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Abstract. We study the density deconvolution problem when the random variables of
interest are an associated strictly stationary sequence and the random noises are i.i.d. with
a nonstandard density. Based on a nonparametric strategy, we introduce an estimator
depending on two parameters. This estimator is shown to be consistent with respect to
the mean integrated squared error. Under additional regularity assumptions on the target
function as well as on the density of noises, some error estimates are derived. Several
numerical simulations are also conducted to illustrate the efficiency of our method.
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1. Introduction

We consider the model

(1.1) Yj = Xj + εj, j ∈ N

with the following basic assumptions:

(A1) {Xj}j∈N is a strictly stationary sequence of random variables with a common

unknown density fX ∈ L2(R).

(A2) {εj}j∈N is a sequence of i.i.d. random variables with a known density fε.

(A3) {Xj}j∈N and {εj}j∈N are independent sequences.

Suppose we only observe n random variables Y1, . . . , Yn of the process {Yj}j∈N. Based

on the observations as well as on the complete knowledge about fε, we aim to estimate

the density fX in a nonparametric strategy.

The process {εj}j∈N is usually referred to as random noises. Hence, the density fε
is called a noise density. Under the assumptions, {Yj}j∈N is also a strictly stationary
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process. Let fY be the common density of Yj ’s. It follows from the assumptions that

fY = fX ∗fε, where the notation ∗ stands for the usual convolution on R. Therefore,
the problem of estimating fX from the observations Y1, . . . , Yn and the density fε is

called a density deconvolution problem. This is a statistical inverse problem.

In the setting of independent {Xj}j∈N, the problem has been widely and inten-

sively studied in a large amount of papers, such as Carroll and Hall [5], Liu and

Taylor [19], Stefanski and Carroll [30], Fan [13], Pensky and Vidakovic [28], Comte et

al. [8], Hall and Meister [16], Butucea and Tsybakov [3] and many others. Obviously,

the independent assumption on Xj’s can be unrealistic for some applications. As an

example, we mention from van Es et al. [31] a continuous-time stochastic volatility

model of the form dSt = σt dWt for t > 0 (S0 = 0), where {St}t>0 denotes the log-

price process of some stock on a financial market, {Wt}t>0 is a standard Brownian

motion and {σ2
t }t>0 is a strictly stationary, predictable process which is indepen-

dent of {Wt}t>0. Under observed discrete-time data S∆, S2∆, . . . , Sn∆, one can get

Y ∆
j ≈ X∆

j +ε∆j for small∆, where Y
∆
j := ln((Sj∆−S(j−1)∆)

2/∆), X∆
j := ln(σ2

(j−1)∆)

and ε∆j := ln((Wj∆ −W(j−1)∆)2/∆), j = 1, n. The independence and stationarity

of Brownian increments give that {ε∆j }j=1,n is an independent strictly stationary

sequence. Moreover, the sequence is independent of {X∆
j }j=1,n, which is a strictly

stationary sequence. Thus, the problem of estimating the density of ln(σ2
i∆) reduces

to a density deconvolution problem for dependent data.

In contrast to the setting of independent {Xj}j∈N, there is not much research in

the setting of dependent {Xj}j∈N. We refer to Masry [20], Masry [21] and Masry [22]

as the first related works for the problem with dependent {Xj}j∈N. These papers

addressed some asymptotic properties of a kernel type estimator under various mixing

assumptions on the sequence {Xj}j∈N. As a continuation of the three latter papers,

Masry [23] considered the setting where {Xj}j∈N is positively or negatively associated

in the sense of Esary et al. [12]. Another notable research is the work of Comte et

al. [7], where the authors studied the performance of an adaptive penalized contrast

estimator when the sequence {Xj}j∈N is absolutely regular in the sense of Volkonskii

and Rozanov [33] or when it is τ -dependent in the sense of Dedecker and Prieur [9].

Finally, we refer to the works of van Zanten and Zareba [32] and Chesneau [6], where

the performance of wavelet type estimators were investigated under strongly mixing

conditions on the sequence {Yj}j∈N.

Let ϕε be the characteristic function with respect to the noise density fε, i.e.

ϕε(t) :=
∫∞
−∞ fε(x)e

itx dx for t ∈ R and i =
√
−1. As mentioned in Stefanski and

Carroll [30], the difficulty of the density deconvolution problem depends strongly on

the decaying rate of ϕε, which is closely related to the smoothness of fε. Roughly

speaking, the problem is more difficult when fε is smoother. There are two major

types of fε which have been received much attention in the literature: ordinary
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smooth and supersmooth (see Fan [13]). In particular, it is usually assumed that

(1.2) ϕ−1
ε ({0}) = ∅,

where ϕ−1
ε ({0}) := {t ∈ R : ϕε(t) = 0} is the set of all possible zeros of ϕε. Assump-

tion (1.2) is rather standard in the field of density deconvolution. It is satisfied for

many usual densities, e.g., Gaussian, Cauchy, Laplace, chi-square densities, etc. Of

course, there are still some densities that do not fulfill the assumption, for instance,

uniform densities, convolution of a uniform density with an arbitrary density, or

compactly supported densities in general. Throughout this paper, the density fε will

be said to be standard if it satisfies (1.2); otherwise, it is called nonstandard.

In the setting of independent {Xj}j∈N, the density deconvolution problem with

nonstandard fε has been studied by some researchers, such as Devroye [11], Groene-

boom and Jongbloed [15], Hall and Meister [16], Meister [24], Delaigle and Meis-

ter [10], Carrasco and Florens [4]. However, to the best of our knowledge, the prob-

lem with dependent {Xj}j∈N and nonstandard fε has not yet been studied in any

work. Thus, our aim in the present paper is to partially fill this gap. More concretely,

we consider the problem of estimating fX when the underlying process {Xj}j∈N is

positively associated in the sense of Esary et al. [12]; in addition, the noise density fε
is assumed to be compactly supported in a bounded interval. It is emphasized that

the just mentioned assumption on fε is appropriate in circumstances that the ranges

of εj ’s are restricted to a bounded domain. Despite the fact that Masry [23] also

considered the setting of positively associated {Xj}j∈N, the results in the paper were

only established in the ordinary smooth and supersmooth cases of fε, which are of

course not the nonstandard cases of fε.

The rest of the present paper is organized as follows. In Section 2, we derive our

estimator. In Section 3, we investigate some asymptotic properties of our estimator,

including consistency and rates of convergence. In Section 4, we perform a numerical

experiment to examine the convergence of the proposed estimator according to the

sample size n. All proofs are presented in Section 5.

