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Abstract. We consider a one-dimensional porous-elastic system with porous-viscosity and
a distributed delay of neutral type. First, we prove the global existence and uniqueness of
the solution by using the Faedo-Galerkin approximations along with some energy estimates.
Then, based on the energy method with some appropriate assumptions on the kernel of
neutral delay term, we construct a suitable Lyapunov functional and we prove that, despite
of the destructive nature of delays in general, the damping mechanism considered provokes
an exponential decay of the solution for the case of equal speed of wave propagation. In
the case of lack of exponential stability, we show that the solution decays polynomially.

Keywords: exponential decay; polynomial decay; porous-elastic system; neutral delay;
multipliers method; Faedo-Galerkin approximations
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1. INTRODUCTION

In 1972, Goodman and Cowin (see [17]) gave an extension of the classical elasticity
theory to porous media by introducing the concept of a continuum theory of granular
materials with interstitial voids into the theory of elastic solids with voids. In addi-
tion, Nunziato and Cowin (see [30]) presented a nonlinear theory for the behavior of
porous solids in which the skeletal or matrix material is elastic and the interstices
are void of material. In this theory the bulk density is written as the product of
two fields, the matrix material density field and the volume fraction field. Further-
more, this representation introduces an additional degree of kinematic freedom. The
intended applications of the theory of elastic materials with voids are to geological
materials like rocks and soils and to manufactured porous materials.
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In [31], Quintanilla gave the first investigation concerning the study of asymp-
totic behavior of the solutions for a one-dimensional porous-elastic system, where he
proved that the damping through porous-viscosity is not strong enough to provoke an
exponential decay. In [1], [2], Apalara showed that the same system considered in [31]
is exponentially stable for the case of equal speeds of wave propagation. In [7], Casas
and Quintanilla studied the one-dimensional porous-elastic system in the presence
of the usual thermal effect with microtemperature damping and they used the semi-
group approach to prove the exponential stability of the solutions irrespective of the
speeds of wave propagations. In [6], Casas and Quintanilla proved that the combina-
tion of porous-viscosity and thermal effects provokes an exponential stability of the
solutions. In [26], Magafia and Quintanilla showed that viscoelasticity damping and
temperature produced slow decay in time and when the viscoelasticity is coupled with
porous damping or with microtemperatures, the system decays in an exponential way.

Delay effect arises in many applications depending not only on the present state but
also on some past occurrences and it has attracted lots of attentions from researchers
in diverse fields of human endeavor such as mathematics, engineering, science, and
economics. The presence of delay may be a source of instability of systems which
are uniformly asymptotically stable in the absence of delay unless additional control
terms have been used (see [10], [11], [18], [28], [29], [35]). Also, the introducing of
this complementary control may lead to ill-posedness as shown in many works such
as [11], [32] and the references therein. In addition to the well-known discrete delays,
there are several others and we are interested here in the neutral delay where the
delay is occurring in the second (highest) derivative; for more details, see previous
studies [12], [13], [19], [20], [24], [34] and the references therein.

Among the investigations that have been realized concerning the asymptotic be-
havior with neutral delay, we cite the work of Seghour et al. (see [33]), where they
considered the thermoelastic laminated system subject to a neutral delay

tht'f'G(w_wz)z"‘Awt :07 T e (Oal)v t>07
IQ(?)S“ - wtt) - GW - wI) - (38 - 7/1) + Mgm = 07 T e (Oa 1)7 t> 07
t
31, <st + / h(t —r)s(r) dr> +3G(¢Y — wy)
0 t
+4vs — 384, =0, x€(0,1), t >0,
O — KO0gz + 11(38 — )t = 0, z € (0,1), t >0,

with boundary conditions

\VARAY,
[=E=)

¥(0,t) = s(0,¢) = 0,(0,t) = wy(0,¢) =0,
0(1,t) = w(l,t) = sz(1,t) = (1
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and initial data

(w,z/;,s,@)(x,O) = (w07¢0780,90)7 T e (07 1);
(wtawtast)(xao) = (wlvwlasl)v T e (07 1)

The authors showed, under some appropriate assumptions, that the dissipation pro-
duced by the heat equation with the frictional damping stabilize exponentially the
system even in the presence of neutral delay for the case of equal wave speeds. In
the opposite one, and with an additional assumption on the kernel, they proved
a polynomial stability.

In this paper, we consider the following porous-elastic system with porous-viscosity
subject to a distributed delay of neutral type

OUtt — gz — bpy = 0, r € (0,1), t >0,
t
J<<,0t + / k(t — s)pe(s) ds> — 0Qpa + buy
0 t
(1.1) +o+ppr =0, z€(0,1), >0,
u(z,0) = uo(z), w(z,0) = ui(x), z € (0,1),
2 J),O = 4100(‘1:)7 @t(x70) = 501(‘13)7 S (Oa 1)7
U‘I(Oﬂt) = ul’(l?t) = w(ovt) = w(lvt) = 07 t> 07

where the functions u and ¢ represent, respectively, the displacement of the solid
elastic material and the volume fraction. The parameter o designates the mass den-
sity and J equals to the product of the mass density by the equilibrated inertia. The
coeflicients u, d, &, puy are positive constants representing the constitutive parameters
defining the coupling among the different components of the materials such that

(1.2) pé > b°,

where b is a real number different from zero. The initial data ug, ui, o, @1 be-
long to the suitable functional space and the integral represents the neutral delay
term, where k is the relaxation function specified in the preliminaries. System (1.1)
was constructed by considering the following basic evolution equations of the one-
dimensional porous materials theory:

t
(1.3) ouy = Ty, J(gat + / E(t — s)pi(s) ds) =H,+ D,
0 t

where T', H and D represent, respectively, the stress tensor, the equilibrated stress
vector and the equilibrated body force. Consequently, to get system (1.1) we take
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the constitutive equations 7', H and D of the form
(1.4) T = pug +bp, H=0p,, D=—buy—=Ep—piepy,

and by combining (1.4) in (1.3), we obtain (1.1).

