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Abstract. The class of Sakaguchi type functions defined by balancing polynomials has
been introduced as a novel subclass of bi-univalent functions. The bounds for the Fekete-
Szegd inequality and the initial coefficients |az| and |as| have also been estimated.
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1. INTRODUCTION AND PRELIMINARIES

Let H be the class of analytic functions in the open unit disc { = {z € C: |z] < 1}
and consider the classes P, A and S defined by

P={peH: p(0)=1and R(p(z)) >0, z € i},
A={feH: [(0)=['(0)~1=0}.
S ={f € A: fis univalent in i},

respectively. It is clear that the function f € A can be expressed as

(1.1) f(z) =z + Z anz™, ze€sl
n=2

For two functions f, g € H we say that the function § is subordinate to g in &, and write
f(z) <a(2), zel,
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if there exists a Schwarz function
weN:={weH: w0)=0and |w(z)|] <1, z €}
such that

f(2) = g(w(z)), =z €Ll

A subclass consisting of functions § € A satisfying the analytic criterion

%(ﬂ) >a, 0<a<l
f(z) = i(==2)

was introduced by Sakaguchi [22] and these functions were named after him as Sak-
aguchi type functions [16], [17], [25]. Sakaguchi type functions are starlike with
respect to symmetric points. Frasin [8] generalized Sakaguchi type class which had
functions of the form (1.1) given by

(s — )=/ (2)
U

There are numerous integer number sequences in literature, including the Fibonacci,

)>a, 0<a<l, s,beCwiths#b, [s|]<1, [b]<1, z€il

Lucas, Pell, and others. A novel integer sequence called balancing numbers was re-
cently presented by Behera and Panda [4]. Some of the characteristics of this new
number sequence have been thoroughly researched during the past 25 years. There
was research done, and generalizations were undoubtedly formed. The references
in [7], [9], [10], [12], [13], [18], [19], [20] provide thorough information for people
who are interested in balancing numbers. The balancing polynomials are a natu-
ral generalization of the balancing numbers, and [21] provides a definition of these
polynomials as well as some of their intriguing characteristics.

Definition 1.1. For x € C and any integer n > 2, the balancing polynomials
are defined by the following recurrence relations:

(1.2) B, (z) = 6zBp_1(x) — Br—2(x)

with the initial values
Bo(z) =0 and Bi(z)=1.

Remark 1.1. Ifwesetn =2andn = 3in (1.2), then we obtain the polynomials
(1.3) By(x) =62 and Bs(r) = 362% — 1,
respectively.
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In the same way as with other number polynomials, generating functions can be
used to produce balancing polynomials. One such function is as follows:

Lemma 1.1 ([11]). The ordinary generating function of balancing polynomials is

given by
s V4
(1.4) B(x,z) = ;mu% T 6mg2 “SH

A function f € A is called bi-univalent in 4 if f € S and its inverse function has
an analytic continuation to |w| < 1. Let ¥ = {f € S: f is bi-univalent}. For the
function f € A given by (1.1), the inverse function g = {~! is of the form

(1.5)  g(w) = Hw) = w — agw? + (243 — az)w® — (5a3 — 5asas + as)w* + ...

Note that the functions

z 1 1+ 2
= O
2 8T

fa(z) = —log(1 = 2)
with their corresponding inverses

ew —1
e?w 41’

e¥ —1

fo 'l (w) = —

w

firt(w) = T fo ' (w) =

are elements of ¥ (see [24], [26], [27]). However, the functions in S such as

22

and z— —
1—22 2

and the familiar Koebe function are not a member of ¥. For a brief history and
interesting examples in the class 3, see [6] (and see also [2], [3], [23], [28]).

The class ¥ of analytic bi-univalent functions was first introduced by Lewin [14],
where it was proved that |az| < 1.51. Brannan and Clunie (see [5]) improved Lewin’s
result to |az| < v/2 and later Netanyahu in [15] proved that r}lgg las| = 3.

