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1. Introduction and preliminaries

Dress and Lovász in [4] studied full algebraic matroids of finite ranks for modular-

ity of the flats. They characterized the existence of flats using the rank function and

quasi-intersection. Björner and Lovász in [2] introduced a class of pseudomodular

lattices as a generalization of modular lattices to contain full algebraic combinato-

rial geometries; see also [3]. A semimodular lattice L of finite length is said to be

pseudomodular if every pair of elements of L has a pseudointersection. The class

of pseudomodular lattices forms a subclass of the class of semimodular lattices and

contains all modular lattices of finite length. Characterizations of classess of lattices

by means of the non-existence of certain sublattices called forbidden configurations

are available in the literature, such as the classess of distributive lattices, modular

lattices, semimodular lattices, etc. In this paper, we establish a characterization by

means of a forbidden sublattice for the class of pseudomodular lattices.

We give here some definitions and notations for ready reference; see Birkhoff [1],

Grätzer [5], Haskins and Gudder [6], Stern [7], etc.

This work is supported by University Grants Commission, under JRF, Govt. of India.
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Let P be a nonempty poset and x, y ∈ P . If x 6 y, then the length of an interval

[x, y], denoted by lt[x, y], is the supremum of the lengths of the chains in [x, y]. The

height or rank r(x) of an element x of a poset P bounded below is the length of the

interval [0, x].

A lattice L is (upper) semimodular if a ∧ b is a lower cover of a. Then b is a

lower cover of a ∨ b, for a, b ∈ L. A lattice L is said to be modular if the following

condition (M) holds.

(M): c ∨ (a ∧ b) = (c ∧ a) ∨ b for all a, b, c ∈ L with c 6 b.

Definition 1.1 ([1]). The graded poset is defined as a poset P with a function

g : P → Z such that:

(i) x > y implies g[x] > g[y] and

(ii) if x ≺ y, then g[x] = g[y] + 1.

Note that any semimodular lattice of finite length is graded by its rank function.

Following is the definition due to Björner and Lovász [2], see also [3].

Definition 1.2 ([2]). Let L be a semimodular lattice of finite length, and denote

by r(x) the rank function (height function) of L. For each x, y ∈ L let Px,y =

{z 6 y : r(x∨ z)− r(z) = r(x∨y)− r(y)}. If the set Px,y has a unique least element,

then we call this the pseudointersection of x and y and denote it by x⌉y.

A semimodular lattice of finite length is called pseudomodular if every pair of its

elements has the pseudointersection.

R em a r k 1.3 ([2]). The set Px,y lies in the interval [x ∧ y, y] and is dual order

ideal in [x ∧ y, y].

Lemma 1.4 ([2]). For any two elements x and y in a semimodular lattice L, the

following are equivalent:

(i) x and y form a modular pair, i.e., r(x ∨ y) + r(x ∧ y) = r(x) + r(y).

(ii) x⌉y exists and x⌉y 6 x.

(iii) x⌉y exists and x⌉y = x.

(iv) x ∧ y ∈ Px,y.

Lemma 1.5 ([2]). For any two elements x and y of a semimodular lattice L, the

following are equivalent:

(i) x⌉y exists, i.e., Px,y has a unique least element.

(ii) Px,y is closed under meets.

(iii) If u, v, z ∈ Px,y and z covers u and v, then u ∧ v ∈ Px,y.

A subset I of a poset P is an order ideal if x ∈ I and y 6 x imply y ∈ I.
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2. Main result

We have a forbidden characterization of pseudomodular lattices in the following

theorem. In what follows, a sublattice S of a lattice L is said to be cover-preserving

in L if for a, b ∈ S, a ≺ b in S implies a ≺ b in L, see [7].

Theorem 2.1. Let L be a semimodular lattice of finite length. Then L is pseu-

domodular if and only if L does not contain a cover preserving sublattice isomorphic

to the lattice as depicted in Figure 1.

b1 b2 b3 b4 b5 b6

c1 c2 c3 c4

a1 a2 a3

d

a0

Figure 1.