The main goal of this paper is to prove a global well-posedness of problem (1.1)
by using the Faedo-Galerkin method with some a priori estimates. Moreover, based
on the multipliers method along side with some assumptions on the kernel of neutral
delay, we construct a suitable Lyapunov functional and we show that the dissipation
given by the porous-viscosity is strong enough to guarantee an exponential decay
in spite of the existence of the neutral delay for the case of equal speeds of wave
propagation, that is,

(1.5) x=E-Z2=0

In the opposite one, we establish a polynomial stability result. Furthermore, in
our case and compared to the work of Seghour et al. (see [33]), we were able to
dispense the thermal effect depending only on the damping mechanism to control
the neutral delay term.

Introducing a neutral delay makes our problem different from those considered
so far in the literature. Moreover, the study of the asymptotic behavior becomes
different and more complicated than in the case of other types of delay that has
appeared in the recent literature such as in [3], [4], [8], [9], [16], [21], [22]. In other
words, a neutral-type delayed dynamical system is a more general class than delayed
systems, in the sense where it is described by a model in which the highest derivative
of the state at the present time is a function not only of the values of the passed
state, but also of the highest derivative of the passed state and this strengthens the
challenges. It is also worth mentioning that besides the fact that systems are very
reactive to small delays, on the contrary, they can be stabilized by ‘large’ neutral
delays. In fact, neutral delays are sometimes deliberately inserted into the systems
to improve the performance of the structure and this has been proven by some
works, such as [25] in which the authors showed that the dissipation given only by
the neutral delay, without damping or other dissipation terms, provokes exponential
stability of the solution.

This paper is organized as follows. In Section 2, we introduce some assumptions
and transformations needed in the next sections to prove the main result. In Sec-
tion 3, we prove the existence and uniqueness of the solution. In Section 4, we show
the decay of the energy. In Section 5 and 6, we use the energy method to prove the
exponential and polynomial stability result.
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2. PRELIMINARIES

In this section we present our assumptions on both kernels and introduce the
energy functional and some other functionals. We use the standard Lebesgue space
L?(0,1) and the Sobolev space H}(0, 1) with their usual scalar products and norms.
Let us define the space H as

H =H,(0,1) x LZ(0,1) x Hy(0,1) x L*(0,1),

where H!(0,1) = H'(0,1) N L2(0,1) and

L2(0,1) = {f € L*(0,1): /Olf(x)dx = o}.

Moreover, we define the space

HZ(0,1) = {¢ € H*(0,1): 2(0) = ¢4 (1) = 0}.

To simplify the calculations, we are obliged to announce this lemma which is usable
in the following sections.

Lemma 2.1 ([33]). For any function ¢ € C'([0,00);L?(0,1)) and any k €
C1([0,0)), we have the following identity:

/Olw(t)(/otk(t—s)wt(s)ds) da
= aw oo« 18 [ ([ e v ) a

+@/0 dea:—k;(t)/O $(0)(t) da

wow- [ k(- ) (f (1) — ()’ de)ds, t>0

where

Also, we need the following hypothesis to reach our aim:

(H1) The kernel k is a nonnegative continuously differentiable and summable function
satisfying

E'(t)<0 Vt=0, E:/ k(s)ds < 1.
0
(H2) exp(st)k(t) € LY(Ry) for some ¢ > 0.
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Note that if [ e**k(s)ds < oo and tlim exp(st)k(t) < oo, then
— 00

(o) (o) (o)
/ e*®|k'(s)|ds = —/ e’k (s)ds = —ecsk(s)‘go + g/ e*’k(s) ds < 0.
0 0 0

Theorem 2.1 ([5]). Let By C By C By be three Banach spaces. We assume that
the embedding of By in By is continuous and that the embedding of By in B; is
compact. Let p, r such that 1 < p,r < oco. For T > 0 we define

d
E,, = {v € LP(0,T; By), d—: e LT(O,T;BQ)}.

(i) If p < oo, the embedding of E, , in LP(0,T; By) is compact.
(ii) If p= oo and r > 1, the embedding of E,, in C°(0,T; By) is compact.

Also, we need to use the following transformation in order to calculate the energy
of the system and for other necessary estimations:

ey ([ He-9aw ) =)0+ [ k(L — s)pu(s) ds.

We shall consider the classical energy defined by

1 1
22 BO=; [ (el Jot 4 o+ 66+ 662) do
0

+%/01(/0tk(t—5)s0?(8)d5) da, t=0.

Lemma 2.2. The energy E(t) given by (2.2) satisfies
J 1
(23) B0 < FW D0 —m [ otdn

Proof. Multiplying (1.1)1, (1.1), by u¢, ¢; and integrating over (0,1) and sum-
ming them up, we obtain

1d

1
(2.4) 5&/ (guf + uui + Jsof + 2bugp + Ep + 530?5) dz
0

+ J/O1 (wt </0tk:(t - s)gpt(s)ds>t> dez = —m /01 ©? da.
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By exploiting (2.1) and applying the result in Lemma 2.1, we obtain
(2.5)

J/; <sot(/0tk<t— s)%(s)ds)t) ar =~ 2w Oe)® + 1Y / o da
+ %% ;(/Otk(t — 8)p?(s) ds) dz.

Inserting (2.5) in (2.4) and taking into account the positivity of k(t), we have (2.3).
O

Remark 2.1. Note that
b2
w
and because & > b?, we deduce that the energy E(t) defined by (2.2) is nonnegative.

pu? + 2bugp + Ep? = u(ux + %sa)z + (£ — )(@)2

In view of the boundary conditions, our system can have solutions (uniform in the
variable x), which do not decay. In other words, it is known that for the problem
determined by (1.1) we can always take solutions where u is constant. For this
reason, we impose that

1 1
(2.6) / ug de = / updz = 0.
0 0

It is worth noting that condition (2.6) is imposed to guarantee that the solution
decays. Thus, if we want to avoid this behavior, we need to impose condition (2.6).
In addition as in [3], to be able to use Poincaré’s inequality for u, we perform the
following transformation. From (1.1);, we observe that

1
/ uttdx =0.
0

If we take v(t) = foluda:, we observe that v(0) = fol updr = 0 and v'(0) =
fol u1 dz = 0. Moreover, v is a solution of the following initial value problem:

() =0 Vt=0,
1 1
v(0) = / up(z)de =0, 0'(0) = / ui(z)dz = 0.
0 0
The solution of the problem is given by
1 1 1
v(t):/ u(x,t)dx:t/ ul(a:)da:—i—/ ug(x)dz = 0.
0 0 0
Consequently,

1
/ u(z,t)de =0 Vit =0.
0
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3. GLOBAL WELL-POSEDNESS

In this section, we prove the global existence and the uniqueness of the solution of
problem (1.1) by using the classical Faedo-Galerkin approximations along with some
a priori estimates. The well-posedness of (1.1) is given by the following theorem.