Many scholars are currently investigating bi-univalent functions related to various
polynomials. As far as we know, there is little work in the literature regarding
balancing polynomials related to bi-univalent functions. Motivated primarily by the
work of Aktag and Karaman (see [1]), we present a new subclass sS(s, b, z,2) of
Sakaguchi-type bi-univalent functions subordinate to the balancing polynomial and
obtain bounds for the Taylor-Maclaurin coefficients |az| and |as|, as well as Fekete-
Szego functional problem for functions in this class.
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Definition 1.2. The function f € ¥ is in the class sSa(s, b, z, 2) if

(s —b)zF)\(2) - B(z,2)

(1.6) T 5107 = =0(@,2), zed
and

(17) @f@wb)”fii(fﬁzl}) < PO s, wey,
where

(1.8) Falz) = (1= Nf(2) + Azf'(2), z €4,
(1.9) Ga(w) = (1 - Ng(w) + hwg' (w), w e L,

g=1f""!given by (1.5) and 0 < A < 1, 5,b € C with s # b, |s| < 1, |b| < 1.

Remark 1.2. For s = 1 and b = —1, the class gS(s,b,z,2) reduces to the
class pSa(, z), which consists of functions f € ¥ satisfying

228 (2)
Fa(2) = Fa(—2)

2w® (w)
GSA(w) — (’5)\(—11))

< J(z,z) and < J(z,w).

(i) For A = 0 we get the class gS(z, 2) = gSx(z,2), which consists of functions
f € X satisfying

22f'(2)
f(z) = §(==2)

(i) For A = 1 we get the class Sy (z,2) = sKs(z, 2), which consists of functions

2wy’ (w)

< J(z,7z) and o) — o(—w)

< J(z,w).

f € ¥ satisfying

2(wg' (w))’

2G5, o'(w) +'(-w)

f'(z) +7(2)

Remark 1.3. For s =1 and b = 0, the class sS2(s, b, 7, z) reduces to the class
sH3(z, z), which consists of functions f € ¥ satisfying

and < J(z,w).

W) (w)
Q5,\ (w)

285 (2)
Sa(2)

< J(z,z) and < J(z,w).

(i) For A = 0, we get the class gH%(z, 2) = pHx(z, ), which consists of functions
f € ¥ satisfying
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(i) For A = 1, we get the class gH(z,2) = gN=(z, z), which consists of functions
f € ¥ satisfying
A7(2) wg' (w)
<J(r,z) and 14+ ——=
TE I v )

The classes gHyx(z, z) and gNx(z, z) are introduced by Aktag and Karaman in [1].

1+

< J(z,w).

2. COEFFICIENTS ESTIMATES AND FEKETE-SZEGO INEQUALITY

Let the function § € A be given by (1.1) and §» be defined by (1.8). For

s,be Cwith s #0b, |s| <1, |b] <1,

we have

(2.1) % =14+ (1+N)d2azz + ((142X)d3a3 — (1 +N)202y2a3)2% +. . .,
where

(2.2) Op=n—"y, necN

and

(2.3) Yo = Sz — Ib)n =" 45" b4 b2+ 0", neN.

Throughout this paper, unless otherwise stated, we assume that
0< A<, s,beCwiths#0, |s|<1, o<1, vwm#n

and for real s,b, v, <n, n € N\ {1}.

Theorem 2.1. Let f given by (1.1) be in the class gS(s,b, x, z), and define

(2.4) L:=2(14+2)\)d3 — (1 +A)?6272 and M := (1 + \)da.
Then we have
las| < min{& ’y}
N (L+A)oa]” )7
where
2
6/6]x]/|] L #M? and 22 J\g ,
V136(L — M2)z2 + M?2] 36(M2— L)
(25) =
6v/6]x|/| ] I — M2
M| ’ o
1 6|x
2. < .
(2.6)  lag 6|”C|((1 o T T >\)2|52|2>
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Proof. Let f € gS(s,b,,2). Then there exist analytic functions [(z) and
m(w) given by

(2.7) W(z)=liz+ Iz + 1323 + ...
and
(2.8) m(w) = miw 4+ mow? + mzw® + ...,

respectively, which are analytic in 4 with [(0) = 0, m(0) = 0 and [I(2)| < 1,
|m(w)| < 1, z,w € &, such that

(s —b)zF\(2)

(2.9) $r(52) — 5 (02) =J(x,1(z2))
and
(2.10) (s = DwOAW) _ _ 50 m(w)),

&y (sw) — & (bw)

respectively. It is to be noted that since

(2)| = |z +1lez® +132° + ... <1, zey

and

Im(w)| = |miw + maw? + maw® +...] <1, we 4,
then
(2.11) <1 and |mi| <1, i=1,2,3,...

