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Abstract. For any positive integer k > 2, let (Py(bk)),@g,k be the k-generalized Pell
sequence which starts with 0,...,0,1 (k terms) with the linear recurrence

P,(lk) = 2P7(Lk_)1 + PT(Lk_)Q + ...+ Pr(l]i)k for n > 2.
Let (Nn)p>0 be Narayana’s sequence given by
No=N;=N2=1 and Np43 = Npy2+ Nn.

The purpose of this paper is to determine all k-Pell numbers which are sums of two
Narayana’s numbers. More precisely, we study the Diophantine equation

P = Ny + N

in nonnegative integers k, p, n and m.

Keywords: Diophantine equation; Narayana’s cows sequence; k-Pell number; linear form
in logarithms; reduction method

MSC 2020: 11B37, 11D61, 11D72, 11R04

1. INTRODUCTION

Narayana’s cows sequence (N, ),>o originated from a herd of cows and calves
problem, proposed by the Indian mathematician Narayana in 1996 (see [1]). It is the
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sequence A000930 in the OEIS (see [13]) satisfying the recurrence relation
(11) Nn+3 :Nn+2+Nn

for n > 0 with the initial terms Ny = 0 and Ny = No = 1. The first few terms
of (Ny)n>o are

0,1,1,1,2,3,4,6,9,13,19, 28,41, 60,88, . ..

Further, the Fibonacci sequence (F,,)m>o is given by Fy =0, F; =1 and
Fio = Foir + Fp Y > 0.
Its first few terms are given by
0,1,1,2,3,5,8,13,21,34, 55,89, 144, 233, 377, 610, . . .

Let ¥ > 2 be an integer. We consider a generalization of the Pell sequence
(P59 p defined as PP = 2P®) 1 p 4 4 pPW for n > 2 with the
initial conditions Pik()k_Q) = Pik()k_m =...= Pék) =0 and Pl(k) = 1. This sequence
is called the k-generalized Pell sequence or the k-Pell sequence. We note that P,(Lk)
is the nth k-Pell number. This sequence generalizes the usual Pell sequence, which
corresponds to k£ = 2. In the recent past, the study of Narayana’s cows sequence
has been a source of attraction for many authors. For instance, Bravo, Das and
Guzman in [4] searched for repdigits in Narayana’s cows sequence. They also found
all Mersenne prime numbers and numbers with distinct blocks of digits in this se-
quence. Recently, Bhoi and Ray (see [3]) proved that the only Fermat number in
Narayana’s cows sequence is N5 = 3. In this paper, we are interested in solving
Diophantine equations involving Narayana and k-Pell numbers. Mainly, we prove
the following theorem.

Theorem 1.1. The k-Pell numbers, which satisfy the Diophantine equation
(1.2) PF) = N, + Ny,
in nonnegative integers p, n, m with 0 <n < m and k > 2, are

1,2,5,12,13,29, 34,88, 89, and 408.

26



Moreover, we have the following representations:

PP =Nog+ Ni=No+No=No+Ns=1, k>2

Pz(k)=No-|-N4=N1+Nl:]Vl“‘NQ:Nl_’_N?’ZNQ_‘_N2
=No+N3=N3+N3=2, k=2

Pg(k):N1+N6:N2+N6:N3+N6:N4+N5:5’ k=2,

P4(k):N0+N9:N6+N8=13, k>3,

Pék):N7+N11=347 k=4,

P =Ny 4 Nyy=Ny+ Ny =Ns + Ny =89, k=5,

P = Ny + Ny = N5 + Ng = 12,

P5(2):N1+N11:N2+N11=N3+N11=297

P = Ny + Nyg = 408,

Pé4):N11+N13:N0+N14:88'

Theorem 1.1 allows us to deduce the following statement.
Corollary 1.1. All the solutions of the Diophantine equation
(1.3) P =N,
in nonnegative integers p, n with k > 2 are given by
PP =N =Ny=Ny=1,k>2 PH=N=2 k>2

PM =Ny=13, k>3, and P" =Ny =88

The proof of Theorem 1.1 is mainly based on linear forms in logarithms of algebraic
numbers and a reduction algorithm originally introduced by Baker and Davenport
in [2]. Here, we use a modified version of the result due to Dujella-Pethé (see [8]). In
fact, in the next section, we recall the properties to prove Theorem 1.1 completely.
As we don’t have in the literature the study of the Diophantine equation

(1.4) F, =N, + Ny,

we do it in Section 3. The last section is devoted to the proof of Theorem 1.1.
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2. PRELIMINARY RESULTS

2.1. Linear form in logarithms. We use Baker’s theory of linear forms in
logarithms of algebraic numbers for the proof of our result. Let o be an algebraic
number of degree d, let a > 0 be the leading coefficient of its minimal polynomial
over Z and let o = oV, ..., a(? denote its conjugates. We denote the logarithmic
height of « by

d
h(a) = é <loga +) " log(max{|a?], 1})).

i=1

This height has the following properties. For any algebraic numbers a and 3, we have

h(aB) < h(e) + h(B),
h(a £ B) <log2+ h(a) + h(B).