Theorem 3.1. Assume that (H1)—(H2), (1.2) hold, and the initial data are

(3.1) (uo,u1) € HX(0,1) x L2(0,1),
(¢0,01) € H3(0,1) x L*(0,1).

Then problem (1.1) has a unique global weak solution

(32)  we C(Ry, H(0,1) N H(0,1)) NCH (R, H(0,1)) N C*(R4, LZ(0, 1)),
p € C(Ry, H?(0,1) N Hy(0,1)) N C' (R4, Hy (0,1)) N C* (R, L*(0, 1))

In addition, the solution (u, ) depends continuously on the initial data.

Proof. We divide the proof into three steps: We first construct Faedo-Galerkin
approximations, then thanks to a priori estimates we look to prove that t,, = T for
n € N*. Finally, we pass to the limit.

Step 1: Faedo-Galerkin approximations. We construct approximations of the so-
lution (u, ) by the Faedo-Galerkin method as follows (see [15] and [27]): For every
n > 1, let W,, = span{ei,ea,...,e,} be a Hilbert basis (orthonormal basis) of
H2(0,1) N H}(0,1) and L2(0,1). Also, we denote by I',, = span{oy,02,...,0,} a
Hilbertian basis of H?(0,1) N H}(0,1) and L?(0,1). For given initial data

(uo, u1) € HE(0,1) x L2(0,1),
(5007901) € H&(Oa 1) X Lz(oa 1)7

we seek functions y7', hj € C?([0,T)) such that the approximations

W) = 3y 0)es (),
(3.3) .
S t) = () (0)

check the approximate problem
Quiy, —pug, — by =0,
Jou + J(/ k(t — s)ei (s) dS) — 0Py +buy + &P + 1y =0
0 t
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with the initial data

(35) {un(x70) = ug(x)v U?(%,O) = U{L(l‘),

©™(x,0) = g (), ¢f (x,0) = pf(z),

which satisfies

n 1
up = / Up€; dx) ej — ug strongly in H0,1),
‘]:1 0 n— oo
n 1
uft = Z / uie; do |e; — uq strongly in L2(0,1),
‘]:1 0 n— oo

(3.6) .
/ @oojdx |oj — o strongly in H (0, 1),
0

n— oo

1
/ 010 dx) oj — 1 strongly in L*(0,1).
O n-— oo

Through (3.4), we get

of{ufy, er)r2(0,1) — H(Upy, €k)2(0,1) — b(P%, €x)r2(0,1) = 0,
t
(8.7)4 J(#t, k) L2(0,1) + J< (/ E(t — s)pp () ds) ,0k>
0 t L2(0,1)
=@l k) L2(0,1) + b(UL, k) L2(0,1) + E(P", Tk) 12(0,1) + H1{PE s Ok)L2(0,1) = 0

with (ug,u?) and (¢f, ¢T), respectively, in W,, and I',,. According to the standard
ordinary differential equations theory, the finite dimensional problem (3.7) has a so-
lution (yj, h})j=1,..n € C*([0,t,])>. Then the a priori estimates that follow imply
that in fact, t, =T for all T > 0.

Step 2: Energy estimates—A priori estimate I. For every n > 1, by integrating by
parts in (3.7), we get

1 1 1
Q/ uger dr + u/ ulepy dr — b/ ey dz = 0,
0 0 0

1 1 +
J/ P10k d$+J/ Ok (/ k(t — s)ep(s) ds) dz
0 0 0 .

1 1 1
—|—5/ POk dx + b/ ur oy de + §/ ooy dx
0 0 0

1
+M1/ propde=0 Vk=1,...,n.
0

117



By multiplying (3.8); and (3.8)s, respectively, by (y7): and (h}):, and by using
integration by parts, we obtain

1d /!

39 53 ; (0(uf)? + p(ug)? + J (o) + 2buge” + £(0")* + 8(3)?) dw

1 t 1
+ J/ oy (/ E(t — s)er(s) ds) dz + 1 / (¢f)*dz = 0.
0 0 ¢ 0

We use the same technique in the proof of Lemma 2.2. We have

1d [t

(310) o4 ; (o(up)? + p(u)? + J (o) + 2bule™ + £(9™) + 5(p)?) da

238 [ ([ wa-9erreas)

—Zwoenm - (M 4 ) / (2 de <0,

Now integrating (3.10), we obtain

1
! / (O(u)? + p(ul)? + J(&})? + 2bul™ + E(g™)? + 6(¢)?) da

2
+§/01</0tk<t—s><so?>2<s>ds) da

1

S3 /0 (o(uM)? + J(e)? + (6(e™)? 4 p(u™)? + 2buTe™ + £(™)?)(x,0)) da.

Hence, the previous inequality takes the form
E"(t) < E™(0),

where

A1) B0 = 5 [ (@ () + T + 2 + 66" + 5 do

+3 [ ([ s as) ar

In view of the hypotheses on the function k& and as in Remark 2.1, we deduce
0 < E™(t) < E™(0).

Now, since the sequences (uf)nen, (U)nen, (08 )nen, (T )nen converge (see (3.6)),
using (H1) and (H2), we can find a positive constant C' independent of n such that

(3.12) E™(t) < C.
Then t, =T for all T > 0.

