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Abstract. Firstly we study the growth of meromorphic solutions of linear difference
equation of the form

A2 f(z+cp) + ...+ A1(2) f(z 4 c1) + Ao(2) f(2) = F(2),

where Ap(2),...,Ao(z) and F(z) are meromorphic functions of finite logarithmic order, ¢;
(¢ =1,...,k, k € N) are distinct nonzero complex constants. Secondly, we deal with the
growth of solutions of differential-difference equation of the form

n

STN 45D (2 + ) = F2),

i=0 =0
where A;;(z) (1 =0,1,...,n,j =0,1,...,m,n, m € N) and F(z) are meromorphic func-
tions of finite logarithmic order, ¢; (i = 0,...,n) are distinct complex constants. We

extend some previous results obtained by Zhou and Zheng and Biswas to the logarithmic
lower order.

Keywords: linear difference equation; linear differential-difference equation; meromorphic
function; logarithmic order; logarithmic lower order

MSC 2020: 30D35, 39B32, 39A10

1. INTRODUCTION AND MAIN RESULTS

Throughout this paper, we assume the readers are familiar with the fundamental
results and standard notations of the Nevanlinna distribution theory of meromorphic
functions which can be found in [11], [12], [18]. Further, we denote, respectively, by
o(f), M1/f), 7(f) the order, the convergence exponent of the pole-sequence and the
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type of a meromorphic function f. Many results have been obtained by many differ-
ent mathematicians on studying the growth of solutions of the different types of the
linear difference and ¢-difference equations and the linear differential equations where
their coefficients are entire or meromorphic functions, see, for example, [4], [7], [14],
[15], [17], [19], [20]. Recently some of these results were obtained by using the con-
cept of the logarithmic order due to Chern (see [8]), as a better technique for the case
when these coefficients are entire or meromorphic functions of zero order in the com-
plex plane see, for example, [1]-[3], [5], [6], [10], [16]. This inspired us to investigate
the logarithmic order of solutions to these equations given in [20], where we give some
results on the logarithmic lower order. At first let us recall some related definitions.

Definition 1 ([12], [14]). Let f be a meromorphic function. The counting func-
tion of f is defined by
"n(t, f) —n(0
N(r, f)= / M dt + n(0, f)logr,
0

where n(t, o0, f) = n(t, f) is the number of poles of f(z) lying in |z| < ¢ counted
according to their multiplicity. The proximity function of f is defined by

1 2n .
mir ) =5 [ log" 1(re?)] dy.
TJo
where log™ z = max{0,logx} for 2 > 0. The characteristic function of f is defined by
T(r,f) =m(r,f)+N(r,f), r>0.

Definition 2 ([6], [8]). The logarithmic order of a meromorphic function f is
defined by

. logT(r, f)
oe(f) =1 -l
10 (f) L s v v

When 1 < g1g(f) = 0 < 00, the logarithmic type of f is defined by

T
Tog(f) = limn sup (lég’rj;z,

Definition 3 ([3]). The logarithmic lower order of a meromorphic function f is
defined by

G logT(r f)
tiog (f) = hrrr_1>}>rolf W-

When 1 < puog(f) = 1 < 00, the logarithmic lower type of f is defined by

R AGYD,
Ilog(f) = hrnilogf (IOg 7")“ .
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Definition 4 ([1], [6]). Let f be a meromorphic function. Then the logarithmic
exponent of convergence of zeros of f(z) is defined by
log N(r,1/f)

) logn(r,1/f) ..
A — Noa(£,0) =1 — =] e 1
log (f) = Aog(f,0) T sup log log r nasp loglog r ’

where n(r,1/f) denotes the number of zeros of f in the disk |z| < r
Definition 5 ([12], [18]). Let a € C = CU{oc}, the deficiency of a with respect

to a meromorphic function f is given by

= limin M: — limsu w a 4 co
N I 1 R

_ m(r, f) N(r. f)
d(o0, f) = hrrgggf T ) 1—11£S£pT( -

In [20], Zhou and Zheng considered the linear difference equation

(1) Ap(2)f(z+cr) +...+ A1(2) f(z + 1) + Ao(2) f(2) = F(2),

where Ag(z),...,Ar(z) and F(z) are meromorphic functions of finite order, c¢;

(i = 1,...,k, k € N) are distinct nonzero complex constants, and proved the
following result.

Theorem A ([20]). Let Aj(z) (j =0,1,...,k) and F(z) be meromorphic func-
tions. Suppose there exists an integer | (0 <1 < k) such that A;(z) satisfies

%j)<g@ﬂ<w max{o(A;): j=0,1...k j#1} < o(A),
l

> T(A;) < 7(A) < o0

o(Aj)=0(A1),j#

(1) If o(F) < o(Ai1), or o(F) = o(4;) and > T(Aj) + 7(F) < 7(A;), or
o(Aj)=0(Ar),j#l
o(F) = o(4;) and > 71(Aj) < 7(F), then every meromorphic solution
o(Aj)=e(A1)

f(z) (#0) of (1) satisfies o(f) = o(Ar).
(2) Ifo(F) > 0(A;), then every meromorphic solution f(z) of (1) satisfies o(f) = o(F).

