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1. INTRODUCTION AND PRELIMINARIES

Dress and Lovész in [4] studied full algebraic matroids of finite ranks for modular-
ity of the flats. They characterized the existence of flats using the rank function and
quasi-intersection. Bjoérner and Lovéasz in [2] introduced a class of pseudomodular
lattices as a generalization of modular lattices to contain full algebraic combinato-
rial geometries; see also [3]. A semimodular lattice L of finite length is said to be
pseudomodular if every pair of elements of L has a pseudointersection. The class
of pseudomodular lattices forms a subclass of the class of semimodular lattices and
contains all modular lattices of finite length. Characterizations of classess of lattices
by means of the non-existence of certain sublattices called forbidden configurations
are available in the literature, such as the classess of distributive lattices, modular
lattices, semimodular lattices, etc. In this paper, we establish a characterization by
means of a forbidden sublattice for the class of pseudomodular lattices.

We give here some definitions and notations for ready reference; see Birkhoff [1],
Grétzer [5], Haskins and Gudder [6], Stern [7], etc.
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Let P be a nonempty poset and x,y € P. If < y, then the length of an interval
[x,y], denoted by lt[z,y], is the supremum of the lengths of the chains in [z,y]. The
height or rank r(x) of an element x of a poset P bounded below is the length of the
interval [0, z].

A lattice L is (upper) semimodular if a Ab is a lower cover of a. Then b is a
lower cover of a V b, for a,b € L. A lattice L is said to be modular if the following
condition (M) holds.

M): ¢V (anb)=(cAa)Vbforall a,b,ce L with ¢ <b.

Definition 1.1 ([1]). The graded poset is defined as a poset P with a function
g: P — 7 such that:

(i) « > y implies g[z] > g[y] and
(ii) if z < y, then g[z] = g[y] + 1.

Note that any semimodular lattice of finite length is graded by its rank function.
Following is the definition due to Bjorner and Lovész [2], see also [3].

Definition 1.2 ([2]). Let L be a semimodular lattice of finite length, and denote
by r(z) the rank function (height function) of L. For each z,y € L let P, =
{z<y: r(@Vvz)—r(z) =r(zVy)—r(y)}. If the set P, , has a unique least element,
then we call this the pseudointersection of x and y and denote it by x]y.

A semimodular lattice of finite length is called pseudomodular if every pair of its
elements has the pseudointersection.

Remark 1.3 ([2]). The set P, , lies in the interval [z A y,y| and is dual order
ideal in [z Ay, y].

Lemma 1.4 ([2]). For any two elements x and y in a semimodular lattice L, the
following are equivalent:
(i) « and y form a modular pair, i.e., r(x Vy) +r(z Ay) =r(z) + r(y).
(i)
(i) )y exists and x|y = x.
(iv) x ANy € Pyy.

x|y exists and x|y < .

Lemma 1.5 ([2]). For any two elements x and y of a semimodular lattice L, the
following are equivalent:

i) x|y exists, i.e., P, , has a unique least element.
) Y
(ii) Py,y is closed under meets.
iii) If u,v,z € P, ., and z covers u and v, then u Av € Py .
Y Y

A subset I of a poset P is an order ideal if x € I and y < z imply y € [.
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2. MAIN RESULT

We have a forbidden characterization of pseudomodular lattices in the following
theorem. In what follows, a sublattice S of a lattice L is said to be cover-preserving
in L if for a,b € S, a < bin S implies a < b in L, see [7].

Theorem 2.1. Let L be a semimodular lattice of finite length. Then L is pseu-
domodular if and only if I does not contain a cover preserving sublattice isomorphic
to the lattice as depicted in Figure 1.

Figure 1.