118



A priori estimate II. Throught (3.3), also as (y}, h)j=1,..n € (C?10,T])? and
(ej)j>1 € HZ(0,1)N H(0,1) € H'(0,1) = C(0,1),
(0j)j=1 C H?(0,1) N Hy(0,1) € H'(0,1) < C(0,1),
we have

(3.13) { u™ € C(0, T3 HZ(0,1) N H(0, 1)),

o™ € C%(0,T; H?(0,1) N H(0,1)).
Because E = C?(0,T; H2(0,1)NH}(0,1)) is a Banach space equipped with the norm

[u"lle = sup [[u"(,0)la20,0) + sup fuy' (5 )l m2(0,0)
te[0,T] te[0,T

+ sup |Jug (- 0)lg20,1) Yne N,
te[0,T]

also F' = C?(0,T; H%(0,1) N HZ(0,1)) is a Banach space equipped with the norm

le™lr = sup llo" (5 Ollm20,0) + sup 107 ¢ 0)llar2(0,1)
te[0,T] te[0,T]

+ sup [|of(0)lr20,1) YR ENT
te[0,T]

Taking into account (3.13), we get ||[u"| g < o0, ||¢"||E < 00, and using the fact that

llupe 20,1y < |u"||e < oo Vn eN*and Vit e [0,77,
lorellLz0) < l@"|lF <00 VneN"and Vit e [0,T],
we get
1
(3.14) / (u)? + (¢2,) de < 0o VYt € [0,T].
0

Step 3: The limit process. From (3.12) and (3.14), we conclude that

(3.15) (u™)pnen- is bounded in L>(0,T; HZ(0, 1
(uf )nen+ is bounded in L°°(0, T LE(O, 1)
(¢" )nen+ is bounded in LOO(O,T;HQ(O, 1
(o) (

nens is bounded in L*(0,T; L*(0,1)

~—

Y

N H;(0,1)),

~—

Note that the boundedness in L>(0,T; H2(0,1) N H1(0,1)) is not a consequence
of (3.14) only, but we exploit it as follows:
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Throughout (3.12), we conclude
1
(3.16) / (uM)?dz <oco Vn>1, Vtel0,T),
0

and by using Poincaré inequality with (3.14), we have

1 1 1
sup (/ (u™)? dz +/ (u)? dz +/ (u,)? da:) <oo Vn2=1.
te[0,T] 0 0 0
Then

u™ is bounded in L>(0,T; H2(0,1)N HX(0,1)) V¥n > 1.

By using Theorem 2.1, since

> the embedding of H1(0,1) in L2(0,1
> the embedding of H2(0,1) N H(0,1
> the embedding of H}(0,1) in L2(0,1
> the embedding of H%(0,1) N Hg(0,1) in Hg(0,1) is compact,
then the embedding of Fe o in C(0,7T; H!(0,1)) is compact, where

is continuous,

in H!(0,1) is compact,

_

is continuous,

~—

d n
Foono = {u”: u e L0, T; H2(0,1) N H(0,1)), u} = % e L=(0,T; L2(0, 1))},

and the embedding of Eoo’oo in C([0,T], H}(0,1)) is compact with

~ do”
Eoo,oo = {90" SO'” e I1°‘3((),21,j.-f2(()7 ]_)QH&(O, ]_))7 50? — % c LOO(O,T,L2(07 1))}
On the other hand, from (3.15) we have that (u™),en+ and (¢™)nen+ are bounded in
Foo 00 and Ex oo, respectively. So, there exist two subsequences (u™)y,>1 of (4")n>1
and (¢™)m>1 of (¢™)n>1 such that

m—ro0

(3.17) u™ "5 4 strongly in C(0,7; HL(0,1)),
(3.18) ™ "5 o strongly in C(0,T; H(0,1)),
which implies that

(3.19) {u™}m>1 simply converges to u Vit € [0,T].

By using (3.13), we have u}® € C*(0,T; H2(0,1) N H}(0,1)) for all m > 1, and
by (3.19) with the dominated convergence theorem, we obtain for any ¢ € [0,7]
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and k € N*
(3.20)

1
T [l (- 1) = a0, = lim / (2, 1) — () da
0

m—00

1
:/ lim u (a, £) — (2, 1) de = .
0

m—r0o0

Also, by the same way, we can write
(3.21)

1
k : k
I 0) = oy = Jim [ i) o e 0 da

lim
m— 00 m— 00

1

:/ i ™ (2, 4) — e, )2 da = 0,
0 m—r0o0

Combining (3.20)—(3.21), we get

Tim sup[up (o 1) = a0 .0 = O,
t€[0,T]

which means that (u}"),>1 is a Cauchy sequence in X = C(0,T; H}(0,1)) equipped
with the norm

s

ullx = sup [lu(t)m1(0,1)-
+€[0,7]

Since X = (C(0,T;HL(0,1));||x) is a Banach space, then there exists a unique
g € C(0,T; H(0,1)) such that

(3.22) uy® 280 g strongly in C(0,T; H(0,1)).
Now, it is left to prove that g = u;. Since the operator A defined as
A: D(A) = CY0,T; H(0,1)) € C(0,T; H}(0,1)) — C(0,T; H}(0,1)), u — uy
is closed, that is to say if (u™)m>1 C D(A) converges strongly to u € C(0,T;
H(0,1)) and u = Au™, m > 1 converges strongly to g € C(0,T; H1(0,1)), we get
ue CH0,T; H(0,1)) and g = Au = uy. Using (3.17) and (3.22), we obtain
(3.23) uy® "8 g = uy strongly in X = C(0,T; H(0,1)).
Similarly, by using (3.13) and (3.18), we can easily prove that
(3.24) o mge @ strongly in Y = C(0, T H&(O, 1)).
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Also, by using (3.13), we have u}? € C(0,T; H2(0,1) N H(0,1)) for all m > 1, and
by (3.19) with the dominated convergence theorem, we obtain for any ¢ € [0,7]
and k € N*

(3.25)
1
i ) = 0 = B [ ) = e R da

1
= / lim |uf(z,t) —uft (2, )2 dz = 0;
0

m—00

this last formula implies that

lim sup ||ug(-,t) — ufz+k(-,t)||L2(0,1) =0,
M= 10,7

which means that (u})m>1 is a Cauchy sequence in Z = C(0,T; L?(0,1)) equipped
with the norm

ullz = sup [lu(-t)lz2(0,1)-
t

s

Since Z = (C(0,T, L?(0,1)); ||| z) is a Banach space, then there exists a unique
f€C(0,T,L%0,1)) such that

(3.26) u "=5° f strongly in C(0,T; L(0,1)).
Now, it is left to prove that f = uy. By using (3.17) and (3.23), we get
(3.27) u™ "5 strongly in C*(0,T; HL(0,1)).
Since the operator B defined as
B: D(B) = C?*(0,T; L*(0,1)) € C*(0,T; L*(0,1)) — C(0,T; L*(0,1)), u — us
is closed, by using (3.26) and (3.27) we obtain
(3.28) [=Bu=uy,

which implies
m Mm—00

ult "5 f = uyy strongly in C(0,T; L*(0,1)).
Similarly, by using (3.13), (3.18) and (3.24), we can easily prove that

m M—00

o — e strongly in C(0, 7T LQ(O, 1)).