Further, they considered the more general complex differential-difference equation

(2) ZZA” (2)f 9D (z +¢;) = F(2),

=0 j=0
where 4;;(z) (i =0,1,...,n,j=0,1,...,m,n, m € N) and F(z) are meromorphic
functions of finite order, ¢; (i = 0, ..., n) are distinct complex constants, and obtained

the following theorems for the homogeneous and non-homogeneous equations of (2).
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Theorem B ([20]). Let A;;(2) (i = 0,1,...,n,j = 0,1,...,m,n,m € N)
and F(z) be meromorphic functions. Suppose there exists an integer | (0 <1 < k)
such that Ajp(z) satisfies

maX{Q(Aij): (Zaj) 7é (Z,O)} < Q(Alo)a 5(00,1410) > 0.

(1) If o(F) < 0(Aw), then every meromorphic solution f(z) (# 0) of (2) satisfies
o(f) = o(Aw). Further, if F(z) =0, then o(f) > o(Aip) + 1.

(2) If o(F) > 0(Ajp), then every meromorphic solution f(z) of (2) satisfies
o(f) = o(F).

Theorem C ([20]). Let A;;(z) (¢ = 0,1,...,n,j = 0,1,...,m,n,m € N)
and F(z) be meromorphic functions. Suppose there exists an integer | (0 <1 < k)
such that Ajo(z) satisfies

A(A%o) < 0(Ai) < 0o, max{o(Aij): (i,j) # (1,0)} < o(Au),

Z T(Aij) < T(Al()) < 0Q.
Q(Ai]):Q(AIO)r(ivj)s‘é(lvo)

(1) If o(F) < o(Ap), or o(F) = o(Ayp) and > T(Aij) +7(F) <
o(Aij)=0(Ai0),(%,5)#(1,0)
7(Ap), or o(F) = o(Aj) and > 7(Ai;) < 7(F'), then every

Q(Aij):Q(AIO)r(ivj):(lvo)
meromorphic solution f(z) (£ 0) of (2) satisfies o(f) > 0(Aw). Further, if

F(z) =0, then o(f) = o(A410) + 1.
(2) If o(F) > 0(Ajp), then every meromorphic solution f(z) of (2) satisfies
o(f) = o(F).

There are many interesting results on the logarithmic order obtained as an answer
to the question how to express the growth of solutions of (1) and (2), for the case
when their coefficients are meromorphic functions of order zero, we state here some of
these results. In previous paper [1], Belaidi investigated the meromorphic solutions
of the special homogeneous case of (1)

(3) Ar()fz+ k) + ...+ A1(2)f(z+ 1)+ Ap(2)f(2) =0,

where Ag(2),...,Ap(z) are meromorphic functions of finite logarithmic order, and
obtained the following result.
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Theorem D ([1]). Let A;(z) (j =0,1,...,k) be meromorphic functions. Suppose
there exists an integer | (0 <! < k) such that A;(z) satisfies

1 . .
Alog(E) < QIOg(Al) < 00, maX{QIOg(Aj): J=0,1,...,k j# l} < QIOg(Al)v

Z Tiog (Aj) < Tiog(A) < 00.

Olog (Aj)=010g (A1),j#!

If f is a meromorphic solution of (3), then giog(f) = 0log (A1) + 1.

He also in [3] considered the homogeneous case of (2)

n m
@ SOY AP+ ) =0,

i=0 j=0
where 4;;(z) (i =0,1,...,n,j=0,1,...,m,n, m € N) are meromorphic functions
of finite logarithmic order, ¢; (i = 0,...,n) are distinct complex constants, and

obtained the following theorem.

Theorem E ([3]). Let A;j(2) (i = 0,1,...,n,j5 = 0,1,...,m,n,m € N) be
meromorphic functions. Suppose there exists an integer ! (0 < I < k) such that Ajp(z)
satisfies

maX{Qlog(Aij): (Zaj) # (1,0)} < Qlog(AlO)a 5(OOaAl0) > 0.
Then every meromorphic solution f(z) (# 0) of (4) satisfies piog(f) = 010g(A10) + 1.
In recent paper [5], Biswas considered the logarithmic order of meromorphic solu-

tions of the non-homogeneous equation (2), and obtained the following theorems.

Theorem F ([5]). Let A;j(z) (i=0,1,...,n,j=0,1,...,m,n, m € N) and F(z)
be meromorphic functions. Suppose there exists an integer | (0 < | < k) such
that Ajo(z) satisfies

maX{Qlog(Aij): (i,5) # (1,0)} < Qlog(AlO)a 6(00, Ag) > 0.
(1) If p1og (F') < 010g(Ai0), then every meromorphic solution f(z) (# 0) of (2) satis-

fies Qlog(f) 2 Qlog(AIO)-
(2) If 0105(F') > 010g(A10), then every meromorphic solution f(z) of (2) satisfies

1og(f) = Olog(F).
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Theorem G ([5]). Let A;;(2) (i =0,1,...,n,5=0,1,...,m,n, m € N) and F(z)
be meromorphic functions. Suppose there exists an integer | (0 < | < k) such
that Ajo(z) satisfies

1 ..
/\log(A_lO) < Qlog(AlO) < 09, max{@log(Aij): (17.7) 7& (l,O)} < Qlog(AlO)a

Z Tlog(Aij) < Tlog(AlO) < 00.
Olog (Aij)=010g (A10),(4,5)#(1,0)