P r o o f of Theorem 2.1. Let L be a semimodular lattice of finite length. If L con-

tains a sublattice isomorphic to the lattice as depicted in Figure 1, then the elements

c4, b4, b6 belong to Pb1,c4 . Thus r(b1∨c4)−r(c4) = r(b1∨b4)−r(b4) = r(b1∨b6)−r(b6),

but r(b1 ∨ (b4 ∧ b6))− r(b4 ∧ b6) 6= r(b1 ∨ b6)− r(b6). Therefore b4∧ b6 /∈ Pb1,c4 , which

implies that Pb1,c4 does not have the least element and so the pseudointersection

of b1 and c4 does not exist. Therefore, L is not a pseudomodular lattice.

Conversely, suppose that L is a semimodular lattice of finite length which is not

pseudomodular. Then there exists a pair of elements x, y ∈ L such that Px,y =

{z 6 y : r(x ∨ z) − r(z) = r(x ∨ y) − r(y)} does not have the least element. Or

equivalently, we have a pair x, y in L whose meet does not belong to Px,y.

Consider a pair z1, z2 in Px,y with minimal height whose meet does not belong

to Px,y. Since y, z1, z2 ∈ Px,y, we have r(x ∨ y) − r(y) = r(x ∨ z1) − r(z1) =

r(x∨z2)−r(z2). Without loss of generality we assume that lt[x∧y, x∨y] is minimum,

i.e., for u, v ∈ L, if lt[u ∧ v, u ∨ v] < lt[x ∧ y, x ∨ y], then Pu,v has the least element.

We also assume that x, y ∈ L is a pair such that for x ∧ y < u < x, the set Pu,y has

the least element.
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If x 6 y, then x, y becomes a modular pair and by Lemma 1.4, x∧y ∈ Px,y, which

is nothing but the pseudointersection of x and y, a contradiction to the assumption.

Similarly, if x > y, then also by Lemma 1.4, we have a contradiction. Consequently,

we must have x ‖ y.

If x∧ y ≺ x, then by semimodularity we have y ≺ x∨ y and thus r(x)− r(x∧ y) =

1 = r(x ∨ y)− r(y) and Px,y = {z 6 y : r(x ∨ z)− r(z) = r(x ∨ y)− r(y)} = {z 6 y :

r(x∨z)−r(z) = 1}. Also, as x∧y 6 y and r(x∨(x∧y))−r(x∧y) = r(x)−r(x∧y) = 1,

we have x ∧ y ∈ Px,y and so x ∧ y is the least element of Px,y, a contradiction, and

therefore we must have x ∧ y ⊀ x.

Consider an element q such that x ∧ y < q < x and without loss of generality, we

consider x∧y < q ≺ x. If x∧y ≺ z1, then by semimodularity we have q ≺ q∨ z1 and

also x ≺ x∨z1. Therefore, r(x∨(x∧y))−r(x∧y) = r(x∨z1)−r(z1) and consequently,

x∧ y ∈ Px,y, a contradiction, and so, we must have x∧ y ⊀ z1. Similarly, we have to

have x ∧ y ⊀ z2.

Now, since x∧y ⊀ z1 and x∧y ⊀ z2, there exist q1 and q2 such that z1∧z2 < q1 < z1
and z1∧ z2 < q2 < z2 and without loss of generality, we consider x∧ y < q1 ≺ z1 and

x ∧ y < q2 ≺ z2.

Consider the set {x, y, x ∨ y, x ∧ y, z1, z2, x ∨ z1, x ∨ z2, q, q1, q2, q ∨ q1, q ∨ q2,

q1 ∨ q2, q ∨ q1 ∨ q2} and we contend that these elements are distinct and also the set

forms a cover preserving sublattice of L. Note that by the choice x ,y, x ∨ y, x ∧ y,

z1, z2, x ∨ z1, x ∨ z2, q, q1 and q2 are distinct elements. For the other elements, we

have the following.

Claim 2.2. (x ∨ z1) ∧ (x ∨ z2) = x.

P r o o f. Suppose that (x∨ z1)∧ (x∨ z2) > x. As q1 ≺ z1, by semimodularity we

have q1 ∨ x ≺ z1 ∨ x. If q1 ∨ x ≺ z1 ∨ x, then r(q1 ∨ x)− r(q1) = r(z1 ∨ x)− r(z1) =

r(x ∨ y)− r(y) = r(x ∨ z2)− r(z2), which implies q1 ∈ Px,y, a contradiction, and so

we must have (x ∨ z1) ∧ (x ∨ z2) = x. �

Claim 2.3. x ∧ y = z1 ∧ z2.