By passing to the limit in (3.5) and (3.8), problem (1.1) admits a global weak solution
satisfying (3.2).
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The proof now can be completed arguing as in [23], Théoréme 3.1.

Continuous dependence and uniqueness.—Uniqueness: Let us assume that (A1, T1)
and (A2,Y?) are two global solutions of (1.1). Then (x,Z) = (A! — A2, Y1 — T?)
satisfies (1.1); and (1.1)s with

{ x(z,0) = xe(z,0) = E(z,0) = E¢(
t

(3.29) ’
Yo(0,8) = xa(1,8) = 2(0,t) = E(1, ¢

From the linearity of the equations and the fact that the energy E(t) is decreasing,
so that, for (x, Z), we have 0 < E(t) < F(0) =0 for any ¢t > 0, where

1 /! _ o _
E(t) = —/ (oX7 + X2 + JE7 + 2bx,E + €22 + 022) da
0

2
J ot t
+ —/ (/ k(t — s)=2(s) ds) dz
2 Jo 0
satisfies
d J o, k(t r

Hence, (x,Z)(t) = (0,0), identically. So problem (1.1) has a unique global solution.

The continuous dependence on initial data. Let (O, @) be a global solution of (1.1).
A simple integration, using Young’s inequality and the positivity of energy, we get
(3.31)

1 t 1
E(t) < E(0) + 3 / (/ (007 + 02 + J®7 + 200, P + £0? + §d2) dx.
0 0

+ % /01 (/Otk;(t - s)(bf(s)ds) dx) dr

1 t 1
< E(0) + 3 / (/ (007 4 (u + [D])©2 + JBZ + (£ + |b])P? + 6P2) dx
0 0

+ % /01 (/Otk;(t - s)@f(s)ds) dx) dr

t 1 t
gE(o)+<1/ (/ (@f+@§+¢§+q>2+q>i)dx+/ k(t—s)q>§(s)ds> dr,
0 0 0

Al

where

J

N |

o 1 1
pr— —_ —_ b —
<1 max{2a2(ﬂ+| |)a 9

On the other hand, we have
1 t
E(t) >§2/ (@f—l—@i—f—Ef—i—EQ—i—Ei—l—/ k(t—s)EtQ(s)ds) dz
0 0
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with o J 61 b2\ 1 b2\ J
& =min {35, 5’5(“7)’5(57)’1}
(3.3

Applying Gronwall’s inequality to (3.31), we obtain

1 t
/ (@f 4024 D24 B2 4 B2 +/ k(t — 5)82(s) ds) dz < e E(0).
0 0

This shows that the solution of problem (1.1) depends continuously on the initial
data. This ends the proof of Theorem 3.1. O

4. STABILITY RESULT

In this section, we use the energy method to study the asymptotic behavior of
solutions of system (1.1).

4.1. Exponential stability. In this subsection, we establish an exponential decay
result of solutions of problem (1.1) in the case when (1.5) holds. The same result
is obtained in [21], where the authors considered the one dimensional porous-elastic
system subject to a distributed delay and by some assumptions on the weight of
delay they proved an exponential decay of the solution. Also, in [3] the author
established an explicit and general decay rate of solution of the same system damped
via a nonlinear damping term under some properties of convex functions. In our case
the situation is completely different and this is due to the nature and form of the
neutral delay. So, we need the following lemmas.

Lemma 4.1. Let (u, ) be the solution of system (1.1). Then the functional

Fi(t)y=J / (gpt—i—/ E(t—s)e ds) dz
b 1
+ 22 <p(/ ()dy)dm—i——/ o2 dz
B Jo 0 2 Jo
satisfies, for any ¢ > 0,
3J  b?o? v,
(4.1) —5/ o> $—2§1/ *dz + ( 5 +4M250)/0 ¢p da

+60/0 utdx—f——/ (/ t—s)gpf(s)ds)dx.
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Proof. By differentiating Fi(t) and integrating by parts, we obtain

1 1 ¢
(4.2) F{(t):J/ gafdx—l—J/ gat(/ k(t—s)gpt(s)ds) dz
0 0 0
1 1 1 1
_5/ @idx—b/ U;c@dﬂv—%l/ sOQdJ?—I-b/ Ugpdx
0 0
+—/ sﬁt(/ dy)dx.

Using Young’s and Cauchy-Schwarz inequalities, we obtain

(4.3)

J/Olgot</0tk'(t—s)<pt(s)ds> dx < <2]/1¢t dx—l—%/o (/(fk(t—s)apf(s)ds) dx.

Using Young’s inequality, we get

b292 ! 2 ! 2
4.4 — y)dy | dx / dz +¢ / uy dx.
(4.4) / wt(/ y) S G, ), ¢ 0

Inserting (4.3) and (4.4) into (4.2), we obtain (4.1). O

Lemma 4.2. Let (u, ) be the solution of system (1.1). Then the functional

dob

1 1 t
Et)=— [ vrurde+ b/ (got + / E(t — s)pe(s) ds) Uy dz
wt Jo 0 0

satisfies, for any 1 > 0,

p2 [l 1 1
(4.5) Fi(t) < — J / u?dx + C., / @2 da +e1(2 + k(0)) / uf da
0 0

+b2f—€(?/o L dz +b2k /</ K (t = s)|@3(s)d )dfc

b 1
+ ﬂ 907:2 dx + Q—x/ Yiuy dx,
J Jo H 0

where 52 22 )
0

Cel = —+ ( ) g_

MJ 4eq 2J

Proof. By differentiating F5(¢), and integrating by parts, we obtain

1 2
(4.6) Fé(t):g—bx/ Yty do — —/ 2dx—l—éb / 2 dx ——/ YU, dz
wd Jo
—|—b/ um(/kt—sgot ds)dm—— Yy do.
J Jo
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Integrating by parts with respect to ¢ the last term of (4.6), we have

b/ol Uta (/Ot k(t — 5)4(s) ds> da

_ b/o1 Uts (’“(O)w(t) ~ k(®)e(0) + /0

t

K'(t — s)p(s) ds> dx

— —Bk(0) /Olu% da:—i—bk;(t)/olutgax(o) da:—b/olut </0tk:'(t—s)<px(s)ds> dz.