(1) If Qlog(F) < Qlog(AIO): or Qlog(F) = Qlog(AIO) and

Z Tiog (Aij) + Tiog (F) < Tiog(Au0),
QIOE(AiJ):Qlog(AIO)v(irj)7é(l:0)

or Qlog(F) = Qlog(AIO) and

> Tlog (Aij) + Tlog(Ar0) < Tiog (F),
QIOE(AiJ):Qlog(AIO)v(irj)7é(l:0)

then every meromorphic solution f(z) (£ 0) of (2) satisfies giog(f) = 010g(Ai0)-
(2) If 0105(F') > 010g(A10), then every meromorphic solution f(z) of (2) satisfies
Qlog(f) = Qlog(F)'

Remark 1. We note that Aiog(1/A4;0) in Theorems D and G should be replaced
by Aog(1/A10) + 1.

The main aim of this paper is to continue investigating the logarithmic order of
meromorphic solutions of equations (1) and (2) to extend and improve the above the-
orems. Firstly, for the linear difference equation (1), when one coefficient dominates
by its logarithmic lower order, we obtain the following result.

Theorem 1. Let A;j(z) (j = 0,1,...,k) and F(z) be meromorphic functions.
Suppose there exists an integer | (0 < I < k) such that A;(z) satisfies §(oc0, A;) > 0
and max{giog(A4;): 7=0,1,...,k, 7 # 1} < piog(A1) < giog(A1) < 0.

(1) Ifpmog(F') < piog(Ar), then every meromorphic solution f(z) (# 0) of (1) satisfies
O1og (f) = thog(A1). Further, if F(z) = 0, then fuog(f) = thiog(A4;) + 1.

(2) If piog(F') > piog(Air), then every meromorphic solution f(z) of (1) satisfies
Qlog(f) 2 Nlog(F)-
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Remark 2. We can replace the condition max{giog(A4;): j=0,1,...,k, j#I}<
Hiog (A1) <010g (A7) in Theorem 1 by

E
o g m(r, A,
i up Db (7 4)

<1
r—o00 m(r, Al)

for the homogeneous case F(z) = 0.

Secondly, for the linear differential-difference equation (2), where we generalize
our previous results, we obtain the following theorems.

Theorem 2. Let A;j(z) (1 = 0,1,...,n,j = 0,1,...,m,n, m € N) and F(z)
be meromorphic functions. Suppose there exists an integer | (0 < | < k) such
that Aj(z) satisfies §(c0, Ajo) > 0 and max{giog(Ai;): (4,4) # (1,0)} < piog(Ai) <
Olog (A1p) < 00.

(1) If piog(F) < piog(Ai), then every meromorphic solution f(z) (# 0) of (2)
satisfies glog(f) = piog(Aio). Further, if F(z) = 0, then piog(f) = tog (A1) + 1.

(2) If pog(F) > puog(Ai), then every meromorphic solution f(z) of (2) satisfies
010 (f) 2 Hiog (F).

Remark 3. We can also replace the condition max{giog(Ai;): (4,5) # (1,0)} <
tiog(Ai0) < 010g(Aio) in Theorem 2 by

.. m T',A"
lim sup Z(W)?ﬁ(ho) (r, Aij)

<1
r—00 m(r, AIO)

for the homogeneous case F(z) = 0.

Theorem 3. Let A;j(z) (i =0,1,...,n,j=0,1,...,m,n, m € N) and F(z) be
meromorphic functions. Suppose there exists an integer ! (0 < I < k) such that Ajp(2)
satisfies

1 .
Nog () 1 < os(An) < o0, max{oug(Ai): (i) # (1.0)} < puos(Au).

= Z Tlog (Aij) < Tiog(Ain) < 00.
Olog (Aij)=Hiog (A10),(4,5)#(1,0)

(1) If pog(F) < log(AlO) or Olog(F) = piiog(Aio) and 7 + Tiog(F) < Tio6(Au0),

or iog(F) = mog(Ain) and T + T,,4(A10) < T1og(F), then every meromorphic
solution f(z) ( 0) of (2) satisfies g1og(f) = piog(Aw). Further, if F(z) = 0,
then ,LLIOg(f) Z W og(AlO) + 1.

(2) If pog(F) > uog(Ai), then every meromorphic solution f(z) of (2) satisfies

Qlog(f) = Nlog(F)
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Remark 4. The condition Aiog(1/A410) + 1 < piog(Aio) in Theorem 3 can be
replaced by 6(co, Ajg) > 0 with d7,.,(Aj0) instead of ,.,,(Ai0), the only difference
between the two conditions that by the condition §(oco, Ajg) > 0 the case when
tiog(Aio) =1 is also included.

2. SOME LEMMAS
For the proof of our results we need the following lemmas.

Lemma 1 ([1]). Let ¢1, co be two arbitrary complex numbers such that ¢1 # co
and let f be a finite logarithmic order meromorphic function. Let ¢ be the logarithmic
order of f. Then for each € > 0 we have

m(r, 7;5 i 23) = O((logr)?~1*e).