Moreover, for any integer n,
h(a™) < |n|h(a).

Now, let K be an algebraic number field of degree dix. Let n,...,m € K and
dy,...,d; be nonzero integers. Let D > max{|d1],...,|d;|}, and

l
I' = an" — 1.
i=1

Let Ay,..., A; be real numbers such that
A; > max{dkh(n;),|logn;|,0.16} for j=1,...,1L

The first tool we need is the following result due to Bugeaud, Mignotte and Siksek
(see [7], Theorem 9.4).

Theorem 2.1. If I' # 0, then

log|T'| > —1.4-30"3 - 1*® . @2 (1 4+ logdi)(1 + log D)A; ... A;.

2.2. The reduction method. Using Theorem 2.1, we get an upper bound on
the variable n which is too large, thus we need to reduce that bound. To do this, we
have to recall a variant of the reduction method of Baker and Davenport (see [2])
due to Dujella and Pethé (see [8]).
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Lemma 2.1. Let M be a positive integer, let p/q be a convergent of the continued
fraction of the irrational T such that ¢ > 6M, and let A, B, 1 be some real numbers
with A > 0 and B > 1. Let further € = ||uq|| — M - ||7q||, where ||| denotes the
distance from the nearest integer. If € > 0, then there is no solution of the inequality

0<|mr—n+u <AB™*

in positive integers m, n and k with

log(Ag/e)

<M d k>
m an log B

The following result of Guzman and Luca (see [10]) will also be very useful.
Lemma 2.2. If [ >1,T > (41?)! and T > x/(logz)!, then

z < 2'T(log T)".

2.3. Properties of Narayana sequence. In this subsection, we recall some facts
and properties of Narayana’s sequence which will be used later. The characteristic
equation of (1.1) is

23— —-1=0,

which has roots «, 3, v = 3, where

V116 + 121/93 2 1
o= +— + 2
6 3v/116 +12v/93 3
and
s _ V116 +12v93 1 L1
12 3v/116 + 1293 3
+i£<3116+12\/ﬁ_ 2 )
2 6 33/116 + 1293/
Binet’s formula for Narayana’s cows sequence is given by
(2.1) N, =Coa" +Cgp" + C " forn >0,
where
o p v
Ca - ) C — 5 C =
(@=Bla-7" "TB-aB-7 7 (-ah-5)
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Also formula (2.1) can be written in the form
(2.2) N, = ca@™? + 58" 2 + ey Y20

with
1 1 1

—a3+2, 662—63_’_2, 67:—73_’_2.

Note that the coefficient c,, has the minimal polynomial 3123 — 3122 + 10z — 1 over Z

Co =

and all its roots lie strictly inside the unit circle. Numerically, we have

(2.3) 146 < a < 1.47, 0.82 < |B| = |y| < 0.83,
0.19 < ¢ < 0.20, 0.40 < |cz] = |¢y] < 0.41.

Moreover, the nth Narayana number satisfies the inequalities
(2.4) Q" ? <N, <a" !
for n > 1 (see [4]).

2.4. Properties of Fibonacci sequence. Recall that if £ is any nonnegative
integer, then
_(pk—Ak - sok_)\k
e —A VB
where ¢ = (1++/5)/2 and A\ = (1 —+/5)/2 are the roots of 22 — z — 1. This is
known as the Binet’s formula for the Fibonacci sequence. It is well-known that the

(2.5) By

inequalities
(2.6) PP R <t
hold for k > 1.

2.5. Properties of k-generalized Pell sequence. In this subsection, we recall
some facts and properties of the k-Pell sequence. The characteristic polynomial of
this sequence is

k—2

or(r) =af =227 P2 1.