Then (4.6) becomes

1 2 rl 2 ol
4.7 Fl(t :—X/ Yy de — — uydr + — pz dx
an  AO=Tx [ pwede - | )

1 1
— bk(0 )/ sy da + bk(t )/ utgox(O)dx——E ; ou, dz

—b/ ut</k; t—8)pz(s )ds)dm—b% ViU dx.

By using Young’s inequality, we arrive at

1 1 27.2 1
b*k>(0

(4.8) —bk‘(O)/ Ut do < 51/ uf do + © / @2 d,

0 0 de1 Jo

bﬂ/l 1 b2 1 ‘LLQ 1

(4.9) A gotuxdxéﬁ/o uidx—i—?l/o ©? dx
and

' o Pkt 1,
(4.10) +bk(t) | urpr(0)dr < eik(t) | widr+ 05, do

0 0 de1 Jo

b2k(t)

1 1
< e1k(0) / u? dx + 1 / w2, dx.
0 €1 Jo

Young’s and Cauchy-Schwarz inequalities lead to

(4.11) —b/ ut(/ K (t— 8)pals )ds)dx
ggl/o 2do+ 451 /(/ (¢ — 8)[¢2(s)d )da:.

By using Young’s and Poincaré inequalities, we have

(4.12) LS puy, dr < / u? dat:—l—f2 <p2 dz
' JJo T F 4] z e

By substituting (4.8)—(4.12) in (4.7) and taking into account that x = 0, we get (4.5).
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Lemma 4.3. Let (u, ) be the solution of system (1.1). Then the functional

1
F(t) = —/ uug de
0

satisfies

1 b2 1 3#/ 1
4.13 Fjt) < —o | vwldz+— [ 2dz+ L= [ wida.
3 t T x
0 2u Jo 2 Jo

Proof. Differentiating F5(¢) and integrating by parts, we obtain

1 1 1
Fé(t):—g/o ufdx—l—u/o uidx—b/o upy dx,

Young’s and Poincaré inequalities give (4.13). O

Lemma 4.4 ([33]). Let (u, @) be the solution of system (1.1). Then the functionals

= [ 1 (f S (- )6 (s) s ) s
Fyt) = o /0 1 ( /0 " Bt — 5)02(s) ds) do

satisfy, for all t > 0,

(@1) Fi() = ~<Fi(0) + B0 [ e / 1 < / k(- )20 ds) ar,

0
(@15) Fy(0) = ~rFi(t) + (o) [ e / 1 < / (- s>|soi<s>ds> dr,

where H,(t = [ e*|k(s)|ds and Hy(t = [T e |k/(s)| ds.

Now, we define the Lyapunov functional £(t) by
(4.16) L(t) = NE(t) + N1F1(t) + NoFs(t) + F5(t) + N3Fy(t) + NyF5(t),
where N, N1, N, N3 and N, are positive constants.

Lemma 4.5. Let (u, ) be the solution of (1.1). Then there exist two positive
constants k1 and kg such that the Lyapunov functional (4.16) satisfies

(417)  ku(BE(t) + Fa(t) + F5(1)) < L(t) < w2(E(t) + Fy(t) + F5(t)) ¥t >0,

and

1
(4.18) L'(t) < —Lu(E(t) + Fu(t) + F5(t)) + Cok(t) + Nz%bx/ pruge dz, B > 0.
0
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Proof. From (4.16) we have

IL(t) — NE(t) — N3Fy(t) — NoFs(t)]

1 1
<N1J/ |o] got—i—/ k(t — s)pe(s)ds dx—i—Nl%/ g02dx
0

t
0 0
b 1 T 5 b 1
e f Isol(/ |ut<y>|dy)dx+N2ﬂ/ (ollue] da
®oJo 0 wd Jo

1 t 1
Nt [l + [ =)o) ds| do o [ Julfud
0 0 0

By using Young’s, Cauchy-Schwarz and Poincaré inequalities, we obtain

|L(t) — NE(t) — N3Fy(t) — NaF5(t)| < M E(¢).
Therefore,
(N —=X)E(t) + N3Fy(t) + NaF5(t) < L(t) < (N 4+ M\1)E(t) + N3Fy(t) + Ny F5(t);
by choosing N (depending on Ny, N2, N3, N,) sufficiently large we obtain (4.17) with
k1 =min{N — A\, N3, Ny}, ko = max{N + A1, N3, Ny}

Now, by differentiating £(¢), exploiting (2.3), (4.1), (4.5), (4.13), (4.14), (4.15) and
setting g9 = 0/(4N1), e1 = o/ (4N2(2 + k(0))), we get

3J b2 o2
L)< = (Nuyp — Ny [ =
®) ( f 1( 2 +4,U'2€0

~ N
)—Nng(o)—Ngf)/ o2 dz
0

N 1 1
+ Tj(k/ O o) (t) — g / u? da — 2N1§1/ o dx
0 0

2

b " 1
- (6N1 — NoC., — — — N4H2(0)) / 5 dz
2M 0

b? 3 !
— (BNQ — 7”) / ’U,i dx — §N3F4(f,) — TN4F5(t)
0

— (N3 - J?ENl) /01 </Ot E(t — 5)p?(s) ds) dx

- (i - MEHOCEMODY Py 2005 ) ar

0

V2NZE(t)(2 + k(0)) [* bt
L PN ()ﬁ, <))/ g,gdeNz%X/ et .
0 0
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We select our parameters appropriately as follows. First, we choose Ns large enough
such that

b? 3u
— Ny — — .
e >0
We pick Ny large enough such that
N2b2E(0)(2 + k(0
wo - MEHORHO)

We select N7 large enough such that

b2 ~
ON1 — ]\]'QC'61 — Z — N4H2(0) > 0.
We choose N3 large such that

Jk
N3 — 7]\71 > 0.