Proof of Theorem 2.1. Let L be a semimodular lattice of finite length. If L con-
tains a sublattice isomorphic to the lattice as depicted in Figure 1, then the elements
¢4, ba, bg belong to Py, .,. Thus r(b1Vea)—r(ca) = (b1 Vba)—1(ba) = r(b1 Vbs)—r(bs),
but (b1 V (ba Abg)) —r(ba Abg) # (b1 Vbg) —r(bs). Therefore by Abg ¢ Py, ,, which
implies that P, ., does not have the least element and so the pseudointersection
of by and ¢4 does not exist. Therefore, L is not a pseudomodular lattice.

Conversely, suppose that L is a semimodular lattice of finite length which is not
pseudomodular. Then there exists a pair of elements z,y € L such that P, , =
{z <y:r(xVz)—r(z) =r(Vy) —r(y)} does not have the least element. Or
equivalently, we have a pair x, y in L whose meet does not belong to Py .

Consider a pair z;, 22 in P, , with minimal height whose meet does not belong
to Py,. Since y,z1,22 € Ppy, we have r(z Vy) —r(y) = r(x V) —r(z1) =
r(zVz2)—r(z2). Without loss of generality we assume that lt[x Ay, zVy] is minimum,
ie., for u,v € L, if ltfu Av,uVv] <ltfz Ay,zVy], then P,, has the least element.
We also assume that x,y € L is a pair such that for x Ay < u < z, the set P, , has
the least element.
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If z < y, then z,y becomes a modular pair and by Lemma 1.4, z Ay € P, ,, which
is nothing but the pseudointersection of x and y, a contradiction to the assumption.

Similarly, if x > y, then also by Lemma 1.4, we have a contradiction. Consequently,
we must have z || y.

If z Ay < z, then by semimodularity we have y < xVy and thus r(z) —r(z Ay) =
l=r(zVy)—r@y)and P,y ={2<y: r(zVz)—r(z)=rzVy) —riy)} ={z<y:
r(zVz)—r(z) = 1}. Also, as xAy < yand r(zV(zAy))—r(zAy) = r(x)—r(zAy) =1,
we have x Ay € P, and so z Ay is the least element of P, ,, a contradiction, and
therefore we must have x Ay £ x.

Consider an element ¢ such that x A y < g < x and without loss of generality, we
consider x Ay < g < x. If x Ay < 21, then by semimodularity we have ¢ < ¢V z; and
also x < xVzy. Therefore, r(xV(zAy))—r(xAy) = r(xVz1)—r(z1) and consequently,
x Ay € P, ,, a contradiction, and so, we must have z Ay £ z;. Similarly, we have to
have x Ay 4 2o.

Now, since xAy £ z1 and xAy £ zo, there exist ¢; and g2 such that z1Aze < ¢1 < 21
and z1 A z2 < g2 < 29 and without loss of generality, we consider x Ay < g1 < z1 and
T ANy <@g < 22.

Consider the set {z, y, z Vy, x Ay, z1, 22, xV 21,  V 22, q, q1, 92, ¢V q1, ¢ V g2,
@1V q2, ¢V q1V g2} and we contend that these elements are distinct and also the set
forms a cover preserving sublattice of L. Note that by the choice = ,y, z Vy, z Ay,
z1, 22, xV 21, £V 22, q, q1 and ¢o are distinct elements. For the other elements, we
have the following.

Claim 2.2. (zV z1) A (zV 22) = z.

Proof. Suppose that (xVz1)A(zV 22) > x. As ¢1 < 21, by semimodularity we
have Ve <z Ve lf ¢t Vo <z Ve, thenr(q1 Va) —r(q1) =r(z1 V) —r(z) =
r(xVy) —r(y) =r(xz V 22) — r(z2), which implies ¢; € P, ,, a contradiction, and so
we must have (z V z1) A (z V z2) = x. O

Claim 2.3. z Ay =21 A 2o.