In [14], it is proved that ¢ (x) is irreducible over Q[x] and has just one root o(k)
outside the unit circle. It is real and positive, and satisfies o(k) > 1. The other roots
are strictly inside the unit circle. Furthermore, the authors from [6] proved that

(2.7) O (1— ) < o(k) < ? for k> 2,
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where ¢ = (1 4+ v/5)/2. To simplify the notation, in general, we omit the dependence
of (k) on k and use g. For s > 2, let

rz—1 rz—1

(2:8) fol@) = (s+D)a?—3sz+s—1 s@—38z+1)+a?—1

In [5], it is also proved that the inequalities

(2.9) 0.276 < fr(0) < 0.5 and |fr(0¥)] <1 with2<i<k

hold, where g := oM, ..., o(*) (the conjugates of ) are all the zeros of ¢y, (z). It was
proved in [9] (see also [12]) that fx(o) is not an algebraic integer. In addition, the
authors of [5] proved that the logarithmic height of fi (o) satisfies

(2.10) h(fr(e)) < 4klogp + klog(k+1) for k > 2.

With the above notations, the authors of [6] showed that

k

. n 1
(2.11) PP =3 feld™)e!" and [P~ fi(0)e"| < 3,
i=1

which is valid for n > 1 and k£ > 2. So, for n > 1 and k > 2, we have

(2.12) P,(lk) = fr(0)o™ + er(n), where |eg(n)| <

N =

Furthermore, it was shown in [6] that
(2.13) 0" < P,(lk) <o" !t forn>1andk>2.

Finally, we conclude this subsection by giving the following estimate from [5]. If
k > 30 and n > 1 are integers satisfying n < ¢*/2, then

2n
n_ P 4
(2.14) fi(0)d" = F5 (140, where (] < .
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3. FIBONACCI NUMBERS WHICH ARE SUM OF TWO NARAYANA NUMBERS

In order to effectively survey the Diophantine equation (1.2), the study of Fi-
bonacci numbers which are the sum of two Narayana numbers is inevitable. Thus,
this section deals with the issue. Our result in this case is the following.

Theorem 3.1. The Fibonacci numbers which satisfy the Diophantine equation

in nonnegative integers p, n and m with 0 < n < m are 0, 1, 2, 3, 5, 8, 13, 21, 34
and 89. Moreover, we have the following representations:
Iy = No+ Ny =0,
Fy =F,=No+ Ny = No+ No=Ng+ N3 =1,
F3=No+Ny=N1+Ny =N +Ny=N; + N3
=Ny + Ny = No+ N3 = N3+ N3 =2,
Fy=Ng+ N5 =Ny + Ny=Ny+ Ny= N3+ Ny=3,
F5 = N1+ Ng = N2 + Ng = N3 + Ng = Ny + N5 = 5,
Fs = Ny + N7 = Ng + Ng = 8,
F7 = No+ Ng = Ng + Ng = 13,
Fg = Ngs+ Nig = 21,
Fy = N7+ N11 = 34,
Fi1 =Ny + Ny = Na+ Nig = N3+ Ny = 89.

The above result implies the following corollary.
Corollary 3.1. The solutions of the Diophantine equation
(3.2) F, =N,
in nonnegative integers p, n are given by
Fo=Nyg=0, Fy=F,=N;=Ny=N3=1,
F3s=Ny=2, Fy=N;5=3 and F;= Ng=13.

Note that if p = 0 in the equation (3.1), then n = m = 0. So we can now assume
that p > 1. First we have the following result.
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Lemma 3.1. If the integers p, n and m with n < m satisfy the Diophantine
equation (3.1), then the inequality

(3.3) 1.24p — 3.48 < m < 1.28p + 0.72
holds.
Proof. Using the inequalities (2.4), (2.6) and equation (3.1), we obtain
am_QgNm gNn"’Nm:Fpg@p_l

and

¢’ 2 < Fp = Np+ Ny <2N,, < 20" <™t

where we use the fact that 2 < a?. Hence, we get

1 1
(3.4) P-222 1<m<(p—1) Zg“"+2.

Thus, using the fact that 1.24 < log¢/loga < 1.28, we deduce that
(3.5) 1.24p — 3.48 < m < 1.28p+ 0.72.

