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Abstract. We study a nonlinear boundary-value problem for elliptic equations with criti-
cal growth conditions involving Lebesgue measurable functions. We prove global bounded-
ness and Holder continuity of weak solutions for this problem. Our results generalize the
ones obtained by P. Winkert and his colleagues (2012) not only in the variable exponent
case but also in the constant exponent case.
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1. INTRODUCTION

In this paper we deal with the regularity properties of weak solutions for the elliptic
boundary value problem

(1.1) —div A(z,u, Vu) + B(z,u, Vu) =0 in Q,
(1.2) A(z,u,Vu)-v=C(x,u) on dQ,

where (2 is a bounded domain of R™, n > 2, with Lipschitz boundary 092 and v = v(x)
denotes the outer unit normal to 9 at x € 9€). We assume that the coefficients
A: OXRXxR*" = R", B: QxRxR" = R, and C: 992 x R — R are Carathéodory
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functions satisfying the following structural conditions:

Az, 2,6)€ = aoléP™ — a1|2|P" @ — ay(x), for ae. z € €,

3)
4) A2, 2, 6)] < agleP@ T ay|zPT @@ Loag(x),  for ae. x € Q,
.5)
.6)

<
|B(x, 2, €)| < bol€[P@/ @@ L py 2P ()= L py(z),  for ace. x € Q,

|C(z, 2)| < colz

(
(
(
(

— = = e

pe(@)=1 4 o) (z), for a.e. xz €09,

and for all z € R and all £ € R™. Here p is a function such that
(1.7) l<p = igfp(x) <pti=supp(z) <n
Q

and
p(x) = L(x) forx € Q, pi(x):= M for x € 09,
n — p(x) n — p(z)
and p'(z) = p(z)/(p(x) — 1). Further, ag, a1, as, as, aq, bo, b1, and ¢y are posi-
tive constants, and as(-), as(-), ba(-), and c;1(-) are certain non-negative Lebesgue
measurable functions; see (1.9), (1.10) and (1.11) for details.
Our setting includes as a special case the boundary-value problem with the p(z)-

Laplacian:
—Apyu+ B(z,u, Vu) =0 in Q, |Vu|p(z)72Vu -v=_C(x,u) on .
Here the p(z)-Laplacian, which is defined by
Apzyu = div (|Vul|P2Vu),

reduces to the well-known p-Laplacian in the case p(x) = p.

In recent years increasing attention has been paid to the study of elliptic problems
with variable exponents, which are also termed problems with nonstandard growth
conditions, that appear in the study of non-Newtonian fluids with thermo-convective
effects, electro-rheololgical fluids, nonlinear elasticity and image restoration; see,
e.g., [3], [6], [27], [31].

There are some essential differences between variable exponent problems and con-
stant exponent problems. The p(z)-Laplacian possesses more complicated nonlin-
earities than the p-Laplacian, for example, it is inhomogeneous. Indeed, one can see
that the inhomogeneity due to variable exponent is the main difficulty in generalizing
the results for the constant exponent problem to the variable exponent one and it
is a source of singular phenomena in the variable exponent problems (see, e.g., [13],
17, [21], [26], [30)).
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Holder continuity results for the weak solutions in the literature require that weak
solutions belong to L*°(Q2). In the case of the Dirichlet boundary conditions, this
technique was used by Ladyzhenskaya and Ural’tseva in [22] for quasilinear ellip-
tic equations with standard growth conditions and generalized by many authors to
nonstandard growth conditions; see, e.g., [2], [9], [12], [14], [15], [20], [23]. In partic-
ular, Ri and Yu (see [29]) considered general nonstandard growth conditions, while
the peculiar fact is that the assumptions on the lower order terms are sharp and
formulated themselves in terms of variable growth exponents.

Let us comment relevant known regularity results about the other boundary-value
problems with p(x)-growth. In [10] Fan proved the global Holder continuity of the
bounded weak solutions to the problem (1.1), (1.2) under the assumptions that

> MI2D € = A(l2]),
< A=D(EP 1 + 1),
< AN (P +1),

A(z, 2, )¢
[A(z, 2,€)]
|B(z,2,8)|

and C € C(9Q x R,R), where A: [0,00) — (0,00) is a nonincreasing continuous
function and A: [0, 00) — (0, 00) is a nondecreasing continuous function. Hence, one
needs to show its boundedness in order to prove the Holder continuity of a weak
solution with help of the result in [10]. Gasiniski and Papageorgiou (see [16]) prove
global a priori bounds for weak solutions to the problem