2. The estimator

We begin this section by introducing some notations and notions. We define the

characteristic function of a random variable U by ϕU (t) := E(eitU ), t ∈ R. Here i is

the imaginary unit, i.e., i2 = −1. For u ∈ Lp(R) (p ∈ {1, 2}), the function ϕu(t) :=∫∞
−∞ u(x)eitx dx (t ∈ R) is called the Fourier transform of u. As known, if ϕu ∈ L2(R),

then one has the Fourier inversion formula u(x) = (2π)−1
∫∞
−∞ ϕu(t)e

−itx dt for al-

most all x ∈ R; moreover, ‖ϕu‖2 = 2π‖u‖2, which is called the Parseval identity. The
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convolution of two functions u and v is defined by (u ∗ v)(x) :=
∫∞
−∞ u(x− s)v(s) ds.

For an, bn > 0 depending on the sample size n, the notation an . bn means that

there is a positive constant C independent of n such that an 6 Cbn. The notation

ℜ{z} denotes the real part of a complex number z. Finally, the notation Cov(U, V )

stands for the covariance of two random variables U and V .

To ensure the identifiability of our problem, i.e., the unique reconstruction of fX

from the observation density fY , we need the following assumption:

(A4) λ(ϕ−1
ε ({0})) = 0, where λ is the Lebesgue measure on R.

As indicated in Meister [25], page 24, the identifiability is a necessary condition

for the existence of consistent estimators of fX . It is obvious that (A4) is weaker

than (1.2).

Now we estimate fX . Let ϕY and ϕX be the characteristic functions of Yj ’s and

Xj ’s, respectively. To derive an estimator of fX , we first estimate the unknown

function ϕX and then apply a Fourier inversion procedure on proposed estimator

of ϕX . For the first step, we begin from the relation ϕY = ϕXϕε obtained by

model (1.1) and assumptions (A1)–(A3). The relation gives

(2.1) ϕX(t) =
ϕY (t)

ϕε(t)
∀ t /∈ ϕ−1

ε ({0}).

For the identically distributed observations Yj ’s, we can estimate ϕY (t) at every

t ∈ R by the so-called empirical characteristic function ϕ̂Y ;n(t) := n−1
n∑

j=1

eitYj . In

doing so, in view of (2.1), ϕX(t) can be estimated by

ϕ̂X;n(t) :=
ϕ̂Y ;n(t)

ϕε(t)
∀ t /∈ ϕ−1

ε ({0}).

However, since lim
t→s

ϕ̂X;n(t) = ∞ for any s ∈ {±∞} or s ∈ ϕ−1
ε ({0}) (if ϕ−1

ε ({0} 6= ∅),
the integrability or square integrability of ϕ̂X;n on the whole real line cannot be

guaranteed. Hence, we must regularize ϕ̂X;n before the Fourier inversion procedure

is applied.

To this end, we recall in the context of independent {Xj}j∈N that, to avoid dividing

by numbers too close to zero, Hall and Meister [16] proposed to replace ϕ̂X;n(t) by

ϕ̂HM
X;n,ζ,̺,r(t) :=

ϕε(−t)|ϕε(t)|rϕ̂Y ;n(t)

max{|ϕε(t)|;n−ζ |t|̺}r+2

with r, ̺ > 0 and ζ > 0. The function n−ζ |t|̺ is called a ridge parameter function
and the method of using ϕ̂HM

X;n,ζ,̺,r(t) is known as the ridge parameter regularization.

In the context of dependent {Xj}j∈N, it is possible to use ϕ̂
HM
X;n,ζ,̺,r(t) to estimate

ϕX(t). However, instead of using the ridge parameter function, we use a more general
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ridge parameter function in the form δ|t|a with δ > 0 and a > 1
2 ; in addition, for

simplicity, we take r = 0. In other words, we can estimate ϕX(t) by

ϕ̃X;n,δ,a(t) :=
ϕε(−t)ϕ̂Y ;n(t)

max{|ϕε(t)|2; δ|t|a}
.

It is emphasized that the estimated object ϕX is a characteristic function, so it is

bounded by 1. For this reason, we finally propose to estimate ϕX(t) for every t ∈ R by

ϕ̂X;n,δ,a(t) :=
ϕ̃X;n,δ,a(t)

max{|ϕ̃X;n,δ,a(t)|; 1}
.

For a > 1
2 , ϕ̂X;n,δ,a belongs to L

2(R) almost surely. From there, we apply the inverse

Fourier transform for ϕ̂X;n,δ,a to derive the final estimator of fX in the form

(2.2) f̂X;n,δ,a(x) :=
1

2π

∫ ∞

−∞
ϕ̂X;n,δ,a(t)e

−itx dt.

R em a r k 2.1. It can be seen that
∫∞
−∞ f̂X;n,δ,a(x) dx = ϕ̂X;n,δ,a(0) = 1. The

estimator f̂X;n,δ,a at (2.2) has a disadvantage: it may take some complex values.

However, this is of minor importance, because we can always use the absolute value

function |ℜ{f̂X;n,δ,a}| of the real part function ℜ{f̂X;n,δ,a} whose risk, quantified by
E‖|ℜ{f̂X;n,δ,a}| − fX‖2, is smaller than or equal to the risk of f̂X;n,δ,a.

3. Convergence results

In this section, our aim is to understand how well the estimator f̂X;n;δ,a approxi-

mates fX . We use the mean integrated squared error (MISE) E‖f̂X;n,δ,a − fX‖2 to
evaluate the accuracy of f̂X;n,δ,a. The error type was not mentioned in Masry [23].

First, the following proposition gives a general upper bound for the MISE.

Proposition 3.1. Consider model (1.1) under assumptions (A1)–(A4). Then for

δ > 0 and a > 1
2 we derive

(3.1) E‖f̂X;n,δ,a − fX‖2 6 1

2π

I1;δ,a +
1

2πn
I2;δ,a +

1

πn
I3;n,δ,a,

where

I1;δ,a :=

∫ ∞

−∞

(
1− |ϕε(t)|2

max{|ϕε(t)|2; δ|t|a}
)2
|ϕX(t)|2 dt,

I2;δ,a :=

∫ ∞

−∞

(1− |ϕX(t)|2|ϕε(t)|2)|ϕε(t)|2
max{|ϕε(t)|2; δ|t|a}2

dt,

I3;n,δ,a :=

∫ ∞

−∞

|ϕε(t)|4
max{|ϕε(t)|2; δ|t|a}2

n∑

j=2

|Cov(eitX1 , eitXj )| dt.
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Estimate (3.1) is nonasymptotic. It depends on the dependence structure of the

data Y1, . . . , Yn. The term I1;δ,a comes from the integrated square bias of f̂X;n,δ,a,

while the terms I2;δ,a and I3;n,δ,a come from the integrated variance of f̂X;n,δ,a.