For the functions §) and &, defined by (1.8) and (1.9), respectively, we have the
equalities (2.1) and

(s — b)wd) (w)

(2.12) B (510) — & (bw)

=1 — (14 N)daow — (1 + 2)\)d3a3

— (14 X)20272 — 2(1 + 20)d3)ad)w? + ...
On the other hand, we get
(2.13) J(x,1(2)) = Bi(x) + Ba(z)l12 + (Ba(w)l2 + B3(2)13)2% + ...
and
(2.14) J(x, m(w)) = By (x) + Ba(x)myw + (Ba(x)ma + Ba(z)m)w? + ...,
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respectively. From equalities (2.1),(2.9), (2.13) and (2.10), (2.12), (2.14), we obtain
the following equations, respectively:

(2.15) (14 \)d2a2 = Ba(z)ly,

(2.16) (1+2X\)d3a3 — (14 \)?6970a3 = Ba(z)ly + Bs(z)i?,

(2.17) —(14 N)dzas = Ba(z)my,

(2.18)  (2(1+2X\)d5 — (1 + A)2272)a3 — (1 + 2\)dsas = Ba(x)ms + Bs(z)m?

Adding (2.15) and (2.17), we get the equation

(2.19) I = —my.

Further, squaring and adding (2.15) and (2.17), we have

(2.20) 2(1 4 N\)%62a2 = B2(x)(I? + m?).

Then the addition of (2.16) and (2.18) gives

(2:21)  2(2(1+2X\)3F3 — (1 + A)*d2y2)a3 = Ba(x)(l2 + m2) + Ba(x) (1§ +m7).
From (1.3), (2.11) and (2.20) we get

6|

< —.
92l S TN 5]

Also using (2.20) in equation (2.21), we obtain

(2.22) 2((1 £ 20)05 — (14 A\)20270 — g E"’”; (1+N) 52)a2 Bo(z)(ls +m2),
2 X

and then

B3 (x)(ly + mg)

(2.23) aj = 2((2(1 + 2003 — (1 4+ A)20272) B2(z) — (1 + \)262Bs(x))’

A small computation leads to

(2.24) las| < 6v/6lz| Iz
= V/I36(L — M?)2? + M2|

where
L=2(1+2))d3 — (14+\)2%0272 and M = (1 + \)do.
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Next, in order to obtain the bound for |as|, subtracting (2.18) from (2.16) we have
(2.25) 2(1 4 2X)83(as — a3) = Ba(x)(la — ma) + Bs(x)(If — m}).
Using equations (2.19) and (2.20) in (2.25), we get

(2.26) az = MU% Fmd)+ g By(z)

T 2(14 2262 (1+2X)05 (2 = m2).

Applying (1.3) and (2.11), we have the desired bound for |ag|,

1 6|z )

2.2 <
(2.27) jas] 6|5“|((1+2A)|53| HETESVETAE

Letting s =1 and b = —1 in Theorem 2.1, we get the following result.

Corollary 2.1. Let f given by (1.1) be in the class gS@(z,z). Then we have

3
|as| émin{ 2] ,'y},
1+ A

where

Y= 3v6|z|y/|x] 22 (1+N)?
VIA )2 = 18(1 + 2\ + 222)22 18(1 + 2X 4 2)2)

and

1 3|z )

sl < 3ol (555 + 1+ )2

Letting s = 1 and b = 0 in Theorem 2.1, we get the following result.

Corollary 2.2. Let f given by (1.1) be in the class gH(z,z). Then we have

6
las| < min{ i },

T+
where 6V6 \/_ L2
[z Vle] , 0<>\<1andx27é(+2),
v = \/|(1 + A)2 = 72)222| T2\
6v/6|z|/]|, A=0
and ) 6]
T
< .
las| < 6|x|<2(1+2)\) + (1+/\)2)

78



Letting s =1, b = 0 and A = 0 in Theorem 2.1, we get the following result.
Corollary 2.3. Let f given by (1.1) be in the class gHx(x,z). Then we have

6], |z >

)

las] < and |az| < 3|z|(1 + 12|z|).