ou

—Apyu+ B(z,u) =0 in Q, W 0 on 99,

where p € C1(Q) with 1 < min p(z) and the Carathéodory function B: Q x R — R
Q

satisfies the growth condition
|B(z, 2)| < by|z|7® 71 + by

with positive constants by, by and a subcritical exponent ¢ € C(€) such that p(z) <
q(z) < p*(z) for all z € Q. In [28], Winkert and Zacher obtained the result that
weak solutions to (1.1), (1.2) are bounded in  under the subcritical growth condi-
tions similar to (1.3)—(1.6) in the case that a;, b; and ¢; are all positive constants,
but did not obtain Hélder continuity. Marino and Winkert (see [24]) generalized the
boundedness result obtained by Winkert and Zacher to the critical growth condi-
tions when p is a constant. We refer to [25] for similar results for elliptic systems
with a nonlinear boundary condition. Consequently, in order to prove the Holder
continuity for weak solutions to the problem (1.1), (1.2) by combining Fan [10],
statement (3) of Proposition 2.2 and boundedness results obtained by Winkert and
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his colleagues (see [25]), we need to assume that a; and b; in (1.3)—(1.5) are all
positive constants and C(z,z) belongs to C(9Q x R,R), and unlike the Dirichet
problem, it is impossible to assume that weak solutions of the problem (1.1), (1.2)
are Holder continuous on the boundary 0f2. In our opinion, there is no paper which
deals with the global Holder continuity of weak solutions to the variable exponent
elliptic Neumann boundary value problem (1.1), (1.2) with critical growth without
the assumption that they are Holder continuous on 9f2. In this sense, we assert that
there is no work concerned with the global boundedness or the global Hélder con-
tinuity for the problem (1.1), (1.2) under the critical growth conditions (1.3)—(1.6);
see [19] and the references therein. For further results on the regularity of weak
solutions we refer to Acerbi, Minginoe [1] for C1* regularity results, Borsuk [5] for
L -estimate for a singular p(z)-Laplacian problem in a conical domain; see also Ba-
roni, Colombo, Mingione [45] and Harjulehto, Hiisto, Lé, Naortio [18] for a survey on
regularity of weak solutions and minima. DiBennedetto [7], Chapter 10 proved the
boundedness and the Holder continuity of weak solutions to the problem (1.1), (1.2)
under the conditions that

Az, 2,€)€ = aol§|” — az(z),

Az, 2,8)| < asléP~" + as(x),

|B(x,2,€)| < bol¢P~" + ba(),
C(z,z) = ar1(x)

for given positive constants ag, as and by, and given non-negative functions

18) ag € LA/P(Q), a5 e L((n+e)/p)p’ (Q), by e Lta)/P(Q),
‘ c1 € L=/ (p=D)((n+)/7)(5Q)  for some € > 0,

where 1 < p < n is a constant.

The purpose of the present paper is to find sharp conditions on az(+), as(-), b2(+)
and ¢i(-) in (1.3)—(1.6) for weak solutions of (1.1), (1.2) to be globally bounded
and Holder continuous in €2 without assuming that weak solutions are bounded
or Holder continuous on 9f2. To our knowledge, the problem which is treated
in this paper seems to be the most general nonlinear boundary-value problem
with the variable critical exponent. We use the variable exponent spaces LP(")
and WP() | the definitions of which will be given in Section 2. The symbols of
some common spaces used in this paper such as L>=(f), L>=(0Q), C*(Q), C(Q),
C(0%), C%*(Q) and C%*(90) are standard. Now, we state the main results

of this paper.
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Our first main result is the following global boundedness:

Theorem 1.1. Let Q C R™, n > 2, be a bounded domain with Lipschitz bound-
ary 0Q and let (1.3)—(1.7) be satisfied, where ag, a1, a3, a4, by, b1 and co are given
positive constants, and as, as, bo and ¢; are non-negative measurable functions sat-
isfying

(1.9) az,by € L*(Q), a5 € L*OPO) ¢ e LFO(99),

with functions s, p such that

n — _

1.10 s(x) > —— forallx € Q and s € C(1),

(110) @) > - @
n—1

1.11 x) > ——— for allz € 002 and p € C(01).

(111) ) > p € C(09)

Let p € WY7(Q) with a number v € (n,00). Then, any weak solution of the
problem (1.1), (1.2) is of class L () N L>°(9N).

Our second main result is the global Hoélder continuity for bounded weak solutions:

Theorem 1.2. Let 2 C R™, n > 2, be a bounded domain with Lipschitz bound-
ary 0f). Suppose that for all z € R and all £ € R"

(1.12) Az, 2,6)€ > ao(|2))|€]P® — a1(|2])az(z) for a.e.x € Q,
(1.13) |A(z, 2,€)] < az(|2]) (€@ + as(z))  for a.e. z € Q,
(1.14) |B(x, 2,6)| < bo(|2])(J€]P®) + by(x)) for a.e. z € Q,
(1.15) |C(z,2)| < eo(|z])er(z) for a.e. z € OQ,

where ag: [0,00) — (0,00) is a nonincreasing continuous function, ay, as, by and cqy:
[0,00) — (0, 00) are nondecreasing continuous functions and ag, as, b2 and ¢; are non-
negative measurable functions satisfying the same conditions as (1.9)—(1.11) and p is
as in Theorem 1.1. Then, any bounded weak solution of the problem (1.1), (1.2) is
of class C%*(Q) for some o € (0,1).

As one can easily verify, the conditions (1.12)—(1.15) follow from the conditions
(1.3)—(1.6). Hence, the following Holder continuity result for general weak solutions
follows from Theorems 1.1 and 1.2 immediately.

Corollary 1.3. Suppose that all conditions of Theorem 1.1 are satisfied. Then
any weak solution of the problem (1.1), (1.2) is of class C%(Q) for some a € (0, 1).
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Remark 1.4. For brevity, we assumed that p™ < n. In fact, if p™ > n, then
by replacing p*(x) and p.(x) in (1.3)—(1.6) with ¢(z) and r(z), respectively, we can
obtain similar results as in Theorems 1.1 and 1.2, where ¢ € C(Q2) and r € C(99)
are functions such that p(z) < ¢(x) < p*(x) for all z € Q and p(z) < 7(z) < pu(x)
for all 2 € 9Q with p*(x) and p,(z) defined by

np(x)

_ if p(x) <n _
p*(z) :={ n—px) p(o) for all z € Q
00 if p(z) 2 n
and
_ (n = Dp() if p(z) <n
Px(x) := n —p(x) for all z € 99.
00 if p(z) = n

Remark 1.5. It is clear that the conditions (1.9)—(1.11) on asz(-), as(:), ba(-)
and ¢1(+) exactly coincide with the conditions (1.8) when p(z) = p, and note that
we do not assume that a weak solution is Holder continuous on 92 to see its global
Holder continuity. In this sense, (1.9)—(1.11) are optimal conditions for weak so-
lutions of (1.1), (1.2) to be bounded and Hélder continuous in €2, and our results
generalize the ones obtained by Winkert and his colleagues (see [24], [25]) not only
in the variable exponent case but also in the constant exponent case.