Lemma 2 ([11]). Let f be a meromorphic function, ¢ be a nonzero complex
constant. Then we have that for r — oo

(L+o)T(r—lc|, f) <T(r, f(z+¢) < (L+0(1)T(r +|c|, f).
It follows that giog(f(2 + ¢)) = 010 (f) and piog(f(z + ¢)) = pog (f)-

Lemma 3 (2], [3]). Let f be a meromorphic function with finite logarithmic lower
order 1 < fuog(f) < co. Then there exists a subset Ey of [1,00) that has infinite
logarithmic measure such that for all r € E; we have

T(r,f) < (logr)"= ).

Lemma 4 ([9]). Let o, R, R’ be real numbers such that 0 < a < 1, R > 0, and
let  be a nonzero complex number. Then there is a positive constant C, depending
only on « such that for a given meromorphic function f we have, when |z| = r,
max{1l,7+ |n|} < R < R/, the estimate

fz+mn) f(2)
() U )

< %(m(& )+ m(R, %))

* R’QJ—%R(R—L?'— ol * (1Cj|z|;") (N(R/’f) +N(R/’ %))
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Lemma 5. Let 11, n2 be two arbitrary complex numbers such that n; # 12,
and let f be finite logarithmic lower order meromorphic function. Let u be the
logarithmic lower order of f. Then for each £ > 0, there exists a subset Fy C [1,00)
of infinite logarithmic measure such that for all r € E5 we have

f(Z + 771) _ p—1+e
m(r, m) = O((logr)"~17=).

Proof. We have

fztm) Fztm) f2)
(5) (s f) < ) e )

cnlp 510 )

f(z+m) /(2)
+m(r el )+m(n )

Since f has finite logarithmic lower order pioe(f) = p < 00, so by Lemma 3, for
any given ¢ (0 < € < 2), there exists a subset E» C [1,00) of infinite logarithmic
measures such that for all » € F5 we have

(6) T(r, f) < (logr)"+e/2.

By Lemma 4, we obtain from (5)

(7)
n(r Fn) < G e (0 (R )
+R’2}—%R(R—|:1—||m|+(f—|$ =) (VRN (R ]10))
2\m2|R 1

T (£ m(R )

/! [e%
* RQR (% —|:21 ol (1Ci|22)|7"") (VR4 %))
( 2|m|R 2|2 R )

R—r—Im)?  (R—r—|nl)?

+
X (m(R f) +m(R ))4—%

X( |1 4 Ca Ui |72 Ca|na|” )
R—r—|m| (Q-a)r* R-—r—|n (1-ar

x (N, )+ N (R, ?))

57



We choose o = 1 — 1¢, R =2r, R' = 3r and r > max{|m|, [n2|, 4} in (7), we obtain

) m(n HEE) < (AR R (e (20, 5))

f(z+m2) r—Im[)? (=) f
+6( 1| n 2C,|m|' =/ n |72 n 2Ca|772|1*€/2)
T —|m| eri=e/2 T — |2l eri=e/2
1
x (N(?m £+ N(3r, ?))
4( Al |r 4lnar 6( |1 72
(r—1ImD?* = (r—Inel)? r—|m| |

2Ca(Im|' =% + [m|' /%)
+ 1—¢/2
Er

))T(?)r, f).

Using estimate (6), we get

m<r’f(z+m))<4K( Amfr _ Almefr +6( Il el

f(z+m2) (r—1Iml)? = (r—|n2))? r—=Iml v —|nl
2Ca(Im[* =% + |na|*~*/?) te/2
* gri—e/2 )) (log 3ry+</
< M(logr) <1,
where K > 0, M > 0 are some constants. The proof is completed. ([

Lemma 6. Let f be a meromorphic function with finite logarithmic lower or-
der 1 < piog(f) < oo. Then there exists a subset E3 of [1,00) that has infinite
logarithmic measure such that for all r € E5 we have

_ T(r,f)
Ilog(f) o 7"11>nolo (10g r)Nlog(f) ’

Consequently, for any given € > 0 and for all r € E5 we have
T(r, f) < (Tiog(f) + &) (logr)Hrost)

Proof. To prove Lemma 6 we use a similar proof as in ([2], Lemma 10) for the
case when f is an entire function. O

Lemma 7 ([12]). Let f be a meromorphic function and k > 1 be an integer. Then
we have
T(r, f%) < (k+ DT(r, f) + S(r, f),
where S(r, ) denotes any quantity that satisfies the condition S(r, f) = o(T(r, f)) as

r — 0o possibly outside an exceptional set E4 C (0,00) of r of finite linear measure.
If f is of finite order, then S(r, f) = o(T(r, f)) as r — oc.
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Lemma 8 ([13]). Let k and j be integers such that k > j > 0. Let f be a mero-
morphic function in the plane C such that fU) does not vanish identically. Then
there exists an ro > 1 such that

f® o(T (o, f))
m(r f(J)) (k—j)log 7(0_ )

for all Tg < r < p < oo. If f is of finite order s, then

f&) /5O
lim sup M

r—00 log T

k!
+log [+ 5.3078(k — )

< max{0, (k — j)(s = 1)}.

3. PROOF OF THE THEOREMS

In our proofs, we always suppose that f is of finite logarithmic order (giog(f) < 00),
otherwise the results are trivial.