For every a > 1
2 , I1;δ1,a 6 I1;δ2,a if 0 < δ1 6 δ2; however, I2;δ1,a > I2;δ2,a and

I3;n,δ1,a > I3;n,δ2,a if 0 < δ1 6 δ2. In other words, when δ is smaller, I1;δ,a becomes

smaller, but I2;δ,a and I3;n,δ,a become bigger. Note that the term I3;n,δ,a disappears

if the observations Yj ’s are independent.

To derive a further estimate on the MISE, we will assume that the process {Xj}j∈N

is positively associated or associated for short. This terminology was first introduced

in Esary et al. [12] as an extension of the bivariate notion of positive quadrant

dependence in Lehmann [17]. For convenience, we restate this notion in the following

definition.

Definition 3.2 (see Esary et al. [12]). Random variables U1, . . . , Un are said to

be positively associated, or just associated, if for every pair of coordinatewise nonde-

creasing functions f, g : R
n → R there holds Cov(f(U1, . . . , Un), g(U1, . . . , Un)) > 0

whenever the covariance is defined. A sequence {Vj}j∈N of random variables is as-

sociated if for every n ∈ N, the family of variables V1, . . . , Vn is associated.

Homogeneous Markov chains are typical examples of associated processes. As-

sociated processes have found many applications in many fields, such as in physics

(see Fortuin et al. [14]), finance (see Pan [27]), and especially in reliability theory

(see Bagai and Rao [1]). For more details on the associated processes, we refer the

readers to Oliveira [26].

R em a r k 3.3. From assumption (A2) and the fact that independent random

variables are associated (see Esary et al. [12], Theorem 2.1), we conclude that the

process {εj}j∈N is associated. Also, it was shown in the latter paper that if two sets of

associated random variables are independent of one another, then their union is a set

of associated random variables (Property (P2)); in addition, nondecreasing functions

of associated random variables are associated (Property (P4)). These assertions and

assumption (A3) imply that if the process {Xj}j∈N is associated, then the process

{Yj}j∈N is also associated.

Next we consider the assumption:

(A5) {Xj}j∈N is an associated process such that
∞∑
j=2

Cov(X1, Xj) <∞.

The summable condition
∞∑
j=2

Cov(X1, Xj) < ∞ is not restrictive. For example, if

{Wj}j∈N is a sequence of i.i.d. random variables with finite variance and Xj =

Wj +Wj+1 for j ∈ N, then {Xj}j∈N is an associated process with
∞∑
j=2

Cov(X1, Xj) =
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Var(W2) < ∞. Another example is the case where Xj =
∞∑
k=0

(
√
3/2k+1)Uj−k

for j ∈ N, where {Up}p∈Z is a sequence of i.i.d. Gaussian random variables with

zero mean and unit variance. This linear process {Xj}j∈N is associated with

Cov(X1, Xj) = 21−j for all j > 2, so
∞∑
j=2

Cov(X1, Xj) = 1. In Masry [23], the

author used a similar condition of the form
∞∑
j=2

jθCov(X1, Xj) <∞, for some θ > 0.

Obviously, our summable condition is weaker than the one of the latter paper.

Using (A5) and the previous assumptions, we derive a more explicit upper bound

for the MISE.

Proposition 3.4. Consider model (1.1) under assumptions (A1)–(A5). Then for

δ > 0 and a > 3
2 ,

(3.2) E‖f̂X;n,δ,a − fX‖2 6
1

2π

I1;δ,a +
1

2πn
I2;δ,a +

4
∑∞

j=2 Cov(X1, Xj)

πn
Ĩ3;δ,a,

where I1;δ,a, I2;δ,a are as in Proposition 3.1, and

Ĩ3;δ,a :=

∫ ∞

−∞

t2|ϕε(t)|4
max{|ϕε(t)|2; δ|t|a}2

dt.

Note that the constraint a > 3
2 in the latter proposition ensures the finiteness of

I1;δ,a, I2;δ,a and Ĩ3;δ,a.

We are now ready to state a consistency result of the estimator f̂X;n,δ,a.

Theorem 3.5. Let the assumptions of Proposition 3.4 hold. If δ depends on n in

such a way that lim
n→∞

δ = 0 and lim
n→∞

nδ2 = ∞, then

lim
n→∞

E‖f̂X;n,δ,a − fX‖2 = 0.

In the sequel, we will establish some error estimates under further assumptions

on fX and fε. First, concerning fX , we consider the assumption:

(A6) There exist α > 1
2 and L > 0 such that

∫∞
−∞ |ϕX(t)|2(1 + t2)α dt 6 L.

Assumption (A6) is known as the Sobolev condition on fX . It implies that fX has

derivatives up to order l, where l is the largest integer number satisfying l < α− 1
2 .

That explains why the number α is usually called smoothness degree of fX . This

assumption is satisfied for many common univariate densities, such as Gaussian,

Cauchy, Laplace, Gamma, chi-square densities and many others. Note that assump-

tion (A6) has been mentioned in many papers in nonparametric deconvolution topics.

See, for instance, Pensky and Vidakovic [28], Hall and Meister [16], Comte et al. [7]

and many others.

691



Next, regarding the density fε, we introduce the following assumption:

(A7) There exists a constant M > 0 such that fε(x) = 0 for all x /∈ [−M,M ].

Assumption (A7) means that the density fε is compactly supported in [−M,M ].

Typical examples for the assumption are the uniform and beta densities. Note also

that the function ϕε under (A7) can be extended into an entire function (i.e., an

analytic function on the whole complex plane) of exponential type. This implies

that possible zeros of ϕε are all isolated, so ϕε automatically satisfies (A4).

R em a r k 3.6. If ϕε ∈ L2(R), then by the Paley-Wiener theorem (see, e.g.,

Rudin [29]), assumption (A7) is equivalent to the assumption that |ϕε(z)| 6 eM|z|,

for all z ∈ C.

The following theorem establishes an upper bound on the convergence rate of the

MISE.

Theorem 3.7. Consider model (1.1) under assumptions (A1)–(A3), (A5)–(A7).

Let a > 3
2 . Choosing δ = n−l with 0 < l < 1

2 , we obtain

E‖f̂X;n,δ,a − fX‖2 .
( lnn

ln(lnn)

)−2α

.