The proofs of Theorems 1.1 and 1.2 are based on ideas of the localization method
and De Giorgi’s iteration technique developed by Winkert and Zacher (see [28]) and
also Yu and Ri (see [29]). Our goal here is to derive a new suitable Caccioppoli
type inequality admitting only in some neighborhood of every x € € solutions of
the boundary-value problem (1.1), (1.2) and to explain the decay of level sets of a
solution, while they are more complicated than the case that structural conditions
are subcritical growth or as, as, bs and ¢; are constants; see Remarks 3.2 and 3.4 for
details. The present paper is organized in four sections. In Section 2, we introduce
some notations and well-known results which will be used in next sections. We prove
Theorems 1.1 and 1.2 in Sections 3 and 4, respectively.

2. PRELIMINARIES
Let E be a bounded open set in R”, n > 2, and C (E) be denoted by
Ci(E):={feC(E): f(z) >1forallx € E}.
For p € C, (E), we define the variable exponent Lebesgue space LP()(E) by

LPO(E) = {u: E — R is a measurable function:/ [uP@ dz < oo}
E
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with the norm

. w |P(@)
lulhose = s, = nt{ > 05 [ 3] a0 <

and the variable exponent Sobolev space W1 *()(E) by
WPO(E) .= {u € LP(E): |Vu| € LPO(E)}

with the norm

lullwroo my = IVUllpeye + llullpe):e,

where [|[Vull,.).z = [[|Vulllpe);e- Wol’p(')(E) is the closure of C§°(E) in the space
W1PO)(E). The spaces LPO)(E), WLP(O)(E) and Wy ') (E) are Banach spaces. In
the space Wol’p(')(E), we can take

||U||§/v1,p(«>(E) = [IVullp(yie
as an equivalent norm; i.e., there is a positive constant C' such that
[ullpy:e < Cl|Vullpye  for all u e Wy (E).

For any u € LPC)(E) and v € Lp/(')(E), we have Holder inequality

‘/Euvdx

There holds the inequality

< 2[lullpeyssllvlly ;e

lullpeyie < L+ [ED|ullgeyp  for any u e LIV(E)

if p(z) < ¢q(z) for a.e. x € E, where |E| is the Lebesgue measure of E. For a
measurable function f: E — R, we put

s%pf = essEsup 1, 1%ff = essElnf 1, ogcf = s%pf — 1%f 1,
f® () := max{f(z) — k,0} for k € R.
For brevity, we often use the notations

[Fi=swpf, f5i=inf],
E E

in particular,

1oy = Wfllocs o= fas £ = o
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We have the inequalities

min{ [} el ) < [ JuP da
< maX{Hqu( - Hqu( gt forallue LPO(E)
and if 0 < ap < af < oo, r € L®(E), 1 < a(z)r(z), r(z) > 1 for a.e. x € E and
u € L*)"0)(E), then there holds the inequality
Nl . < masc{ 2 2
Let B,(xo) be an open ball in R™ of radius ¢ centered at xo € R™ and put
wp, = |B1(zo)], (o) := QN By(xg), (09),(z0) := QN By(xo).

Sometimes we may omit x( in the above notations. In order to have critical em-
bedding in the variable exponent Sobolev space W1P()(Q), we must assume more
regularity on the function p(-). For this, let us denote by C1/°gtl(Q}) the set of all
functions f: @ — R that are log-Holder continuous on 2, i.e.,

l\9|H

—|f(@) = f(y)|log|z — y| < Clog for all z,y € Q with |z —y| <

where Clog is a positive constant.

Remark 2.1. It is well-known that if p € C%1/1°8*/(Q), then there is a constant
L > 0 such that
—oscp

R ©r < L for all Bg with Qg # 0;
see, e.g., [8], Lemma 4.1.6.
Lemma 2.2 ([8], Theorem 8.3.1). Let Q C R™, n > 2, be a bounded domain with

Lipschitz boundary 99 and let p € C%1/loetl(Q) N C+( ) satisfy 1 <p~ < pt < n.
Then

< C”UHWl,p(«)(Q) for all u € lep(~)(Q),
where the constant C' depends only on n, p*, Ci,e and |9].

Lemma 2.3 ([11], Theorem 2.1). Let Q be as in Lemma 2.2 and let p € W7 (Q)
with 1 < p~ < p' < n <. Then there is a continuous embedding

WhrO(Q) — LP-)(5Q).
Remark 2.4. For Q as in Lemma 2.2, it is obvious that
CO,I(Q) c Wl,v( ) c CO 1— n/w( ) c CO 1/|logt|(ﬁ).
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Lemma 2.5 ([22], Lemma 4.7 of Chapter 2). Suppose that a sequence y;, (h =
0,1,2,...) of non-negative numbers satisfies the recursion relation

Yh+1 < Cbhy}lLJrea h = 07]-;27"'7

where C, ¢ and b are positive constants and b > 1. If yo < C~Y¢b=1/* then yj, — 0
as h — oo.

Lemma 2.6 ([22], Remark after Lemma 3.5 of Chapter 2). Let E be a bounded
convex open set in R", and let w € W11(E). Then

diam E)"
pldiam E)* / V| da

BN\ Akl Jana,

for arbitrary k and | with k < I, where Ay, = {z € E: u(z) > k} and 5 = fB(n) > 1
is a constant depending only on n.

(L - k) A" <

Definition 2.7. We say that a function u € W1P()(Q) is a weak solution of the
problem (1.1), (1.2) if

(2.1) /Q(A(x, u, Vu)Vo + B(z,u, Vu)v) de = - C(z,u)vdo

for every v € W'P()(Q), where do is the surface measure on 9.