Proof of Theorem 1. Let f(z) (# 0) be a meromorphic solution of (1). We
divide (1) by f(z+ ¢;) to get

) fG+ey) [ F()
Y e j %:#A fz+a) +A0(z)f(z+cz) fz+a)
it follows that

(10)
k

n A< Y me A+ Y m(n Y (LG

§=0,57l j=1,j#l z+a)
1
+ m(r, F(z +m<r,7)+01.
(rP() +m(r fes) + 01
By (10), Lemma 1 and Lemma 2, for any given € > 0 we have

k
(11) m(r, Ai(z)) < Z T(r, A;j(2)) + O((log r)mog(f)—us)
=0,
+ T(ra F(Z)) + T(T, f(Z + CZ)) + 0(1)
k
< Z T(r, Aj(2)) + O((log r)@es()=1+2)
=0,
+T(r, F(2) + (1 +0()T(r + |, f(2))
k
S Z T(ra Aj (Z)) + O((log r)"—’log(f)—l-i-s)
Jj=0,5#1
+T(r, F(z)) + 2T(2r, f(2)).
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Setting

A
(12) lim inf % =8(c0, A)) =35>0
and max{giog(A4;): 7=0,1,...,k, 7 #1} = 0 < pog(A;), by (12) and the definition

of fuog(A;), for any given e (0 < & < 3 (t0g(A;) — 0)) and sufficiently large r we have

N |
N

(13) m(r, A)) = =T(r, A)) > = (logr)esA)=¢/2 > (log y)thes (A1) =<,

By the definition of giog(4;), j =0,1,...,k, j # I, for the above ¢ and sufficiently
large r we obtain

(14) T(T.?A]) < (logr)g—‘rsﬂ j:()?]'""?k’ ] # l'

(1) If pog(F) < puog(A;), then by Lemma 3, there exists a subset E; C
[1,00) with infinite logarithmic measure such that for any given ¢ (0 < & <
2 (og (A1) — p1og(F))) and for all r € E; we have

(15) T(r,F) < (log r)“‘“g(F)"'E.

By substituting (13)—(15) into (11), for any given ¢ satisfying

Hlog (Al) — 0 Hlog (Al) — Hlog (F) }

0 < ¢ < mi { :
g min 2 2

and for all » € E we obtain

(16) (log ) 1es(A)—¢ < E(log r)2T + O((log r)2es () —1+e)
+ (log r)Hes (D) +2 4 O((log ) (N+e),

which implies that
(a7) (1 = o(1))(log r)o=(4) =% < O((log r)s()+2).

By (17), we get piog(Ai) — 2e < giog(f). Since ¢ > 0 is arbitrary, we deduce that
tiog (A1) < 010g (f)-

Further, for the homogeneous case F(z) = 0, by (10) and Lemma 5, there exists
a subset Fo C [1,00) with infinite logarithmic measure such that for any given ¢ > 0
and for all r € Fy we get

k
(18) m(r, A(z)) < Y T(r,A;(2)) + O((log r)res () =14e),

7=0,57#1
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Substituting (13) and (14) into (18), for any given € (0 < & < 1 (puog(4;) — 0)) and
for all r € F5 we obtain

(19) (logr).uflog(Al)*E < k(lOgT)‘QJrE + O((log r)/"'lng(f)*l"rE).
Then
(20) (1 — o(1))(log r)es(A)=¢ < O((log r)tes(=1+e).

It follows that piog(A;) + 1 — 26 < puiog(f). Since € > 0 is arbitrary, we obtain

tog(Ar) + 1 < puiog (f)-
(2) Let f be a meromorphic solution of (1). If piee(F) > piog(Ar), then for any
given € (0 < & < 3 (pu1og(F) — tiog(A;))) and sufficiently large r we have

(21) T(r, F) > (logr)tes(F) e,

By Lemma 3, there exists a subset E; C [1,00) with infinite logarithmic measure
such that for the above ¢ and for all r € E; we obtain

(22) T(T, Al) < (log r)/"IUg (Al)+€.

By (1) and Lemma 2, we have

k
(23) T(TvF(Z)) < Z T(’I“, AJ(Z)) + T(’I“, Al(z))
Jj=0,5#1
k
+ ZT(r,f(ch)) +T(r, f(2)) + O(1)
k
< D T(rAj(2) + T(r, Ai(2)) + (2k + DT (2r, f(2)) + O(1).

J=0,j#l
Substituting (14), (21) and (22) into (23), for the above ¢ and for all r € E; we get
(24) (logr)e=M== L k(logr)®te + (log r)!ros (AT 4 (2k + 1)T(2r, £(2)) + O(1).
So
(25) (1 — o(1))(log 7)Pe=(F)=¢ < O((log 1)@= (F)F),

It follows that pioe (F)—2¢ < g10g(f)- Since € > 0 is arbitrary, we get fiog (F) < 010g (f)-
O
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Proof of Theorem 2. Let f(z) (# 0) be a meromorphic solution of (2). We
divide (2) by f(z+ ¢;) to get
(26)
~ f(” (z+c)fz+c) < fOl+a)  F(z)
—A + Az z — .
ol zgz ZO fe+e)f(z+a) ; P feta) flzta)

By (26), it follows

) mlrAn) € Y Do mlnAy() + Dl Ay(2)

i=0,i1 j=0 =1

< SOz + ) = f(z+c)
+;;m(r, f(z—i——’_cz) )+Z%;¢l (r f(zicl))
+ (r, f(f(j)cl)) (1)

From Lemma 8, for sufficiently large r we obtain

) A
(28) m(r, %) <2jlogt T(2r,f), (i=0,1,....,n,j=1,...,m).