In Theorem 3.7, the convergence rate depends on the sample size n and is improved

with increasing n. Also, the rate becomes faster when the smoothness degree α is

larger, i.e., the target density fX is smoother. It is emphasized that the selection

of δ does not depend on the parameters α, L related to the unknown density fX , so

the estimator f̂X;n,δ,a is fully data-driven, meaning that it can be computed without

any knowledge concerning the parameters.

Although our main attention is focused on the case of compactly supported fε,

to convince that our estimator is well chosen, we need to show that it also achieves

some classical optimal rates of convergence under some typical standard cases of fε.

For that purpose, we introduce the following assumptions:

(A8) There exist constants c2 > c1 > 0 and β > 0 such that

c1(1 + |t|)−β 6 |ϕε(t)| 6 c2(1 + |t|)−β ∀ t ∈ R.

(A9) There exist constants k2 > k1 > 0 and d, γ > 0 such that

k1e
−d|t|γ 6 |ϕε(t)| 6 k2e

−d|t|γ ∀ t ∈ R.

Assumptions (A8) and (A9), first introduced by Fan [13], have become very common

in the field of nonparametric deconvolution. Densities satisfying (A8) or (A9) are
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called ordinary smooth densities of order β or supersmooth of order γ, respectively.

For example, the Laplace and Gamma densities are ordinary smooth, while the

Gaussian, Cauchy, t and logistic densities are supersmooth. Under the assumptions,

ϕ−1
ε ({0}) = ∅ and hence ϕε still satisfies assumption (A4).

Theorem 3.8. Consider model (1.1) under assumptions (A1)–(A6). Let a > 3
2 .

(a) Let (A8) hold. Choosing

δ =

{
n−(a+2β)/(2α+2β+1) if β > 1,

n−(a+2β)/(2α+3) if 0 < β < 1,

we obtain

E‖f̂X;n,δ,a − fX‖2 .

{
n−2α/(2α+2β+1) if β > 1,

n−2α/(2α+3) if 0 < β < 1.

(b) Let (A9) hold. Choosing

δ = k21

( lnn− (ln(lnn))2

2d

)−a/γ

e− lnn+(ln(lnn))2 ,

we obtain

E‖f̂X;n,δ,a − fX‖2 . (lnn)−2α/γ .

We have some comments on the results of Theorem 3.8 as follows:

⊲ In part (a), where fε is ordinary smooth of order β, we obtain the rate

n−2α/(2α+2β+1) with β > 1. This rate coincides with the classical optimal rate

of deconvolution estimators in the setting of independent {Xj}j∈N (see, e.g.,

Pensky and Vidakovic [28], Comte et al. [8]). Also, in comparison to Comte

et al. [7], where the process {Xj}j∈N is assumed to be absolutely regular or

τ -dependent, this rate is the same as the rate of their penalized contrast esti-

mator. For 0 < β < 1, our rate n−2α/(2α+3) is slower than the classical optimal

rate. This can be viewed as a payment for the case of associated {Xj}j∈N. It is

noted that, in the latter paper, the integrability of ϕε is required. That implies

the authors only derived the rate n−2α/(2α+2β+1) for the case β > 1.

⊲ In part (b), where fε is supersmooth of order γ, we obtain the logarithm rate

(lnn)−2α/γ , which gives that f̂X;n,δ,a converges extremely to fX . However, this

rate is the same as the optimal rate derived in the settings of independent

{Xj}j∈N (see, e.g., Pensky and Vidakovic [28], Comte et al. [8]) as well as of

absolutely regular or τ -dependent {Xj}j∈N (see Comte et al. [7]). Finally, it
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is worth mentioning that the selection of δ in this part depends only on the

parameters k1, d, γ and a. In our estimator, a >
3
2 is given. Also, in principle,

the parameters k1, d, γ are all known since the density fε is assumed to be

known exactly. Hence, the estimator f̂X;n,δ,a is fully data-driven.

4. Numerical experiment

We now present some numerical simulations to illustrate the convergence of our

estimator to the sample size n. All computations are carried by using the R software.

We consider three following examples of the process {Xj}j∈N:

E1: Xj =
1√
2
(Wj +Wj+1) for j ∈ N, where {Wj}j∈N is a sequence of i.i.d. Gaussian

random variables with zero mean and unit variance.

E2: Xj =
1

2
√
2
(Wj+Wj+1) for j ∈ N, where {Wj}j∈N is a sequence of i.i.d. chi-square

random variables with 2 degrees of freedom.

E3: Xj =
∞∑
k=0

(
√
3/2k+1)Wj−k for j ∈ N, where {Wj}j∈Z is a sequence of i.i.d.

Gaussian random variables with zero mean and unit variance.

The processes {Xj}j∈N in the three examples satisfy assumptions (A1) and (A5).

In E1 and E3, Xj ’s have the standard Gaussian distribution, so fX(x) = (1/
√
2π)×

e−x2/2. In E2, Var(Xj) = 1 and fX(x) = 2
√
2fχ2(4)(2

√
2x), where fχ2(4) is the

density of the chi-square distribution with 4 degrees of freedom.

Corresponding to each example, we consider the following cases of the process

{εj}j∈N:

C1: εj’s have the uniform distribution on the interval (−
√
3
2 ,

√
3
2 ). In that case, ϕε

satisfies (A7).

C2: εj’s have the triangular distribution with lower limit −
√
6
4 , upper limit

√
6
4 and

mode 0. In that case, ϕε also satisfies (A7).

C3: εj’s have the Laplace distribution with location parameter 0 and scale parameter
1

2
√
2
. In that case, ϕε satisfies (A8).

C4: εj’s have the Gaussian distribution with mean 0 and variance 1
4 . In that case,

ϕε satisfies (A9).

In all the cases of εj ’s,Var(εj)=
1
4 and hence the signal ratios, i.e.,

√
Var(εj)/Var(Xj),

are equal to 0.5 corresponding to 50% noise contamination.

Because f̂X;n,δ,a can take some complex values, we set up |ℜ{f̂X;n,δ,a}| instead of
f̂X;n,δ,a in our experiment. Note that the risk of |ℜ{f̂X;n,δ,a}| is not bigger than the
risk of f̂X;n,δ,a (see Remark 2.1). For that purpose, the observations Y1, . . . , Yn of

the process {Yj}j∈N must be available. Indeed, these observations are derived in the

following way:
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1. For E1 and E2, generate i.i.d. data W1, . . . ,Wn+1. For E3, generate i.i.d. data

W1−N ,W2−N , . . . ,W0,W1, . . . ,Wn, where N is chosen large enough. In our

setup, we take N := 5000.