P r o o f. Suppose x ∧ y < z1 ∧ z2. If x1 = x ∨ (z1 ∧ z2), then we have x1 6

(x ∨ z1) ∧ (x ∨ z2), which gives x ∨ y = x1 ∨ y, x ∨ z1 = x1 ∨ z1 and x ∨ z2 = x1 ∨ z2.

It follows that r(x1 ∨ y) − r(y) = r(x1 ∨ z1) − r(z1) = r(x1 ∨ z2) − r(z2) and so

y, z1, z2 ∈ Px1,y. Since lt[x1 ∧ y, x1 ∨ y] < lt[x ∧ y, x ∨ y], we have z1 ∧ z2 ∈ Px1,y.

Thus, r(x1 ∨ (z1 ∧ z2))− r(z1 ∧ z2) = r(x1 ∨ y)− r(y) = r(x ∨ y)− r(y). Moreover,

z1 ∧ z2 ∈ Px,y, a contradiction, and so we must have x ∧ y = z1 ∧ z2. �
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Claim 2.4. z1 ∨ z2 = y.

P r o o f. Suppose that z1 ∨ z2 < y. If y1 = z1 ∨ z2, then z1 < y1 < y.

Since Px,y is a dual order ideal, we have y1 ∈ Px,y and so r(x ∨ y1) − r(y1) =

r(x∨ y)− r(y), which gives x∨ y 6= x∨ y1. Now consider the interval [x∧ y1, x∨ y1].

Since lt[x∧ y1, x∨ y1] < lt[x∧ y, x∨ y] and z1, z2, y1 ∈ Px,y1
, we have z1 ∧ z2 ∈ Px,y1

.

Thus r(x∨ (z1 ∧ z2))− r(z1 ∧ z2) = r(x∨ y1)− r(y1) = r(x∨ y)− r(y), which implies

z1 ∧ z2 ∈ Px,y, a contradiction, and so z1 ∨ z2 = y. �

Claim 2.5. (x ∨ z1) ∨ (x ∨ z2) = x ∨ y.

P r o o f. Observe that (x ∨ z1) ∨ (x ∨ z2) = x ∨ (z1 ∨ z2) = x ∨ y. �

Claim 2.6. q ∨ y = x ∨ y.

P r o o f. Suppose that q ∨ y < x ∨ y. As q ≺ x, by semimodularity we have

q ∨ y ≺ x ∨ y. In this case, q ∨ z1 ≺ x ∨ z1 and q ∨ z2 ≺ x ∨ z2. If q ∨ z1 = x ∨ z1

or q ∨ z2 = x ∨ z2, then this implies that q ∨ z1 ∨ y = x ∨ z1 ∨ y = q ∨ y = x ∨ y,

which is not possible and so, r(x ∨ y)− r(y) = r(x ∨ z1)− r(z1) = r(x ∨ z2)− r(z2).

Also, we have r(q ∨ y)− r(y) = r(q ∨ z1)− r(z1) = r(q ∨ z2) − r(z2), which implies

y, z1, z2 ∈ Pq,y. Since lt[q ∧ y, q ∨ y] < lt[x ∧ y, x ∨ y], we have z1 ∧ z2 ∈ Pq,y and so,

r(q ∨ (z1 ∧ z2)) − r(z1 ∧ z2) = r(q ∨ y) − r(y) = r(x ∨ y) − r(y) − 1. Consequently,

we have r(q ∨ (z1 ∧ z2)) + 1 − r(z1 ∧ z2) = r(x ∨ y) − r(y). Now, since q ≺ x

and q ∨ (z1 ∧ z2) = q, we have r(q ∨ (z1 ∧ z2)) + 1 = r(x ∨ (z1 ∧ z2)), which gives

r(x ∨ (z1 ∧ z2)) − r(z1 ∧ z2) = r(x ∨ y) − r(y). This implies that z1 ∧ z2 ∈ Px,y,

a contradiction, and so we must have y ∨ q = x ∨ y. �

Claim 2.7. q ∨ z1 = x ∨ z1.

P r o o f. Suppose that q ∨ z1 < x ∨ z1 and consider a chain of length n in

[z1, x∨z1] : z1 ≺ p1 ≺ p2 ≺ . . . ≺ pn−1 = q∨z1 ≺ x∨z1. By semimodularity, we have

a chain in [y, x∨y] : y = z1∨y ≺ p1∨y � p2∨y � . . . � pn = q∨z1∨y = x∨z1∨y which

is of length at most n, a contradiction to the fact that r(q∨y)−r(y) = r(q∨z1)−r(z1).