By (27), (28), Lemma 1 and Lemma 2, for any given € > 0 we have

INgE

(29)  m(r, Ap(z Z ZT 7, Aij(2)) +

1=0,i#l =0 J
+O((log r)os(=1He) 4

+ L+ oW)T(r+ |al, f(=
Z ZT?“ Aii(2) +

1=0,i#l j=0 J
+O((log r) o= =1He) 4

Z ZTTA” )+

1=0,i#l j=0 J
+ O((log r)@es(H=14e) L

T(r, Aij(2)) + O(log" T (2r, f))

Il
ah

o

r, F(z))
+0(1)

~—
~—

N

Ms

T(r, Ai;(2)) + O(log(log 1))
1

r, F(2)) + 2T (2r, f(2))

N

NIED=

T(r, Ai;(2)) + O(log(log 1))

—~

r, F(2)) + O((log r)2es (D).

We suppose that 6(co0, Ajg) =9 > 0 and max{oiog(Ai;): (4,7) # (1,0)} =0 < tiog(Aio).
(1) If priog (F') < piog(Aio), then by using a similar reasoning method as in (11)—(17)
from the proof of Theorem 1, we obtain fueg(A10) < Olog(f)-
Further, if F(z) = 0, then by (27), (28) and Lemma 5, there exists a subset
Es C [1,00) with infinite logarithmic measure such that for any given ¢ > 0 and for
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all r € E5 we have
(30)

m(r, Aj) < Z ZT (r, Aij)+ Z (r, A1;)+O(log(log)) +O((log r)te=(H=1Fe),

1=0,i#l j=0 j=1

Similarly as in (18)—(20) from the proof of Theorem 1, we get tiog(A10)+1 < piiog (f)-

(2) Let f be a meromorphic solution of (2). If piog(F) > piog(Aio), then by (2),
Lemma 2 and Lemma 7, we have

(31)
T(rF(z)< Y T(rA5(2) +T(r, Awn(z) + ZZ (r, fP(z + i) + O(1)
(4,5)#(1,0) =075=0
< Z T(r,Aij(2)) + T(r, Aio(2) +ZZ ((G+D)T(r, f(z+ )
(4,5)#(1,0) i=0 j=0

+S(r, ) +0(1)
<Y T Ay(2) + T(r, Aw(2) + O(T(2r, [(2))) + o(T(r, f)).

(4,5)#(1,0)

Then by using a similar reasoning method as in (23)—(25) from the proof of Theo-
rem 1, we get piog(F) < glog(f)- O

Proof of Theorem 3. Let f(z) (# 0) be a meromorphic solution of (2). By (29),
for any given € > 0 we have

(32)  T(r, Aw(z)) = m(r, Ain(z)) + N(r, Aw(2))
Z ZT (r, Aij (2 Z (r, Aij(2)) + O(log(log 1))
i=0,i#l j=0 Jj=1
+ O((log r)2es(N =14y L T(r F(2))
+ O((log T.)Qlog(f)"rf) + N(r, Ajp(2)).

(1) If p10g(F') < priog(Aio), then for any given ¢ (0 < e < (Mlog(Alo) O1og (F)))
and sufficiently large r we have

(33) T(r, F) < (logr)2os(F+e

Setting k = m + n(m + 1), we suppose that ¢ = max{giog(A4i;): (4,4) # ([,0)} <
tiog(Aio). Then by the definitions of piog(Aio) and giog(Aij), for any given e (0 < e <
2 (tmog(A) — 0)) and sufficiently large 7 we get

(34) T(r, Ay) > (logr).uflog(AlO)
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and
(35) T(r, Ai) < (logr)@es(Aidte < (logr)ete (i,5) # (1,0).

By the definition of Aog(1/A4y0), for any given e (0 <& < 3 (tog(Ai0) —Aog (1/A10)—1))
and sufficiently large r we have

(36) N(Tv AZO) < (1Ogr))‘lug(1/Alo)+l+e.

By substituting the assumptions (33)—(36) into (32), for any given ¢ satisfying

:Ulog(AlO) — 0 Nlog(AlO) - )\log(l/AlO) -1 Mlog(AlO) - Qlog(F)}

0 { ) ?
< g < min 5 5 5

and sufficiently large r we obtain

m

(37)  (logrymes0)=e < N N "T(r, Aij(2)) + Y T(r, Ai;(2)) + O(log(log 7))

i=0,i%1 j=0 =
+ O((log 7)2es (N =14e) 4 (log 1) @10s (F)Fe
+ O((]Og r)@log(f)+5) + (log T)Alog(l/Az,o)JrlJre.

