimate (3.2) and the estimates of I1.5,4, I2:5.o and fg;a,a that
28+1 1-2a—2 3—2a—4
B T* a—2p T_E T* a—4p

. T,
5.16 Ellfxmsa— 2L 2 * =
(5.16) I fxmoa— fx|I” ST+ T8 o )

Now we distinguish two cases of 8 as follows:
Case 1: f > 1. In this case, it follows from (5.16) that

. T26+1  pl-2a-28
Ellfxmsa— fx)? ST+ + >
n nd

Inserting T, := (c3/(4%6))"/(@*+28) into the right-hand side of the latter estimate

yields
1

¢ _ 2 2a/(a+20) -
[EHfX;n,E,a fXH S(s + n5(26+1)/(a+25).

Letting § = n—(a120)/(2a+26+1) giyeg
EHan d,a — fx||2 S n*QQ/(2a+2ﬂ+1).

705



Case 2: 0 < < 1. In this case, it follows from (5.16) that

7 T3 TS—Qa—46
Ellfxmsa — fxIIPST72 + =+ ~
n no

Inserting T, := (c3/(4%6))"/(¢+28) into the right-hand side of the latter estimate

yields
1

r 2 2a/(a+28
Ell fxims.0 — fx||? S 629/ (@F20) 4 63/ (at28)

Letting § = n—(a120)/(20+3) giyeg
Ell fximoa— Fx|? S n20/20H),

(b) Put

T,, = (hln - (111(11171))2)1”, § = k2T 0~ 2dT2,
2d

For an arbitrary ¢ € As, we have k7e 241" < |p.(¢)]? < §|t|* by the left inequality

in (A9), so k2/5 < |t|*e*¥t". Since k?/5 = T e?¥"- we infer [t| > T,.. So we have

shown that As, C {t € R: |[t| > Ti}. Combining this with (5.15) and (A6), we

obtain

o0 o0
J / lox (P dt < (1+T2)® / lox ()21 + )% dt < T2,

Tux Tax

Next, by (A9), we have

1 o< (8) ]
Ir5.4 é/ 7dt+/ dt
[t| < T e ()]2 [>T 62|t[2e

—2dt|"

€

S / e at + / e At S TR +
< T 1g>1.. 02[t]

3 2l (114
I3:6,a </ t2dt+/ |f€7(2i|dt
|t < T >1.. 0%

12—4dlt]” T3-2a—7,—4dT],

k%

<713 e dt ST 4

—2a+1—v — 2
T a+ ’Ye 24T,

52 ’

It follows from estimate (3.2) and the estimates of I1,5 4, I2.5,, and I~3;5,a that

(5.17)  Ellfxinsa — fxII?
T, | T T T T e

< —2a *% *k
ST n nd? + n + nd?
1=y 24T —2a+1—vy _—2dT7
< -2 T Ye2dTle  To, Ye—2dT,
11— 24T —2a,—4dT?. 1=y 2dT7
T, ’Ye sk T e ok T e sk
) * ok ) *k
=TS+ (14 =) s+ —=——
n 1) n
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From the definition of T, we derive for large n that

oas () << (32)"

For n large enough, In(Inn) > (2a+ 1 — 7))/~ and so

Inn — (2a+1—7)y tin(lnn)) )1/’7

T, < (
2d

which gives
(5.19) 21T < p(Inn)~CGeti=n/7,
From (5.17), (5.18) and (5.19), we derive

Ell fxins.0 — fxII* S (nn) =2/,

and this completes the proof. O
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