D= D=

6v6lzly/[a], o] <

Letting s =1, b =0 and A = 1 in Theorem 2.1, we get the following result.
Corollary 2.4. Let f given by (1.1) be in the class gpNx(z, z). Then we have

laz| < min{3|z|,~v},

where /B
3v6|z|y/|z| 2 , 1
=—— — and |as| < |z|(1 + 9|z|).
T g ond lasl < i1+ 9k

Remark 2.1. It is worth to note that our results improve the results of Aktas
and Karaman (see [1]).

Theorem 2.2. If the function § of the form (1.1) belongs to sS3(s, b, x, z), then
for any complex number g,

6|x| 1
s VS < T
14205 142))|0
6v(0)l|x], [V (o)| = 5205
where | o
- 36|1 — ||z
WOl = BE T = a2z + 7]
and L and M are defined by (2.4).
Proof. From (2.19) and (2.25) we get
By (x
as — pa3 = (1 — g)a3 + 2(1—1%7(2;)6302 —my).

By using (2.23) in the above equality, we obtain

az — Qag = 322(37) ((w(g) + m)b + (w(Q) - (1 +12)\)§3)m2)’

where

(1—0)B3(x)

V00 = BT 205 = (1 + \2022) B3 (v) — (1 - V203 Ba(e)
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Thus, we have

6|x| 1
v S S T Tonn
(1 + 2\)[0] WOl < T

1
6lp(o)llzl,  lv(o)l = VI

lag — oa3| <

Letting s = 1 and b = —1 in Theorem 2.2, we get the following result.

Corollary 2.5. If the function f of the form (1.1) belongs to S (z, z), then for

any complex number p,

3|z| 1
< <

(1+2X))
Sluolllal. vl > 5

laz — 0a3| < )

(1+2))
where )
9|1 — o||=|

[(14X)2 —18(1 + 2\ + 2A2)z2]|

[¥(0)| =

Letting s = 1 and b = 0 in Theorem 2.2, we get the following result.

Corollary 2.6. If the function f of the form (1.1) belongs to gH(, z), then for
any complex number o,

3|z] 1
0< <
S o<l <

(142))
6l (o)lll, ()l > 3

|az — ga3| < )

(1+2))
where
361 — ol |z

(o)l = 1+ N2 — 72)222]

Letting s =1, b = 0 and A = 0 in Theorem 2.2, we get the following result.

Corollary 2.7. If the function f of the form (1.1) belongs to gHsx(x, z), then for

any complex number p,

1

3 0<1—-0 < o573
], 10l <

lag — 0a3| <

216(1 — ol|z|?, |1 —o| > ——.
1 —ollz]°, |1— o 2P

80



Letting s =1, b =0 and A = 1 in Theorem 2.2, we get the following result.

Corollary 2.8. If the function f of the form (1.1) belongs to gNx(x,z), then for
any complex number o,

|1 — 1822
; O0<l—o € /77—
L 1-a <
as — oa NS .
STORIS Y sy gl PR LR
11— 1822 o Toqaz

Letting o = 1 in Theorem 2.2, we get the following consequence.

Corollary 2.9. If the function f of the form (1.1) belongs to S (s, b, , 2), then

6|

2
_ < —
s — a3 (1+2)\)]05)

Letting ¢ = 0 in Theorem 2.2, we obtain the following result.

Corollary 2.10. If the function f of the form (1.1) belongs to S (s, b, z,2), then

6|x| 1
T 0SS W0 € m—%
(14 2X))|d5] [ (0)] (14 2))|d5]
las| < 1
6[v(0)]z|, [¥(0)] > ma
where
36|z |?

[ (0)l = 136(1 — M2)22 + M?|
and L and M are defined by (2.4).

CONCLUSION

This paper has successfully introduced a novel subclass of bi-univalent functions,
specifically the class of Sakaguchi type functions defined by balancing polynomials.
The bounds for the Fekete-Szego inequality and the initial coefficients |az| and |as]
have been estimated, providing valuable insights into the behavior of these functions.

Furthermore, some results have been improvised, enhancing our understanding of
this subclass of bi-univalent functions. This work not only contributes to the existing
body of knowledge but also opens new avenues for future research.

Future work will focus on exploring other subclasses of bi-univalent functions and
estimating their coefficients. Additionally, the relationship between these subclasses
and the Sakaguchi type functions will be investigated. This will further deepen our
understanding of bi-univalent functions and their applications.
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