Then
(38) (1 — o(1))(log r)es(Am)=¢ < O((log ) @es (N Fe),

which implies that giog(f) = fiog(Aio) — 2¢. Since € > 0 is arbitrary, we get giog(f) >

Hiog(A1p). Now we suppose that max{oiog(Aij): (4,5) # (1,0)} = piog(Ap) and
T = > Tog(Aij) < Tjog(Ain). Then there exist two sets
O1og (Aij)=t10g (A10),(4,5)#(1,0)
r, € {(445):¢=0,1,....,n,5 = 0,1,...,m, (4,5) # (,0)} and Ty = {(4,5):
1=0,1,...,n,7=0,1,....,m, (4,7) # (I,0)} \ T'1 such that for (¢,7) € I'1 we have
Qlog(Aij) = Mlog(AIO) with 7 = Z Tlog(Aij) < Ilog(Alo) and for (Z,j) e I'y we
(4,5)€T1
have giog(Aij) < fiog(Aio). Hence, for any given e (0 < & < (7)o4(A10) —7)/(k + 1))

and sufficiently large r we get

(39) T(r, Aij) < (Tlog(Aij) + €)(log r)res(A0) (5 §) € T
and
(40) T(r, Aj) < (logr)res(A0)=e (i j) € T.
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By the definition of 7,,,(A), for the above e and sufficiently large r we have
(41) T(r, A1) > (Tioq (Aio) — €)(log r)tes(Aro).

By substituting assumptions (33), (36), (39)—(41) into (32), for any given ¢ satisfying

Tlog (Alo) -7 Mlog(AlO) - /\log(l/AlO) -1 Hlog (AlO) — Olog (F) }

0 { ) ?
< g < min P} 5 5

and for sufficiently large r we obtain

(42) (T10g(Ao) — €)(log 7)o (A1)

< Z (Tlog(Aij) + E)(log r)lllug(Alo) + Z (1og T)ulug(Am)_e
(Laer (i,j)€ls
+ O(log(log 7“)) + O((log r)@log(f)*lJre) + (1og T)Qlog(F)JrE
+ O((log 7)2es(N+e) 4 (log r)Mes(1/Aw)+1+e

< (7 + ke)(log r)ulug(Azo) + O((log r)mog(Azo)—E) + O(log(log 7))
+ O((log r)@log(f)—l-'rs) + (10g T)Qlog(F)-‘rE
+O((log ) 2os () +e) 4 (log ) Nes (1/A0) + 1,

Thus,

(43) (1= o(1))(Ziog(Ai) = 7 — (k + 1)) (log r)*1=(4) < O((log r) o=/ +2).

It follows by (43) that o10(f) > ftog(Ain) — €. Since € > 0 is arbitrary, we get
0108 (f) = th0g(Aro)-

If 010g(F) = thog(Aio) and 7 + Teg(F) < T)04(Ai0), then for any given ¢ > 0 and
for sufficiently large r we have

(44) T(r, F) < (rog(F) + &) (log r)#1es(A10)

By substituting assumptions (36), (39)-(41) and (44) into (32), for any given ¢
satisfying

Ilog(Alo) - T = TlOg(F) Mlog(AlO) - /\log(l/AlO) - 1}

0<5<min{ ) , >
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and for sufficiently large r we get
(45)  (Tiog(Ai) — )(log 7)o Aio)

< Y (Tog(Aij) + &) (logryrrestho) 4 N (log ) os(Aio) =
(.)€l (i,4)€T2

+ O(log(log 7")) —+ O((log T)Qlog(f)—l'i‘f) + (Tlog(F) + 6)(10g T)Hlog(AlO)
+ O((log r)2es (1) +e) 4 (1og r)ies(1/Aw)+14e
< (7 + ke)(log r)res o) + O((log r)1e¢410)72) + O(log log 7))
+ O((log )20 N =1He) 4 (1o, (F) + €) (log 7)es(Ar0)
+ O((log )@= () +e) 4 (log ) Pes (1/Aw) 1+
It follows that

(46) (1—0(1))(Ziog(Ain) =T = Nog (F) = (k+2)e) (log )1 h0) < O((log r) 2o 1)+,

This implies that gioe(f) > piog(Aio) — €. Since € > 0 is arbitrary, we obtain

0log(f) = tog(Aio)-
If tog(F') = tiog(Aio) and 7 + T35, (Ai0) < Tio(F), then for any sufficiently small
€ > 0 and for sufficiently large r we have

(47) T(r, F) > (T10g(F) — €)(log T)Hlog(Alo).

By Lemma 6, there exists a subset F3 C [1,00) of infinite logarithmic measure such
that for any given € > 0 and for all » € E5 we have

(48) T(T, AZO) < (Ilog(Alo) + 5) (log T)Hlog(Alo).

Substituting assumptions (39), (40), (47)—(48), into (31), for every sufficiently small
satisfying 0 < & < (T1oq(F) = T — T1og(A10))/(k + 2) and for all r € E3 we obtain

(49) (Ilog(F) —¢)(log r)ﬂlog(Alo)

< Z (Tlog (Aij) + ) (log 7)Fes(Ai0) 4 Z (log r)Hes (Ao) —e
(i,5)€l (i,J)€T2

+ (Tiog(Ai0) + ) (log r)H1os40) + O(T (21, f(2))) + o(T(r, f))
< (7 + Z10g(Aio) + (k + 1)) log )15 (A1) 1 O (log s (o) =)
+ O(T'(2r, f(2))) + o(T'(r, [)).
So

(50) (1= 0(1))(T1og(F) = T — Tiog(Aro) — (k + 2)e) (log r)*1os (o)
< O(T(2r, f(2))) + o(T'(r, f)),
which implies that giog(f) = iog (Ai0)-
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Further, for the homogeneous case F(z) = 0, by (30), for any given € > 0 and for
all r € E5 we have

(51) T(r, Aip(z)) = m(r, Aip(2)) + N(r, Ajp(2))

> T(r,Ay)+ Y T(r, Aij) + O(log(log )

i=0,i#l j=0 j
+ O((log r)H1es (=) L N (1, Ajg(2)).