O

If m < 250, then p < 204 by Lemma 3.1. A quick computation with Maple reveals
that the solutions of the Diophantine equation (3.1) in the range m < 250 are those
listed in the statement of Theorem 3.1. We prove that these are all of them. From
now on, we assume that m > 250. By Lemma 3.1, we obtain p > 194 and also
m + 2 > p. We rewrite the equation (3.1) as

m—+2 sap n+2 n+2 n+2 m—+2 m—+2 )\p
Caly —T==—c """ —¢ —c —c —c - —
a 75 a 30 vy 30 Y /5
using the formulas (2.2) and (2.5). Thus, we obtain

caa™ T — Ll } = |ca@™? 4+ caB" T + 0y 4T 4 ey + >
V5 K ! V5

AP

< Co an+2+2 c n+2 +2C m—+2 + |
[callal les 5] el N

<a"?43<a? 408 <ants.
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Multiplying through by v/5¢? and using the facts that a2 < ¢~ and \/5/30 < a,
we get

5 n+8 1
< \/_a <

(pp aqm—n—11 '

(3.6) [(caVB)a 277 — 1

Let 'y be the expression inside the absolute value in the left-hand side of (3.6).
Observe that I'; # 0. To see this, we consider the (Q-automorphism of the Galois
extension Q(p, a, 8) over Q given by o(a) =  and o(8) = a. Assume that I'; = 0,
so we get

(3.7) P = (caVB)a™F2,

Conjugating the above relation using the (Q-automorphism of Galois ¢ and taking
the absolute value we obtain

1 < @? =V5leg) 8™ < 0.77,

which is a contradiction. Hence, I'y # 0 and then Theorem 2.1 can be applied to it.
To do this, we consider

m=vV5ca, m=0a, m=¢, di=1 dy=m+2, ds=—p.
The algebraic numbers 71, 72 and 73 are elements of the field K := Q(«,¢) and

dx = 6. We have
log o

log ¢

h(n2) = >

and h(ng) =

Thus, we can take
max{6h(n2), |lognz],0.16} < 0.77 = A,,

and
max{6h(ns3), |logns|,0.16} < 1.45 = As.

Using the properties of the logarithmic height, we obtain

) < B(VB) + hlca) = log 5 + 521

< 1.95.

So we can take
max{6h(m ), |logm],0.16} < 11.7 = A;.

Finally, from Lemma 3.1 we can choose D := m + 2 = max{1l,m + 2,p}. Thus
Theorem 2.1 tells us that

log|T'y| > —1.4-30°-3%5.62(1 +log6)(1 + log(m +2)) - 11.7- 0.77 - 1.45
> —1.88- 10" - (1 + log(m + 2)).
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By the fact 1 + log(m + 2) < 1.71log(m + 2), which holds for all m > 3, we obtain
(3.8) log|T'y| > —3.2- 10" log(m + 2).

Combining this with (3.6), we get

(3.9) (m —n)loga < 3.21 - 10" log(m + 2).

We rewrite once again the equation (3.1) using formulas (2.2) and (2.5) to get
©P 2P
vl | %

< 2lesllBI™ +2lesllo™+ + 2L <3< a2

NG

Ca(am—n + 1)an+2 o Cﬂﬂn+2 + C’Y,)/n-i-Q + Cﬁ6m+2 + Cv,ym+2 +

Multiplying through by v/5¢ 7, we get
5a3 1
Vha _

(3.10) [(VBea(@™ " +1)a"2p7P — 1] < o < gmo

where we use ™ % < ¢P~! and v/5/p < a. Let I's be the expression inside the
absolute value in the left-hand side of (3.10). Note that with an argument similar
to the above one, it can be proved that I'y # 0. So, we can apply Theorem 2.1 to it.
We consider

m=vVhea(@" " +1), m=a, m=¢, d=1 do=n+2 d3z=-p.

Thus, we can choose D = m + 2 because n < m. The heights of 7y and 53 have
already been calculated. From the properties of the heights, we get

h(m) < h(V5ea) + h(a@™ ™™ +1) < 1.95 4 (m — n)b% +log 2
< 1.08 - 10" log(m + 2)
where we have used the inequality (3.9). We choose
max{6h(n1), [logn|,0.16} < 6.48 - 10" log(m + 2) = A,

and As, Az as above. Therefore, by Theorem 2.1, we obtain

log|To| > —1.4-30°-3%5.62- (1 +1log6)(1 + log(m + 2))
x 6.48 - 10" log(m +2) - 0.77 - 1.45

and then
(3.11) log |Ty| > —1.79 - 10% 1log?(m + 2)
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follows where we used the inequality 1 + log(m + 2) < 1.7log(m + 2) for m > 3.
Combining (3.10) and (3.11), we get

1.79 - 10%% log?(m + 2)

oga +8 < 4.73-10%%log*(m + 2).