Proof. Suppose x Ay < z1 Aza. If 21 = 2V (21 A 22), then we have z1 <
(xV2z1)A(xV 22), which giveszVy=x1Vy,xVzi=21Vz and zV 29 =21 V 2.
It follows that r(z1 Vy) — r(y) = r(z1 V z1) — r(z1) = r(x1 V 22) — r(22) and so
Y, 21,22 € Py, 4. Since lt[z1 Ay, z1 Vy] < ltfzx ANy,x Vy], we have 21 A zg € Py, 4.
Thus, r(z1 V (21 A 22)) —r(z1 A z2) = r(x1 Vy) —r(y) = r(z Vy) —r(y). Moreover,
z1 N z2 € P, 4, a contradiction, and so we must have z Ay = 21 A 2. O
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Claim 2.4. 21 V 2o = y.

Proof. Suppose that 21 V zo < y. If y1 = 21 V 29, then 21 < y1 < y.
Since P, , is a dual order ideal, we have y; € P,, and so r(z V y1) — r(y1) =
r(zVy)—r(y), which gives x Vy # = V y;. Now consider the interval [z Ay1,z V y1].
Since ltfr Ayi,x V1) < Uz Ay,zVy| and 21, 22,y1 € Py y,, we have 21 Aza € Py .
Thus r(zV (21 A z2)) —r(z1 Aze) = r(zVyr) —r(y1) = r(z Vy) — r(y), which implies
z1 N z2 € Py 4, a contradiction, and so 21 V 22 = ¥. O

Claim 2.5. (xVz)V(zVz) =z Vy.

Proof. Observethat (zVz1)V (zVz) =2V (21V22) =2z Vy. O

Claim 2.6. ¢Vy =2z Vy.

Proof. Suppose that qVy < zVy. As ¢ < x, by semimodularity we have
qVy<zVy. Inthiscase,qVzi <axVziand qVze <xzVz. IfqVzi=aVzy
or qV zo = x V zg, then this implies that gV 21 Vy=2Vz1Vy=qVy=xVy,
which is not possible and so, r(z Vy) —r(y) = r(zV z1) — r(z1) = r(z V z2) — r(22).
Also, we have r(q Vy) —r(y) =1r(qV z1) —r(21) = r(q V z2) — r(z2), which implies
Y, 21,22 € Py y. Since ltjg Ay, qVy] <ltfr Ay, Vy], we have z1 A 22 € P, and so,
r(qV (z1 A z2)) —1(z1 Az2) =1r(qVy) —r(y) =r(xVy) —r(y) — 1. Consequently,
we have r(q V (21 A 22)) + 1 —r(z1 A 22) = r(z Vy) — r(y). Now, since ¢ < x
and q V (21 A z2) = ¢, we have 7(q V (21 A 22)) + 1 = r(x V (21 A 22)), which gives
r(z V(21 A 2z2)) —r(z1 A z2) = r(z Vy) —r(y). This implies that 21 A zo € Py,
a contradiction, and so we must have y Vqg=x V y. O

Claim 2.7. ¢V z1 =2V 21.

Proof. Suppose that ¢V z; < =V 21 and consider a chain of length n in
[21,2Vz1]: 21 <p1 <p2 < ... < Ppp_1 = qVz1 < xVz;. By semimodularity, we have
achainin [y, zVy]: y = z1Vy < p1Vy <X p2Vy <X ... 2 pp, = qV2z1Vy = 2V2z1 Vy which
is of length at most n, a contradiction to the fact that r(¢Vy)—r(y) = r(qVzi)—r(z1).
So we must have gV z; =z V z1. O

Claim 2.8. ¢V 2o =2V 25.
Proof. Is similar to that of Claim 2.7. O

Claim 2.9. V¢ =z V 21.

Proof. Suppose that £V q; < xV 2z1. As ¢1 < 21, by semimodularity we have
V@ <V z. This gives r(x V z1) —7(21) =r(zV ¢1) —r(g1). Thus, ¢1 € Py, a
contradiction, and so we must have x V ¢ =z V 2;. (]
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Claim 2.10. zV g2 = x V 25.

Proof. Is similar to that of Claim 2.9. O

Claim 2.11. ¢; V 22 = y.