2. For j = 1, n, set Xj = 1√
2
(Wj +Wj+1) in E1, Xj = 1

2
√
2
(Wj +Wj+1) in E2,

and Xj ≈
N∑

k=0

(
√
3/2k+1)Wj−k in E3.

3. Generate i.i.d. data ε1, . . . , εn from the density fε.

4. For j = 1, n, set Yj = Xj + εj .

Concerning δ and a, we take a = 2 in all cases of {εj}j∈N (i.e., C1, C2, C3, C4),

δ = n−1/4 in C1, C2, C3 (in view of Theorems 3.7 and 3.5), and δ = 4(lnn −
(ln(lnn))2)−1e− lnn+(ln(lnn))2 in C4 (in view of Theorem 3.8 (b)).

Let I := [A,B] be a sufficiently large interval on which we plot the graphs of fX

and |ℜ{f̂X;n,δ,a}| and compute some error estimates. Concretely, we take A = −5,

B = 5 in E1 and E3, and A = −4, B = 6 in E2. Let M := 1000 and {xk}k=1,M+1

be the equidistant point grid in I. To approximate the MISE of |ℜ{f̂X;n,δ,a}|, we
replicate our computations R times independently, where R is chosen large enough.

In our setup, we let R := 100. At the qth computation (for q = 1, R), a data

sample Yq := (Y1,q, . . . , Yn,q) is generated and then the integrated squared error

(ISE) of |ℜ{f̂X;n,δ,a}|, i.e., the quantity ISEq := ‖|ℜ{f̂X;n,δ,a}|(·,Yq) − fX‖2, is
approximated by

EISEq :=
B −A

M

M∑

k=1

| |ℜ{f̂X;n,δ,a}|(xk,Yq)− fX(xk)|2,

where

|ℜ{f̂X;n,δ,a}|(xk,Yq) :=

∣∣∣∣
1

2π

ℜ
{∫ ∞

−∞

ϕε(−t)n−1
∑n

j=1 e
itYj,q

max{|ϕε(t)|2; δ|t|a}

×
(
max

{∣∣∣∣
ϕε(−t)n−1

∑n
j=1 e

itYj,q

max{|ϕε(t)|2; δ|t|a}

∣∣∣∣; 1
})−1

e−itxk dt

}∣∣∣∣.

After that we estimate the MISE of |ℜ{f̂X;n,δ,a}| by

EMISE :=
1

R

R∑

q=1

EISEq.

In Tables 1, 2 and 3, we report the values of EMISE for some different sample

sizes n (i.e., n = 100, 300, 500, 700, 900) and for some different cases of εj’s (i.e.,

the cases C1, C2, C3 and C4). As expected, the values of EMISE decrease with

695



increasing n. This result is compatible to the consistency result of f̂X;n,δ,a, as shown

in Theorem 3.5. To visualize more specifically the convergence trend of |ℜ{f̂X;n,δ,a}|,
in Figures 1, 2 and 3, we show some sub-figures plotted with different sizes n and

different cases of εj ’s. In each sub-figure, we plot six curves, where the black curve

is the graph of fX , and the curves of red, blue, green, orange and purple colors

are the graphs of |ℜ{f̂X;n,δ,a}| corresponding, respectively, to the 25th, 50th, 75th,
90th and 100th percentiles of the R calculated EISEqs. We realize that the curves

become closer when the sample sizes n are bigger, and this indicates that |ℜ{f̂X;n,δ,a}|
converges quite well to fX . Eventually, we see that the convergence tendency of the

numerical estimators in Figures 1 and 3 is more clear than the one in Figure 2. In

particular, in each case of εj ’s, the values of EMISE in Tables 1 and 3 are smaller

than those in Table 2. These observations can be explained by the fact that the

densities fX in E1 and E3 are smoother than the one in E2.

n
EMISE

C1 C2 C3 C4
100 0.0074 0.0077 0.0074 0.0075

300 0.0035 0.0032 0.0031 0.0032

500 0.0026 0.0023 0.0019 0.0024

700 0.0018 0.0019 0.0016 0.0020

900 0.0018 0.0015 0.0013 0.0017

Table 1. The values of EMISE when the process {Xj}j∈N is as in E1.

n
EMISE

C1 C2 C3 C4
100 0.0387 0.0378 0.0332 0.0315

300 0.0323 0.0314 0.0262 0.0215

500 0.0299 0.0288 0.0239 0.0187

700 0.0283 0.0272 0.0223 0.0166

900 0.0275 0.0265 0.0213 0.0154

Table 2. The values of EMISE when the process {Xj}j∈N is as in E2.

n
EMISE

C1 C2 C3 C4
100 0.0070 0.0067 0.0077 0.0123

300 0.0053 0.0061 0.0066 0.0123

500 0.0034 0.0035 0.0040 0.0086

700 0.0031 0.0032 0.0038 0.0070

900 0.0029 0.0029 0.0035 0.0062

Table 3. The values of EMISE when the process {Xj}j∈N is as in E3.
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Figure 1. Graphs of fX and |ℜ{f̂X;n,δ,a}| corresponding to the 25th, 50th, 75th, 90th and
100th percentiles of 100 calculated ISEqs. Here the process {Xj}j∈N is as in E1.
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Figure 2. Graphs of fX and |ℜ{f̂X;n,δ,a}| corresponding to the 25th, 50th, 75th, 90th and
100th percentiles of 100 calculated ISEqs. Here the process {Xj}j∈N is as in E2.
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Figure 3. Graphs of fX and |ℜ{f̂X;n,δ,a}| corresponding to the 25th, 50th, 75th, 90th and
100th percentiles of 100 calculated ISEqs. Here the process {Xj}j∈N is as in E3.
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5. Proofs

P r o o f of Proposition 3.1. By the Parseval identity and the Fubini theorem, we

obtain that

E‖f̂X;n,δ,a − fX‖2

=
1

2π

∫ ∞

−∞
E

∣∣∣ ϕε(−t)ϕ̂Y ;n(t)

max{|ϕε(t)|2; δ|t|a}
(
max

{∣∣∣ ϕε(−t)ϕ̂Y ;n(t)

max{|ϕε(t)|2; δ|t|a}
∣∣∣; 1

})−1

− ϕX(t)
∣∣∣
2

dt

6
1

2π

∫ ∞

−∞
E

∣∣∣ ϕε(−t)ϕ̂Y ;n(t)

max{|ϕε(t)|2; δ|t|a}
− ϕX(t)

∣∣∣
2

dt.