m+2<

Therefore, we obtain
(3.12) m+2 < 2.64-10%%

So, to reduce the above bound on m, we first set

1
Vica

Note that e™® —1 =T # 0. Thus, A; # 0. If A; <0, then

Ay :=plogy — (m+ 2)loga + log

1
0< |A1| <€‘A1‘ —1= |F1| < Py——
amfnf
according to the inequality (3.6). If A7 > 0 we have 1 —e ™1 = [e™%1 — 1| < 1/2.
Hence, e < 2. Thus, we get

2
0<A1<€A1—126A1|F1|<
[0

m—n—11"
So, in both cases we have

m—n—11"

2
0 <A <
@
Dividing the above inequality by log a, we get

355
(3.13) lpT — (m+2) 4+ p| < o

m—n’

where
N R log(1/v/5¢a)

" loga log a

Now, we apply Lemma 2.1. Since p < m+2, from (3.12) we can take M = 2.64-102,
A =355 and B = a. A quick computation with Maple reveals that the convergent

pro _ 4021025019685037142147505686136939
qro  3194055037246978157952257926560636

of 7 is the first such that g79 > 6 M and € > 0. Therefore, we obtain

m—n < 223.
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Next, we put

1
VB (am=n + 1)
with 0 < m — n < 222. From the inequality (3.10), we can see that

Ay =plogy — (m + 2)loga + log

2
0<|As] < prct

Put a = m — n. Dividing the above inequality by log a;, we obtain

53
(3.14) lpT — (M +2) + pa| < am’
where
1 1 1 o “ 1
T 0g(1/v5ea(a” +1)) with 0 < a < 222.
log o log o

Now we apply Lemma 2.1. Here we can take M = 2.64-10%2, A = 53 and B = a.
A quick computation with Maple proves that the convergent

pr1 _ 37417183036250693833016580755802629

qrn 29721909555760487844132538948692737

of 7 is the first satisfying g71 > 6 M and € > 0 with 0 < a < 222. Moreover, we get
m < 236 which is a contradiction. Hence, Theorem 3.1 is proved.

4. PROOF OF THEOREM 1.1

The purpose of this section is to give all details about the proof of Theorem 1.1.
For this, many cases will be considered according to the values of p.

4.1. The case 1 < p < k+ 1. It is known from [11] that for 1 < p < k+ 1,
we have
PP = By, 4.
Using Theorem 3.1, we deduce that the solutions of equation (1.2) for 1 < p <
k+1 are
P® = Nyg+ Ny =No+No=No+Ns=1, k>2,
PP =Nog+Ny=Ni+ Ny =N+ Ny =Ny + Ny =Ny + Ny
=No+N3=N3+N3=2, k=2
P3(k):N1+N6:N2+N6:N3+N6:N4+N5:5; k>2
P = Ny+ Ny = Ng+ Ng =13, k>3,
P® = Ny 4 Ny =34, k>4,
P = Ny 4+ Nyy=Ny+ Ny =Ny + Ny =89, k> 5.

3
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4.2. The case p > k + 2. We start this subsection by assuming that p > k + 2.
We have the following result which gives us the bounds of m in terms of p.

Lemma 4.1. If the integers p, n and m with n < m satisfy the Diophantine
equation (1.2), then we have the inequalities

(4.1) 1.24p — 1.48 < m + 2 < 2.55p + 1.45.

Proof. Combining inequalities (2.4) and (2.13) with the equation (1.2), we have
a™ 2 < Npy < Ny + Ny, = PP < P!
and
@2 < PM) = Ny + Ny < 2Ny, < 20771 < o™,
where we use 2 < a?. Hence, we get

log o

log o
—2)— — 2.
( ) log o +

1<m<(p=-1
log o sm<(p )

Since 1.46 < a < 1.47 and ©?(1 — ¢~ 2) < o < ¢? for k > 2, we deduce that

1.24p — 1.48 < m + 2 < 2.55p + 1.45. This finishes the proof. O

By Lemma 4.1, we deduce that m > 2. Next, we get the following result which
gives an upper bound of m and p in terms of k.

Lemma 4.2. If the integers p, n and m satisfy the Diophantine equation (1.2),
then we have the estimate

p < 1.59 - 10%2%° log® k.