Proof. Suppose that ¢; V 20 < y. As q1 < z1, by semimodularity we have
@ Vaz <y Ifyr =aq Vo, then 20 < y1 < y. Since P, , is a filter, we have
y1 € Py, which implies r(zVy1) —r(y1) = r(z Vy) —r(y). Also, we have g1 < y1 <
xVy and x < x V y;, therefore x V¢ < zVy;. Since x V¢ = xV z1, we have
z1<zVz <xVy. Also zo < y1 < xVy; and therefore z; V 2o < x V y;1. However,
we have z1 V zo =y < x V y1, a contradiction, and so we must have q; V zo =y. O

Claim 2.12. ¢2 V 20 = y.

Proof. Issimilar to that of Claim 2.11. O

zVy

T Ay
Figure 2.

Claim 2.13. gV g <z V 2.

Proof. Suppose that ¢V g1 = xV 2;. Note that t Ay £ ¢ and x Ay £ q1;
otherwise, ¢1 < ¢V ¢1, which is not true since ¢; < 21 < x V z;. Therefore there
exists p; such that x Ay < p1 < g. We have py || 21, p1 || ¢1 and p1 V q1 || z1. Now,
if (p1 V@1)V 21 = 2V 2, then by semimodularity we have p1 V ¢1 < z V z; and
z1 <xzVzandsor(zxVz)—r(z)=1 Also,asqVy=xVy, qVzn=zaVz,
qV zy =V 2z and ¢ < x and so, by assumption, F;, , must have the least element.
We have y, 21, 22 € Py, 21A22 € Py, but r(¢V(xAy))—r(zAy) # 1, a contradiction,
and so we must have ¢V ¢1 < xV z1. O

Claim 2.14. ¢V g2 < x V z5.

Proof. Issimilar to that of Claim 2.13. O
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Claim 2.15. z Ay < gq.

Proof. Suppose there exists an element p such that x Ay < p < q. It follows
that pV g1 <qVaq. fpV g =qV q, then by semimodularity we have ¢ < q V q1,
which is not true. Therefore pV¢; < ¢V ¢ and by semimodularity we have ¢1 < pV @1
and similarly, g < pVga. In this case, (pVq1)Vz1 < 2Vz;. We consider the following
subcases:

(i) Suppose (pV ¢1) V 21 = z V z1. By semimodularity we have z; < 2V z; and
y < zVy and therefore r(xVz1) —7(z1) = r(xVy) —r(y) = 1. Since r(xVy) —r(y) =
r(z V z2) — r(z2), we have r(x V z3) — r(22) = 1 and hence z < = V z2. We also
have gVy =2 Vy,qVz1=2xVz1,qVz=cVz. Thus yi,2,2 € P, and by
assumption, P, , must have the least element, which gives 21 A 2o € P, ,,. Therefore
r(gVy) —r(y) =r(qV (21 A 22)) —r(z1 A z2) = 1, a contradiction to the fact that
r(q¢)—r(zAy) > 1, and therefore (pVq1)Vz1 # xVz;. Similarly, (pVg2)Vza # zV 2o.

(ii) Suppose (pV g1)Vz1 < xV z1. Let p1 = (pV q1) V z1. By semimodularity
we have z; < p1. If p1 Vy =2 Vy, then y < x V y, a contradiction to the fact that
r(zVy)—r(y) =r(xVz1)—r(z1), and therefore p; Vy < z Vy. By semimodularity
we have y < p1 V y. Similarly, for p2 = (pV q2) V 22, we have y < p2 V y.