Finally, we take N large enough (even larger so that (4.17) remains valid) such that

3J b2 ~ 12
N —N(— —)—NHO—N—1>0.
M1 13 +4#250 3H1(0) 2J

All these choices lead to
(4.19)

1 1,
L'(t) < —a1/ (@f—ks&i—kuf—kui—f—g&%dx—/ </ k(t—s)gof(s)ds) dz
0 o \Jo

1 1
b
+ aok(t) / Qb Az — CN3Fy(t) — NyrFs(t) + N2%X/ P dz,
0 0

where a1, as > 0.
On the other hand, from (2.2) and by using Young’s inequality, we obtain

2

+§/01</0tk<t—s>w$<s>ds) da

1 1 t
<gl</ i+t a2+ et [ (/ k(t—s)so%(s)ds)dx)
0 0 0

where o1 > 0, and which implies that

1 1
B <5 [ (oud + I + (et B + 82 + (€ + o)) do
0

1 1 t
@20) - [ ot +ud+ ey do- ( / k(t—s)sa%(s)ds) de < —02B(0),
0 0 0

where g2 > 0. The combination of (4.19) and (4.20) gives (4.18) with Cy = a9 X
1
Jo ¢85 d. O
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We are now ready to state and prove the following exponential stability result.

Theorem 4.1. Let (u,p) be the solution of (1.1) and assume that (1.2),
(H1)-(H2) hold and x = 0. Then there exist two positive constants 7 and T
such that

(4.21) E(t) <me ™ Vt>0.

Proof. By using (4.18) and the right side of (4.17), we get
(4.22) L'(t) < —CLL(t) + Cok(t),

where C7 = f1/k2 > 0. Multiplying (4.22) by exp(Cit), we obtain

d (L(t)exp(Cht)) < Coexp(Cit)k(t).

(4.23) o

Integrating over (0,7") inequation (4.23) and choosing C; smaller than ¢, we have

T oo
L(T) exp(CiT) < £(0) + Cs / exp(ct)k(t) dt < £(0) + Cs / exp(ct)k(t) dt.
0 0
Thanks to the hypothesis (H2), we can write
‘C(T) < 03 eXp(—ClT), C3 > Oa

which yields the serial result (4.21), using the fact that Fy(¢), F5(t) are positive and
the other side of the equivalence relation (4.17) again. The proof is complete. O

4.2. Polynomial stability. Here, similarly to [33], we prove a polynomial de-
cay result of solutions of problem (1.1) when (1.5) does not hold by assuming that
the function k verifies the same hypotheses (H1)-(H2) and the following additional

assumption:
(H3) —wk(t) < k'(t) <0, where w is a positive constant.

In order to establish this result, we need to introduce the second-order energy Fs ()
by using the multipliers technique as in the case of E(t). For that, by differentiat-
ing (1.1); and (1.1)2 with respect to time, we arrive at

QUgtt = PUgyt + b@zt; S (07 1); t> 07
t
(4.24) J Qi + J(/ E(t — s)pi(s) ds>
0 tt
:5@zzt _buxt_gsot'*'ﬂlgptt; HARS (Ovl)a t> 07
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with boundary conditions

uxt(O,t) = Uxt(l,t) = gOt(O,t) = (pt(l,t) = 07 t 2 07
and initial data
{u(a:,O) =wuo(x), w(z,0) =ui(x), uu(z,0) =us(x), =€(0,1),
QO(J),O) = 300(37)7 gOt(J),O) = 901(1‘)) @tt(‘xvo) = @2(1‘% T e (0’ 1)'

Note that

(f kKt~ s)ouls) d) -(/ (st — ) d)

_ </0t E(s)pu(t — s)ds + k(t)sot(U))

t
t
_ / k(t = 8)ue(s) ds + k(£)0u (0) + K (1) (0).
0
Then system (4.24) can be rewritten as
QU = [zt + DPat, x € (0,1), t>0
t
(4.25) Joue + J/ k(t — 8)pue(s) ds + Jk(t)pa + JK ()1
0
= 0@zt — bugt — §r — 194, z e (0,1), t>0,

where p2 = ¢4:(0) and 1 = ¢+(0) depend on z.

Theorem 4.2. The second-order energy Es(t) associated to system (1.1) de-
fined by

1 1
(4.26) Ex(t) = 5 / (oufy + T}y + E0% + 092, + puy + 2bpyur, ) dz
0

22 [ ([ b teas) an

satisfies

1

1
J
@2 BO<-IKE [ erpude - [ ddet 0 De)
0 0

and

(4.28) Bay(t) <1 Vt>0.
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Proof. By multiplying (4.25)1 by s, (4.25)2 by ¢4, integrating over (0, 1) and
summing up, we obtain

d
(4.29) — / (Qutt + Jgott + &%+ 54th + uuxt + 2bpiug, ) dr

1
2dt
1 1
—l—Jk(t)/ gattgogda:—l—.]k:’(t)/ e do
0 0

1 t 1
+ J/ om </ k(t — s)pue(s) ds) dz = —Nl/ goft dz.
0 0 0

By using again the result in Lemma 2.1 to estimate the last term of (4.29), we get

(4.30) J /01 o (/Ot k(t — s)pue(s) ds> dz

Jd 1 t 1
=33 </ E(t — s)@2,(s) ds) dz — Jk(t)/ w2 dz
0o \Jo 0

Jk(t) ! J
+ 20 [ ao - 20 0 o).
0

By using the positivity of k(¢) and the combination of (4.29) with (4.30), we
have (4.26) and (4.27).
Now, by using the hypothesis (H3) and Young’s inequality, we can write

1 1 k t 1
(4.31) —Jk:’(t)/ 0104 dz < Jélwk(t)/ ©?, dx + Jjé( )/ ©? du,
0 0 1 0

letting §; = 1/(2w) and because k'(t) < 0, then (4.27) becomes

Jw?k(t) [
B0 < 250 [t ae = cuie,

where

(= J‘; /apldx>0

A simple integration over (0,7") and by the hypothesis (H1), we obtain (4.28). O

We introduce the functional

that satisfies
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By using Young’s inequality, we get

Qb 1 b2 1 ) 1 )
_ob e < dz +C dz.
MX/O PttUg AT 8J/0 Uy dx + O/O P AT

Then

" p2 1 1 ob 1
Fy(t) < g/ uidx—l—Co/ ‘P%tdx_ _X/ Utz pr d.
0 0 12 0

We define the following Lyapunov functional as
(4.32)
L1(t) = N(E(t) + Ea(t)) + N1 F1(t) + No(Fa(t) + Fa(t)) + F3(t) + N3 Fy(t) + N4 F5(t).