Remark 2.8. Note that all terms on the left-hand side of (2.1) are well defined
by virtue of the conditions (1.4), (1.5), (1.7), (1.9), (1.10) and Lemma 2.2, and the
boundary integral on the right-hand side of (2.1) is well defined by virtue of the
conditions (1.6), (1.7), (1.9), (1.11) and Lemma 2.3.

Definition 2.9. u € W'P()(Q) is called a bounded weak solution of the problem
(1.1), (1.2) if w € L>=(Q) N L>=(09) and (2.1) holds for any v € W) (Q) N L>(Q).

We note that the integrals of all terms in the identity (2.1) are also finite for
arbitrary u € WHP(O)(Q) N L®(Q) N L2(0N) and v € WHPO)(Q) N L=(Q) if the
conditions (1.9)—(1.11) and (1.13)—(1.15) are satisfied.

3. BOUNDEDNESS OF WEAK SOLUTIONS

In this section, we prove Theorem 1.1. The proof is based on the localization
method and De Giorgi’s iteration technique.

3.1. Caccioppoli type inequality. For brevity, we put fo := fq, f1:= f;{R for
a given function f € C(Q), and so do for f € C(90), i.e., fo := foqye f1 1= f('BQ)R
below.
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Lemma 3.1. Let Q) C R™, n > 2, be a bounded domain with Lipschitz boundary
0Q and let p € W1 (Q) with 1 < p~ < pt < n < ~. Suppose that (1.3)—(1.6) and
(1.9)~(1.11) are satisfied. Let a function u € W'P()(Q) be a weak solution of the
problem (1.1), (1.2). Then there is a number R > 0 such that

— (=) .
COVR S dx<0< [ s [ e
Ap,T At t—r7 At

+ / |w
Tkt

for any xg € Q, for allk > 1, and 0 < 7 < t < R, where w = =u, Apy =
{z € W(x0): w(z) >k}, Ty = {x € (0N)¢: w(z) > k}, and § is a number such
that 6 > n/po, po = pg,, and C' is a constant depending on n, ag, a1, ||az||s., as,
Ay, Ha5||8(~)p/(~)? bo, b1, HbQHS(-)a Co, HClHM(')? p(')? 5()7 ,u(-), zo, R, {2 and 0S).

s () do + |Ak,t|1_1/5)

Proof. We fix k > 1 and o € Q. Since p, s and p are continuous and
satisfy (1.10) and (1.11), we may choose R > 0 so small that

n—1

Ho >

n
3.2 R<1, |Bg| <1, > —, o > ) .
(3.2) S |Br| < S0 20 (P")o > p1 so—1 Po—1

Let n € C*(R™) be a function such that 0 < n(x) < 1,|Vn(z)| < 2/(t — 1) for z € R",
n(x) =1 for z € B;(x¢) and suppn C Bi(xg) where 0 < 7 < t < R. Setting w = +u,
we have w®) € WP()(Q) and so v = @) k) e Whr()(Q). Taking this v as a
test function in (2.1), we get

(3.3)

N A, u, Vu)Vwdz = — (p*)* / NPT IR A(, u, Vu)(w — k) da

Apt Apt

- / B(z,u, Vu)(w — k)n(p*)+ dz
Ag,t

+ / C(x, u)w(k)n(”*)+ do.
[5}9)

We use (1.3)—(1.5) to get:
(3.4)

+ n(p*)+A(x, u, Vu)Vw dr > ao/ n(p*)+|Vw|p(””) dz
Ak,t Ak,t

—a / P @) da — 2 as oo | Ape [V,
Apt
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where the upper or lower sign is to be taken according to whether w is +u or —u,
respectively,

(3.5) kﬁﬁ/;nW”lwmmmvmw—mw
k.t

. —k
<20yt [ (a1 1|
At -7

+ ay(z)|w|?P" @)/ ()

%‘4-@5(3:) w_kD dz

t—T1
< % ) | VwP@ de
Apt
— kp" (@) «
v [ (5] ) o g,
Ak,t t—T

where we used the Young inequality and |Ay | < 1,

B(z,u,Vu)(w — k)n(p*)+ dz
Akt

< / (bon® )" VW [P@/ 7 || + by |w[P" @) 4+ @) by (2) (w — k) dz
Apt

(3.6)

< % n(p*)+|vw|p(z) dz + Cg/ |w[P"(®) da
Ak,t Ak,t

+ / n(p*)+b2(a:)(w —k)dz.
Apt

We estimate the last term on the right-hand side by using the Sobolev embedding.
Setting
S0 := min{sg,n},

we have by € L*0(€;) and 59 > n/po. Therefore, defining & by
ns S0

it follows that

1< < ———,
n—po+1

and so we have 1 < & < pg < n and
n—py <L < 1
n po—2 po—1

from which we get

(3.7) - Lo (i—i)popil.
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Hence, by using the Sobolev embedding and the assumption on the support of 7,
we have

(3.8) /A n® by () (w — k) da

*)+ *\ 4
= /Q ba(2)n®) " w® da < 2||be|ls() I WP 2/ (20

K+ .y
< Csllballs(y IV 0@ w0 + [1nP 0P 750)
o+
< Callb2 sy IV ()™ (@ = kD iar, + @l :4,0)
PR _
< Csballsy IV 0P w0y, + 10 lpasa )| Ane V7717
< o 77(p*)+|vw|po dz
5 Akt
— kp
e (/ wok de+/ P dx+|Ak,t|(1/9”—1/;00);00/(p0—1))
At t—71 At
<& @) | Vw|P@) dz
5 Ap,t