After that, using the standard bias-variance decomposition yields

(5.1) E‖f̂X;n,δ,a − fX‖2 6
1

2π

∫ ∞

−∞

∣∣∣E
( ϕε(−t)ϕ̂Y ;n(t)

max{|ϕε(t)|2; δ|t|a}
)
− ϕX(t)

∣∣∣
2

dt

+
1

2π

∫ ∞

−∞
Var

( ϕε(−t)ϕ̂Y ;n(t)

max{|ϕε(t)|2; δ|t|a}
)
dt

=
1

2π

∫ ∞

−∞

∣∣∣ ϕε(−t)E(ϕ̂Y ;n(t))

max{|ϕε(t)|2; δ|t|a}
− ϕX(t)

∣∣∣
2

dt

+
1

2π

∫ ∞

−∞

|ϕε(t)|2Var(ϕ̂Y ;n(t))

max{|ϕε(t)|2; δ|t|a}2
dt.

It is obvious that

(5.2) E(ϕ̂Y ;n(t)) = ϕY (t) = ϕX(t)ϕε(t).

For the quantity Var(ϕ̂Y ;n(t)) we have

Var(ϕ̂Y ;n(t)) =
1

n2

[
Var

( n∑

j=1

eitYj

)
+

∑

16j 6=k6n

Cov(eitYj , eitYk)

]

=
1

n
Var(eitY1) +

1

n2

∑

16j 6=k6n

Cov(eitYj , eitYk).

Note that Var(eitY1) = 1− |E(eitY1)|2 = 1− |ϕX(t)|2|ϕε(t)|2 and that for all 1 6 j 6=
k 6 n,

Cov(eitYj , eitYk) = E(eit(Yj−Yk))− E(eitYj )E(e−itYk)

= |ϕε(t)|2[E(eit(Xj−Xk))− E(eitXj )E(e−itXk)]

= |ϕε(t)|2Cov(eitXj , eitXk).

Hence,

Var(ϕ̂Y ;n(t)) =
1− |ϕX(t)|2|ϕε(t)|2

n
+

|ϕε(t)|2
n2

∑

16j 6=k6n

Cov(eitXj , eitXk).
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By the latter estimate and the stationarity of the sequence {Xj}j∈N in (A1), we derive

(5.3) Var(ϕ̂Y ;n(t)) 6
1− |ϕX(t)|2|ϕε(t)|2

n
+

2|ϕε(t)|2
n

n∑

j=2

|Cov(eitX1 , eitXj )|.

From (5.1), (5.2) and (5.3), estimate (3.1) follows. �

To prove Proposition 3.4, we need the following lemma.

Lemma 5.1 (see Birkel [2]). Let A, B be finite sets and {Uj}j∈A∪B be associated

random variables. If f : R
#A → R and g : R

#B → R are partially differentiable with

bounded partial derivatives, then

|Cov(f((Uj)j∈A), g((Uk)k∈B))| 6
∑

j∈A

∑

k∈B

∥∥∥ ∂f
∂tj

∥∥∥
∞

∥∥∥ ∂g
∂tk

∥∥∥
∞
Cov(Uj , Uk),

where ‖·‖∞ denotes the usual sup-norm.

P r o o f of Proposition 3.4. We first have for j = 2, n that

Cov(eitX1 , eitXj ) = Cov(cos(tX1) + i sin(tX1), cos(tXj) + i sin(tXj))

= Cov(cos(tX1), cos(tXj))− i Cov(cos(tX1), sin(tXj))

+ iCov(sin(tX1), cos(tXj)) + Cov(sin(tX1), sin(tXj)),

so

|Cov(eitX1 , eitXj )| 6 |Cov(cos(tX1), cos(tXj))|+ |Cov(cos(tX1), sin(tXj))|
+ |Cov(sin(tX1), cos(tXj))|+ |Cov(sin(tX1), sin(tXj))|.

Under assumption (A5), applying Lemma 5.1 gives

|Cov(eitX1 , eitXj )| 6 4t2Cov(X1, Xj),

which yields

I3;n,δ,a 6 4

∫ ∞

−∞

t2|ϕε(t)|4
max{|ϕε(t)|2; δ|t|a}2

n∑

j=2

Cov(X1, Xj) dt 6 4

∞∑

j=2

Cov(X1, Xj)Ĩ3;δ,a.

From the latter estimate and estimate (3.1) we obtain (3.2). �
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P r o o f of Theorem 3.5. From assumption (A4) we have

I1;δ,a =

∫

R\ϕ−1
ε ({0})

(
1− |ϕε(t)|2

max{|ϕε(t)|2; δ|t|a}
)2
|ϕX(t)|2 dt,

from which we apply the Lebesgue dominated convergence theorem to get

(5.4) lim
n→∞

I1;δ,a = 0.

Since |ϕε| is continuous on R and |ϕε(0)| = 1, there exists a constant t0 ∈ (0, 1)

depending only on ϕε such that |ϕε(t)| > 1
2 , for all t ∈ [−t0, t0]. Thus,

I2;δ,a 6

∫

|t|6t0

1

|ϕε(t)|2
dt+

1

δ2

∫

|t|>t0

1

|t|2a dt 6 8t0 +
1

δ2

∫

|t|>t0

1

|t|2a dt,

Ĩ3;δ,a 6

∫

|t|6t0

t2

|ϕε(t)|2
dt+

1

δ2

∫

|t|>t0

1

|t|2a−2
dt 6

8t30
3

+
1

δ2

∫

|t|>t0

1

|t|2a−2
dt.

It follows from the two latter estimates and the assumption lim
n→∞

nδ2 = ∞ that

lim
n→∞

I2;δ,a
n

= 0,(5.5)

lim
n→∞

Ĩ3;δ,a
n

= 0.(5.6)

From (3.2), (5.4), (5.5) and (5.6), we deduce lim
n→∞

E‖f̂X;n,δ,a − fX‖2 = 0. �

To prove Theorem 3.7, we need the following lemma.

Lemma 5.2. Let assumption (A7) hold and q > 1. Define Lϕε
(R, ̺) := {|t| 6

R : |ϕε(t)| 6 ̺} for R, ̺ > 0. For ̺ > 0 small enough, let R̺ be a unique positive

solution of the equation

(5.7) 2eMR̺(q lnR̺ + ln(15e3)) = ln(1/̺).