Proof. Using Binet’s formulas (2.2) and (2.12), we rewrite the equation (1.2) as
Caam+2 _ fk(Q)Qp — _CaanJrQ _ Cﬁ6n+2 _ C}y,yn+2 _ Cﬁ6m+2 _ C’Y’merQ +ep (p)

Thus, we obtain
(4.2)
lcaa™ 2~ fi(0)e?| = |ca@™ 2 4cp B 2 b ey e BT ey e (p)] < o PR

Dividing the above inequality by fi(0)o? and using the facts that a™ 2 < oP~' and
1/(fr(0)o) < o, we get
Q"8 1

4. I
() Bl < foe < e
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where

c
g = ——am2p7P 1.
fr(o)
Note that T's # 0. If ['s = 0, then fx(0) = ca@™ 2p7P and so fi(0) is an algebraic
integer. This is a contradiction to the fact that fi(0) is not an algebraic number.
Thus I's # 0 and we can apply Theorem 2.1. Let us consider

) m=a, m=0 d=1 do=m+2, d3=—p.

Since 11, 12, N3 are elements of the field K := Q(«, ¢) and dx < 3k we have

log o lo 21lo
h(n2) = % and h(n3) = EQ < kgw.
Moreover,
max{3kh(nz), [logna|,0.16} < 0.39k = A,,
and

max{3kh(ns), |logns|,0.16} < 2.89 = As.

Using the properties of the logarithmic height, we obtain

log 31
h(m) < h(fe(0)) + hca) < 4klog o+ klog(k+1) + 2= < 5.3klog k

for k > 2. So we can take
max{3kh(m), |logm|,0.16} < 15.9k*logk = A;.
Lemma 4.1 gives that D = m 4+ 2 = max{1,m + 2, p}. We have the inequality
log |T'3| > —2.31-10"k% log k - (1 + log(3k))(1 + log(m + 2))

by Theorem 2.1. By the facts 1 + log(m + 2) < 1.8log(m + 2) and 1 + log(3k) <
4.1logk, which hold for all m > 2 and k > 2, we obtain

(4.4) log [T'3] > —1.71 - 10"£° log? k - log(m + 2).
Combining this with (4.3), we get

(4.5) (m —n)loga < 1.72 - 10*k% log® k - log(m + 2).
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To find an upper bound on m, we have to rewrite the Diophantine equation (1.2)
using formulas (2.2) and (2.12) as

lca (@™ " +1)a" = fir(0)0”| = |caB" TP+ ey P2+ caB™ 2oy T+ ler(p)] < o
Dividing through by fx(0)oP, we obtain

a? < 1
fe(@)or — am=7

(4.6) ITa| <

with
cala™" + 1)an+2 -p _

fr(o)
Assume that I'y = 0, thus fx(0) = ca(a™ ™ +1)a" 2P hence fi(p) is an algebraic
integer, which is a contradiction. Thus I'y # 0 and we can apply Theorem 2.1. To do

F4 = 1.

this, we consider,

caamM 1)
m= 7]’3@(9) y 12

As n1, n2, n3 are elements of the field K := Q(a, o), then dx < 3k. We can take
D = m + 2. Using the properties of the heights and the inequality (4.5), we get

=a, Mm=p9, di=1 do=n+2 d3=—p.

1
h(m) < h( fo ) +h(a™ " +1) < 5.3klogk + (m—n)% +log2

Jr(0)
< 5.74- 103k log? k - log(m + 2).

Thus, we have
max{3kh(n1), [logm|,0.16} < 1.73 - 10*4k% log? k - log(m + 2) = Ay,
and Ay, Az as above. Therefore, from Theorem 2.1 we obtain
log [Ty > —2.52-10%k% log? k - log(m + 2) - (1 + log(3k))(1 + log(m + 2))
which leads to
(4.7) log |T4| > —1.86 - 10*k% log® k - log®(m + 2),

where we used as above the inequalities 1 + log(m + 2) < 1.8log(m + 2) and
1+1log(3k) < 4.1logk for m > 2 and k > 2. Referring to inequalities (4.6) and (4.7),

we obtain
m+ 2

— T <4.92-107K 1og® k.
log?(m + 2) &
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Now, we apply Lemma 2.2 with 7' = 4.92 - 1027k log® k, = m + 2 and ¢ = 2. So,

we have

m+ 2 < 4(4.92-10*7k% log® k) (log(4.92 - 10*7k% log® k))?
< (1.97-10%K% log® k)(63.8 + 9log k + 3loglog k)?
< 1.97-10%2k" log® k.

In the above we have used the fact that 63.8 +9logk + 3log(log k) < 100 log k which
holds for k > 2. Using the above inequality and Lemma 4.1, we obtain

p < 1.59-10%2 . k° - log® k.

This completes the proof of Lemma 4.2. O

4.2.1. The case 2 < k < 825. To reduce the above bound on m, we first set

As :=plogp— (m—|—2)logoz—|—logfkc—(g).