— kp (@) . .
+Cs (/ - ‘ dx—i—/ Jw]P* (@) dx+|Ak,t|“/SO),
Ap,t t—r Ag,t

where we used (3.7) and |Ag | < 1. Finally, we estimate the boundary integral on
the right-hand side of (3.3). Using the condition (1.6), we have

< CO/ |w
Tt

The derivation of the estimate of the last term here is similar to the derivation
of (3.8) but we give it for completeness. Defining - by

3.9 Cl(z, u)w® ®)7" do
( n

) ‘ P () do—i—/ cl(x)n(p*)+w(k) do.
o9 a9

(n—1)Zr Fo
1 =
(8.10) n— r po — 1

and recalling that po > (n —1)/(pp — 1), we obtain 1 < Zr < n/(n —py + 1), and
so we have 1 < &r < pg < n. Putting

o n(po—1)uo
(3.11) R s T

we find that s > n/py and that by (3.10)

(3.12) (%F - pio)% —1-

Vo)
’1©| =
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Therefore, by the Sobolev embedding we have

(3.13) / c1 (x)n(p*)+w(k) do
[5}9]

()t

||Cl||uo;1“k,f, n W(k)”uo/(uo—l);aﬂ
Co(IVH® w®) | . + 7% w®)]| 5,
CollIVHT w0 N lpgea, , + wllposar Ak e[V 7720
< %/ @ |VwlP®) dg

s

— kp* (=) .
o (/ | et / " ) dar + |Ak,tll‘”sg>’
T Apt

where we used (3.12). Substituting (3.4), (3.5), (3.6), (3.8), (3.9), (3.13) into (3.3)
and putting § = min{3y, s%}, we find (3.1). The proof is completed. O

NN N

Remark 3.2. Note that if as, as, b2 and ¢; in (1.3)—(1.6) are all constants,
then |Ax¢|'~1/% in (3.1) is replaced by |Ax | and such complicated treatments as
done in (3.8) and (3.13) are not required; see, for example, Winkert and Zacher [28]
or Marino and Winkert [24].

3.2. Boundedness of weak solutions.

Lemma 3.3. Let all assumptions of Lemma 3.1 be satisfied. Then there exists a
number R > 0 such that for any zy € Q

sup |u| <M and sup  Ju| < M,
QR/z(ﬁco) (BQ)R/2($O)

where M is a positive constant depending on the same quantities as C' in (3.1)

and on u.

Proof. We put
5(z) := min{s(z),n} forr € Q and sp(z):= 7_)”(3:) for x € 09Q.

It is clear that
<p*(z) forallz€Q

and
< p*(z) forall x € 00
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by virtue of 5(z) > n/p(z) for allz € Q and p(z) > (n —1)/(p(z) — 1) for all z € OQ.
Therefore, there is a number R > 0 such that

@(1—i) > 1, (p*)o(l—i) > 1,

b1 S0 b1 81Q
where s is as in (3.11), so we have
(P")o 1
3.14 —(1 - —) > 1,
(3.14) o 5

where § = min{sp, sX} is just as in (3.1). We may regard (p.)o as

(p*)O

(3.15) o

>1

with R as above, since p.(z) > p(z) for all z € 9Q. Without loss of generality, we
can suppose that this R is a number as in Lemma 3.1. Choose ky > 1 large enough
so that

(3.16) / | V[P dx+/ |ulP” (@) dx—i—/ lu[P<® do < 1,
AkO AkO FkO
where Ay, = {x € Q: |u(z)| > ko}, Tk, := {z € 0Q: |u| > ko}, and put

1 1 1
on = (§+W)R, kh:(z_z_h>k0, h=0,1,2,...

Applying Lemma 3.1 to t = gp, 7 = gp+1 and k = kp41 for h =10,1,2,..., we obtain

9 (h+2)(p") .
(3.17) / V[P d < C(w/ (w—kns1)P @ da
Akh+1v0h+1 A’Ch+1:9h
+ / w|P” ) dz
A’Ch+1:9h
+/ (] do + | Apy 1,00 7).
Fkh+1v0h

Using that 0 < w(x) —kpy1 < w(x) —kp and w(x)/(2"2 — 1) = (1 —kp /kpy1)w(x) <
w(x) — ky, that is, w(z) < (22 —1)(w(x) — ky,) when x € Ay, ,, 0, Or T € Tk 005
by (3.17) we get

(3.18)
9(h+2)(p")* .
/ |Vw|P® dz < C(W/ (w— k)P ) da
Akh+1v0h+1 Akh+1v0h
L o2 / (= k)™ @ do + | Ao on |1—1/6),
Phppiien
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It follows that
(3.19)

Weky M@ 20D )
< —_— <z — k)P (@)
[ Akni1,0n| < / o kh> de < RS /A (w— kn) dz

kpht1-0h kpseop

< 2D / (w — Ep)?" @ da.

Ak op,

Substituting (3.19) into (3.18) and using (3.16) we find that

(3.20) /A

1-1/6
|Vw|p(“’) dz < 022" (</ (w— kh)P*(x) dx)
A

)

On the other hand, taking n € C'(R™) as in the proof of Lemma 3.1 with 7 = o541
and t = gp, we have by Lemma 2.2
(3.21)

Fh4+1:Ch+t1 kn-eh

(w — Ky, )P+ da).

kp,en

(w — k‘thl)p* () dx

Akh+1 Ch41

— (kn+1))p" () (kn1) || (P o
= [ty O e < et 2

Ch+1

< C(IV(nw® ) [y + Inw ]| 0) 70
Qh+3 (P")o
< O(IVllp e, e, + (T 1) 19 = Kl )

h+3
Akh+1veh

( ) 1/101 2)
VwlP® g (
vul as) (2
< 02D’