In this case, pp1 Vy = paVy = (pV@Vz)Vy=((pVzn)Vy =pVy Let
y1=p1Vy=pa2Vy=pVy. ThenzVyi;=xVy, xAy<zxAy and z Ay >
p. Therefore ltjlx Ay, z V] < Utz Ay,xVyl. Asr(xVy)—r(y) = r(zV
p1) —r(p1) = r(@V z1) —r(p1) = r(x V p2) — r(p2) = r(x V 2z2) — r(p2), we have
Y1,P1,p2 € Pry,. Hence P, ., has the least element, which gives p1 Apz2 € Ppy,.
Thus r(z Vy1) —r(y1) = r(z V (p1 Ap2)) — r(p1 Ap2) and we have p; Ap2 > p. Also,
p1 Ap2 < zV 2z and p1 Apa < xV 2o, which gives p1 Aps < (zV 21) A (T V 22),
and so p1 Ape < z. In thiscase, gVy=qVy1=xVy,qVzi=qVp =zV =z,
qVza=qVpy=2xVzand gAy > 2 Ay, and so y1,p1,p2 € Py, . By assumption,
P,, .y has the least element and so p1 Ap2 € Py . Thus r(¢V (p1 Ap2)) —7(p1 Ap2) =
r(zV z1)—r(p1). Since (xV (p1 Ap2)) —r(p1 Ap2) = r(xV z1) —r(p1), which implies
that r(qV (p1 Ap2)) —7(p1 Ap2) = (zV (p1 Ap2)) —r(p1 Ap2), we have a contradiction
as ¢ < x. Thus, in each of the cases we get a contradiction and consequently we
must have x Ay < gq. O

Also, since g1 < z1, g2 < 22 and ¢ < x, by semimodularity we have ¢V g2 < zV 23
and gV g <zV 2.
Claim 2.16. z Ay < q;.-

Proof. Suppose there exists p; such that x Ay < p; < ¢1. By semimodularity,
we have ¢ < ¢Vp1, x < xVp1, 22 < p1 V2o and ¢Vge < qVga V1. Let 25 = p1 V2o and
we have xV 29 < 25 Vz. Let z1 = xVp; and we have lt[z1 Ay, 1 Vy] < Itz Ay, zVy).
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Since z5 > zy and P, , is a dual order ideal, we have 2z € P, ,. Thus r(z V z5) —
r(z4) = 1. Also we have 1 Vy = xVy, 21Vz1 = 2V 2z and 21 Vzh = zV z5. It follows
that y, 21, 25 € Py, , and so z1Az5 € Py, . Thus r(x1V(z1A24))—r(21A25) = 1. Since
@ >z Azh > prand 21V (21 A2h) = xV 21, we have r(zy V(21 A 2h)) —r(z1 A2h) > 1,
a contradiction, and so we must have x Ay < q;. (]

Figure 3.

Claim 2.17. z Ay < qa.

Proof. Is similar to that of Claim 2.16. O

Claim 2.18. ¢; Vg2 < y.

Proof. Suppose that ¢1 V g2 = vy, since x Ay < q1,q2 implies T Ay = g1 A g2
and by semimodularity, ¢; < y and g2 < y, which is not true and so we must have
q1Va <y. U

Now, z Ay < q1,q2 implies x Ay = g1 A g2 and by semimodularity, ¢1 < q1 V ¢2
and g2 < g1 V g2. Also, z Ay < ¢, q1 implies £ Ay = ¢1 A ¢ and so by semimodularity,
qg<qVq and ¢ < gV q. Similarly, x Ay < q,q2 implies © Ay = g2 A g, so by
semimodularity, ¢ < ¢V g and g2 < ¢V 2. Now, ¢1 < ¢1 Vg2 and g2 < q1 V ¢2 implies
g1 = (@1 Vg2)Az1 and g2 = (¢1 Vg2)Az2 and by semimodularity, z1 < (¢1Vg2)Vz1 =y,
zo < (1V@)Vz=yand g1 Vg <(q1Vg)Vza=y

Claim 2.19. (@ Vg)Vg<zVy.