So we must have q ∨ z1 = x ∨ z1. �

Claim 2.8. q ∨ z2 = x ∨ z2.

P r o o f. Is similar to that of Claim 2.7. �

Claim 2.9. x ∨ q1 = x ∨ z1.

P r o o f. Suppose that x ∨ q1 < x ∨ z1. As q1 ≺ z1, by semimodularity we have

x ∨ q1 ≺ x ∨ z1. This gives r(x ∨ z1) − r(z1) = r(x ∨ q1)− r(q1). Thus, q1 ∈ Px,y, a

contradiction, and so we must have x ∨ q1 = x ∨ z1. �
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Claim 2.10. x ∨ q2 = x ∨ z2.

P r o o f. Is similar to that of Claim 2.9. �

Claim 2.11. q1 ∨ z2 = y.

P r o o f. Suppose that q1 ∨ z2 < y. As q1 ≺ z1, by semimodularity we have

q1 ∨ z2 ≺ y. If y1 = q1 ∨ z2, then z2 < y1 < y. Since Px,y is a filter, we have

y1 ∈ Px,y, which implies r(x∨ y1)− r(y1) = r(x∨ y)− r(y). Also, we have q1 6 y1 6

x ∨ y1 and x 6 x ∨ y1, therefore x ∨ q1 6 x ∨ y1. Since x ∨ q1 = x ∨ z1, we have

z1 6 x∨ z1 6 x∨ y1. Also z2 6 y1 6 x∨ y1 and therefore z1 ∨ z2 6 x∨ y1. However,

we have z1 ∨ z2 = y < x ∨ y1, a contradiction, and so we must have q1 ∨ z2 = y. �

Claim 2.12. q2 ∨ z2 = y.

P r o o f. Is similar to that of Claim 2.11. �

x ∧ y

x ∨ y

q q1 q2

x
z1

z2

x ∨ z1
x ∨ z2

y

Figure 2.

Claim 2.13. q ∨ q1 < x ∨ z1.

P r o o f. Suppose that q ∨ q1 = x ∨ z1. Note that x ∧ y ⊀ q and x ∧ y ⊀ q1;

otherwise, q1 ≺ q ∨ q1, which is not true since q1 ≺ z1 < x ∨ z1. Therefore there

exists p1 such that x ∧ y ≺ p1 < q. We have p1 ‖ z1, p1 ‖ q1 and p1 ∨ q1 ‖ z1. Now,

if (p1 ∨ q1) ∨ z1 = x ∨ z1, then by semimodularity we have p1 ∨ q1 ≺ x ∨ z1 and

z1 ≺ x ∨ z1 and so r(x ∨ z1) − r(z1) = 1. Also, as q ∨ y = x ∨ y, q ∨ z1 = x ∨ z1,

q ∨ z2 = x ∨ z2 and q < x and so, by assumption, Pq,y must have the least element.

We have y, z1, z2 ∈ Pq,y , z1∧z2 ∈ Pq,y but r(q∨(x∧y))−r(x∧y) 6= 1, a contradiction,

and so we must have q ∨ q1 < x ∨ z1. �

Claim 2.14. q ∨ q2 < x ∨ z2.

P r o o f. Is similar to that of Claim 2.13. �
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Claim 2.15. x ∧ y ≺ q.

P r o o f. Suppose there exists an element p such that x ∧ y ≺ p < q. It follows

that p ∨ q1 6 q ∨ q1. If p ∨ q1 = q ∨ q1, then by semimodularity we have q1 ≺ q ∨ q1,

which is not true. Therefore p∨q1 < q∨q1 and by semimodularity we have q1 ≺ p∨q1
and similarly, q2 ≺ p∨q2. In this case, (p∨q1)∨z1 6 x∨z1. We consider the following

subcases:

(i) Suppose (p ∨ q1) ∨ z1 = x ∨ z1. By semimodularity we have z1 ≺ x ∨ z1 and

y ≺ x∨y and therefore r(x∨z1)−r(z1) = r(x∨y)−r(y) = 1. Since r(x∨y)−r(y) =

r(x ∨ z2) − r(z2), we have r(x ∨ z2) − r(z2) = 1 and hence z ≺ x ∨ z2. We also

have q ∨ y = x ∨ y, q ∨ z1 = x ∨ z1, q ∨ z2 = x ∨ z2. Thus y1, z1, z2 ∈ Pq,y and by

assumption, Pq,y must have the least element, which gives z1 ∧ z2 ∈ Pq,y . Therefore

r(q ∨ y) − r(y) = r(q ∨ (z1 ∧ z2)) − r(z1 ∧ z2) = 1, a contradiction to the fact that

r(q)−r(x∧y) > 1, and therefore (p∨q1)∨z1 6= x∨z1. Similarly, (p∨q2)∨z2 6= x∨z2.

(ii) Suppose (p ∨ q1) ∨ z1 < x ∨ z1. Let p1 = (p ∨ q1) ∨ z1. By semimodularity

we have z1 ≺ p1. If p1 ∨ y = x ∨ y, then y ≺ x ∨ y, a contradiction to the fact that

r(x ∨ y)− r(y) = r(x ∨ z1)− r(z1), and therefore p1 ∨ y < x∨ y. By semimodularity

we have y ≺ p1 ∨ y. Similarly, for p2 = (p ∨ q2) ∨ z2, we have y ≺ p2 ∨ y.

In this case, p1 ∨ y = p2 ∨ y = (p ∨ q2 ∨ z2) ∨ y = (p ∨ z2) ∨ y = p ∨ y. Let

y1 = p1 ∨ y = p2 ∨ y = p ∨ y. Then x ∨ y1 = x ∨ y, x ∧ y < x ∧ y1 and x ∧ y1 >

p. Therefore lt[x ∧ y1, x ∨ y1] < lt[x ∧ y, x ∨ y]. As r(x ∨ y1) − r(y1) = r(x ∨

p1) − r(p1) = r(x ∨ z1) − r(p1) = r(x ∨ p2) − r(p2) = r(x ∨ z2) − r(p2), we have

y1, p1, p2 ∈ Px,y1
. Hence Px,y1

has the least element, which gives p1 ∧ p2 ∈ Px,y1
.

Thus r(x ∨ y1)− r(y1) = r(x ∨ (p1 ∧ p2))− r(p1 ∧ p2) and we have p1 ∧ p2 > p. Also,

p1 ∧ p2 6 x ∨ z1 and p1 ∧ p2 6 x ∨ z2, which gives p1 ∧ p2 6 (x ∨ z1) ∧ (x ∨ z2),

and so p1 ∧ p2 6 x. In this case, q ∨ y = q ∨ y1 = x ∨ y, q ∨ z1 = q ∨ p1 = x ∨ z1,

q ∨ z2 = q ∨ p2 = x∨ z2 and q ∧ y1 > x∧ y, and so y1, p1, p2 ∈ Pq,y1
. By assumption,

Pq1,y has the least element and so p1 ∧ p2 ∈ Pq,y . Thus r(q ∨ (p1∧ p2))− r(p1 ∧ p2) =

r(x∨ z1)− r(p1). Since (x∨ (p1 ∧ p2))− r(p1 ∧ p2) = r(x∨ z1)− r(p1), which implies

that r(q∨ (p1 ∧p2))−r(p1 ∧p2) = (x∨ (p1∧p2))−r(p1 ∧p2), we have a contradiction

as q ≺ x. Thus, in each of the cases we get a contradiction and consequently we

must have x ∧ y ≺ q. �

Also, since q1 ≺ z1, q2 ≺ z2 and q ≺ x, by semimodularity we have q ∨ q2 ≺ x∨ z2
and q ∨ q1 ≺ x ∨ z1.

Claim 2.16. x ∧ y ≺ q1.