Since T'3 # 0, then e=*s — 1 =T'3 gives that A3 # 0. If A3 < 0, then

m—n—13

0 < |As| <elfsl -1 =15] <
«

according to the inequality (4.3). If Az > 0, then we have 1 —e™3 = |[e™ % —1] < 1/2.
Thus, we get

2
0<A3<eA3—1:eA3|F3|<
o

m—n—13"
In any cases, we have

2
0<|A3|<
«

m—n—13"
Dividing the above inequality by log a, we get
761

amf’ﬂ

(4.8) IpT — (m +2) + p| <

where

~loga log o
Now, we apply Lemma 2.1 to (4.8) for 2 < k < 825 by putting

1 1
08P nd p— og(fr(0)/¢a)
M = M, = [1.59-10%%k%1log° k|, A =761, and B=a.

A quick computation with Mathematica reveals that m — n < 408. Now, we put

fk(Q)
Ay i=pl — 2)1 log ————————.
4:=plogo— (m+2)loga +log o™= 4+ 1)
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Using inequality (4.6), we get

2
0 < |A4 < o
which leads to
77
(4.9) [pr = (m +2) + pal < —,
where
T 1= loﬂ7 0= log(fk(g)/(ca(a + 1))), and 0 <a< 408.
log a log o

Now we apply Lemma 2.1 to (4.9) by taking for 2 < k < 825,
M = My, = [1.59-10%%k%log° k|, A:=77 and B:=a.

We follow the algorithm of Lemma 2.1 using Mathematica and we see that 0 < n <
m < 428. Therefore, by Lemma 4.1, we deduce that p < (m + 0.52)/1.24 < 346.
Finally, we write a program in Maple to compare P,Sk) and N,, + N, for k € [2,825],
p € [4,346] and 0 < n < m < 428 with p > k + 2 and we get the other solutions
mentioned in Theorem 1.1.

4.2.2. The case k > 825. In this case, we need to show that the Diophantine
equation (1.2) has no solution. We have the following lemma.

Lemma 4.3. If the integers p, k, n and m satisfy the Diophantine equation (1.2)
with 0 <n < m, k> 825 and p > k + 2, then the inequalities

k<125-10% and p<4.7-10%

hold.

Proof. Together with the inequalities (4.1) and Lemma 4.2, we have
0.39m < p < 1.59-10%2k log® k < ©*/?  for k > 825.

Thus, from (2.14) and (4.2), we have

a0 = L e ™2 ()0 + fulo)o? — o
p+2 p+2
2
< Jead™? = fr(0)d”| + | fr(0)o” — LA
p+2
2p 2p
©=P[¢] g, PP 4
< m+2 D < n+ .
|cacy fr(o)e |+—¢+2 o +(p+2¢k/2
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Dividing through by c,a™1 2, we obtain

1 ab %P 4
4.10 — M 1| < :
(4.10) calp + 2)04 v Ccoa™™m + Ca™T2(p + 2) ph/2

Moreover, by (2.12) and (2.14), we get

2p
© 4 1 1
(1 ) — 3 <@ 5 < S0 + entp) = FY.

Since P,gk) = N, + N, < a™*! and k > 825, then we get

1 2p 1 Pk N, + Ny, m+1
7(¢—~0.99——)< Dt C 4
coea™t2\p 42 2 Co 02 Co 02 Co 02

and therefore
P
<7 Vm=0.

caa™t2(p+2)
Now, we return to the inequality (4.10). Then, we get

54 28 82
(4.11) IT's| < o T k72 < min{m—nk/2}
where 1
e — = o~ (m+2) 2p _ 1
T apr)t Y

To see that I's # 0, assume the contrary, i.e., I's = 0. We get 0?P /(¢ + 2) = coa™ 2.
Using the Q-automorphism () of the Galois extension Q(yp, a, 8) over Q we obtain

2p

50 <
p+2

= lesll B2 <1,

which is impossible. We apply again Theorem 2.1 to I's with

1

) = qQ, :;d:L d:_m+27 ds = 2p.
NCF) 2 ns =, di 2 ( ), dz=2p

m=

Since K := Q(n1,12,n3) = Q(a, v), then dx = 6. Also, we have

log «

log ¢

h(n2) = 5

and h(ng) =

Thus, we can take
Ay =0.77 and Az =145.