(P")o/p1
X <(/ |Vw|p(”) dx> + (/
A A

A

Eh41:¢h

(P )o
+ 1) maX{Tl/”O,Tl/pl}>

(p")o/p1
(w — kp)?" @ dx> >7

kp,en kp,en

where

and we used that

1/po
(1, )< (]
A Akpia.en

|Akh+l79h,| <1

1/po
)

. 1/po
(w - kh)p (@) dx) + |Akh+1,gh

kEht1:0h
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and (3.19). By using Lemma 2.3 we get similarly as above

(3.22)
(w — kthl)p*(x) do
Fkh+1>£’h,+1
< [t do < 008
50 DPx 5
< CIV ) pena + [Inw® e [ 0) P
< 2(h+2)((p)")?
<2 (p+)o/p1 . (p«)o/p1
X <(/ |Vw|P® dm> + </ (W — k)P @ dx) )
Ak e Aky, op,
Putting

Ih::/
A

+/ (w—Fkp)P*®do, h=0,1,2,...
Ty,

1Qp

A

kp,en kp,en

and using (3.20), (3.21) and (3.22), we arrive at
(3.23) I < Cbh(Ih,l(p*)o/pl(l_l/é) + Ih,l(p*)‘)/pl),

where b = 8(®))* > 1 and C is a positive constant independent of kg and h.
Defining € by

m(l _ 1) M}
P 6/ i

it follows from (3.14) and (3.15) that € > 0, and using (3.23), we have

1+5:min{

(3.24) Iy <OV, MFe
since I, <1, h=10,1,2,..., which follows from (3.16). Note by virtue of (3.24) that
Ing1 < bOOMIIFe,
where I~h = Iy, and b = b2. We can choose ko > 1 large enough so that
To=1Ip < (bc)_1/e'5—1/527
and therefore, by Lemma 2.5 we get
(3.25) In=1Ip —0 ash— .

From (3.24), we have also
~1+e

Thir <OCV'T,
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where I~h = I5,41 and b is as above. Choosing kg > 1 so that

Ip=1 < / |Vul|P®) dz —l—/ [ulP"(®) dz +/ |u
Ak Ap k

0 r 0
by Lemma 2.5 we get

P« (@) 4o < (bc)—l/sg—l/ez,

(326) Ih = 12h+1 —0 ash — oo.
Now (3.25) and (3.26) mean that I, — 0 as h — oo, and so we have

sup |u| < 2k, sup |u| < 2ko
QR/2 (8Q)R/2

with the above kg. This completes the proof of the lemma. O

Remark 3.4. A keyargument in the proof of Lemma 3.3 is the inequality (3.14),
while this inequality is unneeded since the Caccioppoli type inequality (3.1) includes
| A ¢| instead of |Ay¢|'~/% when as, as, by and ¢; in (1.3)—(1.6) are all constants.

Proof of Theorem 1.1.  Since Q is compact, there exists a finite open cover
{Bprj2(zi)}i2, of Q with radius R as in Lemma 3.3, where z; € Q, i = 1,...,m.
Then by applying the standard finite cover method and Lemma 3.3, we complete the
proof of Theorem 1.1. O

Remark 3.5. The condition p € W17(Q), where n < v < oo, is due to the
critical growth condition (1.6). We note that if we replace (1.6) by the subcritical
growth condition c(z, 2) < co|z|9®) ™1 4 ¢1(z), where ¢ € C(0Q) with 1 < ¢(z) <
p«(x) for all x € 9Q, or we study only local boundedness of weak solutions of (1.1),
then it is sufficient to assume that p € C%/I°et(Q) N O (Q); see Lemma 2.2 and
Fan [11], Corollary 2.4.

4. HOLDER CONTINUITY OF WEAK SOLUTIONS

Let 2 be a Lipschitz bounded domain and let z € 02 be a given point. As
our hypotheses are invariant under Lipschitz coordinate changes, without loss of
generality we can assume that there exists a number R > 0 such that

(4.1) Qr(2) = B (2), (0Q)r(2) = B%(2) forall R € (0, R],

where B}, (z) = Br(z) N R%, B%(2) = Br(z) NRE, R? = {z = (2/,2,) € R"! x R:
z, >0}, RE = {z = (2/,0): 2/ € R*~1}.
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Definition 4.1. Let M, v, v1, §, r, R be positive constants with ¢ < 2, r > 1
and let xg € 09). We denote by %p(,)(BE(xo), M,~,71,06,1/r) the class of functions
u € Whr0O)(B) with ||u||OQ;B;z < M such that, for w = +u, the following inequalities
are valid for arbitrary 0 < 7 <t < R:

(4.2) / |Vw|p(x) dz < 'y/ ‘w ‘ dz + 71|Ak7t|1*1/"
At At

for k > supw — 0M, where Ay, = {x € B (20): w(z) > k}.
Q¢

Without loss of generality we may assume that L > 1, v > 1 in Remark 2.1
and (4.2). Let M be a positive constant. Since p is continuous on 2, there exists a
radius R; such that

osc p

(4.3) Mo L2
for any Br, with Qg, # 0.

Lemma 4.2. Let Q be a bounded domain of R™, let z € 0%, and let (4.1) be
satisfied. Suppose that p € C%1/1°8t(Q) satisfies (1.7). Let Ry € (0,1) be a num-
ber such that Ry < min{Rl,E} and pgog = n + €9, where o9 > 1, g9 > 0 are
given numbers and pg = pB+ . Suppose that Br/(x9) C Br,(z), where xg € 09,

O(Z)
u € WHhPO(BE, (20))NL® (B} (x0)) and u € B, (Bf(x0), M,~,7,0,1/r) for some
R e (0,R] and r > 0¢. Then

(4.4) osc u<CR ™ “R”
B, (x0)

where o = min{eg/(n + £¢), — log, (1 —275171)}, | = max{2,2/5}, s = s(n,p*,p~, 7,
L,eg) >2 and C = 4max{125(((wn F1)(y+ 1) +y1) /) RE/ (=) osc u}
B,

The proof of Lemma 4.2 is completely analogous to that of [29], Lemma 4.5, in
which Yu and Ri obtained an interior Holder estimate, the only difference being that
we have to use the inequality (4.3) and Lemma 2.6 with E = B} (0 < ¢ < R) and
pooo has to be replaced by n + ¢ in our proof.