Then there exist positive constants C1, C2 and C3 depending only onM , q such that

(5.8) C1
ln(1/̺)

ln(ln(1/̺))
6 R̺ 6 C2

ln(1/̺)

ln(ln(1/̺))

and

(5.9) λ(Lϕε
(R̺, ̺)) 6 C3

( ln(1/̺)

ln(ln(1/̺))

)1−q

for all ̺ > 0 small enough.
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P r o o f. Put ψ(R) := 2eMR(q lnR+ln(15e3)), R > 1. Obviously, the function ψ

is increasing on (1,∞), ψ(R) > 0 for all R > 1, lim
R→∞

ψ(R) = ∞ and lim
R→1+

ψ(R) =

2eM ln(15e3). Hence, for every 0 < ̺ < (15e3)−2eM , there exists a unique number

R̺ > 1 such that ψ(R̺) = ln(1/̺), i.e., R̺ satisfies (5.7). Also, we have R̺ ↑ ∞ as
̺ ↓ 0.

We next verify estimate (5.8). For ̺ > 0 small enough, we derive from (5.7) that

(5.10)
ln(1/̺)

2eM(q + 1)
6 R̺ lnR̺ 6

ln(1/̺)

2eMq
,

so

(5.11) R̺ 6 R̺ lnR̺ 6
1

2eMq
ln(1/̺).

From (5.10) and (5.11), we have

(5.12) R̺ >
ln(1/̺)

2eM(q + 1) lnR̺
> ln(1/̺)

(
2eM(q + 1) ln

( 1

2eMq
ln(1/̺)

))−1

>
ln(1/̺)

4eM(q + 1) ln(ln(1/̺))
.

From (5.10) and (5.12), we have

R̺ 6
ln(1/̺)

2eMq lnR̺
6 ln(1/̺)

(
2eMq ln

( ln(1/̺)

4eM(q + 1) ln(ln(1/̺))

))−1

= ln(1/̺)
(
2eMq

[
ln
( 1

4eM(q + 1)

)
+ ln(ln(1/̺))− ln(ln(ln(1/̺)))

])−1

6
ln(1/̺)

eMq ln(ln(1/̺))
.

Hence, we have shown (5.8) with C1 := 1/[4eM(q + 1)], C2 := 1/(eMq).

Now we prove (5.9). Define Φ(z) :=
∫M

−M
fε(x)e

izx dx, z ∈ C. Then Φ is a nontri-

vial entire function, |Φ(0)| = 1 and ln
(

max
|z|=2eR̺

|Φ(z)|
)
6 2eMR̺. Hence, by applying

Theorem 4, Section 11.3 in Levin [18] with η := R−q
̺ , there exists a set of disks

{D(zj, rj)}j∈J ⊂ C with
∑
j∈J

rj 6 ηR̺ such that

|Φ(z)| > exp
{
− ln

(15e3
η

)
ln
(

max
|z|=2eR̺

|Φ(z)|
)}

> exp{−2eMR̺(q lnR̺ + ln(15e3))} = ̺

for all z ∈ D′(0, R̺) \
⋃
j∈J

D(zj , rj). Here D
′(0, R̺) := {z ∈ C : |z| 6 R̺} and

D(zj , rj) := {z ∈ C : |z − zj | < rj}. Consequently,

Lϕε
(R̺, ̺) = {z ∈ R : |z| 6 R̺, |Φ(z)| 6 ̺} ⊂

⋃

j∈J

[D(zj , rj) ∩ R].
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Hence,

λ(Lϕε
(R̺, ̺)) 6 2

∑

j∈J

rj 6 2ηR̺ 6 2
(
C1

ln(1/̺)

ln(ln(1/̺))

)1−q

= C3

( ln(1/̺)

ln(ln(1/̺))

)1−q

with C3 := 2C1−q
1 . �

P r o o f of Theorem 3.7. Put Aδ,a := {t ∈ R : |ϕε(t)|2 < δ|t|a}. Then

(5.13) I1;δ,a =

∫

Aδ,a

(
1− |ϕε(t)|2

max{|ϕε(t)|2; δ|t|a}
)2
|ϕX(t)|2 dt 6

∫

Aδ,a

|ϕX(t)|2 dt.

Let R, ̺ > 0 and Lϕε
(R, ̺) be defined as in Lemma 5.2. For δ ∈ (0, R−a̺2] we have

Aδ,a = Lϕε
(R, ̺) ∪ {|t| 6 R : ̺ < |ϕε(t)| <

√
δ|t|a} ∪ {|t| > R : |ϕε(t)| <

√
δ|t|a}

⊂ Lϕε
(R, ̺) ∪ {|t| > R},

which together with (5.13) yields

I1;δ,a 6

∫

Lϕε (R,̺)

|ϕX(t)|2 dt+ 2

∫ ∞

R

|ϕX(t)|2 dt.

By the fact that |ϕX(t)| 6 1 for any t ∈ R and by assumption (A6), we get

I1;δ,a 6 λ(Lϕε
(R, ̺))+ 2(1+R2)−α

∫ ∞

R

|ϕX(t)|2(1+ t2)α dt . λ(Lϕε
(R, ̺))+R−2α.

Also, according to the proof of Theorem 3.5, we have I2;δ,a, Ĩ3;δ,a . 1/δ2. Therefore,

from the estimates of I1;δ,a, I2;δ,a, Ĩ3;δ,a, assumption (A5) and estimate (3.2) in

Proposition 3.4, we derive, for δ ∈ (0, R−a̺2],

(5.14) E‖f̂X;n,δ,a − fX‖2 . λ(Lϕε
(R, ̺)) +R−2α +

1

nδ2
.

For ̺ > 0 small enough, let R̺ be the unique solution of equation (5.7), where we

take q := 2α + 1. Applying (5.14) with R := R̺ and Lemma 5.2, we have, for

δ ∈ (0, R−a
̺ ̺2],

E‖f̂X;n,δ,a − fX‖2 .
( ln(1/̺)

ln(ln(1/̺))

)−2α

+
1

nδ2
.

Letting δ = n−l, ̺ = n−l1 with 0 < l < 1
2 , 0 < l1 < l/2, we obtain

E‖f̂X;n,δ,a − fX‖2 .
( lnn

ln(lnn)

)−2α

+ n2l−1 .
( lnn

ln(lnn)

)−2α

,

and this completes the proof. �
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P r o o f of Theorem 3.8. As in the proof of Theorem 3.7, we have

(5.15) I1;δ,a 6

∫

Aδ,a

|ϕX(t)|2 dt,

where Aδ,a := {t ∈ R : |ϕε(t)|2 < δ|t|a}.
(a) Let 0 < δ < c21/4

β. For an arbitrary t ∈ Aδ,a we have c
2
1(1 + |t|)−2β 6

|ϕε(t)|2 < δ|t|a by the left inequality in (A8), so c21/δ < |t|a(1 + |t|)2β . This and
the constraint 0 < δ < c21/4

β imply |t| > 1. Hence, c21/δ < |t|a(2|t|)2β = 4β|t|a+2β ,

which yields |t| > T∗ with T∗ := (c21/(4
βδ))1/(a+2β). Thus, we have shown that

Aδ,a ⊂ {t ∈ R : |t| > T∗} for 0 < δ < c21/4
β. Combining this with (5.15) and (A6),

we obtain

I1;δ,a 6

∫ ∞

T∗

|ϕX(t)|2 dt 6 (1 + T 2
∗ )

−α

∫ ∞

T∗

|ϕX(t)|2(1 + t2)α dt . T−2α
∗ .