Furthermore, we obtain

log31 1
Ogg +%+210g2<2.78.

h(m) = hcale +2)) < h(ca)+h(p) +h(2) +log2 <
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So we can take A; := 16.68. Because m + 2 < 2.55p + 1.45 < 3p for p > 4, we can
choose D := 3p. Thus, by using Theorem 2.1, we obtain

(4.12) log|Ts| > —7-10"1logp

where we used the fact that 1+ log(3p) < 2.6logp, which is valid for p > 4. Com-
bining (4.11) and (4.12), we can see that

(4.13)  min{m —n,k/2} < 1.85-10" logp < 1.85 - 10" log(1.59 - 1052k log” k)
< 4.09-10'%1ogk

where we used
logp < log(1.59 - 10%2k? log® k) < 22.1logk for k > 825.

Now, we have to consider the following two cases according to the values of
min{m — n, k/2}.

Case min{m — n,k/2} = k/2. In this case, by combining (4.13) and Lemma 4.2
it is easy to see the bounds

k<6.38-10"% and p<4.24-10%%.
Case min{m — n, k/2} = m — n. By the inequality (4.13), we get
(4.14) m—n < 4.09-10"logk.

We rewrite the equation (1.2) as

+2 Sﬁzp
m—n 1a™ _
ol + Do —80"‘2
p 2 2 2 2
< ‘(p—’— 2C+ek(p)‘ + |Cg,6m+ + c’y,ynJr +Cﬁﬁm+ _'_C’fmer |
2p 2p
@ n+2 m+2 ' 5
< 2 2 =
LG+ el + 2Aeslla™ + 2eslIBI™ < 4 2

Multiplying through by (¢ + 2)/?" and using the fact that p > k + 2, we obtain

4 Sp+2 14
+§ 0P < (pk/2’

(4.15) ITe| <
¢

where g := co (@™ + 1)(¢ + 2)a" 2o~ 2P — 1. To see that ['c # 0, assume that
I = 0. We get p?/(¢+2) = coa™2. Using the Q-automorphism («3) of the
Galois extension Q(¢p, a, 8) over Q we obtain

2p

SO m—n n m—n n
50 < P leallB™ ™" + LIBI" < lesl(16]™ " +1)[B]"** < 2,
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which is a contradiction. So we can apply Theorem 2.1 to I'g with
m=cal@™"+1)(p+2), m=a, p3=¢, di=1, dy=n+2, and dz=—2p.

Here again, we can take dx = 6, D = 3p, Ay = 0.77 and A3 = 1.45. Moreover, one
sees that

B(m) < h(ca) + (m — n)h(a) + h(g) + h(2) + 21og2

log 31 1 1
Og3 + (m—n)% + % +3log?2 < 5.22- 10" log k

<
follows. Thus, we can take
Ay :=3.14-10'%log k.
Using the fact that 1 + log(3p) < 2.6logp for p > 4, we get from Theorem 2.1 that
(4.16) log |Ts| > —2.91 - 10% log? .
Next, we put the inequalities (4.15) and (4.16) together to get
k<125-10% and p<4.7-103.

This completes the proof of Lemma 4.3. O

To reduce the bound of k, we take
As =log(ca(e +2)) + (m+2)loga — 2plog .

Moreover, as I's # 0 one sees that As # 0 and we get from (4.11) that

164

0< |A5| < aqmin{m-n,k/2} "

Dividing by log ¢, we get

341
(4.17) |(m+2)7 = 2p + ul < e =y

where ) | 5
_ g = og(caly +2))

T =
log ¢ log ¢
With Lemma 4.3 and the fact that

m+2 < 2.55p+1.45 < 3p < 1.41 - 10357,
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we can apply Lemma 2.1 to (4.17) with M = 1.41-10%67, A = 341 and B = . Thus
we get

(4.18) min{m —n, k/2} < 2235.

> If min{m —n, k/2} = k/2, then by combining (4.18) and Lemma 4.2 we obtain
the bounds
k<4470 and p < 4.76-10%.

> If min{m —n,k/2} = m — n, then we have
(4.19) m—n < 2235.

Put
1

alam+1)(p+2)

Ag :=2plogy — (n+2)loga + log
¢

From (4.15), it is easy to see that

74
where
1 —1 (@M 41 2
pologp o Zloalcal@™ A D) g <y — < 2235,
log a log o

Applying Lemma 2.1 with A := 74, B := ¢ and M := 1.41 - 10%%7, we obtain
k<3644 and p < 6.69-10%.

Therefore, in both cases according to min{m — n, k/2}, we need to consider

(4.21) k<4470 and p < 4.76-10%.

We apply again Lemma 2.1 using the bounds from (4.21) and we get & < 814, which
contradicts the fact that £ > 825. This completes the proof of Theorem 1.1.
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