N
S
&

=

If o = max{piog(Aij): (4,5) # (1,0)} < piog(Aio), then by substituting assumptions
(34)—(36) into (51), for any given ¢ satisfying

Hiog (A10) — 0 thiog(Aio) — Aog(1/A10) — 1}
2 ’ 2

0<5<min{

and for all » € E5 we obtain

n m m
(52)  (logr)teeto)== < N N "(logr)2te + 3 (logr)?*e + O(log(logr))
i=0,i#£l j=0 =1

+ O((log r)mug(f)—1+5) + (log r)xlog(1/A,0)+1+€
< k(logr)?te + O(log(logr)) + O((log r)tes (/) =145)
+ (log ) Nos(1/Aw0) 1+
Then
(53) (1 — o(1))(log r)tes(A0)=¢ < O((log r)tes (/) =14y

which implies that pog(f) > fuog(Aio) + 1 — 2¢. Since € > 0 is arbitrary, we de-

duce that piog(f) = tiog(Aio) + 1. If max{oiog(Aij): (4,75) # (1,0)} = piog(Aso) and

T = > Tiog(Aij) < Tiog(Aio), then by substituting assump-
O10g (Aij)=Hiog (A10),(4,5)#(1,0)

tions (36), (39)—(41) into (51), for any given ¢ satisfying

Ilog(AZO) =T Mlog(AlO) - )\log(l/AlO) - 1}
kE+1 7 2

0<5<min{

and for all r € Fy we get

(54)  (Tio(Ar) — &) (logr)rios o)
< ) (Tog(Aij) + &) (logrytrestho) 4 N (log ) os(Aio) =
(i.d)€T (i.4)€T>
+ O(log(log 1)) + O((log r)!es (N =1F) 4 (1og p)Pies(1/Aw)F1+e
< (7 + ke)(log r)H1ost410) 1 O((log 7)o A10) =)
+O(log(log 7)) + O((log )= =1F2) - (log ) Mes(1/Aw)F 1=,
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It follows that
(55) (1= 0(1))(Tyog(Aro) — 7 = (k + 1)) (log r)!e=(A0) < O((log r)ros (1) =1He),

that is, piog(f) = piog(Aio) +1 — €. Since € > 0 is arbitrary, we obtain e (f) >

Mlog(Alo) + 1.
(2) Let f be a meromorphic solution of (2). If piog(F) > piog(Aio), then for any
given ¢ (0 < € < 3(u10g(F) — pog(Ao))) and sufficiently large r we have

(56) T(r, F) > (log r)Mes(F)=e.

By Lemma 3, there exists a subset F; C [1,00) of infinite logarithmic measure such
that for any given € > 0 and for all r € F; we have

(57) T(Tv AZO) < (log 'r)”log(Alo)-‘re.

If o = max{piog(Aij): (4,5) # (1,0)} < piog(Aio), then by substituting assumptions
(35), (56) and (57) into (31), for any given e satisfying 0 < & < & (pog(F) — fi10g(Ai0))
and for all r € F; we get

(58)
(logryes=e < N~ (logr)?*e + (logr)!es (o)t + O(T (2r, f(2))) + o(T(r, f))
(1,5)#(1,0)
= k(logr)2*< + (log r)tes (o)t 1 O(T(2r, f(2))) + o(T(r, f))-
Then
(59) (1 = o(1))(log )= == < O(T(2r, f(2))) + o(T(r, f)).

It follows by (59) that oiog(f) > fuog(F) —e. Since € > 0 is arbitrary, we deduce
that 010g(f) = fhog (F).
If max{owg(Aij): (i,7) # (1,0)} = pog(Aiw) and

T= > Tiog (Aij) < Tiog(Ai0),
Olog (Aij)=tog (Ar0),(4,5)#(1,0)

then by substituting assumptions (39), (40), (48) and (56) into (31), for any given ¢
satisfying 0 < € < %(ulog(F) — tog(A1p)) and for all r € E3 we have
(60)

(log r)res(F) = Z (Tlog (As; ) + £) (log 7)Hes (Ar0) Z (log )Hes(Ar0) —e
(4,5)€T1 (i,7)€T2

+ (Tiog(Aro) + ) (log 7)o 40) - O(T(2r, £(2))) + o(T (r, f))
< (T + Tiog(Aio) + (k + 1)e) (log r)e=(410) 4 O((log )= (Are) =)
+O(T(2r, f(2))) + o(T(r, f)).
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It follows that
(61) (1= o(1))(log r)!==F)=¢ < O(T(2r, f(2))) + o(T(r, [))-

By (61), we conclude that giog(f) > fuiog (F). O
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