Lemma 4.3. Let Q and z € 0N be as in Lemma 4.2 and let p € W17 (Q), where
n < 7y < oo, satisfy (1.7). Suppose that A, B and C are satisfied the same conditions
as in Theorem 1.2 and u € W'P()(Q) is a bounded weak solution of (1.1), (1.2)
with sup|u| M and sup|u| M, where M is a positive number. Then there

exist a number Ry € (0, 1) with |Br,| < 1 and a number €y > 0 such that for any
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Br(z¢) C Bry(2) and oR = min{s}}r, (n(p;3+ - 1)/((71 - 1)p;+))u]_30 }, where
~ R R R R
To € 0N, u € %p(_)(BE(xO),M,'y,fyl,é, 1/ogr) and og > (n + 50)/p;+(x0), where § =
R

m1n{2,a0(M)/(4Mb0(M))}, Y= 7(p+aa0(M))a3(M)) and "= 'yl(nap+ap_7/j/+7
nsao(M), ar (M), llazlse.y, az(M), llas|lp sy, 102ll s> co(M), [lerllucyso0, 2, 09).

Proof. Sincepand s are continuous on €2, by (1.10) we can take numbers £’ > 0
and Ry > 0 such that

n+¢e

pQR2

(4.5) SQp, > for all Bg, with Qg, # 0.

Similarly, putting

"Popwy — D _
sB(z) := #M(SQ)R(@ for z € 02

p 5R(ﬂc)
and using (1.11), we find that there exist numbers ¢’ > 0 and Rz > 0 such that

1
(4.6) sE8 > nj_ ° forall z € 90
Pog, (=)
Setting
P(x) = __mlm) for z € 092,
nu(z) —n+1

we have & € C(0Q) and
1< P(x) <plx)<n forall xe o

Therefore we find that

ny'(z) . (n—1)Z(x)
4.7 P(x) = —————, that =
(4.7) (@) = oy thatis () = U
and there is a number R4 > 0 such that
(4.8) 9('59)]%(%) < Pop forall0 <R < Ryand for all z € €.

Let Ry € (0,1) be a number satisfying Ro < min{ljz7 Ry, Ra, Rs, R4} and |Bp,| < 1,
and let Br(xzo) C Bg,(z), where zy € 9Q. Putting &g = min{e’,¢"}, from (4.5),
(4.6) and (4.7) we have

(4.9) on > L0
PBi (a0)
and
(n—1)2% .
(4.10) () = )
= 2 BY (20)

179



Let 0 < 7 <t < R and let n € C'(R™) be as in the proof of Lemma 3.1. Setting

v =n? w® where k > supw — 6M, we have v € WL (Q) N L>®(Q), so we can
B/
take v as a test function in Definition 2.9. This yields

+ +
(4.11) / n? Az, u, Vu)Vwdx +p+/ nP TIVnA(z,u, Vu)(w — k) do
Ap A

k,t

+ / Bz, u, Vu)(w — k)P da = C(a, wwPypr" do.
Ag,t By

We use (1.9)—(1.14) to get:
(4.12) :I:/ np+A(x,u,Vu)dex
Akt
1/s” 4

17
> ag(M) / P IVwP® de — 2ay (M) |azlluco| e,
k,t

(4.13)

pt / 77p+V77A(x, u, Vu)(w — k) dz

< 2ptas(M)

— kp(@) /

X / (577”+|Vw|p(’”) + (e7P@ 1) Wk + a4® (”)> dz

Ak,t t—rT1

< M/ np+|vw|p(x) da
4 Akt
— kp(x)
+C0 a(M). a0 [ |72 da
Ak,t t—1

1-1/s~
+ Ot p 7 as(M), llas|l sy ()| Arel PR,

where we used the Holder inequality and Young inequality with ¢ = ao(M)/
(8pTas(M)),

(4.14) ‘ B(z,u, Vu)(w — k)n”+ dz
Apt
M 1-1/s~
< O [ 9l o+ Clao(M), ol Al
Apt

and where we took into account that 0 < w(x) —k < 0M < ao(M)/(4bo(M)) for

x € Ay, Finally, we estimate the boundary integral on the right-hand side of (4.11).
. . . + — — —

For brevity, we write £y, sg, po, o instead of 93%(%), SB,*;(xo)’ pB;(IO), F B9 ()7 T

spectively. Thus, taking into account (4.8), (4.10) and using (1.9), (1.15), the Holder
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inequality, the boundary trace imbedding and the Young inequality, we find that

C(2', w)w®npp" do’
By

(4.15)

N

+ +
CO(M)/Ocl(xl)w(k)np dz’ < Clw® 0" || o1y, /(221 ):09
Bf,

+ +
C(IV (@™ )H%-Q+Hw(k) " llzi0)

w —
< (va’ﬂp ||=@1 ARt + H 3”1;Ak,t>
w 7 —
C(||Vw77 lpo;Au. + H >|Ak,t|1/71 1/po
Po;Ak,t

M — kp(z)
< K/ ﬂ“WmWWM+/ = \ M)*“Mﬂlwy
4 Akt At

where ¢ = n(po — 1)po/((n — 1)po) and we used that |Ar:| < 1. Combining
(4.12)—(4.15) with (4.11) and using the definition of o, we conclude that

/ |Vw|p(”) dr < / 77”+|Vw|p(”) < 'y/ ‘w ‘ dz + 71|Ak,t|1_1/"R.
Ak,'r Ak,t

The lemma is proved. (I

Next we consider the local Holder continuity of weak solutions of (1.1). We shall
refer to a function u € WP()(Q) N L>=() such that

/ (A(z,u, Vu)Vv + B(z,u, Vu)v) dz = 0
Q

for an arbitrary function v € Wol’p(')(Q) N L>(£2) as to a bounded weak solution of
the equation (1.1). The following class which is useful for proving the interior Holder
continuity was defined by Ri and Yu (see [29]).