P r o o f. Suppose there exists p1 such that x ∧ y ≺ p1 < q1. By semimodularity,

we have q ≺ q∨p1, x ≺ x∨p1, z2 ≺ p1∨z2 and q∨q2 ≺ q∨q2∨p1. Let z
′

2 = p1∨z2 and

we have x∨z2 ≺ z′
2
∨x. Let x1 = x∨p1 and we have lt[x1∧y, x1∨y] < lt[x∧y, x∨y].
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Since z′
2
> z2 and Px,y is a dual order ideal, we have z

′

2
∈ Px,y. Thus r(x ∨ z′

2
) −

r(z′2) = 1. Also we have x1∨y = x∨y, x1∨z1 = x∨z1 and x1∨z′2 = x∨z′2. It follows

that y, z1, z
′

2
∈ Px1,y and so z1∧z

′

2
∈ Px1,y. Thus r(x1∨(z1∧z

′

2
))−r(z1∧z

′

2
) = 1. Since

q1 > z1∧z′
2
> p1 and x1∨ (z1∧z′

2
) = x∨z1, we have r(x1∨ (z1∧z′

2
))−r(z1∧z′

2
) > 1,

a contradiction, and so we must have x ∧ y ≺ q1. �

x q ∨ q1
q ∨ q2

z1 z2

x ∨ z1 x ∨ z2 z

q q1 q2

x ∨ y

x ∧ y

Figure 3.

Claim 2.17. x ∧ y ≺ q2.

P r o o f. Is similar to that of Claim 2.16. �

Claim 2.18. q1 ∨ q2 < y.

P r o o f. Suppose that q1 ∨ q2 = y, since x ∧ y ≺ q1, q2 implies x ∧ y = q1 ∧ q2

and by semimodularity, q1 ≺ y and q2 ≺ y, which is not true and so we must have

q1 ∨ q2 < y. �

Now, x ∧ y ≺ q1, q2 implies x ∧ y = q1 ∧ q2 and by semimodularity, q1 ≺ q1 ∨ q2
and q2 ≺ q1 ∨ q2. Also, x∧ y ≺ q, q1 implies x∧ y = q1 ∧ q and so by semimodularity,

q ≺ q ∨ q1 and q1 ≺ q ∨ q1. Similarly, x ∧ y ≺ q, q2 implies x ∧ y = q2 ∧ q, so by

semimodularity, q ≺ q∨q2 and q2 ≺ q∨q2. Now, q1 ≺ q1∨q2 and q2 ≺ q1∨q2 implies

q1 = (q1∨q2)∧z1 and q2 = (q1∨q2)∧z2 and by semimodularity, z1 ≺ (q1∨q2)∨z1 = y,

z2 ≺ (q1 ∨ q2) ∨ z2 = y and q1 ∨ q2 ≺ (q1 ∨ q2) ∨ z2 = y.

Claim 2.19. (q1 ∨ q2) ∨ q < x ∨ y.

P r o o f. Suppose that (q1 ∨ q2) ∨ q = x ∨ y. Since q ∧ (q1 ∨ q2) ≺ q, by

semimodularity we have q1∨q2 ≺ q∨(q1∨q2), which is not true as q1∨q2 ≺ y ≺ x∨y.

Therefore (q1 ∨ q2) ∨ q < x ∨ y. �
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Since q1 ≺ q ∨ q1, by semimodularity, (q1 ∨ q2) ≺ (q1 ∨ q2) ∨ q. Also, q1 ≺ q1 ∨ q2

implies q1 ∨ q ≺ q1 ∨ q2 ∨ q, q2 ≺ q1 ∨ q2, which further implies q2 ∨ q ≺ q1 ∨ q2 ∨ q

and also q1∨ q2 ≺ y implies q1∨ q2 ∨ q ≺ x∨ z. Hence, L contains the following cover

preserving sublattice.

x q ∨ q1 q ∨ q2 z1 q1 ∨ q2 z2

x ∨ z1 x ∨ z2 q ∨ q1 ∨ q2
y

q q1 q2

x ∨ y

x ∧ y

Figure 4.

�

The following result is due to Teo [8].

Corollary 2.20 ([8]). A lattice L of finite length is not semimodular if and only

if L contains a subpentagon (a ∧ c, a, b, c, a ∨ b) with the properties

(i) a ∧ c ≺ a, b ≺ c ≺ a ∨ b, or

(ii) a ∧ c ≺ a, a ∧ c ≺ b, c ≺ a ∨ b.

a ∧ c

a ∨ b

b

c

a

(a)

a ∧ c

a ∨ b

b

c

a

(b)

Figure 5.

Corollary 2.21. Let L be a lattice of finite length. Then L is a pseudomodular

lattice if and only if it does not contain a sublattice isomorphic to a cover preserving

lattice as depicted in Figure 4 or Figure 5 (a) or Figure 5 (b).
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