Proof. Suppose that (g1 V ¢2) V¢ = Vy. Since ¢ A (1 V q2) < ¢, by
semimodularity we have ¢; Vg2 < ¢V (q1 V¢2), which is not true as ¢1 Vga <y < zVy.
Therefore (q1 V g2) Vg < a Vy. O
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Since ¢1 < q V ¢1, by semimodularity, (¢1 V g2) < (q1 V ¢2) V ¢q. Also, g1 < ¢1 V ¢2
implies ¢1 V¢ < q1 V g2V q, g2 < q1 V g2, which further implies g2 Vg < g1 V ¢2 V q
and also q1 V g2 < y implies ¢1 V¢q2 V¢ < xV z. Hence, L contains the following cover
preserving sublattice.

Figure 4.

The following result is due to Teo [8].

Corollary 2.20 ([8]). A lattice L of finite length is not semimodular if and only
if L contains a subpentagon (a A ¢,a,b,c,a V' b) with the properties

(i) anc<a,b<c<aVb,or
(if) anc<a,aNc<bec=<aVb.

aVb aVb

(a) (b)

Figure 5.

Corollary 2.21. Let L be a lattice of finite length. Then L is a pseudomodular
lattice if and only if it does not contain a sublattice isomorphic to a cover preserving
lattice as depicted in Figure 4 or Figure 5 (a) or Figure 5 (b).

107



References

[1] G. Birkhoff: Lattice Theory. Colloquium Publications 25. AMS, Providence, 1967. MR
[2] A. Bjérner, L. Lovdsz Pseudomodular lattices and continuous matroids. Acta Sci. Math.

51 (1987), 295-308. zbl MR
[3] A.Dress, W. Hochstittler, W. Kern: Modular substructures in pseudomodular lattices.

Math. Scand. 74 (1994), 9-16. | zblIMR] doi
[4] A. Dress, L. Lovdsz: On some combinatorial properties of algebraic matroids. Combina-

torica 7 (1987), 39-48. MR
[5] G. Gritzer: General Lattice Theory. Pure and Applied Mathematics 75. Academic Press,

New York, 1978. IMR]

[6] L.Haskins, S. Gudder: Heights on posets and graphs. Discrete Math. 2 (1972), 357-382. IMR]
[7] M. Stern: Semimodular Lattices: Theory and Applications. Encyclopedia of Mathemat-

ics and Its Applications 73. Cambridge University Press, Cambridge, 1999. IMR]
[8] K. L. Teo: Diagrammatic characterizations of semimodular lattices of finite length.
Southeast Asian Bull. Math. 12 (1988), 135-140. MR

Authors’ addresses: Manoj Dhake, Department of Mathematics, S. P. Pune University,
Ganeshkhind Rd, Pune, Maharashtra 411007, India, e-mail: manojdhake2012@gmail. com;
Sachin Ballal (corresponding author), School of Mathematics and Statistics, University of
Hyderabad, Hyderabad Central University Rd, Hyderabad, Telangana, 500046, India, e-mail:
sachinballal@uohyd.ac.in; Vilas Kharat, Rupesh S. Shewale, Department of Mathematics,
S. P. Pune University, Ganeshkhind Rd, Pune, Maharashtra 411007, India, e-mail: 1addoo1l
@yahoo.com, rsshewale@gmail.com.

108


https://zbmath.org/?q=an:0153.02501
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0227053
http://dx.doi.org/10.1090/coll/025
https://zbmath.org/?q=an:0643.05023
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0940934
https://zbmath.org/?q=an:0810.06007
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1277784
http://dx.doi.org/10.7146/math.scand.a-12475
https://zbmath.org/?q=an:0627.05016
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0905150
http://dx.doi.org/10.1007/BF02579199
https://zbmath.org/?q=an:0436.06001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0509213
http://dx.doi.org/10.1007/978-3-0348-7633-9
https://zbmath.org/?q=an:0238.06002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0306059
http://dx.doi.org/10.1016/0012-365X(72)90014-3
https://zbmath.org/?q=an:0957.06008
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1695504
http://dx.doi.org/10.1017/CBO9780511665578
https://zbmath.org/?q=an:0664.06006
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0981353