Definition 4.4. Let M, ~, y1, J, r be positive constants with § < 2, » > 1 and
Br(y) C Q. We say that a function u belongs to the class B,..)(Br(y), M,v,71,
5,1/r) if u € WHPO(BR), ||ulloo:Br < M and the functions w(x) = 4u(z) satisfy the
inequalities

w — kp@)
[ verar sy [T el
kv kot

for arbitrary 0 < 7 < ¢t < R and k such that k > sup w — M.
Bt (y)
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Lemma 4.5. Let p € C*/1°8t(Q) satisfy (1.7) let Ry € (0,1) be a number
satisfying Ry < Ry. Let eg > 0 and r > 1 be numbers such that por > n + €g, where
Py = pgRO(xO) and 2o € Q. Let Br/(y) C Qr,(20), and u € WP (Bp) N L= (Br/)

and sup |u| < M. Suppose that u € B,y (Br(y), M,v,71,0,1/r) for any R € (0, R'].
BRI

Then there exists a constant s = s(n,v,p",p~, L,e9) > 2 such that, for arbitrary
0<RLR,

osc u < CoR' ™ “R®,
Br(y)

where L is as in Remark 2.1 and

1 1 2
Coz4max{(wn+ )y + )+71123R,50/<n+50>7%8w}, l:maX{Z,g},
7 R/

€o —1lo—s
-1 1—-17"27%)¢.
50, Og4( )}

a = min{

Lemma 4.6. Let p € C(Q) satisfy (1.7). Let A and B satisfy (1.9), (1.10),
(1.12)—(1.14) and let u be a bounded weak solution of (1.1) such that sup|u| < M.
Then for any ball Br(y) CC Q with |Bg| < 1 @

1
u € By() (BR(y),M,%m,é, T)
SBp
where § = min{2, ao(M)/(3Mbo(M))}, v = v(p*, ao(M),az(M)), 11 = n(p*,p~,
ao(M),a1(M), l|az|ls.y, az(M), llaslly ()sy> 1021ls))-

The proofs of Lemmas 4.5 and 4.6 are similar to those of Lemmas 4.2 and 4.3 (see
also the proofs of Lemmas 4.5 and 4.6 in [29]), respectively, and are therefore omitted.

Proof of Theorem 1.2. Consider now the collection of the balls Bg(.)(z) for all
z € 00, where R(z) = %Ro with Ry corresponding to z as in Lemma 4.3. A finite sub-
set Br(.,)(zi), i = 1,..., N, of this collection covers JQ2. It follows from Lemma 4.3
that u belongs to %p(,)(BE(xo),M,'y,'yl,é, 1/oRr), where zg, R > 0 and op satisfy
zo € 09, Br(2o0) C Bpy.,)(2:) and or > (n + Eo)/pgg(zo

ing to z = z; in (4.4) by C;. Put

) We denote C' correspond-

R:=min{R(z),...,R(zn)}.

Let z,y € Q, B = dist(y, ). First, suppose that 3 < R. When |z —y| < 8,
putting R = |z — y| we have Bgr(y) CC Q. Thus, by Lemma 4.6 we get u €
B, (Br(y), M,v,7,0,1/sp,), where s;_ > (n+¢e9)/pp, by using (4.5). By
Lemma 4.5 with g = y, Ry = R’ = 3, we have

[u@) — u(y)l

4.16
(4.16) |z —yl*

<B4 K ernax{C',B_(y 0sc u},
Bg(y)
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where C depends on s as in Lemma 4.5 and v, 71, [ as in Lemma 4.6, and we used

that eg/(n+¢e9) —a > 0 and § < 1. We estimate §~¢ Bos(c)u. Choosing z¢ € 02
sy

such that |zg — y| = 8, then Bg(y) C Bag(xo) and so we have

4.17 “®oscu < 2% osc wuw-(2B8)7“.

( ) P Bg Q2p(z0) (26)

Since z9 € Bp.,)(2) for some 1 < i < N, we get Bag(zo) C Bapges,)(w0) C
Bspgz,)(2i). Using Lemma 4.2 with R = 28, R’ = 2R(2;), Ry = 3R(2;) and z = z;,
we therefore have

(4.18) osc u-(28)"* <Ci(2R(z)) “ < C
Qa2p(wo)

where C = C(n,p(),s(),u(),M, aO(M)7a1(M)7a3(M)7bO(M)7CO(M)7 ||a’4||p’(~)s(~)7
161ls¢ys leall )z, €2). Substituting (4.17) and (4.18) into (4.16), we obtain

(4.19) Ju(z) = u(y)] <C.

|z —yl|~

Let 8 < |r — y| < R. By using the notations introduced above, we have Bgr(y) C
BQR(Z‘Q) and

M < osc u-R™*<2% osc u-(2R)™°.
|z — y|« Qr(y) Q2r (o)
Replacing 8 by R and repeating the arguments which give (4.18), we thus have (4.19).
Next, suppose that R < 3. When |z — y| < R, putting R = |z — y|, R" = R and

using Lemmas 4.5 and 4.6, we get (4.19). If |z — y| > R, (4.19) is obvious. This
completes the proof of Theorem 1.2. O
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