The Lyapunov functional £; defined by (4.32) is not equivalent to the energy func-
tional F, but it is equivalent to E + Fa + Fy(t) + F5(t). Indeed, by using (4.32)
Young’s, Poincaré’s and Cauchy-Schwarz inequalities, we have

[£1(t) = N(E(t) + Ea(t)) — NaFu(t) — NaFs(t)]
< )\1E(lf) + )\QEQ(t) < ﬁ(E(ﬁ) + Eg(t)), 8= max(/\l, )\2),
(N = B)(E(t) + Ea(t)) + N3 Fy(t) + Ny F5(t)
< Li(t) < (N 4 B)(E(t) + Ex(t)) + N3Fy(t) + NyFs(t).
Now by choosing N sufficiently large, we obtain
01(E(t) + Ex(t) + Fu(t) + F5(1)) < L1(t) < 02(E(t) + Ea(t) + Fu(t) + F5(1)),

where
01 = min{N — 3, N3, N4}, 02 = max{N + 3, N3, N4}.

Therefore,
Li(t) ~E+ Ey + Fy + F.

Now, we are ready to state and prove the polynomial stability result.

Theorem 4.3. Let (u,p) be the solution of (1.1) and assume that (1.2),
(H1)-(H3) hold and x # 0. Then there exits a positive constant C3 such that

s

B(t) < =

t>0.
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Proof. First, note that when x # 0, we have

5b2 b2k2(0) ey !
4. - 2
(4.33)  Fi(t) +F2 / u? dx —l— e + QJ) / o5 dz

9 ka(t) 1 2 1 )
+e1(24+k(0)) ut dz + oo, da + 4 vy dz
0 4eq 0 J

2 1, gt 1
+ k() / (/ K (t—s)p2(s) ds) dz + Co/ goft dx.
der Jo \Jo 0

By differentiating £1 and using (2.3), (4.1), (4.33), (4.13), (4.14) and (4.15), we get

1 1 1 1
L(t) < —61/ <pt2da:+52(k’|:]<pt)(t)—53/ ufdm—&;/ <p2da:—55/ 2 dx
0 0 0 0

— 6 /1u da — 67 F4(t) — 0sF5(t) — do /01 (/Otk(t— 5)7 () d8> dx

—510/ </ K/ (t — 8)|p3(s)d )d$+(511+514)k(t)

—m/ﬁ%M+me%mm
0

where
3J  b%p? ~ u3 NJ
6= (N — N 29 ) Ny H (0) — N 2L -7
1 ( p1— 1(2 +4M2€0> 3H1(0) 2J>’ 2 5
0 b? =
b= 5. di=2M&, &= (0N = NoCr, - 2 Nif(0)),
b2 3u Jk
06 = <8JN - 7)7 07 =G¢N3, 05 =T7Ny, dg= ( 3 — 71\71),
N3b2k(0)(2 + k(0 VN3 (2+k(0) [*
b= (g MEHORHON) 5 PNCEHO) (",
4 0 0
JN
012 = (Np1 — NoCy), 013 = = 014 = NC.
We select our parameters as follows. First, we choose Ns large enough such that
b? 3u
06 = —=Ny— — > 0.
STsI T2 7
We pick Ny large such that
N2b2k(0)(2 + k(0
510 = N, — 2RO HEO)
o
We select N7 large enough such that
2 ~
05 = 0N, — ]\TQC‘61 — Z — N4H2(0) > 0.
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We choose N3 large such that

Jk
N1 > 0.

59=N3—7

Finally, we take N large enough (even larger so that (4.17) remains valid) such that

3J  b%?

- 2
(51:NILL1—N1(7+ )_N3H1(O)_N2M_j > 0, and 512:N‘LL1_NQCO>O.

dpteg
Because ki/(t) <0 and (527 57, 587 5107 511, 512, 513 > 0, then
1 1 1 1
L(t) < —51/ @%dm—ég/ ufdm—&;/ <p2da:—55/ 2 dx
0 0 0 0
1 1 t
- 66/ u? dx — 69/ (/ E(t — s)p2(s) ds> dx + (011 + 014)k(t)
0 0 0
1 t
< - vl/ (u? +o Fup + i+ ¢° +/ k(t — s)so%(s)ds) dz + vak(t),
0 0
where v = min{él, (53, 54, (55, 567 (59}, vg = 011 + 014.

On the other hand, from the energy formula and by using Young’s inequality,
we obtain

1 1
E(t) < 5/ (oui + J@7 + (u+ [bDul + 692 + (€ + |b])p?) da
0

J 1 t
+ —/ (/ E(t — s)p?(s) ds> dz
2 Jo \Jo
1 1,/ pt
<o [@rrerdeas [ ([ re-oeas) )
0 0o \Jo
where o1 > 0, and which implies that
1 t
[ (et vz ez e i [ - 9s0as) ar < )
0 0

where g2 > 0. Then
L(t) < —woE(t) + wik(t)

with wy = v102, w1 = ve. By integrating over (0,7"), we get

woE(T)T < —L4(T) + £1(0) + w1 /OT E(t)dt < £1(0) + wq /OOO k(t)dt = 1.

So

The proof is complete. O
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Remark 4.1. We note that the results obtained hold even for u¢ = b%. In this
case, we have to redefine the energy as in [14] as

YRS -

23 [ ([ ki)

)(@)?) de

and adjust our calculations accordingly.

I

5. CONCLUSION

n this paper, we studied the asymptotic behavior of the solution of porous-elastic

system in the presence of neutral delay. Introducing a single damping mechanism

given by this type of delay makes our problem different from those considered so

far
we

spe

1]
2]
3]
[4]

[5]

[6]
[7]

8]

[9]

[10]
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in the literature and under some assumptions imposed on the kernel of delay,
have been able to prove an explicit energy decay rate that depends on the wave
eds of propagation.
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