Next, by (A8), we have

I2;δ,a 6

∫

|t|6T∗

1

|ϕε(t)|2
dt+

∫

|t|>T∗

|ϕε(t)|2
δ2|t|2a dt

.

∫

|t|6T∗

(1 + |t|)2β dt+
∫

|t|>T∗

(1 + |t|)−2β

δ2|t|2a dt . T 2β+1
∗ +

T 1−2a−2β
∗
δ2

,

Ĩ3;δ,a 6

∫

|t|6T∗

t2 dt+

∫

|t|>T∗

t2|ϕε(t)|4
δ2|t|2a dt

. T 3
∗ +

∫

|t|>T∗

t2(1 + |t|)−4β

δ2|t|2a dt . T 3
∗ +

T 3−2a−4β
∗
δ2

.

It follows from estimate (3.2) and the estimates of I1;δ,a, I2;δ,a and Ĩ3;δ,a that

(5.16) E‖f̂X;n,δ,a − fX‖2 . T−2α
∗ +

T 2β+1
∗
n

+
T 1−2a−2β
∗
nδ2

+
T 3
∗
n

+
T 3−2a−4β
∗
nδ2

.

Now we distinguish two cases of β as follows:

Case 1: β > 1. In this case, it follows from (5.16) that

E‖f̂X;n,δ,a − fX‖2 . T−2α
∗ +

T 2β+1
∗
n

+
T 1−2a−2β
∗
nδ2

.

Inserting T∗ := (c21/(4
βδ))1/(a+2β) into the right-hand side of the latter estimate

yields

E‖f̂X;n,δ,a − fX‖2 . δ2α/(a+2β) +
1

nδ(2β+1)/(a+2β)
.

Letting δ = n−(a+2β)/(2α+2β+1) gives

E‖f̂X;n,δ,a − fX‖2 . n−2α/(2α+2β+1).
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Case 2: 0 < β < 1. In this case, it follows from (5.16) that

E‖f̂X;n,δ,a − fX‖2 . T−2α
∗ +

T 3
∗
n

+
T 3−2a−4β
∗
nδ2

.

Inserting T∗ := (c21/(4
βδ))1/(a+2β) into the right-hand side of the latter estimate

yields

E‖f̂X;n,δ,a − fX‖2 . δ2α/(a+2β) +
1

nδ3/(a+2β)
.

Letting δ = n−(a+2β)/(2α+3) gives

E‖f̂X;n,δ,a − fX‖2 . n−2α/(2α+3).

(b) Put

T∗∗ :=
( lnn− (ln(lnn))2

2d

)1/γ
, δ := k21T

−a
∗∗ e−2dTγ

∗∗ .

For an arbitrary t ∈ Aδ,a we have k
2
1e

−2d|t|γ 6 |ϕε(t)|2 < δ|t|a by the left inequality
in (A9), so k21/δ < |t|ae2d|t|γ . Since k21/δ = T a

∗∗e
2dTγ

∗∗ , we infer |t| > T∗∗. So we have

shown that Aδ,a ⊂ {t ∈ R : |t| > T∗∗}. Combining this with (5.15) and (A6), we
obtain

I1;δ,a 6

∫ ∞

T∗∗

|ϕX(t)|2 dt 6 (1 + T 2
∗∗)

−α

∫ ∞

T∗∗

|ϕX(t)|2(1 + t2)α dt . T−2α
∗∗ .

Next, by (A9), we have

I2;δ,a 6

∫

|t|6T∗∗

1

|ϕε(t)|2
dt+

∫

|t|>T∗∗

|ϕε(t)|2
δ2|t|2a dt

.

∫

|t|6T∗∗

e2d|t|
γ

dt+

∫

|t|>T∗∗

e−2d|t|γ

δ2|t|2a dt . T 1−γ
∗∗ e2dT

γ
∗∗ +

T−2a+1−γ
∗∗ e−2dTγ

∗∗

δ2
,

Ĩ3;δ,a 6

∫

|t|6T∗∗

t2 dt+

∫

|t|>T∗∗

t2|ϕε(t)|4
δ2|t|2a dt

. T 3
∗∗ +

∫

|t|>T∗∗

t2e−4d|t|γ

δ2|t|2a dt . T 3
∗∗ +

T 3−2a−γ
∗∗ e−4dTγ

∗∗

δ2
.

It follows from estimate (3.2) and the estimates of I1;δ,a, I2;δ,a and Ĩ3;δ,a that

(5.17) E‖f̂X;n,δ,a − fX‖2

. T−2α
∗∗ +

T 1−γ
∗∗ e2dT

γ
∗∗

n
+
T−2a+1−γ
∗∗ e−2dTγ

∗∗

nδ2
+
T 3
∗∗
n

+
T 3−2a−γ
∗∗ e−4dTγ

∗∗

nδ2

. T−2α
∗∗ +

T 1−γ
∗∗ e2dT

γ
∗∗

n
+
T−2a+1−γ
∗∗ e−2dTγ

∗∗

nδ2

= T−2α
∗∗ +

T 1−γ
∗∗ e2dT

γ
∗∗

n

(
1 +

T−2a
∗∗ e−4dTγ

∗∗

δ2

)
. T−2α

∗∗ +
T 1−γ
∗∗ e2dT

γ
∗∗

n
.
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From the definition of T∗∗ we derive for large n that

(5.18)
( lnn

4d

)1/γ
6 T∗∗ 6

( lnn
2d

)1/γ
.

For n large enough, ln(lnn) > (2α+ 1− γ)/γ and so

T∗∗ 6
( lnn− (2α+ 1− γ)γ−1 ln(lnn))

2d

)1/γ
,

which gives

(5.19) e2dT
γ
∗∗ . n(lnn)−(2α+1−γ)/γ .

From (5.17), (5.18) and (5.19), we derive

E‖f̂X;n,δ,a − fX‖2 . (lnn)−2α/γ ,

and this completes the proof. �
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